Quantum spin liquids: a review.
Savary, Lucile; Balents, Leon
2017-01-01
Quantum spin liquids may be considered 'quantum disordered' ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.
Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate
Shen, Yao; Li, Yao-Dong; Wo, Hongliang; ...
2016-12-05
A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO 4 that reveal broad spin excitations coveringmore » a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO 4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.« less
Symmetry enriched U(1) quantum spin liquids
NASA Astrophysics Data System (ADS)
Zou, Liujun; Wang, Chong; Senthil, T.
2018-05-01
We classify and characterize three-dimensional U (1 ) quantum spin liquids [deconfined U (1 ) gauge theories] with global symmetries. These spin liquids have an emergent gapless photon and emergent electric/magnetic excitations (which we assume are gapped). We first discuss in great detail the case with time-reversal and SO(3 ) spin rotational symmetries. We find there are 15 distinct such quantum spin liquids based on the properties of bulk excitations. We show how to interpret them as gauged symmetry-protected topological states (SPTs). Some of these states possess fractional response to an external SO (3 ) gauge field, due to which we dub them "fractional topological paramagnets." We identify 11 other anomalous states that can be grouped into three anomaly classes. The classification is further refined by weakly coupling these quantum spin liquids to bosonic symmetry protected topological (SPT) phases with the same symmetry. This refinement does not modify the bulk excitation structure but modifies universal surface properties. Taking this refinement into account, we find there are 168 distinct such U (1 ) quantum spin liquids. After this warm-up, we provide a general framework to classify symmetry enriched U (1 ) quantum spin liquids for a large class of symmetries. As a more complex example, we discuss U (1 ) quantum spin liquids with time-reversal and Z2 symmetries in detail. Based on the properties of the bulk excitations, we find there are 38 distinct such spin liquids that are anomaly-free. There are also 37 anomalous U (1 ) quantum spin liquids with this symmetry. Finally, we briefly discuss the classification of U (1 ) quantum spin liquids enriched by some other symmetries.
Observation of spinon spin currents in one-dimensional spin liquid
NASA Astrophysics Data System (ADS)
Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji
To date, two types of spin current have been explored experimentally: conduction-electron spin current and spin-wave spin current. Here, we newly present spinon spin current in quantum spin liquid. An archetype of quantum spin liquid is realized in one-dimensional spin-1/2 chains with the spins coupled via antiferromagnetic interaction. Elementary excitation in such a system is known as a spinon. Theories have predicted that the correlation of spinons reaches over a long distance. This suggests that spin current may propagate via one-dimensional spinons even in spin liquid states. In this talk, we report the experimental observation that a spin liquid in a spin-1/2 quantum chain generates and conveys spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow via quantum fluctuation in spite of the absence of magnetic order, suggesting that a variety of quantum spin systems can be applied to spintronics. Spin Quantum Rectification Project, ERATO, JST, Japan; PRESTO, JST, Japan.
Classification and properties of quantum spin liquids on the hyperhoneycomb lattice
NASA Astrophysics Data System (ADS)
Huang, Biao; Choi, Wonjune; Kim, Yong Baek; Lu, Yuan-Ming
2018-05-01
The family of "Kitaev materials" provides an ideal platform to study quantum spin liquids and their neighboring magnetic orders. Motivated by the possibility of a quantum spin liquid ground state in pressurized hyperhoneycomb iridate β -Li2IrO3 , we systematically classify and study symmetric quantum spin liquids on the hyperhoneycomb lattice, using the Abrikosov-fermion representation. Among the 176 symmetric U (1 ) spin liquids (and 160 Z2 spin liquids), we identify eight "root" U (1 ) spin liquids in proximity to the ground state of the solvable Kitave model on the hyperhonecyomb lattice. These eight states are promising candidates for possible U (1 ) spin liquid ground states in pressurized β -Li2IrO3 . We further discuss physical properties of these eight U (1 ) spin liquid candidates, and show that they all support nodal-line-shaped spinon Fermi surfaces.
Claassen, Martin; Jiang, Hong -Chen; Moritz, Brian; ...
2017-10-30
The search for quantum spin liquids in frustrated quantum magnets recently has enjoyed a surge of interest, with various candidate materials under intense scrutiny. However, an experimental confirmation of a gapped topological spin liquid remains an open question. Here, we show that circularly polarized light can provide a knob to drive frustrated Mott insulators into a chiral spin liquid, realizing an elusive quantum spin liquid with topological order. We find that the dynamics of a driven Kagome Mott insulator is well-captured by an effective Floquet spin model, with heating strongly suppressed, inducing a scalar spin chirality S i · (Smore » j × S k) term which dynamically breaks time-reversal while preserving SU(2) spin symmetry. We fingerprint the transient phase diagram and find a stable photo-induced chiral spin liquid near the equilibrium state. Furthermore, the results presented suggest employing dynamical symmetry breaking to engineer quantum spin liquids and access elusive phase transitions that are not readily accessible in equilibrium.« less
Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite
NASA Astrophysics Data System (ADS)
Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.
2018-04-01
We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
A spin-orbital-entangled quantum liquid on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Kitagawa, K.; Takayama, T.; Matsumoto, Y.; Kato, A.; Takano, R.; Kishimoto, Y.; Bette, S.; Dinnebier, R.; Jackeli, G.; Takagi, H.
2018-02-01
The honeycomb lattice is one of the simplest lattice structures. Electrons and spins on this simple lattice, however, often form exotic phases with non-trivial excitations. Massless Dirac fermions can emerge out of itinerant electrons, as demonstrated experimentally in graphene, and a topological quantum spin liquid with exotic quasiparticles can be realized in spin-1/2 magnets, as proposed theoretically in the Kitaev model. The quantum spin liquid is a long-sought exotic state of matter, in which interacting spins remain quantum-disordered without spontaneous symmetry breaking. The Kitaev model describes one example of a quantum spin liquid, and can be solved exactly by introducing two types of Majorana fermion. Realizing a Kitaev model in the laboratory, however, remains a challenge in materials science. Mott insulators with a honeycomb lattice of spin-orbital-entangled pseudospin-1/2 moments have been proposed, including the 5d-electron systems α-Na2IrO3 (ref. 5) and α-Li2IrO3 (ref. 6) and the 4d-electron system α-RuCl3 (ref. 7). However, these candidates were found to magnetically order rather than form a liquid at sufficiently low temperatures, owing to non-Kitaev interactions. Here we report a quantum-liquid state of pseudospin-1/2 moments in the 5d-electron honeycomb compound H3LiIr2O6. This iridate does not display magnetic ordering down to 0.05 kelvin, despite an interaction energy of about 100 kelvin. We observe signatures of low-energy fermionic excitations that originate from a small number of spin defects in the nuclear-magnetic-resonance relaxation and the specific heat. We therefore conclude that H3LiIr2O6 is a quantum spin liquid. This result opens the door to finding exotic quasiparticles in a strongly spin-orbit-coupled 5d-electron transition-metal oxide.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-08-24
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
Competing Spin Liquids and Hidden Spin-Nematic Order in Spin Ice with Frustrated Transverse Exchange
NASA Astrophysics Data System (ADS)
Taillefumier, Mathieu; Benton, Owen; Yan, Han; Jaubert, L. D. C.; Shannon, Nic
2017-10-01
Frustration in magnetic interactions can give rise to disordered ground states with subtle and beautiful properties. The spin ices Ho2 Ti2 O7 and Dy2 Ti2 O7 exemplify this phenomenon, displaying a classical spin-liquid state, with fractionalized magnetic-monopole excitations. Recently, there has been great interest in closely related "quantum spin-ice" materials, following the realization that anisotropic exchange interactions could convert spin ice into a massively entangled, quantum spin liquid, where magnetic monopoles become the charges of an emergent quantum electrodynamics. Here we show that even the simplest model of a quantum spin ice, the XXZ model on the pyrochlore lattice, can realize a still-richer scenario. Using a combination of classical Monte Carlo simulation, semiclassical molecular-dynamics simulation, and analytic field theory, we explore the properties of this model for frustrated transverse exchange. We find not one, but three competing forms of spin liquid, as well as a phase with hidden, spin-nematic order. We explore the experimental signatures of each of these different states, making explicit predictions for inelastic neutron scattering. These results show an intriguing similarity to experiments on a range of pyrochlore oxides.
Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.
Vasseur, Romain; Moore, Joel E
2014-04-11
The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.
Entanglement in 3D Kitaev spin liquids
NASA Astrophysics Data System (ADS)
Matern, S.; Hermanns, M.
2018-06-01
Quantum spin liquids are highly fascinating quantum liquids in which the spin degrees of freedom fractionalize. An interesting class of spin liquids are the exactly solvable, three-dimensional Kitaev spin liquids. Their fractionalized excitations are Majonara fermions, which may exhibit a variety of topological band structures—ranging from topologically protected Weyl semi-metals over nodal semi-metals to systems with Majorana Fermi surfaces. We study the entanglement spectrum of such Kitaev spin liquids and verify that it is closely related to the topologically protected edge spectrum. Moreover, we find that in some cases the entanglement spectrum contains even more information about the topological features than the surface spectrum, and thus provides a simple and reliable tool to probe the topology of a system.
Quantum spin liquid signatures in Kitaev-like frustrated magnets
NASA Astrophysics Data System (ADS)
Gohlke, Matthias; Wachtel, Gideon; Yamaji, Youhei; Pollmann, Frank; Kim, Yong Baek
2018-02-01
Motivated by recent experiments on α -RuCl3 , we investigate a possible quantum spin liquid ground state of the honeycomb-lattice spin model with bond-dependent interactions. We consider the K -Γ model, where K and Γ represent the Kitaev and symmetric-anisotropic interactions between spin-1/2 moments on the honeycomb lattice. Using the infinite density matrix renormalization group, we provide compelling evidence for the existence of quantum spin liquid phases in an extended region of the phase diagram. In particular, we use transfer-matrix spectra to show the evolution of two-particle excitations with well-defined two-dimensional dispersion, which is a strong signature of a quantum spin liquid. These results are compared with predictions from Majorana mean-field theory and used to infer the quasiparticle excitation spectra. Further, we compute the dynamical structure factor using finite-size cluster computations and show that the results resemble the scattering continuum seen in neutron-scattering experiments on α -RuCl3 . We discuss these results in light of recent and future experiments.
Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders
Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko; ...
2017-09-11
Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less
Emergence of chiral spin liquids via quantum melting of noncoplanar magnetic orders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hickey, Ciarán; Cincio, Lukasz; Papić, Zlatko
Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG)we show studies of concrete S U ( 2 ) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids (CSLs) emerge as descendants of triple- Q spin crystals with tetrahedral magnetic order and a large scalar spin chirality. Suchmore » ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs field theories. We provides a distinct unifying perspective on the emergence of CSLs and suggests that materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.« less
Absence of Jahn-Teller transition in the hexagonal Ba 3CuSb 2O 9 single crystal
Katayama, Naoyuki; Kimura, Kenta; Han, Yibo; ...
2015-07-13
With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose-Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Furthermore, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin-orbital entanglement in FeSc2S4. To confirm this exotic ground state, experimentsmore » based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin-orbital liquid candidate, 6H-Ba3CuSb2O9, and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn-Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn-Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. Lastly, we discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin-orbital entangled quantum liquid state.« less
Tunable Quantum Spin Liquidity in the 1 /6 th-Filled Breathing Kagome Lattice
NASA Astrophysics Data System (ADS)
Akbari-Sharbaf, A.; Sinclair, R.; Verrier, A.; Ziat, D.; Zhou, H. D.; Sun, X. F.; Quilliam, J. A.
2018-06-01
We present measurements on a series of materials, Li2 In1 -xScx Mo3 O8 , that can be described as a 1 /6 th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter nonmonotonically. Muon spin rotation experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016), 10.1103/PhysRevB.93.245134]. The specific heat for samples at intermediate Sc concentration, which have the minimum breathing parameter, show consistency with the predicted U (1 ) quantum spin liquid.
Physics of the Kitaev Model: Fractionalization, Dynamic Correlations, and Material Connections
NASA Astrophysics Data System (ADS)
Hermanns, M.; Kimchi, I.; Knolle, J.
2018-03-01
Quantum spin liquids have fascinated condensed matter physicists for decades because of their unusual properties such as spin fractionalization and long-range entanglement. Unlike conventional symmetry breaking, the topological order underlying quantum spin liquids is hard to detect experimentally. Even theoretical models are scarce for which the ground state is established to be a quantum spin liquid. The Kitaev honeycomb model and its generalizations to other tricoordinated lattices are chief counterexamples - they are exactly solvable, harbor a variety of quantum spin liquid phases, and are also relevant for certain transition metal compounds including the polymorphs of (Na,Li)2IrO3 iridates and RuCl3. In this review, we give an overview of the rich physics of the Kitaev model, including two-dimensional and three-dimensional fractionalization as well as dynamic correlations and behavior at finite temperatures. We discuss the different materials and argue how the Kitaev model physics can be relevant even though most materials show magnetic ordering at low temperatures.
Quantum electric-dipole liquid on a triangular lattice.
Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young
2016-02-04
Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.
Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.
Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R
2016-05-13
The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.
NASA Astrophysics Data System (ADS)
Ralko, Arnaud; Mila, Frédéric; Rousochatzakis, Ioannis
2018-03-01
The spin-1/2 Heisenberg model on the kagome lattice, which is closely realized in layered Mott insulators such as ZnCu3(OH) 6Cl2 , is one of the oldest and most enigmatic spin-1/2 lattice models. While the numerical evidence has accumulated in favor of a quantum spin liquid, the debate is still open as to whether it is a Z2 spin liquid with very short-range correlations (some kind of resonating valence bond spin liquid), or an algebraic spin liquid with power-law correlations. To address this issue, we have pushed the program started by Rokhsar and Kivelson in their derivation of the effective quantum dimer model description of Heisenberg models to unprecedented accuracy for the spin-1/2 kagome, by including all the most important virtual singlet contributions on top of the orthogonalization of the nearest-neighbor valence bond singlet basis. Quite remarkably, the resulting picture is a competition between a Z2 spin liquid and a diamond valence bond crystal with a 12-site unit cell, as in the density-matrix renormalization group simulations of Yan et al. Furthermore, we found that, on cylinders of finite diameter d , there is a transition between the Z2 spin liquid at small d and the diamond valence bond crystal at large d , the prediction of the present microscopic description for the two-dimensional lattice. These results show that, if the ground state of the spin-1/2 kagome antiferromagnet can be described by nearest-neighbor singlet dimers, it is a diamond valence bond crystal, and, a contrario, that, if the system is a quantum spin liquid, it has to involve long-range singlets, consistent with the algebraic spin liquid scenario.
Physical realization of a quantum spin liquid based on a complex frustration mechanism
NASA Astrophysics Data System (ADS)
Reuther, Johannes; Balz, Christian; Lake, Bella
Unlike conventional magnets where the spins undergo magnetic long-range order in the ground state, in a quantum spin liquid they remain disordered down to the lowest temperatures without breaking local symmetries. Here, we investigate the novel, unexplored bilayer-kagome magnet Ca10Cr7O28, which has a complex Hamiltonian consisting of isotropic antiferromagnetic and ferromagnetic interactions where the ferromagnetic couplings are the dominant ones. We show both experimentally and theoretically that this compound displays all the features expected of a quantum spin liquid. In particular, experiments rule out static magnetic order down to 19mK and reveal a diffuse spinon-like excitation spectrum. Numerically simulating this material using the pseudo fermion functional renormalization group (PFFRG) method, we theoretically confirm the non-magnetic ground state of the system and qualitatively reproduce the measured spin correlation profile. By tuning the model parameters away from those realized in Ca10Cr7O28 we further show that the spin-liquid phase is of remarkable stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
NASA Astrophysics Data System (ADS)
Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich
2018-04-01
We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.
Discovery of Emergent Photon and Monopoles in a Quantum Spin Liquid
NASA Astrophysics Data System (ADS)
Tokiwa, Yoshifumi; Yamashita, Takuya; Terazawa, Daiki; Kimura, Kenta; Kasahara, Yuichi; Onishi, Takafumi; Kato, Yasuyuki; Halim, Mario; Gegenwart, Philipp; Shibauchi, Takasada; Nakatsuji, Satoru; Moon, Eun-Gook; Matsuda, Yuji
2018-06-01
Quantum spin liquid (QSL) is an exotic quantum phase of matter whose ground state is quantum-mechanically entangled without any magnetic ordering. A central issue concerns emergent excitations that characterize QSLs, which are hypothetically associated with quasiparticle fractionalization and topological order. Here we report highly unusual heat conduction generated by the spin degrees of freedom in a QSL state of the pyrochlore magnet Pr2Zr2O7, which hosts spin-ice correlations with strong quantum fluctuations. The thermal conductivity in high temperature regime exhibits a two-gap behavior, which is consistent with the gapped excitations of magnetic (M-) and electric monopoles (E-particles). At very low temperatures below 200 mK, the thermal conductivity unexpectedly shows a dramatic enhancement, which well exceeds purely phononic conductivity, demonstrating the presence of highly mobile spin excitations. This new type of excitations can be attributed to emergent photons (ν-particle), coherent gapless spin excitations in a spin-ice manifold.
Theory of the spin-1 bosonic liquid metal - Equilibrium properties of liquid metallic deuterium
NASA Technical Reports Server (NTRS)
Oliva, J.; Ashcroft, N. W.
1984-01-01
The theory of a two-component quantum fluid comprised of spin-1/2 fermions and nonzero spin bosons is examined. This system is of interest because it embodies a possible quantum liquid metallic phase of highly compressed deuterium. Bose condensation is assumed present and the two cases of nuclear-spin-polarized and -unpolarized systems are considered. A significant feature in the unpolarized case is the presence of a nonmagnetic mode with quadratic dispersion owing its existence to nonzero boson spin. The physical character of this mode is examined in detail within a Bogoliubov approach. The specific heat, bulk modulus, spin susceptibility, and thermal expansion are all determined. Striking contrasts in the specific heats and thermal-expansion coefficients of the liquid and corresponding normal solid metallic phase are predicted.
Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates
NASA Astrophysics Data System (ADS)
Kimchi, Itamar
In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.
Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3
NASA Astrophysics Data System (ADS)
Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu
2016-11-01
Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general.
Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3.
Yadav, Ravi; Bogdanov, Nikolay A; Katukuri, Vamshi M; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu
2016-11-30
Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d 5 honeycomb halide α-RuCl 3 . From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d 5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d 5 halides and oxides in general.
Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3
Yadav, Ravi; Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Nishimoto, Satoshi; van den Brink, Jeroen; Hozoi, Liviu
2016-01-01
Large anisotropic exchange in 5d and 4d oxides and halides open the door to new types of magnetic ground states and excitations, inconceivable a decade ago. A prominent case is the Kitaev spin liquid, host of remarkable properties such as protection of quantum information and the emergence of Majorana fermions. Here we discuss the promise for spin-liquid behavior in the 4d5 honeycomb halide α-RuCl3. From advanced electronic-structure calculations, we find that the Kitaev interaction is ferromagnetic, as in 5d5 iridium honeycomb oxides, and indeed defines the largest superexchange energy scale. A ferromagnetic Kitaev coupling is also supported by a detailed analysis of the field-dependent magnetization. Using exact diagonalization and density-matrix renormalization group techniques for extended Kitaev-Heisenberg spin Hamiltonians, we find indications for a transition from zigzag order to a gapped spin liquid when applying magnetic field. Our results offer a unified picture on recent magnetic and spectroscopic measurements on this material and open new perspectives on the prospect of realizing quantum spin liquids in d5 halides and oxides in general. PMID:27901091
NASA Astrophysics Data System (ADS)
Han, Tianheng
New physics, such as a quantum spin liquid, can emerge in systems where quantum fluctuations are enhanced due to reduced dimensionality and strong frustration . The realization of a quantum spin liquid in two-dimensions would represent a new state of matter. It is believed that spin liquid physics plays a role in the phenomenon of high-Tc superconductivity, and the topological properties of the spin liquid state may have applications in the field of quantum information. The Zn-paratacamite family, ZnxCu4-- x(OH)6Cl2 for x > 0.33, is an ideal system to look for such an exotic state in the form of antiferromagnetic Cu 2 + kagome planes. The x = 1 end member, named herbertsmithite, has shown promising spin liquid properties from prior studies on powder samples. Here we show a new synthesis by which high-quality centimeter-sized single crystals of Znparatacamite have been produced for the first time. Neutron and synchrotron xray diffraction experiments indicate no structural transition down to T = 2 K. The magnetic susceptibility both perpendicular and parallel to the kagome plane has been measured for the x = 1 sample. A small, temperature-dependent anisotropy has been observed, where chi z / chip > 1 at high temperatures and chiz / chip < 1 at low temperatures. Fits of the high-temperature data to a Curie-Weiss model also reveal anisotropies for thetacw's and g-factors. By comparing with theoretical calculations, the presence of a small easy-axis exchange anisotropy can be deduced as a primary perturbation to the dominant Heisenberg nearest neighbor interaction. These results have great bearing on the interpretation of theoretical calculations based on the kagome Heisenberg antiferromagnet model to the experiments on ZnCu3(OH) 6Cl2. Specific heat measurements down to dilution temperatures and under strong applied magnetic fields show a superlinear temperature dependence with a finite linear term. Most importantly, we present neutron scattering measurements of the spin excitations on a large deuterated single crystal sample of herbertsmithite. Our observation of a spinon continuum in a two-dimensional magnet is unprecedented. The sresults serve as a a key fingerprint of the quantum spin liquid state in herbertsmithite. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
NASA Astrophysics Data System (ADS)
Bukhan'ko, F. N.; Bukhan'ko, A. F.
2017-12-01
The evolution of the ground state of the manganese spin ensemble in the (Sm1- y Gd y )0.55Sr0.45MnO3 in the case of isovalent substitution of rare-earth samarium ions with large radii with gadolinium ions with significantly smaller radii is studied. The measured temperature dependences of the ac magnetic susceptibility and the field dependences of the dc magnetizations are analyzed using the Heisenberg-Kitaev model describing the transition from the ordered spin state with classical isotropic AFM exchange to the frustrated spin state with quantum highly anisotropic FM exchange. A continuous transition from the 3D ferromagnetic state of manganese spins in the initial sample with y = 0 to zigzag AFM ordering of CE-type spins in ab planes for y = 0.5, coexisting in samples with y = 0.5, 0.6, and 0.7 at temperatures below T N ≅ 48.5 K with a disordered phase such as a quantum Griffiths phase is identified. As the gadolinium concentration further increases, the CE-type zigzag AFM structure is molten, which leads to the appearance of an unusual phase in Gd0.55Sr0.45MnO3 in the temperature range close to the absolute zero. This phase has characteristic features of a gapless Z 2 quantum spin liquid in zero external magnetic field. The step changes in the magnetization isotherms measured at 4.2 K in the field range of ±75 kOe are explained by quantum phase transitions of the Z 2 spin liquid to a phase with topological order in weak magnetic fields and a polarized phase in strong fields. The significant difference between critical fields and magnetization jumps in isotherms indicates the existence of hysteretic phenomena in quantum spin liquid magnetization-demagnetization processes caused by the difference between localization-delocalization of 2D vortex pairs induced by a magnetic field in a quantum spin liquid with disorder.
Global phase diagram and quantum spin liquids in a spin- 1 2 triangular antiferromagnet
Gong, Shou-Shu; Zhu, Wei; Zhu, Jianxin; ...
2017-08-09
For this research, we study the spin-1/2 Heisenberg model on the triangular lattice with the nearest-neighbor J 1 > 0 , the next-nearest-neighobr J 2 > 0 Heisenberg interactions, and the additional scalar chiral interaction Jχ (more » $$\\vec{S}$$ i × $$\\vec{S}$$ j ) · $$\\vec{S}$$ k for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder geometry. With increasing J 2 (J 2 / J 1 ≤ 0.3 ) and Jχ (Jχ / J 1 ≤ 1.0 ) interactions, we establish a quantum phase diagram with the magnetically ordered 120°, stripe, and noncoplanar tetrahedral phase. In between these magnetic order phases, we find a chiral spin liquid (CSL) phase, which is identified as a ν = 1/2 bosonic fractional quantum Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we find that the previously identified spin liquid in the J 1 - J 2 triangular model (0.08 ≲ J 2 / J 1 ≲ 0.15) shows a phase transition to the CSL phase at very small Jχ. We also compute the spin triplet gap in both spin liquid phases, and our finite-size results suggest a large gap in the odd topological sector but a small or vanishing gap in the even sector. Lastly, we discuss the implications of our results on the nature of the spin liquid phases.« less
Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of α -RuCl3
NASA Astrophysics Data System (ADS)
Zheng, Jiacheng; Ran, Kejing; Li, Tianrun; Wang, Jinghui; Wang, Pengshuai; Liu, Bin; Liu, Zheng-Xin; Normand, B.; Wen, Jinsheng; Yu, Weiqiang
2017-12-01
α -RuCl3 is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α -RuCl3 undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the a b plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets, offers insight essential to establishing the physics of α -RuCl3 .
Real-space imaging of fractional quantum Hall liquids
NASA Astrophysics Data System (ADS)
Hayakawa, Junichiro; Muraki, Koji; Yusa, Go
2013-01-01
Electrons in semiconductors usually behave like a gas--as independent particles. However, when confined to two dimensions under a perpendicular magnetic field at low temperatures, they condense into an incompressible quantum liquid. This phenomenon, known as the fractional quantum Hall (FQH) effect, is a quantum-mechanical manifestation of the macroscopic behaviour of correlated electrons that arises when the Landau-level filling factor is a rational fraction. However, the diverse microscopic interactions responsible for its emergence have been hidden by its universality and macroscopic nature. Here, we report real-space imaging of FQH liquids, achieved with polarization-sensitive scanning optical microscopy using trions (charged excitons) as a local probe for electron spin polarization. When the FQH ground state is spin-polarized, the triplet/singlet intensity map exhibits a spatial pattern that mirrors the intrinsic disorder potential, which is interpreted as a mapping of compressible and incompressible electron liquids. In contrast, when FQH ground states with different spin polarization coexist, domain structures with spontaneous quasi-long-range order emerge, which can be reproduced remarkably well from the disorder patterns using a two-dimensional random-field Ising model. Our results constitute the first reported real-space observation of quantum liquids in a class of broken symmetry state known as the quantum Hall ferromagnet.
Quantum Spin Liquids and Fractionalization
NASA Astrophysics Data System (ADS)
Misguich, Grégoire
This chapter discusses quantum antiferromagnets which do not break any symmetries at zero temperature - also called "spin liquids" - and focuses on lattice spin models with Heisenberg-like (i.e. SU(2)-symmetric) interactions in dimensions larger than one. We begin by discussing the Lieb-Schultz-Mattis theorem and its recent extension to D > 1 by Hastings (2004), which establishes an important distinction between spin liquids with an integer and with a half-integer spin per unit cell. Spin liquids of the first kind, "band insulators", can often be understood by elementary means, whereas the latter, "Mott insulators", are more complex (featuring "topological order") and support spin-1/2 excitations (spinons). The fermionic formalism (Affleck and Marston, 1988) is described and the effect of fluctuations about mean-field solutions, such as the possible creation of instabilities, is discussed in a qualitative way. In particular, we explain the emergence of gauge modes and their relation to fractionalization. The concept of the projective symmetry group (X.-G. Wen, 2002) is introduced, with the aid of some examples. Finally, we present the phenomenology of (gapped) short-ranged resonating-valence-bond spin liquids, and make contact with the fermionic approach by discussing their description in terms of a fluctuating Z 2 gauge field. Some recent references are given to other types of spin liquid, including gapless ones.
NASA Astrophysics Data System (ADS)
Segnorile, H. H.; Zamar, R. C.
2013-10-01
An experimental study of NMR spin decoherence in nematic liquid crystals is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the irreversible quantum decoherence in liquid crystals, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the quantum spin decoherence of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic decoherence. In order to contrast experiment and theory, the theory was adapted to obtain the decoherence function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments, and the presence of non-reverted spin interaction terms are analysed in detail within this framework, and their effects on the observed signal decay are numerically estimated. It is found that though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of decoherence associated with a quantum open spin system in liquid crystals. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and lead to conclude that the quasi-equilibrium is a definite stage of the spin dynamics during its evolution towards equilibrium.
Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P
2017-12-01
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.
Engineering the Eigenstates of Coupled Spin-1 /2 Atoms on a Surface
NASA Astrophysics Data System (ADS)
Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; Lado, Jose L.; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J.; Lutz, Christopher P.
2017-12-01
Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1 /2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1 /2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1 /2 atoms on surfaces.
Ground-state phase diagram of an anisotropic spin-1/2 model on the triangular lattice
NASA Astrophysics Data System (ADS)
Luo, Qiang; Hu, Shijie; Xi, Bin; Zhao, Jize; Wang, Xiaoqun
2017-04-01
Motivated by a recent experiment on the rare-earth material YbMgGaO4 [Y. Li et al., Phys. Rev. Lett. 115, 167203 (2015), 10.1103/PhysRevLett.115.167203], which found that the ground state of YbMgGaO4 is a quantum spin liquid, we study the ground-state phase diagram of an anisotropic spin-1 /2 model that was proposed to describe YbMgGaO4. Using the density matrix renormalization-group method in combination with the exact-diagonalization method, we calculate a variety of physical quantities, including the ground-state energy, the fidelity, the entanglement entropy and spin-spin correlation functions. Our studies show that in the quantum phase diagram, there is a 120∘ phase and two distinct stripe phases. The transitions from the two stripe phases to the 120∘ phase are of the first order. However, the transition between the two stripe phases is not of the first order, which is different from its classical counterpart. Additionally, we find no evidence for a quantum spin liquid in this model. Our results suggest that additional terms may also be important to model the material YbMgGaO4. These findings will stimulate further experimental and theoretical works in understanding the quantum spin-liquid ground state in YbMgGaO4.
Electrodynamics of quantum spin liquids
NASA Astrophysics Data System (ADS)
Dressel, Martin; Pustogow, Andrej
2018-05-01
Quantum spin liquids attract great interest due to their exceptional magnetic properties characterized by the absence of long-range order down to low temperatures despite the strong magnetic interaction. Commonly, these compounds are strongly correlated electron systems, and their electrodynamic response is governed by the Mott gap in the excitation spectrum. Here we summarize and discuss the optical properties of several two-dimensional quantum spin liquid candidates. First we consider the inorganic material herbertsmithite ZnCu3(OH)6Cl2 and related compounds, which crystallize in a kagome lattice. Then we turn to the organic compounds -EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Cu2(CN)3, where the spins are arranged in an almost perfect triangular lattice, leading to strong frustration. Due to differences in bandwidth, the effective correlation strength varies over a wide range, leading to a rather distinct behavior as far as the electrodynamic properties are concerned. We discuss the spinon contributions to the optical conductivity in comparison to metallic quantum fluctuations in the vicinity of the Mott transition.
Absence of Long-Range Order in a Triangular Spin System with Dipolar Interactions
NASA Astrophysics Data System (ADS)
Keleş, Ahmet; Zhao, Erhai
2018-05-01
The antiferromagnetic Heisenberg model on the triangular lattice is perhaps the best known example of frustrated magnets, but it orders at low temperatures. Recent density matrix renormalization group (DMRG) calculations find that the next nearest neighbor interaction J2 enhances the frustration, and it leads to a spin liquid for J2/J1∈(0.08 ,0.15 ). In addition, a DMRG study of a dipolar Heisenberg model with longer range interactions gives evidence for a spin liquid at a small dipole tilting angle θ ∈[0 ,1 0 ° ). In both cases, the putative spin liquid region appears to be small. Here, we show that for the triangular lattice dipolar Heisenberg model, a robust quantum paramagnetic phase exists in a surprisingly wide region, θ ∈[0 ,5 4 ° ) , for dipoles tilted along the lattice diagonal direction. We obtain the phase diagram of the model by functional renormalization group (RG), which treats all magnetic instabilities on equal footing. The quantum paramagnetic phase is characterized by a smooth continuous flow of vertex functions and spin susceptibility down to the lowest RG scale, in contrast to the apparent breakdown of RG flow in phases with stripe or spiral order. Our finding points to a promising direction to search for quantum spin liquids in ultracold dipolar molecules.
Tokiwa, Y.; Yamashita, T.; Udagawa, M.; Kittaka, S.; Sakakibara, T; Terazawa, D.; Shimoyama, Y.; Terashima, T.; Yasui, Y.; Shibauchi, T.; Matsuda, Y.
2016-01-01
The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids. PMID:26912080
Tokiwa, Y; Yamashita, T; Udagawa, M; Kittaka, S; Sakakibara, T; Terazawa, D; Shimoyama, Y; Terashima, T; Yasui, Y; Shibauchi, T; Matsuda, Y
2016-02-25
The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids.
Topological spinon bands and vison excitations in spin-orbit coupled quantum spin liquids
NASA Astrophysics Data System (ADS)
Sonnenschein, Jonas; Reuther, Johannes
2017-12-01
Spin liquids are exotic quantum states characterized by the existence of fractional and deconfined quasiparticle excitations, referred to as spinons and visons. Their fractional nature establishes topological properties such as a protected ground-state degeneracy. This work investigates spin-orbit coupled spin liquids where, additionally, topology enters via nontrivial band structures of the spinons. We revisit the Z2 spin-liquid phases that have recently been identified in a projective symmetry-group analysis on the square lattice when spin-rotation symmetry is maximally lifted [J. Reuther et al., Phys. Rev. B 90, 174417 (2014), 10.1103/PhysRevB.90.174417]. We find that in the case of nearest-neighbor couplings only, Z2 spin liquids on the square lattice always exhibit trivial spinon bands. Adding second-neighbor terms, the simplest projective symmetry-group solution closely resembles the Bernevig-Hughes-Zhang model for topological insulators. Assuming that the emergent gauge fields are static, we investigate vison excitations, which we confirm to be deconfined in all investigated spin phases. Particularly, if the spinon bands are topological, the spinons and visons form bound states consisting of several spinon-Majorana zero modes coupling to one vison. The existence of such zero modes follows from an exact mapping between these spin phases and topological p +i p superconductors with vortices. We propose experimental probes to detect such states in real materials.
Evidence for a Field-Induced Quantum Spin Liquid in α -RuCl3
NASA Astrophysics Data System (ADS)
Baek, S.-H.; Do, S.-H.; Choi, K.-Y.; Kwon, Y. S.; Wolter, A. U. B.; Nishimoto, S.; van den Brink, Jeroen; Büchner, B.
2017-07-01
We report a 35Cl nuclear magnetic resonance study in the honeycomb lattice α -RuCl3 , a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that α -RuCl3 exhibits a magnetic-field-induced QSL. For fields larger than ˜10 T , a spin gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching ˜50 K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and, in particular, exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced gapped QSL phase has indeed been predicted in the Kitaev model.
NASA Astrophysics Data System (ADS)
Morath, D.; Sedlmayr, N.; Sirker, J.; Eggert, S.
2016-09-01
We study electron and spin transport in interacting quantum wires contacted by noninteracting leads. We theoretically model the wire and junctions as an inhomogeneous chain where the parameters at the junction change on the scale of the lattice spacing. We study such systems analytically in the appropriate limits based on Luttinger liquid theory and compare the results to quantum Monte Carlo calculations of the conductances and local densities near the junction. We first consider an inhomogeneous spinless fermion model with a nearest-neighbor interaction and then generalize our results to a spinful model with an on-site Hubbard interaction.
Quantum spin liquids and the metal-insulator transition in doped semiconductors.
Potter, Andrew C; Barkeshli, Maissam; McGreevy, John; Senthil, T
2012-08-17
We describe a new possible route to the metal-insulator transition in doped semiconductors such as Si:P or Si:B. We explore the possibility that the loss of metallic transport occurs through Mott localization of electrons into a quantum spin liquid state with diffusive charge neutral "spinon" excitations. Such a quantum spin liquid state can appear as an intermediate phase between the metal and the Anderson-Mott insulator. An immediate testable consequence is the presence of metallic thermal conductivity at low temperature in the electrical insulator near the metal-insulator transition. Further, we show that though the transition is second order, the zero temperature residual electrical conductivity will jump as the transition is approached from the metallic side. However, the electrical conductivity will have a nonmonotonic temperature dependence that may complicate the extrapolation to zero temperature. Signatures in other experiments and some comparisons with existing data are made.
Continuous excitations of the triangular-lattice quantum spin liquid YbMgGaO 4
Paddison, Joseph A. M.; Daum, Marcus; Dun, Zhiling; ...
2016-12-05
A quantum spin liquid (QSL) is an exotic state of matter in which electrons’ spins are quantum entangled over long distances, but do not show magnetic order in the zero-temperature limit. The observation of QSL states is a central aim of experimental physics, because they host collective excitations that transcend our knowledge of quantum matter; however, examples in real materials are scarce. We report neutron-scattering experiments on YbMgGaO 4, a QSL candidate in which Yb 3+ ions with effective spin-1/2 occupy a triangular lattice. Furthermore, our measurements reveal a continuum of magnetic excitations—the essential experimental hallmark of a QSL7—at verymore » low temperature (0.06 K). The origin of this peculiar excitation spectrum is a crucial question, because isotropic nearest-neighbour interactions do not yield a QSL ground state on the triangular lattice. In using measurements the field-polarized state, we identify antiferromagnetic next-nearest-neighbour interactions spin-space anisotropies and chemical disorder between the magnetic layers as key ingredients in YbMgGaO 4.« less
Unusual Thermal Hall Effect in a Kitaev Spin Liquid Candidate α -RuCl3
NASA Astrophysics Data System (ADS)
Kasahara, Y.; Sugii, K.; Ohnishi, T.; Shimozawa, M.; Yamashita, M.; Kurita, N.; Tanaka, H.; Nasu, J.; Motome, Y.; Shibauchi, T.; Matsuda, Y.
2018-05-01
The Kitaev quantum spin liquid displays the fractionalization of quantum spins into Majorana fermions. The emergent Majorana edge current is predicted to manifest itself in the form of a finite thermal Hall effect, a feature commonly discussed in topological superconductors. Here we report on thermal Hall conductivity κx y measurements in α -RuCl3 , a candidate Kitaev magnet with the two-dimensional honeycomb lattice. In a spin-liquid (Kitaev paramagnetic) state below the temperature characterized by the Kitaev interaction JK/kB˜80 K , positive κx y develops gradually upon cooling, demonstrating the presence of highly unusual itinerant excitations. Although the zero-temperature property is masked by the magnetic ordering at TN=7 K , the sign, magnitude, and T dependence of κx y/T at intermediate temperatures follows the predicted trend of the itinerant Majorana excitations.
Quantum Spin Liquids in Frustrated Spin-1 Diamond Antiferromagnets
NASA Astrophysics Data System (ADS)
Buessen, Finn Lasse; Hering, Max; Reuther, Johannes; Trebst, Simon
2018-01-01
Motivated by the recent synthesis of the spin-1 A -site spinel NiRh2 O4 , we investigate the classical to quantum crossover of a frustrated J1-J2 Heisenberg model on the diamond lattice upon varying the spin length S . Applying a recently developed pseudospin functional renormalization group approach for arbitrary spin-S magnets, we find that systems with S ≥3 /2 reside in the classical regime, where the low-temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder) transition. For smaller local moments S =1 or S =1 /2 , we find that the system evades a thermal ordering transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic momentum-space surfaces. For the tetragonal phase of NiRh2 O4 , a modified J1-J2--J2⊥ exchange model is found to favor a conventionally ordered Néel state (for arbitrary spin S ), even in the presence of a strong local single-ion spin anisotropy, and it requires additional sources of frustration to explain the experimentally observed absence of a thermal ordering transition.
Spin-orbital quantum liquid on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Corboz, Philippe
2013-03-01
The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.
Transport Studies of Quantum Magnetism: Physics and Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Minhyea
The main goal of this project was to understand novel ground states of spin systems probed by thermal and electrical transport measurements. They are well-suited to characterize the nature of low-energy excitations as unique property of the ground state. More specifically, it was aimed to study the transverse electrical conductivity in the presence of non-collinear and non-coplanar spin ordering and the effects of gauge field as well as novel spin excitations as a coherent heat transport channel in insulating quantum magnets. Most of works done during the grant period focused on these topics. As a natural extension of the project'smore » initial goals, the scope was broadened to include transport studies on the spin systems with strong spin-orbit coupling. One particular focus was an exploration of systems with strong magnetic anisotropy combined with non-trivial spin configuration. Magnetic anisotropy is directly related to implement the non-collinear spin ordering to the existing common geometry of planar devices and thus poses a significant potential. Work in this direction includes the comparison of the topological Hall signal under hydrostatic pressure and chemical doping, as well as the angular dependence dependence of the non-collinear spin ordered phase and their evolution up on temperature and field strength. Another focus was centered around the experimental identification of spin-originated heat carrying excitation in quasi two dimensional honeycomb lattice, where Kitaev type of quantum spin liquid phase is expected to emerge. In fact, when its long range magnetic order is destroyed by the applied field, we discovered anomalously large enhancement of thermal conductivity, for which proximate Kitaev excitations in field-induced spin liquid state are responsible for. This work, combined with further investigations in materials in the similar class may help establish the experimental characterization of new quantum spin liquid and their unique low energy excitation, e.g. Majorana fermions.« less
Entanglement in a solid-state spin ensemble.
Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L
2011-02-03
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.
Quantum Spin Ice under a [111] Magnetic Field: From Pyrochlore to Kagome
NASA Astrophysics Data System (ADS)
Bojesen, Troels Arnfred; Onoda, Shigeki
2017-12-01
Quantum spin ice, modeled for magnetic rare-earth pyrochlores, has attracted great interest for hosting a U(1) quantum spin liquid, which involves spin-ice monopoles as gapped deconfined spinons, as well as gapless excitations analogous to photons. However, the global phase diagram under a [111] magnetic field remains open. Here we uncover by means of unbiased quantum Monte Carlo simulations that a supersolid of monopoles, showing both a superfluidity and a partial ionization, intervenes the kagome spin ice and a fully ionized monopole insulator, in contrast to classical spin ice where a direct discontinuous phase transition takes place. We also show that on cooling, kagome spin ice evolves towards a valence-bond solid similar to what appears in the associated kagome lattice model [S. V. Isakov et al., Phys. Rev. Lett. 97, 147202 (2006), 10.1103/PhysRevLett.97.147202]. Possible relevance to experiments is discussed.
Quantum spin circulator in Y junctions of Heisenberg chains
NASA Astrophysics Data System (ADS)
Buccheri, Francesco; Egger, Reinhold; Pereira, Rodrigo G.; Ramos, Flávia B.
2018-06-01
We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1 /2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin-liquid phases.
Entanglement entropy of critical spin liquids.
Zhang, Yi; Grover, Tarun; Vishwanath, Ashvin
2011-08-05
Quantum spin liquids are phases of matter whose internal structure is not captured by a local order parameter. Particularly intriguing are critical spin liquids, where strongly interacting excitations control low energy properties. Here we calculate their bipartite entanglement entropy that characterizes their quantum structure. In particular we calculate the Renyi entropy S(2) on model wave functions obtained by Gutzwiller projection of a Fermi sea. Although the wave functions are not sign positive, S(2) can be calculated on relatively large systems (>324 spins) using the variational Monte Carlo technique. On the triangular lattice we find that entanglement entropy of the projected Fermi sea state violates the boundary law, with S(2) enhanced by a logarithmic factor. This is an unusual result for a bosonic wave function reflecting the presence of emergent fermions. These techniques can be extended to study a wide class of other phases.
Comprehensive study of the dynamics of a classical Kitaev Spin Liquid
NASA Astrophysics Data System (ADS)
Samarakoon, Anjana; Banerjee, Arnab; Batista, Cristian; Kamiya, Yoshitomo; Tennant, Alan; Nagler, Stephen
Quantum spin liquids (QSLs) have achieved great interest in both theoretical and experimental condensed matter physics due to their remarkable topological properties. Among many different candidates, the Kitaev model on the honeycomb lattice is a 2D prototypical QSL which can be experimentally studied in materials based on iridium or ruthenium.Here we study the spin-1/2 Kitaev model using classical Monte-Carlo and semiclassical spin dynamics of classical spins on a honeycomb lattice. Both real and reciprocal space pictures highlighting the differences and similarities of the results to the linear spin wave theory will be discussed in terms dispersion relations of the pure-Kitaev limit and beyond. Interestingly, this technique could capture some of the salient features of the exact quantum solution of the Kitaev model, such as features resembling the Majorana-like mode comparable to the Kitaev energy, which is spectrally narrowed compared to the quantum result, can be explained by magnon excitations on fluctuating onedimensional manifolds (loops). Hence the difference from the classical limit to the quantum limit can be understood by the fractionalization of a magnon to Majorana fermions. The calculations will be directly compared with our neutron scattering data on α-RuCl3 which is a prime candidate for experimental realization of Kitaev physics.
Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension
NASA Astrophysics Data System (ADS)
Paredes, Belén
2012-05-01
I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.
Dirac points, spinons and spin liquid in twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Irkhin, V. Yu.; Skryabin, Yu. N.
2018-05-01
Twisted bilayer graphene is an excellent example of highly correlated system demonstrating a nearly flat electron band, the Mott transition and probably a spin liquid state. Besides the one-electron picture, analysis of Dirac points is performed in terms of spinon Fermi surface in the limit of strong correlations. Application of gauge field theory to describe deconfined spin liquid phase is treated. Topological quantum transitions, including those from small to large Fermi surface in the presence of van Hove singularities, are discussed.
NASA Astrophysics Data System (ADS)
Zou, Haiyuan; Zhao, Erhai; Liu, W. Vincent
2017-08-01
Motivated by the experimental realization of quantum spin models of polar molecule KRb in optical lattices, we analyze the spin 1 /2 dipolar Heisenberg model with competing anisotropic, long-range exchange interactions. We show that, by tilting the orientation of dipoles using an external electric field, the dipolar spin system on square lattice comes close to a maximally frustrated region similar, but not identical, to that of the J1-J2 model. This provides a simple yet powerful route to potentially realize a quantum spin liquid without the need for a triangular or kagome lattice. The ground state phase diagrams obtained from Schwinger-boson and spin-wave theories consistently show a spin disordered region between the Néel, stripe, and spiral phase. The existence of a finite quantum paramagnetic region is further confirmed by an unbiased variational ansatz based on tensor network states and a tensor renormalization group.
Tunable Quantum Spin Liquidity in Mo3O13 Cluster Mott Insulators
NASA Astrophysics Data System (ADS)
Akbari-Sharbaf, Arash; Ziat, Djamel; Verrier, Aime; Quilliam, Jeffrey A.; Sinclair, Ryan; Zhou, Haidong D.; Sun, Xuefeng F.
A study of a tunable quantum spin liquid (QSL) phase in the compound Li2In1- x ScxMo3O8 (x = 0.2, 0.4, 0.6, 0.8, 1) will be presented. Crystal structure of these compounds can be viewed as Mo ions arranged on an asymmetric Kagome lattice (KL), with two different Mo-Mo bond lengths, separated by nonmagnetic layers composed of Li, In, and Sc ions. Using X-ray diffraction spectroscopy, muon spin relaxation spectroscopy, bulk magnetic susceptibility and specific heat measurements we show that by changing the composition of the nonmagnetic layers we can drive the system from an ordered antiferromagnetic state to a quantum spin liquid state. The mechanism responsible for the tunability of the magnetic phase in this class of materials may be associated with the degree of asymmetry of the KL controlled by the composition of the nonmagnetic layers. For high degree of asymmetry the constraint on the electronic distribution leads to a configuration of Mo3O8 clusters with net spin-1/2 per cluster arrange on a triangular lattice and long range antiferromagnetic order. For low degree of asymmetry the electronic distribution leads to a magnetic phase with QSL character. We acknowledge support from NSERC and CFREF.
NASA Astrophysics Data System (ADS)
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-01
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter rS is increased, we observe—at a fixed spin magnetic moment—the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing rS. We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical rSc at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing rS the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid.
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-24
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd
Quasiparticle breakdown in a quantum spin liquid.
Stone, Matthew B; Zaliznyak, Igor A; Hong, Tao; Broholm, Collin L; Reich, Daniel H
2006-03-09
Much of modern condensed matter physics is understood in terms of elementary excitations, or quasiparticles--fundamental quanta of energy and momentum. Various strongly interacting atomic systems are successfully treated as a collection of quasiparticles with weak or no interactions. However, there are interesting limitations to this description: in some systems the very existence of quasiparticles cannot be taken for granted. Like unstable elementary particles, quasiparticles cannot survive beyond a threshold where certain decay channels become allowed by conservation laws; their spectrum terminates at this threshold. Such quasiparticle breakdown was first predicted for an exotic state of matter--super-fluid 4He at temperatures close to absolute zero, a quantum Bose liquid where zero-point atomic motion precludes crystallization. Here we show, using neutron scattering, that quasiparticle breakdown can also occur in a quantum magnet and, by implication, in other systems with Bose quasiparticles. We have measured spin excitations in a two-dimensional quantum magnet, piperazinium hexachlorodicuprate (PHCC), in which spin-1/2 copper ions form a non-magnetic quantum spin liquid, and find remarkable similarities with excitations in superfluid 4He. We observe a threshold momentum beyond which the quasiparticle peak merges with the two-quasiparticle continuum. It then acquires a finite energy width and becomes indistinguishable from a leading-edge singularity, so that excited states are no longer quasiparticles but occupy a wide band of energy. Our findings have important ramifications for understanding excitations with gapped spectra in many condensed matter systems, ranging from band insulators to high-transition-temperature superconductors.
Holon Wigner Crystal in a Lightly Doped Kagome Quantum Spin Liquid
Jiang, Hong -Chen; Devereaux, T.; Kivelson, S. A.
2017-08-07
We address the problem of a lightly doped spin liquid through a large-scale density-matrix renormalization group study of the t–J model on a kagome lattice with a small but nonzero concentration δ of doped holes. It is now widely accepted that the undoped (δ = 0) spin-1/2 Heisenberg antiferromagnet has a spin-liquid ground state. Theoretical arguments have been presented that light doping of such a spin liquid could give rise to a high temperature superconductor or an exotic topological Fermi liquid metal. Instead, we infer that the doped holes form an insulating charge-density wave state with one doped hole permore » unit cell, i.e., a Wigner crystal. Spin correlations remain short ranged, as in the spin-liquid parent state, from which we infer that the state is a crystal of spinless holons, rather than of holes. In conclusion, our results may be relevant to kagome lattice herbertsmithite upon doping.« less
Fingerprints of quantum spin ice in Raman scattering
NASA Astrophysics Data System (ADS)
Perkins, Natalia
Quantum spin liquids (QSLs) emerging in frustrated magnetic systems have been a fascinating and challenging subject in modern condensed matter physics for over four decades. In these systems the conventional ordering is suppressed and, instead, unusual behaviors strongly dependent on the topology of the system are observed. The difficulty in the experimental observation of QSLs comes from the fact that unlike the states with broken symmetry, the topological order characteristic of cannot be captured by a local order parameter and thus cannot be detected by local measurements. Identifying QSLs therefore requires reconsideration of experimental probes to find ones sensitive to features characteristic of topological order. The fractionalization of excitations associated with this order can offer signatures that can be probed by conventional methods such as inelastic neutron scattering, Raman or Resonant X-ray scattering experiments. In my talk I will discuss the possibility to use Raman scattering to probe the excitations of Quantum Spin Ice, a model which has long been believed to host a U(1) spin liquid ground state. NSF DMR-1511768.
NASA Astrophysics Data System (ADS)
Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.
2018-04-01
Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.
Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α -RuCl3
NASA Astrophysics Data System (ADS)
Wang, Zhe; Reschke, S.; Hüvonen, D.; Do, S.-H.; Choi, K.-Y.; Gensch, M.; Nagel, U.; Rõõm, T.; Loidl, A.
2017-12-01
We report on terahertz spectroscopy of quantum spin dynamics in α -RuCl3 , a system proximate to the Kitaev honeycomb model, as a function of temperature and magnetic field. We follow the evolution of an extended magnetic continuum below the structural phase transition at Ts 2=62 K . With the onset of a long-range magnetic order at TN=6.5 K , spectral weight is transferred to a well-defined magnetic excitation at ℏω1=2.48 meV , which is accompanied by a higher-energy band at ℏω2=6.48 meV . Both excitations soften in a magnetic field, signaling a quantum phase transition close to Bc=7 T , where a broad continuum dominates the dynamical response. Above Bc, the long-range order is suppressed, and on top of the continuum, emergent magnetic excitations evolve. These excitations follow clear selection rules and exhibit distinct field dependencies, characterizing the dynamical properties of a possibly field-induced quantum spin liquid.
Magnetization curves of di-, tri- and tetramerized mixed spin-1 and spin-2 Heisenberg chains
NASA Astrophysics Data System (ADS)
Karľová, Katarína; Strečka, Jozef
2018-05-01
Magnetization curves of ferrimagnetic mixed spin-1 and spin-2 Heisenberg chains are calculated with the help of density-matrix renormalization group method and quantum Monte Carlo simulations by considering a spin dimerization (1,2), trimerization (1,1,2) and tetramerization (1,1,1,2). The investigated mixed-spin Heisenberg chains can be alternatively viewed as a pure spin-1 Heisenberg chain, which contains at a regular lattice positions spin-2 particles. Unlike the antiferromagnetic spin-1 Heisenberg chain solely displaying a zero magnetization plateau due to the Haldane phase, the ferrimagnetic mixed spin-(1,2), spin-(1,1,2) and spin-(1,1,1,2) Heisenberg chains exhibit more striking magnetization curves involving at least two intermediate magnetization plateaux and quantum spin-liquid states.
Low Energy Spectrum of Proximate Kitaev Spin Liquid α -RuCl3 by Terahertz Spectroscopy
NASA Astrophysics Data System (ADS)
Little, Arielle; Wu, Liang; Kelley, Paige; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Orenstein, Joseph
A Quantum Spin Liquid (QSL) is an ultra-quantum state of matter with no ordered ground state. Recently, a route to a QSL identified by Kitaev has received a great deal of attention. The compound α -RuCl3, in which Ru atoms form a honeycomb lattice, has been shown to possess Kitaev exchange interactions, although a smaller Heisenberg interaction exists and leads to a zig-zag antiferromagnetic state below 7 K. Because of proximity to the exactly-solvable Kitaev spin-liquid model, this material is considered a potential host for Majorana-like modes. In this work, we use time-domain terahertz (THz) Spectroscopy to probe the low-energy excitations of α -RuCl3. We observe the emergence of a sharp magnetic spin-wave absorption peak below the AFM ordering temperature at 7 K on top of a broad continuum that persists up to room temperature. Additionally we report the polarization dependence of the THz absorption, which reveals optical birefringence, indicating the presence of large monoclinic domains.
Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb₂Ti₂O₇.
Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard
2012-01-01
In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose-Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb(2)Ti(2)O(7). Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below T(C)~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations.
Symmetry-protected gapless Z2 spin liquids
NASA Astrophysics Data System (ADS)
Lu, Yuan-Ming
2018-03-01
Despite rapid progress in understanding gapped topological states, much less is known about gapless topological phases of matter, especially in strongly correlated electrons. In this work, we discuss a large class of robust gapless quantum spin liquids in frustrated magnets made of half-integer spins, which are described by gapless fermionic spinons coupled to dynamical Z2 gauge fields. Requiring U(1 ) spin conservation, time-reversal, and certain space-group symmetries, we show that certain spinon symmetry fractionalization class necessarily leads to a gapless spectrum. These gapless excitations are stable against any perturbations, as long as the required symmetries are preserved. Applying these gapless criteria to spin-1/2 systems on square, triangular, and kagome lattices, we show that all gapped symmetric Z2 spin liquids in Abrikosov-fermion representation can also be realized in Schwinger-boson representation. This leads to 64 gapped Z2 spin liquids on square lattice, and 8 gapped states on both kagome and triangular lattices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nirmala, R.; Jang, Kwang-Hyun; Sim, Hasung
2017-02-15
CuAl 2O 4 is a normal spinel oxide having quantum spin, S = 1/2 for Cu 2+. It is a rather unique feature that the Cu 2+ ions of CuAl 2O 4 sit at a tetrahedral position, not like the usual octahedral position for many oxides. At low temperatures, it exhibits all the thermodynamic evidence of a quantum spin glass. For example, the polycrystalline CuAl 2O 4 shows a cusp centered at ~2 K in the low-field dc magnetization data and a clear frequency dependence in the ac magnetic susceptibility while it displays logarithmic relaxation behavior in a time dependencemore » of the magnetization. At the same time, there is a peak at ~2.3 K in the heat capacity, which shifts towards a higher temperature with magnetic fields. Conversely, there is no evidence of new superlattice peaks in the high-resolution neutron powder diffraction data when cooled from 40 to 0.4 K. This implies that there is no long-ranged magnetic order down to 0.4 K, thus confirming a spin glass-like ground state for CuAl 2O 4. Interestingly, there is no sign of structural distortion either although Cu 2+ is a Jahn–Teller active ion. Therefore, we claim that an orbital liquid state is the most likely ground state in CuAl 2O 4. Of further interest, it also exhibits a large frustration parameter, f = |θ CW/T m| ~ 67, one of the largest values reported for spinel oxides. These observations suggest that CuAl 2O 4 should be a rare example of a frustrated quantum spin glass with a good candidate for an orbital liquid state.« less
NASA Astrophysics Data System (ADS)
Merino, Jaime; Ralko, Arnaud
2018-05-01
Motivated by the rich physics of honeycomb magnetic materials, we obtain the phase diagram and analyze magnetic properties of the spin-1 /2 and spin-1 J1-J2-J3 Heisenberg model on the honeycomb lattice. Based on the SU(2) and SU(3) symmetry representations of the Schwinger boson approach, which treats disordered spin liquids and magnetically ordered phases on an equal footing, we obtain the complete phase diagrams in the (J2,J3) plane. This is achieved using a fully unrestricted approach which does not assume any pre-defined Ansätze. For S =1 /2 , we find a quantum spin liquid (QSL) stabilized between the Néel, spiral, and collinear antiferromagnetic phases in agreement with previous theoretical work. However, by increasing S from 1 /2 to 1, the QSL is quickly destroyed due to the weakening of quantum fluctuations indicating that the model already behaves as a quasiclassical system. The dynamical structure factors and temperature dependence of the magnetic susceptibility are obtained in order to characterize all phases in the phase diagrams. Moreover, motivated by the relevance of the single-ion anisotropy, D , to various S =1 honeycomb compounds, we have analyzed the destruction of magnetic order based on an SU(3) representation of the Schwinger bosons. Our analysis provides a unified understanding of the magnetic properties of honeycomb materials realizing the J1-J2-J3 Heisenberg model from the strong quantum spin regime at S =1 /2 to the S =1 case. Neutron scattering and magnetic susceptibility experiments can be used to test the destruction of the QSL phase when replacing S =1 /2 by S =1 localized moments in certain honeycomb compounds.
Ren, Jie; Liu, Guang-Hua; You, Wen-Long
2015-03-18
We study the fidelity susceptibility in an antiferromagnetic spin-1 XXZ chain numerically. By using the density-matrix renormalization group method, the effects of the alternating single-site anisotropy D on fidelity susceptibility are investigated. Its relation with the quantum phase transition is analyzed. It is found that the quantum phase transition from the Haldane spin liquid to periodic Néel spin solid can be well characterized by the fidelity. Finite size scaling of fidelity susceptibility shows a power-law divergence at criticality, which indicates the quantum phase transition is of second order. The results are confirmed by the second derivative of the ground-state energy. We also study the relationship between the entanglement entropy, the Schmidt gap and quantum phase transitions. Conclusions drawn from these quantum information observables agree well with each other.
Quantum criticality among entangled spin chains
Blanc, N.; Trinh, J.; Dong, L.; ...
2017-12-11
Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less
Quantum criticality among entangled spin chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, N.; Trinh, J.; Dong, L.
Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less
Quantum criticality among entangled spin chains
NASA Astrophysics Data System (ADS)
Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.
2018-03-01
An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.
Nobel Lecture: Topological quantum matter*
NASA Astrophysics Data System (ADS)
Haldane, F. Duncan M.
2017-10-01
Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the history and background of three discoveries cited in this Nobel Prize: The "TKNN" topological formula for the integer quantum Hall effect found by David Thouless and collaborators, the Chern insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1 quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I will summarize how these early beginnings have led to the exciting, and currently extremely active, field of "topological matter."
Fractionalized Fermi liquids and exotic superconductivity in the Kitaev-Kondo lattice
NASA Astrophysics Data System (ADS)
Seifert, Urban F. P.; Meng, Tobias; Vojta, Matthias
2018-02-01
Fractionalized Fermi liquids (FL*) have been introduced as non-Fermi-liquid metallic phases, characterized by coexisting electron-like charge carriers and local moments which form a fractionalized spin liquid. Here we investigate a Kondo lattice model on the honeycomb lattice with Kitaev interactions among the local moments, a concrete model hosting FL* phases based on Kitaev's Z2 spin liquid. We characterize the FL* phases via perturbation theory, and we employ a Majorana-fermion mean-field theory to map out the full phase diagram. Most remarkably we find nematic triplet superconducting phases which mask the quantum phase transition between fractionalized and conventional Fermi liquid phases. Their pairing structure is inherited from the Kitaev spin liquid; i.e., superconductivity is driven by Majorana glue.
Wen, J. -J.; Koohpayeh, S. M.; Ross, K. A.; ...
2017-03-08
Inelastic neutron scattering reveals a broad continuum of excitations in Pr 2 Zr 2 O 7 , the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields ( Δ ) acting on the non-Kramers Pr 3 + crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. In a random phase approximation an excellent account of the data is provided and contains a transverse field distribution ρ ( Δ ) ∝ ( Δ 2 + Γ 2 ) - 1 , where Γ = 0.27 ( 1 )more » meV . Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr 2 Zr 2 O 7 actually induces a quantum spin liquid.« less
Spin resonance and spin fluctuations in a quantum wire
NASA Astrophysics Data System (ADS)
Pokrovsky, V. L.
2017-02-01
This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a diagnostic tool to distinguish between the two states of electronic liquid in the quantum wire.
NASA Astrophysics Data System (ADS)
Tamulis, Arvydas; Majauskaite, Kristina; Kairys, Visvaldas; Zborowski, Krzysztof; Adhikari, Kapil; Krisciukaitis, Sarunas
2016-09-01
Implementation of liquid state quantum information processing based on spatially localized electronic spin in the neurotransmitter stable acetylcholine (ACh) neutral molecular radical is discussed. Using DFT quantum calculations we proved that this molecule possesses stable localized electron spin, which may represent a qubit in quantum information processing. The necessary operating conditions for ACh molecule are formulated in self-assembled dimer and more complex systems. The main quantum mechanical research result of this paper is that the neurotransmitter ACh systems, which were proposed, include the use of quantum molecular spintronics arrays to control the neurotransmission in neural networks.
Theory of a quantum spin liquid in the hydrogen-intercalated honeycomb iridate H3LiIr2O6
NASA Astrophysics Data System (ADS)
Slagle, Kevin; Choi, Wonjune; Chern, Li Ern; Kim, Yong Baek
2018-03-01
We propose a theoretical model for a gapless spin liquid phase that may have been observed in a recent experiment on H3LiIr2O6 . Despite the insulating and nonmagnetic nature of the material, the specific heat coefficient C /T ˜1 /√{T } in zero magnetic field and C /T ˜T /B3 /2 with finite magnetic field B have been observed. In addition, the NMR relaxation rate shows 1 /(T1T ) ˜(C/T ) 2 . Motivated by the fact that the interlayer/in-plane lattice parameters are reduced/elongated by the hydrogen intercalation of the parent compound Li2IrO3 , we consider four layers of the Kitaev honeycomb lattice model with additional interlayer exchange interactions. It is shown that the resulting spin liquid excitations reside mostly in the top and bottom layers of such a layered structure and possess a quartic dispersion. In an applied magnetic field, each quartic mode is split into four Majorana cones with the velocity v ˜B3 /4 . We suggest that the spin liquid phase in these "defect" layers, placed between different stacking patterns of the honeycomb layers, can explain the major phenomenology of the experiment, which can be taken as evidence that the Kitaev interaction plays the primary role in the formation of a quantum spin liquid in this material.
π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon
NASA Astrophysics Data System (ADS)
Takabayashi, Yasuhiro; Menelaou, Melita; Tamura, Hiroyuki; Takemori, Nayuta; Koretsune, Takashi; Štefančič, Aleš; Klupp, Gyöngyi; Buurma, A. Johan C.; Nomura, Yusuke; Arita, Ryotaro; Arčon, Denis; Rosseinsky, Matthew J.; Prassides, Kosmas
2017-07-01
Molecular solids with cooperative electronic properties based purely on π electrons from carbon atoms offer a fertile ground in the search for exotic states of matter, including unconventional superconductivity and quantum magnetism. The field was ignited by reports of high-temperature superconductivity in materials obtained by the reaction of alkali metals with polyaromatic hydrocarbons, such as phenanthrene and picene, but the composition and structure of any compound in this family remained unknown. Here we isolate the binary caesium salts of phenanthrene, Cs(C14H10) and Cs2(C14H10), to show that they are multiorbital strongly correlated Mott insulators. Whereas Cs2(C14H10) is diamagnetic because of orbital polarization, Cs(C14H10) is a Heisenberg antiferromagnet with a gapped spin-liquid state that emerges from the coupled highly frustrated Δ-chain magnetic topology of the alternating-exchange spiral tubes of S = ½ (C14H10)•- radical anions. The absence of long-range magnetic order down to 1.8 K (T/J ≈ 0.02 J is the dominant exchange constant) renders the compound an excellent candidate for a spin-½ quantum-spin liquid (QSL) that arises purely from carbon π electrons.
NASA Astrophysics Data System (ADS)
Mishmash, Ryan V.
Experiments on strongly correlated quasi-two-dimensional electronic materials---for example, the high-temperature cuprate superconductors and the putative quantum spin liquids kappa-(BEDT-TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2---routinely reveal highly mysterious quantum behavior which cannot be explained in terms of weakly interacting degrees of freedom. Theoretical progress thus requires the introduction of completely new concepts and machinery beyond the traditional framework of the band theory of solids and its interacting counterpart, Landau's Fermi liquid theory. In full two dimensions, controlled and reliable analytical approaches to such problems are severely lacking, as are numerical simulations of even the simplest of model Hamiltonians due to the infamous fermionic sign problem. Here, we attempt to circumvent some of these difficulties by studying analogous problems in quasi-one dimension. In this lower dimensional setting, theoretical and numerical tractability are on much stronger footing due to the methods of bosonization and the density matrix renormalization group, respectively. Using these techniques, we attack two problems: (1) the Mott transition between a Fermi liquid metal and a quantum spin liquid as potentially directly relevant to the organic compounds kappa-(BEDT-TTF)2Cu 2(CN)3 and EtMe3Sb[Pd(dmit)2] 2 and (2) non-Fermi liquid metals as strongly motivated by the strange metal phase observed in the cuprates. In both cases, we are able to realize highly exotic quantum phases as ground states of reasonable microscopic models. This lends strong credence to respective underlying slave-particle descriptions of the low-energy physics, which are inherently strongly interacting and also unconventional in comparison to weakly interacting alternatives. Finally, working in two dimensions directly, we propose a new slave-particle theory which explains in a universal way many of the intriguing experimental results of the triangular lattice organic spin liquid candidates kappa-(BEDT-TTF) 2Cu2(CN)3 and EtMe3Sb[Pd(dmit) 2]2. With use of large-scale variational Monte Carlo calculations, we show that this new state has very competitive trial energy in an effective spin model thought to describe the essential features of the real materials.
Universality and Quantum Criticality of the One-Dimensional Spinor Bose Gas
NASA Astrophysics Data System (ADS)
PâÅ£u, Ovidiu I.; Klümper, Andreas; Foerster, Angela
2018-06-01
We investigate the universal thermodynamics of the two-component one-dimensional Bose gas with contact interactions in the vicinity of the quantum critical point separating the vacuum and the ferromagnetic liquid regime. We find that the quantum critical region belongs to the universality class of the spin-degenerate impenetrable particle gas which, surprisingly, is very different from the single-component case and identify its boundaries with the peaks of the specific heat. In addition, we show that the compressibility Wilson ratio, which quantifies the relative strength of thermal and quantum fluctuations, serves as a good discriminator of the quantum regimes near the quantum critical point. Remarkably, in the Tonks-Girardeau regime, the universal contact develops a pronounced minimum, reflected in a counterintuitive narrowing of the momentum distribution as we increase the temperature. This momentum reconstruction, also present at low and intermediate momenta, signals the transition from the ferromagnetic to the spin-incoherent Luttinger liquid phase and can be detected in current experiments with ultracold atomic gases in optical lattices.
Engineered long-range interactions on a 2D array of trapped ions
NASA Astrophysics Data System (ADS)
Britton, Joseph W.; Sawyer, Brian C.; Bollinger, John J.; Freericks, James K.
2014-03-01
Ising interactions are one paradigm used to model quantum magnetism in condensed matter systems. At NIST Boulder we confine and Doppler laser cool hundreds of 9Be+ ions in a Penning trap. The valence electron of each ion behaves as an ideal spin-1/2 particle and, in the limit of weak radial confinement relative to axial confinement, the ions naturally form a two-dimensional triangular lattice. A variable-range anti-ferromagnetic Ising interaction is engineered with a spin-dependent optical dipole force (ODF) through spin-dependent excitation of collective modes of ion motion. We have also exploited this spin-dependent force to perform spectroscopy and thermometry of the normal modes of the trapped ion crystal. The high spin-count and long-range spin-spin couplings achievable in the NIST Penning trap brings within reach simulation of computationally intractable problems in quantum magnetism. Examples include modeling quantum magnetic phase transitions and propagation of spin correlations resulting from a quantum quench. The Penning system may also be amenable to observation of spin-liquid behavior thought to arise in systems where the underlying lattice structure can frustrate long-range ordering. Supported by DARPA OLE and NIST.
Distinct nature of orbital-selective Mott phases dominated by low-energy local spin fluctuations
NASA Astrophysics Data System (ADS)
Song, Ze-Yi; Jiang, Xiu-Cai; Lin, Hai-Qing; Zhang, Yu-Zhong
2017-12-01
Quantum orbital-selective Mott (OSM) transitions are investigated within dynamical mean-field theory based on a two-orbital Hubbard model with different bandwidth at half filling. We find two distinct OSM phases both showing coexistence of itinerant electrons and localized spins, dependent on whether the Hund's coupling is full or of Ising type. The critical values and the nature of the OSM transitions are efficiently determined by entanglement entropy. We reveal that vanishing of the Kondo energy scale evidenced by absence of local spin fluctuations at low frequency in local dynamical spin susceptibility is responsible for the appearance of non-Fermi-liquid OSM phase in Ising Hund's coupling case. We argue that this scenario can also be applied to account for emergent quantum non-Fermi liquid in the one-band Hubbard model when short-range antiferromagnetic order is considered.
Gapped Spin-1/2 Spinon Excitations in a New Kagome Quantum Spin Liquid Compound Cu3Zn(OH)6FBr
NASA Astrophysics Data System (ADS)
Feng, Zili; Li, Zheng; Meng, Xin; Yi, Wei; Wei, Yuan; Zhang, Jun; Wang, Yan-Cheng; Jiang, Wei; Liu, Zheng; Li, Shiyan; Liu, Feng; Luo, Jianlin; Li, Shiliang; Zheng, Guo-qing; Meng, Zi Yang; Mei, Jia-Wei; Shi, Youguo
2017-06-01
We report a new kagome quantum spin liquid candidate Cu3Zn(OH)6FBr, which does not experience any phase transition down to 50 mK, more than three orders lower than the antiferromagnetic Curie-Weiss temperature (∼200 K). A clear gap opening at low temperature is observed in the uniform spin susceptibility obtained from 19F nuclear magnetic resonance measurements. We observe the characteristic magnetic field dependence of the gap as expected for fractionalized spin-1/2 spinon excitations. Our experimental results provide firm evidence for spin fractionalization in a topologically ordered spin system, resembling charge fractionalization in the fractional quantum Hall state. Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0300502, 2016YFA0300503, 2016YFA0300604, 2016YF0300300 and 2016YFA0300802, the National Natural Science Foundation of China under Grant Nos 11421092, 11474330, 11574359, 11674406, 11374346 and 11674375, the National Basic Research Program of China (973 Program) under Grant No 2015CB921304, the National Thousand-Young-Talents Program of China, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences under Grant Nos XDB07020000, XDB07020200 and XDB07020300. The work in Utah is supported by DOE-BES under Grant No DE-FG02-04ER46148.
Quantum origins of moment fragmentation in Nd2Zr2O7
NASA Astrophysics Data System (ADS)
Benton, Owen
2016-09-01
Spin-liquid states are often described as the antithesis of magnetic order. Recently, however, it has been proposed that in certain frustrated magnets the magnetic degrees of freedom may "fragment" in such a way as to give rise to a coexistence of spin liquid and ordered phases. Recent neutron-scattering results [S. Petit, E. Lhotel, B. Canals, M. Ciomaga Hatnean, J. Ollivier, H. Muttka, E. Ressouche, A. R. Wildes, M. R. Lees, and G. Balakrishnan, Nat. Phys. 12, 746 (2016), 10.1038/nphys3710] suggest that this scenario may be realized in the pyrochlore magnet Nd2Zr2O7 . These observations show the characteristic pinch-point features of a Coulombic spin liquid occurring alongside the Bragg peaks of an "all-in-all-out" ordered state. Here we explain the quantum origins of this apparent magnetic moment fragmentation, within the framework of a quantum model of nearest-neighbor exchange, appropriate to Nd2Zr2O7 . This model is able to capture both the ground-state order and the pinch points observed at finite energy. The observed fragmentation arises due to the combination of the unusual symmetry properties of the Nd3 + ionic wave functions and the structure of equations of motion of the magnetic degrees of freedom. The results of our analysis suggest that Nd2Zr2O7 is proximate to a U (1 ) spin-liquid phase and is a promising candidate for the observation of a Higgs transition in a magnetic system.
Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7
Chang, Lieh-Jeng; Onoda, Shigeki; Su, Yixi; Kao, Ying-Jer; Tsuei, Ku-Ding; Yasui, Yukio; Kakurai, Kazuhisa; Lees, Martin Richard
2012-01-01
In a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose–Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb2Ti2O7. Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below TC~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations. PMID:22871811
Spin correlations in quantum wires
NASA Astrophysics Data System (ADS)
Sun, Chen; Pokrovsky, Valery L.
2015-04-01
We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.
Zero-Field Ambient-Pressure Quantum Criticality in the Stoichiometric Non-Fermi Liquid System CeRhBi
NASA Astrophysics Data System (ADS)
Anand, Vivek K.; Adroja, Devashibhai T.; Hillier, Adrian D.; Shigetoh, Keisuke; Takabatake, Toshiro; Park, Je-Geun; McEwen, Keith A.; Pixley, Jedediah H.; Si, Qimiao
2018-06-01
We present the spin dynamics study of a stoichiometric non-Fermi liquid (NFL) system CeRhBi, using low-energy inelastic neutron scattering (INS) and muon spin relaxation (μSR) measurements. It shows evidence for an energy-temperature (E/T) scaling in the INS dynamic response and a time-field (t/Hη) scaling of the μSR asymmetry function indicating a quantum critical behavior in this compound. The E/T scaling reveals a local character of quantum criticality consistent with the power-law divergence of the magnetic susceptibility, logarithmic divergence of the magnetic heat capacity and T-linear resistivity at low temperature. The occurrence of NFL behavior and local criticality over a very wide dynamical range at zero field and ambient pressure without any tuning in this stoichiometric heavy fermion compound is striking, making CeRhBi a model system amenable to in-depth studies for quantum criticality.
NASA Astrophysics Data System (ADS)
McKeown Walker, S.; Riccò, S.; Bruno, F. Y.; de la Torre, A.; Tamai, A.; Golias, E.; Varykhalov, A.; Marchenko, D.; Hoesch, M.; Bahramy, M. S.; King, P. D. C.; Sánchez-Barriga, J.; Baumberger, F.
2016-06-01
We reinvestigate the putative giant spin splitting at the surface of SrTiO3 reported by Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Our spin- and angle-resolved photoemission experiments on fractured (001) oriented surfaces supporting a two-dimensional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.
Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng
2015-11-06
Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu 3(OH) 6Cl 2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction.more » Combined with the magnetic field dependence of χ kagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.« less
Universality classes of order parameters composed of many-body bound states
Tsvelik, A. M.
2016-11-28
This theoretical paper discusses microscopic models giving rise to special types of order in which conduction electrons are bound together with localized spins to create composite order parameters. It is shown that composite order is related to the formation of a spin liquid with gapped excitations carrying quantum numbers which are a fraction of those of electron. These spin liquids are special in the sense that their formation necessarily involves spin degrees of freedom of both the conduction and the localized electrons and can be characterized by nonlocal order parameters. A detailed description of such spin liquid states is presentedmore » with a special care given to a demonstration of their robustness against local perturbations preserving the Lie group symmetry and the translational invariance.« less
Powell, B J; Kenny, E P; Merino, J
2017-08-25
We show that the anisotropy of the effective spin model for the dimer Mott insulator phase of κ-(BEDT-TTF)_{2}X salts is dramatically different from that of the underlying tight-binding model. Intradimer quantum interference results in a model of coupled spin chains, where frustrated interchain interactions suppress long-range magnetic order. Thus, we argue, the "spin liquid" phase observed in some of these materials is a remnant of the Tomonaga-Luttinger physics of a single chain. This is consistent with previous experiments and resolves some outstanding puzzles.
Thermal properties of spin-S Kitaev-Heisenberg model on a honeycomb lattice
NASA Astrophysics Data System (ADS)
Suzuki, Takafumi; Yamaji, Youhei
2018-05-01
Temperature (T) dependence of heat capacity C (T) in the S = 1 / 2 Kitaev honeycomb model shows a double-peak structure resulting from fractionalization of spins into two kinds of Majorana fermions. Recently it has been discussed that the double-peak structure in C (T) is also observed in magnetic ordered phases of the S = 1 / 2 Kitaev-Heisenberg (KH) model on a honeycomb lattice when the system is located in the vicinity of the Kitaev's spin liquid phase. In addition to the S = 1 / 2 spin case, similar double-peak structure has been confirmed in the KH honeycomb model for classical Heisenberg spins, where spin S is regarded as S → ∞ . We investigate spin-S dependence of C (T) for the KH honeycomb models by using thermal pure quantum state. We also perform classical Monte Carlo calculations to obtain C (T) for the classical KH model. From obtained results, we find that the origin of the high-temperature peak is different between the quantum spin case with small Ss and the classical Heisenberg spin case. Furthermore, the high-temperature peak in the quantum spin case, which is one of the clues for fractionalization of spins, disappears for S > 1 .
Physics of Resonating Valence Bond Spin Liquids
NASA Astrophysics Data System (ADS)
Wildeboer, Julia Saskia
This thesis will investigate various aspects of the physics of resonating valence bond spin liquids. After giving an introduction to the world that lies beyond Landau's priciple of symmetry breaking, e.g. giving an overview of exotic magnetic phases and how they can be described and (possibly) found, we will study a spin-rotationally invariant model system with a known parent Hamiltonian, and argue its ground state to lie within a highly sought after exotic phase, namely the Z2 quantum spin liquid phase. A newly developed numerical procedure --Pfaffian Monte Carlo-- will be introduced to amass evidence that our model Hamiltonian indeed exhibits a Z2 quantum spin liquid phase. Subsequently, we will prove a useful mathematical property of the resonating valence bond states: these states are shown to be linearly independent. Various lattices are investigated concerning this property, and its applications and usefullness are discussed. Eventually, we present a simplified model system describing the interplay of the well known Heisenberg interaction and the Dzyaloshinskii-Moriya (DM) interaction term acting on a sawtooth chain. The effect of the interplay between the two interaction couplings on the phase diagram is investigated. To do so, we employ modern techniques such as the density matrix renormalization group (DMRG) scheme. We find that for weak DM interaction the system exhibits valence bond order. However, a strong enough DM coupling destroys this order.
Majorana spin liquids, topology, and superconductivity in ladders
NASA Astrophysics Data System (ADS)
Le Hur, Karyn; Soret, Ariane; Yang, Fan
2017-11-01
We theoretically address spin chain analogs of the Kitaev quantum spin model on the honeycomb lattice. The emergent quantum spin-liquid phases or Anderson resonating valence-bond (RVB) states can be understood, as an effective model, in terms of p -wave superconductivity and Majorana fermions. We derive a generalized phase diagram for the two-leg ladder system with tunable interaction strengths between chains allowing us to vary the shape of the lattice (from square to honeycomb ribbon or brickwall ladder). We evaluate the winding number associated with possible emergent (topological) gapless modes at the edges. In the Az phase, as a result of the emergent Z2 gauge fields and π -flux ground state, one may build spin-1/2 (loop) qubit operators by analogy to the toric code. In addition, we show how the intermediate gapless B phase evolves in the generalized ladder model. For the brick-wall ladder, the B phase is reduced to one line, which is analyzed through perturbation theory in a rung tensor product states representation and bosonization. Finally, we show that doping with a few holes can result in the formation of hole pairs and leads to a mapping with the Su-Schrieffer-Heeger model in polyacetylene; a superconducting-insulating quantum phase transition for these hole pairs is accessible, as well as related topological properties.
NASA Astrophysics Data System (ADS)
Bordbar, G. H.; Hosseini, S.; Poostforush, A.
2017-05-01
Correlations in quantum fluids such as liquid 3He continue to be of high interest to scientists. Based on this prospect, the present work is devoted to study the effects of spin-spin correlation function on the thermodynamic properties of polarized liquid 3He such as pressure, velocity of sound, adiabatic index and adiabatic compressibility along different isentropic paths, using the Lennard-Jones potential and employing the variational approach based on cluster expansion of the energy functional. The inclusion of this correlation improves our previous calculations and leads to good agreements with experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin Xiangguo; Chen Shu; Guan Xiwen
2011-07-15
We investigate quantum criticality and universal scaling of strongly attractive Fermi gases confined in a one-dimensional harmonic trap. We demonstrate from the power-law scaling of the thermodynamic properties that current experiments on this system are capable of measuring universal features at quantum criticality, such as universal scaling and Tomonaga-Luttinger liquid physics. The results also provide insights on recent measurements of key features of the phase diagram of a spin-imbalanced atomic Fermi gas [Y. Liao et al., Nature (London) 467, 567 (2010)] and point to further study of quantum critical phenomena in ultracold atomic Fermi gases.
Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite
Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru
2016-01-01
When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874
Excitations in the field-induced quantum spin liquid state of α-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab; Lampen-Kelley, Paula; Knolle, Johannes; Balz, Christian; Aczel, Adam Anthony; Winn, Barry; Liu, Yaohua; Pajerowski, Daniel; Yan, Jiaqiang; Bridges, Craig A.; Savici, Andrei T.; Chakoumakos, Bryan C.; Lumsden, Mark D.; Tennant, David Alan; Moessner, Roderich; Mandrus, David G.; Nagler, Stephen E.
2018-03-01
The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations. However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.
Excitations in the field-induced quantum spin liquid state of α-RuCl 3
Banerjee, Arnab; Kelley, Paula J.; Knolle, Johannes; ...
2018-02-20
The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl 3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations.more » However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here in this paper, we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.« less
Excitations in the field-induced quantum spin liquid state of α-RuCl 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Arnab; Kelley, Paula J.; Knolle, Johannes
The celebrated Kitaev quantum spin liquid (QSL) is the paradigmatic example of a topological magnet with emergent excitations in the form of Majorana Fermions and gauge fluxes. Upon breaking of time-reversal symmetry, for example in an external magnetic field, these fractionalized quasiparticles acquire non-Abelian exchange statistics, an important ingredient for topologically protected quantum computing. Consequently, there has been enormous interest in exploring possible material realizations of Kitaev physics and several candidate materials have been put forward, recently including α-RuCl 3. In the absence of a magnetic field this material orders at a finite temperature and exhibits low-energy spin wave excitations.more » However, at moderate energies, the spectrum is unconventional and the response shows evidence for fractional excitations. Here in this paper, we use time-of-flight inelastic neutron scattering to show that the application of a sufficiently large magnetic field in the honeycomb plane suppresses the magnetic order and the spin waves, leaving a gapped continuum spectrum of magnetic excitations. Our comparisons of the scattering to the available calculations for a Kitaev QSL show that they are consistent with the magnetic field induced QSL phase.« less
Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok
2010-03-01
We propose Kondo fluctuation mechanism of superconductivity, differentiated from the spin-fluctuation theory as the standard model for unconventional superconductivity in the weak-coupling approach. Based on the U(1) slave-fermion representation of an effective Anderson lattice model, where localized spins are described by the Schwinger boson theory and hybridization or Kondo fluctuations weaken antiferromagnetic correlations of localized spins, we found an antiferromagnetic quantum critical point from an antiferromagnetic metal to a heavy-fermion metal in our recent study. The Kondo-induced antiferromagnetic quantum critical point was shown to be described by both conduction electrons and fermionic holons interacting with critical spin fluctuations given by deconfined bosonic spinons with a spin quantum number 1/2. Surprisingly, such critical modes turned out to be described by the dynamical exponent z=3 , giving rise to the well-known non-Fermi-liquid physics such as the divergent Grüneisen ratio with an exponent 2/3 and temperature-linear resistivity in three dimensions. We find that the z=3 antiferromagnetic quantum critical point becomes unstable against superconductivity, where critical spinon excitations give rise to pairing correlations between conduction electrons and between fermionic holons, respectively, via hybridization fluctuations. Such two kinds of pairing correlations result in multigap unconventional superconductivity around the antiferromagnetic quantum critical point of the slave-fermion theory, where s -wave pairing is not favored generically due to strong correlations. We show that the ratio between each superconducting gap for conduction electrons Δc and holons Δf and the transition temperature Tc is 2Δc/Tc˜9 and 2Δf/Tc˜O(10-1) , remarkably consistent with CeCoIn5 . A fingerprint of the Kondo mechanism is emergence of two kinds of resonance modes in not only spin but also charge fluctuations, where the charge resonance mode at an antiferromagnetic wave vector originates from d -wave pairing of spinless holons. We discuss how the Kondo fluctuation theory differs from the spin-fluctuation approach.
Electron spin resonance modes in a strong-leg ladder in the Tomonaga-Luttinger liquid phase
NASA Astrophysics Data System (ADS)
Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M. M.; Furuya, S. C.; Giamarchi, T.; Zvyagin, S. A.
2015-12-01
Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N) 2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin-liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual nonlinear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact-diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.
Information scrambling at an impurity quantum critical point
NASA Astrophysics Data System (ADS)
Dóra, Balázs; Werner, Miklós Antal; Moca, Cǎtǎlin Paşcu
2017-10-01
The two-channel Kondo impurity model realizes a local non-Fermi-liquid state with finite residual entropy. The competition between the two channels drives the system to an impurity quantum critical point. We show that the out-of-time-ordered (OTO) commutator for the impurity spin reveals markedly distinct behavior depending on the low-energy impurity state. For the one-channel Kondo model with Fermi-liquid ground state, the OTO commutator vanishes for late times, indicating the absence of the butterfly effect. For the two channel case, the impurity OTO commutator is completely temperature independent and saturates quickly to its upper bound 1/4, and the butterfly effect is maximally enhanced. These compare favorably to numerics on spin chain representation of the Kondo model. Our results imply that a large late time value of the OTO commutator does not necessarily diagnose quantum chaos.
Evidence for a quantum dipole liquid state in an organic quasi–two-dimensional material
NASA Astrophysics Data System (ADS)
Hassan, Nora; Cunningham, Streit; Mourigal, Martin; Zhilyaeva, Elena I.; Torunova, Svetlana A.; Lyubovskaya, Rimma N.; Schlueter, John A.; Drichko, Natalia
2018-06-01
Mott insulators are commonly pictured with electrons localized on lattice sites, with their low-energy degrees of freedom involving spins only. Here, we observe emergent charge degrees of freedom in a molecule-based Mott insulator κ-(BEDT-TTF)2Hg(SCN)2Br, resulting in a quantum dipole liquid state. Electrons localized on molecular dimer lattice sites form electric dipoles that do not order at low temperatures and fluctuate with frequency detected experimentally in our Raman spectroscopy experiments. The heat capacity and Raman scattering response are consistent with a scenario in which the composite spin and electric dipole degrees of freedom remain fluctuating down to the lowest measured temperatures.
ESR studies on the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3: Anomalous response below T=8 K
NASA Astrophysics Data System (ADS)
Padmalekha, K. G.; Blankenhorn, M.; Ivek, T.; Bogani, L.; Schlueter, J. A.; Dressel, M.
2015-03-01
The organic conductor κ-(BEDT-TTF)2Cu2(CN)3 seems to form a quantum spin liquid, although at low temperatures unusual properties are seen in the charge, spin and lattice degrees of freedom. Here we report results of X-band ESR studies of κ-(BEDT-TTF)2Cu2(CN)3 single crystals as a function of temperature and angle. We find indications of two anisotropic relaxation mechanisms at low temperatures and compare them to the spin-liquid behavior observed in other strongly correlated systems. In addition, we can recognize charge inhomogeneities in the copper ions of the anion layer. This disorder might be linked to the dielectric response measured in this compound.
Quantum Coherence and Random Fields at Mesoscopic Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenbaum, Thomas F.
2016-03-01
We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets tomore » antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.« less
NASA Astrophysics Data System (ADS)
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
Machine learning Z2 quantum spin liquids with quasiparticle statistics
NASA Astrophysics Data System (ADS)
Zhang, Yi; Melko, Roger G.; Kim, Eun-Ah
2017-12-01
After decades of progress and effort, obtaining a phase diagram for a strongly correlated topological system still remains a challenge. Although in principle one could turn to Wilson loops and long-range entanglement, evaluating these nonlocal observables at many points in phase space can be prohibitively costly. With growing excitement over topological quantum computation comes the need for an efficient approach for obtaining topological phase diagrams. Here we turn to machine learning using quantum loop topography (QLT), a notion we have recently introduced. Specifically, we propose a construction of QLT that is sensitive to quasiparticle statistics. We then use mutual statistics between the spinons and visons to detect a Z2 quantum spin liquid in a multiparameter phase space. We successfully obtain the quantum phase boundary between the topological and trivial phases using a simple feed-forward neural network. Furthermore, we demonstrate advantages of our approach for the evaluation of phase diagrams relating to speed and storage. Such statistics-based machine learning of topological phases opens new efficient routes to studying topological phase diagrams in strongly correlated systems.
Ground-state phase diagram in the Kugel-Khomskii model with finite spin-orbit interactions
NASA Astrophysics Data System (ADS)
Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji
2018-05-01
We study ground-state properties in the Kugel-Khomskii model on the two-dimensional honeycomb lattice. Using the cluster mean-field approximations, we deal with the exchange and spin-orbit couplings on an equal footing. We then discuss the stability of the ferromagnetically ordered states against the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit.
Fermionic spin liquid analysis of the paramagnetic state in volborthite
NASA Astrophysics Data System (ADS)
Chern, Li Ern; Schaffer, Robert; Sorn, Sopheak; Kim, Yong Baek
2017-10-01
Recently, thermal Hall effect has been observed in the paramagnetic state of volborthite, which consists of distorted kagome layers with S =1 /2 local moments. Despite the appearance of magnetic order below 1 K , the response to external magnetic field and unusual properties of the paramagnetic state above 1 K suggest possible realization of exotic quantum phases. Motivated by these discoveries, we investigate possible spin liquid phases with fermionic spinon excitations in a nonsymmorphic version of the kagome lattice, which belongs to the two-dimensional crystallographic group p 2 g g . This nonsymmorphic structure is consistent with the spin model obtained in the density functional theory calculation. Using projective symmetry group analysis and fermionic parton mean field theory, we identify twelve distinct Z2 spin liquid states, four of which are found to have correspondence in the eight Schwinger boson spin liquid states we classified earlier. We focus on the four fermionic states with bosonic counterpart and find that the spectrum of their corresponding root U (1 ) states features spinon Fermi surface. The existence of spinon Fermi surface in candidate spin liquid states may offer a possible explanation of the finite thermal Hall conductivity observed in volborthite.
Evidence for several dipolar quasi-invariants in liquid crystals
NASA Astrophysics Data System (ADS)
Bonin, C. J.; González, C. E.; Segnorile, H. H.; Zamar, R. C.
2013-10-01
The quasi-equilibrium states of an observed quantum system involve as many constants of motion as the dimension of the operator basis which spans the blocks of all the degenerate eigenvalues of the Hamiltonian that drives the system dynamics, however, the possibility of observing such quasi-invariants in solid-like spin systems in Nuclear Magnetic Resonance (NMR) is not a strictly exact prediction. The aim of this work is to provide experimental evidence of several quasi-invariants, in the proton NMR of small spin clusters, like nematic liquid crystal molecules, in which the use of thermodynamic arguments is not justified. We explore the spin states prepared with the Jeener-Broekaert pulse sequence by analyzing the time-domain signals yielded by this sequence as a function of the preparation times, in a variety of dipolar networks, solids, and liquid crystals. We observe that the signals can be explained with two dipolar quasi-invariants only within a range of short preparation times, however at longer times liquid crystal signals show an echo-like behaviour whose description requires assuming more quasi-invariants. We study the multiple quantum coherence content of such signals on a basis orthogonal to the z-basis and see that such states involve a significant number of correlated spins. Therefore, we show that the NMR signals within the whole preparation time-scale can only be reconstructed by assuming the occurrence of multiple quasi-invariants which we experimentally isolate.
Superconductivity and non-Fermi liquid behavior near a nematic quantum critical point.
Lederer, Samuel; Schattner, Yoni; Berg, Erez; Kivelson, Steven A
2017-05-09
Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin [Formula: see text] itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with a broad dome in the superconducting [Formula: see text] enclosing the nematic quantum critical point. For temperatures above [Formula: see text], we see strikingly non-Fermi liquid behavior, including a "nodal-antinodal dichotomy" reminiscent of that seen in several transition metal oxides. In addition, the critical fluctuations have a strong effect on the low-frequency optical conductivity, resulting in behavior consistent with "bad metal" phenomenology.
Chiral liquid phase of simple quantum magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhentao; Feiguin, Adrian E.; Zhu, Wei
2017-11-07
We study a T=0 quantum phase transition between a quantum paramagnetic state and a magnetically ordered state for a spin S=1 XXZ Heisenberg antiferromagnet on a two-dimensional triangular lattice. The transition is induced by an easy-plane single-ion anisotropy D. At the mean-field level, the system undergoes a direct transition at a critical D=D c between a paramagnetic state at D>D c and an ordered state with broken U(1) symmetry at Dc. We show that beyond mean field the phase diagram is very different and includes an intermediate, partially ordered chiral liquid phase. Specifically, we find that inside the paramagnetic phasemore » the Ising (J z) component of the Heisenberg exchange binds magnons into a two-particle bound state with zero total momentum and spin. This bound state condenses at D>D c, before single-particle excitations become unstable, and gives rise to a chiral liquid phase, which spontaneously breaks spatial inversion symmetry, but leaves the spin-rotational U(1) and time-reversal symmetries intact. This chiral liquid phase is characterized by a finite vector chirality without long-range dipolar magnetic order. In our analytical treatment, the chiral phase appears for arbitrarily small J z because the magnon-magnon attraction becomes singular near the single-magnon condensation transition. This phase exists in a finite range of D and transforms into the magnetically ordered state at some Dc. In conclusion, we corroborate our analytic treatment with numerical density matrix renormalization group calculations.« less
Electron Doping a Kagome Spin Liquid
NASA Astrophysics Data System (ADS)
Kelly, Zachary; Gallagher, Miranda; McQueen, Tyrel
In 1987, Anderson proposed that charge doping a material with the resonating valance bond (RVB) state would yield a superconducting state. Ever since, there has been a search for these RVB containing spin liquid materials and their charge doped counterparts. Studies on the most promising spin liquid candidate, Herbertsmithite, ZnCu3(OH)6Cl2, a two dimensional kagomé lattice, show evidence of fractionalized excitations and a gapped ground state. In this work, we report the synthesis and characterization of a newly synthesized electron doped spin liquid, ZnLixCu3(OH)6Cl2 from x = 0 to x = 1.8 (3 / 5 th per Cu2+). Despite heavy doping, the series remains insulating and the magnetism is systematically suppressed. We have done extensive structural studies of the doped series to determine the effect of the intercalated atoms on the structure, and whether these structural differences induce strong localization effects that suppress the metallic and superconducting states. Other doped spin liquid candidates are also being explored to understand if this localization is system dependent or systemic to all doped spin liquid systems. NSF, Division of Materials Research (DMR), Solid State Chemistry (SSMC), CAREER Grant under Award No. DMR- 1253562, Institute for Quantum Matter under Grant No.DE-FG02- 08ER46544, and the David and Lucile Packard Foundation.
Lattice spin models for non-Abelian chiral spin liquids
Lecheminant, P.; Tsvelik, A. M.
2017-04-26
Here, we suggest a class of two-dimensional lattice spin Hamiltonians describing non-Abelian SU(2) chiral spin liquids—spin analogs of fractional non-Abelian quantum Hall states—with gapped bulk and gapless chiral edge excitations described by the SU(2) n Wess-Zumino-Novikov-Witten conformal field theory. The models are constructed from an array of generalized spin-n/2 ladders with multi-spin-exchange interactions which are coupled by isolated spins. Such models allow a controllable analytic treatment starting from the one-dimensional limit and are characterized by a bulk gap and non-Abelian SU(2) n gapless edge excitations.
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
NASA Astrophysics Data System (ADS)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-01
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three-dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb2 Pt2 Pb , a metal where itinerant electrons coexist with localized moments of Yb ions which can be described in terms of effective S =1 /2 spins with a dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the two interacting subsystems. We characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasilinear temperature dependence.
NASA Astrophysics Data System (ADS)
Pareek, Tribhuvan Prasad
2015-09-01
In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a natural consequence. This aspect has also been discussed from the perspective of number or charge density conservation, which implies i.e., Tr(ϱ} sc) = Tr(ϱin). On the other hand Q = 0 turns out to be a mathematically forced unphysical solution in presence of spin-dependent potential or scattering which is equivalent to Abelian hydrodynamics, unitary scattering matrix, absence of spin-space entanglement and preserved time reversal symmetry. We have formulated the theory using mesoscopic language, specifically, we have considered two terminal systems connected to spin-dependent scattering region, which is equivalent to having two potential wells separated by a generic spin-dependent potential barrier. The formulation using mesoscopic language is practically useful because it leads directly to the measured quantities such as conductance and spin-polarization density in the leads, however, the presented formulation is not limited to the mesoscopic system only, its generality has been stressed at various places in this article.
Casimir forces between defects in one-dimensional quantum liquids
NASA Astrophysics Data System (ADS)
Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.
2005-08-01
We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.
Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.
Liu, Zheng-Xin; Normand, B
2018-05-04
Motivated by recent experimental observations in α-RuCl_{3}, we study the K-Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α-RuCl_{3}. For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.
Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field
NASA Astrophysics Data System (ADS)
Liu, Zheng-Xin; Normand, B.
2018-05-01
Motivated by recent experimental observations in α -RuCl3 , we study the K -Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α -RuCl3 . For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.
Quantum simulation of interacting spin models with trapped ions
NASA Astrophysics Data System (ADS)
Islam, Kazi Rajibul
The quantum simulation of complex many body systems holds promise for understanding the origin of emergent properties of strongly correlated systems, such as high-Tc superconductors and spin liquids. Cold atomic systems provide an almost ideal platform for quantum simulation due to their excellent quantum coherence, initialization and readout properties, and their ability to support several forms of interactions. In this thesis, I present experiments on the quantum simulation of long range Ising models in the presence of transverse magnetic fields with a chain of up to sixteen ultracold 171Yb+ ions trapped in a linear radio frequency Paul trap. Two hyperfine levels in each of the 171Yb+ ions serve as the spin-1/2 systems. We detect the spin states of the individual ions by observing state-dependent fluorescence with single site resolution, and can directly measure any possible spin correlation function. The spin-spin interactions are engineered by applying dipole forces from precisely tuned lasers whose beatnotes induce stimulated Raman transitions that couple virtually to collective phonon modes of the ion motion. The Ising couplings are controlled, both in sign and strength with respect to the effective transverse field, and adiabatically manipulated to study various aspects of this spin model, such as the emergence of a quantum phase transition in the ground state and spin frustration due to competing antiferromagnetic interactions. Spin frustration often gives rise to a massive degeneracy in the ground state, which can lead to entanglement in the spin system. We detect and characterize this frustration induced entanglement in a system of three spins, demonstrating the first direct experimental connection between frustration and entanglement. With larger numbers of spins we also vary the range of the antiferromagnetic couplings through appropriate laser tunings and observe that longer range interactions reduce the excitation energy and thereby frustrate the ground state order. This system can potentially be scaled up to study a wide range of fully connected spin networks with a few dozens of spins, where the underlying theory becomes intractable on a classical computer.
Coherent transmutation of electrons into fractionalized anyons.
Barkeshli, Maissam; Berg, Erez; Kivelson, Steven
2014-11-07
Electrons have three quantized properties-charge, spin, and Fermi statistics-that are directly responsible for a vast array of phenomena. Here we show how these properties can be coherently and dynamically stripped from the electron as it enters a certain exotic state of matter known as a quantum spin liquid (QSL). In a QSL, electron spins collectively form a highly entangled quantum state that gives rise to the fractionalization of spin, charge, and statistics. We show that certain QSLs host distinct, topologically robust boundary types, some of which allow the electron to coherently enter the QSL as a fractionalized quasi-particle, leaving its spin, charge, or statistics behind. We use these ideas to propose a number of universal, conclusive experimental signatures that would establish fractionalization in QSLs. Copyright © 2014, American Association for the Advancement of Science.
Quantum spin ices and magnetic states from dipolar-octupolar doublets on the pyrochlore lattice
NASA Astrophysics Data System (ADS)
Chen, Gang
We consider a class of electron systems in which dipolar-octupolar Kramers doublets arise on the pyrochlore lattice. In the localized limit, the Kramers doublets are described by the effective spin 1/2 pseudospins. The most general nearest-neighbor exchange model between these pseudospins is the XYZ model. In additional to dipolar ordered and octupolar ordered magnetic states, we show that this XYZ model exhibits two distinct quantum spin ice (QSI) phases, that we dub dipolar QSI and octupolar QSI. These two QSIs are distinct symmetry enriched U(1) quantum spin liquids, enriched by the lattice symmetry. Moreover, the XYZ model is absent from the notorious sign problem for a quantum Monte Carlo simulation in a large parameter space. We discuss the potential relevance to real material systems such as Dy2Ti2O7, Nd2Zr2O7, Nd2Hf2O7, Nd2Ir2O7, Nd2Sn2O7 and Ce2Sn2O7. chggst@gmail.com, Refs: Y-P Huang, G Chen, M Hermele, Phys. Rev. Lett. 112, 167203 (2014).
Experimental realization of universal geometric quantum gates with solid-state spins.
Zu, C; Wang, W-B; He, L; Zhang, W-G; Dai, C-Y; Wang, F; Duan, L-M
2014-10-02
Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an 'all-geometric' approach to quantum computation, the quantum gates are implemented using Berry phases and their non-Abelian extensions, holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance; however, such systems are known to be non-scalable for the purposes of quantum computing. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions, superconducting quantum bits and quantum dots, and a recent experiment has realized geometric single-bit gates in a superconducting system. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen-vacancy centres. These diamond defects provide a scalable experimental platform with the potential for room-temperature quantum computing, which has attracted strong interest in recent years. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system.
Electron doping a kagome spin liquid
Kelly, Z. A.; Gallagher, M. J.; McQueen, T. M.
2016-10-13
Herbertsmithite, ZnCu 3(OH) 6Cl 2, is a two-dimensional kagome lattice realization of a spin liquid, with evidence for fractionalized excitations and a gapped ground state. Such a quantum spin liquid has been proposed to underlie high-temperature superconductivity and is predicted to produce a wealth of new states, including a Dirac metal at 1/3 electron doping. Here, we report the topochemical synthesis of electron-doped ZnLi xCu 3(OH) 6Cl 2 from x=0 to x=1.8 (3/5 per Cu 2+). Contrary to expectations, no metallicity or superconductivity is induced. Instead, we find a systematic suppression of magnetic behavior across the phase diagram. Lastly, ourmore » results demonstrate that significant theoretical work is needed to understand and predict the role of doping in magnetically frustrated narrow band insulators, particularly the interplay between local structural disorder and tendency toward electron localization, and pave the way for future studies of doped spin liquids.« less
Spin and charge currents and current rectification in Luttinger liquids
NASA Astrophysics Data System (ADS)
Braunecker, B.; Feldman, D. E.; Marston, J. B.
2006-03-01
Asymmetries in spin and charge transport properties are of great interest for spintronic and electronic applications. We show that externally-driven spin and charge currents in a Luttinger liquid model of a one-dimensional quantum wire are strongly modified by the presence of a localized magnetic or nonmagnetic scatterer. A diode effect appears at low voltages when this scatterer is spatially asymmetric, and a non-monotonous dependence of the current on the voltage is possible. D.E. Feldman, S. Scheidl, and V. M. Vinokur, Phys. Rev. Lett. 94, 186809 (2005); B. Braunecker, D. E. Feldman, and J. B. Marston, Phys. Rev. B 72, 125311 (2005)
Spin liquid state in the disordered triangular lattice Sc 2Ga 2CuO 7 revealed by NMR
Khuntia, P.; Kumar, R.; Mahajan, A. V.; ...
2016-04-18
We present microscopic magnetic properties of a two-dimensional triangular lattice Sc 2Ga 2CuO 7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/k B ≈ 35 K between Cu 2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T 1) reveals a slowing down of Cu 2+ spin fluctuationsmore » with decreasing T down to 100 mK. Magnetic specific heat (C m) and 1/T 1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of C m and 1/T 1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less
Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
Banerjee, A.; Bridges, C. A.; Yan, J. -Q.; ...
2016-04-04
Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. While their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting due to the emergence of fundamentally new excitations such as Majorana Fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. We report these here for a ruthenium-based material α-RuCl 3, continuing a major search (so far concentrated on iridium materials inimical to neutron probes) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm themore » requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly 2D nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl 3 as prime candidate for realization of fractionalized Kitaev physics.« less
Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet.
Banerjee, A; Bridges, C A; Yan, J-Q; Aczel, A A; Li, L; Stone, M B; Granroth, G E; Lumsden, M D; Yiu, Y; Knolle, J; Bhattacharjee, S; Kovrizhin, D L; Moessner, R; Tennant, D A; Mandrus, D G; Nagler, S E
2016-07-01
Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. Whereas their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting owing to the emergence of fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. These we report here for a ruthenium-based material, α-RuCl3, continuing a major search (so far concentrated on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl3 as a prime candidate for fractionalized Kitaev physics.
Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, A.; Bridges, C. A.; Yan, J. -Q.
Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to protect quantum information from decoherence. While their featureless ground states have precluded their straightforward experimental identification, excited states are more revealing and particularly interesting due to the emergence of fundamentally new excitations such as Majorana Fermions. Ideal probes of these excitations are inelastic neutron scattering experiments. We report these here for a ruthenium-based material α-RuCl 3, continuing a major search (so far concentrated on iridium materials inimical to neutron probes) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm themore » requisite strong spin-orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We find stacking faults, inherent to the highly 2D nature of the material, resolve an outstanding puzzle. Crucially, dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations and Majorana fermions of the pure Kitaev model, we propose the excitation spectrum of α-RuCl 3 as prime candidate for realization of fractionalized Kitaev physics.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
2018-04-10
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Three-Dimensional Non-Fermi-Liquid Behavior from One-Dimensional Quantum Critical Local Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Laura; Zaliznyak, Igor; Tsvelik, Alexei M.
We study the temperature dependence of the electrical resistivity in a system composed of critical spin chains interacting with three dimensional conduction electrons and driven to criticality via an external magnetic field. The relevant experimental system is Yb 2Pt 2Pb, a metal where itinerant electrons coexist with localized moments of Yb-ions which can be described in terms of effective S = 1/2 spins with dominantly one-dimensional exchange interaction. The spin subsystem becomes critical in a relatively weak magnetic field, where it behaves like a Luttinger liquid. We theoretically examine a Kondo lattice with different effective space dimensionalities of the twomore » interacting subsystems. Lastly, we characterize the corresponding non-Fermi liquid behavior due to the spin criticality by calculating the electronic relaxation rate and the dc resistivity and establish its quasi linear temperature dependence.« less
Destabilization of Magnetic Order in a Dilute Kitaev Spin Liquid Candidate
Lampen-Kelley, Paige; Banerjee, Arnab; Aczel, Adam A.; ...
2017-12-06
The insulating honeycomb magnet α–RuCl 3 exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T=0, fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir 3+ substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru 1–xIr xCl 3 show that the magnetic ordering temperature is suppressed with increasing x, and evidence of zizag magnetic order is absent for x > 0.3. Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the fullmore » range of x investigated. In conclusion, the depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl 3.« less
Destabilization of Magnetic Order in a Dilute Kitaev Spin Liquid Candidate
NASA Astrophysics Data System (ADS)
Lampen-Kelley, P.; Banerjee, A.; Aczel, A. A.; Cao, H. B.; Stone, M. B.; Bridges, C. A.; Yan, J.-Q.; Nagler, S. E.; Mandrus, D.
2017-12-01
The insulating honeycomb magnet α -RuCl3 exhibits fractionalized excitations that signal its proximity to a Kitaev quantum spin liquid state; however, at T =0 , fragile long-range magnetic order arises from non-Kitaev terms in the Hamiltonian. Spin vacancies in the form of Ir3 + substituted for Ru are found to destabilize this long-range order. Neutron diffraction and bulk characterization of Ru1 -xIrxCl3 show that the magnetic ordering temperature is suppressed with increasing x , and evidence of zizag magnetic order is absent for x >0.3 . Inelastic neutron scattering demonstrates that the signature of fractionalized excitations is maintained over the full range of x investigated. The depleted lattice without magnetic order thus hosts a spin-liquid-like ground state that may indicate the relevance of Kitaev physics in the magnetically dilute limit of RuCl3 .
Neutron scattering in the proximate quantum spin liquid α-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich; Nagler, Stephen E.
2017-06-01
The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.
Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension
Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang
2017-05-31
In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less
NASA Astrophysics Data System (ADS)
Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.
2015-11-01
We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.
Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.
2012-01-01
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866
Interacting adiabatic quantum motor
NASA Astrophysics Data System (ADS)
Bruch, Anton; Kusminskiy, Silvia Viola; Refael, Gil; von Oppen, Felix
2018-05-01
We present a field-theoretic treatment of an adiabatic quantum motor. We explicitly discuss a motor called the Thouless motor which is based on a Thouless pump operating in reverse. When a sliding periodic potential is considered to be the motor degree of freedom, a bias voltage applied to the electron channel sets the motor in motion. We investigate a Thouless motor whose electron channel is modeled as a Luttinger liquid. Interactions increase the gap opened by the periodic potential. For an infinite Luttinger liquid the coupling-induced friction is enhanced by electron-electron interactions. When the Luttinger liquid is ultimately coupled to Fermi liquid reservoirs, the dissipation reduces to its value for a noninteracting electron system for a constant motor velocity. Our results can also be applied to a motor based on a nanomagnet coupled to a quantum spin Hall edge.
Quantum simulation of the Hubbard model with dopant atoms in silicon
Salfi, J.; Mol, J. A.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Hollenberg, L. C. L.; Rogge, S.
2016-01-01
In quantum simulation, many-body phenomena are probed in controllable quantum systems. Recently, simulation of Bose–Hubbard Hamiltonians using cold atoms revealed previously hidden local correlations. However, fermionic many-body Hubbard phenomena such as unconventional superconductivity and spin liquids are more difficult to simulate using cold atoms. To date the required single-site measurements and cooling remain problematic, while only ensemble measurements have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low effective temperatures with single-site resolution using subsurface dopants in silicon. We measure quasi-particle tunnelling maps of spin-resolved states with atomic resolution, finding interference processes from which the entanglement entropy and Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of freedom, increases with increasing valence bond length. We find separation-tunable Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the Hubbard model. PMID:27094205
NASA Astrophysics Data System (ADS)
Hauke, Philipp; Roscilde, Tommaso; Murg, Valentin; Cirac, J. Ignacio; Schmied, Roman
2011-07-01
We study the ground-state phases of the S=1/2 Heisenberg quantum antiferromagnet on the spatially anisotropic triangular lattice (SATL) and on the square lattice with up to next-next-nearest-neighbor coupling (the J1J2J3 model), making use of Takahashi's modified spin-wave (MSW) theory supplemented by ordering vector optimization. We compare the MSW results with exact diagonalization and projected-entangled-pair-states calculations, demonstrating their qualitative and quantitative reliability. We find that the MSW theory correctly accounts for strong quantum effects on the ordering vector of the magnetic phases of the models under investigation: in particular, collinear magnetic order is promoted at the expense of non-collinear (spiral) order, and several spiral states that are stable at the classical level disappear from the quantum phase diagram. Moreover, collinear states and non-collinear ones are never connected continuously, but they are separated by parameter regions in which the MSW theory breaks down, signaling the possible appearance of a non-magnetic ground state. In the case of the SATL, a large breakdown region appears also for weak couplings between the chains composing the lattice, suggesting the possible occurrence of a large non-magnetic region continuously connected with the spin-liquid state of the uncoupled chains. This shows that the MSW theory is—despite its apparent simplicity—a versatile tool for finding candidate regions in the case of spin-liquid phases, which are among prime targets for relevant quantum simulations.
NASA Astrophysics Data System (ADS)
Wang, Xiaoyu; Schattner, Yoni; Berg, Erez; Fernandes, Rafael
The maximum transition temperature Tc observed in the phase diagrams of several unconventional superconductors takes place in the vicinity of a putative antiferromagnetic quantum critical point. This observation motivated the theoretical proposal that superconductivity in these systems may be driven by quantum critical fluctuations, which in turn can also promote non-Fermi liquid behavior. In this talk, we present a combined analytical and sign-problem-free Quantum Monte Carlo investigation of the spin-fermion model - a widely studied low-energy model for the interplay between superconductivity and magnetic fluctuations. By engineering a series of band dispersions that interpolate between near-nested and open Fermi surfaces, and by also varying the strength of the spin-fermion interaction, we find that the hot spots of the Fermi surface provide the dominant contribution to the pairing instability in this model. We show that the analytical expressions for Tc and for the pairing susceptibility, obtained within a large-N Eliashberg approximation to the spin-fermion model, agree well with the Quantum Monte Carlo data, even in the regime of interactions comparable to the electronic bandwidth. DE-SC0012336.
Nematic order on the surface of a three-dimensional topological insulator
NASA Astrophysics Data System (ADS)
Lundgren, Rex; Yerzhakov, Hennadii; Maciejko, Joseph
2017-12-01
We study the spontaneous breaking of rotational symmetry in the helical surface state of three-dimensional topological insulators due to strong electron-electron interactions, focusing on time-reversal invariant nematic order. Owing to the strongly spin-orbit coupled nature of the surface state, the nematic order parameter is linear in the electron momentum and necessarily involves the electron spin, in contrast with spin-degenerate nematic Fermi liquids. For a chemical potential at the Dirac point (zero doping), we find a first-order phase transition at zero temperature between isotropic and nematic Dirac semimetals. This extends to a thermal phase transition that changes from first to second order at a finite-temperature tricritical point. At finite doping, we find a transition between isotropic and nematic helical Fermi liquids that is second order even at zero temperature. Focusing on finite doping, we discuss various observable consequences of nematic order, such as anisotropies in transport and the spin susceptibility, the partial breakdown of spin-momentum locking, collective modes and induced spin fluctuations, and non-Fermi-liquid behavior at the quantum critical point and in the nematic phase.
Mott transition between a spin-liquid insulator and a metal in three dimensions.
Podolsky, Daniel; Paramekanti, Arun; Kim, Yong Baek; Senthil, T
2009-05-08
We study a bandwidth controlled Mott metal-insulator transition (MIT) from a Fermi-liquid metal to a quantum spin-liquid insulator in three dimensions. Using a slave rotor approach including gauge fluctuations, we obtain a continuous MIT and discuss finite temperature crossovers in its vicinity. We show that the specific heat C approximately Tlnln(1/T) at the MIT and that the metallic state near the MIT should exhibit a "conductivity minimum" as a function of temperature. We suggest Na4Ir3O8 as a candidate to test our predictions and compute its electron spectral function at the MIT.
Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids
NASA Astrophysics Data System (ADS)
van den Brink, Jeroen
The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.
Landau Levels of Majorana Fermions in a Spin Liquid.
Rachel, Stephan; Fritz, Lars; Vojta, Matthias
2016-04-22
Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.
Spin-one bilinear-biquadratic model on a star lattice
NASA Astrophysics Data System (ADS)
Lee, Hyun-Yong; Kawashima, Naoki
2018-05-01
We study the ground-state phase diagram of the S =1 bilinear-biquadratic model (BLBQ) on the star lattice with the state-of-art tensor network algorithms. The system has four phases: the ferromagnetic, antiferromagnetic, ferroquadrupolar, and spin-liquid phases. The phases and their phase boundaries are determined by examining various local observables, correlation functions, and transfer matrices exhaustively. The spin-liquid phase, which is the first quantum disordered phase found in the two-dimensional BLBQ model, is gapped and devoid of any conventional long-range order. It is also characterized by fixed-parity virtual bonds in the tensor network formalism, analogous to the Haldane phase, while the parity varies depending on the location of the bond.
Generation of spin currents from one-dimensional quantum spin liquid
NASA Astrophysics Data System (ADS)
Hirobe, Daichi; Kawamata, Takayuki; Oyanagi, Koichi; Koike, Yoji; Saitoh, Eiji
2018-03-01
Spin-Seebeck effects (SSEs) in a one-dimensional quantum spin liquid (QSL) system have been investigated in a Sr2CuO3/Pt hybrid structure. Sr2CuO3 contains one-dimensional spin- /1 2 chains in which typical spinons in QSL have been confirmed. Heat-induced voltage measured in a clean Pt/Sr2CuO3 exhibits anomalous sign reversal with decreasing temperature, the negative component of which can be attributed to the spinon-induced SSE. However, the SSE was found to be critically decreased upon the exposure of Sr2CuO3 to air, which can be associated with the chemical degradation of the interface of Sr2CuO3. Despite the drastic change in the SSE signals, properties of the one-dimensional QSL are little changed in the spin susceptibility as well as the thermal conductivity of Sr2CuO3. The SSE signal is also sensitive to the purity of Sr2CuO3; it is suppressed with a decrease in the purity of the primary compounds of the Sr2CuO3. The result indicates that the spinon-induced SSE in Sr2CuO3 is sensitive to the bulk condition due to the one-dimensional atomic channel for spin transport in Sr2CuO3. In a carefully prepared Sr2CuO3/Pt sample, we found that the spinon-induced SSE signal is tolerant to magnetic fields; it increases linearly with the field even up to 9 T. In contrast, SSEs are suppressed under such a high field in ferrimagnetic insulators Y3Fe5O12 or paramagnetic insulators Gd3Ga5O12, which is caused by the Zeeman gap in the spin-wave or paramagnetic spin excitations. The robustness of the spinon-induced SSE is consistent with the Tomonaga-Luttinger liquid theories.
NASA Astrophysics Data System (ADS)
Kadowaki, Hiroaki; Wakita, Mika; Fåk, Björn; Ollivier, Jacques; Ohira-Kawamura, Seiko; Nakajima, Kenji; Takatsu, Hiroshi; Tamai, Mototake
2018-06-01
The ground states of the frustrated pyrochlore oxide Tb2+xTi2-xO7+y have been studied by inelastic neutron scattering experiments. Three single-crystal samples are investigated; one shows no phase transition (x = -0.007 < xc ˜ -0.0025), being a putative quantum spin-liquid (QSL), and the other two (x = 0.000,0.003) show electric quadrupole ordering (QO) below Tc ˜ 0.5 K. The QSL sample shows continuum excitation spectra with an energy scale 0.1 meV as well as energy-resolution-limited (nominally) elastic scattering. As x is increased, pseudospin wave of the QO state emerges from this continuum excitation, which agrees with that of powder samples and consequently verifies good x control for the present single crystal samples.
Evidence for a quantum dipole liquid state in an organic quasi-two-dimensional material.
Hassan, Nora; Cunningham, Streit; Mourigal, Martin; Zhilyaeva, Elena I; Torunova, Svetlana A; Lyubovskaya, Rimma N; Schlueter, John A; Drichko, Natalia
2018-06-08
Mott insulators are commonly pictured with electrons localized on lattice sites, with their low-energy degrees of freedom involving spins only. Here, we observe emergent charge degrees of freedom in a molecule-based Mott insulator κ-(BEDT-TTF) 2 Hg(SCN) 2 Br, resulting in a quantum dipole liquid state. Electrons localized on molecular dimer lattice sites form electric dipoles that do not order at low temperatures and fluctuate with frequency detected experimentally in our Raman spectroscopy experiments. The heat capacity and Raman scattering response are consistent with a scenario in which the composite spin and electric dipole degrees of freedom remain fluctuating down to the lowest measured temperatures. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
The physics of quantum materials
NASA Astrophysics Data System (ADS)
Keimer, B.; Moore, J. E.
2017-11-01
The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons interact at a fundamental level. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, in recent years there has been growing interest in material systems where quantum effects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical effects fundamentally alter properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such as ferromagnetism.
Quantum Field Theory Approach to Condensed Matter Physics
NASA Astrophysics Data System (ADS)
Marino, Eduardo C.
2017-09-01
Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.
Model for a Ferromagnetic Quantum Critical Point in a 1D Kondo Lattice
NASA Astrophysics Data System (ADS)
Komijani, Yashar; Coleman, Piers
2018-04-01
Motivated by recent experiments, we study a quasi-one-dimensional model of a Kondo lattice with ferromagnetic coupling between the spins. Using bosonization and dynamical large-N techniques, we establish the presence of a Fermi liquid and a magnetic phase separated by a local quantum critical point, governed by the Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged mode at the quantum critical point is highlighted.
Field dependence of magnetic order and excitations in the Kitaev candidate alpha-RuCl3
NASA Astrophysics Data System (ADS)
Banerjee, Arnab; Kelley, Paula; Winn, Barry; Aczel, Adam; Lumsden, Mark; Mandrus, David; Nagler, Stephen
The search for new quantum states of matter has been one of the forefront endeavors of condensed matter physics. The two-dimensional Kitaev quantum spin liquid (QSL) is of special interest as an exactly solvable spin-liquid model exhibiting exotic fractionalized excitations. Recently, alpha-RuCl3 has been identified as a candidate system for exhibiting some aspects of Kitaev QSL physics. The spins in this material exhibit zig-zag order at low temperatures, and show both low energy spin wave excitation arising from the ordered state as well as a continuum excitation extending to higher energies that has been taken as evidence for QSL relate Majorana fermions. In this talk, we show that the application of an in-plane magnetic field suppresses the zig-zag order possibly resulting in a state devoid of long-range order. Field-dependent inelastic neutron scattering on single-crystal shows a remarkable effect on the excitation spectrum above the critical field. The work is supported by US-DOE, Office of Science, Basic Energy Sciences and User Facilities Divisions, and also the Gordon and Betty Moore Foundation EPiQS Grant GBFM4416.
Spin-dependent analysis of two-dimensional electron liquids
NASA Astrophysics Data System (ADS)
Bulutay, C.; Tanatar, B.
2002-05-01
Two-dimensional electron liquid (2D EL) at full Fermi degeneracy is revisited, giving special attention to the spin-polarization effects. First, we extend the recently proposed classical-map hypernetted-chain (CHNC) technique to the 2D EL, while preserving the simplicity of the original proposal. An efficient implementation of CHNC is given utilizing Lado's quadrature expressions for the isotropic Fourier transforms. Our results indicate that the paramagnetic phase stays to be the ground state until the Wigner crystallization density, even though the energy separation with the ferromagnetic and other partially polarized states become minute. We analyze compressibility and spin stiffness variations with respect to density and spin polarization, the latter being overlooked until now. Spin-dependent static structure factor and pair-distribution functions are computed; agreement with the available quantum Monte Carlo data persists even in the strong-coupling regime of the 2D EL.
Liquid-state nuclear spin comagnetometers.
Ledbetter, M P; Pustelny, S; Budker, D; Romalis, M V; Blanchard, J W; Pines, A
2012-06-15
We discuss nuclear spin comagnetometers based on ultralow-field nuclear magnetic resonance in mixtures of miscible solvents, each rich in a different nuclear spin. In one version thereof, Larmor precession of protons and 19F nuclei in a mixture of thermally polarized pentane and hexafluorobenzene is monitored via a sensitive alkali-vapor magnetometer. We realize transverse relaxation times in excess of 20 s and suppression of magnetic field fluctuations by a factor of 3400. We estimate it should be possible to achieve single-shot sensitivity of about 5×10(-9) Hz, or about 5×10(-11) Hz in ≈1 day of integration. In a second version, spin precession of protons and 129Xe nuclei in a mixture of pentane and hyperpolarized liquid xenon is monitored using superconducting quantum interference devices. Application to spin-gravity experiments, electric dipole moment experiments, and sensitive gyroscopes is discussed.
Quantum indistinguishability in chemical reactions.
Fisher, Matthew P A; Radzihovsky, Leo
2018-05-15
Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high-temperature processes, particularly for ionic coordinates, implicitly assumed to be distinguishable, incoherent, and thus well approximated classically. We explore enzymatic chemical reactions involving small symmetric molecules and argue that in many situations a full quantum treatment of collective nuclear degrees of freedom is essential. Supported by several physical arguments, we conjecture a "quantum dynamical selection" (QDS) rule for small symmetric molecules that precludes chemical processes that involve direct transitions from orbitally nonsymmetric molecular states. As we propose and discuss, the implications of the QDS rule include ( i ) a differential chemical reactivity of para- and orthohydrogen, ( ii ) a mechanism for inducing intermolecular quantum entanglement of nuclear spins, ( iii ) a mass-independent isotope fractionation mechanism, ( iv ) an explanation of the enhanced chemical activity of "reactive oxygen species", ( v ) illuminating the importance of ortho-water molecules in modulating the quantum dynamics of liquid water, and ( vi ) providing the critical quantum-to-biochemical linkage in the nuclear spin model of the (putative) quantum brain, among others.
Microscopic Studies of Quantum Phase Transitions in Optical Lattices
NASA Astrophysics Data System (ADS)
Bakr, Waseem S.
2011-12-01
In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build-up near a quantum phase transition. We have demonstrated a quantum simulator in which all degrees of freedom can be read out microscopically, allowing the simulation of quantum many-body systems with manageable resources. More generally, the ability to image and manipulate individual atoms in optical lattices opens an avenue towards scalable quantum computation.
Frozen State and Spin Liquid Physics in Na_{4}Ir_{3}O_{8}: An NMR Study.
Shockley, A C; Bert, F; Orain, J-C; Okamoto, Y; Mendels, P
2015-07-24
Na_{4}Ir_{3}O_{8} is a unique case of a hyperkagome 3D corner sharing triangular lattice that can be decorated with quantum spins. It has spurred a lot of theoretical interest as a spin liquid candidate. We present a comprehensive set of NMR data taken on both the ^{23}Na and ^{17}O sites. We show that disordered magnetic freezing of all Ir sites sets in below T_{f}~7 K, well below J=300 K, with a drastic slowing down of fluctuations to a static state revealed by our T_{1} measurements. Above typically 2T_{f}, physical properties are relevant to the spin liquid state induced by this exotic geometry. While the shift data show that the susceptibility levels off below 80 K, 1/T_{1} has little variation from 300 K to 2T_{f}. We discuss the implication of our results in the context of published experimental and theoretical work.
Segnorile, H H; Bonin, C J; González, C E; Acosta, R H; Zamar, R C
2009-10-01
Two proton quasi-equilibrium states were previously observed in nematic liquid crystals, namely the S and W quasi-invariants. Even though the experimental evidence suggested that they originate in a partition of the spin dipolar energy into a strong and a weak part, respectively, from a theoretical viewpoint, the existence of an appropriate energy scale which allows such energy separation remains to be confirmed and a representation of the quasi-invariants is still to be given. We compare the dipolar NMR signals yielded both by the Jeener-Broekaert (JB) experiment as a function of the preparation time and the free evolution of the double quantum coherence (DQC) spectra excited from the S state, with numerical calculations carried out from first principles under different models for the dipolar quasi-invariants, in a 10-spin cluster which represents the 5CB (4(')-pentyl-4-biphenyl-carbonitrile) molecule. The calculated signals qualitatively agree with the experiments and the DQC spectra as a function of the single-quantum detection time are sensible enough to the different models to allow both to probe the physical nature of the initial dipolar-ordered state and to assign a subset of dipolar interactions to each constant of motion, which are compatible with the experiments. As a criterion for selecting a suitable quasi-equilibrium model of the 5CB molecule, we impose on the time evolution operator consistency with the occurrence of two dipolar quasi-invariants, that is, the calculated spectra must be unaffected by truncation of non-secular terms of the weaker dipolar energy. We find that defining the S quasi-invariant as the subset of the dipolar interactions of each proton with its two nearest neighbours yields a realistic characterization of the dipolar constants of motion in 5CB. We conclude that the proton-spin system of the 5CB molecule admits a partition of the dipolar energy into a bilinear strong and a multiple-spin weak contributions therefore providing two orthogonal constants of motion, which can be prepared and observed by means of the JB experiment. This feature, which implies the existence of two timescales of very different nature in the proton-spin dynamics, is ultimately dictated by the topology of the spin distribution in the dipole network and can be expected in other liquid crystals. Knowledge of the nature of the dipolar quasi-invariants will be useful in studies of dipolar-order relaxation, decoherence and multiple quantum NMR experiments where the initial state is a dipolar-ordered one.
Ultra-robust high-field magnetization plateau and supersolidity in bond-frustrated MnCr2S4
Tsurkan, Vladimir; Zherlitsyn, Sergei; Prodan, Lilian; Felea, Viorel; Cong, Pham Thanh; Skourski, Yurii; Wang, Zhe; Deisenhofer, Joachim; von Nidda, Hans-Albrecht Krug; Wosnitza, Joahim; Loidl, Alois
2017-01-01
Frustrated magnets provide a promising avenue for realizing exotic quantum states of matter, such as spin liquids and spin ice or complex spin molecules. Under an external magnetic field, frustrated magnets can exhibit fractional magnetization plateaus related to definite spin patterns stabilized by field-induced lattice distortions. Magnetization and ultrasound experiments in MnCr2S4 up to 60 T reveal two fascinating features: (i) an extremely robust magnetization plateau with an unusual spin structure and (ii) two intermediate phases, indicating possible realizations of supersolid phases. The magnetization plateau characterizes fully polarized chromium moments, without any contributions from manganese spins. At 40 T, the middle of the plateau, a regime evolves, where sound waves propagate almost without dissipation. The external magnetic field exactly compensates the Cr–Mn exchange field and decouples Mn and Cr sublattices. In analogy to predictions of quantum lattice-gas models, the changes of the spin order of the manganese ions at the phase boundaries of the magnetization plateau are interpreted as transitions to supersolid phases. PMID:28345038
Novel Phases from the Interplay of Topology and Strong Interactions
NASA Astrophysics Data System (ADS)
Hickey, Ciaran
In recent years, topology has become increasingly prevalent in condensed matter physics. It has allowed us to understand, and even predict, a variety of striking and remarkable physical phenomena. The study of strongly interacting systems has similarly lavished us with a diverse range of exotic phases and unconventional transitions, many of which are still poorly understood. In this thesis we will explore the interplay between topology and interactions in an effort to uncover new and novel phases. First we study how interactions impact the quantum phase transition between a topologically non-trivial phase and a trivial phase. The combination of interactions and the low-energy degrees of freedom associated with the transition leads to the emergence of a dome of lattice-symmetry breaking nematic order. Such behaviour is reminiscent of a number of strongly correlated electronic systems. We move on to study the strongly interacting limit of one of the earliest and best-known non-interacting topological phases, Haldane's model of a Chern insulator. Recently realized with ultracold atoms in a shaken optical lattice, the model has a non-trivial topological invariant associated with its band structure. In the strongly interacting limit the spin degrees of freedom are all that survive and we find a rich phase diagram of magnetically ordered phases, using a combination of both classical and quantum techniques. Supplementing the model with an additional term we can 'quantum-melt' one of these ordered states to produce a disordered, liquid state that we positively identify as a chiral spin liquid, a highly entangled state of matter with fractionalised excitations. We generalise this mechanism to other two dimensional lattices, uncovering a possible unifying framework with which to understand the emergence of chiral spin liquids in lattice spin models. Finally, motivated by groundbreaking experiments in the ultracold atoms community, we investigate a model of two-component bosons with an artificial spin-orbit coupling. The interplay between the lattice, interactions and spin-orbit coupling produces a variety of unusual superfluid phases. Using a novel Monte Carlo technique we reveal the finite temperature phase diagram that appears close to the Mott transition.
Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices
NASA Astrophysics Data System (ADS)
Farnell, D. J. J.; Götze, O.; Richter, J.
2016-06-01
The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.
Neutron scattering in the proximate quantum spin liquid α-RuCl3.
Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A; Stone, Matthew B; Lumsden, Mark D; Mandrus, David G; Tennant, David A; Moessner, Roderich; Nagler, Stephen E
2017-06-09
The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl 3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl 3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials. Copyright © 2017, American Association for the Advancement of Science.
Universality class of non-Fermi-liquid behavior in mixed-valence systems
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu
1996-01-01
A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.
A review of the quantum Hall effects in MgZnO/ZnO heterostructures
NASA Astrophysics Data System (ADS)
Falson, Joseph; Kawasaki, Masashi
2018-05-01
This review visits recent experimental efforts on high mobility two-dimensional electron systems (2DES) hosted at the Mg x Zn1-x O/ZnO heterointerface. We begin with the growth of these samples, and highlight the key characteristics of ozone-assisted molecular beam epitaxy required for their production. The transport characteristics of these structures are found to rival that of traditional semiconductor material systems, as signified by the high electron mobility (μ > 1000 000 cm2 Vs‑1) and rich quantum Hall features. Owing to a large effective mass and small dielectric constant, interaction effects are an order of magnitude stronger in comparison with the well studied GaAs-based 2DES. The strong correlation physics results in robust Fermi-liquid renormalization of the effective mass and spin susceptibility of carriers, which in turn dictates the parameter space for the quantum Hall effect. Finally, we explore the quantum Hall effect with a particular emphasis on the spin degree of freedom of carriers, and how their large spin splitting allows control of the ground states encountered at ultra-low temperatures within the fractional quantum Hall regime. We discuss in detail the physics of even-denominator fractional quantum Hall states, whose observation and underlying character remain elusive and exotic.
Publisher Correction: A quantum dipolar spin liquid
NASA Astrophysics Data System (ADS)
2018-05-01
In the version of this Article originally published, the title for reference 11 was incorrect, and should have read `Influence of the range of interactions in thin magnetic structures'. This has been corrected in all versions of the Article.
Non-Fermi Liquid Behavior in the Single-Impurity Mixed Valence Problem
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu
An effective Hamiltonian of the Anderson single-impurity model with finite-range Coulomb interactions is derived near a particular limit, which is analogous to the Toulouse limit of the ordinary Kondo problem, and the physical properties around the mixed valence quantum critical point are calculated. At this quantum critical point, the local moment is only partially quenched and X-ray edge singularities are exhibited. Around this point, a new type of non-Fermi liquid behavior is predicted with an extra specific heat Cimp ~ T1/4 + AT ln T and spin-susceptibility χimp ~T-3/4 + B ln T.
On the Origin of Charge Order in RuCl3
NASA Astrophysics Data System (ADS)
Berlijn, Tom
RuCl3 has been proposed to be a spin-orbit assisted Mott insulator close to the Kitaev-spin-liquid ground state, an exotic state of matter that could protect information in quantum computers. Recent STM experiments [M. Ziatdinov et al, Nature Communications (in press)] however, show the presence of a puzzling short-range charge order in this quasi two dimensional material. Understanding the nature of this charge order may provide a pathway towards tuning RuCl3 into the Kitaev-spin-liquid ground state. Based on first principles calculations I investigate the possibility that the observed charge order is caused by a combination of short-range magnetic correlations and strong spin-orbit coupling. From a general perspective such a mechanism could offer the exciting possibility of probing local magnetic correlations with standard STM. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Kondo destruction in a quantum paramagnet with magnetic frustration
NASA Astrophysics Data System (ADS)
Zhang, Jiahao; Zhao, Hengcan; Lv, Meng; Hu, Sile; Isikawa, Yosikazu; Yang, Yi-feng; Si, Qimiao; Steglich, Frank; Sun, Peijie
2018-06-01
We report results of isothermal magnetotransport and susceptibility measurements at elevated magnetic fields B down to very low temperatures T on single crystals of the frustrated Kondo-lattice system CePdAl. They reveal a B*(T ) line within the paramagnetic part of the phase diagram. This line denotes a thermally broadened "small"-to-"large" Fermi-surface crossover which substantially narrows upon cooling. At B0 *=B*(T =0 ) =(4.6 ±0.1 ) T , this B*(T ) line merges with two other crossover lines, viz. Tp(B ) below and TFL(B ) above B0 *. Tp characterizes a frustration-dominated spin-liquid state, while TFL is the Fermi-liquid temperature associated with the lattice Kondo effect. Non-Fermi-liquid phenomena which are commonly observed near a "Kondo-destruction" quantum-critical point cannot be resolved in CePdAl. Our observations reveal a rare case where Kondo coupling, frustration, and quantum criticality are closely intertwined.
Fractional and hidden magnetic excitations in f-electron metal Yb2Pt2Pb
NASA Astrophysics Data System (ADS)
Zaliznyak, Igor
Quantum states with fractionalized excitations such as spinons in one-dimensional chains are commonly viewed as belonging to the domain of S=1/2 spin systems. However, recent experiments on the quantum antiferromagnet Yb2Pt2Pb, part of a large family of R2T2X (R=rare earth, T=transition metal, X=main group) materials spectacularly disqualify this opinion. The results show that spinons can also emerge in an f-electron system with strong spin-orbit coupling, where magnetism is mainly associated with large and anisotropic orbital moment. Here, the competition of several high-energy interactions Coulomb repulsion, spin-orbit coupling, crystal field, and the peculiar crystal structure, which combines low dimensionality and geometrical frustration, lead to the emergence, at low energy, of an effective spin-1/2, purely quantum Hamiltonian. Consequently, it produces unusual spin-liquid states and fractional excitations enabled by the inherently quantum mechanical nature of the moments. The emergent quantum spins bear the unique birthmark of their unusual origin in that they only lead to measurable longitudinal magnetic fluctuations, while the transverse excitations such as spin waves remain invisible to scattering experiments. Similarlyhidden would be transverse magnetic ordering, although it would have visible excitations. The rich magnetic phase diagram of Yb2Pt2Pb is suggestive of the existence of hidden-order phases, while the recent experiments indeed reveal the dark magnon, a hidden excitation in the saturated ferromagnetic (FM) phase of Yb2Pt2Pb. Unlike copper-based spin-1/2 chains, where the magnon in the FM state accounts for the full spectral weight of the zero-field spinon continuum, in the spin-orbital chains in Yb2Pt2Pb it is 100 times, or more weaker. It thus presents an example of dark magnon matter\\x9D, whose Hamiltonian is that of the effective spin-1/2 chain, but whose coupling to magnetic field, the physical probe at our disposal, is vanishingly small. The work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-SC00112704, and by by NSF-DMR-1310008.
New Forms of Matter in Optical Lattices
2016-05-19
Daley, A. M. Läuchli, and P. Zoller Thermal vs. Entanglement Entropy: A Measurement Protocol for Fermionic Atoms with a Quantum Gas Microscope...J. A. Edge, E. Taylor, S. Zhang, S. Trotzky, J. H. Thywissen Transverse Demagnetization Dynamics of a Unitary Fermi Gas Science 344, 722 (2014...Jiang, J Ignacio Cirac, Peter Zoller, Mikhail D Lukin, "Topologically Protected Quantum State Transfer in a Chiral Spin Liquid , "Nature Communications
ESR modes in a Strong-Leg Ladder in the Tomonaga-Luttinger Liquid Phase
NASA Astrophysics Data System (ADS)
Zvyagin, S.; Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M.; Furuya, S. C.; Giamarchi, T.
Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N)2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe its ESR observability to the uniform Dzyaloshinskii-Moriya interaction. This work was partially supported by the DFG and Helmholtz Gemeinschaft (Germany), Swiss SNF under Division II, and ERC synergy UQUAM project. We acknowledge the support of the HLD at HZDR, member of the European Magnetic Field Laboratory (EMFL).
Orbital liquid in three-dimensional mott insulator: LaTiO3
Khaliullin; Maekawa
2000-10-30
We present a theory of spin and orbital states in Mott insulator LaTiO3. The spin-orbital superexchange interaction between d(1)(t(2g)) ions in cubic crystal suffers from a pathological degeneracy of orbital states at the classical level. Quantum effects remove this degeneracy and result in the formation of the coherent ground state, in which the orbital moment of t(2g) level is fully quenched. We find a finite gap for orbital excitations. Such a disordered state of local degrees of freedom on unfrustrated, simple cubic lattice is highly unusual. Orbital liquid state naturally explains observed anomalies of LaTiO3.
Quantum critical scaling near the antiferromagnetic quantum critical point in CeCu6-xPdx
NASA Astrophysics Data System (ADS)
Wu, Liusuo; Poudel, L.; May, A. F.; Nelson, W. L.; Gallagher, A.; Lai, Y.; Graf, D. E.; Besara, T.; Siegrist, T. M.; Baumbach, R.; Ehlers, G.; Podlesnyak, A. A.; Lumsden, M. D.; Mandrus, D.; Christianson, A. D.
A remarkable behavior of many quantum critical systems is the scaling of physical properties such as the dynamic susceptibility near a quantum critical point (QCP), where Fermi liquid physics usually break down. The quantum critical behavior in the vicinity of a QCP in metallic systems remains an important open question. In particular, a self-consistent universal scaling of both magnetic susceptibility and the specific heat remains missing for most cases. Recently, we have studied CeCu6-xTx (T =Au, Ag, Pd), which is a prototypical heavy fermion material that hosts an antiferromagnetic (AF) QCP. We have investigated the low temperature thermal properties including the specific heat and magnetic susceptibility. We also investigated the spin fluctuation spectrum at both critical doping and within the magnetically ordered phase. A key finding is the spin excitations exhibit a strong Ising character, resulting in the strong suppression of transverse fluctuations. A detailed scaling analysis of the quantum critical behaviors relating the thermodynamic properties to the dynamic susceptibility will be presented. DOE, ORNL LDRD.
NASA Astrophysics Data System (ADS)
Xu, Cenke
Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the graviton, although they have a soft w ˜ k2 dispersion relation. The dynamics of this novel phase is described by a new set of Maxwell's equations.
BOOK REVIEW: Quantum Physics in One Dimension
NASA Astrophysics Data System (ADS)
Logan, David
2004-05-01
To a casual ostrich the world of quantum physics in one dimension may sound a little one-dimensional, suitable perhaps for those with an unhealthy obsession for the esoteric. Nothing of course could be further from the truth. The field is remarkably rich and broad, and for more than fifty years has thrown up innumerable challenges. Theorists, realising that the role of interactions in 1D is special and that well known paradigms of higher dimensions (Fermi liquid theory for example) no longer apply, took up the challenge of developing new concepts and techniques to understand the undoubted pecularities of one-dimensional systems. And experimentalists have succeeded in turning pipe dreams into reality, producing an impressive and ever increasing array of experimental realizations of 1D systems, from the molecular to the mesoscopic---spin and ladder compounds, organic superconductors, carbon nanotubes, quantum wires, Josephson junction arrays and so on. Many books on the theory of one-dimensional systems are however written by experts for experts, and tend as such to leave the non-specialist a touch bewildered. This is understandable on both fronts, for the underlying theoretical techniques are unquestionably sophisticated and not usually part of standard courses in many-body theory. A brave author it is then who aims to produce a well rounded, if necessarily partial, overview of quantum physics in one dimension, accessible to a beginner yet taking them to the edge of current research, and providing en route a thorough grounding in the fundamental ideas, basic methods and essential phenomenology of the field. It is of course the brave who succeed in this world, and Thierry Giamarchi does just that with this excellent book, written by an expert for the uninitiated. Aimed in particular at graduate students in theoretical condensed matter physics, and assumimg little theoretical background on the part of the reader (well just a little), Giamarchi writes in a refreshingly relaxed style with infectious enthusiasm for his subject, and readily combines formal instruction with physical insight. The result is a serious, pedagogical yet comprehensive guide to the fascinating and important field of one-dimensional quantum systems, for which many a graduate student (and not a few oldies) will be grateful. The first half of the book, chapters 1--5, is devoted to a coherent presentation of the essential concepts and theoretical methods of the field. After a basic introduction to the unique behaviour of interacting electrons in one dimension, and to early fermionic approaches to the problem, Giamarchi turns to the technique of bosonization, introducing chapter 3 with a Marxist quote: `A child of five would understand this. Send for a child of five.' This most powerful technique is presented in a step by step fashion, and serious perusal of the chapter will benefit all ages since bosonization is used extensively throughout the rest of the book. The same is true of chapter 3 where a phenomenological and physically insightful introduction is given to the Luttinger liquid---the key concept in the low-energy physics of one-dimensional systems, analogous to the Fermi liquid in higher dimensions. Chapter 4 deals with what the author calls `refinements', or complications of the sort theorists in particular welcome; such as how the Luttinger liquid description is modified by the presence of long-ranged interactions, the Mott transition (`we forgot the lattice Gromit'), and the effects of breaking spin rotational invariance on application of a magnetic field. Finally chapter 5 describes various microscopic methods for one dimension, including a brief discussion of numerical techniques but focussing primarily on the Bethe ansatz---the famous one-dimensional technique others seek to emulate but whose well known complexity necessitates a relatively brief discussion, confined in practice to the spin-1/2 Heisenberg model. In the second half of the book, chapters 6--11, a range of different physical realizations of one-dimensional quantum physics are discussed. According to taste and interest, these chapters can be read in essentially any order. Spin systems are considered in chapter 6, beginning with spin chains---Jordan--Wigner, the bosonization solution---before moving to frustration, the spin-Peierls transition, and spin ladders; and including experimental examples of both spin chain and ladder materials. Chapters 7 and 8 deal with interacting lattice fermions, the former with single chain problems, notably the Hubbard, t-J and related models; and the latter with coupled fermionic chains, from finite to infinite, including a fulsome discussion of Bechgaard salts (organic conductors) as exemplars of Luttinger liquid behaviour. The effect of disorder in fermionic systems is taken up in chapter 9, and here the reader may react: interacting systems are tough enough, why make life harder? But disorder is always present to some degree in real systems---quantum wires, for example, discussed briefly in the chapter---and its effects particularly acute in one dimension. It simply cannot be avoided, even if the problem of interacting, disordered one-dimensional systems is still a long way off being solved. The penultimate chapter deals with the topical issues of boundaries, isolated impurities and constrictions, with a primary focus on mesoscopic examples of Luttinger liquids, notably carbon nanotubes and edge states in the quantum Hall effect. Finally `significant other' examples of Luttinger liquids, namely interacting one-dimensional bosons, are considered in chapter 11; which concludes with a discussion of bosonization techniques in the context of quantum impurities in Fermi liquids---the x-ray, Kondo and multichannel Kondo problems. The quality of the product attests to the fact that writing this impressive tome was a labour of love for the author. Anyone with a serious interest in getting to grips with one-dimensional quantum systems simply needs the book on their shelves---and will have great fun reading it too.
NASA Astrophysics Data System (ADS)
Montorsi, Arianna; Dolcini, Fabrizio; Iotti, Rita C.; Rossi, Fausto
2017-06-01
The low energy behavior of a huge variety of one-dimensional interacting spinful fermionic systems exhibits spin-charge separation, described in the continuum limit by two sine-Gordon models decoupled in the charge and spin channels. Interaction is known to induce, besides the gapless Luttinger liquid phase, eight possible gapped phases, among which are the Mott, Haldane, charge-/spin-density, and bond-ordered wave insulators, and the Luther Emery liquid. Here we prove that some of these physically distinct phases have nontrivial topological properties, notably the presence of degenerate protected edge modes with fractionalized charge/spin. Moreover, we show that the eight gapped phases are in one-to-one correspondence with the symmetry-protected topological (SPT) phases classified by group cohomology theory in the presence of particle-hole symmetry P. The latter result is also exploited to characterize SPT phases by measurable nonlocal order parameters which follow the system evolution to the quantum phase transition. The implications on the appearance of exotic orders in the class of microscopic Hubbard Hamiltonians, possibly without P symmetry at higher energies, are discussed.
Local Moment Instability of Os in Honeycomb Li 2.15Os 0.85O 3
Wallace, M. K.; LaBarre, P. G.; Li, Jun; ...
2018-04-26
Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li 2.15(3)Os 0.85(3)O3 (C2/c, a = 5.09 Å, b = 8.81 Å, c = 9.83 Å, β = 99.3°). Neutron diffraction shows large site disorder in the honeycomb layer and X-ray absorption spectroscopy indicates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration. We observe a transport band gap of Δ = 243 ± 23 meV, a large van Vleck susceptibility, and anmore » effective moment of 0.85 μ B, much lower than expected from 70% Os(+5). No evidence of long range order is found above 0.10 K but a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays an impurity spin contribution in addition to a power law ∝T (0.63±0.06). Applied density functional theory (DFT) leads to a reduced moment, suggesting incipient itineracy of the valence electrons, and finding evidence that Li over stoichiometry leads to Os(4+)–Os(5+) mixed valence. Lastly, this local picture is discussed in light of the site disorder and a possible underlying quantum spin liquid state.« less
Local Moment Instability of Os in Honeycomb Li 2.15Os 0.85O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, M. K.; LaBarre, P. G.; Li, Jun
Compounds with honeycomb structures occupied by strong spin orbit coupled (SOC) moments are considered to be candidate Kitaev quantum spin liquids. Here we present the first example of Os on a honeycomb structure, Li 2.15(3)Os 0.85(3)O3 (C2/c, a = 5.09 Å, b = 8.81 Å, c = 9.83 Å, β = 99.3°). Neutron diffraction shows large site disorder in the honeycomb layer and X-ray absorption spectroscopy indicates a valence state of Os (4.7 ± 0.2), consistent with the nominal concentration. We observe a transport band gap of Δ = 243 ± 23 meV, a large van Vleck susceptibility, and anmore » effective moment of 0.85 μ B, much lower than expected from 70% Os(+5). No evidence of long range order is found above 0.10 K but a spin glass-like peak in ac-susceptibility is observed at 0.5 K. The specific heat displays an impurity spin contribution in addition to a power law ∝T (0.63±0.06). Applied density functional theory (DFT) leads to a reduced moment, suggesting incipient itineracy of the valence electrons, and finding evidence that Li over stoichiometry leads to Os(4+)–Os(5+) mixed valence. Lastly, this local picture is discussed in light of the site disorder and a possible underlying quantum spin liquid state.« less
Static Holes in Geometrically Frustrated Bow Tie Ladder
NASA Astrophysics Data System (ADS)
Martins, George; Brenig, Wolfram
2007-03-01
Doping of the geometrically frustrated bow-tie spin ladder with static holes is investigated by a complementary approach using exact diagonalization and hard-core quantum dimers. Results for the thermodynamics in the undoped case, the singlet density of states, the hole-binding energy, and the spin correlations will be presented. We find that the static holes polarize their vicinity by a localization of singlets in order to reduce the frustration. As a consequence the singlet polarization cloud induces short range repulsive forces between the holes with oscillatory longer range behavior. For those systems we have studied, most results for the quantum dimer approach are found to be qualitatively if not quantitatively in agreement with exact diagonalization. The ground state of the undoped system is non-degenerate with translationally invariant nearest-neighbor spin correlations up to a few unit cells, which is consistent with a spin liquid state or a valence bond crystal with very large unit cell. C. Waldtmann, A. Kreutzmann, U. Schollwock, K. Maisinger, and H.-U. Everts, Phys. Rev. B 62, 9472 (2000).
Quantum State-Resolved Collision Dynamics of Nitric Oxide at Ionic Liquid and Molten Metal Surfaces
NASA Astrophysics Data System (ADS)
Zutz, Amelia Marie
Detailed molecular scale interactions at the gas-liquid interface are explored with quantum state-to-state resolved scattering of a jet-cooled beam of NO(2pi1/2; N = 0) from ionic liquid and molten metal surfaces. The scattered distributions are probed via laser-induced fluorescence methods, which yield rotational and spin-orbit state populations that elucidate the dynamics of energy transfer at the gas-liquid interface. These collision dynamics are explored as a function of incident collision energy, surface temperature, scattering angle, and liquid identity, all of which are found to substantially affect the degree of rotational, electronic and vibrational excitation of NO via collisions at the liquid surface. Rotational distributions observed reveal two distinct scattering pathways, (i) molecules that trap, thermalize and eventually desorb from the surface (trapping-desorption, TD), and (ii) those that undergo prompt recoil (impulsive scattering, IS) prior to complete equilibration with the liquid surface. Thermally desorbing NO molecules are found to have rotational temperatures close to, but slightly cooler than the surface temperature, indicative of rotational dependent sticking probabilities on liquid surfaces. Nitric oxide is a radical with multiple low-lying electronic states that serves as an ideal candidate for exploring nonadiabatic state-changing collision dynamics at the gas-liquid interface, which induce significant excitation from ground (2pi1/2) to excited (2pi 3/2) spin-orbit states. Molecular beam scattering of supersonically cooled NO from hot molten metals (Ga and Au, Ts = 300 - 1400 K) is also explored, which provide preliminary evidence for vibrational excitation of NO mediated by thermally populated electron-hole pairs in the hot, conducting liquid metals. The results highlight the presence of electronically nonadiabatic effects and build toward a more complete characterization of energy transfer dynamics at gas-liquid interfaces.
Colloquium: Herbertsmithite and the search for the quantum spin liquid
Norman, M. R.
2016-12-02
Quantum spin liquids form a novel class of matter where, despite the existence of strong exchange interactions, spins do not order down to the lowest measured temperature. Typically, these occur in lattices that act to frustrate the appearance of magnetism. In two dimensions, the classic example is the kagome lattice composed of corner sharing triangles. There are a variety of minerals whose transition metal ions form such a lattice. Hence, a number of them have been studied and were then subsequently synthesized in order to obtain more pristine samples. Of particular note was the report in 2005 by Dan Nocera'smore » group of the synthesis of herbertsmithite, composed of a lattice of copper ions sitting on a kagome lattice, which indeed does not order down to the lowest measured temperature despite the existence of a large exchange interaction of 17 meV. Over the past decade, this material has been extensively studied, yielding a number of intriguing surprises that have in turn motivated a resurgence of interest in the theoretical study of the spin 1/2 Heisenberg model on a kagome lattice. In this paper, this Colloquium reviews these developments and then discusses potential future directions, both experimental and theoretical, as well as the challenge of doping these materials with the hope that this could lead to the discovery of novel topological and superconducting phases.« less
Correlated states in β-Li 2IrO 3 driven by applied magnetic fields
Ruiz, Alejandro; Frano, Alex; Breznay, Nicholas P.; ...
2017-10-16
Magnetic honeycomb iridates are thought to show strongly spin-anisotropic exchange interactions which, when highly frustrated, lead to an exotic state of matter known as the Kitaev quantum spin liquid. However, in all known examples these materials magnetically order at finite temperatures, the scale of which may imply weak frustration. Here we show that the application of a relatively small magnetic field drives the three-dimensional magnet β-Li 2IrO 3 from its incommensurate ground state into a quantum correlated paramagnet. Interestingly, this paramagnetic state admixes a zig-zag spin mode analogous to the zig-zag order seen in other Mott-Kitaev compounds. The rapid onsetmore » of the field-induced correlated state implies the exchange interactions are delicately balanced, leading to strong frustration and a near degeneracy of different ground states.« less
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li3 N
NASA Astrophysics Data System (ADS)
Fix, M.; Atkinson, J. H.; Canfield, P. C.; del Barco, E.; Jesche, A.
2018-04-01
The magnetic properties of dilute Li2 (Li1 -xFex )N with x ˜0.001 are dominated by the spin of single, isolated Fe atoms. Below T =10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla reveals exceptionally sharp tunneling resonances. Li2 (Li1 -xFex )N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li 3 N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, M.; Atkinson, J. H.; Canfield, P. C.
Here, the magnetic properties of dilute Li 2(Li 1–xFe x)N with x~0.001 are dominated by the spin of single, isolated Fe atoms. Below T=10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla revealsmore » exceptionally sharp tunneling resonances. Li 2(Li 1–xFe x)N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.« less
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li 3 N
Fix, M.; Atkinson, J. H.; Canfield, P. C.; ...
2018-04-04
Here, the magnetic properties of dilute Li 2(Li 1–xFe x)N with x~0.001 are dominated by the spin of single, isolated Fe atoms. Below T=10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla revealsmore » exceptionally sharp tunneling resonances. Li 2(Li 1–xFe x)N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.« less
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li_{3}N.
Fix, M; Atkinson, J H; Canfield, P C; Del Barco, E; Jesche, A
2018-04-06
The magnetic properties of dilute Li_{2}(Li_{1-x}Fe_{x})N with x∼0.001 are dominated by the spin of single, isolated Fe atoms. Below T=10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla reveals exceptionally sharp tunneling resonances. Li_{2}(Li_{1-x}Fe_{x})N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.
Quantum Spin Glasses, Annealing and Computation
NASA Astrophysics Data System (ADS)
Chakrabarti, Bikas K.; Inoue, Jun-ichi; Tamura, Ryo; Tanaka, Shu
2017-05-01
List of tables; List of figures, Preface; 1. Introduction; Part I. Quantum Spin Glass, Annealing and Computation: 2. Classical spin models from ferromagnetic spin systems to spin glasses; 3. Simulated annealing; 4. Quantum spin glass; 5. Quantum dynamics; 6. Quantum annealing; Part II. Additional Notes: 7. Notes on adiabatic quantum computers; 8. Quantum information and quenching dynamics; 9. A brief historical note on the studies of quantum glass, annealing and computation.
Gapless Spin-Liquid Ground State in the S =1 /2 Kagome Antiferromagnet
NASA Astrophysics Data System (ADS)
Liao, H. J.; Xie, Z. Y.; Chen, J.; Liu, Z. Y.; Xie, H. D.; Huang, R. Z.; Normand, B.; Xiang, T.
2017-03-01
The defining problem in frustrated quantum magnetism, the ground state of the nearest-neighbor S =1 /2 antiferromagnetic Heisenberg model on the kagome lattice, has defied all theoretical and numerical methods employed to date. We apply the formalism of tensor-network states, specifically the method of projected entangled simplex states, which combines infinite system size with a correct accounting for multipartite entanglement. By studying the ground-state energy, the finite magnetic order appearing at finite tensor bond dimensions, and the effects of a next-nearest-neighbor coupling, we demonstrate that the ground state is a gapless spin liquid. We discuss the comparison with other numerical studies and the physical interpretation of this result.
Symmetric Topological Phases and Tensor Network States
NASA Astrophysics Data System (ADS)
Jiang, Shenghan
Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.
Topologically non-trivial electronic and magnetic states in doped copper Kagome lattices
NASA Astrophysics Data System (ADS)
Guterding, Daniel; Jeschke, Harald O.; Valenti, Roser
We present a theoretical investigation of doped copper kagome materials based on natural minerals Herbertsmithite [ZnCu3(OH)6Cl2] and Barlowite[Cu4(OH)6FBr]. Using ab-initio density functional theory calculations we estimate the stability of the hypothetical compounds against structural distortions and analyze their electronic and magnetic properties. We find that materials based on Herbertsmithite present an ideal playground for investigating the interplay of non-trivial band-topology and strong electronic correlation effects. In particular, we propose candidates for the Quantum Spin Hall effect at filling 4/3 and the Quantum Anomalous Hall effect at filling 2/3. For the Barlowite system we point out a route to realize a Quantum Spin Liquid. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49 and the National Science Foundation under Grant No. PHY11-25915.
Classification of trivial spin-1 tensor network states on a square lattice
NASA Astrophysics Data System (ADS)
Lee, Hyunyong; Han, Jung Hoon
2016-09-01
Classification of possible quantum spin liquid (QSL) states of interacting spin-1/2's in two dimensions has been a fascinating topic of condensed matter for decades, resulting in enormous progress in our understanding of low-dimensional quantum matter. By contrast, relatively little work exists on the identification, let alone classification, of QSL phases for spin-1 systems in dimensions higher than one. Employing the powerful ideas of tensor network theory and its classification, we develop general methods for writing QSL wave functions of spin-1 respecting all the lattice symmetries, spin rotation, and time reversal with trivial gauge structure on the square lattice. We find 25 distinct classes characterized by five binary quantum numbers. Several explicit constructions of such wave functions are given for bond dimensions D ranging from two to four, along with thorough numerical analyses to identify their physical characters. Both gapless and gapped states are found. The topological entanglement entropy of the gapped states is close to zero, indicative of topologically trivial states. In D =4 , several different tensors can be linearly combined to produce a family of states within the same symmetry class. A rich "phase diagram" can be worked out among the phases of these tensors, as well as the phase transitions among them. Among the states we identified in this putative phase diagram is the plaquette-ordered phase, gapped resonating valence bond phase, and a critical phase. A continuous transition separates the plaquette-ordered phase from the resonating valence bond phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang
In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less
Resonant optical spectroscopy and coherent control of C r4 + spin ensembles in SiC and GaN
NASA Astrophysics Data System (ADS)
Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; Bourassa, Alexandre; Son, N. T.; Janzén, Erik; Awschalom, David D.
2017-01-01
Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information and spintronic technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here, we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (C r4 + ) impurities in silicon carbide (SiC) and gallium nitride (GaN). Spin polarization is made possible by the narrow optical linewidths of these ensembles (<8.5 GHz), which are similar in magnitude to the ground state zero-field spin splitting energies of the ions at liquid helium temperatures. This allows us to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained with the defects' zero-phonon lines. These characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.
Investigation of the chiral antiferromagnetic Heisenberg model using projected entangled pair states
NASA Astrophysics Data System (ADS)
Poilblanc, Didier
2017-09-01
A simple spin-1/2 frustrated antiferromagnetic Heisenberg model (AFHM) on the square lattice—including chiral plaquette cyclic terms—was argued [A. E. B. Nielsen, G. Sierra, and J. I. Cirac, Nat. Commun. 4, 2864 (2013), 10.1038/ncomms3864] to host a bosonic Kalmeyer-Laughlin (KL) fractional quantum Hall ground state [V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987), 10.1103/PhysRevLett.59.2095]. Here, we construct generic families of chiral projected entangled pair states (chiral PEPS) with low bond dimension (D =3 ,4 ,5 ) which, upon optimization, provide better variational energies than the KL Ansatz. The optimal D =3 PEPS exhibits chiral edge modes described by the Wess-Zumino-Witten SU(2) 1 model, as expected for the KL spin liquid. However, we find evidence that, in contrast to the KL state, the PEPS spin liquids have power-law dimer-dimer correlations and exhibit a gossamer long-range tail in the spin-spin correlations. We conjecture that these features are genuine to local chiral AFHM on bipartite lattices.
S=2 quasi-one-dimensional spin waves in CrCl2
NASA Astrophysics Data System (ADS)
Stone, M. B.; Ehlers, G.; Granroth, G. E.
2013-09-01
We examine the magnetic excitation spectrum in the S=2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the Néel temperature and the ratio of the two largest exchange constants is Jc/Jb=9.1±2.2. However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase.
Statistics of Fractionalized Excitations through Threshold Spectroscopy.
Morampudi, Siddhardh C; Turner, Ari M; Pollmann, Frank; Wilczek, Frank
2017-06-02
We show that neutral anyonic excitations have a signature in spectroscopic measurements of materials: The low-energy onset of spectral functions near the threshold follows universal power laws with an exponent that depends only on the statistics of the anyons. This provides a route, using experimental techniques such as neutron scattering and tunneling spectroscopy, for detecting anyonic statistics in topologically ordered states such as gapped quantum spin liquids and hypothesized fractional Chern insulators. Our calculations also explain some recent theoretical results in spin systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yifeng; Urbano, Ricardo; Nicholas, Curro
2009-01-01
We report Knight shift experiments on the superconducting heavy electron material CeCoIn{sub 5} that allow one to track with some precision the behavior of the heavy electron Kondo liquid in the superconducting state with results in agreement with BCS theory. An analysis of the {sup 115}In nuclear quadrupole resonance (NQR) spin-lattice relaxation rate T{sub 1}{sup -1} measurements under pressure reveals the presence of 2d magnetic quantum critical fluctuations in the heavy electron component that are a promising candidate for the pairing mechanism in this material. Our results are consistent with an antiferromagnetic quantum critical point (QCP) located at slightly negativemore » pressure in CeCoIn{sub 5} and provide additional evidence for significant similarities between the heavy electron materials and the high T{sub c} cuprates.« less
Experimental boundaries of the quantum rotor induced polarization (QRIP) in liquid state NMR.
Icker, Maik; Fricke, Pascal; Grell, Toni; Hollenbach, Julia; Auer, Henry; Berger, Stefan
2013-12-01
The Haupt-effect is a rather seldom used hyperpolarization method. It is based on the interdependence between nuclear spin states and rotational states of nearly free rotating methyl groups having C3 symmetry. A sudden change in temperature from 4.2 K to room temperature by fast dissolution yields considerably enhanced (13)C and (1)H resonance signals. This phenomenon is now termed quantum rotor induced polarization. More than 40 substances have been studied by this approach in order to identify them as polarizable by the 'Haupt-effect in the liquid state'. Influencing factors have been analyzed systematically. It could be concluded that substances having a high tunneling frequency, which is due to a small and narrow potential barrier, are most likely to feature quantum rotor induced polarization-enhanced signals. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Ross, Kate
In the search for novel quantum states of matter, such as highly entangled Quantum Spin Liquids, ``geometrically frustrated'' magnetic lattices are essential for suppressing conventional magnetic order. In three dimensions, the pyrochlore lattice is the canonical frustrated geometry. Magnetic materials with pyrochlore structures have the potential to realize unusual phases such as ``quantum spin ice'', which is predicted to host emergent magnetic monopoles, electrons, and photons as its fundamental excitations. Even in pyrochlores that form long range ordered phases, this often occurs through unusual routes such as ``order by disorder'', in which the fluctuation spectrum dictates the preferred ordered state. The rare earth-based pyrochlore series R2Ti2O7 provides a fascinating variety of magnetic ground states. I will introduce the general anisotropic interaction Hamiltonian that has been successfully used to describe several materials in this series. Using inelastic neutron scattering, the relevant anisotropic interaction strengths can be extracted quantitatively. I will discuss this approach, and its application to two rare earth pyrochlore materials, Er2Ti2O7 and Yb2Ti<2O7, whose ground state properties have long been enigmatic. From these studies, ErTi2O7 and Yb2Ti2O7 have been suggested to be realizations of "quantum order by disorder" and "quantum spin ice", respectively. This research was supported by NSERC of Canada and the National Science Foundation.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
NASA Astrophysics Data System (ADS)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; Tsvelik, A. M.
2017-12-01
We present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, the Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.
Muon spin rotation study of spin dimers on a triangular lattice in Ba3 MRu2 O9
NASA Astrophysics Data System (ADS)
Ziat, Djamel; Verrier, Aimé; Quilliam, Jeffrey; Aczel, Adam; Sinclair, Ryan; Chen, Qiang; Zhou, Haidong
The family of hexagonal perovskites, Ba3 MA2 O9 has recently been proven to be fertile ground for the discovery of new, exotic magnetic phases, including several quantum spin liquid candidates. The 6H-perovskites can also accommodate spin dimers on a triangular lattice, as in the ruthenate materials Ba3MRu2O9. We will present measurements on materials containing M3 + (M = Y, La, Lu, In), which give rise to mixed valence Ru4.5 + ions wherein the orbital and charge degrees of freedom must also be considered. In particular, muon spin rotation (µSR) experiments, have allowed us to probe the nature of the magnetically ordered ground state of these materials at low temperatures.
Global constraints on Z2 fluxes in two different anisotropic limits of a hypernonagon Kitaev model
NASA Astrophysics Data System (ADS)
Kato, Yasuyuki; Kamiya, Yoshitomo; Nasu, Joji; Motome, Yukitoshi
2018-05-01
The Kitaev model is an exactly-soluble quantum spin model, whose ground state provides a canonical example of a quantum spin liquid. Spin excitations from the ground state are fractionalized into emergent matter fermions and Z2 fluxes. The Z2 flux excitation is pointlike in two dimensions, while it comprises a closed loop in three dimensions because of the local constraint for each closed volume. In addition, the fluxes obey global constraints involving (semi)macroscopic number of fluxes. We here investigate such global constraints in the Kitaev model on a three-dimensional lattice composed of nine-site elementary loops, dubbed the hypernonagon lattice, whose ground state is a chiral spin liquid. We consider two different anisotropic limits of the hypernonagon Kitaev model where the low-energy effective models are described solely by the Z2 fluxes. We show that there are two kinds of global constraints in the model defined on a three-dimensional torus, namely, surface and volume constraints: the surface constraint is imposed on the even-odd parity of the total number of fluxes threading a two-dimensional slice of the system, while the volume constraint is for the even-odd parity of the number of the fluxes through specific plaquettes whose total number is proportional to the system volume. In the two anisotropic limits, therefore, the elementary excitation of Z2 fluxes occurs in a pair of closed loops so as to satisfy both two global constraints as well as the local constraints.
Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noiri, A.; Yoneda, J.; Nakajima, T.
2016-04-11
Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantummore » dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.« less
Ultrafast optical control of individual quantum dot spin qubits.
De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa
2013-09-01
Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.
Mechanism of a strange metal state near a heavy-fermion quantum critical point
NASA Astrophysics Data System (ADS)
Chang, Yung-Yeh; Paschen, Silke; Chung, Chung-Hou
2018-01-01
Unconventional metallic or strange metal (SM) behavior with non-Fermi liquid (NFL) properties, generic features of heavy-fermion systems near quantum phase transitions, are yet to be understood microscopically. A paradigmatic example is the magnetic field-tuned quantum critical heavy-fermion metal YbRh2Si2 , revealing a possible SM state over a finite range of fields at low temperatures when substituted with Ge. Above a critical field, the SM state gives way to a heavy Fermi liquid with Kondo correlation. The NFL behavior, most notably a linear-in-temperature electrical resistivity and a logarithmic-in-temperature followed by a power-law singularity in the specific heat coefficient at low temperatures, still lacks a definite understanding. We propose the following mechanism as origin of the experimentally observed behavior: a quasi-2 d fluctuating short-ranged resonating-valence-bond spin liquid competing with the Kondo correlation. Applying a field-theoretical renormalization group analysis on an effective field theory beyond a large-N approach to an antiferromagnetic Kondo-Heisenberg model, we identify the critical point and explain remarkably well the SM behavior. Our theory goes beyond the well-established framework of quantum phase transitions and serves as a basis to address open issues in quantum critical heavy-fermion systems.
Memory-built-in quantum cloning in a hybrid solid-state spin register
NASA Astrophysics Data System (ADS)
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-07-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Memory-built-in quantum cloning in a hybrid solid-state spin register.
Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M
2015-07-16
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Quantum spin transistor with a Heisenberg spin chain
Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.
2016-01-01
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438
Quantum spin transistor with a Heisenberg spin chain.
Marchukov, O V; Volosniev, A G; Valiente, M; Petrosyan, D; Zinner, N T
2016-10-10
Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.
Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2.
Dong, J K; Zhou, S Y; Guan, T Y; Zhang, H; Dai, Y F; Qiu, X; Wang, X F; He, Y; Chen, X H; Li, S Y
2010-02-26
The in-plane resistivity rho and thermal conductivity kappa of the FeAs-based superconductor KFe2As2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior rho(T) approximately T{1.5} at H{c{2}}=5 T, and the development of a Fermi liquid state with rho(T) approximately T{2} when further increasing the field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field H{c{2}}. In zero field, there is a large residual linear term kappa{0}/T, and the field dependence of kappa_{0}/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2As2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
Optically programmable electron spin memory using semiconductor quantum dots.
Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J
2004-11-04
The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.
Versatile microwave-driven trapped ion spin system for quantum information processing
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof
2016-01-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field
NASA Astrophysics Data System (ADS)
Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser
2018-02-01
Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.
Many-body effects in electron liquids with Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Simion, George E.
The main topic of the present thesis is represented by the many-body effects which characterize the physical behavior of an electron liquid in various realizations. We begin by studying the problem of the response of an otherwise homogeneous electron liquid to the potential of an impurity embedded in its bulk. The most dramatic consequence of this perturbation is the existence of so called Friedel density oscillations. We present calculations of their amplitude valid in two as well as in three dimensions. The second problem we will discuss is that of the correlation effects in a three dimensional electron liquid in the metallic density regime. A number of quasiparticle properties are evaluated: the electron self-energy, the quasiparticle effective mass and the renormalization constant. We also present an analysis of the effective Lande g-factor as well as the compressibility. The effects of the Coulomb interactions beyond the random phase approximation have been treated by means of an approach based on the many-body local field factors theory and by utilizing the latest numerical results of Quantum Monte Carlo numerical simulations. The final chapter includes the results of our extensive work on various aspects regarding the two dimensional Fermi liquid in the presence of linear Rashba spin-orbit coupling. By using a number of many-body techniques, we have studied the interplay between spin-orbit coupling and electron-electron interaction. After proving an extension to the famous Overhauser Hartree-Fock instability theorem, a considerable amount of work will be presented on the problem of the density and spin response functions. For the study of the spin response, we will present the results of extensive numerical calculations based on the time dependent mean field theory approach.
Bending strain engineering in quantum spin hall system for controlling spin currents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Bing; Jin, Kyung-Hwan; Cui, Bin
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less
Bending strain engineering in quantum spin hall system for controlling spin currents
Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; ...
2017-06-16
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less
Shimizu, Kaoru; Tokura, Yasuhiro
2015-12-01
This paper presents a theoretical framework for analyzing the quantum fluctuation properties of a quantum spin chain subject to a quantum phase transition. We can quantify the fluctuation properties by examining the correlation between the fluctuations of two neighboring spins subject to the quantum uncertainty. To do this, we first compute the reduced density matrix ρ of the spin pair from the ground state |Ψ⟩ of a spin chain, and then identify the quantum correlation part ρ(q) embedded in ρ. If the spin chain is translationally symmetric and characterized by a nearest-neighbor two-body spin interaction, we can determine uniquely the form of ρ(q) as W|Φ〉〈Φ| with the weight W ≤1, and quantify the fluctuation properties using the two-spin entangled state |Φ〉. We demonstrate the framework for a transverse-field quantum Ising spin chain and indicate its validity for more general spin chain models.
Role of spin-orbit coupling in the Kugel-Khomskii model on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji
2018-03-01
We study the effective spin-orbital model for honeycomb-layered transition metal compounds, applying the second-order perturbation theory to the three-orbital Hubbard model with the anisotropic hoppings. This model is reduced to the Kitaev model in the strong spin-orbit coupling limit. Combining the cluster mean-field approximations with the exact diagonalization, we treat the Kugel-Khomskii type superexchange interaction and spin-orbit coupling on an equal footing to discuss ground-state properties. We find that a zigzag ordered state is realized in the model within nearest-neighbor interactions. We clarify how the ordered state competes with the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit. Thermodynamic properties are also addressed. The present paper should provide another route to account for the Kitaev-based magnetic properties in candidate materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H.; Jang, H.; Kang, B. Y.
The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration ( i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the TbB 4 compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon coolingmore » down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Here, our results and their implications would further shed a light on the search for possible realization of QSL.« less
Huang, H.; Jang, H.; Kang, B. Y.; ...
2018-05-05
The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration ( i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the TbB 4 compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon coolingmore » down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Here, our results and their implications would further shed a light on the search for possible realization of QSL.« less
Memory-built-in quantum cloning in a hybrid solid-state spin register
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-01-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science. PMID:26178617
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Incoherent vs. coherent behavior in the normal state of copper oxide superconductors
NASA Technical Reports Server (NTRS)
Tesanovic, Zlatko
1991-01-01
The self-consistent quantum fluctuations around the mean-field Hartree-Fock state of the Hubbard model provide a very good description of the ground state and low temperature properties of a 2-D itinerant antiferromagnet. Very good agreement with numerical calculations and experimental data is obtained by including the one- and two-loop spin wave corrections to various physical quantities. In particular, the destruction of the long-range order above the Neel temperature can be understood as a spontaneous generation of a length-scale epsilon(T), which should be identified as the spin correlation length. For finite doping, the question of the Hartree-Fock starting point becomes a more complex one since an extra hole tends to self-trap in antiferromagnetic background. Such quantum defects in an underlying antiferromagnetic state can be spin-bags or vortex-like structures and tend to suppress the long-range order. If motion of the holes occurs on a time-scale shorter than the one associated with the motion of these quantum defects of a spin background, one obtains several important empirical features of the normal state of CuO superconductors like linear T-dependence of resistivity, the cusp in the tunneling density of states, etc. As opposed to a familiar Fermi-liquid behavior, the phenomenology of the above system is dominated by a large incoherent piece of a single hole propagator, resulting in many unusual normal state properties.
Quasistatic antiferromagnetism in the quantum wells of SmTiO3/SrTiO3 heterostructures
NASA Astrophysics Data System (ADS)
Need, Ryan F.; Marshall, Patrick B.; Kenney, Eric; Suter, Andreas; Prokscha, Thomas; Salman, Zaher; Kirby, Brian J.; Stemmer, Susanne; Graf, Michael J.; Wilson, Stephen D.
2018-03-01
High carrier density quantum wells embedded within a Mott insulating matrix present a rich arena for exploring unconventional electronic phase behavior ranging from non-Fermi-liquid transport and signatures of quantum criticality to pseudogap formation. Probing the proposed connection between unconventional magnetotransport and incipient electronic order within these quantum wells has however remained an enduring challenge due to the ultra-thin layer thicknesses required. Here we address this challenge by exploring the magnetic properties of high-density SrTiO3 quantum wells embedded within the antiferromagnetic Mott insulator SmTiO3 via muon spin relaxation and polarized neutron reflectometry measurements. The one electron per planar unit cell acquired by the nominal d0 band insulator SrTiO3 when embedded within a d1 Mott SmTiO3 matrix exhibits slow magnetic fluctuations that begin to freeze into a quasistatic spin state below a critical temperature T*. The appearance of this quasistatic well magnetism coincides with the previously reported opening of a pseudogap in the tunneling spectra of high carrier density wells inside this film architecture. Our data suggest a common origin of the pseudogap phase behavior in this quantum critical oxide heterostructure with those observed in bulk Mott materials close to an antiferromagnetic instability.
Adiabatic quantum computing with spin qubits hosted by molecules.
Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji
2015-01-28
A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.
NASA Astrophysics Data System (ADS)
Garbacz, Piotr
2018-05-01
Results of quantum mechanical computations of the antisymmetric part of the indirect spin-spin coupling tensor, ?, performed using the coupled-cluster method, the second-order polarisation propagator approximation, and the density functional theory for 25 molecules and nearly 100 spin-spin couplings are reported. These results are used for an estimation of the magnitude of the recently proposed liquid-state nuclear magnetic resonance chirality-sensitive effect, which allows to determine the molecular chirality directly, i.e. without the need for the application of any chiral agent. The following were found: (i) the antisymmetry J⋆ is usually larger for the coupling between spins separated by two chemical bonds in comparison with the coupling through one bond, (ii) promising samples are those which contain fluorine, and (iii) the antisymmetry of the spin-spin coupling tensor is of the order of a few hertz for commercially available chemical compounds. Therefore, the relevant property of the experiment, the pseudoscalar Jc, for them is of the order of 1 nHz m/V.
Circuit quantum electrodynamics with a spin qubit.
Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R
2012-10-18
Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.
Dynamical spin structure factors of α-RuCl3
NASA Astrophysics Data System (ADS)
Suzuki, Takafumi; Suga, Sei-ichiro
2018-03-01
Honeycomb-lattice magnet α-RuCl3 is considered to be a potential candidate of realizing Kitaev spin liquid, although this material undergoes a phase transition to the zigzag magnetically ordered state at T N ∼ 7 K. Quite recently, inelastic neutron-scattering experiments using single crystal α-RuCl3 have unveiled characteristic dynamical properties. We calculate dynamical spin structure factors of three ab-initio models for α-RuCl3 with an exact numerical diagonalization method. We also calculate temperature dependences of the specific heat by employing thermal pure quantum states. We compare our numerical results with the experiments and discuss characteristics obtained by using three ab-initio models.
NASA Astrophysics Data System (ADS)
Hou, Y. S.; Xiang, H. J.; Gong, X. G.
2017-08-01
Recent experiments reveal that the honeycomb ruthenium trichloride α -RuC l3 is a prime candidate of the Kitaev quantum spin liquid (QSL). However, there is no theoretical model which can properly describe its experimental dynamical response due to the lack of a full understanding of its magnetic interactions. Here, we propose a general scheme to calculate the magnetic interactions in systems (e.g., α -RuC l3 ) with nonnegligible orbital moments by constraining the directions of orbital moments. With this scheme, we put forward a minimal J1-K1-Γ1-J3-K3 model for α -RuC l3 and find that: (I) The third nearest neighbor (NN) antiferromagnetic Heisenberg interaction J3 stabilizes the zigzag antiferromagnetic order; (II) The NN symmetric off-diagonal exchange Γ1 plays a pivotal role in determining the preferred direction of magnetic moments and generating the spin wave gap. An exact diagonalization study on this model shows that the Kitaev QSL can be realized by suppressing the NN symmetric off-diagonal exchange Γ1 and the third NN Heisenberg interaction J3. Thus, we not only propose a powerful general scheme for investigating the intriguing magnetism of Jeff=1 /2 magnets, but also point out future directions for realizing the Kitaev QSL in the honeycomb ruthenium trichloride α -RuC l3 .
Dynamics of Topological Excitations in a Model Quantum Spin Ice
NASA Astrophysics Data System (ADS)
Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang
2018-04-01
We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.
The classical and quantum dynamics of molecular spins on graphene.
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
The classical and quantum dynamics of molecular spins on graphene
NASA Astrophysics Data System (ADS)
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.
Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo
2017-09-22
Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.
Resonant optical spectroscopy and coherent control of C r 4 + spin ensembles in SiC and GaN
Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; ...
2017-01-15
Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr 4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). Polarization is made possible by the narrow optical linewidths of these ensembles (< 8.5 GHz), which are similar in magnitude to the ground state zero-field spinmore » splitting energies of the ions at liquid helium temperatures. We therefore are able to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that > 73% of the overall optical emission is contained with the defects’ zero-phonon lines. Lastly, these characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.« less
Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato
2008-10-01
Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of Josephson effect in diffusive d-wave junctions / T. Yokoyama. Quantum dissipation due to the zero energy bound states in high-T[symbol] superconductor junctions / Shiro Kawabata. Spin-polarized heat transport in ferromagnet/unconventional superconductor junctions / T. Yokoyama. Little-Parks oscillations in chiral p-wave superconducting rings / Mitsuaki Takigawa. Theoretical study of synergy effect between proximity effect and Andreev interface resonant states in triplet p-wave superconductors / Yasunari Tanuma. Theory of proximity effect in unconventional superconductor junctions / Y. Tanaka -- Quantum information. Analyzing the effectiveness of the quantum repeater / Kenichiro Furuta. Architecture-dependent execution time of Shor's algorithm / Rodney Van Meter -- Quantum dots and Kondo effects. Coulomb blockade properties of 4-gated quantum dot / Shinichi Amaha. Order-N electronic structure calculation of n-type GaAs quantum dots / Shintaro Nomura. Transport through double-dots coupled to normal and superconducting leads / Yoichi Tanaka. A study of the quantum dot in application to terahertz single photon counting / Vladimir Antonov. Electron transport through laterally coupled double quantum dots / T. Kubo. Dephasing in Kondo systems: comparison between theory and experiment / F. Mallet. Kondo effect in quantum dots coupled with noncollinear ferromagnetic leads / Daisuke Matsubayashi. Non-crossing approximation study of multi-orbital Kondo effect in quantum dot systems / Tomoko Kita. Theoretical study of electronic states and spin operation in coupled quantum dots / Mikio Eto. Spin correlation in a double quantum dot-quantum wire coupled system / S. Sasaki. Kondo-assisted transport through a multiorbital quantum dot / Rui Sakano. Spin decay in a quantum dot coupled to a quantum point contact / Massoud Borhani -- Quantum wires, low-dimensional electrons. Control of the electron density and electric field with front and back gates / Masumi Yamaguchi. Effect of the array distance on the magnetization configuration of submicron-sized ferromagnetic rings / Tetsuya Miyawaki. A wide GaAs/GaAlAs quantum well simultaneously containing two dimensional electrons and holes / Ane Jensen. Simulation of the photon-spin quantum state transfer process / Yoshiaki Rikitake. Magnetotransport in two-dimensional electron gases on cylindrical surface / Friedland Klaus-Juergen. Full counting statistics for a single-electron transistor at intermediate conductance / Yasuhiro Utsumi. Creation of spin-polarized current using quantum point contacts and its detection / Mikio Eto. Density dependent electron effective mass in a back-gated quantum well / S. Nomura. The supersymmetric sigma formula and metal-insulator transition in diluted magnetic semiconductors / I. Kanazawa. Spin-photovoltaic effect in quantum wires / A. Fedorov -- Quantum interference. Nonequilibrium transport in Aharonov-Bohm interferometer with electron-phonon interaction / Akiko Ueda. Fano resonance and its breakdown in AB ring embedded with a molecule / Shigeo Fujimoto, Yuhei Natsume. Quantum resonance above a barrier in the presence of dissipation / Kohkichi Konno. Ensemble averaging in metallic quantum networks / F. Mallet -- Coherence and order in exotic materials. Progress towards an electronic array on liquid helium / David Rees. Measuring noise and cross correlations at high frequencies in nanophysics / T. Martin. Single wall carbon nanotube weak links / K. Grove-Rasmussen. Optical preparation of nuclear spins coupled to a localized electron spin / Guido Burkard. Topological effects in charge density wave dynamics / Toru Matsuura. Studies on nanoscale charge-density-wave systems: fabrication technique and transport phenomena / Katsuhiko Inagaki. Anisotropic behavior of hysteresis induced by the in-plane field in the v = 2/3 quantum Hall state / Kazuki Iwata. Phase diagram of the v = 2 bilayer quantum Hall state / Akira Fukuda -- Trapped ions (special talk). Quantum computation with trapped ions / Hartmut Häffner.
Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.
Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D
2009-10-09
Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.
Model of chiral spin liquids with Abelian and non-Abelian topological phases
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio; ...
2017-12-15
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Model of chiral spin liquids with Abelian and non-Abelian topological phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jyong-Hao; Mudry, Christopher; Chamon, Claudio
In this article, we present a two-dimensional lattice model for quantum spin-1/2 for which the low-energy limit is governed by four flavors of strongly interacting Majorana fermions. We study this low-energy effective theory using two alternative approaches. The first consists of a mean-field approximation. The second consists of a random phase approximation (RPA) for the single-particle Green's functions of the Majorana fermions built from their exact forms in a certain one-dimensional limit. The resulting phase diagram consists of two competing chiral phases, one with Abelian and the other with non-Abelian topological order, separated by a continuous phase transition. Remarkably, themore » Majorana fermions propagate in the two-dimensional bulk, as in the Kitaev model for a spin liquid on the honeycomb lattice. We identify the vison fields, which are mobile (they are static in the Kitaev model) domain walls propagating along only one of the two space directions.« less
Storing quantum information in spins and high-sensitivity ESR
NASA Astrophysics Data System (ADS)
Morton, John J. L.; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.
Storing quantum information in spins and high-sensitivity ESR.
Morton, John J L; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.
Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na 2IrO 3
Hwan Chun, Sae; Kim, Jong-Woo; Kim, Jungho; ...
2015-05-11
We show that heisenberg interactions are ubiquitous in magnetic materials and play a central role in modelling and designing quantum magnets. Bond-directional interactions offer a novel alternative to Heisenberg exchange and provide the building blocks of the Kitaev model, which has a quantum spin liquid as its exact ground state. Honeycomb iridates, A 2IrO 3 (A = Na, Li), offer potential realizations of the Kitaev magnetic exchange coupling, and their reported magnetic behaviour may be interpreted within the Kitaev framework. However, the extent of their relevance to the Kitaev model remains unclear, as evidence for bond-directional interactions has so farmore » been indirect. Here we present direct evidence for dominant bond-directional interactions in antiferromagnetic Na 2IrO 3 and show that they lead to strong magnetic frustration. Diffuse magnetic X-ray scattering reveals broken spin-rotational symmetry even above the Néel temperature, with the three spin components exhibiting short-range correlations along distinct crystallographic directions. Lastly, this spin- and real-space entanglement directly uncovers the bond-directional nature of these interactions, thus providing a direct connection between honeycomb iridates and Kitaev physics.« less
Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
Press, David; Ladd, Thaddeus D; Zhang, Bingyang; Yamamoto, Yoshihisa
2008-11-13
A basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. For qubits based on electron spin, a universal single-qubit gate is realized by a rotation of the spin by any angle about an arbitrary axis. Driven, coherent Rabi oscillations between two spin states can be used to demonstrate control of the rotation angle. Ramsey interference, produced by two coherent spin rotations separated by a variable time delay, demonstrates control over the axis of rotation. Full quantum control of an electron spin in a quantum dot has previously been demonstrated using resonant radio-frequency pulses that require many spin precession periods. However, optical manipulation of the spin allows quantum control on a picosecond or femtosecond timescale, permitting an arbitrary rotation to be completed within one spin precession period. Recent work in optical single-spin control has demonstrated the initialization of a spin state in a quantum dot, as well as the ultrafast manipulation of coherence in a largely unpolarized single-spin state. Here we demonstrate complete coherent control over an initialized electron spin state in a quantum dot using picosecond optical pulses. First we vary the intensity of a single optical pulse to observe over six Rabi oscillations between the two spin states; then we apply two sequential pulses to observe high-contrast Ramsey interference. Such a two-pulse sequence realizes an arbitrary single-qubit gate completed on a picosecond timescale. Along with the spin initialization and final projective measurement of the spin state, these results demonstrate a complete set of all-optical single-qubit operations.
Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min
2016-09-01
We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.
Memory-built-in quantum cloning in a hybrid solid-state spin register
NASA Astrophysics Data System (ADS)
Wang, Weibin; Zu, Chong; He, Li; Zhang, Wengang; Duan, Luming
2015-05-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude, and making it an ideal memory qubit. Our experiment is based on control of an individual nitrogen vacancy (NV) center in the diamond, which is a diamond defect that attracts strong interest in recent years with great potential for implementation of quantum information protocols.
Broadband excitation in nuclear magnetic resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tycko, Robert
1984-10-01
Theoretical methods for designing sequences of radio frequency (rf) radiation pulses for broadband excitation of spin systems in nuclear magnetic resonance (NMR) are described. The sequences excite spins uniformly over large ranges of resonant frequencies arising from static magnetic field inhomogeneity, chemical shift differences, or spin couplings, or over large ranges of rf field amplitudes. Specific sequences for creating a population inversion or transverse magnetization are derived and demonstrated experimentally in liquid and solid state NMR. One approach to broadband excitation is based on principles of coherent averaging theory. A general formalism for deriving pulse sequences is given, along withmore » computational methods for specific cases. This approach leads to sequences that produce strictly constant transformations of a spin system. The importance of this feature in NMR applications is discussed. A second approach to broadband excitation makes use of iterative schemes, i.e. sets of operations that are applied repetitively to a given initial pulse sequences, generating a series of increasingly complex sequences with increasingly desirable properties. A general mathematical framework for analyzing iterative schemes is developed. An iterative scheme is treated as a function that acts on a space of operators corresponding to the transformations produced by all possible pulse sequences. The fixed points of the function and the stability of the fixed points are shown to determine the essential behavior of the scheme. Iterative schemes for broadband population inversion are treated in detail. Algebraic and numerical methods for performing the mathematical analysis are presented. Two additional topics are treated. The first is the construction of sequences for uniform excitation of double-quantum coherence and for uniform polarization transfer over a range of spin couplings. Double-quantum excitation sequences are demonstrated in a liquid crystal system. The second additional topic is the construction of iterative schemes for narrowband population inversion. The use of sequences that invert spin populations only over a narrow range of rf field amplitudes to spatially localize NMR signals in an rf field gradient is discussed.« less
Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline α -RuCl3
NASA Astrophysics Data System (ADS)
Ran, Kejing; Wang, Jinghui; Wang, Wei; Dong, Zhao-Yang; Ren, Xiao; Bao, Song; Li, Shichao; Ma, Zhen; Gan, Yuan; Zhang, Youtian; Park, J. T.; Deng, Guochu; Danilkin, S.; Yu, Shun-Li; Li, Jian-Xin; Wen, Jinsheng
2017-03-01
Kitaev interactions underlying a quantum spin liquid have long been sought, but experimental data from which their strengths can be determined directly, are still lacking. Here, by carrying out inelastic neutron scattering measurements on high-quality single crystals of α -RuCl3 , we observe spin-wave spectra with a gap of ˜2 meV around the M point of the two-dimensional Brillouin zone. We derive an effective-spin model in the strong-coupling limit based on energy bands obtained from first-principles calculations, and find that the anisotropic Kitaev interaction K term and the isotropic antiferromagnetic off-diagonal exchange interaction Γ term are significantly larger than the Heisenberg exchange coupling J term. Our experimental data can be well fit using an effective-spin model with K =-6.8 meV and Γ =9.5 meV . These results demonstrate explicitly that Kitaev physics is realized in real materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.
Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less
NASA Astrophysics Data System (ADS)
Roy, Bitan; Foster, Matthew S.
2018-01-01
We compute the effects of generic short-range interactions on gapless electrons residing at the quantum critical point separating a two-dimensional Dirac semimetal and a symmetry-preserving band insulator. The electronic dispersion at this critical point is anisotropic (Ek=±√{v2kx2+b2ky2 n } with n =2 ), which results in unconventional scaling of thermodynamic and transport quantities. Because of the vanishing density of states [ϱ (E )˜|E |1 /n ], this anisotropic semimetal (ASM) is stable against weak short-range interactions. However, for stronger interactions, the direct Dirac-semimetal to band-insulator transition can either (i) become a fluctuation-driven first-order transition (although unlikely in a particular microscopic model considered here, the anisotropic honeycomb lattice extended Hubbard model) or (ii) get avoided by an intervening broken-symmetry phase. We perform a controlled renormalization group analysis with the small parameter ɛ =1 /n , augmented with a 1 /n expansion (parametrically suppressing quantum fluctuations in the higher dimension) by perturbing away from the one-dimensional limit, realized by setting ɛ =0 and n →∞ . We identify charge density wave (CDW), antiferromagnet (AFM), and singlet s -wave superconductivity as the three dominant candidates for broken symmetry. The onset of any such order at strong coupling (˜ɛ ) takes place through a continuous quantum phase transition across an interacting multicritical point, where the ordered phase, band insulator, Dirac, and anisotropic semimetals meet. We also present the phase diagram of an extended Hubbard model for the ASM, obtained via the controlled deformation of its counterpart in one dimension. The latter displays spin-charge separation and instabilities to CDW, spin density wave, and Luther-Emery liquid phases at arbitrarily weak coupling. The spin density wave and Luther-Emery liquid phases deform into pseudospin SU(2)-symmetric quantum critical points separating the ASM from the AFM and superconducting orders, respectively. Our phase diagram shows an intriguing interplay among CDW, AFM, and s -wave paired states that can be germane for a uniaxially strained optical honeycomb lattice for ultracold fermion atoms, or the organic compound α -(BEDT -TTF )2I3 .
NASA Astrophysics Data System (ADS)
Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.
2018-01-01
The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.
The classical and quantum dynamics of molecular spins on graphene
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2015-01-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019
A DMFT+CTQMC Investigation of Strange Metallicity in Local Quantum Critical Scenario
NASA Astrophysics Data System (ADS)
Acharya, Swagata; Laad, M. S.; Taraphder, A.
2016-10-01
“Strange” metallicity is now a pseudonym for a novel metallic state exhibiting anomalous infra-red (branch-cut) continuum features in one- and two-particle responses. Here, we employ dynamical mean-field theory (DMFT) using low-temperature continuous-time- quantum Monte-Carlo (CTQMC) solver for an extended periodic Anderson model (EPAM) model to investigate unusual magnetic fluctuations in the strange metal. We show how extinction of Landau quasiparticles in the orbital selective Mott phase (OSMP) leads to (i) qualitative explication of strange transport features and (ii) anomalous quantum critical magnetic fluctuations due to critical liquid-like features in dynamical spin fluctuations, in excellent accord with data in some f-electron systems.
Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory.
Jobez, Pierre; Laplane, Cyril; Timoney, Nuala; Gisin, Nicolas; Ferrier, Alban; Goldner, Philippe; Afzelius, Mikael
2015-06-12
Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.
Angle-resolved molecular beam scattering of NO at the gas-liquid interface.
Zutz, Amelia; Nesbitt, David J
2017-08-07
This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO ( 2 Π 1/2 , J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf 2 N], squalane, and PFPE) at θ inc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θ s = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [E inc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θ s ) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θ s ), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (T elec < T rot < T S ) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [E inc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θ s . Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θ s ⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.
Angle-resolved molecular beam scattering of NO at the gas-liquid interface
NASA Astrophysics Data System (ADS)
Zutz, Amelia; Nesbitt, David J.
2017-08-01
This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO (2 Π 1/2, J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf2N], squalane, and PFPE) at θinc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θs = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [Einc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θs) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θs), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (Telec < Trot < TS) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [Einc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θs. Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θs⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.
Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2
2015-12-15
quantum dots (SAQD) in Schottky diodes . Based on spins in these dots, a scalable architecture has been proposed [Adv. in Physics, 59, 703 (2010)] by us...housed in two coupled quantum dots with tunneling between them, as described above, may not be scalable but can serve as a node in a quantum network. The... tunneling -coupled two-electron spin ground states in the vertically coupled quantum dots for “universal computation” two spin qubits within the universe of
Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator
NASA Astrophysics Data System (ADS)
Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski
2014-07-01
The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground-state spin. The nitrogen-vacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 × 10-6 strain Hz-1/2. Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime.
A spin filter transistor made of topological Weyl semimetal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhangsheng; Wang, Maoji; Wu, Jiansheng, E-mail: wujs@sustc.edu.cn
2015-09-07
Topological boundary states (TBSs) in Weyl semimetal (WSM) thin film can induce tunneling. Such TBSs are spin polarized inducing spin-polarized current, which can be used to build a spin-filter transistor (SFT) in spintronics. The WSM thin film can be viewed as a series of decoupled quantum anomalous Hall insulator (QAHI) wires connected in parallel, so compared with the proposed SFT made of QAHI nanowire, this SFT has a broader working energy region and easier to be manipulated. And within a narrow region outside this energy domain, the 2D WSM is with very low conductance, so it makes a good on/offmore » switch device with controllable chemical potential induced by liquid ion gate. We also construct a loop device made of 2D WSM with inserted controllable flux to control the polarized current.« less
Quantum approach of mesoscopic magnet dynamics with spin transfer torque
NASA Astrophysics Data System (ADS)
Wang, Yong; Sham, L. J.
2013-05-01
We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.
Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots.
Takahashi, R; Kono, K; Tarucha, S; Ono, K
2011-07-08
We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.
Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.
De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2012-11-15
Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.
Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons
NASA Astrophysics Data System (ADS)
Koop, Cornelie; Wessel, Stefan
2017-10-01
We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.
Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling
NASA Astrophysics Data System (ADS)
Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu
2018-04-01
In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.
Chemical pressure effects on magnetism in the quantum spin liquid candidates Yb2X2O7 (X =Sn, Ti, Ge)
NASA Astrophysics Data System (ADS)
Dun, Z. L.; Lee, M.; Choi, E. S.; Hallas, A. M.; Wiebe, C. R.; Gardner, J. S.; Arrighi, E.; Freitas, R. S.; Arevalo-Lopez, A. M.; Attfield, J. P.; Zhou, H. D.; Cheng, J. G.
2014-02-01
The linear and nonlinear ac susceptibility measurements of Yb-pyrochlores, Yb2X2O7 (X =Sn, Ti, and Ge), show transitions with a ferromagnetic nature at 0.13 and 0.25 K for Yb2Sn2O7 and Yb2Ti2O7, respectively, and an antiferromagnetic ordering at 0.62 K for Yb2Ge2O7. These systematical results (i) provided information about the nature of the unconventional magnetic ground state in Yb2Ti2O7; (ii) realized a distinct antiferromagnetic ordering state in Yb2Ge2O7; and (iii) demonstrated that the application of chemical pressure through the series of Yb-pyrochlores can efficiently perturb the fragile quantum spin fluctuations of the Yb3+ ions and lead to very different magnetic ground states.
Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals
NASA Astrophysics Data System (ADS)
Feldmeier, Johannes; Huber, Sebastian; Punk, Matthias
2018-05-01
We present an exact ground state solution of a quantum dimer model introduced by Punk, Allais, and Sachdev [Quantum dimer model for the pseudogap metal, Proc. Natl. Acad. Sci. U.S.A. 112, 9552 (2015)., 10.1073/pnas.1512206112], which features ordinary bosonic spin-singlet dimers as well as fermionic dimers that can be viewed as bound states of spinons and holons in a hole-doped resonating valence bond liquid. Interestingly, this model captures several essential properties of the metallic pseudogap phase in high-Tc cuprate superconductors. We identify a line in parameter space where the exact ground state wave functions can be constructed at an arbitrary density of fermionic dimers. At this exactly solvable line the ground state has a huge degeneracy, which can be interpreted as a flat band of fermionic excitations. Perturbing around the exactly solvable line, this degeneracy is lifted and the ground state is a fractionalized Fermi liquid with a small pocket Fermi surface in the low doping limit.
Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K.
2016-07-25
The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots.more » This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.« less
Fermionic Spinon Theory of Square Lattice Spin Liquids near the Néel State
NASA Astrophysics Data System (ADS)
Thomson, Alex; Sachdev, Subir
2018-01-01
Quantum fluctuations of the Néel state of the square lattice antiferromagnet are usually described by a CP1 theory of bosonic spinons coupled to a U(1) gauge field, and with a global SU(2) spin rotation symmetry. Such a theory also has a confining phase with valence bond solid (VBS) order, and upon including spin-singlet charge-2 Higgs fields, deconfined phases with Z2 topological order possibly intertwined with discrete broken global symmetries. We present dual theories of the same phases starting from a mean-field theory of fermionic spinons moving in π flux in each square lattice plaquette. Fluctuations about this π -flux state are described by (2 +1 )-dimensional quantum chromodynamics (QCD3 ) with a SU(2) gauge group and Nf=2 flavors of massless Dirac fermions. It has recently been argued by Wang et al. [Deconfined Quantum Critical Points: Symmetries and Dualities, Phys. Rev. X 7, 031051 (2017)., 10.1103/PhysRevX.7.031051] that this QCD3 theory describes the Néel-VBS quantum phase transition. We introduce adjoint Higgs fields in QCD3 and obtain fermionic dual descriptions of the phases with Z2 topological order obtained earlier using the bosonic CP1 theory. We also present a fermionic spinon derivation of the monopole Berry phases in the U(1) gauge theory of the VBS state. The global phase diagram of these phases contains multicritical points, and our results imply new boson-fermion dualities between critical gauge theories of these points.
Fine structure and optical pumping of spins in individual semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.
2008-11-01
We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.
Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru
Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.
Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon
2015-01-01
HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL...SILICON SPIN QUBIT TO A PHOTON 5a. CONTRACT NUMBER FA8750-12-2-0296 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason R. Petta...architectures. 15. SUBJECT TERMS Quantum Computing, Quantum Hybrid Circuits, Quantum Electrodynamics, Coupling a Single Silicon Spin Qubit to a Photon
Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates
Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.; ...
2017-08-01
Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less
NASA Astrophysics Data System (ADS)
Fu, Xi; Zhou, Guang-Hui
2009-02-01
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density js,xiT and js,yiT (i = x, y, z). We find that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level as js,xxT and js,yyT. We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits
2009-04-29
bulk material and matches that in quantum wells. While these simple linear relationships hold for spin-polarized light-emitting diodes (spin-LEDs...temperature. The quantum efficiency and hence r| increases with decreasing temperature. The individual circuit elements, 33 therefore, exhibit the...Injection, Threshold Reduction and Output Circular Polarization Modulation in Quantum Well and Quantum Dot Semiconductor Spin Polarized Lasers working
Quantum Entanglement of Quantum Dot Spin Using Flying Qubits
2015-05-01
QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald
2012-01-01
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480
Quantum memory operations in a flux qubit - spin ensemble hybrid system
NASA Astrophysics Data System (ADS)
Saito, S.; Zhu, X.; Amsuss, R.; Matsuzaki, Y.; Kakuyanagi, K.; Shimo-Oka, T.; Mizuochi, N.; Nemoto, K.; Munro, W. J.; Semba, K.
2014-03-01
Superconducting quantum bits (qubits) are one of the most promising candidates for a future large-scale quantum processor. However for larger scale realizations the currently reported coherence times of these macroscopic objects (superconducting qubits) has not yet reached those of microscopic systems (electron spins, nuclear spins, etc). In this context, a superconductor-spin ensemble hybrid system has attracted considerable attention. The spin ensemble could operate as a quantum memory for superconducting qubits. We have experimentally demonstrated quantum memory operations in a superconductor-diamond hybrid system. An excited state and a superposition state prepared in the flux qubit can be transferred to, stored in and retrieved from the NV spin ensemble in diamond. From these experiments, we have found the coherence time of the spin ensemble is limited by the inhomogeneous broadening of the electron spin (4.4 MHz) and by the hyperfine coupling to nitrogen nuclear spins (2.3 MHz). In the future, spin echo techniques could eliminate these effects and elongate the coherence time. Our results are a significant first step in utilizing the spin ensemble as long-lived quantum memory for superconducting flux qubits. This work was supported by the FIRST program and NICT.
NASA Astrophysics Data System (ADS)
Abanov, Ar.; Chubukov, Andrey V.; Schmalian, J.
2003-03-01
We present the full analysis of the normal state properties of the spin-fermion model near the antiferromagnetic instability in two dimensions. The model describes low-energy fermions interacting with their own collective spin fluctuations, which soften at the antiferromagnetic transition. We argue that in 2D, the system has two typical energies-an effective spin-fermion interaction bar g and an energy ysf below which the system behaves as a Fermi liquid. The ratio of the two determines the dimensionless coupling constant for spin-fermion interaction lambda (2) alpha /line g /omega _{sf} . We show that u scales with the spin correlation length and diverges at criticality. This divergence implies that the conventional perturbative expansion breaks down. We develop a novel approach to the problem-the expansion in either the inverse number of hot spots in the Brillouin zone, or the inverse number of fermionic flavours-which allows us to explicitly account for all terms which diverge as powers of u, and treat the remaining, O(logu) terms in the RG formalism. We apply this technique to study the properties of the spin-fermion model in various frequency and temperature regimes. We present the results for the fermionic spectral function, spin susceptibility, optical conductivity and other observables. We compare our results in detail with the normal state data for the cuprates, and argue that the spin-fermion model is capable of explaining the anomalous normal state properties of the high Tc materials. We also show that the conventional Ӓ theory of the quantum-critical behaviour is inapplicable in 2D due to the singularity of the Ӓ vertex.
Generation of heralded entanglement between distant quantum dot hole spins
NASA Astrophysics Data System (ADS)
Delteil, Aymeric
Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.
Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6
NASA Astrophysics Data System (ADS)
Hartstein, M.; Toews, W. H.; Hsu, Y.-T.; Zeng, B.; Chen, X.; Hatnean, M. Ciomaga; Zhang, Q. R.; Nakamura, S.; Padgett, A. S.; Rodway-Gant, G.; Berk, J.; Kingston, M. K.; Zhang, G. H.; Chan, M. K.; Yamashita, S.; Sakakibara, T.; Takano, Y.; Park, J.-H.; Balicas, L.; Harrison, N.; Shitsevalova, N.; Balakrishnan, G.; Lonzarich, G. G.; Hill, R. W.; Sutherland, M.; Sebastian, Suchitra E.
2018-02-01
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.
Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix
NASA Astrophysics Data System (ADS)
Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael
2017-04-01
Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.
Nuclear spin nanomagnet in an optically excited quantum dot.
Korenev, V L
2007-12-21
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.
Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.
Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R
2014-08-01
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-01
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Wei, Hai-Rui; Deng, Fu-Guo
2014-12-18
Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.
Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains
NASA Astrophysics Data System (ADS)
Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.
2016-10-01
We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.
NASA Astrophysics Data System (ADS)
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2013-04-01
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J
2013-04-19
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3
NASA Astrophysics Data System (ADS)
Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.
2016-02-01
Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.
Singular Atom Optics with Spinor BECs
NASA Astrophysics Data System (ADS)
Schultz, Justin T.; Hansen, Azure; Bigelow, Nicholas P.
2015-05-01
We create and study singular spin textures in pseudo-spin-1/2 BECs. A series of two-photon Raman interactions allows us to not only engineer the spinor wavefunction but also perform the equivalent of atomic polarimetry on the BEC. Adapting techniques from optical polarimetry, we can image two-dimensional maps of the atomic Stokes parameters, thereby fully reconstructing the atomic wavefunction. In a spin-1/2 system, we can represent the local spin superposition with ellipses in a Cartesian basis. The patterns that emerge from the major axes of the ellipses provide fingerprints of the singularities that enable us to classify them as lemons, stars, saddles, or spirals similar to classification schemes for singularities in singular optics, condensed matter, and liquid crystals. These techniques may facilitate the study of geometric Gouy phases in matter waves as well as provide an avenue for utilizing topological structures as quantum gates.
NASA Astrophysics Data System (ADS)
Aslam, Nabeel; Pfender, Matthias; Zaiser, Sebastian; Favaro de Oliveira, Felipe; Momenzadeh, S. Ali; Denisenko, Andrej; Isoya, Junichi; Neumann, Philipp; Wrachtrup, Joerg
Recently nuclear magnetic resonance (NMR) of nanoscale samples at ambient conditions has been achieved with nitrogen-vacancy (NV) centers in diamond. So far the spectral resolution in the NV NMR experiments was limited by the sensor's coherence time, which in turn prohibited revealing the chemical composition and dynamics of the system under investigation. By entangling the NV electron spin sensor with a long-lived memory spin qubit we increase the spectral resolution of NMR measurement sequences for the detection of external nuclear spins. Applying the latter sensor-memory-couple it is particularly easy to track diffusion processes, to identify the molecules under study and to deduce the actual NV center depth inside the diamond. We performed nanoscale NMR on several liquid and solid samples exhibiting unique NMR response. Our method paves the way for nanoscale identification of molecule and protein structures and dynamics of conformational changes.
Frustrated spin one on a diamond lattice in NiRh2O4
NASA Astrophysics Data System (ADS)
Chamorro, J. R.; Ge, L.; Flynn, J.; Subramanian, M. A.; Mourigal, M.; McQueen, T. M.
2018-03-01
We report the discovery of a spin one diamond lattice in NiRh2O4 . This spinel undergoes a cubic to tetragonal phase transition at T =440 K that leaves all nearest neighbor interactions equivalent. In the tetragonal phase, magnetization measurements show a Ni2 + effective moment of peff=3.3 (1 ) and dominant antiferromagnetic interactions with ΘCW=-11.3 (7 ) K. No phase transition to a long-range magnetically ordered state is observed by specific heat measurements down to T =0.1 K. Inelastic neutron scattering measurements on substoichiometric NiRh2O4 reveal possible valence-bond behavior and show no visible signs of magnetic ordering. NiRh2O4 provides a platform on which to explore the previously unknown and potentially rich physics of spin one interacting on the diamond lattice, including the realization of theoretically predicted quantum spin liquid and topological paramagnet states.
NASA Astrophysics Data System (ADS)
Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa
2014-03-01
The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.
High-fidelity projective read-out of a solid-state spin quantum register.
Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald
2011-09-21
Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved
Feynman propagator for spin foam quantum gravity.
Oriti, Daniele
2005-03-25
We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".
Toward Quantum Non-demolition of nitrogen-vacancy centers in diamond
NASA Astrophysics Data System (ADS)
Hodges, Jonathan; Jiang, Liang; Maze, Jeronimo; Lukin, Mikhail
2009-05-01
The nitrogen-vacancy color center (NVC) in diamond, which possesses a long-lived electronic spin (S=1) ground state with optical addressability, is a promising platform for quantum networks, single-photon sources, and nanoscale magnetometers. Here, we make use of a nuclear spin based quantum memory to demonstrate quantum non-demolition measurement of a solid-state spin qubit. By entangling the electron spin with a polarized carbon-13 spin (I=1/2) in the lattice, we have repeated optical measurement of the electron spin for the polarization lifetime of the nuclear spin. We show relative improvements in signal-to-noise of greater than 300%. These techniques can be used to improve the sensitivity of NVC magnetometers.
NASA Astrophysics Data System (ADS)
Tarzia, M.; Biroli, G.
2008-06-01
We show that a new glassy phase can emerge in the presence of strong magnetic frustration and quantum fluctuations. It is a valence bond glass (VBG). We study its properties solving the Hubbard-Heisenberg model on a Bethe lattice within the large-N limit introduced by Affleck and Marston. We work out the phase diagram that contains Fermi liquid, dimer and valence bond glass phases. This new glassy phase has no electronic or spin gap (although a pseudo-gap is observed), it is characterized by long-range critical valence bond correlations and is not related to any magnetic ordering. As a consequence, it is quite different from both valence bond crystals and spin glasses.
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
Will spin-relaxation times in molecular magnets permit quantum information processing?
NASA Astrophysics Data System (ADS)
Ardavan, Arzhang
2007-03-01
Certain computational tasks can be efficiently implemented using quantum logic, in which the information-carrying elements are permitted to exist in quantum superpositions. To achieve this in practice, a physical system that is suitable for embodying quantum bits (qubits) must be identified. Some proposed scenarios employ electron spins in the solid state, for example phosphorous donors in silicon, quantum dots, heterostructures and endohedral fullerenes, motivated by the long electron-spin relaxation times exhibited by these systems. An alternative electron-spin based proposal exploits the large number of quantum states and the non-degenerate transitions available in high spin molecular magnets. Although these advantages have stimulated vigorous research in molecular magnets, the key question of whether the intrinsic spin relaxation times are long enough has hitherto remained unaddressed. Using X-band pulsed electron spin resonance, we measure the intrinsic spin-lattice (T1) and phase coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M = Ni and Mn, phase coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3 μs at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.
Antiferromagnetic spin fluctuations in the heavy-fermion superconductor Ce2PdIn8
NASA Astrophysics Data System (ADS)
Tran, V. H.; Hillier, A. D.; Adroja, D. T.; Kaczorowski, D.
2012-09-01
Inelastic neutron scattering and muon spin relaxation/rotation (μSR) measurements were performed on the heavy-fermion superconductor Ce2PdIn8. The observed scaling of the imaginary part of the dynamical susceptibility χ''Tα∝f(ℏω/kBT) with α=3/2 revealed a non-Fermi liquid character of the normal state, being due to critical antiferromagnetic fluctuations near a T=0 quantum phase transition. The longitudinal-field μSR measurements indicated that superconductivity and antiferromagnetic spin fluctuations coexist in Ce2PdIn8 on a microscopic scale. The observed power-law temperature dependence of the magnetic penetration depth λ∝T3/2, deduced from the transverse-field μSR data, strongly confirms an unconventional superconductivity in this compound.
High-fidelity spin entanglement using optimal control.
Dolde, Florian; Bergholm, Ville; Wang, Ya; Jakobi, Ingmar; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Neumann, Philipp; Schulte-Herbrüggen, Thomas; Biamonte, Jacob; Wrachtrup, Jörg
2014-02-28
Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.
Spin relaxation in semiconductor quantum rings and dots--a comparative study.
Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M
2011-03-23
We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.
Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale; ...
2016-10-03
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less
Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale
The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chida, K.; Yamauchi, Y.; Arakawa, T.
2013-12-04
We performed the resistively-detected nuclear magnetic resonance (RDNMR) to study the electron spin polarization in the non-equilibrium quantum Hall regime. By measuring the Knight shift, we derive source-drain bias voltage dependence of the electron spin polarization in quantum wires. The electron spin polarization shows minimum value around the threshold voltage of the dynamic nuclear polarization.
Non-Markovian dynamics in chiral quantum networks with spins and photons
NASA Astrophysics Data System (ADS)
Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-06-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.
Fast Single-Shot Hold Spin Readout in Double Quantum Dots
NASA Astrophysics Data System (ADS)
Bogan, Alexander; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry
Solid state spin qubits in quantum dots hold promise as scalable, high-density qubits in quantum information processing architectures. While much of the experimental investigation of these devices and their physics has focused on confined electron spins, hole spins in III-V semiconductors are attractive alternatives to electrons due to the reduced hyperfine coupling between the spin and the incoherent nuclear environment. In this talk, we will discuss a measurement protocol of the hole spin relaxation time T1 in a gated lateral GaAs double quantum dot tuned to the one and two-hole regimes, as well as a new technique for single-shot projective measurement of a single spin in tens of nanoseconds or less. The technique makes use of fast non-spin-conserving inter-dot transitions permitted by strong spin-orbit interactions for holes, as well as the latching of the charge state of the second quantum dot for enhanced sensitivity. This technique allows a direct measurement of the single spin relaxation time on time-scales set by physical device rather than by limitations of the measurement circuit.
Optical Control of a Nuclear Spin in Diamond
NASA Astrophysics Data System (ADS)
Levonian, David; Goldman, Michael; Degreve, Kristiaan; Choi, Soonwon; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail
2017-04-01
The nitrogen-vacancy (NV) center in diamond has emerged as a promising candidate for quantum information and quantum communication applications. The NV center's potential as a quantum register is due to the long coherence time of its spin-triplet electronic ground state, the optical addressability of its electronic transitions, and the presence of nearby ancillary nuclear spins. The NV center's electronic spin and nearby nuclear spins are most commonly manipulated using applied microwave and RF fields, but this approach would be difficult to scale up for use with an array of NV-based quantum registers. In this context, all-optical manipulation would be more scalable, technically simpler, and potentially faster. Although all-optical control of the electronic spin has been demonstrated, it is an outstanding problem for the nuclear spins. Here, we use an optical Raman scheme to implement nuclear spin-specific control of the electronic spin and coherent control of the 14N nuclear spin.
Ashbrook, Sharon E; Wimperis, Stephen
2009-11-21
Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and (27)Al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiyama, H., E-mail: kiyama@meso.t.u-tokyo.ac.jp; Fujita, T.; Teraoka, S.
2014-06-30
Spin filtering with electrically tunable efficiency is achieved for electron tunneling between a quantum dot and spin-resolved quantum Hall edge states by locally gating the two-dimensional electron gas (2DEG) leads near the tunnel junction to the dot. The local gating can change the potential gradient in the 2DEG and consequently the edge state separation. We use this technique to electrically control the ratio of the dot–edge state tunnel coupling between opposite spins and finally increase spin filtering efficiency up to 91%, the highest ever reported, by optimizing the local gating.
Spin-dependent tunneling recombination in heterostructures with a magnetic layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S.
We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in themore » quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.« less
Emergent Chiral Spin State in the Mott Phase of a Bosonic Kane-Mele-Hubbard Model
NASA Astrophysics Data System (ADS)
Plekhanov, Kirill; Vasić, Ivana; Petrescu, Alexandru; Nirwan, Rajbir; Roux, Guillaume; Hofstetter, Walter; Le Hur, Karyn
2018-04-01
Recently, the frustrated X Y model for spins 1 /2 on the honeycomb lattice has attracted a lot of attention in relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of some quantum magnets. Using the flexibility of ultracold atom setups, we propose an alternative way to realize this model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram of this model is derived using bosonic dynamical mean-field theory. Focusing on the Mott phase, we investigate its magnetic properties as a function of frustration. We do find an emergent chiral spin state in the intermediate frustration regime. Using exact diagonalization we study more closely the physics of the effective frustrated X Y model and the properties of the chiral spin state. This gapped phase displays a chiral order, breaking time-reversal and parity symmetry, but is not topologically ordered (the Chern number is zero).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru
We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less
Quantum entanglement and spin control in silicon nanocrystal.
Berec, Vesna
2012-01-01
Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.
Thermal Quantum Discord and Super Quantum Discord Teleportation Via a Two-Qubit Spin-Squeezing Model
NASA Astrophysics Data System (ADS)
Ahadpour, S.; Mirmasoudi, F.
2018-04-01
We study thermal quantum correlations (quantum discord and super quantum discord) in a two-spin model in an external magnetic field and obtain relations between them and entanglement. We study their dependence on the magnetic field, the strength of the spin squeezing, and the temperature in detail. One interesting result is that when the entanglement suddenly disappears, quantum correlations still survive. We study thermal quantum teleportation in the framework of this model. The main goal is investigating the possibility of increasing the thermal quantum correlations of a teleported state in the presence of a magnetic field, strength of the spin squeezing, and temperature. We note that teleportation of quantum discord and super quantum discord can be realized over a larger temperature range than teleportation of entanglement. Our results show that quantum discord and super quantum discord can be a suitable measure for controlling quantum teleportation with fidelity. Moreover, the presence of entangled states is unnecessary for the exchange of quantum information.
Quantum correlation properties in Matrix Product States of finite-number spin rings
NASA Astrophysics Data System (ADS)
Zhu, Jing-Min; He, Qi-Kai
2018-02-01
The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.
Coherent spin control of a nanocavity-enhanced qubit in diamond
Li, Luozhou; Lu, Ming; Schroder, Tim; ...
2015-01-28
A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore » is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less
Undecidability of the spectral gap.
Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M
2015-12-10
The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.
NASA Astrophysics Data System (ADS)
Schaibley, John; Burgers, Alex; McCracken, Greg; Duan, Luming; Berman, Paul; Steel, Duncan; Bracker, Allan; Gammon, Daniel; Sham, Lu
2013-03-01
A single electron spin confined to a single InAs quantum dot (QD) can serve as a qubit for quantum information processing. By utilizing the QD's optically excited trion states in the presence of an externally applied magnetic field, the QD spin can be rapidly initialized, manipulated and read out. A key resource for quantum information is the ability to entangle distinct QD spins. One approach relies on intermediate spin-photon entanglement to mediate the entanglement between distant QD spin qubits. We report a demonstration of quantum entanglement between a photon's polarization state and the spin state of a single electron confined to a single QD. Here, the photon is spontaneously emitted from one of the QD's trion states. The emitted photon's polarization along the detection axis is entangled with the resulting spin state of the QD. By performing projective measurements on the photon's polarization state and correlating these measurements with the state of the QD spin in two different bases, we obtain a lower bound on the entanglement fidelity of 0.59 (after background correction). The fidelity bound is limited almost entirely by the timing resolution of our single photon detector. The spin-photon entanglement generation rate is 3 ×103 s-1. Supported by: NSF, MURI, AFOSR, DARPA, ARO.
Blok, M S; Kalb, N; Reiserer, A; Taminiau, T H; Hanson, R
2015-01-01
Single defect centers in diamond have emerged as a powerful platform for quantum optics experiments and quantum information processing tasks. Connecting spatially separated nodes via optical photons into a quantum network will enable distributed quantum computing and long-range quantum communication. Initial experiments on trapped atoms and ions as well as defects in diamond have demonstrated entanglement between two nodes over several meters. To realize multi-node networks, additional quantum bit systems that store quantum states while new entanglement links are established are highly desirable. Such memories allow for entanglement distillation, purification and quantum repeater protocols that extend the size, speed and distance of the network. However, to be effective, the memory must be robust against the entanglement generation protocol, which typically must be repeated many times. Here we evaluate the prospects of using carbon nuclear spins in diamond as quantum memories that are compatible with quantum networks based on single nitrogen vacancy (NV) defects in diamond. We present a theoretical framework to describe the dephasing of the nuclear spins under repeated generation of NV spin-photon entanglement and show that quantum states can be stored during hundreds of repetitions using typical experimental coupling parameters. This result demonstrates that nuclear spins with weak hyperfine couplings are promising quantum memories for quantum networks.
Ferroelectricity by Bose-Einstein condensation in a quantum magnet.
Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H
2016-09-26
The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.
Sudden transition and sudden change from open spin environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zheng-Da; School of Science, Jiangnan University, Wuxi 214122; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn
2014-11-15
We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at themore » high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed.« less
Observation of entanglement between a quantum dot spin and a single photon.
Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A
2012-11-15
Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.
New Spin Foam Models of Quantum Gravity
NASA Astrophysics Data System (ADS)
Miković, A.
We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.
NASA Astrophysics Data System (ADS)
Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa
2014-10-01
We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.
Quantum teleportation from a propagating photon to a solid-state spin qubit
NASA Astrophysics Data System (ADS)
Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.
2013-11-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
Quantum teleportation from a propagating photon to a solid-state spin qubit.
Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A
2013-01-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
NASA Astrophysics Data System (ADS)
Buessen, Finn Lasse; Roscher, Dietrich; Diehl, Sebastian; Trebst, Simon
2018-02-01
The pseudofermion functional renormalization group (pf-FRG) is one of the few numerical approaches that has been demonstrated to quantitatively determine the ordering tendencies of frustrated quantum magnets in two and three spatial dimensions. The approach, however, relies on a number of presumptions and approximations, in particular the choice of pseudofermion decomposition and the truncation of an infinite number of flow equations to a finite set. Here we generalize the pf-FRG approach to SU (N )-spin systems with arbitrary N and demonstrate that the scheme becomes exact in the large-N limit. Numerically solving the generalized real-space renormalization group equations for arbitrary N , we can make a stringent connection between the physically most significant case of SU(2) spins and more accessible SU (N ) models. In a case study of the square-lattice SU (N ) Heisenberg antiferromagnet, we explicitly demonstrate that the generalized pf-FRG approach is capable of identifying the instability indicating the transition into a staggered flux spin liquid ground state in these models for large, but finite, values of N . In a companion paper [Roscher et al., Phys. Rev. B 97, 064416 (2018), 10.1103/PhysRevB.97.064416] we formulate a momentum-space pf-FRG approach for SU (N ) spin models that allows us to explicitly study the large-N limit and access the low-temperature spin liquid phase.
Spin Lifetimes in III-V Semiconductor Heterostructures Originating from Zincblende Symmetry
NASA Astrophysics Data System (ADS)
Lau, Wayne; Olesberg, Jon; Flatté, Michael
2000-03-01
Electron spin relaxation in zincblende type semiconductors at room temperature is dominated by the D'yakonov-Perel' mechanism (DP), which is a direct result of the spin splitting of the conduction band due to the bulk inversion asymmetry (BIA) of zincblende materials. To accurately describe the DP spin relaxation mechanism in quantum wells we employ a heterostructure model based on a fourteen bulk band basis, which accounts for the zincblende symmetry of the heterostructure constituents. Electron spin lifetimes are calculated for 75Å n-doped GaAs/Al_0.4Ga_0.6As quantum wells at room temperature. Excellent agreement between theory and experiments is found. In contrast, the calculated spin lifetimes based on the D'yakonov-Kachorovskii theory are an order magnitude shorter than the experimental values. The spin splitting and spin lifetime in no common atom In_0.53Ga_0.47As/InP quantum wells are also investigated. The contribution to the conduction subband spin splitting is dominated by the native interface asymmetry (NIA) mechanism for thin quantum wells; while the spin splitting is governed by the BIA mechanism for thick quantum wells. We find that BIA provides a satisfactory explanation for the spin lifetime measured in an In_0.53Ga_0.47As/InP quantum well with a 97Å barrier and a 70Å well at room temperature.
NASA Astrophysics Data System (ADS)
Kaczmarczyk, Jan; Spałek, Jozef
2009-06-01
Paired state of nonstandard quasiparticles is analyzed in detail in two model situations. Namely, we consider the Cooper-pair bound state and the condensed phase of an almost localized Fermi liquid composed of quasiparticles in a narrow band with the spin-dependent masses and an effective field, both introduced earlier and induced by strong electronic correlations. Each of these novel characteristics is calculated in a self-consistent manner. We analyze the bound states as a function of Cooper-pair momentum |Q| in applied magnetic field in the strongly Pauli limiting case (i.e., when the orbital effects of applied magnetic field are disregarded). The spin-direction dependence of the effective mass makes the quasiparticles comprising Cooper-pair spin distinguishable in the quantum-mechanical sense, whereas the condensed gas of pairs may still be regarded as composed of identical entities. The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) condensed phase of moving pairs is by far more robust in the applied field for the case with spin-dependent masses than in the situation with equal masses of quasiparticles. Relative stability of the Bardeen-Cooper-Schrieffer vs FFLO phase is analyzed in detail on temperature-applied field plane. Although our calculations are carried out for a model situation, we can conclude that the spin-dependent masses should play an important role in stabilizing high-field low-temperature unconventional superconducting phases (FFLO, for instance) in systems such as CeCoIn5 , organic metals, and possibly others.
Coherent spin-exchange via a quantum mediator.
Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad
2017-01-01
Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.
NASA Astrophysics Data System (ADS)
Bratkovsky, A. M.; Alexandrov, A. S.
2002-03-01
The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field [1]. At the magic angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the nonquantized background states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2RuO4. [1] A.M. Bratkovsky and A.S. Alexandrov, Phys. Rev. B 65, xxxx (2002); cond-mat/0104520.
Loop-gap microwave resonator for hybrid quantum systems
NASA Astrophysics Data System (ADS)
Ball, Jason R.; Yamashiro, Yu; Sumiya, Hitoshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Konstantinov, Denis; Kubo, Yuimaru
2018-05-01
We designed a loop-gap microwave resonator for applications of spin-based hybrid quantum systems and tested it with impurity spins in diamond. Strong coupling with ensembles of nitrogen-vacancy (NV) centers and substitutional nitrogen (P1) centers was observed. These results show that loop-gap resonators are viable in the prospect of spin-based hybrid quantum systems, especially for an ensemble quantum memory or a quantum transducer.
Electron spin resonance and spin-valley physics in a silicon double quantum dot.
Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen
2014-05-14
Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.
Effect of quantum tunneling on spin Hall magnetoresistance
NASA Astrophysics Data System (ADS)
Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk
2017-02-01
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene
NASA Astrophysics Data System (ADS)
Ferreira, Aires; Milletari, Mirco
Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).
Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2007-12-01
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.
Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots
NASA Astrophysics Data System (ADS)
Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus
2005-01-01
We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.
Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin
NASA Astrophysics Data System (ADS)
He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven
2017-08-01
Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.
A 2D Array of 100's of Ions for Quantum Simulation and Many-Body Physics in a Penning Trap
NASA Astrophysics Data System (ADS)
Bohnet, Justin; Sawyer, Brian; Britton, Joseph; Bollinger, John
2015-05-01
Quantum simulations promise to reveal new materials and phenomena for experimental study, but few systems have demonstrated the capability to control ensembles in which quantum effects cannot be directly computed. One possible platform for intractable quantum simulations may be a system of 100's of 9Be+ ions in a Penning trap, where the valence electron spins are coupled with an effective Ising interaction in a 2D geometry. Here we report on results from a new Penning trap designed for 2D quantum simulations. We characterize the ion crystal stability and describe progress towards bench-marking quantum effects of the spin-spin coupling using a spin-squeezing witness. We also report on the successful photodissociation of BeH+ contaminant molecular ions that impede the use of such crystals for quantum simulation. This work lays the foundation for future experiments such as the observation of spin dynamics under the quantum Ising Hamiltonian with a transverse field. Supported by a NIST-NRC Research Associateship.
Scheme for Quantum Computing Immune to Decoherence
NASA Technical Reports Server (NTRS)
Williams, Colin; Vatan, Farrokh
2008-01-01
A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.
NASA Astrophysics Data System (ADS)
Chowdhury, Debanjan; Skinner, Brian; Lee, Patrick A.
2018-05-01
Electron tunneling into a system with strong interactions is known to exhibit an anomaly, in which the tunneling conductance vanishes continuously at low energy due to many-body interactions. Recent measurements have probed this anomaly in a quantum Hall bilayer of the half-filled Landau level, and shown that the anomaly apparently gets stronger as the half-filled Landau level is increasingly spin polarized. Motivated by this result, we construct a semiclassical hydrodynamic theory of the tunneling anomaly in terms of the charge-spreading action associated with tunneling between two copies of the Halperin-Lee-Read state with partial spin polarization. This theory is complementary to our recent work (D. Chowdhury, B. Skinner, and P. A. Lee, arXiv:1709.06091) where the electron spectral function was computed directly using an instanton-based approach. Our results show that the experimental observation cannot be understood within conventional theories of the tunneling anomaly, in which the spreading of the injected charge is driven by the mean-field Coulomb energy. However, we identify a qualitatively new regime, in which the mean-field Coulomb energy is effectively quenched and the tunneling anomaly is dominated by the finite compressibility of the composite Fermion liquid.
Jeong, Min Yong; Chang, Seo Hyoung; Kim, Beom Hyun; ...
2017-10-04
Strong spin-orbit coupling lifts the degeneracy of t 2g orbitals in 5d transition-metal systems, leaving a Kramers doublet and quartet with effective angular momentum of J eff = 1/2 and 3/2, respectively. These spin-orbit entangled states can host exotic quantum phases such as topological Mott state, unconventional superconductivity, and quantum spin liquid. The lacunar spinel GaTa 4Se 8 was theoretically predicted to form the molecular J eff = 3/2 ground state. Experimental verification of its existence is an important first step to exploring the consequences of the J eff = 3/2 state. Here, we report direct experimental evidence of themore » J eff = 3/2 state in GaTa 4Se 8 by means of excitation spectra of resonant inelastic x-rays scattering at the Ta L 3 and L 2 edges. In conclusion, we found that the excitations involving the J eff = 1/2 molecular orbital were absent only at the Ta L 2 edge, manifesting the realization of the molecular J eff = 3/2 ground state in GaTa 4Se 8.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Min Yong; Chang, Seo Hyoung; Kim, Beom Hyun
Strong spin-orbit coupling lifts the degeneracy of t 2g orbitals in 5d transition-metal systems, leaving a Kramers doublet and quartet with effective angular momentum of J eff = 1/2 and 3/2, respectively. These spin-orbit entangled states can host exotic quantum phases such as topological Mott state, unconventional superconductivity, and quantum spin liquid. The lacunar spinel GaTa 4Se 8 was theoretically predicted to form the molecular J eff = 3/2 ground state. Experimental verification of its existence is an important first step to exploring the consequences of the J eff = 3/2 state. Here, we report direct experimental evidence of themore » J eff = 3/2 state in GaTa 4Se 8 by means of excitation spectra of resonant inelastic x-rays scattering at the Ta L 3 and L 2 edges. In conclusion, we found that the excitations involving the J eff = 1/2 molecular orbital were absent only at the Ta L 2 edge, manifesting the realization of the molecular J eff = 3/2 ground state in GaTa 4Se 8.« less
Renormalization group analysis of dipolar Heisenberg model on square lattice
NASA Astrophysics Data System (ADS)
Keleş, Ahmet; Zhao, Erhai
2018-06-01
We present a detailed functional renormalization group analysis of spin-1/2 dipolar Heisenberg model on square lattice. This model is similar to the well-known J1-J2 model and describes the pseudospin degrees of freedom of polar molecules confined in deep optical lattice with long-range anisotropic dipole-dipole interactions. Previous study of this model based on tensor network ansatz indicates a paramagnetic ground state for certain dipole tilting angles which can be tuned in experiments to control the exchange couplings. The tensor ansatz formulated on a small cluster unit cell is inadequate to describe the spiral order, and therefore the phase diagram at high azimuthal tilting angles remains undetermined. Here, we obtain the full phase diagram of the model from numerical pseudofermion functional renormalization group calculations. We show that an extended quantum paramagnetic phase is realized between the Néel and stripe/spiral phases. In this region, the spin susceptibility flows smoothly down to the lowest numerical renormalization group scales with no sign of divergence or breakdown of the flow, in sharp contrast to the flow towards the long-range-ordered phases. Our results provide further evidence that the dipolar Heisenberg model is a fertile ground for quantum spin liquids.
Spin-based quantum computation in multielectron quantum dots
NASA Astrophysics Data System (ADS)
Hu, Xuedong; Das Sarma, S.
2001-10-01
In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.
Spin fine structure of optically excited quantum dot molecules
NASA Astrophysics Data System (ADS)
Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2007-06-01
The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.
Storage and retrieval of quantum information with a hybrid optomechanics-spin system
NASA Astrophysics Data System (ADS)
Feng, Zhi-Bo; Zhang, Jian-Qi; Yang, Wan-Li; Feng, Mang
2016-08-01
We explore an efficient scheme for transferring the quantum state between an optomechanical cavity and an electron spin of diamond nitrogen-vacancy center. Assisted by a mechanical resonator, quantum information can be controllably stored (retrieved) into (from) the electron spin by adjusting the external field-induced detuning or coupling. Our scheme connects effectively the cavity photon and the electron spin and transfers quantum states between two regimes with large frequency difference. The experimental feasibility of our protocol is justified with accessible laboratory parameters.
Ground-state phases of the spin-1 J1-J2 Heisenberg antiferromagnet on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Li, P. H. Y.; Bishop, R. F.
2016-06-01
We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0 and frustrating next-nearest-neighbor coupling J2≡κ J1>0 , using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0 <κ <1 we find evidence for four distinct phases. Two of these are quasiclassical phases with antiferromagnetic long-range order, one with two-sublattice Néel order for κ <κc1=0.250(5 ) , and another with four-sublattice Néel-II order for κ >κc 2=0.340 (5 ) . Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305 (5 ) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ <κc 2 we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry.
Antiferroquadrupolar correlations in the quantum spin ice candidate Pr2Zr2O7
NASA Astrophysics Data System (ADS)
Petit, S.; Lhotel, E.; Guitteny, S.; Florea, O.; Robert, J.; Bonville, P.; Mirebeau, I.; Ollivier, J.; Mutka, H.; Ressouche, E.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.
2016-10-01
We present an experimental study of the quantum spin ice candidate pyrochlore compound Pr2Zr2O7 by means of magnetization measurements, specific heat, and neutron scattering up to 12 T and down to 60 mK. When the field is applied along the [111 ] and [1 1 ¯0 ] directions, k =0 field-induced structures settle in. We find that the ordered moment rises slowly, even at very low temperature, in agreement with macroscopic magnetization. Interestingly, for H ∥[1 1 ¯0 ] , the ordered moment appears on the so-called α chains only. The spin excitation spectrum is essentially inelastic and consists in a broad flat mode centered at about 0.4 meV with a magnetic structure factor which resembles the spin ice pattern. For H ∥[1 1 ¯0 ] (at least up to 2.5 T), we find that a well-defined mode forms from this broad response, whose energy increases with H , in the same way as the temperature of the specific-heat anomaly. We finally discuss these results in the light of mean field calculations and propose an interpretation where quadrupolar interactions play a major role, overcoming the magnetic exchange. In this picture, the spin ice pattern appears shifted up to finite energy because of those interactions. We then propose a range of acceptable parameters for Pr2Zr2O7 that allow to reproduce several experimental features observed under field. With these parameters, the actual ground state of this material would be an antiferroquadrupolar liquid with spin-ice-like excitations.
Wójcik, Paweł; Adamowski, Janusz
2017-01-01
The spin filtering effect in the bilayer nanowire with quantum point contact is investigated theoretically. We demonstrate the new mechanism of the spin filtering based on the lateral inter-subband spin-orbit coupling, which for the bilayer nanowires has been reported to be strong. The proposed spin filtering effect is explained as the joint effect of the Landau-Zener intersubband transitions caused by the hybridization of states with opposite spin (due to the lateral Rashba SO interaction) and the confinement of carriers in the quantum point contact region. PMID:28358141
Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins.
Casanova, J; Wang, Z-Y; Plenio, M B
2016-09-23
Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafuente-Sampietro, A.; CNRS, Institut Néel, F-38000 Grenoble; Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba
We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Crmore » interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.« less
Strong spin-photon coupling in silicon
NASA Astrophysics Data System (ADS)
Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.
2018-03-01
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.
Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D
2015-11-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
Tunnel transport and interlayer excitons in bilayer fractional quantum Hall systems
NASA Astrophysics Data System (ADS)
Zhang, Yuhe; Jain, J. K.; Eisenstein, J. P.
2017-05-01
In a bilayer system consisting of a composite-fermion (CF) Fermi sea in each layer, the tunnel current is exponentially suppressed at zero bias, followed by a strong peak at a finite-bias voltage Vmax. This behavior, which is qualitatively different from that observed for the electron Fermi sea, provides fundamental insight into the strongly correlated non-Fermi-liquid nature of the CF Fermi sea and, in particular, offers a window into the short-distance high-energy physics of this highly nontrivial state. We identify the exciton responsible for the peak current and provide a quantitative account of the value of Vmax. The excitonic attraction is shown to be quantitatively significant, and its variation accounts for the increase of Vmax with the application of an in-plane magnetic field. We also estimate the critical Zeeman energy where transition occurs from a fully spin-polarized composite-fermion Fermi sea to a partially spin-polarized one, carefully incorporating corrections due to finite width and Landau level mixing, and find it to be in satisfactory agreement with the Zeeman energy where a qualitative change has been observed for the onset bias voltage [J. P. Eisenstein et al., Phys. Rev. B 94, 125409 (2016), 10.1103/PhysRevB.94.125409]. For fractional quantum Hall states, we predict a substantial discontinuous jump in Vmax when the system undergoes a transition from a fully spin-polarized state to a spin singlet or a partially spin-polarized state.
Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance.
Jiang, Min; Wu, Teng; Blanchard, John W; Feng, Guanru; Peng, Xinhua; Budker, Dmitry
2018-06-01
Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information-inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13 C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics.
Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance
Feng, Guanru
2018-01-01
Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information–inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics. PMID:29922714
Protecting solid-state spins from a strongly coupled environment
NASA Astrophysics Data System (ADS)
Chen, Mo; Calvin Sun, Won Kyu; Saha, Kasturi; Jaskula, Jean-Christophe; Cappellaro, Paola
2018-06-01
Quantum memories are critical for solid-state quantum computing devices and a good quantum memory requires both long storage time and fast read/write operations. A promising system is the nitrogen-vacancy (NV) center in diamond, where the NV electronic spin serves as the computing qubit and a nearby nuclear spin as the memory qubit. Previous works used remote, weakly coupled 13C nuclear spins, trading read/write speed for long storage time. Here we focus instead on the intrinsic strongly coupled 14N nuclear spin. We first quantitatively understand its decoherence mechanism, identifying as its source the electronic spin that acts as a quantum fluctuator. We then propose a scheme to protect the quantum memory from the fluctuating noise by applying dynamical decoupling on the environment itself. We demonstrate a factor of 3 enhancement of the storage time in a proof-of-principle experiment, showing the potential for a quantum memory that combines fast operation with long coherence time.
Quantum dust magnetosonic waves with spin and exchange correlation effects
NASA Astrophysics Data System (ADS)
Maroof, R.; Mushtaq, A.; Qamar, A.
2016-01-01
Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).
Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer
NASA Astrophysics Data System (ADS)
Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.
2016-03-01
Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95+/-5% and have potential to serve as the basis of spin-logic and network implementations.
Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer
Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.
2016-01-01
Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations. PMID:27029961
Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer.
Coles, R J; Price, D M; Dixon, J E; Royall, B; Clarke, E; Kok, P; Skolnick, M S; Fox, A M; Makhonin, M N
2016-03-31
Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations.
Topical review: spins and mechanics in diamond
NASA Astrophysics Data System (ADS)
Lee, Donghun; Lee, Kenneth W.; Cady, Jeffrey V.; Ovartchaiyapong, Preeti; Bleszynski Jayich, Ania C.
2017-03-01
There has been rapidly growing interest in hybrid quantum devices involving a solid-state spin and a macroscopic mechanical oscillator. Such hybrid devices create exciting opportunities to mediate interactions between disparate quantum bits (qubits) and to explore the quantum regime of macroscopic mechanical objects. In particular, a system consisting of the nitrogen-vacancy defect center (NV center) in diamond coupled to a high-quality-factor mechanical oscillator is an appealing candidate for such a hybrid quantum device, as it utilizes the highly coherent and versatile spin properties of the defect center. In this paper, we will review recent experimental progress on diamond-based hybrid quantum devices in which the spin and orbital dynamics of single defects are driven by the motion of a mechanical oscillator. In addition, we discuss prospective applications for this device, including long-range, phonon-mediated spin-spin interactions, and phonon cooling in the quantum regime. We conclude the review by evaluating the experimental limitations of current devices and identifying alternative device architectures that may reach the strong coupling regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Tzu-Chieh; C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840; Raussendorf, Robert
2011-10-15
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Duer, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain canmore » be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Duer-Briegel state.« less
One-dimensional quantum matter: gold-induced nanowires on semiconductor surfaces
NASA Astrophysics Data System (ADS)
Dudy, L.; Aulbach, J.; Wagner, T.; Schäfer, J.; Claessen, R.
2017-11-01
Interacting electrons confined to only one spatial dimension display a wide range of unusual many-body quantum phenomena, ranging from Peierls instabilities to the breakdown of the canonical Fermi liquid paradigm to even unusual spin phenomena. The underlying physics is not only of tremendous fundamental interest, but may also have bearing on device functionality in future micro- and nanoelectronics with lateral extensions reaching the atomic limit. Metallic adatoms deposited on semiconductor surfaces may form self-assembled atomic nanowires, thus representing highly interesting and well-controlled solid-state realizations of such 1D quantum systems. Here we review experimental and theoretical investigations on a few selected prototypical nanowire surface systems, specifically Ge(0 0 1)-Au and Si(hhk)-Au, and the search for 1D quantum states in them. We summarize the current state of research and identify open questions and issues.
Macrorealism from entropic Leggett-Garg inequalities
NASA Astrophysics Data System (ADS)
Devi, A. R. Usha; Karthik, H. S.; Sudha; Rajagopal, A. K.
2013-05-01
We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds. We show that the quantum statistics underlying correlations between time-separated spin component of a quantum rotor mimics that of spin correlations in two spatially separated spin-s particles sharing a state of zero total spin. This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-s system in a similar manner as does the entropic Bell inequality [S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.61.662 61, 662 (1988)] by a pair of spin-s particles forming a composite spin singlet state.
Control of spin defects in wide-bandgap semiconductors for quantum technologies
Heremans, F. Joseph; Yale, Christopher G.; Awschalom, David D.
2016-05-24
Deep-level defects are usually considered undesirable in semiconductors as they typically interfere with the performance of present-day electronic and optoelectronic devices. However, the electronic spin states of certain atomic-scale defects have recently been shown to be promising quantum bits for quantum information processing as well as exquisite nanoscale sensors due to their local environmental sensitivity. In this review, we will discuss recent advances in quantum control protocols of several of these spin defects, the negatively charged nitrogen-vacancy (NV -) center in diamond and a variety of forms of the neutral divacancy (VV 0) complex in silicon carbide (SiC). These defectsmore » exhibit a spin-triplet ground state that can be controlled through a variety of techniques, several of which allow for room temperature operation. Microwave control has enabled sophisticated decoupling schemes to extend coherence times as well as nanoscale sensing of temperature along with magnetic and electric fields. On the other hand, photonic control of these spin states has provided initial steps toward integration into quantum networks, including entanglement, quantum state teleportation, and all-optical control. Electrical and mechanical control also suggest pathways to develop quantum transducers and quantum hybrid systems. In conclusion, the versatility of the control mechanisms demonstrated should facilitate the development of quantum technologies based on these spin defects.« less
Phase diagram and quantum order by disorder in the Kitaev K1-K2 honeycomb magnet
NASA Astrophysics Data System (ADS)
Rousochatzakis, Ioannis; Reuther, Johannes; Thomale, Ronny; Rachel, Stephan; Perkins, Natalia
We show that the topological Kitaev spin liquid on the honeycomb lattice is extremely fragile against the second neighbor Kitaev coupling K2, which has been recently identified as the dominant perturbation away from the nearest neighbor model in iridate Na2IrO3, and may also play a role in α-RuCl3. This coupling explains naturally the zig-zag ordering and the special entanglement between real and spin space observed recently in Na2IrO3. The minimal K1-K2 model that we present here holds in addition the unique property that the classical and quantum phase diagrams and their respective order-by-disorder mechanisms are qualitatively different due to their fundamentally different symmetry structure. Nsf DMR-1511768; Freie Univ. Berlin Excellence Initiative of German Research Foundation; European Research Council, ERC-StG-336012; DFG-SFB 1170; DFG-SFB 1143, DFG-SPP 1666, and Helmholtz association VI-521.
Quantum Correlation in the XY Spin Model with Anisotropic Three-Site Interaction
NASA Astrophysics Data System (ADS)
Wang, Yao; Chai, Bing-Bing; Guo, Jin-Liang
2018-05-01
We investigate pairwise entanglement and quantum discord (QD) in the XY spin model with anisotropic three-site interaction at zero and finite temperatures. For both the nearest-neighbor spins and the next nearest-neighbor spins, special attention is paid to the dependence of entanglement and QD on the anisotropic parameter δ induced by the next nearest-neighbor spins. We show that the behavior of QD differs in many ways from entanglement under the influences of the anisotropic three-site interaction at finite temperatures. More important, comparing the effects of δ on the entanglement and QD, we find the anisotropic three-site interaction plays an important role in the quantum correlations at zero and finite temperatures. It is found that δ can strengthen the quantum correlation for both the nearest-neighbor spins and the next nearest-neighbor spins, especially for the nearest-neighbor spins at low temperature.
Input-output theory for spin-photon coupling in Si double quantum dots
NASA Astrophysics Data System (ADS)
Benito, M.; Mi, X.; Taylor, J. M.; Petta, J. R.; Burkard, Guido
2017-12-01
The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit.
Dynamical control of a quantum Kapitza pendulum in a spin-1 BEC
NASA Astrophysics Data System (ADS)
Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael
2013-05-01
We demonstrate dynamic stabilization of an unstable strongly interacting quantum many-body system by periodic manipulation of the phase of the collective states. The experiment employs a spin-1 atomic Bose condensate that has spin dynamics analogous to a non-rigid pendulum in the mean-field limit. The condensate spin is initialized to an unstable (hyperbolic) fixed point of the phase space, where subsequent free evolution gives rise to spin-nematic squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that manipulate the spin-nematic fluctuations and limit their growth. The range of pulse periods and phase shifts with which the condensate can be stabilized is measured and compares well with a linear stability analysis of the problem. C.D. Hamley, et al., ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).
Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.
Vahedi, J; Ashouri, A; Mahdavifar, S
2016-10-01
Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.
Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet
Lachance-Quirion, Dany; Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Nakamura, Yasunobu
2017-01-01
Combining different physical systems in hybrid quantum circuits opens up novel possibilities for quantum technologies. In quantum magnonics, quanta of collective excitation modes in a ferromagnet, called magnons, interact coherently with qubits to access quantum phenomena of magnonics. We use this architecture to probe the quanta of collective spin excitations in a millimeter-sized ferromagnetic crystal. More specifically, we resolve magnon number states through spectroscopic measurements of a superconducting qubit with the hybrid system in the strong dispersive regime. This enables us to detect a change in the magnetic moment of the ferromagnet equivalent to a single spin flipped among more than 1019 spins. Our demonstration highlights the strength of hybrid quantum systems to provide powerful tools for quantum sensing and quantum information processing. PMID:28695204
The realization of Majorana fermions in Kitaev Quantum Spin Lattice
NASA Astrophysics Data System (ADS)
Do, Seung-Hwan; Park, Sang-Youn; Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi; Kwon, Y. S.; Adroja, D. T.; Voneshen, D.; Park, J.-H.; Choi, Kwang-Yong; Ji, Sungdae
The Kitaev honeycomb lattice is envisioned as an ideal host for Majorana fermions that are created out of the spin liquid background. Combining specific heat and neutron scattering experiments with theoretical calculations, here, we establish a hitherto unparalleled spin fractionalization to two species of Majorana fermions in the Kitaev material α-RuCl3. The specific heat data unveil a two-stage release of magnetic entropy by (R/2)ln2 and the T-linear dependence at intermediate temperatures. Our inelastic neutron scattering measurements further corroborate two distinct characters of fractionalized excitations: an Y-like, dispersive, magnetic continuum at higher energies and a dispersionless excitation at low energies around the Brillouin zone center. These dual features are well described by a Ferromagnetic Kitaev model, providing a smoking gun proof of the itinerant and localized Majorana fermions emergent in Kitaev magnets.
Suppression of Pauli Spin Blockade in Few Hole Laterally Gated Double Quantum Dots
NASA Astrophysics Data System (ADS)
Gaudreau, Louis; Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry; National Research Council Team; Sandia Labs Team
Hole spins have attracted increasing attention as candidates for qubits in quantum information applications. The p-type character of their wavefunction leads to smaller hyperfine interaction with the nuclei resulting in longer coherence times. Additionally, strong spin-orbit interaction allows for enhanced all-electrical manipulation of spin qubit states. Single hole spins have been electrically studied in InSb and Si nanowire quantum dots, however, electrostatically confined hole spins in a 2D hole gas have thus far been limited to the many hole regime. In this talk we will present a full description of the two-hole spin spectrum in a lateral GaAs/AlGaAs double quantum. High-bias magneto-transport spectroscopy reveals all four states of the spectrum (singlet and triplets) in both the (1,1) and (2,0) configurations, essential for spin readout based on Pauli spin blockade. We show that spin-flip tunneling between dots is as strong as spin conserving tunneling, a consequence of the strong spin-orbit interaction. This suppresses the Pauli spin blockade. Our results suggest that alternate techniques for single hole spin qubit readout need to be explored.
Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB 6
Hartstein, M.; Toews, W. H.; Hsu, Y. -T.; ...
2017-10-23
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less
Ligare, Martin
2016-05-01
Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.
Spin squeezing as an indicator of quantum chaos in the Dicke model.
Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang
2009-04-01
We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.
Complex-network description of thermal quantum states in the Ising spin chain
NASA Astrophysics Data System (ADS)
Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.
2018-05-01
We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.
Aging dynamics of quantum spin glasses of rotors
NASA Astrophysics Data System (ADS)
Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu
2001-12-01
We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.
NASA Astrophysics Data System (ADS)
Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.
2017-12-01
In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.
Investigations of quantum pendulum dynamics in a spin-1 BEC
NASA Astrophysics Data System (ADS)
Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael
2013-05-01
We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).
Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal
2016-01-01
Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.
New type of quantum criticality in the pyrochlore iridates
Savary, Lucile; Moon, Eun -Gook; Balents, Leon
2014-11-13
Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons andmore » antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.« less
S=2 quasi-one-dimensional spin waves in CrCl2
NASA Astrophysics Data System (ADS)
Stone, Matthew; Ehlers, Georg; Granroth, Garrett
2014-03-01
We examine the magnetic excitation spectrum in the S = 2 Heisenberg antiferromagnet CrCl2. Inelastic neutron scattering measurements on powder samples are able to determine the significant exchange interactions in this system. A large anisotropy gap is observed in the spectrum below the Néel temperature and the ratio of the two largest exchange constants is Jc /Jb = 9 . 1 +/- 2 . 2 . However, no sign of a gapped quantum spin liquid excitation was found in the paramagnetic phase. The research was performed at Oak Ridge National Laboratory's Spallation Neutron Source and was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.
Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity
Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel
2015-01-01
The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin–cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet–triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network. PMID:26184654
Spin interactions in InAs quantum dots
NASA Astrophysics Data System (ADS)
Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.
2006-03-01
Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)
Yu, Jiadong; Wang, Lai; Di Yang; Zheng, Jiyuan; Xing, Yuchen; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao
2016-10-19
The spin and optical polarization based on a coupled InGaN/GaN quantum well (QW) and quantum dots (QDs) structure is investigated. In this structure, spin-electrons can be temporarily stored in QW, and spin injection from the QW into QDs via spin-conserved tunneling is enabled. Spin relaxation can be suppressed owing to the small energy difference between the initial state in the QW and the final states in the QDs. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements are carried out on optical spin-injection and -detection. Owing to the coupled structure, spin-conserved tunneling mechanism plays a significant role in preventing spin relaxation process. As a result, a higher circular polarization degree (CPD) (~49.1%) is achieved compared with conventional single layer of QDs structure. Moreover, spin relaxation time is also extended to about 2.43 ns due to the weaker state-filling effect. This coupled structure is believed an appropriate candidate for realization of spin-polarized light source.
Quantum communication beyond the localization length in disordered spin chains.
Allcock, Jonathan; Linden, Noah
2009-03-20
We study the effects of localization on quantum state transfer in spin chains. We show how to use quantum error correction and multiple parallel spin chains to send a qubit with high fidelity over arbitrary distances, in particular, distances much greater than the localization length of the chain.
Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai
Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less
Controlled rephasing of single spin-waves in a quantum memory based on cold atoms
NASA Astrophysics Data System (ADS)
Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team
2015-05-01
Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.
Lifting SU(2) spin networks to projected spin networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupuis, Maiete; Livine, Etera R.
2010-09-15
Projected spin network states are the canonical basis of quantum states of geometry for the recent EPRL-FK spinfoam models for quantum gravity introduced by Engle-Pereira-Rovelli-Livine and Freidel-Krasnov. They are functionals of both the Lorentz connection and the time-normal field. We analyze in detail the map from these projected spin networks to the standard SU(2) spin networks of loop quantum gravity. We show that this map is not one to one and that the corresponding ambiguity is parameterized by the Immirzi parameter. We conclude with a comparison of the scalar products between projected spin networks and SU(2) spin network states.
Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System
NASA Astrophysics Data System (ADS)
Lee, Kenneth William, III
A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no previous demonstrations of a strain-mediated spin-mechanical interface and hence the system is largely uncharacterized. Second, fabricating high quality diamond mechanical oscillators is difficult due to the robust and chemically inert nature of diamond. Finally, engineering highly coherent NV centers with a coherent optical interface in nanostructured diamond remains an outstanding challenge. In this thesis, we theoretically and experimentally address each of these challenges, and show that with future improvements, this device is suitable for future quantum-enabled applications. First, we theoretically and experimentally demonstrate a dynamic, strain-mediated coupling between the spin and orbital degrees of freedom of the NV center and the driven mechanical motion of a single-crystal diamond cantilever. We employ Ramsey interferometry to demonstrate coherent, mechanical driving of the NV spin evolution. Using this interferometry technique, we present the first demonstration of nanoscale strain imaging, and quantitatively characterize the previously unknown spin-strain coupling constants. Next, we use the driven motion of the cantilever to perform deterministic control of the frequency and polarization dependence of the optical transitions of the NV center. Importantly, this experiment constitutes the first demonstration of on-chip control of both the frequency and polarization state of a single photon produced by a quantum emitter. In the final experiment, we use mechanical driving to engineer a series of spin ``clock" states and demonstrate a significant increase in the spin coherence time of the NV center. We conclude this thesis with a theoretical discussion of prospective applications for this device, including generation of non-classical mechanical states and spin-spin entanglement, as well as an evaluation of the current limitations of our devices, including a possible avenues for improvement to reach the regime of strong spin-phonon coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartstein, M.; Toews, W. H.; Hsu, Y. -T.
The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less
Spin Hamiltonian Analysis of the SMM V15 Using High Field ESR
NASA Astrophysics Data System (ADS)
Martens, Mathew; van Tol, Hans; Bertaina, Sylvain; Barbara, Bernard; Muller, Achim; Chiorescu, Irinel
2014-03-01
We have studied molecular magnets using high field / high frequency Electron Spin Resonance. Such molecular structures contain many quantum spins linked by exchange interactions and consequently their energy structure is often complex and require a good understanding of the molecular spin Hamiltonian. In particular, we studied the V15 molecule, comprised of 15 spins 1/2 and a total spin 1/2, which is a system that recently showed quantum Rabi oscillations of its total quantum spin. This type of molecule is an essential system for advancing molecular structures into quantum computing. We used high frequency characterization techniques (of hundreds of GHz) to gain insight into the exchange anisotropy interactions, crystal field, and anti-symmetric interactions present in this system. We analyzed the data using a detailed numerical analysis of spin interactions and our findings regarding the V15 spin Hamiltonian will be discussed. Supported by the NSF Cooperative Agreement Grant No. DMR-0654118 and No. NHMFL UCGP 5059, NSF grant No. DMR-0645408.
Wei, Hai-Rui; Deng, Fu-Guo
2014-01-13
We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.
Two-dimensional lattice gauge theories with superconducting quantum circuits
Marcos, D.; Widmer, P.; Rico, E.; Hafezi, M.; Rabl, P.; Wiese, U.-J.; Zoller, P.
2014-01-01
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability. PMID:25512676
One-norm geometric quantum discord and critical point estimation in the XY spin chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com
2016-11-15
In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparingmore » with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.« less
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yu; Yin, Zhiping; Wang, Xiancheng
We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As
Li, Yu; Yin, Zhiping; Wang, Xiancheng; ...
2016-06-17
We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less
Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe_{1-x}Co_{x}As.
Li, Yu; Yin, Zhiping; Wang, Xiancheng; Tam, David W; Abernathy, D L; Podlesnyak, A; Zhang, Chenglin; Wang, Meng; Xing, Lingyi; Jin, Changqing; Haule, Kristjan; Kotliar, Gabriel; Maier, Thomas A; Dai, Pengcheng
2016-06-17
We use neutron scattering to study spin excitations in single crystals of LiFe_{0.88}Co_{0.12}As, which is located near the boundary of the superconducting phase of LiFe_{1-x}Co_{x}As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe_{0.88}Co_{0.12}As with a combined density functional theory and dynamical mean field theory calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the d_{xy} orbitals, while high-energy spin excitations arise from the d_{yz} and d_{xz} orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in the LiFeAs family cannot be described by an anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe_{1-x}Co_{x}As is consistent with the electron-hole Fermi surface nesting conditions for the d_{xy} orbital, the reduced superconductivity in LiFe_{0.88}Co_{0.12}As suggests that Fermi surface nesting conditions for the d_{yz} and d_{xz} orbitals are also important for superconductivity in iron pnictides.
Morello, A; Millán, A; de Jongh, L J
2014-03-21
A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.
NASA Astrophysics Data System (ADS)
Chekhovich, E. A.; Ulhaq, A.; Zallo, E.; Ding, F.; Schmidt, O. G.; Skolnick, M. S.
2017-10-01
Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent `dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed--the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.
Optical pumping of electron and nuclear spin in a negatively-charged quantum dot
NASA Astrophysics Data System (ADS)
Bracker, Allan; Gershoni, David; Korenev, Vladimir
2005-03-01
We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.
Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G
2016-08-12
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
NASA Astrophysics Data System (ADS)
Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.
2016-08-01
We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.
Cavity-Enhanced Optical Readout of a Single Solid-State Spin
NASA Astrophysics Data System (ADS)
Sun, Shuo; Kim, Hyochul; Solomon, Glenn S.; Waks, Edo
2018-05-01
We demonstrate optical readout of a single spin using cavity quantum electrodynamics. The spin is based on a single trapped electron in a quantum dot that has a poor branching ratio of 0.43. Selectively coupling one of the optical transitions of the quantum dot to the cavity mode results in a spin-dependent cavity reflectivity that enables spin readout by monitoring the reflected intensity of an incident optical field. Using this approach, we demonstrate spin-readout fidelity of 0.61. Achieving this fidelity using resonance fluorescence from a bare dot would require 43 times improvement in photon collection efficiency.
Dynamic Stabilization of a Quantum Many-Body Spin System
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.
2013-08-01
We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.
Spin relaxation in quantum dots due to electron exchange with leads.
Vorontsov, A B; Vavilov, M G
2008-11-28
We calculate spin relaxation rates in lateral quantum dot systems due to electron exchange between dots and leads. Using rate equations, we develop a theoretical description of the experimentally observed electric current in the spin blockade regime of double quantum dots. A single expression fits the entire current profile and describes the structure of both the conduction peaks and the suppressed ("valley") region. Extrinsic rates calculated here have to be taken into account for accurate extraction of intrinsic relaxation rates due to the spin-orbit and hyperfine spin scattering mechanisms from spin blockade measurements.
NASA Astrophysics Data System (ADS)
Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.
2017-09-01
Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.
Deep Neural Network Detects Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki
2018-03-01
We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble
Klimov, Paul V.; Falk, Abram L.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.
2015-01-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444
Dzhioev, R I; Korenev, V L
2007-07-20
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
NASA Astrophysics Data System (ADS)
Dzhioev, R. I.; Korenev, V. L.
2007-07-01
The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.
Quantum gap and spin-wave excitations in the Kitaev model on a triangular lattice
NASA Astrophysics Data System (ADS)
Avella, Adolfo; Di Ciolo, Andrea; Jackeli, George
2018-05-01
We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.
A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%
NASA Astrophysics Data System (ADS)
Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo
2018-02-01
The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.
Vindication of Yb2Ti2O7 as a model exchange quantum spin ice.
Applegate, R; Hayre, N R; Singh, R R P; Lin, T; Day, A G R; Gingras, M J P
2012-08-31
We use numerical linked-cluster expansions to compute the specific heat C(T) and entropy S(T) of a quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan
2011-10-01
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Dür, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.052309 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Dür-Briegel state.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid
NASA Astrophysics Data System (ADS)
Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.
2012-07-01
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.
Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M
2012-07-17
Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.
Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems
Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip
2014-01-01
Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology. PMID:24394808
Prediction of Spin-Polarization Effects in Quantum Wire Transport
NASA Astrophysics Data System (ADS)
Fasol, Gerhard; Sakaki, Hiroyuki
1994-01-01
We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.
Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells
2011-01-01
Transient spin grating experiments are used to investigate the electron spin diffusion in intrinsic (110) GaAs/AlGaAs multiple quantum well at room temperature. The measured spin diffusion length of optically excited electrons is about 4 μm at low spin density. Increasing the carrier density yields both a decrease of the spin relaxation time and the spin diffusion coefficient Ds. PMID:21711662
The birth of quantum networks: merging remote entanglement with local multi-qubit control
NASA Astrophysics Data System (ADS)
Hanson, Ronald
The realization of a highly connected network of qubit registers is a central challenge for quantum information processing and long-distance quantum communication. Diamond spins associated with NV centers are promising building blocks for such a network: they combine a coherent spin-photon interface that has already enabled creation of spin-spin entanglement over 1km with a local register of robust and well-controlled nuclear spin qubits for information processing and error correction. We are now entering a new research stage in which we can exploit these features simultaneously and build multi-qubit networks. I will present our latest results towards the first of such experiments: entanglement distillation between remote quantum network nodes. Finally, I will discuss the challenges and opportunities ahead on the road to large-scale networks of qubit registers for quantum computation and communication.
Bonizzoni, C; Ghirri, A; Atzori, M; Sorace, L; Sessoli, R; Affronte, M
2017-10-12
Electron spins are ideal two-level systems that may couple with microwave photons so that, under specific conditions, coherent spin-photon states can be realized. This represents a fundamental step for the transfer and the manipulation of quantum information. Along with spin impurities in solids, molecular spins in concentrated phases have recently shown coherent dynamics under microwave stimuli. Here we show that it is possible to obtain high cooperativity regime between a molecular Vanadyl Phthalocyanine (VOPc) spin ensemble and a high quality factor superconducting YBa 2 Cu 3 O 7 (YBCO) coplanar resonator at 0.5 K. This demonstrates that molecular spin centers can be successfully integrated in hybrid quantum devices.
Phase-Tuned Entangled State Generation between Distant Spin Qubits.
Stockill, R; Stanley, M J; Huthmacher, L; Clarke, E; Hugues, M; Miller, A J; Matthiesen, C; Le Gall, C; Atatüre, M
2017-07-07
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ^{(+)}⟩ and |ψ^{(-)}⟩ states of 61.6±2.3% and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Phase-Tuned Entangled State Generation between Distant Spin Qubits
NASA Astrophysics Data System (ADS)
Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.
2017-07-01
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Coherent spin transfer between molecularly bridged quantum dots.
Ouyang, Min; Awschalom, David D
2003-08-22
Femtosecond time-resolved Faraday rotation spectroscopy reveals the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room-temperature spin-transfer efficiency is approximately 20%, showing that conjugated molecules can be used not only as interconnections for the hierarchical assembly of functional networks but also as efficient spin channels. The results suggest that this class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies.
NASA Astrophysics Data System (ADS)
Wang, F.; Huang, Y.-Y.; Zhang, Z.-Y.; Zu, C.; Hou, P.-Y.; Yuan, X.-X.; Wang, W.-B.; Zhang, W.-G.; He, L.; Chang, X.-Y.; Duan, L.-M.
2017-10-01
We experimentally demonstrate room-temperature storage of quantum entanglement using two nuclear spins weakly coupled to the electronic spin carried by a single nitrogen-vacancy center in diamond. We realize universal quantum gate control over the three-qubit spin system and produce entangled states in the decoherence-free subspace of the two nuclear spins. By injecting arbitrary collective noise, we demonstrate that the decoherence-free entangled state has coherence time longer than that of other entangled states by an order of magnitude in our experiment.
Novel systems and methods for quantum communication, quantum computation, and quantum simulation
NASA Astrophysics Data System (ADS)
Gorshkov, Alexey Vyacheslavovich
Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases. While ultracold atoms typically exhibit only short-range interactions, numerous exotic phenomena and practical applications require long-range interactions, which can be achieved with ultracold polar molecules. We demonstrate the possibility to engineer a repulsive interaction between polar molecules, which allows for the suppression of inelastic collisions, efficient evaporative cooling, and the creation of novel phases of polar molecules.
NASA Astrophysics Data System (ADS)
Bernatowicz, P.; Szymański, S.
2003-09-01
The semiclassical and quantum mechanical NMR lineshape equations for a hindered methyl group are compared. In both the approaches, the stochastic dynamics can be interpreted in terms of a progressive symmetrization of the spin density matrix. However, the respective ways of achieving the same limiting symmetry can be remarkably different. From numerical lineshape simulations it is inferred that in the regime of intermediate exchange, where the conventional theory predicts occurrence of a single Lorentzian, the actual spectrum can have nontrivial features. This observation may open new perspectives in the search for nonclassical effects in the stochastic behavior of methyl groups in liquid-phase NMR.
NASA Astrophysics Data System (ADS)
da Silva, W. M.; Montenegro-Filho, R. R.
2017-12-01
Quantum critical (QC) phenomena can be accessed by studying quantum magnets under an applied magnetic field (B ). The QC points are located at the end points of magnetization plateaus and separate gapped and gapless phases. In one dimension, the low-energy excitations of the gapless phase form a Luttinger liquid (LL), and crossover lines bound insulating (plateau) and LL regimes, as well as the QC regime. Alternating ferrimagnetic chains have a spontaneous magnetization at T =0 and gapped excitations at zero field. Besides the plateau at the fully polarized (FP) magnetization, due to the gap there is another magnetization plateau at the ferrimagnetic (FRI) magnetization. We develop spin-wave theories to study the thermal properties of these chains under an applied magnetic field: one from the FRI classical state and another from the FP state, comparing their results with quantum Monte Carlo data. We deepen the theory from the FP state, obtaining the crossover lines in the T vs B low-T phase diagram. In particular, from local extreme points in the susceptibility and magnetization curves, we identify the crossover between an LL regime formed by excitations from the FRI state to another built from excitations of the FP state. These two LL regimes are bounded by an asymmetric domelike crossover line, as observed in the phase diagram of other quantum magnets under an applied magnetic field.
Extraordinary SEAWs under influence of the spin-spin interaction and the quantum Bohm potential
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2018-06-01
The separate spin evolution (SSE) of electrons causes the existence of the spin-electron acoustic wave. Extraordinary spin-electron acoustic waves (SEAWs) propagating perpendicular to the external magnetic field have a large contribution of the transverse electric field. Its spectrum has been studied in the quasi-classical limit at the consideration of the separate spin evolution. The spin-spin interaction and the quantum Bohm potential give contribution in the spectrum extraordinary SEAWs. This contribution is studied in this paper. Moreover, it is demonstrated that the spin-spin interaction leads to the existence of the extraordinary SEAWs if the SSE is neglected. It has been found that the SSE causes the instability of the extraordinary SEAW at the large wavelengths, but the quantum Bohm potential leads to the full stabilization of the spectrum.
NASA Astrophysics Data System (ADS)
Pederzoli, Marek; Pittner, Jiří
2017-03-01
We present surface hopping dynamics on potential energy surfaces resulting from the spin-orbit splitting, i.e., surfaces corresponding to the eigenstates of the total electronic Hamiltonian including the spin-orbit coupling. In this approach, difficulties arise because of random phases of degenerate eigenvectors and possibility of crossings of the resulting mixed states. Our implementation solves these problems and allows propagation of the coefficients both in the representation of the spin free Hamiltonian and directly in the "diagonal representation" of the mixed states. We also provide a detailed discussion of the state crossing and point out several peculiarities that were not mentioned in the previous literature. We also incorporate the effect of the environment via the quantum mechanics/molecular mechanics approach. As a test case, we apply our methodology to deactivation of thiophene and selenophene in the gas phase, ethanol solution, and bulk liquid phase. First, 100 trajectories without spin-orbit coupling have been calculated for thiophene starting both in S1 and S2 states. A subset of 32 initial conditions starting in the S2 state was then used for gas phase simulations with spin-orbit coupling utilizing the 3-step integrator of SHARC, our implementation of the 3-step propagator in Newton-X and two new "one-step" approaches. Subsequently, we carried out simulations in ethanol solution and bulk liquid phase for both thiophene and selenophene. For both molecules, the deactivation of the S2 state proceeds via the ring opening pathway. The total population of triplet states reaches around 15% and 40% after 80 fs for thiophene and selenophene, respectively. However, it only begins growing after the ring opening is initiated; hence, the triplet states do not directly contribute to the deactivation mechanism. For thiophene, the resulting deactivation lifetime of the S2 state was 68 fs in the gas phase, 76 fs in ethanol solution, and 78 fs in the liquid phase, in a good agreement with the experimental value of 80 fs (liquid phase). For selenophene, the obtained S2 lifetime was 60 fs in the gas phase and 62 fs for both ethanol solution and liquid phase. The higher rate of intersystem crossing to the triplet states in selenophene is likely the reason for the lower fluorescence observed in selenium containing polymer compounds.
Direct Identification of Dilute Surface Spins on Al2 O3 : Origin of Flux Noise in Quantum Circuits
NASA Astrophysics Data System (ADS)
de Graaf, S. E.; Adamyan, A. A.; Lindström, T.; Erts, D.; Kubatkin, S. E.; Tzalenchuk, A. Ya.; Danilov, A. V.
2017-02-01
An on-chip electron spin resonance technique is applied to reveal the nature and origin of surface spins on Al2 O3 . We measure a spin density of 2.2 ×1 017 spins/m2 , attributed to physisorbed atomic hydrogen and S =1 /2 electron spin states on the surface. This is direct evidence for the nature of spins responsible for flux noise in quantum circuits, which has been an issue of interest for several decades. Our findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices.
NASA Astrophysics Data System (ADS)
Lima, Leonardo S.
2018-04-01
We have propose the Meissner mechanism for the spin supercurrent in quantum spin systems. Besides, we study the behavior of the AC spin conductivity in neighborhood of quantum phase transition in a frustrated spin model such as the antiferromagnet in the union jack lattice with single ion anisotropy at T = 0 . We investigate the spin conductivity for this model that presents exchange interactions J1 and J2 . Our results show a single peak for the conductivity with the height varying with the behavior of critical anisotropy Dc with J2 . We obtain the conductivity tending to zero in the limit ω → 0 .
NASA Astrophysics Data System (ADS)
Liu, Weiwen
The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.
Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.
Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A
2005-02-04
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots
NASA Astrophysics Data System (ADS)
Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.
2005-02-01
We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.
Hybrid spin and valley quantum computing with singlet-triplet qubits.
Rohling, Niklas; Russ, Maximilian; Burkard, Guido
2014-10-24
The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.
Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
NASA Astrophysics Data System (ADS)
Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M.
2017-09-01
Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.
NASA Astrophysics Data System (ADS)
Karľová, Katarína; Strečka, Jozef; Lyra, Marcelo L.
2018-03-01
The spin-1/2 Ising-Heisenberg pentagonal chain is investigated with use of the star-triangle transformation, which establishes a rigorous mapping equivalence with the effective spin-1/2 Ising zigzag ladder. The investigated model has a rich ground-state phase diagram including two spectacular quantum antiferromagnetic ground states with a fourfold broken symmetry. It is demonstrated that these long-period quantum ground states arise due to a competition between the effective next-nearest-neighbor and nearest-neighbor interactions of the corresponding spin-1/2 Ising zigzag ladder. The concurrence is used to quantify the bipartite entanglement between the nearest-neighbor Heisenberg spin pairs, which are quantum-mechanically entangled in two quantum ground states with or without spontaneously broken symmetry. The pair correlation functions between the nearest-neighbor Heisenberg spins as well as the next-nearest-neighbor and nearest-neighbor Ising spins were investigated with the aim to bring insight into how a relevant short-range order manifests itself at low enough temperatures. It is shown that the specific heat displays temperature dependencies with either one or two separate round maxima.
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
NASA Astrophysics Data System (ADS)
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
Realizing Controllable Quantum States
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku
1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara -- 4. Mesoscopic superconductivity with unconventional superconductor or ferromagnet. Ultraefficient microrefrigerators realized with ferromagnet-superconductor junctions / F. Giazotto et al. Anomalous charge transport in triplet superconductor junctions by the synergy effect of the proximity effect and the mid gap Andreev resonant states / Y. Tanaka and S. Kashiwaya. Paramagnetic and glass states in superconductive YBa[symbol]Cu[symbol]O[symbol] ceramics of sub-micron scale grains / H. Deguchi et al. Quantum properties of single-domain triplet superconductors / A. M. Gulian and K. S. Wood. A numerical study of Josephson current in p wave superconducting junctions / Y. Asano et al. Tilted bi-crystal sapphire substrates improve properties of grain boundary YBa[symbol]Cu[symbol]O[symbol] junctions and extend their Josephson response to THZ frequencies / E. Stepantsov et al. Circuit theory analysis of AB-plane tunnel junctions of unconventional superconductor Bi[symbol]Sr[symbol]Ca[symbol]Cu[symbol]O[symbol] / I. Shigeta et al. Transport properties of normal metal/anisotropic superconductor junctions in the eutectic system Sr[symbol]RuO[symbol]Ru / M. Kawamura et al. Macroscopic quantum tunneling in d-wave superconductor Josephson / S. Kawabata et al. Quasiparticle states of high-T[symbol] oxides observed by a Zeeman magnetic field response / S. Kashiwaya et al. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors: vortex lenses, vortex diodes and vortex pumps / S. Savel'ev and F. Nori. Stability of vortex-antivortex "molecules" in mesoscopic superconducting triangles / V. R. Misko et al. Superconducting network with magnetic decoration - Hofstadter butterfly in spatially modulated magnetic field / Y. Iye et al. Observation of paramagnetic supercurrent in mesoscopic superconducting rings and disks using multiple-small-tunnel-junction method / A. Kanda et al. Guidance of vortices in high-T[stmbol] superconducting thin films with special arrangements of antidots / R. Wöerdenweber, P. Dymashevski and V. R. Misko. Quantum tunneling of relativistic fluxons / K. Konno et al. -- 6. Quantum information processing in solid states. Qubit decoherence by low-frequency noise / K. Rabenstein, V. A. Sverdlov and D. V. Averin. A critique of two-level approximation / K. Savran and T. Hakioǧlu. Josephson arrays as quantum channels / A. Romito, C. Bruder and R. Fazio. Fighting decoherence in a Josephson qubit circuit / E. Collin et al. Fast switching current detection at low critical currents / J. Walter, S. Corlevi and D. Haviland. Asymmetric flux bias for coupled qubits to observe entangled states / Y. Shimazu. Interaction of Josephson qubits with strong QED cavity modes: dynamical entanglement transfer and navigation / G. Falci et al. Controlling decoherence of transported quantum spin information in semiconductor spintronics / B. Nikolic and S. Souma. Decoherence due to telegraph and 1/f noise in Josephson qubits / E. Paladino et al. Detection of entanglement in NMR quantum information processing / R. Rahimi, K. Takeda and M. Kitagawa. Multiphoton absorption and SQUID switching current behaviors in superconducting flux-qubit experiments / H. Takayanagi et al. -- 7. Quantum information theory. Quantum query complexities / K. Iwama. A construction for non-stabilizer Clifford codes / M. Hagiwara and H. Imai. Quantum pushdown automata that can deterministically solve a certain problem / Y. Murakami et al. Trading classical for quantum computation using indirection / R. van Meter. Intractability of the initial arrangement of input data on qubits / Y. Kawano et al. Reversibility of modular squaring / N. Kunihiro, Y. Takahashi and Y. Kawano. Study of proximity effect at D-wave superconductors in quasiclassical methods / Y. Tanuma, Y. Tanaka and S. Kashiwaya -- 8. Spintronics in band electrons. Triplet superconductors: exploitable basis for scalable quantum computing / K. S. Wood et al. Spin excitations in low-dimensional electron gases studied by far-infrared photoconductivity spectroscopy / C.-M. Hu. Control of photogenerated carriers and spins using surface acoustic waves / P. V. Santos, J. A. H. Stotz and R. Hey. PbTe nanostructures for spin filtering and detecting / G. Grabecki. G-factor control in an Ids-inserted InGaAs/InAlAs heterostructure / J. Nitta et al. Spin hall effect in p-type semiconductors / S. Murakami. Spin diffusion in mesoscopic superconducting A1 wires / Y.-S. Shin. H.-J. Lee and H.-W. Lee. Magnetization processes revealed by in-plane DC magnetoresistance measurements on manganite bicrystal thin film devices / R. Gunnarsson. M. Hanson and T. Claeson. Giant magnetoconductance at interface between a two-dimensional hole system and a magnetic semiconductor (Ga, Mn)As / Y. Hashimoto, S. Katsumoto and Y. Iye. Diffusion modes of the transport in diluted magnetic semiconductors / I. Kanazawa. Effect of an invasive voltage probe on the spin polarized current / J. Ohe and T. Ohtsuki -- 9. Spintronics in quantum dots. Tunable exchange interaction and Kondo screening in quantum dot devices / H. Tamura et al. Kondo effect in quantum dots in presence of itinerant-electron magnetism / J. Martinek et al. Optical band edge of II-VI and III-V based diluted magnetic semiconductors / M. Takahashi. Spin-polarized transport properties through double quantum dots / Y. Tanaka and N. Kawakami. RKKY interaction between two quantum dots embedded in an Aharonov-Bohm ring / Y. Utsumi et al. Fabrication and characterization of quantum dot single electron spin resonance devices / T. Kodera et al. Kondo effect in quantum dots with two orbitals and spin 1/2 - crossover from SU (4) to SU (2) symmetry / M. Eto. Detecting spin polarization of electrons in quantum dot edge channels by photoluminescence / S. Nomura. Manipulation of exchange interaction in a double quantum dot / M. Stopa, S. Tarucha and T. Hatano. Electron-density dependence of photoluminescence from Be-[symbol]-doped GaAs quantum wells with a back gate / M. Yamaguchi et al. Direct observation of [symbol]Si nuclear-spin decoherence process / S. Sasaki and S. Watanabe.
High-fidelity readout and control of a nuclear spin qubit in silicon.
Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea
2013-04-18
Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.
Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells
NASA Astrophysics Data System (ADS)
McGuinness, L. P.; Yan, Y.; Stacey, A.; Simpson, D. A.; Hall, L. T.; MacLaurin, D.; Prawer, S.; Mulvaney, P.; Wrachtrup, J.; Caruso, F.; Scholten, R. E.; Hollenberg, L. C. L.
2011-06-01
Fluorescent particles are routinely used to probe biological processes. The quantum properties of single spins within fluorescent particles have been explored in the field of nanoscale magnetometry, but not yet in biological environments. Here, we demonstrate optically detected magnetic resonance of individual fluorescent nanodiamond nitrogen-vacancy centres inside living human HeLa cells, and measure their location, orientation, spin levels and spin coherence times with nanoscale precision. Quantum coherence was measured through Rabi and spin-echo sequences over long (>10 h) periods, and orientation was tracked with effective 1° angular precision over acquisition times of 89 ms. The quantum spin levels served as fingerprints, allowing individual centres with identical fluorescence to be identified and tracked simultaneously. Furthermore, monitoring decoherence rates in response to changes in the local environment may provide new information about intracellular processes. The experiments reported here demonstrate the viability of controlled single spin probes for nanomagnetometry in biological systems, opening up a host of new possibilities for quantum-based imaging in the life sciences.
Guterding, Daniel; Jeschke, Harald O; Valentí, Roser
2016-05-17
Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.
Strange metal from local quantum chaos
NASA Astrophysics Data System (ADS)
Ben-Zion, Daniel; McGreevy, John
2018-04-01
How to make a model of a non-Fermi-liquid metal with efficient current dissipation is a long-standing problem. Results from holographic duality suggest a framework where local critical fermionic degrees of freedom provide both a source of decoherence for the Landau quasiparticle, and a sink for its momentum. This leads us to study a Kondo lattice type model with SYK models in place of the spin impurities. We find evidence for a stable phase at intermediate couplings.
Analytical theory and possible detection of the ac quantum spin Hall effect
Deng, W. Y.; Ren, Y. J.; Lin, Z. X.; ...
2017-07-11
Here, we develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.
NASA Astrophysics Data System (ADS)
Hu, C. Y.
2016-12-01
The realization of quantum computers and quantum Internet requires not only quantum gates and quantum memories, but also transistors at single-photon levels to control the flow of information encoded on single photons. Single-photon transistor (SPT) is an optical transistor in the quantum limit, which uses a single photon to open or block a photonic channel. In sharp contrast to all previous SPT proposals which are based on single-photon nonlinearities, here I present a design for a high-gain and high-speed (up to THz) SPT based on a linear optical effect: giant circular birefringence induced by a single spin in a double-sided optical microcavity. A gate photon sets the spin state via projective measurement and controls the light propagation in the optical channel. This spin-cavity transistor can be directly configured as diodes, routers, DRAM units, switches, modulators, etc. Due to the duality as quantum gate and transistor, the spin-cavity unit provides a solid-state platform ideal for future Internet: a mixture of all-optical Internet with quantum Internet.
Quantum Computational Universality of the 2D Cai-Miyake-D"ur-Briegel Quantum State
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan
2012-02-01
Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, D"ur, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by constructing single- and two-qubit universal gates. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. Furthermore, a two-dimensional cluster state can be distilled from the Cai-Miyake-D"ur-Briegel state.
Mode locking of electron spin coherences in singly charged quantum dots.
Greilich, A; Yakovlev, D R; Shabaev, A; Efros, Al L; Yugova, I A; Oulton, R; Stavarache, V; Reuter, D; Wieck, A; Bayer, M
2006-07-21
The fast dephasing of electron spins in an ensemble of quantum dots is detrimental for applications in quantum information processing. We show here that dephasing can be overcome by using a periodic train of light pulses to synchronize the phases of the precessing spins, and we demonstrate this effect in an ensemble of singly charged (In,Ga)As/GaAs quantum dots. This mode locking leads to constructive interference of contributions to Faraday rotation and presents potential applications based on robust quantum coherence within an ensemble of dots.
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.
Vandersypen, L M; Steffen, M; Breyta, G; Yannoni, C S; Sherwood, M H; Chuang, I L
The number of steps any classical computer requires in order to find the prime factors of an l-digit integer N increases exponentially with l, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shor's quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shor's algorithm: factorization of N = 15 (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid-state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to systems containing many quantum bits, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.
Towards scalable quantum communication and computation: Novel approaches and realizations
NASA Astrophysics Data System (ADS)
Jiang, Liang
Quantum information science involves exploration of fundamental laws of quantum mechanics for information processing tasks. This thesis presents several new approaches towards scalable quantum information processing. First, we consider a hybrid approach to scalable quantum computation, based on an optically connected network of few-qubit quantum registers. Specifically, we develop a novel scheme for scalable quantum computation that is robust against various imperfections. To justify that nitrogen-vacancy (NV) color centers in diamond can be a promising realization of the few-qubit quantum register, we show how to isolate a few proximal nuclear spins from the rest of the environment and use them for the quantum register. We also demonstrate experimentally that the nuclear spin coherence is only weakly perturbed under optical illumination, which allows us to implement quantum logical operations that use the nuclear spins to assist the repetitive-readout of the electronic spin. Using this technique, we demonstrate more than two-fold improvement in signal-to-noise ratio. Apart from direct application to enhance the sensitivity of the NV-based nano-magnetometer, this experiment represents an important step towards the realization of robust quantum information processors using electronic and nuclear spin qubits. We then study realizations of quantum repeaters for long distance quantum communication. Specifically, we develop an efficient scheme for quantum repeaters based on atomic ensembles. We use dynamic programming to optimize various quantum repeater protocols. In addition, we propose a new protocol of quantum repeater with encoding, which efficiently uses local resources (about 100 qubits) to identify and correct errors, to achieve fast one-way quantum communication over long distances. Finally, we explore quantum systems with topological order. Such systems can exhibit remarkable phenomena such as quasiparticles with anyonic statistics and have been proposed as candidates for naturally error-free quantum computation. We propose a scheme to unambiguously detect the anyonic statistics in spin lattice realizations using ultra-cold atoms in an optical lattice. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit.
Assessment of bilayer silicene to probe as quantum spin and valley Hall effect
NASA Astrophysics Data System (ADS)
Rehman, Majeed Ur; Qiao, Zhenhua
2018-02-01
Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.
NASA Astrophysics Data System (ADS)
Álvarez, Gonzalo A.; Levstein, Patricia R.; Pastawski, Horacio M.
2007-09-01
We have observed an environmentally induced quantum dynamical phase transition in the dynamics of a two-spin experimental swapping gate [G.A. Álvarez, E.P. Danieli, P.R. Levstein, H.M. Pastawski, J. Chem. Phys. 124 (2006) 194507]. There, the exchange of the coupled states |↑,↓> and |↓,↑> gives an oscillation with a Rabi frequency b/ℏ (the spin-spin coupling). The interaction, ℏ/τSE with a spin-bath degrades the oscillation with a characteristic decoherence time. We showed that the swapping regime is restricted only to bτSE≳ℏ. However, beyond a critical interaction with the environment the swapping freezes and the system enters to a Quantum Zeno dynamical phase where relaxation decreases as coupling with the environment increases. Here, we solve the quantum dynamics of a two-spin system coupled to a spin-bath within a Liouville-von Neumann quantum master equation and we compare the results with our previous work within the Keldysh formalism. Then, we extend the model to a three interacting spin system where only one is coupled to the environment. Beyond a critical interaction the two spins not coupled to the environment oscillate with the bare Rabi frequency and relax more slowly. This effect is more pronounced when the anisotropy of the system-environment (SE) interaction goes from a purely XY to an Ising interaction form.
NASA Astrophysics Data System (ADS)
Pasco, C. M.; Trump, B. A.; Tran, Thao T.; Kelly, Z. A.; Hoffmann, C.; Heinmaa, I.; Stern, R.; McQueen, T. M.
2018-04-01
Synthetic barlowite, C u4(OH) 6BrF , has emerged as a new quantum spin liquid (QSL) host, containing kagomé layers of S =1 /2 C u2 + ions separated by interlayer C u2 + ions. Similar to synthetic herbertsmithite, ZnC u3(OH) 6C l2 , it has been reported that Z n2 + substitution for the interlayer C u2 + induces a QSL ground state. Here we report a scalable synthesis of single crystals of C u4(OH) 6BrF . Through x-ray, neutron, and electron diffraction measurements coupled with magic angle spinning 19F and 1H NMR spectroscopy, we resolve the previously reported positional disorder of the interlayer C u2 + ions and find that the structure is best described in the orthorhombic space group, Cmcm, with lattice parameters a =6.665 (13 )Å ,b =11.521 (2 )Å ,c =9.256 (18 )Å , and an ordered arrangement of interlayer C u2 + ions. Infrared spectroscopy measurements of the O—H and F—H stretching frequencies demonstrate that the orthorhombic symmetry persists upon substitution of Z n2 + for C u2 + . Specific heat and magnetic susceptibility measurements of Zn-substituted barlowite, Z nxC u4 -x(OH) 6BrF , reveal striking similarities with the behavior of Z nxC u4 -x(OH) 6C l2 . These parallels imply universal behavior of copper kagomé lattices even in the presence of small symmetry-breaking distortions. Thus, synthetic barlowite demonstrates universality of the physics of synthetic C u2 + kagomé minerals and furthers the development of real QSL states.
Enhancing coherence in molecular spin qubits via atomic clock transitions
NASA Astrophysics Data System (ADS)
Shiddiq, Muhandis; Komijani, Dorsa; Duan, Yan; Gaita-Ariño, Alejandro; Coronado, Eugenio; Hill, Stephen
2016-03-01
Quantum computing is an emerging area within the information sciences revolving around the concept of quantum bits (qubits). A major obstacle is the extreme fragility of these qubits due to interactions with their environment that destroy their quantumness. This phenomenon, known as decoherence, is of fundamental interest. There are many competing candidates for qubits, including superconducting circuits, quantum optical cavities, ultracold atoms and spin qubits, and each has its strengths and weaknesses. When dealing with spin qubits, the strongest source of decoherence is the magnetic dipolar interaction. To minimize it, spins are typically diluted in a diamagnetic matrix. For example, this dilution can be taken to the extreme of a single phosphorus atom in silicon, whereas in molecular matrices a typical ratio is one magnetic molecule per 10,000 matrix molecules. However, there is a fundamental contradiction between reducing decoherence by dilution and allowing quantum operations via the interaction between spin qubits. To resolve this contradiction, the design and engineering of quantum hardware can benefit from a ‘bottom-up’ approach whereby the electronic structure of magnetic molecules is chemically tailored to give the desired physical behaviour. Here we present a way of enhancing coherence in solid-state molecular spin qubits without resorting to extreme dilution. It is based on the design of molecular structures with crystal field ground states possessing large tunnelling gaps that give rise to optimal operating points, or atomic clock transitions, at which the quantum spin dynamics become protected against dipolar decoherence. This approach is illustrated with a holmium molecular nanomagnet in which long coherence times (up to 8.4 microseconds at 5 kelvin) are obtained at unusually high concentrations. This finding opens new avenues for quantum computing based on molecular spin qubits.
Addressable single-spin control in multiple quantum dots coupled in series
NASA Astrophysics Data System (ADS)
Nakajima, Takashi
2015-03-01
Electron spin in semiconductor quantum dots (QDs) is promising building block of quantum computers for its controllability and potential scalability. Recent experiments on GaAs QDs have demonstrated necessary ingredients of universal quantum gate operations: single-spin rotations by electron spin resonance (ESR) which is virtually free from the effect of nuclear spin fluctuation, and pulsed control of two-spin entanglement. The scalability of this architecture, however, has remained to be demonstrated in the real world. In this talk, we will present our recent results on implementing single-spin-based qubits in triple, quadruple, and quintuple QDs based on a series coupled architecture defined by gate electrodes. Deterministic initialization of individual spin states and spin-state readout were performed by the pulse operation of detuning between two neighboring QDs. The spin state was coherently manipulated by ESR, where each spin in different QDs is addressed by the shift of the resonance frequency due to the inhomogeneous magnetic field induced by the micro magnet deposited on top of the QDs. Control of two-spin entanglement was also demonstrated. We will discuss key issues for implementing quantum algorithms based on three or more qubits, including the effect of a nuclear spin bath, single-shot readout fidelity, and tuning of multiple qubit devices. Our approaches to these issues will be also presented. This research is supported by Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) from JSPS, IARPA project ``Multi-Qubit Coherent Operations'' through Copenhagen University, and Grant-in-Aid for Scientific Research from JSPS.
Quantum annealing for the number-partitioning problem using a tunable spin glass of ions
Graß, Tobias; Raventós, David; Juliá-Díaz, Bruno; Gogolin, Christian; Lewenstein, Maciej
2016-01-01
Exploiting quantum properties to outperform classical ways of information processing is an outstanding goal of modern physics. A promising route is quantum simulation, which aims at implementing relevant and computationally hard problems in controllable quantum systems. Here we demonstrate that in a trapped ion setup, with present day technology, it is possible to realize a spin model of the Mattis-type that exhibits spin glass phases. Our method produces the glassy behaviour without the need for any disorder potential, just by controlling the detuning of the spin-phonon coupling. Applying a transverse field, the system can be used to benchmark quantum annealing strategies which aim at reaching the ground state of the spin glass starting from the paramagnetic phase. In the vicinity of a phonon resonance, the problem maps onto number partitioning, and instances which are difficult to address classically can be implemented. PMID:27230802
Müller, K; Kaldewey, T; Ripszam, R; Wildmann, J S; Bechtold, A; Bichler, M; Koblmüller, G; Abstreiter, G; Finley, J J
2013-01-01
The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2-5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2-10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity.
Highly retrievable spin-wave-photon entanglement source.
Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei
2015-05-29
Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.
A Quantum Dot with Spin-Orbit Interaction--Analytical Solution
ERIC Educational Resources Information Center
Basu, B.; Roy, B.
2009-01-01
The practical applicability of a semiconductor quantum dot with spin-orbit interaction gives an impetus to study analytical solutions to one- and two-electron quantum dots with or without a magnetic field.
Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory
NASA Astrophysics Data System (ADS)
Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei
2015-09-01
Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.
Observation of an anomalous decoherence effect in a quantum bath at room temperature
Huang, Pu; Kong, Xi; Zhao, Nan; Shi, Fazhan; Wang, Pengfei; Rong, Xing; Liu, Ren-Bao; Du, Jiangfeng
2011-01-01
The decoherence of quantum objects is a critical issue in quantum science and technology. It is generally believed that stronger noise causes faster decoherence. Strikingly, recent theoretical work suggests that under certain conditions, the opposite is true for spins in quantum baths. Here we report an experimental observation of an anomalous decoherence effect for the electron spin-1 of a nitrogen-vacancy centre in high-purity diamond at room temperature. We demonstrate that, under dynamical decoupling, the double-transition can have longer coherence time than the single-transition even though the former couples to the nuclear spin bath as twice strongly as the latter does. The excellent agreement between the experimental and theoretical results confirms the controllability of the weakly coupled nuclear spins in the bath, which is useful in quantum information processing and quantum metrology. PMID:22146389
Quantum Hall effect in graphene with interface-induced spin-orbit coupling
NASA Astrophysics Data System (ADS)
Cysne, Tarik P.; Garcia, Jose H.; Rocha, Alexandre R.; Rappoport, Tatiana G.
2018-02-01
We consider an effective model for graphene with interface-induced spin-orbit coupling and calculate the quantum Hall effect in the low-energy limit. We perform a systematic analysis of the contribution of the different terms of the effective Hamiltonian to the quantum Hall effect (QHE). By analyzing the spin splitting of the quantum Hall states as a function of magnetic field and gate voltage, we obtain different scaling laws that can be used to characterize the spin-orbit coupling in experiments. Furthermore, we employ a real-space quantum transport approach to calculate the quantum Hall conductivity and investigate the robustness of the QHE to disorder introduced by hydrogen impurities. For that purpose, we combine first-principles calculations and a genetic algorithm strategy to obtain a graphene-only Hamiltonian that models the impurity.
Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State
NASA Astrophysics Data System (ADS)
Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon
2016-10-01
Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.
Gaulin, B. D.; Kermarrec, E.; Dahlberg, M. L.; ...
2015-06-01
Solid-solutions of the "soft" quantum spin ice pyrochlore magnets Tb 2B 2O 7 with B=Ti and Sn display a novel magnetic ground state in the presence of strong B-site disorder, characterized by a low susceptibility and strong spin fluctuations to temperatures below 0.1 K. These materials have been studied using ac-susceptibility and muSR techniques to very low temperatures, and time-of-flight inelastic neutron scattering techniques to 1.5 K. Remarkably, neutron spectroscopy of the Tb 3+ crystal field levels appropriate to at high B-site mixing (0.5 < x < 1.5 in Tb 2Sn 2-xTi xO 7) reveal that the doublet ground andmore » first excited states present as continua in energy, while transitions to singlet excited states at higher energies simply interpolate between those of the end members of the solid solution. The resulting ground state suggests an extreme version of a random-anisotropy magnet, with many local moments and anisotropies, depending on the precise local configuration of the six B sites neighboring each magnetic Tb 3+ ion.« less
Crystal field excitations from Yb3 + ions at defective sites in highly stuffed Yb2Ti2O7
NASA Astrophysics Data System (ADS)
Sala, G.; Maharaj, D. D.; Stone, M. B.; Dabkowska, H. A.; Gaulin, B. D.
2018-06-01
The pyrochlore magnet Yb2Ti2O7 has been proposed as a quantum spin ice candidate, a spin liquid state expected to display emergent quantum electrodynamics with gauge photons among its elementary excitations. However, Yb2Ti2O7 's ground state is known to be very sensitive to its precise stoichiometry. Powder samples, produced by solid-state synthesis at relatively low temperatures, tend to be stoichiometric, while single crystals grown from the melt tend to display weak "stuffing" wherein ˜2 % of the Yb3 +, normally at the A site of the A2B2O7 pyrochlore structure, reside as well at the B site. In such samples Yb3 + ions should exist in defective environments at low levels and be subjected to crystalline electric fields very different from those at the stoichiometric A sites. Neutron scattering measurements of Yb3 + in four compositions of Yb2 +xTi2 -xO7 -y show the spectroscopic signatures for these defective Yb3 + ions and explicitly demonstrate that the spin anisotropy of the Yb3 + moment changes from X Y -like for stoichiometric Yb3 + to Ising-like for "stuffed" B site Yb3 + or for A site Yb3 + in the presence of oxygen vacancies.
Capacity of a quantum memory channel correlated by matrix product states
NASA Astrophysics Data System (ADS)
Mulherkar, Jaideep; Sunitha, V.
2018-04-01
We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.
Experimental investigation of spin-orbit coupling in n-type PbTe quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peres, M. L.; Monteiro, H. S.; Castro, S. de
2014-03-07
The spin-orbit coupling is studied experimentally in two PbTe quantum wells by means of weak antilocalization effect. Using the Hikami-Larkin-Nagaoka model through a computational global optimization procedure, we extracted the spin-orbit and inelastic scattering times and estimated the strength of the zero field spin-splitting energy Δ{sub so}. The values of Δ{sub so} are linearly dependent on the Fermi wave vector (k{sub F}) confirming theoretical predictions of the existence of large spin-orbit coupling in IV-VI quantum wells originated from pure Rashba effect.
Teleportation between distant qudits via scattering of mobile qubits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciccarello, Francesco; Zarcone, Michelangelo; Bose, Sougato
2010-04-15
We consider a one-dimensional structure where noninteracting spin-s scattering centers, such as quantum impurities or multilevel atoms, are embedded at given positions. We show that the injection into the structure of unpolarized flying qubits, such as electrons or photons, along with path detection suffice to accomplish spin-state teleportation between two centers via a third ancillary one. No action over the internal quantum state of both the spin-s particles and the flying qubits is required. The protocol enables the transfer of quantum information between well-separated static entities in nanostructures by exploiting a very low control mechanism, namely scattering.
Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator
2013-05-03
quantum entanglement . Here, we engineer frustrated antiferromagnetic interactions between spins stored in a crystal of up to 16 trapped 171Yb+ atoms. We...individual trapped ion spins (10–14) and the observation of spin frus- tration and quantum entanglement in the smallest system of three spins (15). Here...monroe@umd.edu www.sciencemag.org SCIENCE VOL 340 3 MAY 2013 583 and the excitation gap (Fig. 1A) closes, leading to a finite entropy density in the
Acetylcholine molecular arrays enable quantum information processing
NASA Astrophysics Data System (ADS)
Tamulis, Arvydas; Majauskaite, Kristina; Talaikis, Martynas; Zborowski, Krzysztof; Kairys, Visvaldas
2017-09-01
We have found self-assembly of four neurotransmitter acetylcholine (ACh) molecular complexes in a water molecules environment by using geometry optimization with DFT B97d method. These complexes organizes to regular arrays of ACh molecules possessing electronic spins, i.e. quantum information bits. These spin arrays could potentially be controlled by the application of a non-uniform external magnetic field. The proper sequence of resonant electromagnetic pulses would then drive all the spin groups into the 3-spin entangled state and proceed large scale quantum information bits.
Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide
NASA Astrophysics Data System (ADS)
Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst; Mahmoodian, Sahand; Löbl, Matthias Christian; Söllner, Immo; Schott, Rüdiger; Papon, Camille; Pregnolato, Tommaso; Stobbe, Søren; Midolo, Leonardo; Schröder, Tim; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John; Lodahl, Peter
2018-05-01
The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently, the system is used to implement a single-spin photonic switch, in which the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates, single-photon transistors and the efficient generation of a photonic cluster state.
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot.
Kawakami, E; Scarlino, P; Ward, D R; Braakman, F R; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K
2014-09-01
Nanofabricated quantum bits permit large-scale integration but usually suffer from short coherence times due to interactions with their solid-state environment. The outstanding challenge is to engineer the environment so that it minimally affects the qubit, but still allows qubit control and scalability. Here, we demonstrate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical two-axis control. The spin is driven by resonant microwave electric fields in a transverse magnetic field gradient from a local micromagnet, and the spin state is read out in the single-shot mode. Electron spin resonance occurs at two closely spaced frequencies, which we attribute to two valley states. Thanks to the weak hyperfine coupling in silicon, a Ramsey decay timescale of 1 μs is observed, almost two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots, whereas gate operation times are comparable to those reported in GaAs. The spin echo decay time is ~40 μs, both with one and four echo pulses, possibly limited by intervalley scattering. These advances strongly improve the prospects for quantum information processing based on quantum dots.
Control of electron spin decoherence in nuclear spin baths
NASA Astrophysics Data System (ADS)
Liu, Ren-Bao
2011-03-01
Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath. This work was supported by Hong Kong RGC/GRF CUHK402207, CUHK402209, and CUHK402410. The author acknowledges collaboration with Nan Zhao, Jian-Liang Hu, Sai Wah Ho, Jones T. K. Wan, and Jiangfeng Du.
Anisotropic exchange interaction induced by a single photon in semiconductor microcavities
NASA Astrophysics Data System (ADS)
Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.
2005-12-01
We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.
Electron spin control of optically levitated nanodiamonds in vacuum.
Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-07-19
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
Electron spin control of optically levitated nanodiamonds in vacuum
NASA Astrophysics Data System (ADS)
Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang
2016-07-01
Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.
Computer studies of multiple-quantum spin dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murdoch, J.B.
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
Giorgioni, Anna; Paleari, Stefano; Cecchi, Stefano; Vitiello, Elisa; Grilli, Emanuele; Isella, Giovanni; Jantsch, Wolfgang; Fanciulli, Marco; Pezzoli, Fabio
2016-01-01
Control of electron spin coherence via external fields is fundamental in spintronics. Its implementation demands a host material that accommodates the desirable but contrasting requirements of spin robustness against relaxation mechanisms and sizeable coupling between spin and orbital motion of the carriers. Here, we focus on Ge, which is a prominent candidate for shuttling spin quantum bits into the mainstream Si electronics. So far, however, the intrinsic spin-dependent phenomena of free electrons in conventional Ge/Si heterojunctions have proved to be elusive because of epitaxy constraints and an unfavourable band alignment. We overcome these fundamental limitations by investigating a two-dimensional electron gas in quantum wells of pure Ge grown on Si. These epitaxial systems demonstrate exceptionally long spin lifetimes. In particular, by fine-tuning quantum confinement we demonstrate that the electron Landé g factor can be engineered in our CMOS-compatible architecture over a range previously inaccessible for Si spintronics. PMID:28000670
Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron
Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco
2016-01-01
The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor. PMID:27966598
Local Criticality and non-Fermi Liquid Behavior in Heavy Fermions
NASA Astrophysics Data System (ADS)
Si, Qimiao
2002-03-01
Quantum criticality provides a means to understand the apparent non-Fermi liquid phenomena in strongly correlated metals. Heavy fermion metals have emerged as a prototype system; many of them explicitly display a magnetic QCP. Experiments have shown that the quantum critical behavior is much richer than expected. One surprise came from neutron scattering, which found that the spin dynamics is anomalous not only near the antiferromagnetic wavevectors but also essentially everywhere in the Brillouin zone. In this talk, I will review the experiments and describe our theoretical work on the subject [1,2,3]. The notion of "local criticality" will be introduced and will be argued to apply to the heavy fermions. Some broader implications of the results will also be discussed. [1] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature 413, 804 (2001). [2] Q. Si, J. L. Smith and K. Ingersent, Int. Journ. Mod. Phys. B13, 2331 (1999). [3] J. L. Smith and Q. Si, Phys. Rev. B61, 5184 (2000).
Scalable quantum computer architecture with coupled donor-quantum dot qubits
Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey
2014-08-26
A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.
Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide
NASA Astrophysics Data System (ADS)
Nagy, Roland; Widmann, Matthias; Niethammer, Matthias; Dasari, Durga B. R.; Gerhardt, Ilja; Soykal, Öney O.; Radulaski, Marina; Ohshima, Takeshi; Vučković, Jelena; Son, Nguyen Tien; Ivanov, Ivan G.; Economou, Sophia E.; Bonato, Cristian; Lee, Sang-Yun; Wrachtrup, Jörg
2018-03-01
Although various defect centers have displayed promise as either quantum sensors, single photon emitters, or light-matter interfaces, the search for an ideal defect with multifunctional ability remains open. In this spirit, we study the dichroic silicon vacancies in silicon carbide that feature two well-distinguishable zero-phonon lines and analyze the quantum properties in their optical emission and spin control. We demonstrate that this center combines 40% optical emission into the zero-phonon lines showing the contrasting difference in optical properties with varying temperature and polarization, and a 100% increase in the fluorescence intensity upon the spin resonance, and long spin coherence time of their spin-3 /2 ground states up to 0.6 ms. These results single out this defect center as a promising system for spin-based quantum technologies.
NASA Astrophysics Data System (ADS)
Teles, João; Auccaise, Ruben; Rivera-Ascona, Christian; Araujo-Ferreira, Arthur G.; Andreeta, José P.; Bonagamba, Tito J.
2018-07-01
Recently, we reported an experimental implementation of quantum information processing (QIP) by nuclear quadrupole resonance (NQR). In this work, we present the first quantum state tomography (QST) experimental implementation in the NQR QIP context. Two approaches are proposed, employing coherence selection by temporal and spatial averaging. Conditions for reduction in the number of cycling steps are analyzed, which can be helpful for larger spin systems. The QST method was applied to the study of spin coherent states, where the alignment-to-orientation phenomenon and the evolution of squeezed spin states show the effect of the nonlinear quadrupole interaction intrinsic to the NQR system. The quantum operations were implemented using a single-crystal sample of KClO3 and observing ^{35}Cl nuclei, which posses spin 3/2.
Superconducting quantum spin-Hall systems with giant orbital g-factors
NASA Astrophysics Data System (ADS)
Hankiewicz, Ewelina; Reinthaler, Rolf; Tkachov, Grigory
Topological aspects of superconductivity in quantum spin-Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (3D Tis) or two-dimensional Tis are in the focus of current research. Here, we describe a novel superconducting quantum spin-Hall effect (quantum spin Hall system in the proximity to the s-wave superconductor and in the orbital in-plane magnetic field), which is protected against elastic backscattering by combined time-reversal and particle-hole symmetry. This effect is characterized by spin-polarized edge states, which can be manipulated in weak magnetic fields due to a giant effective orbital g-factor, allowing the generation of spin currents. The phenomenon provides a novel solution to the outstanding challenge of detecting the spin-polarization of the edge states. Here we propose the detection of the edge polarization in the three-terminal junction using unusual transport properties of superconducting quantum Hall-effect: a non-monotonic excess current and a zero-bias conductance splitting. We thank for the financial support the German Science Foundation (DFG), Grants No HA 5893/4-1 within SPP 1666, HA5893/5-2 within FOR1162 and TK60/1-1 (G.T.), as well the ENB graduate school ``Topological insulators''.
Designing Kitaev Spin Liquids in Metal-Organic Frameworks
NASA Astrophysics Data System (ADS)
Yamada, Masahiko G.; Fujita, Hiroyuki; Oshikawa, Masaki
2017-08-01
Kitaev's honeycomb lattice spin model is a remarkable exactly solvable model, which has a particular type of spin liquid (Kitaev spin liquid) as the ground state. Although its possible realization in iridates and α -RuCl3 has been vigorously discussed recently, these materials have substantial non-Kitaev direct exchange interactions and do not have a spin liquid ground state. We propose metal-organic frameworks (MOFs) with Ru3 + (or Os3 + ), forming the honeycomb lattice as promising candidates for a more ideal realization of Kitaev-type spin models, where the direct exchange interaction is strongly suppressed. The great flexibility of MOFs allows generalization to other three-dimensional lattices for the potential realization of a variety of spin liquids, such as a Weyl spin liquid.