Quantum State Tomography via Linear Regression Estimation
Qi, Bo; Hou, Zhibo; Li, Li; Dong, Daoyi; Xiang, Guoyong; Guo, Guangcan
2013-01-01
A simple yet efficient state reconstruction algorithm of linear regression estimation (LRE) is presented for quantum state tomography. In this method, quantum state reconstruction is converted into a parameter estimation problem of a linear regression model and the least-squares method is employed to estimate the unknown parameters. An asymptotic mean squared error (MSE) upper bound for all possible states to be estimated is given analytically, which depends explicitly upon the involved measurement bases. This analytical MSE upper bound can guide one to choose optimal measurement sets. The computational complexity of LRE is O(d4) where d is the dimension of the quantum state. Numerical examples show that LRE is much faster than maximum-likelihood estimation for quantum state tomography. PMID:24336519
Quantum systems as embarrassed colleagues: what do tax evasion and state tomography have in common?
NASA Astrophysics Data System (ADS)
Ferrie, Chris; Blume-Kohout, Robin
2011-03-01
Quantum state estimation (a.k.a. ``tomography'') plays a key role in designing quantum information processors. As a problem, it resembles probability estimation - e.g. for classical coins or dice - but with some subtle and important discrepancies. We demonstrate an improved classical analogue that captures many of these differences: the ``noisy coin.'' Observations on noisy coins are unreliable - much like soliciting sensitive information such as ones tax preparation habits. So, like a quantum system, it cannot be sampled directly. Unlike standard coins or dice, whose worst-case estimation risk scales as 1 / N for all states, noisy coins (and quantum states) have a worst-case risk that scales as 1 /√{ N } and is overwhelmingly dominated by nearly-pure states. The resulting optimal estimation strategies for noisy coins are surprising and counterintuitive. We demonstrate some important consequences for quantum state estimation - in particular, that adaptive tomography can recover the 1 / N risk scaling of classical probability estimation.
Direct estimations of linear and nonlinear functionals of a quantum state.
Ekert, Artur K; Alves, Carolina Moura; Oi, Daniel K L; Horodecki, Michał; Horodecki, Paweł; Kwek, L C
2002-05-27
We present a simple quantum network, based on the controlled-SWAP gate, that can extract certain properties of quantum states without recourse to quantum tomography. It can be used as a basic building block for direct quantum estimations of both linear and nonlinear functionals of any density operator. The network has many potential applications ranging from purity tests and eigenvalue estimations to direct characterization of some properties of quantum channels. Experimental realizations of the proposed network are within the reach of quantum technology that is currently being developed.
Quantum demultiplexer of quantum parameter-estimation information in quantum networks
NASA Astrophysics Data System (ADS)
Xie, Yanqing; Huang, Yumeng; Wu, Yinzhong; Hao, Xiang
2018-05-01
The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.
Efficient tomography of a quantum many-body system
NASA Astrophysics Data System (ADS)
Lanyon, B. P.; Maier, C.; Holzäpfel, M.; Baumgratz, T.; Hempel, C.; Jurcevic, P.; Dhand, I.; Buyskikh, A. S.; Daley, A. J.; Cramer, M.; Plenio, M. B.; Blatt, R.; Roos, C. F.
2017-12-01
Quantum state tomography is the standard technique for estimating the quantum state of small systems. But its application to larger systems soon becomes impractical as the required resources scale exponentially with the size. Therefore, considerable effort is dedicated to the development of new characterization tools for quantum many-body states. Here we demonstrate matrix product state tomography, which is theoretically proven to allow for the efficient and accurate estimation of a broad class of quantum states. We use this technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled and individually controlled spins: a size far beyond the practical limits of quantum state tomography. Our results reveal the dynamical growth of entanglement and describe its complexity as correlations spread out during a quench: a necessary condition for future demonstrations of better-than-classical performance. Matrix product state tomography should therefore find widespread use in the study of large quantum many-body systems and the benchmarking and verification of quantum simulators and computers.
Joint estimation of phase and phase diffusion for quantum metrology.
Vidrighin, Mihai D; Donati, Gaia; Genoni, Marco G; Jin, Xian-Min; Kolthammer, W Steven; Kim, M S; Datta, Animesh; Barbieri, Marco; Walmsley, Ian A
2014-04-14
Phase estimation, at the heart of many quantum metrology and communication schemes, can be strongly affected by noise, whose amplitude may not be known, or might be subject to drift. Here we investigate the joint estimation of a phase shift and the amplitude of phase diffusion at the quantum limit. For several relevant instances, this multiparameter estimation problem can be effectively reshaped as a two-dimensional Hilbert space model, encompassing the description of an interferometer phase probed with relevant quantum states--split single-photons, coherent states or N00N states. For these cases, we obtain a trade-off bound on the statistical variances for the joint estimation of phase and phase diffusion, as well as optimum measurement schemes. We use this bound to quantify the effectiveness of an actual experimental set-up for joint parameter estimation for polarimetry. We conclude by discussing the form of the trade-off relations for more general states and measurements.
Coherence in quantum estimation
NASA Astrophysics Data System (ADS)
Giorda, Paolo; Allegra, Michele
2018-01-01
The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.
Reexamination of optimal quantum state estimation of pure states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, A.; Hashimoto, T.; Horibe, M.
2005-09-15
A direct derivation is given for the optimal mean fidelity of quantum state estimation of a d-dimensional unknown pure state with its N copies given as input, which was first obtained by Hayashi in terms of an infinite set of covariant positive operator valued measures (POVM's) and by Bruss and Macchiavello establishing a connection to optimal quantum cloning. An explicit condition for POVM measurement operators for optimal estimators is obtained, by which we construct optimal estimators with finite POVMs using exact quadratures on a hypersphere. These finite optimal estimators are not generally universal, where universality means the fidelity is independentmore » of input states. However, any optimal estimator with finite POVM for M(>N) copies is universal if it is used for N copies as input.« less
Multi-objective optimization in quantum parameter estimation
NASA Astrophysics Data System (ADS)
Gong, BeiLi; Cui, Wei
2018-04-01
We investigate quantum parameter estimation based on linear and Kerr-type nonlinear controls in an open quantum system, and consider the dissipation rate as an unknown parameter. We show that while the precision of parameter estimation is improved, it usually introduces a significant deformation to the system state. Moreover, we propose a multi-objective model to optimize the two conflicting objectives: (1) maximizing the Fisher information, improving the parameter estimation precision, and (2) minimizing the deformation of the system state, which maintains its fidelity. Finally, simulations of a simplified ɛ-constrained model demonstrate the feasibility of the Hamiltonian control in improving the precision of the quantum parameter estimation.
Flexible resources for quantum metrology
NASA Astrophysics Data System (ADS)
Friis, Nicolai; Orsucci, Davide; Skotiniotis, Michalis; Sekatski, Pavel; Dunjko, Vedran; Briegel, Hans J.; Dür, Wolfgang
2017-06-01
Quantum metrology offers a quadratic advantage over classical approaches to parameter estimation problems by utilising entanglement and nonclassicality. However, the hurdle of actually implementing the necessary quantum probe states and measurements, which vary drastically for different metrological scenarios, is usually not taken into account. We show that for a wide range of tasks in metrology, 2D cluster states (a particular family of states useful for measurement-based quantum computation) can serve as flexible resources that allow one to efficiently prepare any required state for sensing, and perform appropriate (entangled) measurements using only single qubit operations. Crucially, the overhead in the number of qubits is less than quadratic, thus preserving the quantum scaling advantage. This is ensured by using a compression to a logarithmically sized space that contains all relevant information for sensing. We specifically demonstrate how our method can be used to obtain optimal scaling for phase and frequency estimation in local estimation problems, as well as for the Bayesian equivalents with Gaussian priors of varying widths. Furthermore, we show that in the paradigmatic case of local phase estimation 1D cluster states are sufficient for optimal state preparation and measurement.
Minimax Quantum Tomography: Estimators and Relative Entropy Bounds.
Ferrie, Christopher; Blume-Kohout, Robin
2016-03-04
A minimax estimator has the minimum possible error ("risk") in the worst case. We construct the first minimax estimators for quantum state tomography with relative entropy risk. The minimax risk of nonadaptive tomography scales as O(1/sqrt[N])-in contrast to that of classical probability estimation, which is O(1/N)-where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch: future observations that determine risk may come from a different sample space than the past data that determine the estimate. This makes minimax estimators very biased, and we propose a computationally tractable alternative with similar behavior in the worst case, but superior accuracy on most states.
Quantum state estimation when qubits are lost: a no-data-left-behind approach
Williams, Brian P.; Lougovski, Pavel
2017-04-06
We present an approach to Bayesian mean estimation of quantum states using hyperspherical parametrization and an experiment-specific likelihood which allows utilization of all available data, even when qubits are lost. With this method, we report the first closed-form Bayesian mean and maximum likelihood estimates for the ideal single qubit. Due to computational constraints, we utilize numerical sampling to determine the Bayesian mean estimate for a photonic two-qubit experiment in which our novel analysis reduces burdens associated with experimental asymmetries and inefficiencies. This method can be applied to quantum states of any dimension and experimental complexity.
Experimental Estimation of Entanglement at the Quantum Limit
NASA Astrophysics Data System (ADS)
Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander
2010-03-01
Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.
Sub-Planck structures and Quantum Metrology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panigrahi, Prasanta K.; Kumar, Abhijeet; Roy, Utpal
The significance of sub-Planck structures in relation to quantum metrology is explored, in close contact with experimental setups. It is shown that an entangled cat state can enhance the accuracy of parameter estimations. The possibility of generating this state, in dissipative systems has also been demonstrated. Thereafter, the quantum Cramer-Rao bound for phase estimation through a pair coherent state is calculated, which achieves the maximum possible resolution in an interferometer.
Quantum-enhanced multiparameter estimation in multiarm interferometers
Ciampini, Mario A.; Spagnolo, Nicolò; Vitelli, Chiara; Pezzè, Luca; Smerzi, Augusto; Sciarrino, Fabio
2016-01-01
Quantum metrology is the state-of-the-art measurement technology. It uses quantum resources to enhance the sensitivity of phase estimation over that achievable by classical physics. While single parameter estimation theory has been widely investigated, much less is known about the simultaneous estimation of multiple phases, which finds key applications in imaging and sensing. In this manuscript we provide conditions of useful particle (qudit) entanglement for multiphase estimation and adapt them to multiarm Mach-Zehnder interferometry. We theoretically discuss benchmark multimode Fock states containing useful qudit entanglement and overcoming the sensitivity of separable qudit states in three and four arm Mach-Zehnder-like interferometers - currently within the reach of integrated photonics technology. PMID:27381743
Quantum Discord Determines the Interferometric Power of Quantum States
NASA Astrophysics Data System (ADS)
Girolami, Davide; Souza, Alexandre M.; Giovannetti, Vittorio; Tufarelli, Tommaso; Filgueiras, Jefferson G.; Sarthour, Roberto S.; Soares-Pinto, Diogo O.; Oliveira, Ivan S.; Adesso, Gerardo
2014-05-01
Quantum metrology exploits quantum mechanical laws to improve the precision in estimating technologically relevant parameters such as phase, frequency, or magnetic fields. Probe states are usually tailored to the particular dynamics whose parameters are being estimated. Here we consider a novel framework where quantum estimation is performed in an interferometric configuration, using bipartite probe states prepared when only the spectrum of the generating Hamiltonian is known. We introduce a figure of merit for the scheme, given by the worst-case precision over all suitable Hamiltonians, and prove that it amounts exactly to a computable measure of discord-type quantum correlations for the input probe. We complement our theoretical results with a metrology experiment, realized in a highly controllable room-temperature nuclear magnetic resonance setup, which provides a proof-of-concept demonstration for the usefulness of discord in sensing applications. Discordant probes are shown to guarantee a nonzero phase sensitivity for all the chosen generating Hamiltonians, while classically correlated probes are unable to accomplish the estimation in a worst-case setting. This work establishes a rigorous and direct operational interpretation for general quantum correlations, shedding light on their potential for quantum technology.
Fisher information in a quantum-critical environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Zhe; Ma Jian; Lu Xiaoming
2010-08-15
We consider a process of parameter estimation in a spin-j system surrounded by a quantum-critical spin chain. Quantum Fisher information lies at the heart of the estimation task. We employ Ising spin chain in a transverse field as the environment which exhibits a quantum phase transition. Fisher information decays with time almost monotonously when the environment reaches the critical point. By choosing a fixed time or taking the time average, one can see the quantum Fisher information presents a sudden drop at the critical point. Different initial states of the environment are considered. The phenomenon that the quantum Fisher information,more » namely, the precision of estimation, changes dramatically can be used to detect the quantum criticality of the environment. We also introduce a general method to obtain the maximal Fisher information for a given state.« less
Minimax Quantum Tomography: Estimators and Relative Entropy Bounds
Ferrie, Christopher; Blume-Kohout, Robin
2016-03-04
A minimax estimator has the minimum possible error (“risk”) in the worst case. Here we construct the first minimax estimators for quantum state tomography with relative entropy risk. The minimax risk of nonadaptive tomography scales as O (1/more » $$\\sqrt{N}$$ ) —in contrast to that of classical probability estimation, which is O (1/N) —where N is the number of copies of the quantum state used. We trace this deficiency to sampling mismatch: future observations that determine risk may come from a different sample space than the past data that determine the estimate. Lastly, this makes minimax estimators very biased, and we propose a computationally tractable alternative with similar behavior in the worst case, but superior accuracy on most states.« less
Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance
Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D.; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng
2011-01-01
Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10−5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers PMID:22355607
Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases
NASA Astrophysics Data System (ADS)
Pezzè, Luca; Ciampini, Mario A.; Spagnolo, Nicolò; Humphreys, Peter C.; Datta, Animesh; Walmsley, Ian A.; Barbieri, Marco; Sciarrino, Fabio; Smerzi, Augusto
2017-09-01
A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.
NASA Astrophysics Data System (ADS)
Wu, Shao-xiong; Zhang, Yang; Yu, Chang-shui
2018-03-01
Quantum Fisher information (QFI) is an important feature for the precision of quantum parameter estimation based on the quantum Cramér-Rao inequality. When the quantum state satisfies the von Neumann-Landau equation, the local quantum uncertainty (LQU), as a kind of quantum correlation, present in a bipartite mixed state guarantees a lower bound on QFI in the optimal phase estimation protocol (Girolami et al., 2013). However, in the open quantum systems, there is not an explicit relation between LQU and QFI generally. In this paper, we study the relation between LQU and QFI in open systems which is composed of two interacting two-level systems coupled to independent non-Markovian environments with the entangled initial state embedded by a phase parameter θ. The analytical calculations show that the QFI does not depend on the phase parameter θ, and its decay can be restrained through enhancing the coupling strength or non-Markovianity. Meanwhile, the LQU is related to the phase parameter θ and shows plentiful phenomena. In particular, we find that the LQU can well bound the QFI when the coupling between the two systems is switched off or the initial state is Bell state.
Phase estimation of coherent states with a noiseless linear amplifier
NASA Astrophysics Data System (ADS)
Assad, Syed M.; Bradshaw, Mark; Lam, Ping Koy
Amplification of quantum states is inevitably accompanied with the introduction of noise at the output. For protocols that are probabilistic with heralded success, noiseless linear amplification in theory may still be possible. When the protocol is successful, it can lead to an output that is a noiselessly amplified copy of the input. When the protocol is unsuccessful, the output state is degraded and is usually discarded. Probabilistic protocols may improve the performance of some quantum information protocols, but not for metrology if the whole statistics is taken into consideration. We calculate the precision limits on estimating the phase of coherent states using a noiseless linear amplifier by computing its quantum Fisher information and we show that on average, the noiseless linear amplifier does not improve the phase estimate. We also discuss the case where abstention from measurement can reduce the cost for estimation.
Quantum-state reconstruction by maximizing likelihood and entropy.
Teo, Yong Siah; Zhu, Huangjun; Englert, Berthold-Georg; Řeháček, Jaroslav; Hradil, Zdeněk
2011-07-08
Quantum-state reconstruction on a finite number of copies of a quantum system with informationally incomplete measurements, as a rule, does not yield a unique result. We derive a reconstruction scheme where both the likelihood and the von Neumann entropy functionals are maximized in order to systematically select the most-likely estimator with the largest entropy, that is, the least-bias estimator, consistent with a given set of measurement data. This is equivalent to the joint consideration of our partial knowledge and ignorance about the ensemble to reconstruct its identity. An interesting structure of such estimators will also be explored.
Experimental demonstration of real-time adaptive one-qubit quantum-state tomography
NASA Astrophysics Data System (ADS)
Yin, Qi; Li, Li; Xiang, Xiao; Xiang, Guo-Yong; Li, Chuang-Feng; Guo, Guang-Can
2017-01-01
Quantum-state tomography plays a pivotal role in quantum computation and information processing. To improve the accuracy in estimating an unknown state, carefully designed measurement schemes, such as adopting an adaptive strategy, are necessarily needed, which have gained great interest recently. In this work, based on the proposal of Sugiyama et al. [Phys. Rev. A 85, 052107 (2012)], 10.1103/PhysRevA.85.052107, we experimentally realize an adaptive quantum-state tomography for one qubit in an optical system. Since this scheme gives an analytical solution to the optimal measurement basis problem, our experiment is updated in real time and the infidelity between the real state and the estimated state is tracked with the detected photons. We observe an almost 1 /N scaling rule of averaged infidelity against the overall number of photons, N , in our experiment, which outperforms 1 /√{N } of nonadaptive schemes.
Quantum metrology of spatial deformation using arrays of classical and quantum light emitters
NASA Astrophysics Data System (ADS)
Sidhu, Jasminder S.; Kok, Pieter
2017-06-01
We introduce spatial deformations to an array of light sources and study how the estimation precision of the interspacing distance d changes with the sources of light used. The quantum Fisher information (QFI) is used as the figure of merit in this work to quantify the amount of information we have on the estimation parameter. We derive the generator of translations G ̂ in d due to an arbitrary homogeneous deformation applied to the array. We show how the variance of the generator can be used to easily consider how different deformations and light sources can effect the estimation precision. The single-parameter estimation problem is applied to the array, and we report on the optimal state that maximizes the QFI for d . Contrary to what may have been expected, the higher average mode occupancies of the classical states performs better in estimating d when compared with single photon emitters (SPEs). The optimal entangled state is constructed from the eigenvectors of the generator and found to outperform all these states. We also find the existence of multiple optimal estimators for the measurement of d . Our results find applications in evaluating stresses and strains, fracture prevention in materials expressing great sensitivities to deformations, and selecting frequency distinguished quantum sources from an array of reference sources.
Optimal estimation of entanglement in optical qubit systems
NASA Astrophysics Data System (ADS)
Brida, Giorgio; Degiovanni, Ivo P.; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander P.
2011-05-01
We address the experimental determination of entanglement for systems made of a pair of polarization qubits. We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of entanglement does not require the full tomography of the states we have also performed state reconstruction using two different sets of tomographic projectors and explicitly shown that they provide a less precise determination of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different noise models used to describe decoherence effects occurring in the generation of entanglement.
Are Cloned Quantum States Macroscopic?
NASA Astrophysics Data System (ADS)
Fröwis, F.; Dür, W.
2012-10-01
We study quantum states produced by optimal phase covariant quantum cloners. We argue that cloned quantum superpositions are not macroscopic superpositions in the spirit of Schrödinger’s cat, despite their large particle number. This is indicated by calculating several measures for macroscopic superpositions from the literature, as well as by investigating the distinguishability of the two superposed cloned states. The latter rapidly diminishes when considering imperfect detectors or noisy states and does not increase with the system size. In contrast, we find that cloned quantum states themselves are macroscopic, in the sense of both proposed measures and their usefulness in quantum metrology with an optimal scaling in system size. We investigate the applicability of cloned states for parameter estimation in the presence of different kinds of noise.
Witnessing eigenstates for quantum simulation of Hamiltonian spectra
Santagati, Raffaele; Wang, Jianwei; Gentile, Antonio A.; Paesani, Stefano; Wiebe, Nathan; McClean, Jarrod R.; Morley-Short, Sam; Shadbolt, Peter J.; Bonneau, Damien; Silverstone, Joshua W.; Tew, David P.; Zhou, Xiaoqi; O’Brien, Jeremy L.; Thompson, Mark G.
2018-01-01
The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. We introduce the concept of an “eigenstate witness” and, through it, provide a new quantum approach that combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32 bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress toward quantum chemistry on quantum computers. PMID:29387796
Quantum critical environment assisted quantum magnetometer
NASA Astrophysics Data System (ADS)
Jaseem, Noufal; Omkar, S.; Shaji, Anil
2018-04-01
A central qubit coupled to an Ising ring of N qubits, operating close to a critical point is investigated as a potential precision quantum magnetometer for estimating an applied transverse magnetic field. We compute the quantum Fisher information for the central, probe qubit with the Ising chain initialized in its ground state or in a thermal state. The non-unitary evolution of the central qubit due to its interaction with the surrounding Ising ring enhances the accuracy of the magnetic field measurement. Near the critical point of the ring, Heisenberg-like scaling of the precision in estimating the magnetic field is obtained when the ring is initialized in its ground state. However, for finite temperatures, the Heisenberg scaling is limited to lower ranges of N values.
Single-shot quantum state estimation via a continuous measurement in the strong backaction regime
NASA Astrophysics Data System (ADS)
Cook, Robert L.; Riofrío, Carlos A.; Deutsch, Ivan H.
2014-09-01
We study quantum tomography based on a stochastic continuous-time measurement record obtained from a probe field collectively interacting with an ensemble of identically prepared systems. In comparison to previous studies, we consider here the case in which the measurement-induced backaction has a non-negligible effect on the dynamical evolution of the ensemble. We formulate a maximum likelihood estimate for the initial quantum state given only a single instance of the continuous diffusive measurement record. We apply our estimator to the simplest problem: state tomography of a single pure qubit, which, during the course of the measurement, is also subjected to dynamical control. We identify a regime where the many-body system is well approximated at all times by a separable pure spin coherent state, whose Bloch vector undergoes a conditional stochastic evolution. We simulate the results of our estimator and show that we can achieve close to the upper bound of fidelity set by the optimal generalized measurement. This estimate is compared to, and significantly outperforms, an equivalent estimator that ignores measurement backaction.
A quantum extended Kalman filter
NASA Astrophysics Data System (ADS)
Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.
2017-06-01
In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.
Quantum Entanglement of Matter and Geometry in Large Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Craig J.
2014-12-04
Standard quantum mechanics and gravity are used to estimate the mass and size of idealized gravitating systems where position states of matter and geometry become indeterminate. It is proposed that well-known inconsistencies of standard quantum field theory with general relativity on macroscopic scales can be reconciled by nonstandard, nonlocal entanglement of field states with quantum states of geometry. Wave functions of particle world lines are used to estimate scales of geometrical entanglement and emergent locality. Simple models of entanglement predict coherent fluctuations in position of massive bodies, of Planck scale origin, measurable on a laboratory scale, and may account formore » the fact that the information density of long lived position states in Standard Model fields, which is determined by the strong interactions, is the same as that determined holographically by the cosmological constant.« less
Estimation of the Parameters in a Two-State System Coupled to a Squeezed Bath
NASA Astrophysics Data System (ADS)
Hu, Yao-Hua; Yang, Hai-Feng; Tan, Yong-Gang; Tao, Ya-Ping
2018-04-01
Estimation of the phase and weight parameters of a two-state system in a squeezed bath by calculating quantum Fisher information is investigated. The results show that, both for the phase estimation and for the weight estimation, the quantum Fisher information always decays with time and changes periodically with the phases. The estimation precision can be enhanced by choosing the proper values of the phases and the squeezing parameter. These results can be provided as an analysis reference for the practical application of the parameter estimation in a squeezed bath.
Quantum metrology and estimation of Unruh effect
Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng
2014-01-01
We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process. PMID:25424772
One-way quantum computing in superconducting circuits
NASA Astrophysics Data System (ADS)
Albarrán-Arriagada, F.; Alvarado Barrios, G.; Sanz, M.; Romero, G.; Lamata, L.; Retamal, J. C.; Solano, E.
2018-03-01
We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster state provides the quantum resource, while the iteration of sequential measurements and local rotations encodes the quantum algorithm. Up to now, technical constraints have limited a scalable approach to this quantum computing alternative. The initial cluster state can be generated with available controlled-phase gates, while the quantum algorithm makes use of high-fidelity readout and coherent feedforward. With current technology, we estimate that quantum algorithms with above 20 qubits may be implemented in the path toward quantum supremacy. Moreover, we propose an alternative initial state with properties of maximal persistence and maximal connectedness, reducing the required resources of one-way quantum computing protocols.
Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates
NASA Astrophysics Data System (ADS)
Rodionov, Andrey
An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.
Multiparameter Estimation in Networked Quantum Sensors
NASA Astrophysics Data System (ADS)
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
2018-02-01
We introduce a general model for a network of quantum sensors, and we use this model to consider the following question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. This immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or nonlinear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.
Quantum algorithms for Gibbs sampling and hitting-time estimation
Chowdhury, Anirban Narayan; Somma, Rolando D.
2017-02-01
In this paper, we present quantum algorithms for solving two problems regarding stochastic processes. The first algorithm prepares the thermal Gibbs state of a quantum system and runs in time almost linear in √Nβ/Ζ and polynomial in log(1/ϵ), where N is the Hilbert space dimension, β is the inverse temperature, Ζ is the partition function, and ϵ is the desired precision of the output state. Our quantum algorithm exponentially improves the dependence on 1/ϵ and quadratically improves the dependence on β of known quantum algorithms for this problem. The second algorithm estimates the hitting time of a Markov chain. Formore » a sparse stochastic matrix Ρ, it runs in time almost linear in 1/(ϵΔ 3/2), where ϵ is the absolute precision in the estimation and Δ is a parameter determined by Ρ, and whose inverse is an upper bound of the hitting time. Our quantum algorithm quadratically improves the dependence on 1/ϵ and 1/Δ of the analog classical algorithm for hitting-time estimation. Finally, both algorithms use tools recently developed in the context of Hamiltonian simulation, spectral gap amplification, and solving linear systems of equations.« less
Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B
2014-09-15
Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case.
Black holes are almost optimal quantum cloners
NASA Astrophysics Data System (ADS)
Adami, Christoph; Ver Steeg, Greg
2015-06-01
If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole’s absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal ‘quantum cloning machines’ and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is only equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as ω /T≥slant 10, a common parameter for modest-sized black holes.
Quantum state tomography and fidelity estimation via Phaselift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yiping; Liu, Huan; Zhao, Qing, E-mail: qzhaoyuping@bit.edu.cn
Experiments of multi-photon entanglement have been performed by several groups. Obviously, an increase on the photon number for fidelity estimation and quantum state tomography causes a dramatic increase in the elements of the positive operator valued measures (POVMs), which results in a great consumption of time in measurements. In practice, we wish to obtain a good estimation of fidelity and quantum states through as few measurements as possible for multi-photon entanglement. Phaselift provides such a chance to estimate fidelity for entangling states based on less data. In this paper, we would like to show how the Phaselift works for sixmore » qubits in comparison to the data given by Pan’s group, i.e., we use a fraction of the data as input to estimate the rest of the data through the obtained density matrix, and thus goes beyond the simple fidelity analysis. The fidelity bound is also provided for general Schrödinger Cat state. Based on the fidelity bound, we propose an optimal measurement approach which could both reduce the copies and keep the fidelity bound gap small. The results demonstrate that the Phaselift can help decrease the measured elements of POVMs for six qubits. Our conclusion is based on the prior knowledge that a pure state is the target state prepared by experiments.« less
Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm
NASA Astrophysics Data System (ADS)
Yang, Le; Chen, Xi; Zhang, Ming; Dai, Hong-Yi
2017-11-01
In this paper we design the following two-step scheme to estimate the model parameter ω 0 of the quantum system: first we utilize the Fisher information with respect to an intermediate variable v=\\cos ({ω }0t) to determine an optimal initial state and to seek optimal parameters of the POVM measurement operators; second we explore how to estimate ω 0 from v by choosing t when a priori information knowledge of ω 0 is available. Our optimal initial state can achieve the maximum quantum Fisher information. The formulation of the optimal time t is obtained and the complete algorithm for parameter estimation is presented. We further explore how the lower bound of the estimation deviation depends on the a priori information of the model. Supported by the National Natural Science Foundation of China under Grant Nos. 61273202, 61673389, and 61134008
General Method for Constructing Local Hidden Variable Models for Entangled Quantum States
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Guerini, L.; Rabelo, R.; Skrzypczyk, P.
2016-11-01
Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality. A central question is to determine the precise relation between entanglement and nonlocality. Here we present the first general test to decide whether a quantum state is local, and show that the test can be implemented by semidefinite programing. This method can be applied to any given state and for the construction of new examples of states with local hidden variable models for both projective and general measurements. As applications, we provide a lower-bound estimate of the fraction of two-qubit local entangled states and present new explicit examples of such states, including those that arise from physical noise models, Bell-diagonal states, and noisy Greenberger-Horne-Zeilinger and W states.
Noninformative prior in the quantum statistical model of pure states
NASA Astrophysics Data System (ADS)
Tanaka, Fuyuhiko
2012-06-01
In the present paper, we consider a suitable definition of a noninformative prior on the quantum statistical model of pure states. While the full pure-states model is invariant under unitary rotation and admits the Haar measure, restricted models, which we often see in quantum channel estimation and quantum process tomography, have less symmetry and no compelling rationale for any choice. We adopt a game-theoretic approach that is applicable to classical Bayesian statistics and yields a noninformative prior for a general class of probability distributions. We define the quantum detection game and show that there exist noninformative priors for a general class of a pure-states model. Theoretically, it gives one of the ways that we represent ignorance on the given quantum system with partial information. Practically, our method proposes a default distribution on the model in order to use the Bayesian technique in the quantum-state tomography with a small sample.
Multiparameter Estimation in Networked Quantum Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less
Multiparameter Estimation in Networked Quantum Sensors
Proctor, Timothy J.; Knott, Paul A.; Dunningham, Jacob A.
2018-02-21
We introduce a general model for a network of quantum sensors, and we use this model to consider the question: When can entanglement between the sensors, and/or global measurements, enhance the precision with which the network can measure a set of unknown parameters? We rigorously answer this question by presenting precise theorems proving that for a broad class of problems there is, at most, a very limited intrinsic advantage to using entangled states or global measurements. Moreover, for many estimation problems separable states and local measurements are optimal, and can achieve the ultimate quantum limit on the estimation uncertainty. Thismore » immediately implies that there are broad conditions under which simultaneous estimation of multiple parameters cannot outperform individual, independent estimations. Our results apply to any situation in which spatially localized sensors are unitarily encoded with independent parameters, such as when estimating multiple linear or non-linear optical phase shifts in quantum imaging, or when mapping out the spatial profile of an unknown magnetic field. We conclude by showing that entangling the sensors can enhance the estimation precision when the parameters of interest are global properties of the entire network.« less
Statistical speed of quantum states: Generalized quantum Fisher information and Schatten speed
NASA Astrophysics Data System (ADS)
Gessner, Manuel; Smerzi, Augusto
2018-02-01
We analyze families of measures for the quantum statistical speed which include as special cases the quantum Fisher information, the trace speed, i.e., the quantum statistical speed obtained from the trace distance, and more general quantifiers obtained from the family of Schatten norms. These measures quantify the statistical speed under generic quantum evolutions and are obtained by maximizing classical measures over all possible quantum measurements. We discuss general properties, optimal measurements, and upper bounds on the speed of separable states. We further provide a physical interpretation for the trace speed by linking it to an analog of the quantum Cramér-Rao bound for median-unbiased quantum phase estimation.
Estimation of teleported and gained parameters in a non-inertial frame
NASA Astrophysics Data System (ADS)
Metwally, N.
2017-04-01
Quantum Fisher information is introduced as a measure of estimating the teleported information between two users, one of which is uniformly accelerated. We show that the final teleported state depends on the initial parameters, in addition to the gained parameters during the teleportation process. The estimation degree of these parameters depends on the value of the acceleration, the used single mode approximation (within/beyond), the type of encoded information (classic/quantum) in the teleported state, and the entanglement of the initial communication channel. The estimation degree of the parameters can be maximized if the partners teleport classical information.
Teleportation of quantum resources and quantum Fisher information under Unruh effect
NASA Astrophysics Data System (ADS)
Jafarzadeh, M.; Rangani Jahromi, H.; Amniat-Talab, M.
2018-07-01
Considering a pair of Unruh-DeWitt detectors, when one of them is kept inertial and the other one is accelerated and coupled to a scalar field, we address the teleportation of a two-qubit entangled state ( |ψ _in> = {cos} θ /2 |10> +e^{iφ} {sin} θ /2 |01> ) through the quantum channel created by the above system and investigate how thermal noise induced by Unruh effect affects the quantum resources and quantum Fisher information (QFI) teleportation. Our results showed while the teleported quantum resources and QFI with respect to phase parameter φ( F_{ {out}}( φ ) ) reduce with increasing acceleration and effective coupling, QFI with respect to weight parameter θ ( F_{ {out}}( θ ) ) interestingly increases after a specified value of acceleration and effective coupling. We also find that the teleported quantum resources and the precision of estimating phase parameter φ can be improved by a more entangled input state and more entangled channel. Moreover, the precision of estimating weight parameter θ increases for a maximally entangled input state only in large acceleration regime, while it does not change considerably for both maximally and partially entangled states of the channel. The influence of Unruh effect on fidelity of teleportation is also investigated. We showed that for small effective coupling the average fidelity is always larger than 2/3.
NASA Astrophysics Data System (ADS)
Granade, Christopher; Combes, Joshua; Cory, D. G.
2016-03-01
In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.
Experimental joint quantum measurements with minimum uncertainty.
Ringbauer, Martin; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Branciard, Cyril; White, Andrew G
2014-01-17
Quantum physics constrains the accuracy of joint measurements of incompatible observables. Here we test tight measurement-uncertainty relations using single photons. We implement two independent, idealized uncertainty-estimation methods, the three-state method and the weak-measurement method, and adapt them to realistic experimental conditions. Exceptional quantum state fidelities of up to 0.999 98(6) allow us to verge upon the fundamental limits of measurement uncertainty.
Channel Simulation in Quantum Metrology
NASA Astrophysics Data System (ADS)
Laurenza, Riccardo; Lupo, Cosmo; Spedalieri, Gaetana; Braunstein, Samuel L.; Pirandola, Stefano
2018-04-01
In this review we discuss how channel simulation can be used to simplify the most general protocols of quantum parameter estimation, where unlimited entanglement and adaptive joint operations may be employed. Whenever the unknown parameter encoded in a quantum channel is completely transferred in an environmental program state simulating the channel, the optimal adaptive estimation cannot beat the standard quantum limit. In this setting, we elucidate the crucial role of quantum teleportation as a primitive operation which allows one to completely reduce adaptive protocols over suitable teleportation-covariant channels and derive matching upper and lower bounds for parameter estimation. For these channels,wemay express the quantum Cramér Rao bound directly in terms of their Choi matrices. Our review considers both discrete- and continuous-variable systems, also presenting some new results for bosonic Gaussian channels using an alternative sub-optimal simulation. It is an open problem to design simulations for quantum channels that achieve the Heisenberg limit.
Experimental quantum compressed sensing for a seven-qubit system
Riofrío, C. A.; Gross, D.; Flammia, S. T.; Monz, T.; Nigg, D.; Blatt, R.; Eisert, J.
2017-01-01
Well-controlled quantum devices with their increasing system size face a new roadblock hindering further development of quantum technologies. The effort of quantum tomography—the reconstruction of states and processes of a quantum device—scales unfavourably: state-of-the-art systems can no longer be characterized. Quantum compressed sensing mitigates this problem by reconstructing states from incomplete data. Here we present an experimental implementation of compressed tomography of a seven-qubit system—a topological colour code prepared in a trapped ion architecture. We are in the highly incomplete—127 Pauli basis measurement settings—and highly noisy—100 repetitions each—regime. Originally, compressed sensing was advocated for states with few non-zero eigenvalues. We argue that low-rank estimates are appropriate in general since statistical noise enables reliable reconstruction of only the leading eigenvectors. The remaining eigenvectors behave consistently with a random-matrix model that carries no information about the true state. PMID:28513587
Practical characterization of quantum devices without tomography
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Flammia, Steven; Silva, Marcus; Liu, Yi-Kai; Poulin, David
2012-02-01
Quantum tomography is the main method used to assess the quality of quantum information processing devices, but its complexity presents a major obstacle for the characterization of even moderately large systems. Part of the reason for this complexity is that tomography generates much more information than is usually sought. Taking a more targeted approach, we develop schemes that enable (i) estimating the ?delity of an experiment to a theoretical ideal description, (ii) learning which description within a reduced subset best matches the experimental data. Both these approaches yield a signi?cant reduction in resources compared to tomography. In particular, we show how to estimate the ?delity between a predicted pure state and an arbitrary experimental state using only a constant number of Pauli expectation values selected at random according to an importance-weighting rule. In addition, we propose methods for certifying quantum circuits and learning continuous-time quantum dynamics that are described by local Hamiltonians or Lindbladians.
Bounds on negativity for the success of quantum teleportation of qutrit-qubit system
NASA Astrophysics Data System (ADS)
K G, Paulson; Satyanarayana, S. V. M.
In the original protocol Bennet et.al., used maximally entangled pure states as quantum channel to teleport unknown states between distant observers with maximum fidelity. Noisy quantum channel can be used for imperfect teleportation. Both degree of entanglement and mixedness decide the success of teleportation in the case of mixed entangled quantum channel. . In one of our previous works, we discussed the existence of lower bound below which ,state is useless for quantum teleportation in the measure of entanglement for a fixed value of fidelity, and this lower bound decreases as rank increases for two-qubit system. We use negativity as the measure of entanglement. . In this work, we consider a qutrit-qubit system as quantum channel for teleportation, and study how the negativity and rank affect the teleportation fidelity for a class of states. We construct a new class of mixed entangled qutrit-qubit states as quantum channel, which is a convex sum of orthonormal maximally entangled and separable pure states. The classical limit of fidelity below which state is useless for quantum teleportation is fixed as 2/3. We numerically generate 30000 states and estimate the value of negativity below which each rank mixed state is useless for quantum teleportation. We also construct rank dependant boundary states by choosing appropriate eigen values, which act as upper bound for respective rank states.
Smoothed quantum-classical states in time-irreversible hybrid dynamics
NASA Astrophysics Data System (ADS)
Budini, Adrián A.
2017-09-01
We consider a quantum system continuously monitored in time which in turn is coupled to an arbitrary dissipative classical system (diagonal reduced density matrix). The quantum and classical dynamics can modify each other, being described by an arbitrary time-irreversible hybrid Lindblad equation. Given a measurement trajectory, a conditional bipartite stochastic state can be inferred by taking into account all previous recording information (filtering). Here, we demonstrate that the joint quantum-classical state can also be inferred by taking into account both past and future measurement results (smoothing). The smoothed hybrid state is estimated without involving information from unobserved measurement channels. Its average over recording realizations recovers the joint time-irreversible behavior. As an application we consider a fluorescent system monitored by an inefficient photon detector. This feature is taken into account through a fictitious classical two-level system. The average purity of the smoothed quantum state increases over that of the (mixed) state obtained from the standard quantum jump approach.
Continuous-variable phase estimation with unitary and random linear disturbance
NASA Astrophysics Data System (ADS)
Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.
2014-10-01
We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.
Astrophysical Applications of Quantum Corrections to the Equation of State of a Plasma
NASA Technical Reports Server (NTRS)
Heckler, Andrew F.
1994-01-01
The quantum electrodynamic correction to the equation of state of a plasma at finite temperature is applied to the areas of solar physics and cosmology. A previously neglected, purely quantum term in the correction is found to change the equation of state in the solar core by -0.37%, which is roughly estimated to decrease the calculated high energy neutrino flux by about 2.2%. We also show that a previous calculation of the effect of this correction on big bang nucleosynthesis is incomplete, and we estimate the correction to the primordial helium abundance Y to be Delta A= 1.4 x 10(exp -4). A physical explanation for the correction is found in terms of corrections to the dispersion relation of the electron, positron, and photon.
Quantum Metrology beyond the Classical Limit under the Effect of Dephasing
NASA Astrophysics Data System (ADS)
Matsuzaki, Yuichiro; Benjamin, Simon; Nakayama, Shojun; Saito, Shiro; Munro, William J.
2018-04-01
Quantum sensors have the potential to outperform their classical counterparts. For classical sensing, the uncertainty of the estimation of the target fields scales inversely with the square root of the measurement time T . On the other hand, by using quantum resources, we can reduce this scaling of the uncertainty with time to 1 /T . However, as quantum states are susceptible to dephasing, it has not been clear whether we can achieve sensitivities with a scaling of 1 /T for a measurement time longer than the coherence time. Here, we propose a scheme that estimates the amplitude of globally applied fields with the uncertainty of 1 /T for an arbitrary time scale under the effect of dephasing. We use one-way quantum-computing-based teleportation between qubits to prevent any increase in the correlation between the quantum state and its local environment from building up and have shown that such a teleportation protocol can suppress the local dephasing while the information from the target fields keeps growing. Our method has the potential to realize a quantum sensor with a sensitivity far beyond that of any classical sensor.
Optical implementation of spin squeezing
NASA Astrophysics Data System (ADS)
Ono, Takafumi; Sabines-Chesterking, Javier; Cable, Hugo; O'Brien, Jeremy L.; Matthews, Jonathan C. F.
2017-05-01
Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum noise for its complementary partner. Because shot-noise limits the phase sensitivity of all classical states, reduced noise in the average value for the observable being measured allows for improved phase sensitivity. However, additional phase sensitivity can be achieved using phase estimation strategies that account for the full distribution of measurement outcomes. Here we experimentally investigate a model of optical spin-squeezing, which uses post-selection and photon subtraction from the state generated using a parametric downconversion photon source, and we investigate the phase sensitivity of this model. The Fisher information for all photon-number outcomes shows it is possible to obtain a quantum advantage of 1.58 compared to the shot-noise value for five-photon events, even though due to experimental imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise precision. Our demonstration implies improved performance of spin squeezing for applications to quantum metrology.
Parameter estimation of qubit states with unknown phase parameter
NASA Astrophysics Data System (ADS)
Suzuki, Jun
2015-02-01
We discuss a problem of parameter estimation for quantum two-level system, qubit system, in presence of unknown phase parameter. We analyze trade-off relations for mean square errors (MSEs) when estimating relevant parameters with separable measurements based on known precision bounds; the symmetric logarithmic derivative (SLD) Cramér-Rao (CR) bound and Hayashi-Gill-Massar (HGM) bound. We investigate the optimal measurement which attains the HGM bound and discuss its properties. We show that the HGM bound for relevant parameters can be attained asymptotically by using some fraction of given n quantum states to estimate the phase parameter. We also discuss the Holevo bound which can be attained asymptotically by a collective measurement.
Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Kastoryano, Michael J.
2018-05-01
Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.
Experimental realization of self-guided quantum coherence freezing
NASA Astrophysics Data System (ADS)
Yu, Shang; Wang, Yi-Tao; Ke, Zhi-Jin; Liu, Wei; Zhang, Wen-Hao; Chen, Geng; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can
2017-12-01
Quantum coherence is the most essential characteristic of quantum physics, specifcially, when it is subject to the resource-theoretical framework, it is considered as the most fundamental resource for quantum techniques. Other quantum resources, e.g., entanglement, are all based on coherence. Therefore, it becomes urgently important to learn how to preserve coherence in quantum channels. The best preservation is coherence freezing, which has been studied recently. However, in these studies, the freezing condition is theoretically calculated, and there still lacks a practical way to achieve this freezing; in addition the channels are usually fixed, but actually, there are also degrees of freedom that can be used to adapt the channels to quantum states. Here we develop a self-guided quantum coherence freezing method, which can guide either the quantum channels (tunable-channel scheme with upgraded channels) or the initial state (fixed-channel scheme) to the coherence-freezing zone from any starting estimate. Specifically, in the fixed-channel scheme, the final-iterative quantum states all satisfy the previously calculated freezing condition. This coincidence demonstrates the validity of our method. Our work will be helpful for the better protection of quantum coherence.
Fan-out Estimation in Spin-based Quantum Computer Scale-up.
Nguyen, Thien; Hill, Charles D; Hollenberg, Lloyd C L; James, Matthew R
2017-10-17
Solid-state spin-based qubits offer good prospects for scaling based on their long coherence times and nexus to large-scale electronic scale-up technologies. However, high-threshold quantum error correction requires a two-dimensional qubit array operating in parallel, posing significant challenges in fabrication and control. While architectures incorporating distributed quantum control meet this challenge head-on, most designs rely on individual control and readout of all qubits with high gate densities. We analysed the fan-out routing overhead of a dedicated control line architecture, basing the analysis on a generalised solid-state spin qubit platform parameterised to encompass Coulomb confined (e.g. donor based spin qubits) or electrostatically confined (e.g. quantum dot based spin qubits) implementations. The spatial scalability under this model is estimated using standard electronic routing methods and present-day fabrication constraints. Based on reasonable assumptions for qubit control and readout we estimate 10 2 -10 5 physical qubits, depending on the quantum interconnect implementation, can be integrated and fanned-out independently. Assuming relatively long control-free interconnects the scalability can be extended. Ultimately, the universal quantum computation may necessitate a much higher number of integrated qubits, indicating that higher dimensional electronics fabrication and/or multiplexed distributed control and readout schemes may be the preferredstrategy for large-scale implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyson, Jon
2009-06-15
Matrix monotonicity is used to obtain upper bounds on minimum-error distinguishability of arbitrary ensembles of mixed quantum states. This generalizes one direction of a two-sided bound recently obtained by the author [J. Tyson, J. Math. Phys. 50, 032106 (2009)]. It is shown that the previously obtained special case has unique properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com
The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.
2012-09-27
we require no entangling gates or ancillary systems for the procedure. In contrast with [19], our method is not restricted to processes that are...states, such as those recently developed for use with permutation-invariant states [60], matrix product states [61] or multi-scale entangled states [62...by adjoining an ancilla, preparing the maximally entangled state |ψ0〉, and applying E); then do compressed quantum state tomography on ρE ; see
Ground-state fidelity and bipartite entanglement in the Bose-Hubbard model.
Buonsante, P; Vezzani, A
2007-03-16
We analyze the quantum phase transition in the Bose-Hubbard model borrowing two tools from quantum-information theory, i.e., the ground-state fidelity and entanglement measures. We consider systems at unitary filling comprising up to 50 sites and show for the first time that a finite-size scaling analysis of these quantities provides excellent estimates for the quantum critical point. We conclude that fidelity is particularly suited for revealing a quantum phase transition and pinning down the critical point thereof, while the success of entanglement measures depends on the mechanisms governing the transition.
Asymptotic inference in system identification for the atom maser.
Catana, Catalin; van Horssen, Merlijn; Guta, Madalin
2012-11-28
System identification is closely related to control theory and plays an increasing role in quantum engineering. In the quantum set-up, system identification is usually equated to process tomography, i.e. estimating a channel by probing it repeatedly with different input states. However, for quantum dynamical systems such as quantum Markov processes, it is more natural to consider the estimation based on continuous measurements of the output, with a given input that may be stationary. We address this problem using asymptotic statistics tools, for the specific example of estimating the Rabi frequency of an atom maser. We compute the Fisher information of different measurement processes as well as the quantum Fisher information of the atom maser, and establish the local asymptotic normality of these statistical models. The statistical notions can be expressed in terms of spectral properties of certain deformed Markov generators, and the connection to large deviations is briefly discussed.
Continuous-variable quantum probes for structured environments
NASA Astrophysics Data System (ADS)
Bina, Matteo; Grasselli, Federico; Paris, Matteo G. A.
2018-01-01
We address parameter estimation for structured environments and suggest an effective estimation scheme based on continuous-variables quantum probes. In particular, we investigate the use of a single bosonic mode as a probe for Ohmic reservoirs, and obtain the ultimate quantum limits to the precise estimation of their cutoff frequency. We assume the probe prepared in a Gaussian state and determine the optimal working regime, i.e., the conditions for the maximization of the quantum Fisher information in terms of the initial preparation, the reservoir temperature, and the interaction time. Upon investigating the Fisher information of feasible measurements, we arrive at a remarkable simple result: homodyne detection of canonical variables allows one to achieve the ultimate quantum limit to precision under suitable, mild, conditions. Finally, upon exploiting a perturbative approach, we find the invariant sweet spots of the (tunable) characteristic frequency of the probe, able to drive the probe towards the optimal working regime.
NASA Astrophysics Data System (ADS)
Brask, Jonatan Bohr; Martin, Anthony; Esposito, William; Houlmann, Raphael; Bowles, Joseph; Zbinden, Hugo; Brunner, Nicolas
2017-05-01
An approach to quantum random number generation based on unambiguous quantum state discrimination is developed. We consider a prepare-and-measure protocol, where two nonorthogonal quantum states can be prepared, and a measurement device aims at unambiguously discriminating between them. Because the states are nonorthogonal, this necessarily leads to a minimal rate of inconclusive events whose occurrence must be genuinely random and which provide the randomness source that we exploit. Our protocol is semi-device-independent in the sense that the output entropy can be lower bounded based on experimental data and a few general assumptions about the setup alone. It is also practically relevant, which we demonstrate by realizing a simple optical implementation, achieving rates of 16.5 Mbits /s . Combining ease of implementation, a high rate, and a real-time entropy estimation, our protocol represents a promising approach intermediate between fully device-independent protocols and commercial quantum random number generators.
Zeeman effect of the topological surface states revealed by quantum oscillations up to 91 Tesla
Zhang, Zuocheng; Wei, Wei; Yang, Fangyuan; ...
2015-12-01
In this paper, we report quantum oscillation studies on the Bi 2Te 3-xS x topological insulator single crystals in pulsed magnetic fields up to 91 T. For the x = 0.4 sample with the lowest bulk carrier density, the surface and bulk quantum oscillations can be disentangled by combined Shubnikov–de Haas and de Hass–van Alphen oscillations, as well as quantum oscillations in nanometer-thick peeled crystals. At high magnetic fields beyond the bulk quantum limit, our results suggest that the zeroth Landau level of topological surface states is shifted due to the Zeeman effect. The g factor of the topological surfacemore » states is estimated to be between 1.8 and 4.5. Lastly, these observations shed new light on the quantum transport phenomena of topological insulators in ultrahigh magnetic fields.« less
Experimental quantum teleportation over a high-loss free-space channel.
Ma, Xiao-song; Kropatschek, Sebastian; Naylor, William; Scheidl, Thomas; Kofler, Johannes; Herbst, Thomas; Zeilinger, Anton; Ursin, Rupert
2012-10-08
We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network.
Motion and gravity effects in the precision of quantum clocks.
Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette
2015-05-19
We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions.
Using quantum process tomography to characterize decoherence in an analog electronic device
NASA Astrophysics Data System (ADS)
Ostrove, Corey; La Cour, Brian; Lanham, Andrew; Ott, Granville
The mathematical structure of a universal gate-based quantum computer can be emulated faithfully on a classical electronic device using analog signals to represent a multi-qubit state. We describe a prototype device capable of performing a programmable sequence of single-qubit and controlled two-qubit gate operations on a pair of voltage signals representing the real and imaginary parts of a two-qubit quantum state. Analog filters and true-RMS voltage measurements are used to perform unitary and measurement gate operations. We characterize the degradation of the represented quantum state with successive gate operations by formally performing quantum process tomography to estimate the equivalent decoherence channel. Experimental measurements indicate that the performance of the device may be accurately modeled as an equivalent quantum operation closely resembling a depolarizing channel with a fidelity of over 99%. This work was supported by the Office of Naval Research under Grant No. N00014-14-1-0323.
Motion and gravity effects in the precision of quantum clocks
Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette
2015-01-01
We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions. PMID:25988238
NASA Astrophysics Data System (ADS)
Guo, Ying; Xie, Cailang; Liao, Qin; Zhao, Wei; Zeng, Guihua; Huang, Duan
2017-08-01
The survival of Gaussian quantum states in a turbulent atmospheric channel is of crucial importance in free-space continuous-variable (CV) quantum key distribution (QKD), in which the transmission coefficient will fluctuate in time, thus resulting in non-Gaussian quantum states. Different from quantum hacking of the imperfections of practical devices, here we propose a different type of attack by exploiting the security loopholes that occur in a real lossy channel. Under a turbulent atmospheric environment, the Gaussian states are inevitably afflicted by decoherence, which would cause a degradation of the transmitted entanglement. Therefore, an eavesdropper can perform an intercept-resend attack by applying an entanglement-distillation operation on the transmitted non-Gaussian mixed states, which allows the eavesdropper to bias the estimation of the parameters and renders the final keys shared between the legitimate parties insecure. Our proposal highlights the practical CV QKD vulnerabilities with free-space quantum channels, including the satellite-to-earth links, ground-to-ground links, and a link from moving objects to ground stations.
Fisher information and asymptotic normality in system identification for quantum Markov chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guta, Madalin
2011-06-15
This paper deals with the problem of estimating the coupling constant {theta} of a mixing quantum Markov chain. For a repeated measurement on the chain's output we show that the outcomes' time average has an asymptotically normal (Gaussian) distribution, and we give the explicit expressions of its mean and variance. In particular, we obtain a simple estimator of {theta} whose classical Fisher information can be optimized over different choices of measured observables. We then show that the quantum state of the output together with the system is itself asymptotically Gaussian and compute its quantum Fisher information, which sets an absolutemore » bound to the estimation error. The classical and quantum Fisher information are compared in a simple example. In the vicinity of {theta}=0 we find that the quantum Fisher information has a quadratic rather than linear scaling in output size, and asymptotically the Fisher information is localized in the system, while the output is independent of the parameter.« less
Quantum-enhanced sensing from hyperentanglement
NASA Astrophysics Data System (ADS)
Walborn, S. P.; Pimentel, A. H.; Davidovich, L.; de Matos Filho, R. L.
2018-01-01
Hyperentanglement—simultaneous entanglement between multiple degrees of freedom of two or more systems—has been used to enhance quantum information tasks such as quantum communication and photonic quantum computing. Here we show that hyperentanglement can lead to increased quantum advantage in metrology, with contributions from the entanglement in each degree of freedom, allowing for Heisenberg scaling in the precision of parameter estimation. Our experiment employs photon pairs entangled in polarization and spatial degrees of freedom to estimate a small tilt angle of a mirror. Precision limits beyond shot noise are saturated through a simple binary measurement of the polarization state. The dynamics considered here have broad applicability, implying that similar strategies based on hyperentanglement can offer improvement in a wide variety of physical scenarios and metrological tasks.
Nonlinear Quantum Metrology of Many-Body Open Systems
NASA Astrophysics Data System (ADS)
Beau, M.; del Campo, A.
2017-07-01
We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.
Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation
NASA Astrophysics Data System (ADS)
Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.
2016-06-01
The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg-Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.
Global optimization for quantum dynamics of few-fermion systems
NASA Astrophysics Data System (ADS)
Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.
2018-03-01
Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.
Quantum sensing of the phase-space-displacement parameters using a single trapped ion
NASA Astrophysics Data System (ADS)
Ivanov, Peter A.; Vitanov, Nikolay V.
2018-03-01
We introduce a quantum sensing protocol for detecting the parameters characterizing the phase-space displacement by using a single trapped ion as a quantum probe. We show that, thanks to the laser-induced coupling between the ion's internal states and the motion mode, the estimation of the two conjugated parameters describing the displacement can be efficiently performed by a set of measurements of the atomic state populations. Furthermore, we introduce a three-parameter protocol capable of detecting the magnitude, the transverse direction, and the phase of the displacement. We characterize the uncertainty of the two- and three-parameter problems in terms of the Fisher information and show that state projective measurement saturates the fundamental quantum Cramér-Rao bound.
Simulated quantum computation of molecular energies.
Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin
2005-09-09
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Observation of photonic states dynamics in 3-D integrated Fourier circuits
NASA Astrophysics Data System (ADS)
Flamini, Fulvio; Viggianiello, Niko; Giordani, Taira; Bentivegna, Marco; Spagnolo, Nicolò; Crespi, Andrea; Corrielli, Giacomo; Osellame, Roberto; Martin-Delgado, Miguel Angel; Sciarrino, Fabio
2018-07-01
Entanglement is a fundamental resource at the basis of quantum-enhanced performances in several applications, such as quantum algorithms and quantum metrology. In these contexts, Fourier interferometers implement a relevant class of unitary evolutions which can be embedded in a large variety of protocols. For instance, in the single-particle regime it can be adopted to implement the quantum Fourier transform, while in the multi-particle scenario it can be employed to generate quantum states possessing useful entanglement for quantum phase estimation purposes, or as a tool to verify genuine multi-photon interference. In this article, we study experimentally the dynamics of single-photon and two-photon input states during the evolution provided by a 8-mode Fourier transformation, implemented by exploiting a three-dimensional architecture enabled by the femtosecond laser micromachining technology. In such a way, we fabricated three devices to study the evolution after each step of the decomposition. We observe that the probability distributions obey a step-by-step majorization relationship, where the quantum state occupies a progressively larger portion of the Hilbert space. Such behaviour can be related to the majorization principle, which has been conjectured as a necessary condition for quantum speedup.
Possible 6-qubit NMR quantum computer device material; simulator of the NMR line width
NASA Astrophysics Data System (ADS)
Hashi, K.; Kitazawa, H.; Shimizu, T.; Goto, A.; Eguchi, S.; Ohki, S.
2002-12-01
For an NMR quantum computer, splitting of an NMR spectrum must be larger than a line width. In order to find a best device material for a solid-state NMR quantum computer, we have made a simulation program to calculate the NMR line width due to the nuclear dipole field by the 2nd moment method. The program utilizes the lattice information prepared by commercial software to draw a crystal structure. By applying this program, we can estimate the NMR line width due to the nuclear dipole field without measurements and find a candidate material for a 6-qubit solid-state NMR quantum computer device.
Optimal Verification of Entangled States with Local Measurements
NASA Astrophysics Data System (ADS)
Pallister, Sam; Linden, Noah; Montanaro, Ashley
2018-04-01
Consider the task of verifying that a given quantum device, designed to produce a particular entangled state, does indeed produce that state. One natural approach would be to characterize the output state by quantum state tomography, or alternatively, to perform some kind of Bell test, tailored to the state of interest. We show here that neither approach is optimal among local verification strategies for 2-qubit states. We find the optimal strategy in this case and show that quadratically fewer total measurements are needed to verify to within a given fidelity than in published results for quantum state tomography, Bell test, or fidelity estimation protocols. We also give efficient verification protocols for any stabilizer state. Additionally, we show that requiring that the strategy be constructed from local, nonadaptive, and noncollective measurements only incurs a constant-factor penalty over a strategy without these restrictions.
Witnessing effective entanglement over a 2 km fiber channel.
Wittmann, Christoffer; Fürst, Josef; Wiechers, Carlos; Elser, Dominique; Häseler, Hauke; Lütkenhaus, Norbert; Leuchs, Gerd
2010-03-01
We present a fiber-based continuous-variable quantum key distribution system. In the scheme, a quantum signal of two non-orthogonal weak optical coherent states is sent through a fiber-based quantum channel. The receiver simultaneously measures conjugate quadratures of the light using two homodyne detectors. From the measured Q-function of the transmitted signal, we estimate the attenuation and the excess noise caused by the channel. The estimated excess noise originating from the channel and the channel attenuation including the quantum efficiency of the detection setup is investigated with respect to the detection of effective entanglement. The local oscillator is considered in the verification. We witness effective entanglement with a channel length of up to 2 km.
Entanglement-Enhanced Phase Estimation without Prior Phase Information
NASA Astrophysics Data System (ADS)
Colangelo, G.; Martin Ciurana, F.; Puentes, G.; Mitchell, M. W.; Sewell, R. J.
2017-06-01
We study the generation of planar quantum squeezed (PQS) states by quantum nondemolition (QND) measurement of an ensemble of
Extended analysis of the Trojan-horse attack in quantum key distribution
NASA Astrophysics Data System (ADS)
Vinay, Scott E.; Kok, Pieter
2018-04-01
The discrete-variable quantum key distribution protocols based on the 1984 protocol of Bennett and Brassard (BB84) are known to be secure against an eavesdropper, Eve, intercepting the flying qubits and performing any quantum operation on them. However, these protocols may still be vulnerable to side-channel attacks. We investigate the Trojan-horse side-channel attack where Eve sends her own state into Alice's apparatus and measures the reflected state to estimate the key. We prove that the separable coherent state is optimal for Eve among the class of multimode Gaussian attack states, even in the presence of thermal noise. We then provide a bound on the secret key rate in the case where Eve may use any separable state.
Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism
NASA Astrophysics Data System (ADS)
Aurell, Erik
2018-06-01
The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z. The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.
Global Estimates of Errors in Quantum Computation by the Feynman-Vernon Formalism
NASA Astrophysics Data System (ADS)
Aurell, Erik
2018-04-01
The operation of a quantum computer is considered as a general quantum operation on a mixed state on many qubits followed by a measurement. The general quantum operation is further represented as a Feynman-Vernon double path integral over the histories of the qubits and of an environment, and afterward tracing out the environment. The qubit histories are taken to be paths on the two-sphere S^2 as in Klauder's coherent-state path integral of spin, and the environment is assumed to consist of harmonic oscillators initially in thermal equilibrium, and linearly coupled to to qubit operators \\hat{S}_z . The environment can then be integrated out to give a Feynman-Vernon influence action coupling the forward and backward histories of the qubits. This representation allows to derive in a simple way estimates that the total error of operation of a quantum computer without error correction scales linearly with the number of qubits and the time of operation. It also allows to discuss Kitaev's toric code interacting with an environment in the same manner.
Pressure-induced quantum phase transition in the quantum antiferromagnet CsFeCl3
NASA Astrophysics Data System (ADS)
Hayashida, Shohei; Zaharko, Oksana; Kurita, Nobuyuki; Tanaka, Hidekazu; Hagihala, Masato; Soda, Minoru; Itoh, Shinichi; Uwatoko, Yoshiya; Masuda, Takatsugu
2018-04-01
We have studied the pressure-induced quantum phase transition in the singlet-ground-state antiferromagnet CsFeCl3. Neutron diffraction experiments under pressure evidence the magnetic long-range order at low temperatures. Magnetic structure analysis reveals a 120∘ structure with a propagation vector of kmag=(1 /3 ,1 /3 ,0 ) . The estimated critical exponent of the order parameter suggests that CsFeCl3 belongs to the universality class of U (1 ) ×Z2 symmetry which is expected to realize the chiral liquid state.
NASA Astrophysics Data System (ADS)
Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.
2013-04-01
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J
2013-04-19
The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.
Two-mode bosonic quantum metrology with number fluctuations
NASA Astrophysics Data System (ADS)
De Pasquale, Antonella; Facchi, Paolo; Florio, Giuseppe; Giovannetti, Vittorio; Matsuoka, Koji; Yuasa, Kazuya
2015-10-01
We search for the optimal quantum pure states of identical bosonic particles for applications in quantum metrology, in particular, in the estimation of a single parameter for the generic two-mode interferometric setup. We consider the general case in which the total number of particles is fluctuating around an average N with variance Δ N2 . By recasting the problem in the framework of classical probability, we clarify the maximal accuracy attainable and show that it is always larger than the one reachable with a fixed number of particles (i.e., Δ N =0 ). In particular, for larger fluctuations, the error in the estimation diminishes proportionally to 1 /Δ N , below the Heisenberg-like scaling 1 /N . We also clarify the best input state, which is a quasi-NOON state for a generic setup and, for some special cases, a two-mode Schrödinger-cat state with a vacuum component. In addition, we search for the best state within the class of pure Gaussian states with a given average N , which is revealed to be a product state (with no entanglement) with a squeezed vacuum in one mode and the vacuum in the other.
Generalization of the Time-Energy Uncertainty Relation of Anandan-Aharonov Type
NASA Technical Reports Server (NTRS)
Hirayama, Minoru; Hamada, Takeshi; Chen, Jin
1996-01-01
A new type of time-energy uncertainty relation was proposed recently by Anandan and Aharonov. Their formula, to estimate the lower bound of time-integral of the energy-fluctuation in a quantum state is generalized to the one involving a set of quantum states. This is achieved by obtaining an explicit formula for the distance between two finitely separated points in the Grassman manifold.
NASA Astrophysics Data System (ADS)
Nagaoka, Hiroshi
We study the problem of minimizing a quadratic quantity defined for given two Hermitian matrices X, Y and a positive-definite Hermitian matrix. This problem is reduced to the simultaneous diagonalization of X, Y when XY = YX. We derive a lower bound for the quantity, and in some special cases solve the problem by showing that the lower bound is achievable. This problem is closely related to a simultaneous measurement of quantum mechanical observables which are not commuting and has an application in the theory of quantum state estimation.
Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps.
Abdelrahman, Ahmed; Mukai, Tetsuya; Häffner, Hartmut; Byrnes, Tim
2014-02-10
We propose a hybrid architecture for quantum information processing based on magnetically trapped ultracold atoms coupled via optical fields. The ultracold atoms, which can be either Bose-Einstein condensates or ensembles, are trapped in permanent magnetic traps and are placed in microcavities, connected by silica based waveguides on an atom chip structure. At each trapping center, the ultracold atoms form spin coherent states, serving as a quantum memory. An all-optical scheme is used to initialize, measure and perform a universal set of quantum gates on the single and two spin-coherent states where entanglement can be generated addressably between spatially separated trapped ultracold atoms. This allows for universal quantum operations on the spin coherent state quantum memories. We give detailed derivations of the composite cavity system mediated by a silica waveguide as well as the control scheme. Estimates for the necessary experimental conditions for a working hybrid device are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horodecki, Michal; Sen, Aditi; Sen, Ujjwal
The impossibility of cloning and deleting of unknown states constitute important restrictions on processing of information in the quantum world. On the other hand, a known quantum state can always be cloned or deleted. However, if we restrict the class of allowed operations, there will arise restrictions on the ability of cloning and deleting machines. We have shown that cloning and deleting of known states is in general not possible by local operations. This impossibility hints at quantum correlation in the state. We propose dual measures of quantum correlation based on the dual restrictions of no local cloning and nomore » local deleting. The measures are relative entropy distances of the desired states in a (generally impossible) perfect local cloning or local deleting process from the best approximate state that is actually obtained by imperfect local cloning or deleting machines. Just like the dual measures of entanglement cost and distillable entanglement, the proposed measures are based on important processes in quantum information. We discuss their properties. For the case of pure states, estimations of these two measures are also provided. Interestingly, the entanglement of cloning for a maximally entangled state of two two-level systems is not unity.« less
A variational eigenvalue solver on a photonic quantum processor
Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.
2014-01-01
Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053
Search for violations of quantum mechanics
Ellis, John; Hagelin, John S.; Nanopoulos, D. V.; ...
1984-07-01
The treatment of quantum effects in gravitational fields indicates that pure states may evolve into mixed states, and Hawking has proposed modification of the axioms of field theory which incorporate the corresponding violation of quantum mechanics. In this study we propose a modified hamiltonian equation of motion for density matrices and use it to interpret upper bounds on the violation of quantum mechanics in different phenomenological situations. We apply our formalism to the K 0-K 0 system and to long baseline neutron interferometry experiments. In both cases we find upper bounds of about 2 × 10 -21 GeV on contributionsmore » to the single particle “hamiltonian” which violate quantum mechanical coherence. We discuss how these limits might be improved in the future, and consider the relative significance of other successful tests of quantum mechanics. Finally, an appendix contains model estimates of the magnitude of effects violating quantum mechanics.« less
Classical-processing and quantum-processing signal separation methods for qubit uncoupling
NASA Astrophysics Data System (ADS)
Deville, Yannick; Deville, Alain
2012-12-01
The Blind Source Separation problem consists in estimating a set of unknown source signals from their measured combinations. It was only investigated in a non-quantum framework up to now. We propose its first quantum extensions. We thus introduce the Quantum Source Separation field, investigating both its blind and non-blind configurations. More precisely, we show how to retrieve individual quantum bits (qubits) only from the global state resulting from their undesired coupling. We consider cylindrical-symmetry Heisenberg coupling, which e.g. occurs when two electron spins interact through exchange. We first propose several qubit uncoupling methods which typically measure repeatedly the coupled quantum states resulting from individual qubits preparations, and which then statistically process the classical data provided by these measurements. Numerical tests prove the effectiveness of these methods. We then derive a combination of quantum gates for performing qubit uncoupling, thus avoiding repeated qubit preparations and irreversible measurements.
NASA Astrophysics Data System (ADS)
Goyal, Sandeep K.; Singh, Rajeev; Ghosh, Sibasish
2016-01-01
Mixed states of a quantum system, represented by density operators, can be decomposed as a statistical mixture of pure states in a number of ways where each decomposition can be viewed as a different preparation recipe. However the fact that the density matrix contains full information about the ensemble makes it impossible to estimate the preparation basis for the quantum system. Here we present a measurement scheme to (seemingly) improve the performance of unsharp measurements. We argue that in some situations this scheme is capable of providing statistics from a single copy of the quantum system, thus making it possible to perform state tomography from a single copy. One of the by-products of the scheme is a way to distinguish between different preparation methods used to prepare the state of the quantum system. However, our numerical simulations disagree with our intuitive predictions. We show that a counterintuitive property of a biased classical random walk is responsible for the proposed mechanism not working.
Zhao, Qi; Liu, Yunchao; Yuan, Xiao; Chitambar, Eric; Ma, Xiongfeng
2018-02-16
Manipulation and quantification of quantum resources are fundamental problems in quantum physics. In the asymptotic limit, coherence distillation and dilution have been proposed by manipulating infinite identical copies of states. In the nonasymptotic setting, finite data-size effects emerge, and the practically relevant problem of coherence manipulation using finite resources has been left open. This Letter establishes the one-shot theory of coherence dilution, which involves converting maximally coherent states into an arbitrary quantum state using maximally incoherent operations, dephasing-covariant incoherent operations, incoherent operations, or strictly incoherent operations. We introduce several coherence monotones with concrete operational interpretations that estimate the one-shot coherence cost-the minimum amount of maximally coherent states needed for faithful coherence dilution. Furthermore, we derive the asymptotic coherence dilution results with maximally incoherent operations, incoherent operations, and strictly incoherent operations as special cases. Our result can be applied in the analyses of quantum information processing tasks that exploit coherence as resources, such as quantum key distribution and random number generation.
NASA Astrophysics Data System (ADS)
Zhao, Qi; Liu, Yunchao; Yuan, Xiao; Chitambar, Eric; Ma, Xiongfeng
2018-02-01
Manipulation and quantification of quantum resources are fundamental problems in quantum physics. In the asymptotic limit, coherence distillation and dilution have been proposed by manipulating infinite identical copies of states. In the nonasymptotic setting, finite data-size effects emerge, and the practically relevant problem of coherence manipulation using finite resources has been left open. This Letter establishes the one-shot theory of coherence dilution, which involves converting maximally coherent states into an arbitrary quantum state using maximally incoherent operations, dephasing-covariant incoherent operations, incoherent operations, or strictly incoherent operations. We introduce several coherence monotones with concrete operational interpretations that estimate the one-shot coherence cost—the minimum amount of maximally coherent states needed for faithful coherence dilution. Furthermore, we derive the asymptotic coherence dilution results with maximally incoherent operations, incoherent operations, and strictly incoherent operations as special cases. Our result can be applied in the analyses of quantum information processing tasks that exploit coherence as resources, such as quantum key distribution and random number generation.
Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory
NASA Astrophysics Data System (ADS)
Bley, Gonzalo A.; Thomas, Lawrence E.
2017-01-01
We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.
Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space
NASA Astrophysics Data System (ADS)
Volkoff, T. J.; Whaley, K. B.
2014-12-01
We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.
Torres, Juan P.; Salazar-Serrano, Luis José
2016-01-01
Weak value amplification (WVA) is a concept that has been extensively used in a myriad of applications with the aim of rendering measurable tiny changes of a variable of interest. In spite of this, there is still an on-going debate about its true nature and whether is really needed for achieving high sensitivity. Here we aim at helping to clarify the puzzle, using a specific example and some basic concepts from quantum estimation theory, highlighting what the use of the WVA concept can offer and what it can not. While WVA cannot be used to go beyond some fundamental sensitivity limits that arise from considering the full nature of the quantum states, WVA can notwithstanding enhance the sensitivity of real and specific detection schemes that are limited by many other things apart from the quantum nature of the states involved, i.e. technical noise. Importantly, it can do that in a straightforward and easily accessible manner. PMID:26833327
Implementation of a quantum controlled-SWAP gate with photonic circuits
NASA Astrophysics Data System (ADS)
Ono, Takafumi; Okamoto, Ryo; Tanida, Masato; Hofmann, Holger F.; Takeuchi, Shigeki
2017-03-01
Quantum information science addresses how the processing and transmission of information are affected by uniquely quantum mechanical phenomena. Combination of two-qubit gates has been used to realize quantum circuits, however, scalability is becoming a critical problem. The use of three-qubit gates may simplify the structure of quantum circuits dramatically. Among them, the controlled-SWAP (Fredkin) gates are essential since they can be directly applied to important protocols, e.g., error correction, fingerprinting, and optimal cloning. Here we report a realization of the Fredkin gate for photonic qubits. We achieve a fidelity of 0.85 in the computational basis and an output state fidelity of 0.81 for a 3-photon Greenberger-Horne-Zeilinger state. The estimated process fidelity of 0.77 indicates that our Fredkin gate can be applied to various quantum tasks.
Gaussian Hypothesis Testing and Quantum Illumination.
Wilde, Mark M; Tomamichel, Marco; Lloyd, Seth; Berta, Mario
2017-09-22
Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels.
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam
2017-03-01
We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.
Quantum rewinding via phase estimation
NASA Astrophysics Data System (ADS)
Tabia, Gelo Noel
2015-03-01
In cryptography, the notion of a zero-knowledge proof was introduced by Goldwasser, Micali, and Rackoff. An interactive proof system is said to be zero-knowledge if any verifier interacting with an honest prover learns nothing beyond the validity of the statement being proven. With recent advances in quantum information technologies, it has become interesting to ask if classical zero-knowledge proof systems remain secure against adversaries with quantum computers. The standard approach to show the zero-knowledge property involves constructing a simulator for a malicious verifier that can be rewinded to a previous step when the simulation fails. In the quantum setting, the simulator can be described by a quantum circuit that takes an arbitrary quantum state as auxiliary input but rewinding becomes a nontrivial issue. Watrous proposed a quantum rewinding technique in the case where the simulation's success probability is independent of the auxiliary input. Here I present a more general quantum rewinding scheme that employs the quantum phase estimation algorithm. This work was funded by institutional research grant IUT2-1 from the Estonian Research Council and by the European Union through the European Regional Development Fund.
Quantum Computation Using Optically Coupled Quantum Dot Arrays
NASA Technical Reports Server (NTRS)
Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)
1998-01-01
A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.
Localization in a quantum spin Hall system.
Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto
2007-02-16
The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zuocheng; Wei, Wei; Yang, Fangyuan
In this paper, we report quantum oscillation studies on the Bi 2Te 3-xS x topological insulator single crystals in pulsed magnetic fields up to 91 T. For the x = 0.4 sample with the lowest bulk carrier density, the surface and bulk quantum oscillations can be disentangled by combined Shubnikov–de Haas and de Hass–van Alphen oscillations, as well as quantum oscillations in nanometer-thick peeled crystals. At high magnetic fields beyond the bulk quantum limit, our results suggest that the zeroth Landau level of topological surface states is shifted due to the Zeeman effect. The g factor of the topological surfacemore » states is estimated to be between 1.8 and 4.5. Lastly, these observations shed new light on the quantum transport phenomena of topological insulators in ultrahigh magnetic fields.« less
Li, Bo; Li, Sheng-Hao; Zhou, Huan-Qiang
2009-06-01
A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin-1/2 antiferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground-state wave functions.
Quantum chi-squared and goodness of fit testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temme, Kristan; Verstraete, Frank
2015-01-15
A quantum mechanical hypothesis test is presented for the hypothesis that a certain setup produces a given quantum state. Although the classical and the quantum problems are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. A goodness of fit test for i.i.d quantum states is developed and a max-min characterization for the optimal measurement is introduced. We find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiencies, and determine the associated divergence rates. We discuss the relationship of the quantum goodness of fitmore » test to the problem of estimating multiple parameters from a density matrix. These problems are found to be closely related and we show that the largest error of an optimal strategy, determined by the smallest eigenvalue of the Fisher information matrix, is given by the divergence rate of the goodness of fit test.« less
Hybrid reconstruction of quantum density matrix: when low-rank meets sparsity
NASA Astrophysics Data System (ADS)
Li, Kezhi; Zheng, Kai; Yang, Jingbei; Cong, Shuang; Liu, Xiaomei; Li, Zhaokai
2017-12-01
Both the mathematical theory and experiments have verified that the quantum state tomography based on compressive sensing is an efficient framework for the reconstruction of quantum density states. In recent physical experiments, we found that many unknown density matrices in which people are interested in are low-rank as well as sparse. Bearing this information in mind, in this paper we propose a reconstruction algorithm that combines the low-rank and the sparsity property of density matrices and further theoretically prove that the solution of the optimization function can be, and only be, the true density matrix satisfying the model with overwhelming probability, as long as a necessary number of measurements are allowed. The solver leverages the fixed-point equation technique in which a step-by-step strategy is developed by utilizing an extended soft threshold operator that copes with complex values. Numerical experiments of the density matrix estimation for real nuclear magnetic resonance devices reveal that the proposed method achieves a better accuracy compared to some existing methods. We believe that the proposed method could be leveraged as a generalized approach and widely implemented in the quantum state estimation.
Practical decoy state for quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Xiongfeng; Qi Bing; Zhao Yi
2005-07-15
Decoy states have recently been proposed as a useful method for substantially improving the performance of quantum key distribution (QKD). Here, we present a general theory of the decoy state protocol based on only two decoy states and one signal state. We perform optimization on the choice of intensities of the two decoy states and the signal state. Our result shows that a decoy state protocol with only two types of decoy states - the vacuum and a weak decoy state - asymptotically approaches the theoretical limit of the most general type of decoy state protocol (with an infinite numbermore » of decoy states). We also present a one-decoy-state protocol. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long-distance (larger than 100 km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical.« less
Practical quantum key distribution protocol without monitoring signal disturbance.
Sasaki, Toshihiko; Yamamoto, Yoshihisa; Koashi, Masato
2014-05-22
Quantum cryptography exploits the fundamental laws of quantum mechanics to provide a secure way to exchange private information. Such an exchange requires a common random bit sequence, called a key, to be shared secretly between the sender and the receiver. The basic idea behind quantum key distribution (QKD) has widely been understood as the property that any attempt to distinguish encoded quantum states causes a disturbance in the signal. As a result, implementation of a QKD protocol involves an estimation of the experimental parameters influenced by the eavesdropper's intervention, which is achieved by randomly sampling the signal. If the estimation of many parameters with high precision is required, the portion of the signal that is sacrificed increases, thus decreasing the efficiency of the protocol. Here we propose a QKD protocol based on an entirely different principle. The sender encodes a bit sequence onto non-orthogonal quantum states and the receiver randomly dictates how a single bit should be calculated from the sequence. The eavesdropper, who is unable to learn the whole of the sequence, cannot guess the bit value correctly. An achievable rate of secure key distribution is calculated by considering complementary choices between quantum measurements of two conjugate observables. We found that a practical implementation using a laser pulse train achieves a key rate comparable to a decoy-state QKD protocol, an often-used technique for lasers. It also has a better tolerance of bit errors and of finite-sized-key effects. We anticipate that this finding will give new insight into how the probabilistic nature of quantum mechanics can be related to secure communication, and will facilitate the simple and efficient use of conventional lasers for QKD.
Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State
NASA Astrophysics Data System (ADS)
Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon
2016-10-01
Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.
NASA Astrophysics Data System (ADS)
Laforest, Martin
Quantum information processing has been the subject of countless discoveries since the early 1990's. It is believed to be the way of the future for computation: using quantum systems permits one to perform computation exponentially faster than on a regular classical computer. Unfortunately, quantum systems that not isolated do not behave well. They tend to lose their quantum nature due to the presence of the environment. If key information is known about the noise present in the system, methods such as quantum error correction have been developed in order to reduce the errors introduced by the environment during a given quantum computation. In order to harness the quantum world and implement the theoretical ideas of quantum information processing and quantum error correction, it is imperative to understand and quantify the noise present in the quantum processor and benchmark the quality of the control over the qubits. Usual techniques to estimate the noise or the control are based on quantum process tomography (QPT), which, unfortunately, demands an exponential amount of resources. This thesis presents work towards the characterization of noisy processes in an efficient manner. The protocols are developed from a purely abstract setting with no system-dependent variables. To circumvent the exponential nature of quantum process tomography, three different efficient protocols are proposed and experimentally verified. The first protocol uses the idea of quantum error correction to extract relevant parameters about a given noise model, namely the correlation between the dephasing of two qubits. Following that is a protocol using randomization and symmetrization to extract the probability that a given number of qubits are simultaneously corrupted in a quantum memory, regardless of the specifics of the error and which qubits are affected. Finally, a last protocol, still using randomization ideas, is developed to estimate the average fidelity per computational gates for single and multi qubit systems. Even though liquid state NMR is argued to be unsuitable for scalable quantum information processing, it remains the best test-bed system to experimentally implement, verify and develop protocols aimed at increasing the control over general quantum information processors. For this reason, all the protocols described in this thesis have been implemented in liquid state NMR, which then led to further development of control and analysis techniques.
Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Qin, Hao; Kumar, Rupesh; Alléaume, Romain
2016-07-01
We identify and study a security loophole in continuous-variable quantum key distribution (CVQKD) implementations, related to the imperfect linearity of the homodyne detector. By exploiting this loophole, we propose an active side-channel attack on the Gaussian-modulated coherent-state CVQKD protocol combining an intercept-resend attack with an induced saturation of the homodyne detection on the receiver side (Bob). We show that an attacker can bias the excess noise estimation by displacing the quadratures of the coherent states received by Bob. We propose a saturation model that matches experimental measurements on the homodyne detection and use this model to study the impact of the saturation attack on parameter estimation in CVQKD. We demonstrate that this attack can bias the excess noise estimation beyond the null key threshold for any system parameter, thus leading to a full security break. If we consider an additional criterion imposing that the channel transmission estimation should not be affected by the attack, then the saturation attack can only be launched if the attenuation on the quantum channel is sufficient, corresponding to attenuations larger than approximately 6 dB. We moreover discuss the possible countermeasures against the saturation attack and propose a countermeasure based on Gaussian postselection that can be implemented by classical postprocessing and may allow one to distill the secret key when the raw measurement data are partly saturated.
Theoretical Discussion of Electron Transport Rate Constant at TCNQ / Ge and TiO2 System
NASA Astrophysics Data System (ADS)
Al-agealy, Hadi J. M.; Alshafaay, B.; Hassooni, Mohsin A.; Ashwiekh, Ahmed M.; Sadoon, Abbas K.; Majeed, Raad H.; Ghadhban, Rawnaq Q.; Mahdi, Shatha H.
2018-05-01
We have been studying and estimation the electronic transport constant at TCNQ / Ge and Tio2 interface by means of tunneling potential (TP), transport energy reorientation (TER), driving transition energy DTE and coupling coefficient constant. A simple quantum model for the transition processes was adapted to estimation and analysis depending on the quantum state for donor state |α D > and acceptor stated |α A > and assuming continuum levels of the system. Evaluation results were performed for the surfaces of Ge and Tio2 as best as for multilayer TCNQ. The results show an electronic transfer feature for electronic TCNQ density of states and a semiconductor behavior. The electronic rate constant result for both systems shows a good tool to election system in applied devices. All these results indicate the
Information geometry of Gaussian channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monras, Alex; CNR-INFM Coherentia, Napoli; CNISM Unita di Salerno
2010-06-15
We define a local Riemannian metric tensor in the manifold of Gaussian channels and the distance that it induces. We adopt an information-geometric approach and define a metric derived from the Bures-Fisher metric for quantum states. The resulting metric inherits several desirable properties from the Bures-Fisher metric and is operationally motivated by distinguishability considerations: It serves as an upper bound to the attainable quantum Fisher information for the channel parameters using Gaussian states, under generic constraints on the physically available resources. Our approach naturally includes the use of entangled Gaussian probe states. We prove that the metric enjoys some desirablemore » properties like stability and covariance. As a by-product, we also obtain some general results in Gaussian channel estimation that are the continuous-variable analogs of previously known results in finite dimensions. We prove that optimal probe states are always pure and bounded in the number of ancillary modes, even in the presence of constraints on the reduced state input in the channel. This has experimental and computational implications. It limits the complexity of optimal experimental setups for channel estimation and reduces the computational requirements for the evaluation of the metric: Indeed, we construct a converging algorithm for its computation. We provide explicit formulas for computing the multiparametric quantum Fisher information for dissipative channels probed with arbitrary Gaussian states and provide the optimal observables for the estimation of the channel parameters (e.g., bath couplings, squeezing, and temperature).« less
Research progress on quantum informatics and quantum computation
NASA Astrophysics Data System (ADS)
Zhao, Yusheng
2018-03-01
Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.
Work Measurement as a Generalized Quantum Measurement
NASA Astrophysics Data System (ADS)
Roncaglia, Augusto J.; Cerisola, Federico; Paz, Juan Pablo
2014-12-01
We present a new method to measure the work w performed on a driven quantum system and to sample its probability distribution P (w ). The method is based on a simple fact that remained unnoticed until now: Work on a quantum system can be measured by performing a generalized quantum measurement at a single time. Such measurement, which technically speaking is denoted as a positive operator valued measure reduces to an ordinary projective measurement on an enlarged system. This observation not only demystifies work measurement but also suggests a new quantum algorithm to efficiently sample the distribution P (w ). This can be used, in combination with fluctuation theorems, to estimate free energies of quantum states on a quantum computer.
Efficient Measurement of Quantum Gate Error by Interleaved Randomized Benchmarking
NASA Astrophysics Data System (ADS)
Magesan, Easwar; Gambetta, Jay M.; Johnson, B. R.; Ryan, Colm A.; Chow, Jerry M.; Merkel, Seth T.; da Silva, Marcus P.; Keefe, George A.; Rothwell, Mary B.; Ohki, Thomas A.; Ketchen, Mark B.; Steffen, M.
2012-08-01
We describe a scalable experimental protocol for estimating the average error of individual quantum computational gates. This protocol consists of interleaving random Clifford gates between the gate of interest and provides an estimate as well as theoretical bounds for the average error of the gate under test, so long as the average noise variation over all Clifford gates is small. This technique takes into account both state preparation and measurement errors and is scalable in the number of qubits. We apply this protocol to a superconducting qubit system and find a bounded average error of 0.003 [0,0.016] for the single-qubit gates Xπ/2 and Yπ/2. These bounded values provide better estimates of the average error than those extracted via quantum process tomography.
A variable partially polarizing beam splitter.
Flórez, Jefferson; Carlson, Nathan J; Nacke, Codey H; Giner, Lambert; Lundeen, Jeff S
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
A variable partially polarizing beam splitter
NASA Astrophysics Data System (ADS)
Flórez, Jefferson; Carlson, Nathan J.; Nacke, Codey H.; Giner, Lambert; Lundeen, Jeff S.
2018-02-01
We present designs for variably polarizing beam splitters. These are beam splitters allowing the complete and independent control of the horizontal and vertical polarization splitting ratios. They have quantum optics and quantum information applications, such as quantum logic gates for quantum computing and non-local measurements for quantum state estimation. At the heart of each design is an interferometer. We experimentally demonstrate one particular implementation, a displaced Sagnac interferometer configuration, that provides an inherent instability to air currents and vibrations. Furthermore, this design does not require any custom-made optics but only common components which can be easily found in an optics laboratory.
Approximation method for a spherical bound system in the quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.
2010-08-15
A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.
Local quantum thermal susceptibility
De Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio
2016-01-01
Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions. PMID:27681458
Local quantum thermal susceptibility
NASA Astrophysics Data System (ADS)
de Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio
2016-09-01
Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.
Secure detection in quantum key distribution by real-time calibration of receiver
NASA Astrophysics Data System (ADS)
Marøy, Øystein; Makarov, Vadim; Skaar, Johannes
2017-12-01
The single-photon detectionefficiency of the detector unit is crucial for the security of common quantum key distribution protocols like Bennett-Brassard 1984 (BB84). A low value for the efficiency indicates a possible eavesdropping attack that exploits the photon receiver’s imperfections. We present a method for estimating the detection efficiency, and calculate the corresponding secure key generation rate. The estimation is done by testing gated detectors using a randomly activated photon source inside the receiver unit. This estimate gives a secure rate for any detector with non-unity single-photon detection efficiency, both inherit or due to blinding. By adding extra optical components to the receiver, we make sure that the key is extracted from photon states for which our estimate is valid. The result is a quantum key distribution scheme that is secure against any attack that exploits detector imperfections.
NASA Astrophysics Data System (ADS)
You, Chenglong; Adhikari, Sushovit; Chi, Yuxi; LaBorde, Margarite L.; Matyas, Corey T.; Zhang, Chenyu; Su, Zuen; Byrnes, Tim; Lu, Chaoyang; Dowling, Jonathan P.; Olson, Jonathan P.
2017-12-01
It was suggested in (Motes et al 2015 Phys. Rev. Lett. 114 170802) that optical networks with relatively inexpensive overheads—single photon Fock states, passive optical elements, and single photon detection—can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (n< 7). A similar case was made in (Humphreys et al 2013 Phys. Rev. Lett. 111 070403) for multi-parameter estimation, where measurement is instead made using photon-number resolving detectors. In this paper, we analytically compute the quantum Cramér-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.
Achieving quantum precision limit in adaptive qubit state tomography
NASA Astrophysics Data System (ADS)
Hou, Zhibo; Zhu, Huangjun; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can
2016-02-01
The precision limit in quantum state tomography is of great interest not only to practical applications but also to foundational studies. However, little is known about this subject in the multiparameter setting even theoretically due to the subtle information trade-off among incompatible observables. In the case of a qubit, the theoretic precision limit was determined by Hayashi as well as Gill and Massar, but attaining the precision limit in experiments has remained a challenging task. Here we report the first experiment that achieves this precision limit in adaptive quantum state tomography on optical polarisation qubits. The two-step adaptive strategy used in our experiment is very easy to implement in practice. Yet it is surprisingly powerful in optimising most figures of merit of practical interest. Our study may have significant implications for multiparameter quantum estimation problems, such as quantum metrology. Meanwhile, it may promote our understanding about the complementarity principle and uncertainty relations from the information theoretic perspective.
Quantum computing applied to calculations of molecular energies: CH2 benchmark.
Veis, Libor; Pittner, Jiří
2010-11-21
Quantum computers are appealing for their ability to solve some tasks much faster than their classical counterparts. It was shown in [Aspuru-Guzik et al., Science 309, 1704 (2005)] that they, if available, would be able to perform the full configuration interaction (FCI) energy calculations with a polynomial scaling. This is in contrast to conventional computers where FCI scales exponentially. We have developed a code for simulation of quantum computers and implemented our version of the quantum FCI algorithm. We provide a detailed description of this algorithm and the results of the assessment of its performance on the four lowest lying electronic states of CH(2) molecule. This molecule was chosen as a benchmark, since its two lowest lying (1)A(1) states exhibit a multireference character at the equilibrium geometry. It has been shown that with a suitably chosen initial state of the quantum register, one is able to achieve the probability amplification regime of the iterative phase estimation algorithm even in this case.
Optimum quantum receiver for detecting weak signals in PAM communication systems
NASA Astrophysics Data System (ADS)
Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar
2017-09-01
This paper deals with the modeling of an optimum quantum receiver for pulse amplitude modulator (PAM) communication systems. The information bearing sequence {I_k}_{k=0}^{N-1} is estimated using the maximum likelihood (ML) method. The ML method is based on quantum mechanical measurements of an observable X in the Hilbert space of the quantum system at discrete times, when the Hamiltonian of the system is perturbed by an operator obtained by modulating a potential V with a PAM signal derived from the information bearing sequence {I_k}_{k=0}^{N-1}. The measurement process at each time instant causes collapse of the system state to an observable eigenstate. All probabilities of getting different outcomes from an observable are calculated using the perturbed evolution operator combined with the collapse postulate. For given probability densities, calculation of the mean square error evaluates the performance of the receiver. Finally, we present an example involving estimating an information bearing sequence that modulates a quantum electromagnetic field incident on a quantum harmonic oscillator.
Analytical recursive method to ascertain multisite entanglement in doped quantum spin ladders
NASA Astrophysics Data System (ADS)
Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2017-08-01
We formulate an analytical recursive method to generate the wave function of doped short-range resonating valence bond (RVB) states as a tool to efficiently estimate multisite entanglement as well as other physical quantities in doped quantum spin ladders. We prove that doped RVB ladder states are always genuine multipartite entangled. Importantly, our results show that within specific doping concentration and model parameter regimes, the doped RVB state essentially characterizes the trends of genuine multiparty entanglement in the exact ground states of the Hubbard model with large on-site interactions, in the limit that yields the t -J Hamiltonian.
Optical levitation of a microdroplet containing a single quantum dot.
Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki
2015-03-15
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This Letter presents the realization of an optically levitated solid-state quantum emitter.
Composable security proof for continuous-variable quantum key distribution with coherent States.
Leverrier, Anthony
2015-02-20
We give the first composable security proof for continuous-variable quantum key distribution with coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti theorem or the postselection technique then shows the security of the protocol against general attacks, thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the composable security framework. We expect that our parameter estimation procedure, which does not rely on any assumption about the quantum state being measured, will find applications elsewhere, for instance, for the reliable quantification of continuous-variable entanglement in finite-size settings.
Einstein-Podolsky-Rosen steering: Its geometric quantification and witness
NASA Astrophysics Data System (ADS)
Ku, Huan-Yu; Chen, Shin-Liang; Budroni, Costantino; Miranowicz, Adam; Chen, Yueh-Nan; Nori, Franco
2018-02-01
We propose a measure of quantum steerability, namely, a convex steering monotone, based on the trace distance between a given assemblage and its corresponding closest assemblage admitting a local-hidden-state (LHS) model. We provide methods to estimate such a quantity, via lower and upper bounds, based on semidefinite programming. One of these upper bounds has a clear geometrical interpretation as a linear function of rescaled Euclidean distances in the Bloch sphere between the normalized quantum states of (i) a given assemblage and (ii) an LHS assemblage. For a qubit-qubit quantum state, these ideas also allow us to visualize various steerability properties of the state in the Bloch sphere via the so-called LHS surface. In particular, some steerability properties can be obtained by comparing such an LHS surface with a corresponding quantum steering ellipsoid. Thus, we propose a witness of steerability corresponding to the difference of the volumes enclosed by these two surfaces. This witness (which reveals the steerability of a quantum state) enables one to find an optimal measurement basis, which can then be used to determine the proposed steering monotone (which describes the steerability of an assemblage) optimized over all mutually unbiased bases.
Generalized quantum interference of correlated photon pairs.
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2015-05-07
Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.
Probabilistic Metrology Attains Macroscopic Cloning of Quantum Clocks
NASA Astrophysics Data System (ADS)
Gendra, B.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.; Chiribella, G.
2014-12-01
It has recently been shown that probabilistic protocols based on postselection boost the performances of the replication of quantum clocks and phase estimation. Here we demonstrate that the improvements in these two tasks have to match exactly in the macroscopic limit where the number of clones grows to infinity, preserving the equivalence between asymptotic cloning and state estimation for arbitrary values of the success probability. Remarkably, the cloning fidelity depends critically on the number of rationally independent eigenvalues of the clock Hamiltonian. We also prove that probabilistic metrology can simulate cloning in the macroscopic limit for arbitrary sets of states when the performance of the simulation is measured by testing small groups of clones.
Impurity States and diamagnetic susceptibility of a donor in a triangular quantum well
NASA Astrophysics Data System (ADS)
Kalpana, P.; Reuben, A. Merwyn Jasper D.; Nithiananthi, P.; Jayakumar, K.
2017-05-01
We have calculated the binding energy and the diamagnetic susceptibility(χdia) of the ground (1s) and few low lying excited states (2s and 2p±) in a GaAs/AlxGa1-xAs Triangular Quantum Well (TQW) for the Al composition of x = 0.3. Since the estimation of
Spin relaxation in semiconductor quantum rings and dots--a comparative study.
Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M
2011-03-23
We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.
Estimating the time evolution of NMR systems via a quantum-speed-limit-like expression
NASA Astrophysics Data System (ADS)
Villamizar, D. V.; Duzzioni, E. I.; Leal, A. C. S.; Auccaise, R.
2018-05-01
Finding the solutions of the equations that describe the dynamics of a given physical system is crucial in order to obtain important information about its evolution. However, by using estimation theory, it is possible to obtain, under certain limitations, some information on its dynamics. The quantum-speed-limit (QSL) theory was originally used to estimate the shortest time in which a Hamiltonian drives an initial state to a final one for a given fidelity. Using the QSL theory in a slightly different way, we are able to estimate the running time of a given quantum process. For that purpose, we impose the saturation of the Anandan-Aharonov bound in a rotating frame of reference where the state of the system travels slower than in the original frame (laboratory frame). Through this procedure it is possible to estimate the actual evolution time in the laboratory frame of reference with good accuracy when compared to previous methods. Our method is tested successfully to predict the time spent in the evolution of nuclear spins 1/2 and 3/2 in NMR systems. We find that the estimated time according to our method is better than previous approaches by up to four orders of magnitude. One disadvantage of our method is that we need to solve a number of transcendental equations, which increases with the system dimension and parameter discretization used to solve such equations numerically.
Application of fermionic marginal constraints to hybrid quantum algorithms
NASA Astrophysics Data System (ADS)
Rubin, Nicholas C.; Babbush, Ryan; McClean, Jarrod
2018-05-01
Many quantum algorithms, including recently proposed hybrid classical/quantum algorithms, make use of restricted tomography of the quantum state that measures the reduced density matrices, or marginals, of the full state. The most straightforward approach to this algorithmic step estimates each component of the marginal independently without making use of the algebraic and geometric structure of the marginals. Within the field of quantum chemistry, this structure is termed the fermionic n-representability conditions, and is supported by a vast amount of literature on both theoretical and practical results related to their approximations. In this work, we introduce these conditions in the language of quantum computation, and utilize them to develop several techniques to accelerate and improve practical applications for quantum chemistry on quantum computers. As a general result, we demonstrate how these marginals concentrate to diagonal quantities when measured on random quantum states. We also show that one can use fermionic n-representability conditions to reduce the total number of measurements required by more than an order of magnitude for medium sized systems in chemistry. As a practical demonstration, we simulate an efficient restoration of the physicality of energy curves for the dilation of a four qubit diatomic hydrogen system in the presence of three distinct one qubit error channels, providing evidence these techniques are useful for pre-fault tolerant quantum chemistry experiments.
NASA Astrophysics Data System (ADS)
Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd
2016-10-01
Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a general entangling cloner collective attack (modeled using data obtained from the state measurement results on both trusted sides of the protocol), that allows to purify the noise added in the quantum channel . Our security analysis of coherent-state protocol also took into account the effect of imperfect channel estimation, limited post-processing efficiency and finite data ensemble size on the performance of the protocol. In this regime we observe the positive key rate even without the need of applying post-selection. We show the positive improvement of the key rate with increase of the modulation variance, still remaining low enough to tolerate the transmittance fluctuations. The obtained results show that coherent-state CV QKD protocol that uses real free-space atmospheric channel can withstand negative influence of transmittance fluctuations, limited post-processing efficiency, imperfect channel estimation and other finite-size effects, and be successfully implemented. Our result paves the way to the full-scale implementation of the CV QKD in real free-space channels at mid-range distances.
Practical experimental certification of computational quantum gates using a twirling procedure.
Moussa, Osama; da Silva, Marcus P; Ryan, Colm A; Laflamme, Raymond
2012-08-17
Because of the technical difficulty of building large quantum computers, it is important to be able to estimate how faithful a given implementation is to an ideal quantum computer. The common approach of completely characterizing the computation process via quantum process tomography requires an exponential amount of resources, and thus is not practical even for relatively small devices. We solve this problem by demonstrating that twirling experiments previously used to characterize the average fidelity of quantum memories efficiently can be easily adapted to estimate the average fidelity of the experimental implementation of important quantum computation processes, such as unitaries in the Clifford group, in a practical and efficient manner with applicability in current quantum devices. Using this procedure, we demonstrate state-of-the-art coherent control of an ensemble of magnetic moments of nuclear spins in a single crystal solid by implementing the encoding operation for a 3-qubit code with only a 1% degradation in average fidelity discounting preparation and measurement errors. We also highlight one of the advances that was instrumental in achieving such high fidelity control.
Ground-to-satellite quantum teleportation.
Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei
2017-09-07
An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.
Ground-to-satellite quantum teleportation
NASA Astrophysics Data System (ADS)
Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei
2017-09-01
An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’ the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.
Mao, Chen-Chen; Zhou, Xing-Yu; Zhu, Jian-Rong; Zhang, Chun-Hui; Zhang, Chun-Mei; Wang, Qin
2018-05-14
Recently Zhang et al [ Phys. Rev. A95, 012333 (2017)] developed a new approach to estimate the failure probability for the decoy-state BB84 QKD system when taking finite-size key effect into account, which offers security comparable to Chernoff bound, while results in an improved key rate and transmission distance. Based on Zhang et al's work, now we extend this approach to the case of the measurement-device-independent quantum key distribution (MDI-QKD), and for the first time implement it onto the four-intensity decoy-state MDI-QKD system. Moreover, through utilizing joint constraints and collective error-estimation techniques, we can obviously increase the performance of practical MDI-QKD systems compared with either three- or four-intensity decoy-state MDI-QKD using Chernoff bound analysis, and achieve much higher level security compared with those applying Gaussian approximation analysis.
Minimax estimation of qubit states with Bures risk
NASA Astrophysics Data System (ADS)
Acharya, Anirudh; Guţă, Mădălin
2018-04-01
The central problem of quantum statistics is to devise measurement schemes for the estimation of an unknown state, given an ensemble of n independent identically prepared systems. For locally quadratic loss functions, the risk of standard procedures has the usual scaling of 1/n. However, it has been noticed that for fidelity based metrics such as the Bures distance, the risk of conventional (non-adaptive) qubit tomography schemes scales as 1/\\sqrt{n} for states close to the boundary of the Bloch sphere. Several proposed estimators appear to improve this scaling, and our goal is to analyse the problem from the perspective of the maximum risk over all states. We propose qubit estimation strategies based on separate adaptive measurements, and collective measurements, that achieve 1/n scalings for the maximum Bures risk. The estimator involving local measurements uses a fixed fraction of the available resource n to estimate the Bloch vector direction; the length of the Bloch vector is then estimated from the remaining copies by measuring in the estimator eigenbasis. The estimator based on collective measurements uses local asymptotic normality techniques which allows us to derive upper and lower bounds to its maximum Bures risk. We also discuss how to construct a minimax optimal estimator in this setup. Finally, we consider quantum relative entropy and show that the risk of the estimator based on collective measurements achieves a rate O(n-1log n) under this loss function. Furthermore, we show that no estimator can achieve faster rates, in particular the ‘standard’ rate n ‑1.
Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies.
Tettamanzi, Giuseppe Carlo; Hile, Samuel James; House, Matthew Gregory; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y
2017-03-28
The ability to apply gigahertz frequencies to control the quantum state of a single P atom is an essential requirement for the fast gate pulsing needed for qubit control in donor-based silicon quantum computation. Here, we demonstrate this with nanosecond accuracy in an all epitaxial single atom transistor by applying excitation signals at frequencies up to ≈13 GHz to heavily phosphorus-doped silicon leads. These measurements allow the differentiation between the excited states of the single atom and the density of states in the one-dimensional leads. Our pulse spectroscopy experiments confirm the presence of an excited state at an energy ≈9 meV, consistent with the first excited state of a single P donor in silicon. The relaxation rate of this first excited state to the ground state is estimated to be larger than 2.5 GHz, consistent with theoretical predictions. These results represent a systematic investigation of how an atomically precise single atom transistor device behaves under radio frequency excitations.
Versatile Gaussian probes for squeezing estimation
NASA Astrophysics Data System (ADS)
Rigovacca, Luca; Farace, Alessandro; Souza, Leonardo A. M.; De Pasquale, Antonella; Giovannetti, Vittorio; Adesso, Gerardo
2017-05-01
We consider an instance of "black-box" quantum metrology in the Gaussian framework, where we aim to estimate the amount of squeezing applied on an input probe, without previous knowledge on the phase of the applied squeezing. By taking the quantum Fisher information (QFI) as the figure of merit, we evaluate its average and variance with respect to this phase in order to identify probe states that yield good precision for many different squeezing directions. We first consider the case of single-mode Gaussian probes with the same energy, and find that pure squeezed states maximize the average quantum Fisher information (AvQFI) at the cost of a performance that oscillates strongly as the squeezing direction is changed. Although the variance can be brought to zero by correlating the probing system with a reference mode, the maximum AvQFI cannot be increased in the same way. A different scenario opens if one takes into account the effects of photon losses: coherent states represent the optimal single-mode choice when losses exceed a certain threshold and, moreover, correlated probes can now yield larger AvQFI values than all single-mode states, on top of having zero variance.
Reaching the Quantum Cramér-Rao Bound for Transmission Measurements
NASA Astrophysics Data System (ADS)
Woodworth, Timothy; Chan, Kam Wai Clifford; Marino, Alberto
2017-04-01
The quantum Cramér-Rao bound (QCRB) is commonly used to quantify the lower bound for the uncertainty in the estimation of a given parameter. Here, we calculate the QCRB for transmission measurements of an optical system probed by a beam of light. Estimating the transmission of an optical element is important as it is required for the calibration of optimal states for interferometers, characterization of high efficiency photodetectors, or as part of other measurements, such as those in plasmonic sensors or in ellipsometry. We use a beam splitter model for the losses introduced by the optical system to calculate the QCRB for different input states. We compare the bound for a coherent state, a two-mode squeezed-state (TMSS), a single-mode squeezed-state (SMSS), and a Fock state and show that it is possible to obtain an ultimate lower bound, regardless of the state used to probe the system. We prove that the Fock state gives the lowest possible uncertainty in estimating the transmission for any state and demonstrate that the TMSS and SMSS approach this ultimate bound for large levels of squeezing. Finally, we show that a simple measurement strategy for the TMSS, namely an intensity difference measurement, is able to saturate the QCRB. Work supported by the W.M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Laverick, Kiarn T.; Wiseman, Howard M.; Dinani, Hossein T.; Berry, Dominic W.
2018-04-01
The problem of measuring a time-varying phase, even when the statistics of the variation is known, is considerably harder than that of measuring a constant phase. In particular, the usual bounds on accuracy, such as the 1 /(4 n ¯) standard quantum limit with coherent states, do not apply. Here, by restricting to coherent states, we are able to analytically obtain the achievable accuracy, the equivalent of the standard quantum limit, for a wide class of phase variation. In particular, we consider the case where the phase has Gaussian statistics and a power-law spectrum equal to κp -1/|ω| p for large ω , for some p >1 . For coherent states with mean photon flux N , we give the quantum Cramér-Rao bound on the mean-square phase error as [psin(π /p ) ] -1(4N /κ ) -(p -1 )/p . Next, we consider whether the bound can be achieved by an adaptive homodyne measurement in the limit N /κ ≫1 , which allows the photocurrent to be linearized. Applying the optimal filtering for the resultant linear Gaussian system, we find the same scaling with N , but with a prefactor larger by a factor of p . By contrast, if we employ optimal smoothing we can exactly obtain the quantum Cramér-Rao bound. That is, contrary to previously considered (p =2 ) cases of phase estimation, here the improvement offered by smoothing over filtering is not limited to a factor of 2 but rather can be unbounded by a factor of p . We also study numerically the performance of these estimators for an adaptive measurement in the limit where N /κ is not large and find a more complicated picture.
Dielectric response of periodic systems from quantum Monte Carlo calculations.
Umari, P; Willamson, A J; Galli, Giulia; Marzari, Nicola
2005-11-11
We present a novel approach that allows us to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric-enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wave function, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence, sampled via forward walking. This approach has been validated for the case of an isolated hydrogen atom and then applied to a periodic system, to calculate the dielectric susceptibility of molecular-hydrogen chains. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.
Experimental Detection of Quantum Channel Capacities.
Cuevas, Álvaro; Proietti, Massimiliano; Ciampini, Mario Arnolfo; Duranti, Stefano; Mataloni, Paolo; Sacchi, Massimiliano F; Macchiavello, Chiara
2017-09-08
We present an efficient experimental procedure that certifies nonvanishing quantum capacities for qubit noisy channels. Our method is based on the use of a fixed bipartite entangled state, where the system qubit is sent to the channel input. A particular set of local measurements is performed at the channel output and the ancilla qubit mode, obtaining lower bounds to the quantum capacities for any unknown channel with no need of quantum process tomography. The entangled qubits have a Bell state configuration and are encoded in photon polarization. The lower bounds are found by estimating the Shannon and von Neumann entropies at the output using an optimized basis, whose statistics is obtained by measuring only the three observables σ_{x}⊗σ_{x}, σ_{y}⊗σ_{y}, and σ_{z}⊗σ_{z}.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful.
A quantum framework for likelihood ratios
NASA Astrophysics Data System (ADS)
Bond, Rachael L.; He, Yang-Hui; Ormerod, Thomas C.
The ability to calculate precise likelihood ratios is fundamental to science, from Quantum Information Theory through to Quantum State Estimation. However, there is no assumption-free statistical methodology to achieve this. For instance, in the absence of data relating to covariate overlap, the widely used Bayes’ theorem either defaults to the marginal probability driven “naive Bayes’ classifier”, or requires the use of compensatory expectation-maximization techniques. This paper takes an information-theoretic approach in developing a new statistical formula for the calculation of likelihood ratios based on the principles of quantum entanglement, and demonstrates that Bayes’ theorem is a special case of a more general quantum mechanical expression.
Quantum control of topological defects in magnetic systems
NASA Astrophysics Data System (ADS)
Takei, So; Mohseni, Masoud
2018-02-01
Energy-efficient classical information processing and storage based on topological defects in magnetic systems have been studied over the past decade. In this work, we introduce a class of macroscopic quantum devices in which a quantum state is stored in a topological defect of a magnetic insulator. We propose noninvasive methods to coherently control and read out the quantum state using ac magnetic fields and magnetic force microscopy, respectively. This macroscopic quantum spintronic device realizes the magnetic analog of the three-level rf-SQUID qubit and is built fully out of electrical insulators with no mobile electrons, thus eliminating decoherence due to the coupling of the quantum variable to an electronic continuum and energy dissipation due to Joule heating. For a domain wall size of 10-100 nm and reasonable material parameters, we estimate qubit operating temperatures in the range of 0.1-1 K, a decoherence time of about 0.01-1 μ s , and the number of Rabi flops within the coherence time scale in the range of 102-104 .
Why are para-hydrogen clusters superfluid? A quantum theorem of corresponding states study.
Sevryuk, Mikhail B; Toennies, J Peter; Ceperley, David M
2010-08-14
The quantum theorem of corresponding states is applied to N=13 and N=26 cold quantum fluid clusters to establish where para-hydrogen clusters lie in relation to more and less quantum delocalized systems. Path integral Monte Carlo calculations of the energies, densities, radial and pair distributions, and superfluid fractions are reported at T=0.5 K for a Lennard-Jones (LJ) (12,6) potential using six different de Boer parameters including the accepted value for hydrogen. The results indicate that the hydrogen clusters are on the borderline to being a nonsuperfluid solid but that the molecules are sufficiently delocalized to be superfluid. A general phase diagram for the total and kinetic energies of LJ (12,6) clusters encompassing all sizes from N=2 to N=infinity and for the entire range of de Boer parameters is presented. Finally the limiting de Boer parameters for quantum delocalization induced unbinding ("quantum unbinding") are estimated and the new results are found to agree with previous calculations for the bulk and smaller clusters.
Universal non-adiabatic geometric manipulation of pseudo-spin charge qubits
NASA Astrophysics Data System (ADS)
Azimi Mousolou, Vahid
2017-01-01
Reliable quantum information processing requires high-fidelity universal manipulation of quantum systems within the characteristic coherence times. Non-adiabatic holonomic quantum computation offers a promising approach to implement fast, universal, and robust quantum logic gates particularly useful in nano-fabricated solid-state architectures, which typically have short coherence times. Here, we propose an experimentally feasible scheme to realize high-speed universal geometric quantum gates in nano-engineered pseudo-spin charge qubits. We use a system of three coupled quantum dots containing a single electron, where two computational states of a double quantum dot charge qubit interact through an intermediate quantum dot. The additional degree of freedom introduced into the qubit makes it possible to create a geometric model system, which allows robust and efficient single-qubit rotations through careful control of the inter-dot tunneling parameters. We demonstrate that a capacitive coupling between two charge qubits permits a family of non-adiabatic holonomic controlled two-qubit entangling gates, and thus provides a promising procedure to maintain entanglement in charge qubits and a pathway toward fault-tolerant universal quantum computation. We estimate the feasibility of the proposed structure by analyzing the gate fidelities to some extent.
Majorana-Based Fermionic Quantum Computation.
O'Brien, T E; Rożek, P; Akhmerov, A R
2018-06-01
Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.
NASA Astrophysics Data System (ADS)
Lorenzen, F.; de Ponte, M. A.; Moussa, M. H. Y.
2009-09-01
In this paper, employing the Itô stochastic Schrödinger equation, we extend Bell’s beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm’s causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm’s causal dynamics regarding stationary states in quantum mechanics.
Majorana-Based Fermionic Quantum Computation
NASA Astrophysics Data System (ADS)
O'Brien, T. E.; RoŻek, P.; Akhmerov, A. R.
2018-06-01
Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O (1 ) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.
Quantifying non-Gaussianity for quantum information
NASA Astrophysics Data System (ADS)
Genoni, Marco G.; Paris, Matteo G. A.
2010-11-01
We address the quantification of non-Gaussianity (nG) of states and operations in continuous-variable systems and its use in quantum information. We start by illustrating in detail the properties and the relationships of two recently proposed measures of nG based on the Hilbert-Schmidt distance and the quantum relative entropy (QRE) between the state under examination and a reference Gaussian state. We then evaluate the non-Gaussianities of several families of non-Gaussian quantum states and show that the two measures have the same basic properties and also share the same qualitative behavior in most of the examples taken into account. However, we also show that they introduce a different relation of order; that is, they are not strictly monotone to each other. We exploit the nG measures for states in order to introduce a measure of nG for quantum operations, to assess Gaussification and de-Gaussification protocols, and to investigate in detail the role played by nG in entanglement-distillation protocols. Besides, we exploit the QRE-based nG measure to provide different insight on the extremality of Gaussian states for some entropic quantities such as conditional entropy, mutual information, and the Holevo bound. We also deal with parameter estimation and present a theorem connecting the QRE nG to the quantum Fisher information. Finally, since evaluation of the QRE nG measure requires the knowledge of the full density matrix, we derive some experimentally friendly lower bounds to nG for some classes of states and by considering the possibility of performing on the states only certain efficient or inefficient measurements.
Near-optimal quantum circuit for Grover's unstructured search using a transverse field
NASA Astrophysics Data System (ADS)
Jiang, Zhang; Rieffel, Eleanor G.; Wang, Zhihui
2017-06-01
Inspired by a class of algorithms proposed by Farhi et al. (arXiv:1411.4028), namely, the quantum approximate optimization algorithm (QAOA), we present a circuit-based quantum algorithm to search for a needle in a haystack, obtaining the same quadratic speedup achieved by Grover's original algorithm. In our algorithm, the problem Hamiltonian (oracle) and a transverse field are applied alternately to the system in a periodic manner. We introduce a technique, based on spin-coherent states, to analyze the composite unitary in a single period. This composite unitary drives a closed transition between two states that have high degrees of overlap with the initial state and the target state, respectively. The transition rate in our algorithm is of order Θ (1 /√{N }) , and the overlaps are of order Θ (1 ) , yielding a nearly optimal query complexity of T ≃√{N }(π /2 √{2 }) . Our algorithm is a QAOA circuit that demonstrates a quantum advantage with a large number of iterations that is not derived from Trotterization of an adiabatic quantum optimization (AQO) algorithm. It also suggests that the analysis required to understand QAOA circuits involves a very different process from estimating the energy gap of a Hamiltonian in AQO.
Variational Quantum Tomography with Incomplete Information by Means of Semidefinite Programs
NASA Astrophysics Data System (ADS)
Maciel, Thiago O.; Cesário, André T.; Vianna, Reinaldo O.
We introduce a new method to reconstruct unknown quantum states out of incomplete and noisy information. The method is a linear convex optimization problem, therefore with a unique minimum, which can be efficiently solved with Semidefinite Programs. Numerical simulations indicate that the estimated state does not overestimate purity, and neither the expectation value of optimal entanglement witnesses. The convergence properties of the method are similar to compressed sensing approaches, in the sense that, in order to reconstruct low rank states, it needs just a fraction of the effort corresponding to an informationally complete measurement.
NASA Astrophysics Data System (ADS)
Zhang, Jiandong; Zhang, Zijing; Cen, Longzhu; Li, Shuo; Wang, Feng; Zhao, Yuan
2018-03-01
Quantum process tomography, as an advanced means of metrology, has a capacious range of applications for estimating numerous meaningful parameters. The parameter estimate precision of using coherent state and single photon state as probe are limited by the shot noise limit. Here we demonstrate a quantum enhanced rotating angle measure scheme based on the four-photon Holland-Burnett state can achieve the Heisenberg scaling by the coincidence counting technology. At the same time, the output signal of our scheme has an 8-fold super-resolution compared to the Malus law. In addition, the accuracy achieved by four photons is consistent with using 12 photons of single photon probe. That has incomparable preponderance in a situation in which only weak light can be exploited, like the measure of frangible biological specimens and photosensitive crystals. Moreover, the four-photon Holland-Burnett state can be generated by a polarization-entangled light source. These ensure that our scheme has a champaign application prospect.
Driven-dissipative quantum Monte Carlo method for open quantum systems
NASA Astrophysics Data System (ADS)
Nagy, Alexandra; Savona, Vincenzo
2018-05-01
We develop a real-time full configuration-interaction quantum Monte Carlo approach to model driven-dissipative open quantum systems with Markovian system-bath coupling. The method enables stochastic sampling of the Liouville-von Neumann time evolution of the density matrix thanks to a massively parallel algorithm, thus providing estimates of observables on the nonequilibrium steady state. We present the underlying theory and introduce an initiator technique and importance sampling to reduce the statistical error. Finally, we demonstrate the efficiency of our approach by applying it to the driven-dissipative two-dimensional X Y Z spin-1/2 model on a lattice.
NASA Astrophysics Data System (ADS)
Ma, Yun-Ming; Wang, Tie-Jun
2017-10-01
Higher-dimensional quantum system is of great interest owing to the outstanding features exhibited in the implementation of novel fundamental tests of nature and application in various quantum information tasks. High-dimensional quantum logic gate is a key element in scalable quantum computation and quantum communication. In this paper, we propose a scheme to implement a controlled-phase gate between a 2 N -dimensional photon and N three-level artificial atoms. This high-dimensional controlled-phase gate can serve as crucial components of the high-capacity, long-distance quantum communication. We use the high-dimensional Bell state analysis as an example to show the application of this device. Estimates on the system requirements indicate that our protocol is realizable with existing or near-further technologies. This scheme is ideally suited to solid-state integrated optical approaches to quantum information processing, and it can be applied to various system, such as superconducting qubits coupled to a resonator or nitrogen-vacancy centers coupled to a photonic-band-gap structures.
Verifying genuine high-order entanglement.
Li, Che-Ming; Chen, Kai; Reingruber, Andreas; Chen, Yueh-Nan; Pan, Jian-Wei
2010-11-19
High-order entanglement embedded in multipartite multilevel quantum systems (qudits) with many degrees of freedom (DOFs) plays an important role in quantum foundation and quantum engineering. Verifying high-order entanglement without the restriction of system complexity is a critical need in any experiments on general entanglement. Here, we introduce a scheme to efficiently detect genuine high-order entanglement, such as states close to genuine qudit Bell, Greenberger-Horne-Zeilinger, and cluster states as well as multilevel multi-DOF hyperentanglement. All of them can be identified with two local measurement settings per DOF regardless of the qudit or DOF number. The proposed verifications together with further utilities such as fidelity estimation could pave the way for experiments by reducing dramatically the measurement overhead.
Experimental realization of equiangular three-state quantum key distribution
Schiavon, Matteo; Vallone, Giuseppe; Villoresi, Paolo
2016-01-01
Quantum key distribution using three states in equiangular configuration combines a security threshold comparable with the one of the Bennett-Brassard 1984 protocol and a quantum bit error rate (QBER) estimation that does not need to reveal part of the key. We implement an entanglement-based version of the Renes 2004 protocol, using only passive optic elements in a linear scheme for the positive-operator valued measure (POVM), generating an asymptotic secure key rate of more than 10 kbit/s, with a mean QBER of 1.6%. We then demonstrate its security in the case of finite key and evaluate the key rate for both collective and general attacks. PMID:27465643
Problem of quantifying quantum correlations with non-commutative discord
NASA Astrophysics Data System (ADS)
Majtey, A. P.; Bussandri, D. G.; Osán, T. M.; Lamberti, P. W.; Valdés-Hernández, A.
2017-09-01
In this work we analyze a non-commutativity measure of quantum correlations recently proposed by Guo (Sci Rep 6:25241, 2016). By resorting to a systematic survey of a two-qubit system, we detected an undesirable behavior of such a measure related to its representation-dependence. In the case of pure states, this dependence manifests as a non-satisfactory entanglement measure whenever a representation other than the Schmidt's is used. In order to avoid this basis-dependence feature, we argue that a minimization procedure over the set of all possible representations of the quantum state is required. In the case of pure states, this minimization can be analytically performed and the optimal basis turns out to be that of Schmidt's. In addition, the resulting measure inherits the main properties of Guo's measure and, unlike the latter, it reduces to a legitimate entanglement measure in the case of pure states. Some examples involving general mixed states are also analyzed considering such an optimization. The results show that, in most cases of interest, the use of Guo's measure can result in an overestimation of quantum correlations. However, since Guo's measure has the advantage of being easily computable, it might be used as a qualitative estimator of the presence of quantum correlations.
Decoy-state quantum key distribution with more than three types of photon intensity pulses
NASA Astrophysics Data System (ADS)
Chau, H. F.
2018-04-01
The decoy-state method closes source security loopholes in quantum key distribution (QKD) using a laser source. In this method, accurate estimates of the detection rates of vacuum and single-photon events plus the error rate of single-photon events are needed to give a good enough lower bound of the secret key rate. Nonetheless, the current estimation method for these detection and error rates, which uses three types of photon intensities, is accurate up to about 1 % relative error. Here I report an experimentally feasible way that greatly improves these estimates and hence increases the one-way key rate of the BB84 QKD protocol with unbiased bases selection by at least 20% on average in realistic settings. The major tricks are the use of more than three types of photon intensities plus the fact that estimating bounds of the above detection and error rates is numerically stable, although these bounds are related to the inversion of a high condition number matrix.
NASA Astrophysics Data System (ADS)
Pfister, Olivier
2017-05-01
When it comes to practical quantum computing, the two main challenges are circumventing decoherence (devastating quantum errors due to interactions with the environmental bath) and achieving scalability (as many qubits as needed for a real-life, game-changing computation). We show that using, in lieu of qubits, the "qumodes" represented by the resonant fields of the quantum optical frequency comb of an optical parametric oscillator allows one to create bona fide, large scale quantum computing processors, pre-entangled in a cluster state. We detail our recent demonstration of 60-qumode entanglement (out of an estimated 3000) and present an extension to combining this frequency-tagged with time-tagged entanglement, in order to generate an arbitrarily large, universal quantum computing processor.
Cosmological implications of quantum mechanics parametrization of dark energy
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander; Urbanowski, Krzysztof
2017-08-01
We consider the cosmology with the running dark energy. The parametrization of dark energy is derived from the quantum process of transition from the false vacuum state to the true vacuum state. This model is the generalized interacting CDM model. We consider the energy density of dark energy parametrization, which is given by the Breit-Wigner energy distribution function. The idea of the process of the quantum mechanical decay of unstable states was formulated by Krauss and Dent. We used this idea in our considerations. In this model is an energy transfer in the dark sector. In this evolutional scenario the universe starts from the false vacuum state and goes to the true vacuum state of the present day universe. The intermediate regime during the passage from false to true vacuum states takes place. In this way the cosmological constant problem can be tried to solve. We estimate the cosmological parameters for this model. This model is in a good agreement with the astronomical data and is practically indistinguishable from CDM model.
Anisotropic Exciton Rabi Oscillation in Single Telecommunication-Band Quantum Dot
NASA Astrophysics Data System (ADS)
Miyazawa, Toshiyuki; Nakaoka, Toshihiro; Watanabe, Katsuyuki; Kumagai, Naoto; Yokoyama, Naoki; Arakawa, Yasuhiko
2010-06-01
Anisotropic Rabi oscillation in the exciton state in a single InAs/GaAs quantum dot (QD) was demonstrated in the telecommunication-band by selecting two orthogonal polarization angles of the excitation laser. Our InAs QDs were embedded in an intrinsic layer of an n-i-Schottky diode, which provides an electric field to extract photoexcited carriers from QDs. Owing to the potential anisotropy of QDs, the fine structure splitting (FSS) energy in the exciton state in single InAs QDs was ˜110 µeV, measured by polarization-resolved photocurrent spectroscopy. The ratio between two different Rabi frequencies, which reflect anisotropic dipole moments of two orthogonal exciton states, was estimated to be ˜1.2. This demonstrates that the selective control of two orthogonal polarized exciton states is a promising technique for exciton-based-quantum information devices compatible with fiber optics.
Anisotropic Exciton Rabi Oscillation in Single Telecommunication-Band Quantum Dot
NASA Astrophysics Data System (ADS)
Toshiyuki Miyazawa,; Toshihiro Nakaoka,; Katsuyuki Watanabe,; Naoto Kumagai,; Naoki Yokoyama,; Yasuhiko Arakawa,
2010-06-01
Anisotropic Rabi oscillation in the exciton state in a single InAs/GaAs quantum dot (QD) was demonstrated in the telecommunication-band by selecting two orthogonal polarization angles of the excitation laser. Our InAs QDs were embedded in an intrinsic layer of an n-i-Schottky diode, which provides an electric field to extract photoexcited carriers from QDs. Owing to the potential anisotropy of QDs, the fine structure splitting (FSS) energy in the exciton state in single InAs QDs was ˜110 μeV, measured by polarization-resolved photocurrent spectroscopy. The ratio between two different Rabi frequencies, which reflect anisotropic dipole moments of two orthogonal exciton states, was estimated to be ˜1.2. This demonstrates that the selective control of two orthogonal polarized exciton states is a promising technique for exciton-based-quantum information devices compatible with fiber optics.
Noisy metrology: a saturable lower bound on quantum Fisher information
NASA Astrophysics Data System (ADS)
Yousefjani, R.; Salimi, S.; Khorashad, A. S.
2017-06-01
In order to provide a guaranteed precision and a more accurate judgement about the true value of the Cramér-Rao bound and its scaling behavior, an upper bound (equivalently a lower bound on the quantum Fisher information) for precision of estimation is introduced. Unlike the bounds previously introduced in the literature, the upper bound is saturable and yields a practical instruction to estimate the parameter through preparing the optimal initial state and optimal measurement. The bound is based on the underling dynamics, and its calculation is straightforward and requires only the matrix representation of the quantum maps responsible for encoding the parameter. This allows us to apply the bound to open quantum systems whose dynamics are described by either semigroup or non-semigroup maps. Reliability and efficiency of the method to predict the ultimate precision limit are demonstrated by three main examples.
Realization of High-Fidelity, on Chip Readout of Solid-state Quantum Bits
2017-08-29
estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...and characterized Josephson Traveling Wave Parametric Amplifiers (JTWPA or TWPA), superconducting amplifiers providing significantly greater...Publications/Patents: 2015: • C. Macklin, et al., “A near-quantum-limited Josephson traveling -wave parametric amplifier”, Science, (2015). • N
NASA Technical Reports Server (NTRS)
Shapiro, Jeffrey H.
1992-01-01
Phase measurements on a single-mode radiation field are examined from a system-theoretic viewpoint. Quantum estimation theory is used to establish the primacy of the Susskind-Glogower (SG) phase operator; its phase eigenkets generate the probability operator measure (POM) for maximum likelihood phase estimation. A commuting observables description for the SG-POM on a signal x apparatus state space is derived. It is analogous to the signal-band x image-band formulation for optical heterodyne detection. Because heterodyning realizes the annihilation operator POM, this analogy may help realize the SG-POM. The wave function representation associated with the SG POM is then used to prove the duality between the phase measurement and the number operator measurement, from which a number-phase uncertainty principle is obtained, via Fourier theory, without recourse to linearization. Fourier theory is also employed to establish the principle of number-ket causality, leading to a Paley-Wiener condition that must be satisfied by the phase-measurement probability density function (PDF) for a single-mode field in an arbitrary quantum state. Finally, a two-mode phase measurement is shown to afford phase-conjugate quantum communication at zero error probability with finite average photon number. Application of this construct to interferometric precision measurements is briefly discussed.
Generalized quantum interference of correlated photon pairs
Kim, Heonoh; Lee, Sang Min; Moon, Han Seb
2015-01-01
Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143
NASA Astrophysics Data System (ADS)
Huang, Bo-Jia; Kao, Li-Chi; Brahma, Sanjaya; Jeng, Yu-En; Chiu, Shang-Jui; Ku, Ching-Shun; Lo, Kuang-Yao
2017-05-01
Oxide- and defect-free metal/semiconductor interface is important to improve Ohmic contact for the suppression of electron scattering and the avoidance of an extrinsic surface state in estimating the barrier of the Schottky contact at the nanodevice interface. This study reports the growth mechanism of Zn quantum dots coherently grown on Si(1 1 1) and the physical phenomena of the crystalline, nonlinear optics, and the chemical states of Zn quantum dots. Epitaxial Zn quantum dots were coherently formed on a non-oxide Si(1 1 1) surface through the liquid- to solid-phase transformation as a result of pattern matching between the Zn(0 0 2) and Si(1 1 1) surfaces. The growth mechanism of constrained Zn quantum dots grown through strategic magnetron radio frequency sputtering is complex. Some factors, such as substrate temperature, hydrogen gas flow, and negative DC bias, influence the configuration of epitaxial Zn quantum dots. In particular, hydrogen gas plays an important role in reducing the ZnO+ and native oxide that is bombarded by accelerated ions, thereby enhancing the Zn ion surface diffusion. The reduction reaction can be inspected by distinguishing the chemical states of ZnO/Zn quantum dots from natural oxidation or the states of Zn 3d through the analysis of x-ray absorption near the edge structure spectrum. The complex growth mechanism can be systematically understood by analyzing a noncancelled anisotropic 3 m dipole from reflective second harmonic generation and inspecting the evolution between the Zn(0 0 2) and Zn(1 1 1) peaks of the collective ZnO/Zn quantum dots in synchrotron XRD.
NASA Astrophysics Data System (ADS)
Chang, Xia; Xie, Jiayu; Wu, Tianle; Tang, Bing
2018-07-01
A theoretical study on modulational instability and quantum discrete breather states in a system of cold bosonic atoms in zig-zag optical lattices is presented in this work. The time-dependent Hartree approximation is employed to deal with the multiple body problem. By means of a linear stability analysis, we analytically study the modulational instability, and estimate existence conditions of the bright stationary localized solutions for different values of the second-neighbor hopping constant. On the other hand, we get analytical bright stationary localized solutions, and analyze the influence of the second-neighbor hopping on their existence conditions. The predictions of the modulational instability analysis are shown to be reliable. Using these stationary localized single-boson wave functions, the quantum breather states corresponding to the system with different types of nonlinearities are constructed.
NASA Astrophysics Data System (ADS)
Tyson, Jon
2009-03-01
We prove a concise factor-of-2 estimate for the failure rate of optimally distinguishing an arbitrary ensemble of mixed quantum states, generalizing work of Holevo [Theor. Probab. Appl. 23, 411 (1978)] and Curlander [Ph.D. Thesis, MIT, 1979]. A modification to the minimal principle of Cocha and Poor [Proceedings of the 6th International Conference on Quantum Communication, Measurement, and Computing (Rinton, Princeton, NJ, 2003)] is used to derive a suboptimal measurement which has an error rate within a factor of 2 of the optimal by construction. This measurement is quadratically weighted and has appeared as the first iterate of a sequence of measurements proposed by Ježek et al. [Phys. Rev. A 65, 060301 (2002)]. Unlike the so-called pretty good measurement, it coincides with Holevo's asymptotically optimal measurement in the case of nonequiprobable pure states. A quadratically weighted version of the measurement bound by Barnum and Knill [J. Math. Phys. 43, 2097 (2002)] is proven. Bounds on the distinguishability of syndromes in the sense of Schumacher and Westmoreland [Phys. Rev. A 56, 131 (1997)] appear as a corollary. An appendix relates our bounds to the trace-Jensen inequality.
Deep Neural Network Detects Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki
2018-03-01
We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.
Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
Quantum Linear System Algorithm for Dense Matrices.
Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam
2018-02-02
Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax=b. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O(κ^{2}sqrt[n]polylog(n)/ε) for an n×n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ε is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.
NASA Technical Reports Server (NTRS)
Hess, Wayne P.; Leone, Stephen R.
1987-01-01
Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.
NASA Astrophysics Data System (ADS)
Hincks, Ian; Granade, Christopher; Cory, David G.
2018-01-01
The analysis of photon count data from the standard nitrogen vacancy (NV) measurement process is treated as a statistical inference problem. This has applications toward gaining better and more rigorous error bars for tasks such as parameter estimation (e.g. magnetometry), tomography, and randomized benchmarking. We start by providing a summary of the standard phenomenological model of the NV optical process in terms of Lindblad jump operators. This model is used to derive random variables describing emitted photons during measurement, to which finite visibility, dark counts, and imperfect state preparation are added. NV spin-state measurement is then stated as an abstract statistical inference problem consisting of an underlying biased coin obstructed by three Poisson rates. Relevant frequentist and Bayesian estimators are provided, discussed, and quantitatively compared. We show numerically that the risk of the maximum likelihood estimator is well approximated by the Cramér-Rao bound, for which we provide a simple formula. Of the estimators, we in particular promote the Bayes estimator, owing to its slightly better risk performance, and straightforward error propagation into more complex experiments. This is illustrated on experimental data, where quantum Hamiltonian learning is performed and cross-validated in a fully Bayesian setting, and compared to a more traditional weighted least squares fit.
Nonexponential Decoherence and Subdiffusion in Atom-Optics Kicked Rotor.
Sarkar, Sumit; Paul, Sanku; Vishwakarma, Chetan; Kumar, Sunil; Verma, Gunjan; Sainath, M; Rapol, Umakant D; Santhanam, M S
2017-04-28
Quantum systems lose coherence upon interaction with the environment and tend towards classical states. Quantum coherence is known to exponentially decay in time so that macroscopic quantum superpositions are generally unsustainable. In this work, slower than exponential decay of coherences is experimentally realized in an atom-optics kicked rotor system subjected to nonstationary Lévy noise in the applied kick sequence. The slower coherence decay manifests in the form of quantum subdiffusion that can be controlled through the Lévy exponent. The experimental results are in good agreement with the analytical estimates and numerical simulations for the mean energy growth and momentum profiles of an atom-optics kicked rotor.
Morales, Miguel A; Pierleoni, Carlo; Schwegler, Eric; Ceperley, D M
2010-07-20
Using quantum simulation techniques based on either density functional theory or quantum Monte Carlo, we find clear evidence of a first-order transition in liquid hydrogen, between a low conductivity molecular state and a high conductivity atomic state. Using the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures near 2,000 K and pressures near 120 GPa. Furthermore, we have determined the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using quantum Monte Carlo energetics.
Quantum Metrology Assisted by Abstention
NASA Astrophysics Data System (ADS)
Gendra, B.; Ronco-Bonvehi, E.; Calsamiglia, J.; Muñoz-Tapia, R.; Bagan, E.
2013-03-01
The main goal of quantum metrology is to obtain accurate values of physical parameters using quantum probes. In this context, we show that abstention, i.e., the possibility of getting an inconclusive answer at readout, can drastically improve the measurement precision and even lead to a change in its asymptotic behavior, from the shot-noise to the Heisenberg scaling. We focus on phase estimation and quantify the required amount of abstention for a given precision. We also develop analytical tools to obtain the asymptotic behavior of the precision and required rate of abstention for arbitrary pure states.
Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution.
García-Patrón, Raúl; Cerf, Nicolas J
2006-11-10
A fully general approach to the security analysis of continuous-variable quantum key distribution (CV-QKD) is presented. Provided that the quantum channel is estimated via the covariance matrix of the quadratures, Gaussian attacks are shown to be optimal against all collective eavesdropping strategies. The proof is made strikingly simple by combining a physical model of measurement, an entanglement-based description of CV-QKD, and a recent powerful result on the extremality of Gaussian states [M. M. Wolf, Phys. Rev. Lett. 96, 080502 (2006)10.1103/PhysRevLett.96.080502].
Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy
NASA Technical Reports Server (NTRS)
Hess, Wayne P.; Leone, Stephen R.
1987-01-01
Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.
Electronic Structure of Helium Atom in a Quantum Dot
NASA Astrophysics Data System (ADS)
Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T. K.
2016-03-01
Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) (n = 1-6) states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns (n = 2-5) and 2pnp (n = 2-5) configurations of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential due to the quantum dot. It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here. TKM Gratefully Acknowledges Financial Support under Grant No. 37(3)/14/27/2014-BRNS from the Department of Atomic Energy, BRNS, Government of India. SB Acknowledges Financial Support under Grant No. PSW-160/14-15(ERO) from University Grants Commission, Government of India
Quantum control and quantum tomography on neutral atom qudits
NASA Astrophysics Data System (ADS)
Sosa Martinez, Hector
Neutral atom systems are an appealing platform for the development and testing of quantum control and measurement techniques. This dissertation presents experimental investigations of control and measurement tools using as a testbed the 16-dimensional hyperfine manifold associated with the electronic ground state of cesium atoms. On the control side, we present an experimental realization of a protocol to implement robust unitary transformations in the presence of static and dynamic perturbations. We also present an experimental realization of inhomogeneous quantum control. Specifically, we demonstrate our ability to perform two different unitary transformations on atoms that see different light shifts from an optical addressing field. On the measurement side, we present experimental realizations of quantum state and process tomography. The state tomography project encompasses a comprehensive evaluation of several measurement strategies and state estimation algorithms. Our experimental results show that in the presence of experimental imperfections, there is a clear tradeoff between accuracy, efficiency and robustness in the reconstruction. The process tomography project involves an experimental demonstration of efficient reconstruction by using a set of intelligent probe states. Experimental results show that we are able to reconstruct unitary maps in Hilbert spaces with dimension ranging from d=4 to d=16. To the best of our knowledge, this is the first time that a unitary process in d=16 is successfully reconstructed in the laboratory.
NASA Astrophysics Data System (ADS)
Marzolino, Ugo; Prosen, Tomaž
2017-09-01
We investigated quantum critical behaviors in the nonequilibrium steady state of a XXZ spin chain with boundary Markovian noise using Fisher information. The latter represents the distance between two infinitesimally close states, and its superextensive size scaling witnesses a critical behavior due to a phase transition since all the interaction terms are extensive. Perturbatively, in the noise strength, we found superextensive Fisher information at anisotropy |Δ |⩽1 and irrational arccosΔ/π irrespective of the order of two noncommuting limits, i.e., the thermodynamic limit and the limit of sending arccosΔ/π to an irrational number via a sequence of rational approximants. From this result we argue the existence of a nonequilibrium quantum phase transition with a critical phase |Δ |⩽1 . From the nonsuperextensivity of the Fisher information of reduced states, we infer that this nonequilibrium quantum phase transition does not have local order parameters but has nonlocal ones, at least at |Δ |=1 . In the nonperturbative regime for the noise strength, we numerically computed the reduced Fisher information which lower bounds the full-state Fisher information and is superextensive only at |Δ |=1 . From the latter result, we derived local order parameters at |Δ |=1 in the nonperturbative case. The existence of critical behavior witnessed by the Fisher information in the phase |Δ |<1 is still an open problem. The Fisher information also represents the best sensitivity for any estimation of the control parameter, in our case the anisotropy Δ , and its superextensivity implies enhanced estimation precision which is also highly robust in the presence of a critical phase.
NASA Astrophysics Data System (ADS)
Gaidash, A. A.; Egorov, V. I.; Gleim, A. V.
2016-08-01
Quantum cryptography allows distributing secure keys between two users so that any performed eavesdropping attempt would be immediately discovered. However, in practice an eavesdropper can obtain key information from multi-photon states when attenuated laser radiation is used as a source of quantum states. In order to prevent actions of an eavesdropper, it is generally suggested to implement special cryptographic protocols, like decoy states or SARG04. In this paper, we describe an alternative method based on monitoring photon number statistics after detection. We provide a useful rule of thumb to estimate approximate order of difference of expected distribution and distribution in case of attack. Formula for calculating a minimum value of total pulses or time-gaps to resolve attack is shown. Also formulas for actual fraction of raw key known to Eve were derived. This method can therefore be used with any system and even combining with mentioned special protocols.
Quantum molecular dynamics simulation of shock-wave experiments in aluminum
NASA Astrophysics Data System (ADS)
Minakov, D. V.; Levashov, P. R.; Khishchenko, K. V.; Fortov, V. E.
2014-06-01
We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.
Quantum molecular dynamics simulation of shock-wave experiments in aluminum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E.
2014-06-14
We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density,more » particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.« less
Supersensitive ancilla-based adaptive quantum phase estimation
NASA Astrophysics Data System (ADS)
Larson, Walker; Saleh, Bahaa E. A.
2017-10-01
The supersensitivity attained in quantum phase estimation is known to be compromised in the presence of decoherence. This is particularly patent at blind spots—phase values at which sensitivity is totally lost. One remedy is to use a precisely known reference phase to shift the operation point to a less vulnerable phase value. Since this is not always feasible, we present here an alternative approach based on combining the probe with an ancillary degree of freedom containing adjustable parameters to create an entangled quantum state of higher dimension. We validate this concept by simulating a configuration of a Mach-Zehnder interferometer with a two-photon probe and a polarization ancilla of adjustable parameters, entangled at a polarizing beam splitter. At the interferometer output, the photons are measured after an adjustable unitary transformation in the polarization subspace. Through calculation of the Fisher information and simulation of an estimation procedure, we show that optimizing the adjustable polarization parameters using an adaptive measurement process provides globally supersensitive unbiased phase estimates for a range of decoherence levels, without prior information or a reference phase.
NASA Astrophysics Data System (ADS)
Gaikwad, Akshay; Rehal, Diksha; Singh, Amandeep; Arvind, Dorai, Kavita
2018-02-01
We present the NMR implementation of a scheme for selective and efficient quantum process tomography without ancilla. We generalize this scheme such that it can be implemented efficiently using only a set of measurements involving product operators. The method allows us to estimate any element of the quantum process matrix to a desired precision, provided a set of quantum states can be prepared efficiently. Our modified technique requires fewer experimental resources as compared to the standard implementation of selective and efficient quantum process tomography, as it exploits the special nature of NMR measurements to allow us to compute specific elements of the process matrix by a restrictive set of subsystem measurements. To demonstrate the efficacy of our scheme, we experimentally tomograph the processes corresponding to "no operation," a controlled-NOT (CNOT), and a controlled-Hadamard gate on a two-qubit NMR quantum information processor, with high fidelities.
Quantum-classical boundary for precision optical phase estimation
NASA Astrophysics Data System (ADS)
Birchall, Patrick M.; O'Brien, Jeremy L.; Matthews, Jonathan C. F.; Cable, Hugo
2017-12-01
Understanding the fundamental limits on the precision to which an optical phase can be estimated is of key interest for many investigative techniques utilized across science and technology. We study the estimation of a fixed optical phase shift due to a sample which has an associated optical loss, and compare phase estimation strategies using classical and nonclassical probe states. These comparisons are based on the attainable (quantum) Fisher information calculated per number of photons absorbed or scattered by the sample throughout the sensing process. We find that for a given number of incident photons upon the unknown phase, nonclassical techniques in principle provide less than a 20 % reduction in root-mean-square error (RMSE) in comparison with ideal classical techniques in multipass optical setups. Using classical techniques in a different optical setup that we analyze, which incorporates additional stages of interference during the sensing process, the achievable reduction in RMSE afforded by nonclassical techniques falls to only ≃4 % . We explain how these conclusions change when nonclassical techniques are compared to classical probe states in nonideal multipass optical setups, with additional photon losses due to the measurement apparatus.
Precision bounds for gradient magnetometry with atomic ensembles
NASA Astrophysics Data System (ADS)
Apellaniz, Iagoba; Urizar-Lanz, Iñigo; Zimborás, Zoltán; Hyllus, Philipp; Tóth, Géza
2018-05-01
We study gradient magnetometry with an ensemble of atoms with arbitrary spin. We calculate precision bounds for estimating the gradient of the magnetic field based on the quantum Fisher information. For quantum states that are invariant under homogeneous magnetic fields, we need to measure a single observable to estimate the gradient. On the other hand, for states that are sensitive to homogeneous fields, a simultaneous measurement is needed, as the homogeneous field must also be estimated. We prove that for the cases studied in this paper, such a measurement is feasible. We present a method to calculate precision bounds for gradient estimation with a chain of atoms or with two spatially separated atomic ensembles. We also consider a single atomic ensemble with an arbitrary density profile, where the atoms cannot be addressed individually, and which is a very relevant case for experiments. Our model can take into account even correlations between particle positions. While in most of the discussion we consider an ensemble of localized particles that are classical with respect to their spatial degree of freedom, we also discuss the case of gradient metrology with a single Bose-Einstein condensate.
Entangling measurements for multiparameter estimation with two qubits
NASA Astrophysics Data System (ADS)
Roccia, Emanuele; Gianani, Ilaria; Mancino, Luca; Sbroscia, Marco; Somma, Fabrizia; Genoni, Marco G.; Barbieri, Marco
2018-01-01
Careful tailoring the quantum state of probes offers the capability of investigating matter at unprecedented precisions. Rarely, however, the interaction with the sample is fully encompassed by a single parameter, and the information contained in the probe needs to be partitioned on multiple parameters. There exist, then, practical bounds on the ultimate joint-estimation precision set by the unavailability of a single optimal measurement for all parameters. Here, we discuss how these considerations are modified for two-level quantum probes — qubits — by the use of two copies and entangling measurements. We find that the joint estimation of phase and phase diffusion benefits from such collective measurement, while for multiple phases no enhancement can be observed. We demonstrate this in a proof-of-principle photonics setup.
Experimental Satellite Quantum Communications
NASA Astrophysics Data System (ADS)
Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo
2015-07-01
Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse μsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.
Decoherence estimation in quantum theory and beyond
NASA Astrophysics Data System (ADS)
Pfister, Corsin
The quantum physics literature provides many different characterizations of decoherence. Most of them have in common that they describe decoherence as a kind of influence on a quantum system upon interacting with an another system. In the spirit of quantum information theory, we adapt a particular viewpoint on decoherence which describes it as the loss of information into a system that is possibly controlled by an adversary. We use a quantitative framework for decoherence that builds on operational characterizations of the min-entropy that have been developed in the quantum information literature. It characterizes decoherence as an influence on quantum channels that reduces their suitability for a variety of quantifiable tasks such as the distribution of secret cryptographic keys of a certain length or the distribution of a certain number of maximally entangled qubit pairs. This allows for a quantitative and operational characterization of decoherence via operational characterizations of the min-entropy. In this thesis, we present a series of results about the estimation of the minentropy, subdivided into three parts. The first part concerns the estimation of a quantum adversary's uncertainty about classical information--expressed by the smooth min-entropy--as it is done in protocols for quantum key distribution (QKD). We analyze this form of min-entropy estimation in detail and find that some of the more recently suggested QKD protocols have previously unnoticed security loopholes. We show that the specifics of the sifting subroutine of a QKD protocol are crucial for security by pointing out mistakes in the security analysis in the literature and by presenting eavesdropping attacks on those problematic protocols. We provide solutions to the identified problems and present a formalized analysis of the min-entropy estimate that incorporates the sifting stage of QKD protocols. In the second part, we extend ideas from QKD to a protocol that allows to estimate an adversary's uncertainty about quantum information, expressed by the fully quantum smooth min-entropy. Roughly speaking, we show that a protocol that resembles the parallel execution of two QKD protocols can be used to lower bound the min-entropy of some unmeasured qubits. We explain how this result may influence the ongoing search for protocols for entanglement distribution. The third part is dedicated to the development of a framework that allows the estimation of decoherence even in experiments that cannot be correctly described by quantum theory. Inspired by an equivalent formulation of the min-entropy that relates it to the fidelity with a maximally entangled state, we define a decoherence quantity for a very general class of probabilistic theories that reduces to the min-entropy in the special case of quantum theory. This entails a definition of maximal entanglement for generalized probabilistic theories. Using techniques from semidefinite and linear programming, we show how bounds on this quantity can be estimated through Bell-type experiments. This allows to test models for decoherence that cannot be described by quantum theory. As an example application, we devise an experimental test of a model for gravitational decoherence that has been suggested in the literature.
Electron-Phonon Systems on a Universal Quantum Computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James
We present an algorithm that extends existing quantum algorithms forsimulating fermion systems in quantum chemistry and condensed matter physics toinclude phonons. The phonon degrees of freedom are represented with exponentialaccuracy on a truncated Hilbert space with a size that increases linearly withthe cutoff of the maximum phonon number. The additional number of qubitsrequired by the presence of phonons scales linearly with the size of thesystem. The additional circuit depth is constant for systems with finite-rangeelectron-phonon and phonon-phonon interactions and linear for long-rangeelectron-phonon interactions. Our algorithm for a Holstein polaron problem wasimplemented on an Atos Quantum Learning Machine (QLM) quantum simulatoremployingmore » the Quantum Phase Estimation method. The energy and the phonon numberdistribution of the polaron state agree with exact diagonalization results forweak, intermediate and strong electron-phonon coupling regimes.« less
Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip.
Paesani, S; Gentile, A A; Santagati, R; Wang, J; Wiebe, N; Tew, D P; O'Brien, J L; Thompson, M G
2017-03-10
Quantum phase estimation is a fundamental subroutine in many quantum algorithms, including Shor's factorization algorithm and quantum simulation. However, so far results have cast doubt on its practicability for near-term, nonfault tolerant, quantum devices. Here we report experimental results demonstrating that this intuition need not be true. We implement a recently proposed adaptive Bayesian approach to quantum phase estimation and use it to simulate molecular energies on a silicon quantum photonic device. The approach is verified to be well suited for prethreshold quantum processors by investigating its superior robustness to noise and decoherence compared to the iterative phase estimation algorithm. This shows a promising route to unlock the power of quantum phase estimation much sooner than previously believed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorite, I., E-mail: lorite@physik.uni-leipzig.de; Division of Superconductivity and Magnetism, Faculty of Physics and Earth Sciences, Linnestrasse 5, D-04103 Leipzig; Romero, J. J.
2015-03-15
The agglomeration state facilitates particle-particle interaction which produces important effects in the phonon confinement effects at the nanoscale. A partial phonon transmission between close nanoparticles yields a lower momentum conservation relaxation than in a single isolated nanoparticle. It means a larger red shift and broadening of the Raman modes than the expected ones for Raman quantum confinement effects. This particle-particle interaction can drive to error when Raman responses are used to estimate the size of the nanoscaled materials. In this work different corrections are suggested to overtake this source of error.
NASA Astrophysics Data System (ADS)
Belinskiĭ, A. V.
1992-09-01
An investigation is made of the evolution of quantum fluctuations of a fundamental soliton in the course of its propagation in a nonlinear fiber waveguide characterized by losses and compensated by amplification. Simple relationships are obtained for the amplitude and phase noise, quantum uncertainty of the position and momentum, and also fluctuations of the quadrature components of the radiation field. Numerical estimates are obtained. It is shown that loss-compensating amplification is unnecessary for efficient formation of squeezed states of a soliton.
Quantum noise reduction in intensity-sensitive surface-plasmon-resonance sensors
NASA Astrophysics Data System (ADS)
Lee, Joong-Sung; Huynh, Trung; Lee, Su-Yong; Lee, Kwang-Geol; Lee, Jinhyoung; Tame, Mark; Rockstuhl, Carsten; Lee, Changhyoup
2017-09-01
We investigate the use of twin-mode quantum states of light with symmetric statistical features in their photon number for improving intensity-sensitive surface plasmon resonance (SPR) sensors. For this purpose, one of the modes is sent into a prism setup where the Kretschmann configuration is employed as a sensing platform and the analyte to be measured influences the SPR excitation conditions. This influence modifies the output state of light that is subsequently analyzed by an intensity-difference measurement scheme. We show that quantum noise reduction is achieved not only as a result of the sub-Poissonian statistical nature of a single mode, but also as a result of the nonclassical correlation of the photon number between the two modes. When combined with the high sensitivity of the SPR sensor, we show that the use of twin-mode quantum states of light notably enhances the estimation precision of the refractive index of an analyte. With this we are able to identify a clear strategy to further boost the performance of SPR sensors, which are already a mature technology in biochemical and medical sensing applications.
Morales, Miguel A.; Pierleoni, Carlo; Schwegler, Eric; Ceperley, D. M.
2010-01-01
Using quantum simulation techniques based on either density functional theory or quantum Monte Carlo, we find clear evidence of a first-order transition in liquid hydrogen, between a low conductivity molecular state and a high conductivity atomic state. Using the temperature dependence of the discontinuity in the electronic conductivity, we estimate the critical point of the transition at temperatures near 2,000 K and pressures near 120 GPa. Furthermore, we have determined the melting curve of molecular hydrogen up to pressures of 200 GPa, finding a reentrant melting line. The melting line crosses the metalization line at 700 K and 220 GPa using density functional energetics and at 550 K and 290 GPa using quantum Monte Carlo energetics. PMID:20566888
Zhang, Chun-Hui; Zhang, Chun-Mei; Guo, Guang-Can; Wang, Qin
2018-02-19
At present, most of the measurement-device-independent quantum key distributions (MDI-QKD) are based on weak coherent sources and limited in the transmission distance under realistic experimental conditions, e.g., considering the finite-size-key effects. Hence in this paper, we propose a new biased decoy-state scheme using heralded single-photon sources for the three-intensity MDI-QKD, where we prepare the decoy pulses only in X basis and adopt both the collective constraints and joint parameter estimation techniques. Compared with former schemes with WCS or HSPS, after implementing full parameter optimizations, our scheme gives distinct reduced quantum bit error rate in the X basis and thus show excellent performance, especially when the data size is relatively small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a device performing an unknown von Neumann measurement with a single use of the device. When the unknown device has to be used before the bipartite state to be measured is available we talk about 1{yields}2 learning of the measurement, otherwise the task is called 1{yields}2 cloning of a measurement. We perform the optimization for both learning and cloning for arbitrary dimension d of the Hilbert space. For 1{yields}2 cloning we also propose a simple quantum network that achieves the optimal fidelity.more » The optimal fidelity for 1{yields}2 learning just slightly outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and depending on the result suitably prepares the duplicate.« less
Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies
Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette
2014-01-01
We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects. PMID:24851858
Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.
Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette
2014-05-22
We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.
NASA Astrophysics Data System (ADS)
Mavromatos, N. E.; Nanopoulos, D. V.
Microtubule (MT) networks, subneural paracrystalline cytoskeletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a (1+1)-dimensional noncritical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental friction effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the preconscious states. Quantum space-time effects, as described by noncritical string theory, trigger then an organized collapse of the coherent states down to a specific or conscious state. The whole process we estimate to take { O}(1 sec), in excellent agreement with a plethora of experimental/observational findings. The microscopic arrow of time, endemic in noncritical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age-old problem of how the, central to our feelings of awareness, sensation of the progression of time is generated. In addition, the complete integrability of the stringy model for MT we advocate in this work proves sufficient in providing a satisfactory solution to memory coding and capacity. Such features might turn out to be important for a model of the brain as a quantum computer.
Quantum computation with realistic magic-state factories
NASA Astrophysics Data System (ADS)
O'Gorman, Joe; Campbell, Earl T.
2017-03-01
Leading approaches to fault-tolerant quantum computation dedicate a significant portion of the hardware to computational factories that churn out high-fidelity ancillas called magic states. Consequently, efficient and realistic factory design is of paramount importance. Here we present the most detailed resource assessment to date of magic-state factories within a surface code quantum computer, along the way introducing a number of techniques. We show that the block codes of Bravyi and Haah [Phys. Rev. A 86, 052329 (2012), 10.1103/PhysRevA.86.052329] have been systematically undervalued; we track correlated errors both numerically and analytically, providing fidelity estimates without appeal to the union bound. We also introduce a subsystem code realization of these protocols with constant time and low ancilla cost. Additionally, we confirm that magic-state factories have space-time costs that scale as a constant factor of surface code costs. We find that the magic-state factory required for postclassical factoring can be as small as 6.3 million data qubits, ignoring ancilla qubits, assuming 10-4 error gates and the availability of long-range interactions.
Quantum Linear System Algorithm for Dense Matrices
NASA Astrophysics Data System (ADS)
Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam
2018-02-01
Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Craig
It is argued by extrapolation of general relativity and quantum mechanics that a classical inertial frame corresponds to a statistically defined observable that rotationally fluctuates due to Planck scale indeterminacy. Physical effects of exotic nonlocal rotational correlations on large scale field states are estimated. Their entanglement with the strong interaction vacuum is estimated to produce a universal, statistical centrifugal acceleration that resembles the observed cosmological constant.
Generalized Grover's Algorithm for Multiple Phase Inversion States
NASA Astrophysics Data System (ADS)
Byrnes, Tim; Forster, Gary; Tessler, Louis
2018-02-01
Grover's algorithm is a quantum search algorithm that proceeds by repeated applications of the Grover operator and the Oracle until the state evolves to one of the target states. In the standard version of the algorithm, the Grover operator inverts the sign on only one state. Here we provide an exact solution to the problem of performing Grover's search where the Grover operator inverts the sign on N states. We show the underlying structure in terms of the eigenspectrum of the generalized Hamiltonian, and derive an appropriate initial state to perform the Grover evolution. This allows us to use the quantum phase estimation algorithm to solve the search problem in this generalized case, completely bypassing the Grover algorithm altogether. We obtain a time complexity of this case of √{D /Mα }, where D is the search space dimension, M is the number of target states, and α ≈1 , which is close to the optimal scaling.
Building versatile bipartite probes for quantum metrology
NASA Astrophysics Data System (ADS)
Farace, Alessandro; De Pasquale, Antonella; Adesso, Gerardo; Giovannetti, Vittorio
2016-01-01
We consider bipartite systems as versatile probes for the estimation of transformations acting locally on one of the subsystems. We investigate what resources are required for the probes to offer a guaranteed level of metrological performance, when the latter is averaged over specific sets of local transformations. We quantify such a performance via the average skew information (AvSk), a convex quantity which we compute in closed form for bipartite states of arbitrary dimensions, and which is shown to be strongly dependent on the degree of local purity of the probes. Our analysis contrasts and complements the recent series of studies focused on the minimum, rather than the average, performance of bipartite probes in local estimation tasks, which was instead determined by quantum correlations other than entanglement. We provide explicit prescriptions to characterize the most reliable states maximizing the AvSk, and elucidate the role of state purity, separability and correlations in the classification of optimal probes. Our results can help in the identification of useful resources for sensing, estimation and discrimination applications when complete knowledge of the interaction mechanism realizing the local transformation is unavailable, and access to pure entangled probes is technologically limited.
Quantum violation of an instrumental test
NASA Astrophysics Data System (ADS)
Chaves, Rafael; Carvacho, Gonzalo; Agresti, Iris; Di Giulio, Valerio; Aolita, Leandro; Giacomini, Sandro; Sciarrino, Fabio
2018-03-01
Inferring causal relations from experimental observations is of primal importance in science. Instrumental tests provide an essential tool for that aim, as they allow one to estimate causal dependencies even in the presence of unobserved common causes. In view of Bell's theorem, which implies that quantum mechanics is incompatible with our most basic notions of causality, it is of utmost importance to understand whether and how paradigmatic causal tools obtained in a classical setting can be carried over to the quantum realm. Here we show that quantum effects imply radically different predictions in the instrumental scenario. Among other results, we show that an instrumental test can be violated by entangled quantum states. Furthermore, we demonstrate such violation using a photonic set-up with active feed-forward of information, thus providing an experimental proof of this new form of non-classical behaviour. Our findings have fundamental implications in causal inference and may also lead to new applications of quantum technologies.
A potential-energy surface study of the 2A1 and low-lying dissociative states of the methoxy radical
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1985-01-01
Accurate, ab initio quantum chemical techniques are applied in the present study of low lying bound and dissociative states of the methoxy radical at C3nu conformations, using a double zeta quality basis set that is augmented with polarization and diffuse functions. Excitation energy estimates are obtained for vertical excitation, vertical deexcitation, and system origin. The rate of methoxy photolysis is estimated to be too small to warrant its inclusion in atmospheric models.
Rådmark, Magnus; Zukowski, Marek; Bourennane, Mohamed
2009-10-09
Quantum multiphoton interferometry has now reached the six-photon stage. Thus far, the observed fidelities of entangled states never reached 2/3. We report a high fidelity (estimated at 88%) experiment in which six-qubit singlet correlations were observed. With such a high fidelity we are able to demonstrate the central property of these "singlet" correlations, their "rotational invariance," by performing a full set of measurements in three complementary polarization bases. The patterns are almost indistinguishable. The data reveal genuine six-photon entanglement. We also study several five-photon states, which result upon detection of one of the photons. Multiphoton singlet states survive some types of depolarization and are thus important in quantum communication schemes.
Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity and Efficient Estimators
2012-09-27
particular, we require no entangling gates or ancillary systems for the procedure. In contrast with [19], our method is not restricted to processes that are...of states, such as those recently developed for use with permutation-invariant states [60], matrix product states [61] or multi-scale entangled states...process tomography: first prepare the Jamiołkowski state ρE (by adjoining an ancilla, preparing the maximally entangled state |ψ0, and applying E); then
NASA Astrophysics Data System (ADS)
Tabia, Gelo Noel M.
2012-12-01
It is crucial for various quantum information processing tasks that the state of a quantum system can be determined reliably and efficiently from general quantum measurements. One important class of measurements for this purpose is symmetric informationally complete positive operator-valued measurements (SIC-POVMs). SIC-POVMs have the advantage of providing an unbiased estimator for the quantum state with the minimal number of outcomes needed for full tomography. By virtue of Naimark's dilation theorem, any POVM can always be realized with a suitable coupling between the system and an auxiliary system and by performing a projective measurement on the joint system. In practice, finding the appropriate coupling is rather nontrivial. Here we propose an experimental design for directly implementing SIC-POVMs using multiport devices and path-encoded qubits and qutrits, the utility of which has recently been demonstrated by several experimental groups around the world. Furthermore, we describe how these multiports can be attained in practice with an integrated photonic system composed of nested linear optical elements.
Markov chain Monte Carlo estimation of quantum states
NASA Astrophysics Data System (ADS)
Diguglielmo, James; Messenger, Chris; Fiurášek, Jaromír; Hage, Boris; Samblowski, Aiko; Schmidt, Tabea; Schnabel, Roman
2009-03-01
We apply a Bayesian data analysis scheme known as the Markov chain Monte Carlo to the tomographic reconstruction of quantum states. This method yields a vector, known as the Markov chain, which contains the full statistical information concerning all reconstruction parameters including their statistical correlations with no a priori assumptions as to the form of the distribution from which it has been obtained. From this vector we can derive, e.g., the marginal distributions and uncertainties of all model parameters, and also of other quantities such as the purity of the reconstructed state. We demonstrate the utility of this scheme by reconstructing the Wigner function of phase-diffused squeezed states. These states possess non-Gaussian statistics and therefore represent a nontrivial case of tomographic reconstruction. We compare our results to those obtained through pure maximum-likelihood and Fisher information approaches.
Ultimate limits for quantum magnetometry via time-continuous measurements
NASA Astrophysics Data System (ADS)
Albarelli, Francesco; Rossi, Matteo A. C.; Paris, Matteo G. A.; Genoni, Marco G.
2017-12-01
We address the estimation of the magnetic field B acting on an ensemble of atoms with total spin J subjected to collective transverse noise. By preparing an initial spin coherent state, for any measurement performed after the evolution, the mean-square error of the estimate is known to scale as 1/J, i.e. no quantum enhancement is obtained. Here, we consider the possibility of continuously monitoring the atomic environment, and conclusively show that strategies based on time-continuous non-demolition measurements followed by a final strong measurement may achieve Heisenberg-limited scaling 1/{J}2 and also a monitoring-enhanced scaling in terms of the interrogation time. We also find that time-continuous schemes are robust against detection losses, as we prove that the quantum enhancement can be recovered also for finite measurement efficiency. Finally, we analytically prove the optimality of our strategy.
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Ottaviani, Carlo; Papanastasiou, Panagiotis; Pirandola, Stefano
2018-05-01
We present a rigorous security analysis of continuous-variable measurement-device-independent quantum key distribution (CV MDI QKD) in a finite-size scenario. The security proof is obtained in two steps: by first assessing the security against collective Gaussian attacks, and then extending to the most general class of coherent attacks via the Gaussian de Finetti reduction. Our result combines recent state-of-the-art security proofs for CV QKD with findings about min-entropy calculus and parameter estimation. In doing so, we improve the finite-size estimate of the secret key rate. Our conclusions confirm that CV MDI protocols allow for high rates on the metropolitan scale, and may achieve a nonzero secret key rate against the most general class of coherent attacks after 107-109 quantum signal transmissions, depending on loss and noise, and on the required level of security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimosako, N., E-mail: n-shimosako@sophia.jp; Inose, Y.; Satoh, H.
2015-11-07
We have measured and analyzed the carrier-density dependence of photoluminescence (PL) spectra and the PL efficiency of InGaN/GaN multiple quantum wells in nanocolumns and in a thin film over a wide excitation range. The localized states parameters, such as the tailing parameter, density and size of the localized states, and the mobility edge density are estimated. The spectral change and reduction of PL efficiency are explained by filling of the localized states and population into the extended states around the mobility edge density. We have also found that the nanocolumns have a narrower distribution of the localized states and amore » higher PL efficiency than those of the film sample although the In composition of the nanocolumns is higher than that of the film.« less
Horizon quantum fuzziness for non-singular black holes
NASA Astrophysics Data System (ADS)
Giugno, Andrea; Giusti, Andrea; Helou, Alexis
2018-03-01
We study the extent of quantum gravitational effects in the internal region of non-singular, Hayward-like solutions of Einstein's field equations according to the formalism known as horizon quantum mechanics. We grant a microscopic description to the horizon by considering a huge number of soft, off-shell gravitons, which superimpose in the same quantum state, as suggested by Dvali and Gomez. In addition to that, the constituents of such a configuration are understood as loosely confined in a binding harmonic potential. A simple analysis shows that the resolution of a central singularity through quantum physics does not tarnish the classical description, which is bestowed upon this extended self-gravitating system by General Relativity. Finally, we estimate the appearance of an internal horizon as being negligible, because of the suppression of the related probability caused by the large number of virtual gravitons.
Quantum communications system with integrated photonic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordholt, Jane E.; Peterson, Charles Glen; Newell, Raymond Thorson
Security is increased in quantum communication (QC) systems lacking a true single-photon laser source by encoding a transmitted optical signal with two or more decoy-states. A variable attenuator or amplitude modulator randomly imposes average photon values onto the optical signal based on data input and the predetermined decoy-states. By measuring and comparing photon distributions for a received QC signal, a single-photon transmittance is estimated. Fiber birefringence is compensated by applying polarization modulation. A transmitter can be configured to transmit in conjugate polarization bases whose states of polarization (SOPs) can be represented as equidistant points on a great circle on themore » Poincare sphere so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors. Transmitters are implemented in quantum communication cards and can be assembled from micro-optical components, or transmitter components can be fabricated as part of a monolithic or hybrid chip-scale circuit.« less
Undecidability of the spectral gap.
Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M
2015-12-10
The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendes, Milrian S.; Felinto, Daniel
2011-12-15
We analyze the efficiency and scalability of the Duan-Lukin-Cirac-Zoller (DLCZ) protocol for quantum repeaters focusing on the behavior of the experimentally accessible measures of entanglement for the system, taking into account crucial imperfections of the stored entangled states. We calculate then the degradation of the final state of the quantum-repeater linear chain for increasing sizes of the chain, and characterize it by a lower bound on its concurrence and the ability to violate the Clausner-Horne-Shimony-Holt inequality. The states are calculated up to an arbitrary number of stored excitations, as this number is not fundamentally bound for experiments involving large atomicmore » ensembles. The measurement by avalanche photodetectors is modeled by ''ON/OFF'' positive operator-valued measure operators. As a result, we are able to consistently test the approximation of the real fields by fields with a finite number of excitations, determining the minimum number of excitations required to achieve a desired precision in the prediction of the various measured quantities. This analysis finally determines the minimum purity of the initial state that is required to succeed in the protocol as the size of the chain increases. We also provide a more accurate estimate for the average time required to succeed in each step of the protocol. The minimum purity analysis and the new time estimates are then combined to trace the perspectives for implementation of the DLCZ protocol in present-day laboratory setups.« less
NASA Astrophysics Data System (ADS)
Mendes, Milrian S.; Felinto, Daniel
2011-12-01
We analyze the efficiency and scalability of the Duan-Lukin-Cirac-Zoller (DLCZ) protocol for quantum repeaters focusing on the behavior of the experimentally accessible measures of entanglement for the system, taking into account crucial imperfections of the stored entangled states. We calculate then the degradation of the final state of the quantum-repeater linear chain for increasing sizes of the chain, and characterize it by a lower bound on its concurrence and the ability to violate the Clausner-Horne-Shimony-Holt inequality. The states are calculated up to an arbitrary number of stored excitations, as this number is not fundamentally bound for experiments involving large atomic ensembles. The measurement by avalanche photodetectors is modeled by “ON/OFF” positive operator-valued measure operators. As a result, we are able to consistently test the approximation of the real fields by fields with a finite number of excitations, determining the minimum number of excitations required to achieve a desired precision in the prediction of the various measured quantities. This analysis finally determines the minimum purity of the initial state that is required to succeed in the protocol as the size of the chain increases. We also provide a more accurate estimate for the average time required to succeed in each step of the protocol. The minimum purity analysis and the new time estimates are then combined to trace the perspectives for implementation of the DLCZ protocol in present-day laboratory setups.
Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Umari, Paolo
2006-03-01
We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).
Entanglement-Assisted Weak Value Amplification
NASA Astrophysics Data System (ADS)
Pang, Shengshi; Dressel, Justin; Brun, Todd A.
2014-07-01
Large weak values have been used to amplify the sensitivity of a linear response signal for detecting changes in a small parameter, which has also enabled a simple method for precise parameter estimation. However, producing a large weak value requires a low postselection probability for an ancilla degree of freedom, which limits the utility of the technique. We propose an improvement to this method that uses entanglement to increase the efficiency. We show that by entangling and postselecting n ancillas, the postselection probability can be increased by a factor of n while keeping the weak value fixed (compared to n uncorrelated attempts with one ancilla), which is the optimal scaling with n that is expected from quantum metrology. Furthermore, we show the surprising result that the quantum Fisher information about the detected parameter can be almost entirely preserved in the postselected state, which allows the sensitive estimation to approximately saturate the relevant quantum Cramér-Rao bound. To illustrate this protocol we provide simple quantum circuits that can be implemented using current experimental realizations of three entangled qubits.
Security proof of a three-state quantum-key-distribution protocol without rotational symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fung, C.-H.F.; Lo, H.-K.
2006-10-15
Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states |0{sub z}> and |1{sub z}> can contribute to key generation, and the third state |+>=(|0{sub z}>+|1{sub z}>)/{radical}(2) is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that thesemore » QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.« less
Characterization of classical static noise via qubit as probe
NASA Astrophysics Data System (ADS)
Javed, Muhammad; Khan, Salman; Ullah, Sayed Arif
2018-03-01
The dynamics of quantum Fisher information (QFI) of a single qubit coupled to classical static noise is investigated. The analytical relation for QFI fixes the optimal initial state of the qubit that maximizes it. An approximate limit for the time of coupling that leads to physically useful results is identified. Moreover, using the approach of quantum estimation theory and the analytical relation for QFI, the qubit is used as a probe to precisely estimate the disordered parameter of the environment. Relation for optimal interaction time with the environment is obtained, and condition for the optimal measurement of the noise parameter of the environment is given. It is shown that all values, in the mentioned range, of the noise parameter are estimable with equal precision. A comparison of our results with the previous studies in different classical environments is made.
Quantum key distribution with finite resources: Secret key rates via Renyi entropies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abruzzo, Silvestre; Kampermann, Hermann; Mertz, Markus
A realistic quantum key distribution (QKD) protocol necessarily deals with finite resources, such as the number of signals exchanged by the two parties. We derive a bound on the secret key rate which is expressed as an optimization problem over Renyi entropies. Under the assumption of collective attacks by an eavesdropper, a computable estimate of our bound for the six-state protocol is provided. This bound leads to improved key rates in comparison to previous results.
Spectral and quantum-mechanical characterizations of 7-amino-4-trifluoromethyl coumarin
NASA Astrophysics Data System (ADS)
Benchea, Andreea Celia; Gaina, Marius; Dorohoi, Dana Ortansa
2017-01-01
Coumarins are crystalline compounds utilized in pharmaceutical, food and cosmetic industries. Our study refers to quantum-mechanical and spectral characterization of 7-amino-4-trifluoromethyl coumarin (7-NH2-4-CF3-coumarin or coumarin 151) in order to estimate its stability, reactivity and biological activity. The contribution of different types of interactions to the spectral shifts in homogeneous solutions and the limits in which the excited state dipole moment of the studied molecule can vary are established by solvatochromic study.
Searching for new symmetry species of CH5+ - From lines to states without a model
NASA Astrophysics Data System (ADS)
Brackertz, Stefan; Schlemmer, Stephan; Asvany, Oskar
2017-12-01
CH5+ is a prototype of an extremely flexible molecule for which the quantum states have eluded an analytical description so far. Therefore, the reconstruction of its quantum states relies on methods as e.g. the search for accumulations of combination differences of rovibrational transitions. Using the available high resolution data of the Cologne laboratories [1], this reconstruction has been improved by using the properties of kernel density estimators as well as new combinatorial approaches to evaluate the found accumulations. Two new symmetry sets have been discovered, and the known ones extended, with 1063 of the 2897 measured lines assigned, which is a significant improvement over the 65 assignments of the previous work. This allowed us not only to reconstruct more parts of the ground state levels, but also of the vibrationally excited states of CH5+.
NASA Technical Reports Server (NTRS)
Shapiro, J. H.; Yuen, H. P.; Machado Mata, J. A.
1979-01-01
In a previous paper (1978), the authors developed a method of analyzing the performance of two-photon coherent state (TCS) systems for free-space optical communications. General theorems permitting application of classical point process results to detection and estimation of signals in arbitrary quantum states were derived. The present paper examines the general problem of photoemissive detection statistics. On the basis of the photocounting theory of Kelley and Kleiner (1964) it is shown that for arbitrary pure state illumination, the resulting photocurrent is in general a self-exciting point process. The photocount statistics for first-order coherent fields reduce to those of a special class of Markov birth processes, which the authors term single-mode birth processes. These general results are applied to the structure of TCS radiation, and it is shown that the use of TCS radiation with direct or heterodyne detection results in minimal performance increments over comparable coherent-state systems. However, significant performance advantages are offered by use of TCS radiation with homodyne detection. The abstract quantum descriptions of homodyne and heterodyne detection are derived and a synthesis procedure for obtaining quantum measurements described by arbitrary TCS is given.
Path integral molecular dynamics for exact quantum statistics of multi-electronic-state systems.
Liu, Xinzijian; Liu, Jian
2018-03-14
An exact approach to compute physical properties for general multi-electronic-state (MES) systems in thermal equilibrium is presented. The approach is extended from our recent progress on path integral molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem. Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface is involved. We first define an effective potential function that is numerically favorable for MES-PIMD and then derive corresponding estimators in MES-PIMD for evaluating various physical properties. Its application to several representative one-dimensional and multi-dimensional models demonstrates that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer approximation, Condon approximation, and harmonic bath approximation are broken.
Path integral molecular dynamics for exact quantum statistics of multi-electronic-state systems
NASA Astrophysics Data System (ADS)
Liu, Xinzijian; Liu, Jian
2018-03-01
An exact approach to compute physical properties for general multi-electronic-state (MES) systems in thermal equilibrium is presented. The approach is extended from our recent progress on path integral molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem. Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface is involved. We first define an effective potential function that is numerically favorable for MES-PIMD and then derive corresponding estimators in MES-PIMD for evaluating various physical properties. Its application to several representative one-dimensional and multi-dimensional models demonstrates that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer approximation, Condon approximation, and harmonic bath approximation are broken.
NASA Astrophysics Data System (ADS)
Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.
2008-01-01
We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.
Combined-probability space and certainty or uncertainty relations for a finite-level quantum system
NASA Astrophysics Data System (ADS)
Sehrawat, Arun
2017-08-01
The Born rule provides a probability vector (distribution) with a quantum state for a measurement setting. For two settings, we have a pair of vectors from the same quantum state. Each pair forms a combined-probability vector that obeys certain quantum constraints, which are triangle inequalities in our case. Such a restricted set of combined vectors, called the combined-probability space, is presented here for a d -level quantum system (qudit). The combined space is a compact convex subset of a Euclidean space, and all its extreme points come from a family of parametric curves. Considering a suitable concave function on the combined space to estimate the uncertainty, we deliver an uncertainty relation by finding its global minimum on the curves for a qudit. If one chooses an appropriate concave (or convex) function, then there is no need to search for the absolute minimum (maximum) over the whole space; it will be on the parametric curves. So these curves are quite useful for establishing an uncertainty (or a certainty) relation for a general pair of settings. We also demonstrate that many known tight certainty or uncertainty relations for a qubit can be obtained with the triangle inequalities.
Intrinsic errors in transporting a single-spin qubit through a double quantum dot
NASA Astrophysics Data System (ADS)
Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.
2017-07-01
Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.
Entropy production of doubly stochastic quantum channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Müller-Hermes, Alexander, E-mail: muellerh@posteo.net; Department of Mathematical Sciences, University of Copenhagen, 2100 Copenhagen; Stilck França, Daniel, E-mail: dsfranca@mytum.de
2016-02-15
We study the entropy increase of quantum systems evolving under primitive, doubly stochastic Markovian noise and thus converging to the maximally mixed state. This entropy increase can be quantified by a logarithmic-Sobolev constant of the Liouvillian generating the noise. We prove a universal lower bound on this constant that stays invariant under taking tensor-powers. Our methods involve a new comparison method to relate logarithmic-Sobolev constants of different Liouvillians and a technique to compute logarithmic-Sobolev inequalities of Liouvillians with eigenvectors forming a projective representation of a finite abelian group. Our bounds improve upon similar results established before and as an applicationmore » we prove an upper bound on continuous-time quantum capacities. In the last part of this work we study entropy production estimates of discrete-time doubly stochastic quantum channels by extending the framework of discrete-time logarithmic-Sobolev inequalities to the quantum case.« less
Weak-value amplification as an optimal metrological protocol
NASA Astrophysics Data System (ADS)
Alves, G. Bié; Escher, B. M.; de Matos Filho, R. L.; Zagury, N.; Davidovich, L.
2015-06-01
The implementation of weak-value amplification requires the pre- and postselection of states of a quantum system, followed by the observation of the response of the meter, which interacts weakly with the system. Data acquisition from the meter is conditioned to successful postselection events. Here we derive an optimal postselection procedure for estimating the coupling constant between system and meter and show that it leads both to weak-value amplification and to the saturation of the quantum Fisher information, under conditions fulfilled by all previously reported experiments on the amplification of weak signals. For most of the preselected states, full information on the coupling constant can be extracted from the meter data set alone, while for a small fraction of the space of preselected states, it must be obtained from the postselection statistics.
Measuring Renyi entanglement entropy in quantum Monte Carlo simulations.
Hastings, Matthew B; González, Iván; Kallin, Ann B; Melko, Roger G
2010-04-16
We develop a quantum Monte Carlo procedure, in the valence bond basis, to measure the Renyi entanglement entropy of a many-body ground state as the expectation value of a unitary Swap operator acting on two copies of the system. An improved estimator involving the ratio of Swap operators for different subregions enables convergence of the entropy in a simulation time polynomial in the system size. We demonstrate convergence of the Renyi entropy to exact results for a Heisenberg chain. Finally, we calculate the scaling of the Renyi entropy in the two-dimensional Heisenberg model and confirm that the Néel ground state obeys the expected area law for systems up to linear size L=32.
Stingl, J; Zamponi, F; Freyer, B; Woerner, M; Elsaesser, T; Borgschulte, A
2012-10-05
Transient polarizations connected with a spatial redistribution of electronic charge in a mixed quantum state are induced by optical fields of high amplitude. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The prototype ionic material LiBH4 driven nonresonantly by an intense sub-40 fs optical pulse displays a large-amplitude fully reversible electron transfer from the BH4(-) anion to the Li+ cation during excitation. Our results establish this mechanism as the source of the strong optical polarization which agrees quantitatively with theoretical estimates.
Kleis, Sebastian; Rueckmann, Max; Schaeffer, Christian G
2017-04-15
In this Letter, we propose a novel implementation of continuous variable quantum key distribution that operates with a real local oscillator placed at the receiver site. In addition, pulsing of the continuous wave laser sources is not required, leading to an extraordinary practical and secure setup. It is suitable for arbitrary schemes based on modulated coherent states and heterodyne detection. The shown results include transmission experiments, as well as an excess noise analysis applying a discrete 8-state phase modulation. Achievable key rates under collective attacks are estimated. The results demonstrate the high potential of the approach to achieve high secret key rates at relatively low effort and cost.
Sharma, Sandeep; Yanai, Takeshi; Booth, George H; Umrigar, C J; Chan, Garnet Kin-Lic
2014-03-14
We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, without the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of D(e) = 931.2 cm(-1) which agrees very well with recent experimentally derived estimates D(e) = 929.7±2 cm(-1) [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)] and D(e) = 934.6 cm(-1) [K. Patkowski, V. Špirko, and K. Szalewicz, Science 326, 1382 (2009)], as well the best composite theoretical estimates, D(e) = 938±15 cm(-1) [K. Patkowski, R. Podeszwa, and K. Szalewicz, J. Phys. Chem. A 111, 12822 (2007)] and D(e) = 935.1±10 cm(-1) [J. Koput, Phys. Chem. Chem. Phys. 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 1 ¹Σ(g)⁻ state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schrödinger equation in small molecules.
Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas
2012-04-10
The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.
“Quantumness” versus “classicality” of quantum states and quantum protocols
NASA Astrophysics Data System (ADS)
Brodutch, Aharon; Groisman, Berry; Kenigsberg, Dan; Mor, Tal
Entanglement is one of the pillars of quantum mechanics and quantum information processing, and as a result, the quantumness of nonentangled states has typically been overlooked and unrecognized until the last decade. We give a robust definition for the classicality versus quantumness of a single multipartite quantum state, a set of states, and a protocol using quantum states. We show a variety of nonentangled (separable) states that exhibit interesting quantum properties, and we explore the “zoo” of separable states; several interesting subclasses are defined based on the diagonalizing bases of the states, and their nonclassical behavior is investigated.
Antibunched emission of photon pairs via quantum Zeno blockade.
Huang, Yu-Ping; Kumar, Prem
2012-01-20
We propose a new methodology, namely, the "quantum Zeno blockade," for managing light scattering at a few-photon level in general nonlinear-optical media, such as crystals, fibers, silicon microrings, and atomic vapors. Using this tool, antibunched emission of photon pairs can be achieved, leading to potent quantum-optics applications such as deterministic entanglement generation without the need for heralding. In a practical implementation using an on-chip toroidal microcavity immersed in rubidium vapor, we estimate that high-fidelity entangled photons can be produced on-demand at MHz rates or higher, corresponding to an improvement of ≳10(7) times from the state-of-the-art. © 2012 American Physical Society
Quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices
NASA Astrophysics Data System (ADS)
Chakhmakhchyan, L.; Cerf, N. J.; Garcia-Patron, R.
2017-08-01
We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithm development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salini, K.; Prabhu, R.; Sen, Aditi
2014-09-15
Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and formore » an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that are expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.« less
At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited
NASA Astrophysics Data System (ADS)
Rams, Marek M.; Sierant, Piotr; Dutta, Omyoti; Horodecki, Paweł; Zakrzewski, Jakub
2018-04-01
We address the question of whether the super-Heisenberg scaling for quantum estimation is indeed realizable. We unify the results of two approaches. In the first one, the original system is compared with its copy rotated by the parameter-dependent dynamics. If the parameter is coupled to the one-body part of the Hamiltonian, the precision of its estimation is known to scale at most as N-1 (Heisenberg scaling) in terms of the number of elementary subsystems used N . The second approach compares the overlap between the ground states of the parameter-dependent Hamiltonian in critical systems, often leading to an apparent super-Heisenberg scaling. However, we point out that if one takes into account the scaling of time needed to perform the necessary operations, i.e., ensuring adiabaticity of the evolution, the Heisenberg limit given by the rotation scenario is recovered. We illustrate the general theory on a ferromagnetic Heisenberg spin chain example and show that it exhibits such super-Heisenberg scaling of ground-state fidelity around the critical value of the parameter (magnetic field) governing the one-body part of the Hamiltonian. Even an elementary estimator represented by a single-site magnetization already outperforms the Heisenberg behavior providing the N-1.5 scaling. In this case, Fisher information sets the ultimate scaling as N-1.75, which can be saturated by measuring magnetization on all sites simultaneously. We discuss universal scaling predictions of the estimation precision offered by such observables, both at zero and finite temperatures, and support them with numerical simulations in the model. We provide an experimental proposal of realization of the considered model via mapping the system to ultracold bosons in a periodically shaken optical lattice. We explicitly derive that the Heisenberg limit is recovered when the time needed for preparation of quantum states involved is taken into account.
Explicit formula for the Holevo bound for two-parameter qubit-state estimation problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Jun, E-mail: junsuzuki@uec.ac.jp
The main contribution of this paper is to derive an explicit expression for the fundamental precision bound, the Holevo bound, for estimating any two-parameter family of qubit mixed-states in terms of quantum versions of Fisher information. The obtained formula depends solely on the symmetric logarithmic derivative (SLD), the right logarithmic derivative (RLD) Fisher information, and a given weight matrix. This result immediately provides necessary and sufficient conditions for the following two important classes of quantum statistical models; the Holevo bound coincides with the SLD Cramér-Rao bound and it does with the RLD Cramér-Rao bound. One of the important results ofmore » this paper is that a general model other than these two special cases exhibits an unexpected property: the structure of the Holevo bound changes smoothly when the weight matrix varies. In particular, it always coincides with the RLD Cramér-Rao bound for a certain choice of the weight matrix. Several examples illustrate these findings.« less
Phase-noise limitations in continuous-variable quantum key distribution with homodyne detection
NASA Astrophysics Data System (ADS)
Corvaja, Roberto
2017-02-01
In continuous-variables quantum key distribution with coherent states, the advantage of performing the detection by using standard telecoms components is counterbalanced by the lack of a stable phase reference in homodyne detection due to the complexity of optical phase-locking circuits and to the unavoidable phase noise of lasers, which introduces a degradation on the achievable secure key rate. Pilot-assisted phase-noise estimation and postdetection compensation techniques are used to implement a protocol with coherent states where a local laser is employed and it is not locked to the received signal, but a postdetection phase correction is applied. Here the reduction of the secure key rate determined by the laser phase noise, for both individual and collective attacks, is analytically evaluated and a scheme of pilot-assisted phase estimation proposed, outlining the tradeoff in the system design between phase noise and spectral efficiency. The optimal modulation variance as a function of the phase-noise amount is derived.
Multi-dimensional quantum state sharing based on quantum Fourier transform
NASA Astrophysics Data System (ADS)
Qin, Huawang; Tso, Raylin; Dai, Yuewei
2018-03-01
A scheme of multi-dimensional quantum state sharing is proposed. The dealer performs the quantum SUM gate and the quantum Fourier transform to encode a multi-dimensional quantum state into an entanglement state. Then the dealer distributes each participant a particle of the entanglement state, to share the quantum state among n participants. In the recovery, n-1 participants measure their particles and supply their measurement results; the last participant performs the unitary operation on his particle according to these measurement results and can reconstruct the initial quantum state. The proposed scheme has two merits: It can share the multi-dimensional quantum state and it does not need the entanglement measurement.
Abstract quantum computing machines and quantum computational logics
NASA Astrophysics Data System (ADS)
Chiara, Maria Luisa Dalla; Giuntini, Roberto; Sergioli, Giuseppe; Leporini, Roberto
2016-06-01
Classical and quantum parallelism are deeply different, although it is sometimes claimed that quantum Turing machines are nothing but special examples of classical probabilistic machines. We introduce the concepts of deterministic state machine, classical probabilistic state machine and quantum state machine. On this basis, we discuss the question: To what extent can quantum state machines be simulated by classical probabilistic state machines? Each state machine is devoted to a single task determined by its program. Real computers, however, behave differently, being able to solve different kinds of problems. This capacity can be modeled, in the quantum case, by the mathematical notion of abstract quantum computing machine, whose different programs determine different quantum state machines. The computations of abstract quantum computing machines can be linguistically described by the formulas of a particular form of quantum logic, termed quantum computational logic.
NASA Astrophysics Data System (ADS)
Rivlin, Lev A.
2007-07-01
The resonance absorption and emission gamma-ray spectra are constructed for nuclear transitions in metals in large metal-carbon clusters. The possibilities of observing gamma lines with the natural linewidth in an isolated molecule and the suppression of the excess line broadening in an ensemble of molecules are estimated. The possibility of the appearance of the hidden population inversion of nuclear states and the quantum amplification of the type of coherent stimulated scattering is also analysed.
Quantum Accelerators for High-performance Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S.; Britt, Keith A.; Mohiyaddin, Fahd A.
We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, themore » prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.« less
Quantum-Like Bayesian Networks for Modeling Decision Making
Moreira, Catarina; Wichert, Andreas
2016-01-01
In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios. PMID:26858669
Coherent strong field interactions between a nanomagnet and a photonic cavity
NASA Astrophysics Data System (ADS)
Soykal, Oney Orhunc
Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology. However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ˜ 1 mm radius with a nanomagnet of ˜ 100 nm radius and ferromagnet resonance frequency of ˜ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.
Complexity of Quantum Impurity Problems
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Gosset, David
2017-12-01
We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.
Sudden death of effective entanglement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roszak, K.; Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw; Horodecki, P.
2010-04-15
Sudden death of entanglement is a well-known effect resulting from the finite volume of separable states. We study the case when the observer has a limited measurement capability and analyze the effective entanglement (i.e., entanglement minimized over the output data). We show that in the well-defined system of two quantum dots monitored by single-electron transistors, one may observe a sudden death of effective entanglement when real, physical entanglement is still alive. For certain measurement setups, this occurs even for initial states for which sudden death of physical entanglement is not possible at all. The principles of the analysis may bemore » applied to other analogous scenarios, such as estimation of the parameters arising from quantum process tomography.« less
Adaptive estimation of a time-varying phase with a power-law spectrum via continuous squeezed states
NASA Astrophysics Data System (ADS)
Dinani, Hossein T.; Berry, Dominic W.
2017-06-01
When measuring a time-varying phase, the standard quantum limit and Heisenberg limit as usually defined, for a constant phase, do not apply. If the phase has Gaussian statistics and a power-law spectrum 1 /|ω| p with p >1 , then the generalized standard quantum limit and Heisenberg limit have recently been found to have scalings of 1 /N(p -1 )/p and 1 /N2 (p -1 )/(p +1 ) , respectively, where N is the mean photon flux. We show that this Heisenberg scaling can be achieved via adaptive measurements on squeezed states. We predict the experimental parameters analytically, and test them with numerical simulations. Previous work had considered the special case of p =2 .
NASA Astrophysics Data System (ADS)
Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong
2014-05-01
We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.
One-sided measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Cao, Wen-Fei; Zhen, Yi-Zheng; Zheng, Yu-Lin; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai
2018-01-01
Measurement-device-independent quantum key distribution (MDI-QKD) protocol was proposed to remove all the detector side channel attacks, while its security relies on the trusted encoding systems. Here we propose a one-sided MDI-QKD (1SMDI-QKD) protocol, which enjoys detection loophole-free advantage, and at the same time weakens the state preparation assumption in MDI-QKD. The 1SMDI-QKD can be regarded as a modified MDI-QKD, in which Bob's encoding system is trusted, while Alice's is uncharacterized. For the practical implementation, we also provide a scheme by utilizing coherent light source with an analytical two decoy state estimation method. Simulation with realistic experimental parameters shows that the protocol has a promising performance, and thus can be applied to practical QKD applications.
Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong
2014-05-16
We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.
Phase estimation with nonunitary interferometers: Information as a metric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahder, Thomas B.
2011-05-15
Determining the phase in one arm of a quantum interferometer is discussed taking into account the three nonideal aspects in real experiments: nondeterministic state preparation, nonunitary state evolution due to losses during state propagation, and imperfect state detection. A general expression is written for the probability of a measurement outcome taking into account these three nonideal aspects. As an example of applying the formalism, the classical Fisher information and fidelity (Shannon mutual information between phase and measurements) are computed for few-photon Fock and N00N states input into a lossy Mach-Zehnder interferometer. These three nonideal aspects lead to qualitative differences inmore » phase estimation, such as a decrease in fidelity and Fisher information that depends on the true value of the phase.« less
Preparation of freezing quantum state for quantum coherence
NASA Astrophysics Data System (ADS)
Yang, Lian-Wu; Man, Zhong-Xiao; Zhang, Ying-Jie; Han, Feng; Du, Shao-jiang; Xia, Yun-Jie
2018-06-01
We provide a method to prepare the freezing quantum state for quantum coherence via unitary operations. The initial product state consists of the control qubit and target qubit; when it satisfies certain conditions, the initial product state converts into the particular Bell diagonal state under the unitary operations, which have the property of freezing of quantum coherence under quantum channels. We calculate the frozen quantum coherence and corresponding quantum correlations, and find that the quantities are determined by the control qubit only when the freezing phenomena occur.
Non-Markovian Complexity in the Quantum-to-Classical Transition
Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco
2015-01-01
The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002
Distribution of Bell-inequality violation versus multiparty-quantum-correlation measures
NASA Astrophysics Data System (ADS)
Sharma, Kunal; Das, Tamoghna; Sen (de), Aditi; Sen, Ujjwal
Violation of a Bell inequality guarantees the existence of quantum correlations in a shared quantum state. A pure bipartite quantum state, having nonvanishing quantum correlation, always violates a Bell inequality. Such correspondence is absent for multipartite pure quantum states in the case of multipartite correlation function Bell inequalities with two settings at each site. We establish a connection between the monogamy of Bell-inequality violation and multiparty quantum correlations for shared multisite quantum states. We believe that the relation is generic, as it is true for a number of different multisite measures that are defined from radically different perspectives. Precisely, we quantify the multisite-quantum-correlation content in the states by generalized geometric measure, a genuine multisite entanglement measure, as well as three monogamybased multiparty-quantum-correlation measures, viz., 3-tangle, quantum-discord score, and quantum-work-deficit score. We find that generalized Greenberger-Horne-Zeilinger states and another single-parameter family of states, which we refer to as the special Greenberger-Horne-Zeilinger states, have the status of extremal states in such relations.
Distribution of Bell-inequality violation versus multiparty-quantum-correlation measures
NASA Astrophysics Data System (ADS)
Sharma, Kunal; Das, Tamoghna; SenDe, Aditi; Sen, Ujjwal
2016-06-01
Violation of a Bell inequality guarantees the existence of quantum correlations in a shared quantum state. A pure bipartite quantum state, having nonvanishing quantum correlation, always violates a Bell inequality. Such correspondence is absent for multipartite pure quantum states in the case of multipartite correlation function Bell inequalities with two settings at each site. We establish a connection between the monogamy of Bell-inequality violation and multiparty quantum correlations for shared multisite quantum states. We believe that the relation is generic, as it is true for a number of different multisite measures that are defined from radically different perspectives. Precisely, we quantify the multisite-quantum-correlation content in the states by generalized geometric measure, a genuine multisite entanglement measure, as well as three monogamy-based multiparty-quantum-correlation measures, viz., 3-tangle, quantum-discord score, and quantum-work-deficit score. We find that generalized Greenberger-Horne-Zeilinger states and another single-parameter family of states, which we refer to as the special Greenberger-Horne-Zeilinger states, have the status of extremal states in such relations.
Memory-built-in quantum cloning in a hybrid solid-state spin register
NASA Astrophysics Data System (ADS)
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-07-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Memory-built-in quantum cloning in a hybrid solid-state spin register.
Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M
2015-07-16
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Source-Device-Independent Ultrafast Quantum Random Number Generation.
Marangon, Davide G; Vallone, Giuseppe; Villoresi, Paolo
2017-02-10
Secure random numbers are a fundamental element of many applications in science, statistics, cryptography and more in general in security protocols. We present a method that enables the generation of high-speed unpredictable random numbers from the quadratures of an electromagnetic field without any assumption on the input state. The method allows us to eliminate the numbers that can be predicted due to the presence of classical and quantum side information. In particular, we introduce a procedure to estimate a bound on the conditional min-entropy based on the entropic uncertainty principle for position and momentum observables of infinite dimensional quantum systems. By the above method, we experimentally demonstrated the generation of secure true random bits at a rate greater than 1.7 Gbit/s.
Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states
NASA Astrophysics Data System (ADS)
Wang, Meihong; Qin, Zhongzhong; Wang, Yu; Su, Xiaolong
2017-08-01
Multipartite Einstein-Podolsky-Rosen (EPR) steering is a useful quantum resource for quantum communication in quantum networks. It has potential applications in secure quantum communication, such as one-sided device-independent quantum key distribution and quantum secret sharing. By distributing optical modes of a multipartite entangled state to space-separated quantum nodes, a local quantum network can be established. Based on the existing multipartite EPR steering in a local quantum network, secure quantum communication protocol can be accomplished. In this manuscript, we present swapping schemes for EPR steering between two space-separated Gaussian multipartite entangled states, which can be used to connect two space-separated quantum networks. Two swapping schemes, including the swapping between a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state and an EPR entangled state and that between two tripartite GHZ entangled states, are analyzed. Various types of EPR steering are presented after the swapping of two space-separated independent multipartite entanglement states without direct interaction, which can be used to implement quantum communication between two quantum networks. The presented schemes provide technical reference for more complicated quantum networks with EPR steering.
Quantifying matrix product state
NASA Astrophysics Data System (ADS)
Bhatia, Amandeep Singh; Kumar, Ajay
2018-03-01
Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.
Magnetic gaps in organic tri-radicals: From a simple model to accurate estimates.
Barone, Vincenzo; Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo
2017-03-14
The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results for the systems of current fundamental and technological interest. From the other side, proper parameterization of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic physical effects, unraveling the role played by electron delocalization, Coulomb repulsion, and effective exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three prototypical organic tri-radicals, namely, 1,3,5-trimethylenebenzene, 1,3,5-tridehydrobenzene, and 1,2,3-tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences among the three species and their consequences on the magnetic properties in terms of the simple model mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and the final results are discussed and compared to both available experimental and computational estimates.
Quantum correlation in degenerate optical parametric oscillators with mutual injections
NASA Astrophysics Data System (ADS)
Takata, Kenta; Marandi, Alireza; Yamamoto, Yoshihisa
2015-10-01
We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive P representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes p ̂ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements.
Bonato, C; Blok, M S; Dinani, H T; Berry, D W; Markham, M L; Twitchen, D J; Hanson, R
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz(-1/2) over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
Optimized quantum sensing with a single electron spin using real-time adaptive measurements
NASA Astrophysics Data System (ADS)
Bonato, C.; Blok, M. S.; Dinani, H. T.; Berry, D. W.; Markham, M. L.; Twitchen, D. J.; Hanson, R.
2016-03-01
Quantum sensors based on single solid-state spins promise a unique combination of sensitivity and spatial resolution. The key challenge in sensing is to achieve minimum estimation uncertainty within a given time and with high dynamic range. Adaptive strategies have been proposed to achieve optimal performance, but their implementation in solid-state systems has been hindered by the demanding experimental requirements. Here, we realize adaptive d.c. sensing by combining single-shot readout of an electron spin in diamond with fast feedback. By adapting the spin readout basis in real time based on previous outcomes, we demonstrate a sensitivity in Ramsey interferometry surpassing the standard measurement limit. Furthermore, we find by simulations and experiments that adaptive protocols offer a distinctive advantage over the best known non-adaptive protocols when overhead and limited estimation time are taken into account. Using an optimized adaptive protocol we achieve a magnetic field sensitivity of 6.1 ± 1.7 nT Hz-1/2 over a wide range of 1.78 mT. These results open up a new class of experiments for solid-state sensors in which real-time knowledge of the measurement history is exploited to obtain optimal performance.
NASA Astrophysics Data System (ADS)
Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro
2016-08-01
An increase in the efficiency of sampling from Boltzmann distributions would have a significant impact on deep learning and other machine-learning applications. Recently, quantum annealers have been proposed as a potential candidate to speed up this task, but several limitations still bar these state-of-the-art technologies from being used effectively. One of the main limitations is that, while the device may indeed sample from a Boltzmann-like distribution, quantum dynamical arguments suggest it will do so with an instance-dependent effective temperature, different from its physical temperature. Unless this unknown temperature can be unveiled, it might not be possible to effectively use a quantum annealer for Boltzmann sampling. In this work, we propose a strategy to overcome this challenge with a simple effective-temperature estimation algorithm. We provide a systematic study assessing the impact of the effective temperatures in the learning of a special class of a restricted Boltzmann machine embedded on quantum hardware, which can serve as a building block for deep-learning architectures. We also provide a comparison to k -step contrastive divergence (CD-k ) with k up to 100. Although assuming a suitable fixed effective temperature also allows us to outperform one-step contrastive divergence (CD-1), only when using an instance-dependent effective temperature do we find a performance close to that of CD-100 for the case studied here.
The variational method in quantum mechanics: an elementary introduction
NASA Astrophysics Data System (ADS)
Borghi, Riccardo
2018-05-01
Variational methods in quantum mechanics are customarily presented as invaluable techniques to find approximate estimates of ground state energies. In the present paper a short catalogue of different celebrated potential distributions (both 1D and 3D), for which an exact and complete (energy and wavefunction) ground state determination can be achieved in an elementary way, is illustrated. No previous knowledge of calculus of variations is required. Rather, in all presented cases the exact energy functional minimization is achieved by using only a couple of simple mathematical tricks: ‘completion of square’ and integration by parts. This makes our approach particularly suitable for undergraduates. Moreover, the key role played by particle localization is emphasized through the entire analysis. This gentle introduction to the variational method could also be potentially attractive for more expert students as a possible elementary route toward a rather advanced topic on quantum mechanics: the factorization method. Such an unexpected connection is outlined in the final part of the paper.
NASA Astrophysics Data System (ADS)
Qu, Zhiguo; Wu, Shengyao; Wang, Mingming; Sun, Le; Wang, Xiaojun
2017-12-01
As one of important research branches of quantum communication, deterministic remote state preparation (DRSP) plays a significant role in quantum network. Quantum noises are prevalent in quantum communication, and it can seriously affect the safety and reliability of quantum communication system. In this paper, we study the effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via different quantum channels including the χ state, Brown state and GHZ state. Firstly, the output states and fidelities of three DRSP algorithms via different quantum entangled channels in four noisy environments, including amplitude-damping, phase-damping, bit-flip and depolarizing noise, are presented, respectively. And then, the effects of noises on three kinds of preparation algorithms in the same noisy environment are discussed. In final, the theoretical analysis proves that the effect of noise in the process of quantum state preparation is only related to the noise type and the size of noise factor and independent of the different entangled quantum channels. Furthermore, another important conclusion is given that the effect of noise is also independent of how to distribute intermediate particles for implementing DRSP through quantum measurement during the concrete preparation process. These conclusions will be very helpful for improving the efficiency and safety of quantum communication in a noisy environment.
Capacity estimation and verification of quantum channels with arbitrarily correlated errors.
Pfister, Corsin; Rol, M Adriaan; Mantri, Atul; Tomamichel, Marco; Wehner, Stephanie
2018-01-02
The central figure of merit for quantum memories and quantum communication devices is their capacity to store and transmit quantum information. Here, we present a protocol that estimates a lower bound on a channel's quantum capacity, even when there are arbitrarily correlated errors. One application of these protocols is to test the performance of quantum repeaters for transmitting quantum information. Our protocol is easy to implement and comes in two versions. The first estimates the one-shot quantum capacity by preparing and measuring in two different bases, where all involved qubits are used as test qubits. The second verifies on-the-fly that a channel's one-shot quantum capacity exceeds a minimal tolerated value while storing or communicating data. We discuss the performance using simple examples, such as the dephasing channel for which our method is asymptotically optimal. Finally, we apply our method to a superconducting qubit in experiment.
Memory-built-in quantum cloning in a hybrid solid-state spin register
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-01-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science. PMID:26178617
Experimental Machine Learning of Quantum States
NASA Astrophysics Data System (ADS)
Gao, Jun; Qiao, Lu-Feng; Jiao, Zhi-Qiang; Ma, Yue-Chi; Hu, Cheng-Qiu; Ren, Ruo-Jing; Yang, Ai-Lin; Tang, Hao; Yung, Man-Hong; Jin, Xian-Min
2018-06-01
Quantum information technologies provide promising applications in communication and computation, while machine learning has become a powerful technique for extracting meaningful structures in "big data." A crossover between quantum information and machine learning represents a new interdisciplinary area stimulating progress in both fields. Traditionally, a quantum state is characterized by quantum-state tomography, which is a resource-consuming process when scaled up. Here we experimentally demonstrate a machine-learning approach to construct a quantum-state classifier for identifying the separability of quantum states. We show that it is possible to experimentally train an artificial neural network to efficiently learn and classify quantum states, without the need of obtaining the full information of the states. We also show how adding a hidden layer of neurons to the neural network can significantly boost the performance of the state classifier. These results shed new light on how classification of quantum states can be achieved with limited resources, and represent a step towards machine-learning-based applications in quantum information processing.
Quantumness-generating capability of quantum dynamics
NASA Astrophysics Data System (ADS)
Li, Nan; Luo, Shunlong; Mao, Yuanyuan
2018-04-01
We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.
Two-qubit quantum cloning machine and quantum correlation broadcasting
NASA Astrophysics Data System (ADS)
Kheirollahi, Azam; Mohammadi, Hamidreza; Akhtarshenas, Seyed Javad
2016-11-01
Due to the axioms of quantum mechanics, perfect cloning of an unknown quantum state is impossible. But since imperfect cloning is still possible, a question arises: "Is there an optimal quantum cloning machine?" Buzek and Hillery answered this question and constructed their famous B-H quantum cloning machine. The B-H machine clones the state of an arbitrary single qubit in an optimal manner and hence it is universal. Generalizing this machine for a two-qubit system is straightforward, but during this procedure, except for product states, this machine loses its universality and becomes a state-dependent cloning machine. In this paper, we propose some classes of optimal universal local quantum state cloners for a particular class of two-qubit systems, more precisely, for a class of states with known Schmidt basis. We then extend our machine to the case that the Schmidt basis of the input state is deviated from the local computational basis of the machine. We show that more local quantum coherence existing in the input state corresponds to less fidelity between the input and output states. Also we present two classes of a state-dependent local quantum copying machine. Furthermore, we investigate local broadcasting of two aspects of quantum correlations, i.e., quantum entanglement and quantum discord, defined, respectively, within the entanglement-separability paradigm and from an information-theoretic perspective. The results show that although quantum correlation is, in general, very fragile during the broadcasting procedure, quantum discord is broadcasted more robustly than quantum entanglement.
Radiative transitions from Rydberg states of lithium atoms in a blackbody radiation environment
NASA Astrophysics Data System (ADS)
Glukhov, I. L.; Ovsiannikov, V. D.
2012-05-01
The radiative widths induced by blackbody radiation (BBR) were investigated for Rydberg states with principal quantum number up to n = 1000 in S-, P- and D-series of the neutral lithium atom at temperatures T = 100-3000 K. The rates of BBR-induced decays and excitations were compared with the rates of spontaneous decays. Simple analytical approximations are proposed for accurate estimations of the ratio of thermally induced decay (excitation) rates to spontaneous decay rates in wide ranges of states and temperatures.
Past observable dynamics of a continuously monitored qubit
NASA Astrophysics Data System (ADS)
García-Pintos, Luis Pedro; Dressel, Justin
2017-12-01
Monitoring a quantum observable continuously in time produces a stochastic measurement record that noisily tracks the observable. For a classical process, such noise may be reduced to recover an average signal by minimizing the mean squared error between the noisy record and a smooth dynamical estimate. We show that for a monitored qubit, this usual procedure returns unusual results. While the record seems centered on the expectation value of the observable during causal generation, examining the collected past record reveals that it better approximates a moving-mean Gaussian stochastic process centered at a distinct (smoothed) observable estimate. We show that this shifted mean converges to the real part of a generalized weak value in the time-continuous limit without additional postselection. We verify that this smoothed estimate minimizes the mean squared error even for individual measurement realizations. We go on to show that if a second observable is weakly monitored concurrently, then that second record is consistent with the smoothed estimate of the second observable based solely on the information contained in the first observable record. Moreover, we show that such a smoothed estimate made from incomplete information can still outperform estimates made using full knowledge of the causal quantum state.
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
NASA Astrophysics Data System (ADS)
Müller, Holger S. P.; Christen, Dines
2004-12-01
The rotation-tunneling spectrum of the second most stable gGg' conformer of ethylene glycol (1,2-ethanediol) in its ground vibrational state has been studied in selected regions between 77 and 579 GHz. Compared to the study of the more stable aGg' conformer, a much larger frequency range was studied, resulting in a much extended frequency list covering similar quantum numbers, J⩽55 and Ka⩽19. While the input data were reproduced within experimental uncertainties up to moderately high values of J and Ka larger residuals remain at higher quantum numbers. The severe mixing of the states caused by the Coriolis interaction between the two tunneling substates is suggested to provide a considerable part of the explanation. In addition, a Coriolis interaction of the gGg' ground vibrational state with an excited state of the aGg' conformer may also contribute. Relative intensities of closely spaced lines have been investigated to determine the signs of the Coriolis constants between the two tunneling substates relative to the dipole moment components and to estimate the magnitudes of the dipole moment components and the energy difference between the gGg' and the aGg' conformers. Results of ab initio calculations on the total dipole moment and the vibrational spectrum were needed for these estimates. The current analysis is limited to transitions with quantum numbers J⩽40 and Ka⩽6 plus those having J⩽22 and Ka⩽17 which could be reproduced within experimental uncertainties. The results are aimed at aiding radioastronomers to search for gGg' ethylene glycol in comets and in interstellar space.
Realization of reliable solid-state quantum memory for photonic polarization qubit.
Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can
2012-05-11
Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.
Engineering two-photon high-dimensional states through quantum interference
Zhang, Yingwen; Roux, Filippus S.; Konrad, Thomas; Agnew, Megan; Leach, Jonathan; Forbes, Andrew
2016-01-01
Many protocols in quantum science, for example, linear optical quantum computing, require access to large-scale entangled quantum states. Such systems can be realized through many-particle qubits, but this approach often suffers from scalability problems. An alternative strategy is to consider a lesser number of particles that exist in high-dimensional states. The spatial modes of light are one such candidate that provides access to high-dimensional quantum states, and thus they increase the storage and processing potential of quantum information systems. We demonstrate the controlled engineering of two-photon high-dimensional states entangled in their orbital angular momentum through Hong-Ou-Mandel interference. We prepare a large range of high-dimensional entangled states and implement precise quantum state filtering. We characterize the full quantum state before and after the filter, and are thus able to determine that only the antisymmetric component of the initial state remains. This work paves the way for high-dimensional processing and communication of multiphoton quantum states, for example, in teleportation beyond qubits. PMID:26933685
Quantum machine learning for quantum anomaly detection
NASA Astrophysics Data System (ADS)
Liu, Nana; Rebentrost, Patrick
2018-04-01
Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.
Generalized teleportation by quantum walks
NASA Astrophysics Data System (ADS)
Wang, Yu; Shang, Yun; Xue, Peng
2017-09-01
We develop a generalized teleportation scheme based on quantum walks with two coins. For an unknown qubit state, we use two-step quantum walks on the line and quantum walks on the cycle with four vertices for teleportation. For any d-dimensional states, quantum walks on complete graphs and quantum walks on d-regular graphs can be used for implementing teleportation. Compared with existing d-dimensional states teleportation, prior entangled state is not required and the necessary maximal entanglement resource is generated by the first step of quantum walk. Moreover, two projective measurements with d elements are needed by quantum walks on the complete graph, rather than one joint measurement with d^2 basis states. Quantum walks have many applications in quantum computation and quantum simulations. This is the first scheme of realizing communicating protocol with quantum walks, thus opening wider applications.
Analysis of Optimal Sequential State Discrimination for Linearly Independent Pure Quantum States.
Namkung, Min; Kwon, Younghun
2018-04-25
Recently, J. A. Bergou et al. proposed sequential state discrimination as a new quantum state discrimination scheme. In the scheme, by the successful sequential discrimination of a qubit state, receivers Bob and Charlie can share the information of the qubit prepared by a sender Alice. A merit of the scheme is that a quantum channel is established between Bob and Charlie, but a classical communication is not allowed. In this report, we present a method for extending the original sequential state discrimination of two qubit states to a scheme of N linearly independent pure quantum states. Specifically, we obtain the conditions for the sequential state discrimination of N = 3 pure quantum states. We can analytically provide conditions when there is a special symmetry among N = 3 linearly independent pure quantum states. Additionally, we show that the scenario proposed in this study can be applied to quantum key distribution. Furthermore, we show that the sequential state discrimination of three qutrit states performs better than the strategy of probabilistic quantum cloning.
Application of the quantum spin glass theory to image restoration.
Inoue, J I
2001-04-01
Quantum fluctuation is introduced into the Markov random-field model for image restoration in the context of a Bayesian approach. We investigate the dependence of the quantum fluctuation on the quality of a black and white image restoration by making use of statistical mechanics. We find that the maximum posterior marginal (MPM) estimate based on the quantum fluctuation gives a fine restoration in comparison with the maximum a posteriori estimate or the thermal fluctuation based MPM estimate.
Exact dimension estimation of interacting qubit systems assisted by a single quantum probe
NASA Astrophysics Data System (ADS)
Sone, Akira; Cappellaro, Paola
2017-12-01
Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine, e.g., the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics, and observables. Here we propose a more practical strategy that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the system dimension can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.
Control aspects of quantum computing using pure and mixed states.
Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J
2012-10-13
Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.
Control aspects of quantum computing using pure and mixed states
Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J.
2012-01-01
Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems. PMID:22946034
Threshold quantum state sharing based on entanglement swapping
NASA Astrophysics Data System (ADS)
Qin, Huawang; Tso, Raylin
2018-06-01
A threshold quantum state sharing scheme is proposed. The dealer uses the quantum-controlled-not operations to expand the d-dimensional quantum state and then uses the entanglement swapping to distribute the state to a random subset of participants. The participants use the single-particle measurements and unitary operations to recover the initial quantum state. In our scheme, the dealer can share different quantum states among different subsets of participants simultaneously. So the scheme will be very flexible in practice.
Non-unitary probabilistic quantum computing circuit and method
NASA Technical Reports Server (NTRS)
Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)
2009-01-01
A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.
Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng
2015-01-01
Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158
Single-photon absorption by single photosynthetic light-harvesting complexes
NASA Astrophysics Data System (ADS)
Chan, Herman C. H.; Gamel, Omar E.; Fleming, Graham R.; Whaley, K. Birgitta
2018-03-01
We provide a unified theoretical approach to the quantum dynamics of absorption of single photons and subsequent excitonic energy transfer in photosynthetic light-harvesting complexes. Our analysis combines a continuous mode < n > -photon quantum optical master equation for the chromophoric system with the hierarchy of equations of motion describing excitonic dynamics in presence of non-Markovian coupling to vibrations of the chromophores and surrounding protein. We apply the approach to simulation of absorption of single-photon coherent states by pigment-protein complexes containing between one and seven chromophores, and compare with results obtained by excitation using a thermal radiation field. We show that the values of excitation probability obtained under single-photon absorption conditions can be consistently related to bulk absorption cross-sections. Analysis of the timescale and efficiency of single-photon absorption by light-harvesting systems within this full quantum description of pigment-protein dynamics coupled to a quantum radiation field reveals a non-trivial dependence of the excitation probability and the excited state dynamics induced by exciton-phonon coupling during and subsequent to the pulse, on the bandwidth of the incident photon pulse. For bandwidths equal to the spectral bandwidth of Chlorophyll a, our results yield an estimation of an average time of ˜0.09 s for a single chlorophyll chromophore to absorb the energy equivalent of one (single-polarization) photon under irradiation by single-photon states at the intensity of sunlight.
A quantum dynamical study of the He++2He-->He2++He reaction
NASA Astrophysics Data System (ADS)
Xie, Junkai; Poirier, Bill; Gellene, Gregory I.
2003-11-01
The temperature dependent rate of the He++2He→He2++He three-body association reaction is studied using two complementary quantum dynamical models. Model I presumes a two-step, reverse Lindemann mechanism, where the intermediate energized complex, He2+*, is interpreted as the rotational resonance states of He2+. The energy and width of these resonances are determined via "exact" quantum calculation using highly accurate potential-energy curves. Model II uses an alternate quantum rate expression as the thermal average of the cumulative recombination probability, N(E). This microcanonical quantity is computed approximately, over the He2+ space only, with the third-body interaction modeled using a special type of absorbing potential. Because Model II implicitly incorporates both the two-step reverse Lindemann mechanism, and a one-step, reverse collision induced dissociation mechanism, the relative importance of the two formation mechanisms can be estimated by a comparison of the Model I and Model II results. For T<300 K, the reaction is found to be dominated by the two-step mechanism, and a formation rate in good agreement with the available experimental results is obtained with essentially no adjustable parameters in the theory. Interestingly, a nonmonotonic He2+ formation rate is observed, with a maximum identified near 25 K. This maximum is associated with just two reaction intermediate resonance states, the lowest energy states that can contribute significantly to the formation kinetics.
Uncertainty relation in Schwarzschild spacetime
NASA Astrophysics Data System (ADS)
Feng, Jun; Zhang, Yao-Zhong; Gould, Mark D.; Fan, Heng
2015-04-01
We explore the entropic uncertainty relation in the curved background outside a Schwarzschild black hole, and find that Hawking radiation introduces a nontrivial modification on the uncertainty bound for particular observer, therefore it could be witnessed by proper uncertainty game experimentally. We first investigate an uncertainty game between a free falling observer and his static partner holding a quantum memory initially entangled with the quantum system to be measured. Due to the information loss from Hawking decoherence, we find an inevitable increase of the uncertainty on the outcome of measurements in the view of static observer, which is dependent on the mass of the black hole, the distance of observer from event horizon, and the mode frequency of quantum memory. To illustrate the generality of this paradigm, we relate the entropic uncertainty bound with other uncertainty probe, e.g., time-energy uncertainty. In an alternative game between two static players, we show that quantum information of qubit can be transferred to quantum memory through a bath of fluctuating quantum fields outside the black hole. For a particular choice of initial state, we show that the Hawking decoherence cannot counteract entanglement generation after the dynamical evolution of system, which triggers an effectively reduced uncertainty bound that violates the intrinsic limit -log2 c. Numerically estimation for a proper choice of initial state shows that our result is comparable with possible real experiments. Finally, a discussion on the black hole firewall paradox in the context of entropic uncertainty relation is given.
Improved quantum backtracking algorithms using effective resistance estimates
NASA Astrophysics Data System (ADS)
Jarret, Michael; Wan, Kianna
2018-02-01
We investigate quantum backtracking algorithms of the type introduced by Montanaro (Montanaro, arXiv:1509.02374). These algorithms explore trees of unknown structure and in certain settings exponentially outperform their classical counterparts. Some of the previous work focused on obtaining a quantum advantage for trees in which a unique marked vertex is promised to exist. We remove this restriction by recharacterizing the problem in terms of the effective resistance of the search space. In this paper, we present a generalization of one of Montanaro's algorithms to trees containing k marked vertices, where k is not necessarily known a priori. Our approach involves using amplitude estimation to determine a near-optimal weighting of a diffusion operator, which can then be applied to prepare a superposition state with support only on marked vertices and ancestors thereof. By repeatedly sampling this state and updating the input vertex, a marked vertex is reached in a logarithmic number of steps. The algorithm thereby achieves the conjectured bound of O ˜(√{T Rmax }) for finding a single marked vertex and O ˜(k √{T Rmax }) for finding all k marked vertices, where T is an upper bound on the tree size and Rmax is the maximum effective resistance encountered by the algorithm. This constitutes a speedup over Montanaro's original procedure in both the case of finding one and the case of finding multiple marked vertices in an arbitrary tree.
Entangled states in quantum mechanics
NASA Astrophysics Data System (ADS)
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
Practical scheme for error control using feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarovar, Mohan; Milburn, Gerard J.; Ahn, Charlene
2004-05-01
We describe a scheme for quantum-error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols [for example, Ahn et al. Phys. Rev. A 65, 042301 (2001)], is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that could be corrected with current technology.
Electronegativity estimation of electronic polarizabilities of semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Keyan; Xue, Dongfeng, E-mail: dfxue@chem.dlut.edu.cn
2010-03-15
On the basis of the viewpoint of structure-property relationship in solid state matters, we proposed some useful relations to quantitatively calculate the electronic polarizabilities of binary and ternary chalcopyrite semiconductors, by using electronegativity and principal quantum number. The calculated electronic polarizabilities are in good agreement with reported values in the literature. Both electronegativity and principal quantum number can effectively reflect the detailed chemical bonding behaviors of constituent atoms in these semiconductors, which determines the magnitude of their electronic polarizabilities. The present work provides a useful guide to compositionally design novel semiconductor materials, and further explore advanced electro-optic devices.
NASA Astrophysics Data System (ADS)
Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas
2016-05-01
Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).
Excitons in the Fractional Quantum Hall Effect
DOE R&D Accomplishments Database
Laughlin, R. B.
1984-09-01
Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.
High-dimensional quantum cloning and applications to quantum hacking
Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W.; Karimi, Ebrahim
2017-01-01
Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography. PMID:28168219
High-dimensional quantum cloning and applications to quantum hacking.
Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim
2017-02-01
Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.
Neural-Network Quantum States, String-Bond States, and Chiral Topological States
NASA Astrophysics Data System (ADS)
Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio
2018-01-01
Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.
Macroscopic quantum states: Measures, fragility, and implementations
NASA Astrophysics Data System (ADS)
Fröwis, Florian; Sekatski, Pavel; Dür, Wolfgang; Gisin, Nicolas; Sangouard, Nicolas
2018-04-01
Large-scale quantum effects have always played an important role in the foundations of quantum theory. With recent experimental progress and the aspiration for quantum enhanced applications, the interest in macroscopic quantum effects has been reinforced. In this review, measures aiming to quantify various aspects of macroscopic quantumness are critically analyzed and discussed. Recent results on the difficulties and prospects to create, maintain, and detect macroscopic quantum states are surveyed. The role of macroscopic quantum states in foundational questions as well as practical applications is outlined. Finally, past and ongoing experimental advances aiming to generate and observe macroscopic quantum states are presented.
Extremal Optimization for estimation of the error threshold in topological subsystem codes at T = 0
NASA Astrophysics Data System (ADS)
Millán-Otoya, Jorge E.; Boettcher, Stefan
2014-03-01
Quantum decoherence is a problem that arises in implementations of quantum computing proposals. Topological subsystem codes (TSC) have been suggested as a way to overcome decoherence. These offer a higher optimal error tolerance when compared to typical error-correcting algorithms. A TSC has been translated into a planar Ising spin-glass with constrained bimodal three-spin couplings. This spin-glass has been considered at finite temperature to determine the phase boundary between the unstable phase and the stable phase, where error recovery is possible.[1] We approach the study of the error threshold problem by exploring ground states of this spin-glass with the Extremal Optimization algorithm (EO).[2] EO has proven to be a effective heuristic to explore ground state configurations of glassy spin-systems.[3
An extrapolation scheme for solid-state NMR chemical shift calculations
NASA Astrophysics Data System (ADS)
Nakajima, Takahito
2017-06-01
Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.
Experimental demonstration of graph-state quantum secret sharing.
Bell, B A; Markham, D; Herrera-Martí, D A; Marin, A; Wadsworth, W J; Rarity, J G; Tame, M S
2014-11-21
Quantum communication and computing offer many new opportunities for information processing in a connected world. Networks using quantum resources with tailor-made entanglement structures have been proposed for a variety of tasks, including distributing, sharing and processing information. Recently, a class of states known as graph states has emerged, providing versatile quantum resources for such networking tasks. Here we report an experimental demonstration of graph state-based quantum secret sharing--an important primitive for a quantum network with applications ranging from secure money transfer to multiparty quantum computation. We use an all-optical setup, encoding quantum information into photons representing a five-qubit graph state. We find that one can reliably encode, distribute and share quantum information amongst four parties, with various access structures based on the complex connectivity of the graph. Our results show that graph states are a promising approach for realising sophisticated multi-layered communication protocols in quantum networks.
Partially entangled states bridge in quantum teleportation
NASA Astrophysics Data System (ADS)
Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen
2014-10-01
The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.
Unbound states in quantum heterostructures
Bastard, G
2006-01-01
We report in this review on the electronic continuum states of semiconductor Quantum Wells and Quantum Dots and highlight the decisive part played by the virtual bound states in the optical properties of these structures. The two particles continuum states of Quantum Dots control the decoherence of the excited electron – hole states. The part played by Auger scattering in Quantum Dots is also discussed.
Local perturbations perturb—exponentially-locally
NASA Astrophysics Data System (ADS)
De Roeck, W.; Schütz, M.
2015-06-01
We elaborate on the principle that for gapped quantum spin systems with local interaction, "local perturbations [in the Hamiltonian] perturb locally [the groundstate]." This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835-871 (2012)], relying on the "spectral flow technique" or "quasi-adiabatic continuation" [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique "bulk ground state" or "topological quantum order." We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.
Uncertainty relations with quantum memory for the Wehrl entropy
NASA Astrophysics Data System (ADS)
De Palma, Giacomo
2018-03-01
We prove two new fundamental uncertainty relations with quantum memory for the Wehrl entropy. The first relation applies to the bipartite memory scenario. It determines the minimum conditional Wehrl entropy among all the quantum states with a given conditional von Neumann entropy and proves that this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The second relation applies to the tripartite memory scenario. It determines the minimum of the sum of the Wehrl entropy of a quantum state conditioned on the first memory quantum system with the Wehrl entropy of the same state conditioned on the second memory quantum system and proves that also this minimum is asymptotically achieved by a suitable sequence of quantum Gaussian states. The Wehrl entropy of a quantum state is the Shannon differential entropy of the outcome of a heterodyne measurement performed on the state. The heterodyne measurement is one of the main measurements in quantum optics and lies at the basis of one of the most promising protocols for quantum key distribution. These fundamental entropic uncertainty relations will be a valuable tool in quantum information and will, for example, find application in security proofs of quantum key distribution protocols in the asymptotic regime and in entanglement witnessing in quantum optics.
Enhancement of low-temperature thermometry by strong coupling
NASA Astrophysics Data System (ADS)
Correa, Luis A.; Perarnau-Llobet, Martí; Hovhannisyan, Karen V.; Hernández-Santana, Senaida; Mehboudi, Mohammad; Sanpera, Anna
2017-12-01
We consider the problem of estimating the temperature T of a very cold equilibrium sample. The temperature estimates are drawn from measurements performed on a quantum Brownian probe strongly coupled to it. We model this scenario by resorting to the canonical Caldeira-Leggett Hamiltonian and find analytically the exact stationary state of the probe for arbitrary coupling strength. In general, the probe does not reach thermal equilibrium with the sample, due to their nonperturbative interaction. We argue that this is advantageous for low-temperature thermometry, as we show in our model that (i) the thermometric precision at low T can be significantly enhanced by strengthening the probe-sampling coupling, (ii) the variance of a suitable quadrature of our Brownian thermometer can yield temperature estimates with nearly minimal statistical uncertainty, and (iii) the spectral density of the probe-sample coupling may be engineered to further improve thermometric performance. These observations may find applications in practical nanoscale thermometry at low temperatures—a regime which is particularly relevant to quantum technologies.
Quantum State Tomography via Reduced Density Matrices.
Xin, Tao; Lu, Dawei; Klassen, Joel; Yu, Nengkun; Ji, Zhengfeng; Chen, Jianxin; Ma, Xian; Long, Guilu; Zeng, Bei; Laflamme, Raymond
2017-01-13
Quantum state tomography via local measurements is an efficient tool for characterizing quantum states. However, it requires that the original global state be uniquely determined (UD) by its local reduced density matrices (RDMs). In this work, we demonstrate for the first time a class of states that are UD by their RDMs under the assumption that the global state is pure, but fail to be UD in the absence of that assumption. This discovery allows us to classify quantum states according to their UD properties, with the requirement that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally, we experimentally test the feasibility and stability of performing quantum state tomography via the measurement of local RDMs for each class. These theoretical and experimental results demonstrate the advantages and possible pitfalls of quantum state tomography with local measurements.
Nuclear quantum effects on adsorption of H 2 and isotopologues on metal ions
Savchenko, Ievgeniia; Gu, Bing; Heine, Thomas; ...
2017-01-03
The nuclear quantum effects on the zero-point energy (ZPE), influencing adsorption of Hmore » $$_2$$ and isotopologues on metal ions, are examined in this study using normal mode analysis of ab initio electronic structure results for complexes with 17 metal cations. To estimate for the anharmonicity, a nuclear wavepacket dynamics on the ground state electronic potential energy surfaces (PES) have been employed for complexes of Li$^+$ and Cu$$^{+2}$$ with H$$_2$$, D$$_2$$, HD. The dynamics analysis shows that incorporation of the PES anharmonicity changes the ZPE by up to 9%. Finally, the lightest metallic nuclei, Li and Be, are found to be the most 'quantum'. The largest selectivity in adsorption is predicted for Cu, Ni and Co ions.« less
Phonon-based scalable platform for chip-scale quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinke, Charles M.; El-Kady, Ihab
Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton,more » may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.« less
Phonon-based scalable platform for chip-scale quantum computing
Reinke, Charles M.; El-Kady, Ihab
2016-12-19
Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton,more » may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.« less
Quantum-chemical investigations of spectroscopic properties of a fluorescence probe
NASA Astrophysics Data System (ADS)
Titova, T. Yu.; Morozova, Yu. P.; Zharkova, O. M.; Artyukhov, V. Ya.; Korolev, B. V.
2012-09-01
The prodan molecule (6-propionyl-2-dimethylamino naphthalene) - fluorescence probe - is investigated by quantum-chemical methods of intermediate neglect of differential overlap (INDO) and molecular electrostatic potential (MEP). The dipole moments of the ground and excited states, the nature and position of energy levels, the centers of specific solvation, the rate constants of photoprocesses, and the fluorescence quantum yield are estimated. To elucidate the role of the dimethylamino group in the formation of bands and spectral characteristics, the molecule only with the propionyl group (pron) is investigated. The long-wavelength absorption bands of prodan and pron molecules are interpreted. The results obtained for the prodan molecule by the INDO method with original spectroscopic parameterization are compared with the literature data obtained by the DFT/CIS, ZINDO/S, and AM1/CISD methods.
NASA Astrophysics Data System (ADS)
Percival, Ian
2005-10-01
1. Introduction; 2. Brownian motion and Itô calculus; 3. Open quantum systems; 4. Quantum state diffusion; 5. Localisation; 6. Numerical methods and examples; 7. Quantum foundations; 8. Primary state diffusion; 9. Classical dynamics of quantum localisation; 10. Semiclassical theory and linear dynamics.
Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monras, Alex; Illuminati, Fabrizio
2011-01-15
We present a comprehensive analysis of the performance of different classes of Gaussian states in the estimation of Gaussian phase-insensitive dissipative channels. In particular, we investigate the optimal estimation of the damping constant and reservoir temperature. We show that, for two-mode squeezed vacuum probe states, the quantum-limited accuracy of both parameters can be achieved simultaneously. Moreover, we show that for both parameters two-mode squeezed vacuum states are more efficient than coherent, thermal, or single-mode squeezed states. This suggests that at high-energy regimes, two-mode squeezed vacuum states are optimal within the Gaussian setup. This optimality result indicates a stronger form ofmore » compatibility for the estimation of the two parameters. Indeed, not only the minimum variance can be achieved at fixed probe states, but also the optimal state is common to both parameters. Additionally, we explore numerically the performance of non-Gaussian states for particular parameter values to find that maximally entangled states within d-dimensional cutoff subspaces (d{<=}6) perform better than any randomly sampled states with similar energy. However, we also find that states with very similar performance and energy exist with much less entanglement than the maximally entangled ones.« less
NASA Astrophysics Data System (ADS)
Sisodia, Mitali; Shukla, Abhishek; Thapliyal, Kishore; Pathak, Anirban
2017-12-01
An explicit scheme (quantum circuit) is designed for the teleportation of an n-qubit quantum state. It is established that the proposed scheme requires an optimal amount of quantum resources, whereas larger amount of quantum resources have been used in a large number of recently reported teleportation schemes for the quantum states which can be viewed as special cases of the general n-qubit state considered here. A trade-off between our knowledge about the quantum state to be teleported and the amount of quantum resources required for the same is observed. A proof-of-principle experimental realization of the proposed scheme (for a 2-qubit state) is also performed using 5-qubit superconductivity-based IBM quantum computer. The experimental results show that the state has been teleported with high fidelity. Relevance of the proposed teleportation scheme has also been discussed in the context of controlled, bidirectional, and bidirectional controlled state teleportation.
Faithful conditional quantum state transfer between weakly coupled qubits
NASA Astrophysics Data System (ADS)
Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.
2016-08-01
One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.
NASA Astrophysics Data System (ADS)
Kirby, Brian
Macroscopic quantum effects are of fundamental interest because they help us to understand the quantum-classical boundary, and may also have important practical applications in long-range quantum communications. Specifically we analyze a macroscopic generalization of the Franson interferometer, where violations of Bell's inequality can be observed using phase entangled coherent states created using weak nonlinearities. Furthermore we want to understand how these states, and other macroscopic quantum states, can be applied to secure quantum communications. We find that Bell's inequality can be violated at ranges of roughly 400 km in optical fiber when various unambiguous state discrimination techniques are applied. In addition Monte Carlo simulations suggest that quantum communications schemes based on macroscopic quantum states and random unitary transformations can be potentially secure at long distances. Lastly, we calculate the feasibility of creating the weak nonlinearity needed for the experimental realization of these proposals using metastable xenon in a high finesse cavity. This research suggests that quantum states created using macroscopic coherent states and weak nonlinearities may be a realistic path towards the realization of secure long-range quantum communications.
Identification of open quantum systems from observable time traces
Zhang, Jun; Sarovar, Mohan
2015-05-27
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.
NASA Technical Reports Server (NTRS)
Yuen, H. P.; Shapiro, J. H.
1978-01-01
To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.
On-chip generation of high-dimensional entangled quantum states and their coherent control
NASA Astrophysics Data System (ADS)
Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2017-06-01
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
On-chip generation of high-dimensional entangled quantum states and their coherent control.
Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2017-06-28
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
Quantum state engineering in hybrid open quantum systems
NASA Astrophysics Data System (ADS)
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Quantum amplification and quantum optical tapping with squeezed states and correlated quantum states
NASA Technical Reports Server (NTRS)
Ou, Z. Y.; Pereira, S. F.; Kimble, H. J.
1994-01-01
Quantum fluctuations in a nondegenerate optical parametric amplifier (NOPA) are investigated experimentally with a squeezed state coupled into the internal idler mode of the NOPA. Reductions of the inherent quantum noise of the amplifier are observed with a minimum noise level 0.7 dB below the usual noise level of the amplifier with its idler mode in a vacuum state. With two correlated quantum fields as the amplifier's inputs and proper adjustment of the gain of the amplifier, it is shown that the amplifier's intrinsic quantum noise can be completely suppressed so that noise-free amplification is achieved. It is also shown that the NOPA, when coupled to either a squeezed state or a nonclassically correlated state, can realize quantum tapping of optical information.
Teki, Yoshio; Matsumoto, Takafumi
2011-04-07
The mechanism of the unique dynamic electron polarization of the quartet (S = 3/2) high-spin state via a doublet-quartet quantum-mixed state and detail theoretical calculations of the population transfer are reported. By the photo-induced electron transfer, the quantum-mixed charge-separate state is generated in acceptor-donor-radical triad (A-D-R). This mechanism explains well the unique dynamic electron polarization of the quartet state of A-D-R. The generation of the selectively populated quantum-mixed state and its transfer to the strongly coupled pure quartet and doublet states have been treated both by a perturbation approach and by exact numerical calculations. The analytical solutions show that generation of the quantum-mixed states with the selective populations after de-coherence and/or accompanying the (complete) dephasing during the charge-recombination are essential for the unique dynamic electron polarization. Thus, the elimination of the quantum coherence (loss of the quantum information) is the key process for the population transfer from the quantum-mixed state to the quartet state. The generation of high-field polarization on the strongly coupled quartet state by the charge-recombination process can be explained by a polarization transfer from the quantum-mixed charge-separate state. Typical time-resolved ESR patterns of the quantum-mixed state and of the strongly coupled quartet state are simulated based on the generation mechanism of the dynamic electron polarization. The dependence of the spectral pattern of the quartet high-spin state has been clarified for the fine-structure tensor and the exchange interaction of the quantum-mixed state. The spectral pattern of the quartet state is not sensitive towards the fine-structure tensor of the quantum-mixed state, because this tensor contributes only as a perturbation in the population transfer to the spin-sublevels of the quartet state. Based on the stochastic Liouville equation, it is also discussed why the selective population in the quantum-mixed state is generated for the "finite field" spin-sublevels. The numerical calculations of the elimination of the quantum coherence (de-coherence and/or dephasing) are demonstrated. A new possibility of the enhanced intersystem crossing pathway in solution is also proposed.
The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity
NASA Astrophysics Data System (ADS)
Veselkova, N. G.; Sokolov, I. V.
2017-07-01
Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.
Memory-built-in quantum cloning in a hybrid solid-state spin register
NASA Astrophysics Data System (ADS)
Wang, Weibin; Zu, Chong; He, Li; Zhang, Wengang; Duan, Luming
2015-05-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude, and making it an ideal memory qubit. Our experiment is based on control of an individual nitrogen vacancy (NV) center in the diamond, which is a diamond defect that attracts strong interest in recent years with great potential for implementation of quantum information protocols.
Heat control in opto-mechanical system using quantum non-classicality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sushamana, E-mail: sushmana.sharma@jietjodhpur.ac.in; Senwar, Subash, E-mail: subashsenwar30@gmail.com
2016-05-06
Cooling of matter to the quantum ground state is a primary directive of quantum control. In other words, to extract entropy from a quantum system, efficient indirect quantum measurements may be implemented. The main objective is the cooling of the oscillator either to its motional ground state or to non-classical states, such as low-number Fock states, squeezed states or entangled states. It is shown that the use of quantum control procedure is better choice for even experimental realizations because it leads to a squeezed steady state with less than one phonon on average. The steady state of system corresponds tomore » cooling of the system.« less
Yi, Jing; Xiong, Ying; Cheng, Kemei; Li, Menglong; Chu, Genbai; Pu, Xuemei; Xu, Tao
2016-01-01
A combination of the advanced chemometrics method with quantum mechanics calculation was for the first time applied to explore a facile yet efficient analysis strategy to thoroughly resolve femtosecond transient absorption spectroscopy of ortho-nitroaniline (ONA), served as a model compound of important nitroaromatics and explosives. The result revealed that the ONA molecule is primarily excited to S3 excited state from the ground state and then ultrafast relaxes to S2 state. The internal conversion from S2 to S1 occurs within 0.9 ps. One intermediate state S* was identified in the intersystem crossing (ISC) process, which is different from the specific upper triplet receiver state proposed in some other nitroaromatics systems. The S1 state decays to the S* one within 6.4 ps and then intersystem crossing to the lowest triplet state within 19.6 ps. T1 was estimated to have a lifetime up to 2 ns. The relatively long S* state and very long-lived T1 one should play a vital role as precursors to various nitroaromatic and explosive photoproducts. PMID:26781083
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Miranowicz, Adam
2012-02-01
We study state-dependent quantum cloning that can outperform universal cloning (UC). This is possible by using some a priori information on a given quantum state to be cloned. Specifically, we propose a generalization and optical implementation of quantum optimal mirror phase-covariant cloning, which refers to optimal cloning of sets of qubits of known modulus of the expectation value of Pauli's Z operator. Our results can be applied to cloning of an arbitrary mirror-symmetric distribution of qubits on the Bloch sphere including in special cases UC and phase-covariant cloning. We show that the cloning is optimal by adapting our former optimality proof for axisymmetric cloning (Bartkiewicz and Miranowicz 2010 Phys. Rev. A 82 042330). Moreover, we propose an optical realization of the optimal mirror phase-covariant 1→2 cloning of a qubit, for which the mean probability of successful cloning varies from 1/6 to 1/3 depending on prior information on the set of qubits to be cloned. The qubits are represented by polarization states of photons generated by the type-I spontaneous parametric down-conversion. The scheme is based on the interference of two photons on an unbalanced polarization-dependent beam splitter with different splitting ratios for vertical and horizontal polarization components and the additional application of feedforward by means of Pockels cells. The experimental feasibility of the proposed setup is carefully studied including various kinds of imperfections and losses. Moreover, we briefly describe two possible cryptographic applications of the optimal mirror phase-covariant cloning corresponding to state discrimination (or estimation) and secure quantum teleportation.
Lamb Shift of n = 1 and n = 2 States of Hydrogen-like Atoms, 1 ≤ Z ≤ 110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yerokhin, V. A.; Shabaev, V. M.
2015-09-15
Theoretical energy levels of the n = 1 and n = 2 states of hydrogen-like atoms with the nuclear charge numbers 1 ≤ Z ≤ 110 are tabulated. The tabulation is based on ab initio quantum electrodynamics calculations performed to all orders in the nuclear binding strength parameter Zα, where α is the fine structure constant. Theoretical errors due to various effects are critically examined and estimated.
Leghtas, Z; Touzard, S; Pop, I M; Kou, A; Vlastakis, B; Petrenko, A; Sliwa, K M; Narla, A; Shankar, S; Hatridge, M J; Reagor, M; Frunzio, L; Schoelkopf, R J; Mirrahimi, M; Devoret, M H
2015-02-20
Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrödinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information in multidimensional steady-state manifolds. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Daoud, M.; Ahl Laamara, R.
2012-07-01
We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl-Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger-Horne-Zeilinger states.
Vanner, M. R.; Pikovski, I.; Cole, G. D.; Kim, M. S.; Brukner, Č.; Hammerer, K.; Milburn, G. J.; Aspelmeyer, M.
2011-01-01
Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing, and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions. PMID:21900608
Quantum speedup of Monte Carlo methods.
Montanaro, Ashley
2015-09-08
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.
Quantum speedup of Monte Carlo methods
Montanaro, Ashley
2015-01-01
Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. PMID:26528079
NASA Astrophysics Data System (ADS)
Rangani Jahromi, Hossein
2017-08-01
We address in detail the process of parameter estimation for an n-qubit system dissipating into a cavity in which the qubits are coupled to the single-mode cavity field via coupling constant g which should be estimated. In addition, the cavity field interacts with an external field considered as a set of continuum harmonic oscillators. We analyse the behaviour of the quantum Fisher information (QFI) for both weak and strong coupling regimes. In particular, we show that in strong coupling regime, the memory effects are dominant, leading to an oscillatory variation in the dynamics of the QFI and consequently information flowing from the environment to the quantum system. We show that when the number of the qubits or the coupling strength rises, the oscillations, signs of non-Markovian evolution of the QFI, increase. This indicates that in the strong-coupling regime, increasing the size of the system or the coupling strength remarkably enhances the reversed flow of information. Moreover, we find that it is possible to retard the QFI loss during the time evolution and therefore enhance the estimation of the parameter using a cavity with a larger decay rate factor. Furthermore, analysing the dynamics of the QFI and negativity of the probe state, we reveal a close relationship between the entanglement of probes and their capability for estimating the parameter. It is shown that in order to perform a better estimation of the parameter, we should avoid measuring when the entanglement between the probes is maximized.
Large quantum rings in the ν > 1 quantum Hall regime.
Räsänen, E; Aichinger, M
2009-01-14
We study computationally the ground-state properties of large quantum rings in the filling-factor ν>1 quantum Hall regime. We show that the arrangement of electrons into different Landau levels leads to clear signatures in the total energies as a function of the magnetic field. In this context, we discuss possible approximations for the filling factor ν in the system. We are able to characterize integer-ν states in quantum rings in an analogy with conventional quantum Hall droplets. We also find a partially spin-polarized state between ν = 2 and 3. Despite the specific topology of a quantum ring, this state is strikingly reminiscent of the recently found ν = 5/2 state in a quantum dot.
Deterministic generation of remote entanglement with active quantum feedback
Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...
2015-12-10
We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less
NASA Astrophysics Data System (ADS)
Hosseini, Mahdi
Our ability to engineer quantum states of light and matter has significantly advanced over the past two decades, resulting in the production of both Gaussian and non-Gaussian optical states. The resulting tailored quantum states enable quantum technologies such as quantum optical communication, quantum sensing as well as quantum photonic computation. The strong nonlinear light-atom interaction is the key to deterministic quantum state preparation and quantum photonic processing. One route to enhancing the usually weak nonlinear light-atom interactions is to approach the regime of cavity quantum electrodynamics (cQED) interaction by means of high finesse optical resonators. I present results from the MIT experiment of large conditional cross-phase modulation between a signal photon, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. I also present a scheme to probabilistically change the amplitude and phase of a signal photon qubit to, in principle, arbitrary values by postselection on a control photon that has interacted with that state. Notably, small changes of the control photon polarization measurement basis by few degrees can substantially change the amplitude and phase of the signal state. Finally, I present our ongoing effort at Purdue to realize similar peculiar quantum phenomena at the single photon level on chip scale photonic systems.
Making the most of time in quantum metrology: concurrent state preparation and sensing
NASA Astrophysics Data System (ADS)
Hayes, Anthony J.; Dooley, Shane; Munro, William J.; Nemoto, Kae; Dunningham, Jacob
2018-07-01
A quantum metrology protocol for parameter estimation is typically comprised of three stages: probe state preparation, sensing and then readout, where the time required for the first and last stages is usually neglected. In the present work we consider non-negligible state preparation and readout times, and the tradeoffs in sensitivity that come when a limited time resource τ must be divided between the three stages. To investigate this, we focus on the problem of magnetic field sensing with spins in one-axis twisted or two-axis twisted states. We find that (accounting for the time necessary to prepare a twisted state) no advantage is gained unless the time τ is sufficiently long or the twisting sufficiently strong. However, we also find that the limited time resource is used more effectively if we allow the twisting and the magnetic field to be applied concurrently, which possibly represents a more realistic sensing scenario. We extend this result into an optical setting by utilising the exact correspondence between a spin system and a bosonic field mode as given by the Holstein–Primakoff transformation.
Quantum limits to gravity estimation with optomechanics
NASA Astrophysics Data System (ADS)
Armata, F.; Latmiral, L.; Plato, A. D. K.; Kim, M. S.
2017-10-01
We present a table-top quantum estimation protocol to measure the gravitational acceleration g by using an optomechanical cavity. In particular, we exploit the nonlinear quantum light-matter interaction between an optical field and a massive mirror acting as mechanical oscillator. The gravitational field influences the system dynamics affecting the phase of the cavity field during the interaction. Reading out such a phase carried by the radiation leaking from the cavity, we provide an estimate of the gravitational acceleration through interference measurements. Contrary to previous studies, having adopted a fully quantum description, we are able to propose a quantum analysis proving the ultimate bound to the estimability of the gravitational acceleration and verifying optimality of homodyne detection. Noticeably, thanks to the light-matter decoupling at the measurement time, no initial cooling of the mechanical oscillator is demanded in principle.
Synthetic clock states generated in a Bose-Einstein condensate via continuous dynamical decoupling
NASA Astrophysics Data System (ADS)
Lundblad, Nathan; Trypogeorgos, Dimitrios; Valdes-Curiel, Ana; Marshall, Erin; Spielman, Ian
2017-04-01
Radiofrequency- or microwave-dressed states have been used in NV center and ion-trap experiments to extend coherence times, shielding qubits from magnetic field noise through a process known as continuous dynamical decoupling. Such field-insensitive dressed states, as applied in the context of ultracold neutral atoms, have applications related to the creation of novel phases of spin-orbit-coupled quantum matter. We present observations of such a protected dressed-state system in a Bose-Einstein condensate, including measurements of the dependence of the protection on rf coupling strength, and estimates of residual field sensitivities.
Masking Quantum Information is Impossible
NASA Astrophysics Data System (ADS)
Modi, Kavan; Pati, Arun Kumar; SenDe, Aditi; Sen, Ujjwal
2018-06-01
Classical information encoded in composite quantum states can be completely hidden from the reduced subsystems and may be found only in the correlations. Can the same be true for quantum information? If quantum information is hidden from subsystems and spread over quantum correlation, we call it masking of quantum information. We show that while this may still be true for some restricted sets of nonorthogonal quantum states, it is not possible for arbitrary quantum states. This result suggests that quantum qubit commitment—a stronger version of the quantum bit commitment—is not possible in general. Our findings may have potential applications in secret sharing and future quantum communication protocols.
Metric on the space of quantum states from relative entropy. Tomographic reconstruction
NASA Astrophysics Data System (ADS)
Man'ko, Vladimir I.; Marmo, Giuseppe; Ventriglia, Franco; Vitale, Patrizia
2017-08-01
In the framework of quantum information geometry, we derive, from quantum relative Tsallis entropy, a family of quantum metrics on the space of full rank, N level quantum states, by means of a suitably defined coordinate free differential calculus. The cases N=2, N=3 are discussed in detail and notable limits are analyzed. The radial limit procedure has been used to recover quantum metrics for lower rank states, such as pure states. By using the tomographic picture of quantum mechanics we have obtained the Fisher-Rao metric for the space of quantum tomograms and derived a reconstruction formula of the quantum metric of density states out of the tomographic one. A new inequality obtained for probabilities of three spin-1/2 projections in three perpendicular directions is proposed to be checked in experiments with superconducting circuits.
Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload
NASA Astrophysics Data System (ADS)
Qu, Zhiguo; Chen, Siyi; Ji, Sai; Ma, Songya; Wang, Xiaojun
2018-06-01
An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.
Anti-Noise Bidirectional Quantum Steganography Protocol with Large Payload
NASA Astrophysics Data System (ADS)
Qu, Zhiguo; Chen, Siyi; Ji, Sai; Ma, Songya; Wang, Xiaojun
2018-03-01
An anti-noise bidirectional quantum steganography protocol with large payload protocol is proposed in this paper. In the new protocol, Alice and Bob enable to transmit classical information bits to each other while teleporting secret quantum states covertly. The new protocol introduces the bidirectional quantum remote state preparation into the bidirectional quantum secure communication, not only to expand secret information from classical bits to quantum state, but also extract the phase and amplitude values of secret quantum state for greatly enlarging the capacity of secret information. The new protocol can also achieve better imperceptibility, since the eavesdropper can hardly detect the hidden channel or even obtain effective secret quantum states. Comparing with the previous quantum steganography achievements, due to its unique bidirectional quantum steganography, the new protocol can obtain higher transmission efficiency and better availability. Furthermore, the new algorithm can effectively resist quantum noises through theoretical analysis. Finally, the performance analysis proves the conclusion that the new protocol not only has good imperceptibility, high security, but also large payload.
Quantum correlations for bipartite continuous-variable systems
NASA Astrophysics Data System (ADS)
Ma, Ruifen; Hou, Jinchuan; Qi, Xiaofei; Wang, Yangyang
2018-04-01
Two quantum correlations Q and Q_P for (m+n)-mode continuous-variable systems are introduced in terms of average distance between the reduced states under the local Gaussian positive operator-valued measurements, and analytical formulas of these quantum correlations for bipartite Gaussian states are provided. It is shown that the product states do not contain these quantum correlations, and conversely, all (m+n)-mode Gaussian states with zero quantum correlations are product states. Generally, Q≥ Q_{P}, but for the symmetric two-mode squeezed thermal states, these quantum correlations are the same and a computable formula is given. In addition, Q is compared with Gaussian geometric discord for symmetric squeezed thermal states.
Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states
NASA Astrophysics Data System (ADS)
Girolami, Davide; Paternostro, Mauro; Adesso, Gerardo
2011-09-01
The state disturbance induced by locally measuring a quantum system yields a signature of nonclassical correlations beyond entanglement. Here, we present a detailed study of such correlations for two-qubit mixed states. To overcome the asymmetry of quantum discord and the unfaithfulness of measurement-induced disturbance (severely overestimating quantum correlations), we propose an ameliorated measurement-induced disturbance as nonclassicality indicator, optimized over joint local measurements, and we derive its closed expression for relevant two-qubit states. We study its analytical relation with discord, and characterize the maximally quantum-correlated mixed states, that simultaneously extremize both quantifiers at given von Neumann entropy: among all two-qubit states, these states possess the most robust quantum correlations against noise.
Fast reconstruction of high-qubit-number quantum states via low-rate measurements
NASA Astrophysics Data System (ADS)
Li, K.; Zhang, J.; Cong, S.
2017-07-01
Due to the exponential complexity of the resources required by quantum state tomography (QST), people are interested in approaches towards identifying quantum states which require less effort and time. In this paper, we provide a tailored and efficient method for reconstructing mixed quantum states up to 12 (or even more) qubits from an incomplete set of observables subject to noises. Our method is applicable to any pure or nearly pure state ρ and can be extended to many states of interest in quantum information processing, such as a multiparticle entangled W state, Greenberger-Horne-Zeilinger states, and cluster states that are matrix product operators of low dimensions. The method applies the quantum density matrix constraints to a quantum compressive sensing optimization problem and exploits a modified quantum alternating direction multiplier method (quantum-ADMM) to accelerate the convergence. Our algorithm takes 8 ,35 , and 226 seconds, respectively, to reconstruct superposition state density matrices of 10 ,11 ,and12 qubits with acceptable fidelity using less than 1 % of measurements of expectation. To our knowledge it is the fastest realization that people can achieve using a normal desktop. We further discuss applications of this method using experimental data of mixed states obtained in an ion trap experiment of up to 8 qubits.
Advantages of Unfair Quantum Ground-State Sampling.
Zhang, Brian Hu; Wagenbreth, Gene; Martin-Mayor, Victor; Hen, Itay
2017-04-21
The debate around the potential superiority of quantum annealers over their classical counterparts has been ongoing since the inception of the field. Recent technological breakthroughs, which have led to the manufacture of experimental prototypes of quantum annealing optimizers with sizes approaching the practical regime, have reignited this discussion. However, the demonstration of quantum annealing speedups remains to this day an elusive albeit coveted goal. We examine the power of quantum annealers to provide a different type of quantum enhancement of practical relevance, namely, their ability to serve as useful samplers from the ground-state manifolds of combinatorial optimization problems. We study, both numerically by simulating stoquastic and non-stoquastic quantum annealing processes, and experimentally, using a prototypical quantum annealing processor, the ability of quantum annealers to sample the ground-states of spin glasses differently than thermal samplers. We demonstrate that (i) quantum annealers sample the ground-state manifolds of spin glasses very differently than thermal optimizers (ii) the nature of the quantum fluctuations driving the annealing process has a decisive effect on the final distribution, and (iii) the experimental quantum annealer samples ground-state manifolds significantly differently than thermal and ideal quantum annealers. We illustrate how quantum annealers may serve as powerful tools when complementing standard sampling algorithms.
Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.
Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R
2014-08-01
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.
Robust Characterization of Loss Rates
NASA Astrophysics Data System (ADS)
Wallman, Joel J.; Barnhill, Marie; Emerson, Joseph
2015-08-01
Many physical implementations of qubits—including ion traps, optical lattices and linear optics—suffer from loss. A nonzero probability of irretrievably losing a qubit can be a substantial obstacle to fault-tolerant methods of processing quantum information, requiring new techniques to safeguard against loss that introduce an additional overhead that depends upon the loss rate. Here we present a scalable and platform-independent protocol for estimating the average loss rate (averaged over all input states) resulting from an arbitrary Markovian noise process, as well as an independent estimate of detector efficiency. Moreover, we show that our protocol gives an additional constraint on estimated parameters from randomized benchmarking that improves the reliability of the estimated error rate and provides a new indicator for non-Markovian signatures in the experimental data. We also derive a bound for the state-dependent loss rate in terms of the average loss rate.
A solid state source of photon triplets based on quantum dot molecules
Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed
2017-01-01
Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705
Homodyning and heterodyning the quantum phase
NASA Technical Reports Server (NTRS)
Dariano, Giacomo M.; Macchiavello, C.; Paris, M. G. A.
1994-01-01
The double-homodyne and the heterodyne detection schemes for phase shifts between two synchronous modes of the electromagnetic field are analyzed in the framework of quantum estimation theory. The probability operator-valued measures (POM's) of the detectors are evaluated and compared with the ideal one in the limit of strong local reference oscillator. The present operational approach leads to a reasonable definition of phase measurement, whose sensitivity is actually related to the output r.m.s. noise of the photodetector. We emphasize that the simple-homodyne scheme does not correspond to a proper phase-shift measurements as it is just a zero-point detector. The sensitivity of all detection schemes are optimized at fixed energy with respect to the input state of radiation. It is shown that the optimal sensitivity can be actually achieved using suited squeezed states.
Wang, Qin; Zhou, Xing-Yu; Guo, Guang-Can
2016-01-01
In this paper, we put forward a new approach towards realizing measurement-device-independent quantum key distribution with passive heralded single-photon sources. In this approach, both Alice and Bob prepare the parametric down-conversion source, where the heralding photons are labeled according to different types of clicks from the local detectors, and the heralded ones can correspondingly be marked with different tags at the receiver’s side. Then one can obtain four sets of data through using only one-intensity of pump light by observing different kinds of clicks of local detectors. By employing the newest formulae to do parameter estimation, we could achieve very precise prediction for the two-single-photon pulse contribution. Furthermore, by carrying out corresponding numerical simulations, we compare the new method with other practical schemes of measurement-device-independent quantum key distribution. We demonstrate that our new proposed passive scheme can exhibit remarkable improvement over the conventional three-intensity decoy-state measurement-device-independent quantum key distribution with either heralded single-photon sources or weak coherent sources. Besides, it does not need intensity modulation and can thus diminish source-error defects existing in several other active decoy-state methods. Therefore, if taking intensity modulating errors into account, our new method will show even more brilliant performance. PMID:27759085
Sequential quantum cloning under real-life conditions
NASA Astrophysics Data System (ADS)
Saberi, Hamed; Mardoukhi, Yousof
2012-05-01
We consider a sequential implementation of the optimal quantum cloning machine of Gisin and Massar and propose optimization protocols for experimental realization of such a quantum cloner subject to the real-life restrictions. We demonstrate how exploiting the matrix-product state (MPS) formalism and the ensuing variational optimization techniques reveals the intriguing algebraic structure of the Gisin-Massar output of the cloning procedure and brings about significant improvements to the optimality of the sequential cloning prescription of Delgado [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.98.150502 98, 150502 (2007)]. Our numerical results show that the orthodox paradigm of optimal quantum cloning can in practice be realized in a much more economical manner by utilizing a considerably lesser amount of informational and numerical resources than hitherto estimated. Instead of the previously predicted linear scaling of the required ancilla dimension D with the number of qubits n, our recipe allows a realization of such a sequential cloning setup with an experimentally manageable ancilla of dimension at most D=3 up to n=15 qubits. We also address satisfactorily the possibility of providing an optimal range of sequential ancilla-qubit interactions for optimal cloning of arbitrary states under realistic experimental circumstances when only a restricted class of such bipartite interactions can be engineered in practice.
Quantum Theories of Self-Localization
NASA Astrophysics Data System (ADS)
Bernstein, Lisa Joan
In the classical dynamics of coupled oscillator systems, nonlinearity leads to the existence of stable solutions in which energy remains localized for all time. Here the quantum-mechanical counterpart of classical self-localization is investigated in the context of two model systems. For these quantum models, the terms corresponding to classical nonlinearities modify a subset of the stationary quantum states to be particularly suited to the creation of nonstationary wavepackets that localize energy for long times. The first model considered here is the Quantized Discrete Self-Trapping model (QDST), a system of anharmonic oscillators with linear dispersive coupling used to model local modes of vibration in polyatomic molecules. A simple formula is derived for a particular symmetry class of QDST systems which gives an analytic connection between quantum self-localization and classical local modes. This formula is also shown to be useful in the interpretation of the vibrational spectra of some molecules. The second model studied is the Frohlich/Einstein Dimer (FED), a two-site system of anharmonically coupled oscillators based on the Frohlich Hamiltonian and motivated by the theory of Davydov solitons in biological protein. The Born-Oppenheimer perturbation method is used to obtain approximate stationary state wavefunctions with error estimates for the FED at the first excited level. A second approach is used to reduce the first excited level FED eigenvalue problem to a system of ordinary differential equations. A simple theory of low-energy self-localization in the FED is discussed. The quantum theories of self-localization in the intrinsic QDST model and the extrinsic FED model are compared.
The operations of quantum logic gates with pure and mixed initial states.
Chen, Jun-Liang; Li, Che-Ming; Hwang, Chi-Chuan; Ho, Yi-Hui
2011-04-07
The implementations of quantum logic gates realized by the rovibrational states of a C(12)O(16) molecule in the X((1)Σ(+)) electronic ground state are investigated. Optimal laser fields are obtained by using the modified multitarget optimal theory (MTOCT) which combines the maxima of the cost functional and the fidelity for state and quantum process. The projection operator technique together with modified MTOCT is used to get optimal laser fields. If initial states of the quantum gate are pure states, states at target time approach well to ideal target states. However, if the initial states are mixed states, the target states do not approach well to ideal ones. The process fidelity is introduced to investigate the reliability of the quantum gate operation driven by the optimal laser field. We found that the quantum gates operate reliably whether the initial states are pure or mixed.
ψ-Epistemic Models are Exponentially Bad at Explaining the Distinguishability of Quantum States
NASA Astrophysics Data System (ADS)
Leifer, M. S.
2014-04-01
The status of the quantum state is perhaps the most controversial issue in the foundations of quantum theory. Is it an epistemic state (state of knowledge) or an ontic state (state of reality)? In realist models of quantum theory, the epistemic view asserts that nonorthogonal quantum states correspond to overlapping probability measures over the true ontic states. This naturally accounts for a large number of otherwise puzzling quantum phenomena. For example, the indistinguishability of nonorthogonal states is explained by the fact that the ontic state sometimes lies in the overlap region, in which case there is nothing in reality that could distinguish the two states. For this to work, the amount of overlap of the probability measures should be comparable to the indistinguishability of the quantum states. In this Letter, I exhibit a family of states for which the ratio of these two quantities must be ≤2de-cd in Hilbert spaces of dimension d that are divisible by 4. This implies that, for large Hilbert space dimension, the epistemic explanation of indistinguishability becomes implausible at an exponential rate as the Hilbert space dimension increases.
Comment on "Quantum Teleportation of Eight-Qubit State via Six-Qubit Cluster State"
NASA Astrophysics Data System (ADS)
Sisodia, Mitali; Pathak, Anirban
2018-04-01
Recently, Zhao et al. (Int. J. Theor. Phys. 57, 516-522 2018) have proposed a scheme for quantum teleportation of an eight-qubit quantum state using a six qubit cluster state. In this comment, it's shown that the quantum resource (multi-partite entangled state used as the quantum channel) used by Zhao et al., is excessively high and the task can be performed using any two Bell states as the task can be reduced to the teleportation of an arbitrary two qubit state. Further, a trivial conceptual mistake made by Zhao et al., in the description of the quantum channel has been pointed out. It's also mentioned that recently a trend of proposing teleportation schemes with excessively high quantum resources has been observed and the essence of this comment is applicable to all such proposals.
Role of Weak Measurements on States Ordering and Monogamy of Quantum Correlation
NASA Astrophysics Data System (ADS)
Hu, Ming-Liang; Fan, Heng; Tian, Dong-Ping
2015-01-01
The information-theoretic definition of quantum correlation, e.g., quantum discord, is measurement dependent. By considering the more general quantum measurements, weak measurements, which include the projective measurement as a limiting case, we show that while weak measurements can enable one to capture more quantumness of correlation in a state, it can also induce other counterintuitive quantum effects. Specifically, we show that the general measurements with different strengths can impose different orderings for quantum correlations of some states. It can also modify the monogamous character for certain classes of states as well which may diminish the usefulness of quantum correlation as a resource in some protocols. In this sense, we say that the weak measurements play a dual role in defining quantum correlation.
Measuring complete quantum states with a single observable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Xinhua; Suter, Dieter; Du Jiangfeng
2007-10-15
Experimental determination of an unknown quantum state usually requires several incompatible measurements. However, it is also possible to determine the full quantum state from a single, repeated measurement. For this purpose, the quantum system whose state is to be determined is first coupled to a second quantum system (the 'assistant') in such a way that part of the information in the quantum state is transferred to the assistant. The actual measurement is then performed on the enlarged system including the original system and the assistant. We discuss in detail the requirements of this procedure and experimentally implement it on amore » simple quantum system consisting of nuclear spins.« less
Observing single quantum trajectories of a superconducting quantum bit
NASA Astrophysics Data System (ADS)
Murch, K. W.; Weber, S. J.; Macklin, C.; Siddiqi, I.
2013-10-01
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture--a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a `quantum trajectory' determined by the measurement outcome. Here we use weak measurements to monitor a microwave cavity containing a superconducting quantum bit (qubit), and track the individual quantum trajectories of the system. In this set-up, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or the amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring, and validate the foundation of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new means of implementing `quantum steering'--the harnessing of action at a distance to manipulate quantum states through measurement.
Observing single quantum trajectories of a superconducting quantum bit.
Murch, K W; Weber, S J; Macklin, C; Siddiqi, I
2013-10-10
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluctuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture--a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a 'quantum trajectory' determined by the measurement outcome. Here we use weak measurements to monitor a microwave cavity containing a superconducting quantum bit (qubit), and track the individual quantum trajectories of the system. In this set-up, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or the amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring, and validate the foundation of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new means of implementing 'quantum steering'--the harnessing of action at a distance to manipulate quantum states through measurement.
Roughness as classicality indicator of a quantum state
NASA Astrophysics Data System (ADS)
Lemos, Humberto C. F.; Almeida, Alexandre C. L.; Amaral, Barbara; Oliveira, Adélcio C.
2018-03-01
We define a new quantifier of classicality for a quantum state, the Roughness, which is given by the L2 (R2) distance between Wigner and Husimi functions. We show that the Roughness is bounded and therefore it is a useful tool for comparison between different quantum states for single bosonic systems. The state classification via the Roughness is not binary, but rather it is continuous in the interval [ 0 , 1 ], being the state more classic as the Roughness approaches to zero, and more quantum when it is closer to the unity. The Roughness is maximum for Fock states when its number of photons is arbitrarily large, and also for squeezed states at the maximum compression limit. On the other hand, the Roughness approaches its minimum value for thermal states at infinite temperature and, more generally, for infinite entropy states. The Roughness of a coherent state is slightly below one half, so we may say that it is more a classical state than a quantum one. Another important result is that the Roughness performs well for discriminating both pure and mixed states. Since the Roughness measures the inherent quantumness of a state, we propose another function, the Dynamic Distance Measure (DDM), which is suitable for measure how much quantum is a dynamics. Using DDM, we studied the quartic oscillator, and we observed that there is a certain complementarity between dynamics and state, i.e. when dynamics becomes more quantum, the Roughness of the state decreases, while the Roughness grows as the dynamics becomes less quantum.
NASA Astrophysics Data System (ADS)
Yan, Xing-Yu; Gong, Li-Hua; Chen, Hua-Ying; Zhou, Nan-Run
2018-05-01
A theoretical quantum key distribution scheme based on random hybrid quantum channel with EPR pairs and GHZ states is devised. In this scheme, EPR pairs and tripartite GHZ states are exploited to set up random hybrid quantum channel. Only one photon in each entangled state is necessary to run forth and back in the channel. The security of the quantum key distribution scheme is guaranteed by more than one round of eavesdropping check procedures. It is of high capacity since one particle could carry more than two bits of information via quantum dense coding.
NASA Astrophysics Data System (ADS)
Zurek, Wojciech Hubert
2009-03-01
Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Experimental magic state distillation for fault-tolerant quantum computing.
Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond
2011-01-25
Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, T.; Markurt, T.; Albrecht, M.
2014-11-03
The recombination dynamics of In{sub x}Ga{sub 1−x}N single quantum wells are investigated. By comparing the photoluminescence (PL) decay spectra with simulated emission spectra obtained by a Schrödinger-Poisson approach, we give evidence that recombination from higher subbands contributes the emission of the quantum well at high excitation densities. This recombination path appears as a shoulder on the high energy side of the spectrum at high charge carrier densities and exhibits decay in the range of ps. Due to the lower confinement of the excited subband states, a distinct proportion of the probability density function lies outside the quantum well, thus contributingmore » to charge carrier loss. By estimating the current density in our time resolved PL experiments, we show that the onset of this loss mechanism occurs in the droop relevant regime above 20 A/cm{sup 2}.« less
Improving interferometers by quantum light: toward testing quantum gravity on an optical bench
NASA Astrophysics Data System (ADS)
Ruo-Berchera, Ivano; Degiovanni, Ivo P.; Olivares, Stefano; Traina, Paolo; Samantaray, Nigam; Genovese, M.
2016-09-01
We analyze in detail a system of two interferometers aimed at the detection of extremely faint phase fluctuations. The idea behind is that a correlated phase-signal like the one predicted by some phenomenological theory of Quantum Gravity (QG) could emerge by correlating the output ports of the interferometers, even when in the single interferometer it confounds with the background. We demonstrated that injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot-noise, enhancing the resolution in the phase-correlation estimation. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry, even in this correlated case. On the other hand, our results concerning the possible use of photon number entanglement in twin beam state pave the way to interesting and probably unexplored areas of application of bipartite entanglement and, in particular, the possibility of reaching surprising uncertainty reduction exploiting new interferometric configurations, as in the case of the system described here.
NASA Astrophysics Data System (ADS)
Smith, James F.
2017-11-01
With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.
Efficient continuous-variable state tomography using Padua points
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier; Govia, Luke C. G.; Clerk, Aashish A.
Further development of quantum technologies calls for efficient characterization methods for quantum systems. While recent work has focused on discrete systems of qubits, much remains to be done for continuous-variable systems such as a microwave mode in a cavity. We introduce a novel technique to reconstruct the full Husimi Q or Wigner function from measurements done at the Padua points in phase space, the optimal sampling points for interpolation in 2D. Our technique not only reduces the number of experimental measurements, but remarkably, also allows for the direct estimation of any density matrix element in the Fock basis, including off-diagonal elements. OLC acknowledges financial support from NSERC.
Robust transmission of non-Gaussian entanglement over optical fibers
NASA Astrophysics Data System (ADS)
Biswas, Asoka; Lidar, Daniel A.
2006-12-01
We show how the entanglement in a wide range of continuous variable non-Gaussian states can be preserved against decoherence for long-range quantum communication through an optical fiber. We apply protection via decoherence-free subspaces and quantum dynamical decoupling to this end. The latter is implemented by inserting phase shifters at regular intervals Δ inside the fiber, where Δ is roughly the ratio of the speed of light in the fiber to the bath high-frequency cutoff. Detailed estimates of relevant parameters are provided using the boson-boson model of system-bath interaction for silica fibers and Δ is found to be on the order of a millimeter.
Optimal estimation of the optomechanical coupling strength
NASA Astrophysics Data System (ADS)
Bernád, József Zsolt; Sanavio, Claudio; Xuereb, André
2018-06-01
We apply the formalism of quantum estimation theory to obtain information about the value of the nonlinear optomechanical coupling strength. In particular, we discuss the minimum mean-square error estimator and a quantum Cramér-Rao-type inequality for the estimation of the coupling strength. Our estimation strategy reveals some cases where quantum statistical inference is inconclusive and merely results in the reinforcement of prior expectations. We show that these situations also involve the highest expected information losses. We demonstrate that interaction times on the order of one time period of mechanical oscillations are the most suitable for our estimation scenario, and compare situations involving different photon and phonon excitations.
Nonlocal memory effects allow perfect teleportation with mixed states
Laine, Elsi-Mari; Breuer, Heinz-Peter; Piilo, Jyrki
2014-01-01
One of the most striking consequences of quantum physics is quantum teleportation – the possibility to transfer quantum states over arbitrary distances. Since its theoretical introduction, teleportation has been demonstrated experimentally up to the distance of 143 km. In the original proposal two parties share a maximally entangled quantum state acting as a resource for the teleportation task. If, however, the state is influenced by decoherence, perfect teleportation can no longer be accomplished. Therefore, one of the current major challenges in accomplishing teleportation over long distances is to overcome the limitations imposed by decoherence and the subsequent mixedness of the resource state. Here we show that, in the presence of nonlocal memory effects, perfect quantum teleportation can be achieved even with mixed photon polarisation states. Our results imply that memory effects can be exploited in harnessing noisy quantum systems for quantum communication and that non-Markovianity is a resource for quantum information tasks. PMID:24714695
Stationary spectroscopy of biotissues in vivo: Fluorescent studies of some pathological states
NASA Astrophysics Data System (ADS)
Giraev, K. M.; Ashurbekov, N. A.; Medzhidov, R. T.
2003-11-01
The stationary spectra of autofluorescence, along with the reflection coefficient at the wavelength of excitation, are measured in vivo for some stomach tissues in the case of different pathological states (dysplasia, superficial gastritis, and cancer) using a nitrogen laser as the source of excitation (λrad=337.1 nm). The fluorescence spectra obtained are decomposed into Gaussian-Lorentzian components. It is found that, in development of dysplasia and tumor processes, at least seven groups of fluorophores can be distinguished that form the entire emission spectrum. The ratio between the fluorescence intensities of flavins and NAD(P)H is determined and the degree of respiratory activity of cells estimated for the states considered. The quantum yields of fluorescence of the biotissues under investigation are estimated.
NASA Astrophysics Data System (ADS)
Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.
2017-07-01
The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension D —limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the critical exponents within 1 % of the 2D Ising universality class.
Optical levitation of a microdroplet containing a single quantum dot
NASA Astrophysics Data System (ADS)
Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki
2015-03-01
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This paper presents the realization of an optically levitated solid-state quantum emitter. This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: https://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-40-6-906. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
Intermittency and dynamical Lee-Yang zeros of open quantum systems.
Hickey, James M; Flindt, Christian; Garrahan, Juan P
2014-12-01
We use high-order cumulants to investigate the Lee-Yang zeros of generating functions of dynamical observables in open quantum systems. At long times the generating functions take on a large-deviation form with singularities of the associated cumulant generating functions-or dynamical free energies-signifying phase transitions in the ensemble of dynamical trajectories. We consider a driven three-level system as well as the dissipative Ising model. Both systems exhibit dynamical intermittency in the statistics of quantum jumps. From the short-time behavior of the dynamical Lee-Yang zeros, we identify critical values of the counting field which we attribute to the observed intermittency and dynamical phase coexistence. Furthermore, for the dissipative Ising model we construct a trajectory phase diagram and estimate the value of the transverse field where the stationary state changes from being ferromagnetic (inactive) to paramagnetic (active).
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
NASA Astrophysics Data System (ADS)
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-01
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian SzIz on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Quantum entanglement between an optical photon and a solid-state spin qubit.
Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D
2010-08-05
Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.
Quantum communication for satellite-to-ground networks with partially entangled states
NASA Astrophysics Data System (ADS)
Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong
2015-02-01
To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).
Five-wave-packet quantum error correction based on continuous-variable cluster entanglement
Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi
2015-01-01
Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395
Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer.
Kurz, Christoph; Schug, Michael; Eich, Pascal; Huwer, Jan; Müller, Philipp; Eschner, Jürgen
2014-11-21
A quantum network combines the benefits of quantum systems regarding secure information transmission and calculational speed-up by employing quantum coherence and entanglement to store, transmit and process information. A promising platform for implementing such a network are atom-based quantum memories and processors, interconnected by photonic quantum channels. A crucial building block in this scenario is the conversion of quantum states between single photons and single atoms through controlled emission and absorption. Here we present an experimental protocol for photon-to-atom quantum state conversion, whereby the polarization state of an absorbed photon is mapped onto the spin state of a single absorbing atom with >95% fidelity, while successful conversion is heralded by a single emitted photon. Heralded high-fidelity conversion without affecting the converted state is a main experimental challenge, in order to make the transferred information reliably available for further operations. We record >80 s(-1) successful state transfer events out of 18,000 s(-1) repetitions.
Can different quantum state vectors correspond to the same physical state? An experimental test
NASA Astrophysics Data System (ADS)
Nigg, Daniel; Monz, Thomas; Schindler, Philipp; Martinez, Esteban A.; Hennrich, Markus; Blatt, Rainer; Pusey, Matthew F.; Rudolph, Terry; Barrett, Jonathan
2016-01-01
A century after the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular quantum state vector, does this represent directly a physical property of the system, or is the state vector merely a summary of the physicist’s information about the system? Assume that a state vector corresponds to a probability distribution over possible values of an unknown physical or ‘ontic’ state. Then, a recent no-go theorem shows that distinct state vectors with overlapping distributions lead to predictions different from quantum theory. We report an experimental test of these predictions using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of models are ruled out.
Confining the state of light to a quantum manifold by engineered two-photon loss
NASA Astrophysics Data System (ADS)
Leghtas, Z.; Touzard, S.; Pop, I. M.; Kou, A.; Vlastakis, B.; Petrenko, A.; Sliwa, K. M.; Narla, A.; Shankar, S.; Hatridge, M. J.; Reagor, M.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.
2015-02-01
Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrödinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information in multidimensional steady-state manifolds.
NASA Astrophysics Data System (ADS)
Castro, E.; Gómez, R.; Ladera, C. L.; Zambrano, A.
2013-11-01
Among many applications quantum weak measurements have been shown to be important in exploring fundamental physics issues, such as the experimental violation of the Heisenberg uncertainty relation and the Hardy paradox, and have also technological implications in quantum optics, quantum metrology and quantum communications, where the precision of the measurement is as important as the precision of quantum state preparation. The theory of weak measurement can be formulated using the pre-and post-selected quantum systems, as well as using the weak measurement operator formalism. In this work, we study the quantum discord (QD) of quasi-Werner mixed states based on bipartite entangled coherent states using the weak measurements operator, instead of the projective measurement operators. We then compare the quantum discord for both kinds of measurement operators, in terms of the entanglement quality, the latter being measured using the concept of concurrence. It's found greater quantum correlations using the weak measurement operators.
NASA Astrophysics Data System (ADS)
Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-08-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang
2013-01-01
Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.
Quantum steerability: Characterization, quantification, superactivation, and unbounded amplification
NASA Astrophysics Data System (ADS)
Hsieh, Chung-Yun; Liang, Yeong-Cherng; Lee, Ray-Kuang
2016-12-01
Quantum steering, also called Einstein-Podolsky-Rosen steering, is the intriguing phenomenon associated with the ability of spatially separated observers to steer—by means of local measurements—the set of conditional quantum states accessible by a distant party. In the light of quantum information, all steerable quantum states are known to be resources for quantum information processing tasks. Here, via a quantity dubbed steering fraction, we derive a simple, but general criterion that allows one to identify quantum states that can exhibit quantum steering (without having to optimize over the measurements performed by each party), thus making an important step towards the characterization of steerable quantum states. The criterion, in turn, also provides upper bounds on the largest steering-inequality violation achievable by arbitrary finite-dimensional maximally entangled states. For the quantification of steerability, we prove that a strengthened version of the steering fraction is a convex steering monotone and demonstrate how it is related to two other steering monotones, namely, steerable weight and steering robustness. Using these tools, we further demonstrate the superactivation of steerability for a well-known family of entangled quantum states, i.e., we show how the steerability of certain entangled, but unsteerable quantum states can be recovered by allowing joint measurements on multiple copies of the same state. In particular, our approach allows one to explicitly construct a steering inequality to manifest this phenomenon. Finally, we prove that there exist examples of quantum states (including some which are unsteerable under projective measurements) whose steering-inequality violation can be arbitrarily amplified by allowing joint measurements on as little as three copies of the same state. For completeness, we also demonstrate how the largest steering-inequality violation can be used to bound the largest Bell-inequality violation and derive, analogously, a simple sufficient condition for Bell nonlocality from the latter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spagnolo, Nicolo; Consorzio Interuniversitario per le Scienze Fisiche della Materia, piazzale Aldo Moro 5, I-00185 Roma; Sciarrino, Fabio
We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.
Dissipative production of a maximally entangled steady state of two quantum bits.
Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J
2013-12-19
Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.
Reexamination of quantum bit commitment: The possible and the impossible
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Ariano, Giacomo Mauro; Kretschmann, Dennis; Institut fuer Mathematische Physik, Technische Universitaet Braunschweig, Mendelssohnstrasse 3, 38106 Braunschweig
2007-09-15
Bit commitment protocols whose security is based on the laws of quantum mechanics alone are generally held to be impossible. We give a strengthened and explicit proof of this result. We extend its scope to a much larger variety of protocols, which may have an arbitrary number of rounds, in which both classical and quantum information is exchanged, and which may include aborts and resets. Moreover, we do not consider the receiver to be bound to a fixed 'honest' strategy, so that 'anonymous state protocols', which were recently suggested as a possible way to beat the known no-go results, aremore » also covered. We show that any concealing protocol allows the sender to find a cheating strategy, which is universal in the sense that it works against any strategy of the receiver. Moreover, if the concealing property holds only approximately, the cheat goes undetected with a high probability, which we explicitly estimate. The proof uses an explicit formalization of general two-party protocols, which is applicable to more general situations, and an estimate about the continuity of the Stinespring dilation of a general quantum channel. The result also provides a natural characterization of protocols that fall outside the standard setting of unlimited available technology and thus may allow secure bit commitment. We present such a protocol whose security, perhaps surprisingly, relies on decoherence in the receiver's laboratory.« less
NASA Astrophysics Data System (ADS)
Aerts, Sven
2014-03-01
One of the problems facing any attempt to understand quantum theory is that the theory does not seem to offer an explanation of the way the probabilities arise. Moreover, it is a commonly held view that no such explanation is compatible with the mathematical structure of quantum theory, i.e. that the theory is inherently indeterministic, simply because nature is like that. We propose an abstract formalisation of the observation of a system in which the interaction between the system and the observer deterministically produces one of n possible outcomes. If the observer consistently manages to realize the outcome which maximizes the likelihood ratio that the outcome was inferred from the state of the system under study (and not from his own state), he will be called optimal. The probability for a repeated measurement on an ensemble of identical system states, is then derived as a measure over observer states. If the state of the system is a statistical mixture, the optimal observer produces an unbiased estimate of the components of the mixture. In case the state space is a complex Hilbert space, the resulting probability is equal to the one given by the Born rule. The proposal offers a concise interpretation for the meaning of the occurrence of a specific outcome as the unique outcome that, relative to the state of the system, is least dependent on the state of the observer. We note that a similar paradigm is used in the literature of perception to explain optical illusions in human visual perception. We argue that the result strengthens Helmholtz's view that all observation, is in fact a form a inference.
Efficient quantum transmission in multiple-source networks.
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-04-02
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.
Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.
Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob
2015-09-18
Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications. Copyright © 2015, American Association for the Advancement of Science.
Secret Sharing of a Quantum State.
Lu, He; Zhang, Zhen; Chen, Luo-Kan; Li, Zheng-Da; Liu, Chang; Li, Li; Liu, Nai-Le; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei
2016-07-15
Secret sharing of a quantum state, or quantum secret sharing, in which a dealer wants to share a certain amount of quantum information with a few players, has wide applications in quantum information. The critical criterion in a threshold secret sharing scheme is confidentiality: with less than the designated number of players, no information can be recovered. Furthermore, in a quantum scenario, one additional critical criterion exists: the capability of sharing entangled and unknown quantum information. Here, by employing a six-photon entangled state, we demonstrate a quantum threshold scheme, where the shared quantum secrecy can be efficiently reconstructed with a state fidelity as high as 93%. By observing that any one or two parties cannot recover the secrecy, we show that our scheme meets the confidentiality criterion. Meanwhile, we also demonstrate that entangled quantum information can be shared and recovered via our setting, which shows that our implemented scheme is fully quantum. Moreover, our experimental setup can be treated as a decoding circuit of the five-qubit quantum error-correcting code with two erasure errors.
Quantum teleportation between remote atomic-ensemble quantum memories.
Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei
2012-12-11
Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel," quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895-1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼10(8) rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.
Capacity of a quantum memory channel correlated by matrix product states
NASA Astrophysics Data System (ADS)
Mulherkar, Jaideep; Sunitha, V.
2018-04-01
We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.
Proof of Heisenberg's error-disturbance relation.
Busch, Paul; Lahti, Pekka; Werner, Reinhard F
2013-10-18
While the slogan "no measurement without disturbance" has established itself under the name of the Heisenberg effect in the consciousness of the scientifically interested public, a precise statement of this fundamental feature of the quantum world has remained elusive, and serious attempts at rigorous formulations of it as a consequence of quantum theory have led to seemingly conflicting preliminary results. Here we show that despite recent claims to the contrary [L. Rozema et al, Phys. Rev. Lett. 109, 100404 (2012)], Heisenberg-type inequalities can be proven that describe a tradeoff between the precision of a position measurement and the necessary resulting disturbance of momentum (and vice versa). More generally, these inequalities are instances of an uncertainty relation for the imprecisions of any joint measurement of position and momentum. Measures of error and disturbance are here defined as figures of merit characteristic of measuring devices. As such they are state independent, each giving worst-case estimates across all states, in contrast to previous work that is concerned with the relationship between error and disturbance in an individual state.
Can a man-made universe be achieved by quantum tunneling without an initial singularity?
NASA Technical Reports Server (NTRS)
Guth, Alan H.; Haller, K. (Editor); Caldi, D. B. (Editor); Islam, M. M. (Editor); Mallett, R. L. (Editor); Mannheim, P. D. (Editor); Swanson, M. S. (Editor)
1991-01-01
Essentially all modern particle theories suggest the possible existence of a false vacuum state; a metastable state with an energy density that cannot be lowered except by means of a very slow phase transition. Inflationary cosmology makes use of such a state to drive the expansion of the big bang, allowing the entire observed universe to evolve from a very small initial mass. A sphere of false vacuum in the present universe, if larger than a certain critical mass, could inflate to form a new universe which would rapidly detach from its parent. A false vacuum bubble of this size, however, cannot be produced classically unless an initial singularity is present from the outset. The possibility is explored that a bubble of subcritical size, which classically would evolve to a maximum size and collapse, might instead tunnel through a barrier to produce a new universe. The tunneling rate using semiclassical quantum gravity is estimated, and some interesting ambiguities in the formulas are discovered.
Magnetic-field sensing with quantum error detection under the effect of energy relaxation
NASA Astrophysics Data System (ADS)
Matsuzaki, Yuichiro; Benjamin, Simon
2017-03-01
A solid state spin is an attractive system with which to realize an ultrasensitive magnetic field sensor. A spin superposition state will acquire a phase induced by the target field, and we can estimate the field strength from this phase. Recent studies have aimed at improving sensitivity through the use of quantum error correction (QEC) to detect and correct any bit-flip errors that may occur during the sensing period. Here we investigate the performance of a two-qubit sensor employing QEC and under the effect of energy relaxation. Surprisingly, we find that the standard QEC technique to detect and recover from an error does not improve the sensitivity compared with the single-qubit sensors. This is a consequence of the fact that the energy relaxation induces both a phase-flip and a bit-flip noise where the former noise cannot be distinguished from the relative phase induced from the target fields. However, we have found that we can improve the sensitivity if we adopt postselection to discard the state when error is detected. Even when quantum error detection is moderately noisy, and allowing for the cost of the postselection technique, we find that this two-qubit system shows an advantage in sensing over a single qubit in the same conditions.
Superfast maximum-likelihood reconstruction for quantum tomography
NASA Astrophysics Data System (ADS)
Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon
2017-06-01
Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.
Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu
2008-01-01
A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.
NASA Astrophysics Data System (ADS)
Delgado, Francisco
2017-12-01
Quantum information processing should be generated through control of quantum evolution for physical systems being used as resources, such as superconducting circuits, spinspin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics which should be translated into more natural languages for quantum information processing. On this terrain, this language should let to establish manipulation operations on the associated quantum information states as classical information processing does. This work shows how a kind of processing operations can be settled and implemented for quantum states design and quantum processing for systems fulfilling a SU(2) reduction in their dynamics.
Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits.
Rabl, P; DeMille, D; Doyle, J M; Lukin, M D; Schoelkopf, R J; Zoller, P
2006-07-21
We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.
An impurity-induced gap system as a quantum data bus for quantum state transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bing, E-mail: chenbingphys@gmail.com; Li, Yong; Song, Z.
2014-09-15
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness ofmore » this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.« less
Joining the quantum state of two photons into one
NASA Astrophysics Data System (ADS)
Vitelli, Chiara; Spagnolo, Nicolò; Aparo, Lorenzo; Sciarrino, Fabio; Santamato, Enrico; Marrucci, Lorenzo
2013-07-01
Photons are the ideal carriers of quantum information for communication. Each photon can have a single or multiple qubits encoded in its internal quantum state, as defined by optical degrees of freedom such as polarization, wavelength, transverse modes and so on. However, as photons do not interact, multiplexing and demultiplexing the quantum information across photons has not been possible hitherto. Here, we introduce and demonstrate experimentally a physical process, named `quantum joining', in which the two-dimensional quantum states (qubits) of two input photons are combined into a single output photon, within a four-dimensional Hilbert space. The inverse process is also proposed, in which the four-dimensional quantum state of a single photon is split into two photons, each carrying a qubit. Both processes can be iterated, and hence provide a flexible quantum interconnect to bridge multiparticle protocols of quantum information with multidegree-of-freedom ones, with possible applications in future quantum networking.
NASA Astrophysics Data System (ADS)
Roszak, K.; Cywiński, Ł.
2015-10-01
We study quantum teleportation via Bell-diagonal mixed states of two qubits in the context of the intrinsic properties of the quantum discord. We show that when the quantum-correlated state of the two qubits is used for quantum teleportation, the character of the teleportation efficiency changes substantially depending on the Bell-diagonal-state parameters, which can be seen when the worst-case-scenario or best-case-scenario fidelity is studied. Depending on the parameter range, one of two types of single-qubit states is hardest/easiest to teleport. The transition between these two parameter ranges coincides exactly with the transition between the range of classical correlation decay and quantum correlation decay characteristic for the evolution of the quantum discord. The correspondence provides a physical interpretation for the prominent feature of the decay of the quantum discord.
Distribution of squeezed states through an atmospheric channel.
Peuntinger, Christian; Heim, Bettina; Müller, Christian R; Gabriel, Christian; Marquardt, Christoph; Leuchs, Gerd
2014-08-08
Continuous variable quantum states of light are used in quantum information protocols and quantum metrology and known to degrade with loss and added noise. We were able to show the distribution of bright polarization squeezed quantum states of light through an urban free-space channel of 1.6 km length. To measure the squeezed states in this extreme environment, we utilize polarization encoding and a postselection protocol that is taking into account classical side information stemming from the distribution of transmission values. The successful distribution of continuous variable squeezed states is accentuated by a quantum state tomography, allowing for determining the purity of the state.
Quantum state and mode profile tomography by the overlap
NASA Astrophysics Data System (ADS)
Tiedau, J.; Shchesnovich, V. S.; Mogilevtsev, D.; Ansari, V.; Harder, G.; Bartley, T. J.; Korolkova, N.; Silberhorn, Ch
2018-03-01
Any measurement scheme involving interference of quantum states of the electromagnetic field necessarily mixes information about the spatiotemporal structure of these fields and quantum states in the recorded data. We show that in this case, a trade-off is possible between extracting information about the quantum states and the structure of the underlying fields, with the modal overlap being either a goal or a convenient tool of the reconstruction. We show that varying quantum states in a controlled way allows one to infer temporal profiles of modes. Vice versa, for the known quantum state of the probe and controlled variable overlap, one can infer the quantum state of the signal. We demonstrate this trade-off by performing an experiment using the simplest on-off detection in an unbalanced weak homodyning scheme. For the single-mode case, we demonstrate experimentally inference of the overlap and a few-photon signal state. Moreover, we show theoretically that the same single-detector scheme is sufficient even for arbitrary multi-mode fields.
An efficient quantum algorithm for spectral estimation
NASA Astrophysics Data System (ADS)
Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth
2017-03-01
We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.
Parameter estimation in plasmonic QED
NASA Astrophysics Data System (ADS)
Jahromi, H. Rangani
2018-03-01
We address the problem of parameter estimation in the presence of plasmonic modes manipulating emitted light via the localized surface plasmons in a plasmonic waveguide at the nanoscale. The emitter that we discuss is the nitrogen vacancy centre (NVC) in diamond modelled as a qubit. Our goal is to estimate the β factor measuring the fraction of emitted energy captured by waveguide surface plasmons. The best strategy to obtain the most accurate estimation of the parameter, in terms of the initial state of the probes and different control parameters, is investigated. In particular, for two-qubit estimation, it is found although we may achieve the best estimation at initial instants by using the maximally entangled initial states, at long times, the optimal estimation occurs when the initial state of the probes is a product one. We also find that decreasing the interqubit distance or increasing the propagation length of the plasmons improve the precision of the estimation. Moreover, decrease of spontaneous emission rate of the NVCs retards the quantum Fisher information (QFI) reduction and therefore the vanishing of the QFI, measuring the precision of the estimation, is delayed. In addition, if the phase parameter of the initial state of the two NVCs is equal to πrad, the best estimation with the two-qubit system is achieved when initially the NVCs are maximally entangled. Besides, the one-qubit estimation has been also analysed in detail. Especially, we show that, using a two-qubit probe, at any arbitrary time, enhances considerably the precision of estimation in comparison with one-qubit estimation.
Superposing pure quantum states with partial prior information
NASA Astrophysics Data System (ADS)
Dogra, Shruti; Thomas, George; Ghosh, Sibasish; Suter, Dieter
2018-05-01
The principle of superposition is an intriguing feature of quantum mechanics, which is regularly exploited in many different circumstances. A recent work [M. Oszmaniec et al., Phys. Rev. Lett. 116, 110403 (2016), 10.1103/PhysRevLett.116.110403] shows that the fundamentals of quantum mechanics restrict the process of superimposing two unknown pure states, even though it is possible to superimpose two quantum states with partial prior knowledge. The prior knowledge imposes geometrical constraints on the choice of input states. We discuss an experimentally feasible protocol to superimpose multiple pure states of a d -dimensional quantum system and carry out an explicit experimental realization for two single-qubit pure states with partial prior information on a two-qubit NMR quantum information processor.
Joint Remote State Preparation Schemes for Two Different Quantum States Selectively
NASA Astrophysics Data System (ADS)
Shi, Jin
2018-05-01
The scheme for joint remote state preparation of two different one-qubit states according to requirement is proposed by using one four-dimensional spatial-mode-entangled KLM state as quantum channel. The scheme for joint remote state preparation of two different two-qubit states according to requirement is also proposed by using one four-dimensional spatial-mode-entangled KLM state and one three-dimensional spatial-mode-entangled GHZ state as quantum channels. Quantum non-demolition measurement, Hadamard gate operation, projective measurement and unitary transformation are included in the schemes.
NASA Astrophysics Data System (ADS)
Ren, Ji-Gang; Yang, Bin; Yi, Zhen-Huan; Zhou, Fei; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei
2009-08-01
Faithful long-distance quantum teleportation necessitates prior entanglement distribution between two communicated locations. The particle carrying on the unknown quantum information is then combined with one particle of the entangled states for Bell-state measurements, which leads to a transfer of the original quantum information onto the other particle of the entangled states. However in most of the implemented teleportation experiments nowadays, the Bell-state measurements are performed even before successful distribution of entanglement. This leads to an instant collapse of the quantum state for the transmitted particle, which is actually a single-particle transmission thereafter. Thus the true distance for quantum teleportation is, in fact, only in a level of meters. In the present experiment we design a novel scheme which has overcome this limit by utilizing fiber as quantum memory. A complete quantum teleportation is achieved upon successful entanglement distribution over 967 meters in public free space. Active feed-forward control techniques are developed for real-time transfer of quantum information. The overall experimental fidelities for teleported states are better than 89.6%, which signify high-quality teleportation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falsaperla, P.; Fonte, G.
1993-05-01
Applying a method based on some results due to Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)], we show that series of Rydberg eigenvalues and Rydberg eigenfunctions of hydrogen in a uniform magnetic field can be calculated with a rigorous error estimate. The efficiency of the method decreases as the eigenvalue density increases and as [gamma][ital n][sup 3][r arrow]1, where [gamma] is the magnetic-field strength in units of 2.35[times]10[sup 9] G and [ital n] is the principal quantum number of the unperturbed hydrogenic manifold from which the diamagnetic Rydberg states evolve. Fixing [gamma] at the laboratory value 2[times]10[sup [minus]5] andmore » confining our calculations to the region [gamma][ital n][sup 3][lt]1 (weak-field regime), we obtain extremely accurate results up to states corresponding to the [ital n]=32 manifold.« less
Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin
NASA Astrophysics Data System (ADS)
He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven
2017-08-01
Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.
Quantum Entanglement and the Topological Order of Fractional Hall States
NASA Astrophysics Data System (ADS)
Rezayi, Edward
2015-03-01
Fractional quantum Hall states or, more generally, topological phases of matter defy Landau classification based on order parameter and broken symmetry. Instead they have been characterized by their topological order. Quantum information concepts, such as quantum entanglement, appear to provide the most efficient method of detecting topological order solely from the knowledge of the ground state wave function. This talk will focus on real-space bi-partitioning of quantum Hall states and will present both exact diagonalization and quantum Monte Carlo studies of topological entanglement entropy in various geometries. Results on the torus for non-contractible cuts are quite rich and, through the use of minimum entropy states, yield the modular S-matrix and hence uniquely determine the topological order, as shown in recent literature. Concrete examples of minimum entropy states from known quantum Hall wave functions and their corresponding quantum numbers, used in exact diagonalizations, will be given. In collaboration with Clare Abreu and Raul Herrera. Supported by DOE Grant DE-SC0002140.
Andreev molecules in semiconductor nanowire double quantum dots.
Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M
2017-09-19
Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.
Measurement-induced entanglement for excitation stored in remote atomic ensembles.
Chou, C W; de Riedmatten, H; Felinto, D; Polyakov, S V; van Enk, S J; Kimble, H J
2005-12-08
A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.
229Thorium-doped calcium fluoride for nuclear laser spectroscopy.
Dessovic, P; Mohn, P; Jackson, R A; Winkler, G; Schreitl, M; Kazakov, G; Schumm, T
2014-03-12
The (229)thorium isotope presents an extremely low-energy isomer state of the nucleus which is expected around 7.8 eV, in the vacuum ultraviolet (VUV) regime. This unique system may bridge between atomic and nuclear physics, enabling coherent manipulation and precision spectroscopy of nuclear quantum states using laser light. It has been proposed to implant (229)thorium into VUV transparent crystal matrices to facilitate laser spectroscopy and possibly realize a solid-state nuclear clock. In this work, we validate the feasibility of this approach by computer modelling of thorium doping into calcium fluoride single crystals. Using atomistic modelling and full electronic structure calculations, we find a persistent large band gap and no additional electronic levels emerging in the middle of the gap due to the presence of the dopant, which should allow direct optical interrogation of the nuclear transition.Based on the electronic structure, we estimate the thorium nuclear quantum levels within the solid-state environment. Precision laser spectroscopy of these levels will allow the study of a broad range of crystal field effects, transferring Mössbauer spectroscopy into the optical regime.
A scheme of quantum state discrimination over specified states via weak-value measurement
NASA Astrophysics Data System (ADS)
Chen, Xi; Dai, Hong-Yi; Liu, Bo-Yang; Zhang, Ming
2018-04-01
The commonly adopted projective measurements are invalid in the specified task of quantum state discrimination when the discriminated states are superposition of planar-position basis states whose complex-number probability amplitudes have the same magnitude but different phases. Therefore we propose a corresponding scheme via weak-value measurement and examine the feasibility of this scheme. Furthermore, the role of the weak-value measurement in quantum state discrimination is analyzed and compared with one in quantum state tomography in this Letter.
Efficient Quantum Transmission in Multiple-Source Networks
Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590
Quantum and classical dynamics in adiabatic computation
NASA Astrophysics Data System (ADS)
Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-10-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.
Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun
2018-04-04
Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.
Multi-dimensional photonic states from a quantum dot
NASA Astrophysics Data System (ADS)
Lee, J. P.; Bennett, A. J.; Stevenson, R. M.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2018-04-01
Quantum states superposed across multiple particles or degrees of freedom offer an advantage in the development of quantum technologies. Creating these states deterministically and with high efficiency is an ongoing challenge. A promising approach is the repeated excitation of multi-level quantum emitters, which have been shown to naturally generate light with quantum statistics. Here we describe how to create one class of higher dimensional quantum state, a so called W-state, which is superposed across multiple time bins. We do this by repeated Raman scattering of photons from a charged quantum dot in a pillar microcavity. We show this method can be scaled to larger dimensions with no reduction in coherence or single-photon character. We explain how to extend this work to enable the deterministic creation of arbitrary time-bin encoded qudits.
Quantum strain sensor with a topological insulator HgTe quantum dot
Korkusinski, Marek; Hawrylak, Pawel
2014-01-01
We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674
NASA Astrophysics Data System (ADS)
Lin, Cheng-Ju; Motrunich, Olexei I.
2017-02-01
The eigenstate thermalization hypothesis provides one picture of thermalization in a quantum system by looking at individual eigenstates. However, it is also important to consider how local observables reach equilibrium values dynamically. Quench protocol is one of the settings to study such questions. A recent numerical study [Bañuls, Cirac, and Hastings, Phys. Rev. Lett. 106, 050405 (2007), 10.1103/PhysRevLett.106.050405] of a nonintegrable quantum Ising model with longitudinal field under such a quench setting found different behaviors for different initial quantum states. One particular case called the "weak-thermalization" regime showed apparently persistent oscillations of some observables. Here we provide an explanation of such oscillations. We note that the corresponding initial state has low energy density relative to the ground state of the model. We then use perturbation theory near the ground state and identify the oscillation frequency as essentially a quasiparticle gap. With this quasiparticle picture, we can then address the long-time behavior of the oscillations. Upon making additional approximations which intuitively should only make thermalization weaker, we argue that the oscillations nevertheless decay in the long-time limit. As part of our arguments, we also consider a quench from a BEC to a hard-core boson model in one dimension. We find that the expectation value of a single-boson creation operator oscillates but decays exponentially in time, while a pair-boson creation operator has oscillations with a t-3 /2 decay in time. We also study dependence of the decay time on the density of bosons in the low-density regime and use this to estimate decay time for oscillations in the original spin model.
Excess electrons in methanol clusters: Beyond the one-electron picture
NASA Astrophysics Data System (ADS)
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-01
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, ("separators=" CH 3 OH ) n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Excess electrons in methanol clusters: Beyond the one-electron picture.
Pohl, Gábor; Mones, Letif; Turi, László
2016-10-28
We performed a series of comparative quantum chemical calculations on various size negatively charged methanol clusters, CH 3 OH n - . The clusters are examined in their optimized geometries (n = 2-4), and in geometries taken from mixed quantum-classical molecular dynamics simulations at finite temperature (n = 2-128). These latter structures model potential electron binding sites in methanol clusters and in bulk methanol. In particular, we compute the vertical detachment energy (VDE) of an excess electron from increasing size methanol cluster anions using quantum chemical computations at various levels of theory including a one-electron pseudopotential model, several density functional theory (DFT) based methods, MP2 and coupled-cluster CCSD(T) calculations. The results suggest that at least four methanol molecules are needed to bind an excess electron on a hydrogen bonded methanol chain in a dipole bound state. Larger methanol clusters are able to form stronger interactions with an excess electron. The two simulated excess electron binding motifs in methanol clusters, interior and surface states, correlate well with distinct, experimentally found VDE tendencies with size. Interior states in a solvent cavity are stabilized significantly stronger than electron states on cluster surfaces. Although we find that all the examined quantum chemistry methods more or less overestimate the strength of the experimental excess electron stabilization, MP2, LC-BLYP, and BHandHLYP methods with diffuse basis sets provide a significantly better estimate of the VDE than traditional DFT methods (BLYP, B3LYP, X3LYP, PBE0). A comparison to the better performing many electron methods indicates that the examined one-electron pseudopotential can be reasonably used in simulations for systems of larger size.
Energy-efficient quantum frequency estimation
NASA Astrophysics Data System (ADS)
Liuzzo-Scorpo, Pietro; Correa, Luis A.; Pollock, Felix A.; Górecka, Agnieszka; Modi, Kavan; Adesso, Gerardo
2018-06-01
The problem of estimating the frequency of a two-level atom in a noisy environment is studied. Our interest is to minimise both the energetic cost of the protocol and the statistical uncertainty of the estimate. In particular, we prepare a probe in a ‘GHZ-diagonal’ state by means of a sequence of qubit gates applied on an ensemble of n atoms in thermal equilibrium. Noise is introduced via a phenomenological time-non-local quantum master equation, which gives rise to a phase-covariant dissipative dynamics. After an interval of free evolution, the n-atom probe is globally measured at an interrogation time chosen to minimise the error bars of the final estimate. We model explicitly a measurement scheme which becomes optimal in a suitable parameter range, and are thus able to calculate the total energetic expenditure of the protocol. Interestingly, we observe that scaling up our multipartite entangled probes offers no precision enhancement when the total available energy {\\boldsymbol{ \\mathcal E }} is limited. This is at stark contrast with standard frequency estimation, where larger probes—more sensitive but also more ‘expensive’ to prepare—are always preferred. Replacing {\\boldsymbol{ \\mathcal E }} by the resource that places the most stringent limitation on each specific experimental setup, would thus help to formulate more realistic metrological prescriptions.
Quantum information theory of the Bell-state quantum eraser
NASA Astrophysics Data System (ADS)
Glick, Jennifer R.; Adami, Christoph
2017-01-01
Quantum systems can display particle- or wavelike properties, depending on the type of measurement that is performed on them. The Bell-state quantum eraser is an experiment that brings the duality to the forefront, as a single measurement can retroactively be made to measure particlelike or wavelike properties (or anything in between). Here we develop a unitary information-theoretic description of this and several related quantum measurement situations that sheds light on the trade-off between the quantum and classical features of the measurement. In particular, we show that both the coherence of the quantum state and the classical information obtained from it can be described using only quantum-information-theoretic tools and that those two measures satisfy an equality on account of the chain rule for entropies. The coherence information and the which-path information have simple interpretations in terms of state preparation and state determination and suggest ways to account for the relationship between the classical and the quantum world.
Computing quantum discord is NP-complete
NASA Astrophysics Data System (ADS)
Huang, Yichen
2014-03-01
We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.
Magnetically Defined Qubits on 3D Topological Insulators
NASA Astrophysics Data System (ADS)
Ferreira, Gerson J.; Loss, Daniel
2014-03-01
We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect. Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits. See [Ferreira and Loss, Phys. Rev. Lett. 111, 106802 (2013)]. We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect. Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits. See [Ferreira and Loss, Phys. Rev. Lett. 111, 106802 (2013)]. We acknowledge support from the Swiss NSF, NCCR Nanoscience, NCCR QSIT, and the Brazillian Research Support Center Initiative (NAP Q-NANO) from Pró-Reitoria de Pesquisa (PRP/USP).
NASA Astrophysics Data System (ADS)
Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu
2017-08-01
Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond singlemore » mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Erik; Blume-Kohout, Robin; Rudinger, Kenneth
PyGSTi is an implementation of Gate Set Tomography in the python programming language. Gate Set Tomography (GST) is a theory and protocol for simultaneously estimating the state preparation, gate operations, and measurement effects of a physical system of one or many quantum bits (qubits). These estimates are based entirely on the statistics of experimental measurements, and their interpretation and analysis can provide a detailed understanding of the types of errors/imperfections in the physical system. In this way, GST provides not only a means of certifying the "goodness" of qubits but also a means of debugging (i.e. improving) them.
Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network
NASA Astrophysics Data System (ADS)
Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen
2018-06-01
We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.
Bidirectional Teleportation Protocol in Quantum Wireless Multi-hop Network
NASA Astrophysics Data System (ADS)
Cai, Rui; Yu, Xu-Tao; Zhang, Zai-Chen
2018-02-01
We propose a bidirectional quantum teleportation protocol based on a composite GHZ-Bell state. In this protocol, the composite GHZ-Bell state channel is transformed into two-Bell state channel through gate operations and single qubit measurements. The channel transformation will lead to different kinds of quantum channel states, so a method is proposed to help determine the unitary matrices effectively under different quantum channels. Furthermore, we discuss the bidirectional teleportation protocol in the quantum wireless multi-hop network. This paper is aimed to provide a bidirectional teleportation protocol and study the bidirectional multi-hop teleportation in the quantum wireless communication network.
NASA Astrophysics Data System (ADS)
Bub, Jeffrey; Fuchs, Christopher A.
The great debate between Einstein and Bohr on the interpretation of quantum mechanics culminated with the Einstein-Podolsky-Rosen (EPR) paper in 1935, "Can quantum-mechanical description of physical reality be considered complete?" (Einstein, Podolsky, & Rosen, 1935, and Bohr's reply, 1935). EPR showed that composite quantum systems, consisting of widely separated subsystems, could exist in certain quantum states that they thought spelled trouble for the Copenhagen interpretation. Specifically, they argued that for such states, the correlations between the outcomes of measurements on the subsystems were incompatible with the assumption that the quantum state was a complete description of the system. They concluded that quantum mechanics was an incomplete theory-that the quantum state could not be the whole story about a system.
NASA Astrophysics Data System (ADS)
Yoo, Jinwon; Choi, Yujun; Cho, Young-Wook; Han, Sang-Wook; Lee, Sang-Yun; Moon, Sung; Oh, Kyunghwan; Kim, Yong-Su
2018-07-01
We present a detailed method to prepare and characterize four-dimensional pure quantum states or ququarts using polarization and time-bin modes of a single-photon. In particular, we provide a simple method to generate an arbitrary pure ququart and fully characterize the state with quantum state tomography. We also verify the reliability of the recipe by showing experimental preparation and characterization of 20 ququart states in mutually unbiased bases. As qudits provide superior properties over qubits in many fundamental tests of quantum physics and applications in quantum information processing, the presented method will be useful for photonic quantum information science.
Realization of Quantum Digital Signatures without the Requirement of Quantum Memory
NASA Astrophysics Data System (ADS)
Collins, Robert J.; Donaldson, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.
2014-07-01
Digital signatures are widely used to provide security for electronic communications, for example, in financial transactions and electronic mail. Currently used classical digital signature schemes, however, only offer security relying on unproven computational assumptions. In contrast, quantum digital signatures offer information-theoretic security based on laws of quantum mechanics. Here, security against forging relies on the impossibility of perfectly distinguishing between nonorthogonal quantum states. A serious drawback of previous quantum digital signature schemes is that they require long-term quantum memory, making them impractical at present. We present the first realization of a scheme that does not need quantum memory and which also uses only standard linear optical components and photodetectors. In our realization, the recipients measure the distributed quantum signature states using a new type of quantum measurement, quantum state elimination. This significantly advances quantum digital signatures as a quantum technology with potential for real applications.
Realization of quantum digital signatures without the requirement of quantum memory.
Collins, Robert J; Donaldson, Ross J; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J; Andersson, Erika; Jeffers, John; Buller, Gerald S
2014-07-25
Digital signatures are widely used to provide security for electronic communications, for example, in financial transactions and electronic mail. Currently used classical digital signature schemes, however, only offer security relying on unproven computational assumptions. In contrast, quantum digital signatures offer information-theoretic security based on laws of quantum mechanics. Here, security against forging relies on the impossibility of perfectly distinguishing between nonorthogonal quantum states. A serious drawback of previous quantum digital signature schemes is that they require long-term quantum memory, making them impractical at present. We present the first realization of a scheme that does not need quantum memory and which also uses only standard linear optical components and photodetectors. In our realization, the recipients measure the distributed quantum signature states using a new type of quantum measurement, quantum state elimination. This significantly advances quantum digital signatures as a quantum technology with potential for real applications.
NASA Astrophysics Data System (ADS)
Wei, Hai-Rui; Deng, Fu-Guo
2013-10-01
Constructing compact quantum circuits for universal quantum gates on solid-state systems is crucial for quantum computing. We present some compact quantum circuits for a deterministic solid-state quantum computing, including the cnot, Toffoli, and Fredkin gates on the diamond NV centers confined inside cavities, achieved by some input-output processes of a single photon. Our quantum circuits for these universal quantum gates are simple and economic. Moreover, additional electron qubits are not employed, but only a single-photon medium. These gates have a long coherent time. We discuss the feasibility of these universal solid-state quantum gates, concluding that they are feasible with current technology.
Exponential Sensitivity and its Cost in Quantum Physics
Gilyén, András; Kiss, Tamás; Jex, Igor
2016-01-01
State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed. PMID:26861076
Quantum Entanglement Swapping between Two Multipartite Entangled States
NASA Astrophysics Data System (ADS)
Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi
2016-12-01
Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.
Quantum Entanglement Swapping between Two Multipartite Entangled States.
Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi
2016-12-09
Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.
Exponential Sensitivity and its Cost in Quantum Physics.
Gilyén, András; Kiss, Tamás; Jex, Igor
2016-02-10
State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed.
Relativistic quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N., E-mail: molotkov@issp.ac.ru
2011-03-15
A new protocol of quantum key distribution is proposed to transmit keys through free space. Along with quantum-mechanical restrictions on the discernibility of nonorthogonal quantum states, the protocol uses additional restrictions imposed by special relativity theory. Unlike all existing quantum key distribution protocols, this protocol ensures key secrecy for a not strictly one-photon source of quantum states and an arbitrary length of a quantum communication channel.
Relating quantum discord with the quantum dense coding capacity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Qiu, Liang, E-mail: lqiu@cumt.edu.cn; Li, Song
2015-01-15
We establish the relations between quantum discord and the quantum dense coding capacity in (n + 1)-particle quantum states. A necessary condition for the vanishing discord monogamy score is given. We also find that the loss of quantum dense coding capacity due to decoherence is bounded below by the sum of quantum discord. When these results are restricted to three-particle quantum states, some complementarity relations are obtained.
Viscosity and medium effects on the fluorescence and photochemical behaviour of some aryl chalcones
NASA Astrophysics Data System (ADS)
Ebeid, El-Zeiny M.; Abdel-Kader, Mahmood H.; Issa, Raafat M.; El-Daly, Samy A.
1988-05-01
The emission, excitation and absorption spectra toghether with the fluorescence and photochemical quantum yields of some chalcone derivatives have been studied in organic solvents and micellar and microemulsion media. Both 4-[2-(2-pyridyl)ethenyl] ( I) and 4-[2-(4-pyridyl)ethenyl ( II) chalcones show large positive solvatochromic effects. The fluorescence quantum yields increase substantially as the medium viscosity increases with a subsequent decrease in the photochemical quatum yield. Compounds I and II undergo excited-state molecular aggregation in concentrated solutions giving excimer-like emission that coincides with emission from crystalline samples. The enthalpies of photoassociation have been estimated. The chalcone derivative I acts as an efficient quencher of the fluorescence of the laser dye 1,4-bis (β-pyridyl-2-vinyl)benzene via a long-range mechanism. The excited-state lifetimes of both I and II are short and at 20°C their τ values are less than 800 ps.
Quantum teleportation between remote atomic-ensemble quantum memories
Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei
2012-01-01
Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a “quantum channel,” quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895–1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼108 rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing. PMID:23144222
Deterministic quantum teleportation with atoms.
Riebe, M; Häffner, H; Roos, C F; Hänsel, W; Benhelm, J; Lancaster, G P T; Körber, T W; Becher, C; Schmidt-Kaler, F; James, D F V; Blatt, R
2004-06-17
Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.
Quantum mechanics and reality: An interpretation of Everett's theory
NASA Astrophysics Data System (ADS)
Lehner, Christoph Albert
The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious observer is not described by the objective state, but by a Everettian relative state conditional on the subjective state, and no theoretical 'mark of reality' is necessary for this concept of reality. I compare the resulting concept of reality to Kant's distinction between empirical and transcendental reality.
Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A
2012-01-27
Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%.
Open quantum dots—probing the quantum to classical transition
NASA Astrophysics Data System (ADS)
Ferry, D. K.; Burke, A. M.; Akis, R.; Brunner, R.; Day, T. E.; Meisels, R.; Kuchar, F.; Bird, J. P.; Bennett, B. R.
2011-04-01
Quantum dots provide a natural system in which to study both quantum and classical features of transport. As a closed testbed, they provide a natural system with a very rich set of eigenstates. When coupled to the environment through a pair of quantum point contacts, each of which passes several modes, the original quantum environment evolves into a set of decoherent and coherent states, which classically would compose a mixed phase space. The manner of this breakup is governed strongly by Zurek's decoherence theory, and the remaining coherent states possess all the properties of his pointer states. These states are naturally studied via traditional magnetotransport at low temperatures. More recently, we have used scanning gate (conductance) microscopy to probe the nature of the coherent states, and have shown that families of states exist through the spectrum in a manner consistent with quantum Darwinism. In this review, we discuss the nature of the various states, how they are formed, and the signatures that appear in magnetotransport and general conductance studies.
Temporal shaping of quantum states released from a superconducting cavity memory
NASA Astrophysics Data System (ADS)
Burkhart, L.; Axline, C.; Pfaff, W.; Zou, C.; Zhang, M.; Narla, A.; Frunzio, L.; Devoret, M. H.; Jiang, L.; Schoelkopf, R. J.
State transfer and entanglement distribution are essential primitives in network-based quantum information processing. We have previously demonstrated an interface between a quantum memory and propagating light fields in the microwave domain: by parametric conversion in a single Josephson junction, we have coherently released quantum states from a superconducting cavity resonator into a transmission line. Protocols for state transfer mediated by propagating fields typically rely on temporal mode-matching of couplings at both sender and receiver. However, parametric driving on a single junction results in dynamic frequency shifts, raising the question of whether the pumps alone provide enough control for achieving this mode-matching. We show, in theory and experiment, that phase and amplitude shaping of the parametric drives allows arbitrary control over the propagating field, limited only by the drives bandwidth and amplitude constraints. This temporal mode shaping technique allows for release and capture of quantum states, providing a credible route towards state transfer and entanglement generation in quantum networks in which quantum states are stored and processed in cavities.
Quantum teleportation of multiple degrees of freedom of a single photon
NASA Astrophysics Data System (ADS)
Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2015-02-01
Quantum teleportation provides a `disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.
Quantum teleportation of multiple degrees of freedom of a single photon.
Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2015-02-26
Quantum teleportation provides a 'disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.
NASA Astrophysics Data System (ADS)
Scherer, Artur; Valiron, Benoît; Mau, Siun-Chuon; Alexander, Scott; van den Berg, Eric; Chapuran, Thomas E.
2017-03-01
We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target (Clader et al. in Phys Rev Lett 110:250504, 2013). Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width (related to parallelism), circuit depth (total number of steps), the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set { X, Y, Z, H, S, T, { CNOT } }. In order to perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the explicit example problem size N=332{,}020{,}680 beyond which, according to a crude big-O complexity comparison, the quantum linear-system algorithm is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy ɛ =0.01 requires an approximate circuit width 340 and circuit depth of order 10^{25} if oracle costs are excluded, and a circuit width and circuit depth of order 10^8 and 10^{29}, respectively, if the resource requirements of oracles are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly (using a fine-grained approach rather than relying on coarse big-O asymptotic approximations) how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the algorithmic-level resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.
Contextuality as a Resource for Models of Quantum Computation with Qubits
NASA Astrophysics Data System (ADS)
Bermejo-Vega, Juan; Delfosse, Nicolas; Browne, Dan E.; Okay, Cihan; Raussendorf, Robert
2017-09-01
A central question in quantum computation is to identify the resources that are responsible for quantum speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states for odd-prime dimensional qudits and two-dimensional systems with real wave functions. The phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of magic states as a necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a concrete scheme related to measurement-based quantum computation.
Stochastic gradient ascent outperforms gamers in the Quantum Moves game
NASA Astrophysics Data System (ADS)
Sels, Dries
2018-04-01
In a recent work on quantum state preparation, Sørensen and co-workers [Nature (London) 532, 210 (2016), 10.1038/nature17620] explore the possibility of using video games to help design quantum control protocols. The authors present a game called "Quantum Moves" (https://www.scienceathome.org/games/quantum-moves/) in which gamers have to move an atom from A to B by means of optical tweezers. They report that, "players succeed where purely numerical optimization fails." Moreover, by harnessing the player strategies, they can "outperform the most prominent established numerical methods." The aim of this Rapid Communication is to analyze the problem in detail and show that those claims are untenable. In fact, without any prior knowledge and starting from a random initial seed, a simple stochastic local optimization method finds near-optimal solutions which outperform all players. Counterdiabatic driving can even be used to generate protocols without resorting to numeric optimization. The analysis results in an accurate analytic estimate of the quantum speed limit which, apart from zero-point motion, is shown to be entirely classical in nature. The latter might explain why gamers are reasonably good at the game. A simple modification of the BringHomeWater challenge is proposed to test this hypothesis.
Topologically non-trivial electronic and magnetic states in doped copper Kagome lattices
NASA Astrophysics Data System (ADS)
Guterding, Daniel; Jeschke, Harald O.; Valenti, Roser
We present a theoretical investigation of doped copper kagome materials based on natural minerals Herbertsmithite [ZnCu3(OH)6Cl2] and Barlowite[Cu4(OH)6FBr]. Using ab-initio density functional theory calculations we estimate the stability of the hypothetical compounds against structural distortions and analyze their electronic and magnetic properties. We find that materials based on Herbertsmithite present an ideal playground for investigating the interplay of non-trivial band-topology and strong electronic correlation effects. In particular, we propose candidates for the Quantum Spin Hall effect at filling 4/3 and the Quantum Anomalous Hall effect at filling 2/3. For the Barlowite system we point out a route to realize a Quantum Spin Liquid. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49 and the National Science Foundation under Grant No. PHY11-25915.
Realistic clocks, universal decoherence, and the black hole information paradox.
Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge
2004-12-10
Ordinary quantum mechanics is formulated on the basis of the existence of an ideal classical clock external to the system under study. This is clearly an idealization. As emphasized originally by Salecker and Wigner and more recently by others, there exist limits in nature to how "classical" even the best possible clock can be. With realistic clocks, quantum mechanics ceases to be unitary and a fundamental mechanism of decoherence of quantum states arises. We estimate the rate of the universal loss of unitarity using optimal realistic clocks. In particular, we observe that the rate is rapid enough to eliminate the black hole information puzzle: all information is lost through the fundamental decoherence before the black hole can evaporate. This improves on a previous calculation we presented with a suboptimal clock in which only part of the information was lost by the time of evaporation.