Perturbative approach to Markovian open quantum systems
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Petruccione, F.; Koch, Jens
2014-05-01
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
A stochastic approach to open quantum systems.
Biele, R; D'Agosta, R
2012-07-11
Stochastic methods are ubiquitous to a variety of fields, ranging from physics to economics and mathematics. In many cases, in the investigation of natural processes, stochasticity arises every time one considers the dynamics of a system in contact with a somewhat bigger system, an environment with which it is considered in thermal equilibrium. Any small fluctuation of the environment has some random effect on the system. In physics, stochastic methods have been applied to the investigation of phase transitions, thermal and electrical noise, thermal relaxation, quantum information, Brownian motion and so on. In this review, we will focus on the so-called stochastic Schrödinger equation. This is useful as a starting point to investigate the dynamics of open quantum systems capable of exchanging energy and momentum with an external environment. We discuss in some detail the general derivation of a stochastic Schrödinger equation and some of its recent applications to spin thermal transport, thermal relaxation, and Bose-Einstein condensation. We thoroughly discuss the advantages of this formalism with respect to the more common approach in terms of the reduced density matrix. The applications discussed here constitute only a few examples of a much wider range of applicability.
Heisenberg picture approach to the stability of quantum Markov systems
Pan, Yu E-mail: zibo.miao@anu.edu.au; Miao, Zibo E-mail: zibo.miao@anu.edu.au; Amini, Hadis; Gough, John; Ugrinovskii, Valery; James, Matthew R.
2014-06-15
Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.
Characterization of decohering quantum systems: Machine learning approach
NASA Astrophysics Data System (ADS)
Stenberg, Markku P. V.; Köhn, Oliver; Wilhelm, Frank K.
2016-01-01
Adaptive data collection and analysis, where data are being fed back to update the measurement settings, can greatly increase speed, precision, and reliability of the characterization of quantum systems. However, decoherence tends to make adaptive characterization difficult. As an example, we consider two coupled discrete quantum systems. When one of the systems can be controlled and measured, the standard method to characterize another, with an unknown frequency ωr, is swap spectroscopy. Here, adapting measurements can provide estimates whose error decreases exponentially in the number of measurement shots rather than as a power law in conventional swap spectroscopy. However, when the decoherence time is so short that an excitation oscillating between the two systems can only undergo less than a few tens of vacuum Rabi oscillations, this approach can be marred by a severe limit on accuracy unless carefully designed. We adopt machine learning techniques to search for efficient policies for the characterization of decohering quantum systems. We find, for instance, that when the system undergoes more than 2 Rabi oscillations during its relaxation time T1, O (103) measurement shots are sufficient to reduce the squared error of the Bayesian initial prior of the unknown frequency ωr by a factor O (104) or larger. We also develop policies optimized for extreme initial parameter uncertainty and for the presence of imperfections in the readout.
Dissipation equation of motion approach to open quantum systems
NASA Astrophysics Data System (ADS)
Yan, YiJing; Jin, Jinshuang; Xu, Rui-Xue; Zheng, Xiao
2016-08-01
This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.
Approach to Equilibrium for Quantum Systems with Continuous Spectrum
NASA Astrophysics Data System (ADS)
Laura, Roberto
Considering quantum states as functionals acting on observables to give their mean values, it is possible to deal with quantum systems with continuous spectrum, generalizing the concept of trace. Generalized observables and states are defined for a quantum oscillator linearly coupled to a scalar field, and the analytic expression for time evolution is obtained. The "final" state (t → ∞) is presented as a weak limit. Finite and infinite number of exited modes of the field are considered.
Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach
Ananth, Nandini
2008-01-01
systems is described. We proposed the use of a semiclassical correction term to a preliminary quantum calculation using, for instance, a variational approach. This allows us to increase the accuracy significantly. Modeling Nonadiabatic dynamics has always been a challenge to classical simulations because the multi-state nature of the dynamics cannot be described accurately by the time evolution on a single average surface, as is the classical approach. We show that using the Meyer-Miller-Stock-Thoss (MMST) representation of the exact vibronic Hamiltonian in combination with the IVR allows us to accurately describe dynamics where the non Born-Oppenheimer regime. One final problem that we address is that of extending this method to the long time regime. We propose the use of a time independent sampling function in the Monte Carlo integration over the phase space of initial trajectory conditions. This allows us to better choose the regions of importance at the various points in time; by using more trajectories in the important regions, we show that the integration can be converged much easier. An algorithm based loosely on the methods of Diffusion Monte Carlo is developed that allows us to carry out this time dependent sampling in a most efficient manner.
Using quantum mechanical approaches to study biological systems.
Merz, Kenneth M
2014-09-16
Conspectus Quantum mechanics (QM) has revolutionized our understanding of the structure and reactivity of small molecular systems. Given the tremendous impact of QM in this research area, it is attractive to believe that this could also be brought into the biological realm where systems of a few thousand atoms and beyond are routine. Applying QM methods to biological problems brings an improved representation to these systems by the direct inclusion of inherently QM effects such as polarization and charge transfer. Because of the improved representation, novel insights can be gleaned from the application of QM tools to biomacromolecules in aqueous solution. To achieve this goal, the computational bottlenecks of QM methods had to be addressed. In semiempirical theory, matrix diagonalization is rate limiting, while in density functional theory or Hartree-Fock theory electron repulsion integral computation is rate-limiting. In this Account, we primarily focus on semiempirical models where the divide and conquer (D&C) approach linearizes the matrix diagonalization step with respect to the system size. Through the D&C approach, a number of applications to biological problems became tractable. Herein, we provide examples of QM studies on biological systems that focus on protein solvation as viewed by QM, QM enabled structure-based drug design, and NMR and X-ray biological structure refinement using QM derived restraints. Through the examples chosen, we show the power of QM to provide novel insights into biological systems, while also impacting practical applications such as structure refinement. While these methods can be more expensive than classical approaches, they make up for this deficiency by the more realistic modeling of the electronic nature of biological systems and in their ability to be broadly applied. Of the tools and applications discussed in this Account, X-ray structure refinement using QM models is now generally available to the community in the
On the approach to thermal equilibrium of macroscopic quantum systems
Goldstein, Sheldon; Tumulka, Roderich
2011-03-24
In joint work with J. L. Lebowitz, C. Mastrodonato, and N. Zanghi[2, 3, 4], we considered an isolated, macroscopic quantum system. Let H be a micro-canonical 'energy shell', i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E+{delta}E. The thermal equilibrium macro-state at energy E corresponds to a subspace H{sub eq} of H such that dimHeq/dimH is close to 1. We say that a system with state vector {psi}{epsilon}H is in thermal equilibrium if {psi} is 'close' to H{sub eq}. We argue that for 'typical' Hamiltonians, all initial state vectors {psi}{sub 0} evolve in such a way that {psi}{sub t} is in thermal equilibrium for most times t. This is closely related to von Neumann's quantum ergodic theorem of 1929.
Modified stochastic variational approach to non-Hermitian quantum systems
NASA Astrophysics Data System (ADS)
Kraft, Daniel; Plessas, Willibald
2016-08-01
The stochastic variational method has proven to be a very efficient and accurate tool to calculate especially bound states of quantum-mechanical few-body systems. It relies on the Rayleigh-Ritz variational principle for minimizing real eigenenergies of Hermitian Hamiltonians. From molecular to atomic, nuclear, and particle physics there is actually a great demand of describing also resonant states to a high degree of reliance. This is especially true with regard to hadron resonances, which have to be treated in a relativistic framework. So far standard methods of dealing with quantum chromodynamics have not yet succeeded in describing hadron resonances in a realistic manner. Resonant states can be handled by non-Hermitian quantum Hamiltonians. These states correspond to poles in the lower half of the unphysical sheet of the complex energy plane and are therefore intimately connected with complex eigenvalues. Consequently the Rayleigh-Ritz variational principle cannot be employed in the usual manner. We have studied alternative selection principles for the choice of test functions to treat resonances along the stochastic variational method. We have found that a stationarity principle for the complex energy eigenvalues provides a viable method for selecting test functions for resonant states in a constructive manner. We discuss several variants thereof and exemplify their practical efficiencies.
Hybrid quantum/classical approaches for proton transfer in condensed phase systems
NASA Astrophysics Data System (ADS)
Kim, Soo Young
Nuclear quantum effects such as tunneling and zero point energy play an important role in proton transfer reactions. Since a fully quantum mechanical treatment of condensed phase systems is not practical, mixed quantum/classical methods have been developed to simulate proton transfer reactions in solution. In this work the molecular dynamics with quantum transitions (MDQT) method, which incorporates nonadiabatic transitions among the vibrational states, was extended to treat the donor-acceptor vibrational motion as well as the hydrogen motion quantum mechanically for proton transfer reactions. This approach was applied to a model system representing intramolecular proton transfer within a phenol-amine complex in liquid methyl chloride. In addition, a hybrid quantum/classical molecular dynamics approach was applied to a proton transfer reaction represented by a symmetric double well system coupled to a dissipative bath. The hybrid quantum/classical results agree well with numerically exact results in the spatial-diffusion-limited regime, which is most relevant for proton transfer in proteins. In these two studies, the fundamental issues such as the nuclear quantum effects of the proton and donor-acceptor motions and the dissipation effects in the hybrid quantum/classical approach were explored. These results have important implications for applications to hydrogen transfer reactions in solution and proteins.
Quantum thermal transport through anharmonic systems: A self-consistent approach
NASA Astrophysics Data System (ADS)
He, Dahai; Thingna, Juzar; Wang, Jian-Sheng; Li, Baowen
2016-10-01
We propose a feasible and effective approach to study quantum thermal transport through anharmonic systems. The main idea is to obtain an effective harmonic Hamiltonian for the anharmonic system by applying the self-consistent phonon theory. By using the effective harmonic Hamiltonian, we study thermal transport within the framework of the nonequilibrium Green's function method using the celebrated Caroli formula. We corroborate our quantum self-consistent approach by using the quantum master equation that can deal with anharmonicity exactly, but is limited to the weak system-bath coupling regime. Finally, in order to demonstrate its strength, we apply the quantum self-consistent approach to study thermal rectification in a weakly coupled two-segment anharmonic system.
General approach to quantum-classical hybrid systems and geometric forces.
Zhang, Qi; Wu, Biao
2006-11-10
We present a general theoretical framework for a hybrid system that is composed of a quantum subsystem and a classical subsystem. We approach such a system with a simple canonical transformation which is particularly effective when the quantum subsystem is dynamically much faster than the classical counterpart, which is commonly the case in hybrid systems. Moreover, this canonical transformation generates a vector potential which, on one hand, gives rise to the familiar Berry phase in the fast quantum dynamics and, on the other hand, yields a Lorentz-like geometric force in the slow classical dynamics. PMID:17155596
Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems.
Werner, A H; Jaschke, D; Silvi, P; Kliesch, M; Calarco, T; Eisert, J; Montangero, S
2016-06-10
Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.
Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Werner, A. H.; Jaschke, D.; Silvi, P.; Kliesch, M.; Calarco, T.; Eisert, J.; Montangero, S.
2016-06-01
Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.
Dynamics of open quantum spin systems: An assessment of the quantum master equation approach
NASA Astrophysics Data System (ADS)
Zhao, P.; De Raedt, H.; Miyashita, S.; Jin, F.; Michielsen, K.
2016-08-01
Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation.
Dynamics of open quantum spin systems: An assessment of the quantum master equation approach.
Zhao, P; De Raedt, H; Miyashita, S; Jin, F; Michielsen, K
2016-08-01
Data of the numerical solution of the time-dependent Schrödinger equation of a system containing one spin-1/2 particle interacting with a bath of up to 32 spin-1/2 particles is used to construct a Markovian quantum master equation describing the dynamics of the system spin. The procedure of obtaining this quantum master equation, which takes the form of a Bloch equation with time-independent coefficients, accounts for all non-Markovian effects inasmuch the general structure of the quantum master equation allows. Our simulation results show that, with a few rather exotic exceptions, the Bloch-type equation with time-independent coefficients provides a simple and accurate description of the dynamics of a spin-1/2 particle in contact with a thermal bath. A calculation of the coefficients that appear in the Redfield master equation in the Markovian limit shows that this perturbatively derived equation quantitatively differs from the numerically estimated Markovian master equation, the results of which agree very well with the solution of the time-dependent Schrödinger equation. PMID:27627265
A sum-over-paths approach to one-dimensional time-independent quantum systems
NASA Astrophysics Data System (ADS)
Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna
2016-09-01
We present an alternative treatment for simple time-independent quantum systems in one dimension, which can be used in the context of an elementary introduction to quantum physics using the Feynman approach. The method is based on representation of the energy-dependent propagator (or Green function) as a sum of complex amplitudes over all possible paths, classical and non-classical, at fixed energy. We treat both confined and open systems with piecewise-constant potentials, obtaining exact results. We introduce an approximation scheme to extend the method to smooth potentials, recovering the Van Vleck-Gutzwiller propagator. Finally, we discuss the educational application of the method.
Quantum jump approach for work and dissipation in a two-level system.
Hekking, F W J; Pekola, J P
2013-08-30
We apply the quantum jump approach to address the statistics of work in a driven two-level system coupled to a heat bath. We demonstrate how this question can be analyzed by counting photons absorbed and emitted by the environment in repeated experiments. We find that the common nonequilibrium fluctuation relations are satisfied identically. The usual fluctuation-dissipation theorem for linear response applies for weak dissipation and/or weak drive. We point out qualitative differences between the classical and quantum regimes. PMID:24033034
Operational approach to fluctuations of thermodynamic variables in finite quantum systems
Jahnke, T.; Lanery, S.; Mahler, G.
2011-01-15
In this paper we present a quantum approach to the old problem of temperature fluctuations. We start by observing that according to quantum thermodynamics, fluctuations of intensive parameters like temperature cannot exist. Furthermore, such parameters are not observables, so their estimation has to be done indirectly. The respective temperature estimate based on quantum measurements of the energy is shown to fluctuate according to the well-known formula {Delta}T{sup 2}=(k{sub B}T{sup 2}/C), but only within a certain temperature range and if the system is not too small. We also calculate the fourth-order correction term, becoming important at higher temperatures. Finally we illustrate our results with a concrete model of n spins.
When do perturbative approaches accurately capture the dynamics of complex quantum systems?
NASA Astrophysics Data System (ADS)
Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.
2016-06-01
Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model.
When do perturbative approaches accurately capture the dynamics of complex quantum systems?
Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.
2016-01-01
Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model. PMID:27335176
NASA Astrophysics Data System (ADS)
Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas
2016-06-01
We present the Born-Markov approximated Redfield quantum master equation (RQME) description for an open system of noninteracting particles (bosons or fermions) on an arbitrary lattice of N sites in any dimension and weakly connected to multiple reservoirs at different temperatures and chemical potentials. The RQME can be reduced to the Lindblad equation, of various forms, by making further approximations. By studying the N =2 case, we show that RQME gives results which agree with exact analytical results for steady-state properties and with exact numerics for time-dependent properties over a wide range of parameters. In comparison, the Lindblad equations have a limited domain of validity in nonequilibrium. We conclude that it is indeed justified to use microscopically derived full RQME to go beyond the limitations of Lindblad equations in out-of-equilibrium systems. We also derive closed-form analytical results for out-of-equilibrium time dynamics of two-point correlation functions. These results explicitly show the approach to steady state and thermalization. These results are experimentally relevant for cold atoms, cavity QED, and far-from-equilibrium quantum dot experiments.
Control of noisy quantum systems: Field-theory approach to error mitigation
NASA Astrophysics Data System (ADS)
Hipolito, Rafael; Goldbart, Paul M.
2016-04-01
We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate) via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR, we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the "forward" and "backward" branches of the time contour are inequivalent with respect to the noise. The present approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the fidelity, we consider its full probability distribution. The information content present in this distribution allows one to address more complex questions regarding error mitigation, including, in principle, questions of extreme value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their influence. We illustrate this MSR-SK reformulation by considering a model
Neutral kaons as an open quantum system in a second quantization approach
NASA Astrophysics Data System (ADS)
Smoliński, Kordian Andrzej
2015-09-01
We have shown that it is possible to formulate the consistent and probability-preserving description of the CP -symmetry-violating evolution of a system of decaying particles. This has been done within the framework of quantum mechanics of open systems. This approach allows the description of both the exponential decay and flavor oscillations. We have solved explicitly the Kossakowski-Lindblad master equation for a system of particles with violated CP symmetry and found the evolution of any observable bilinear in creation and annihilation operators. The choice of a concrete observable can be done by the proper choice of initial conditions for the system of differential equations. We have calculated the evolution as well as mean values of the observables most interesting from the physical point of view, and we have found their lowest order difference with the CP -preserved values.
Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach
NASA Astrophysics Data System (ADS)
Chen, Yusui; You, J. Q.; Yu, Ting
2014-11-01
A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.
NASA Astrophysics Data System (ADS)
Basu, B.; Ghosh, Subir
2005-10-01
We have presented a quantum mechanical toy model for the study of Coulomb interactions in Quantum Hall (QH) system. Inclusion of Coulomb interaction is essential for the study of bilayer QH system and our model can simulate it, in the compound state, in a perturbative framework. We also show that in the noncommutative plane, the Coulomb interaction is modified at a higher order in the noncommutativity parameter θ, and only if θ varies from layer to layer in the QH system.
A quantum annealing approach for fault detection and diagnosis of graph-based systems
NASA Astrophysics Data System (ADS)
Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.
2015-02-01
Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.
Asplund, Erik; Kluener, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ({Dirac_h}/2{pi})=m{sub e}=e=a{sub 0}= 1, have been used unless otherwise stated.
Asplund, Erik; Klüner, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated. PMID:22462846
NASA Astrophysics Data System (ADS)
Asplund, Erik; Klüner, Thorsten
2012-03-01
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)], 10.1063/1.473950. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998), 10.1063/1.475576; Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)], 10.1063/1.1650297. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = me = e = a0 = 1, have been used unless otherwise stated.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
A unified approach to quantum and classical TTW systems based on factorizations
Celeghini, E.; Kuru, Ş.; Negro, J.; Olmo, M.A. del
2013-05-15
A unifying method based on factorization properties is introduced for finding symmetries of quantum and classical superintegrable systems using the example of the Tremblay–Turbiner–Winternitz (TTW) model. It is shown that the symmetries of the quantum system can be implemented in a natural way to its classical version. Besides, by this procedure we get also other type of constants of motion depending explicitly on time that allow to find directly the motion of the system whose corresponding trajectories coincide with those obtained previously by using its symmetries. -- Highlights: ► A unified method is given to find symmetries of classical and quantum systems. ► Ladder–shift operators and functions have analog expressions and relations. ► This method is applied to the TTW system to obtain its symmetries. ► For the classical cases a set of time dependent constants of motion are obtained. ► They allow us to find directly the motion and trajectories.
PERTURBATION APPROACH FOR QUANTUM COMPUTATION
G. P. BERMAN; D. I. KAMENEV; V. I. TSIFRINOVICH
2001-04-01
We discuss how to simulate errors in the implementation of simple quantum logic operations in a nuclear spin quantum computer with many qubits, using radio-frequency pulses. We verify our perturbation approach using the exact solutions for relatively small (L = 10) number of qubits.
NASA Astrophysics Data System (ADS)
Agarwalla, Bijay Kumar; Kulkarni, Manas; Mukamel, Shaul; Segal, Dvira
2016-07-01
We investigate gain in microwave photonic cavities coupled to voltage-biased double quantum dot systems with an arbitrarily strong dot-lead coupling and with a Holstein-like light-matter interaction, by employing the diagrammatic Keldysh nonequilibrium Green's function approach. We compute out-of-equilibrium properties of the cavity: its transmission, phase response, mean photon number, power spectrum, and spectral function. We show that by the careful engineering of these hybrid light-matter systems, one can achieve a significant amplification of the optical signal with the voltage-biased electronic system serving as a gain medium. We also study the steady-state current across the device, identifying elastic and inelastic tunneling processes which involve the cavity mode. Our results show how recent advances in quantum electronics can be exploited to build hybrid light-matter systems that behave as microwave amplifiers and photon source devices. The diagrammatic Keldysh approach is primarily discussed for a cavity-coupled double quantum dot architecture, but it is generalizable to other hybrid light-matter systems.
Natural approach to quantum dissipation
NASA Astrophysics Data System (ADS)
Taj, David; Öttinger, Hans Christian
2015-12-01
The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.
μ -symmetry breaking: An algebraic approach to finding mean fields of quantum many-body systems
NASA Astrophysics Data System (ADS)
Higashikawa, Sho; Ueda, Masahito
2016-07-01
One of the most fundamental problems in quantum many-body systems is the identification of a mean field in spontaneous symmetry breaking which is usually made in a heuristic manner. We propose a systematic method of finding a mean field based on the Lie algebra and the dynamical symmetry by introducing a class of symmetry-broken phases which we call μ -symmetry breaking. We show that for μ -symmetry breaking the quadratic part of an effective Lagrangian of Nambu-Goldstone modes can be block-diagonalized and that homotopy groups of topological excitations can be calculated systematically.
NASA Astrophysics Data System (ADS)
Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert
Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.
Velocity operator approach to quantum fluid dynamics in a three-dimensional neutron-proton system
NASA Astrophysics Data System (ADS)
Nishiyama, Seiya; da Providência, João
2016-07-01
In the preceeding paper, introducing isospin-dependent density operators and defining exact momenta (collective variables), we could get an exact canonically momenta approach to a one-dimensional (1D) neutron-proton (NP) system. In this paper, we attempt at a velocity operator approach to a 3D NP system. Following Sunakawa, after introducing momentum density operators, we define velocity operators, denoting classical fluid velocities. We derive a collective Hamiltonian in terms of the collective variables.
Experimental investigation of linear and nonlinear wave systems: A quantum chaos approach
NASA Astrophysics Data System (ADS)
Neicu, Toni
2002-09-01
An experimental and numerical study of linear and nonlinear wave systems using methods and ideas developed from quantum chaos is presented. We exploit the analogy of the wave equation for the flexural modes of a thin clover-shaped acoustic plate to the stationary solutions of the Schrodinger wave equation for a quantum clover-shaped billiard, a generic system that has regular and chaotic regions in its phase space. We observed periodic orbits in the spectral properties of the acoustic plate, the first such definitive acoustic experiment. We also solved numerically the linear wave equation of the acoustic plate for the first few hundred eigenmodes. The Fourier transform of the eigenvalues show peaks corresponding to the principal periodic orbits of the classical billiard. The signatures of the periodic orbits in the spectra were unambiguously verified by deforming one edge of the plate and observing that only the peaks corresponding to the orbits that hit this edge changed. The statistical measures of the eigenvalues are intermediate between universal forms for completely integrable and chaotic systems. The density distribution of the eigenfunctions agrees with the Porter-Thomas formula of chaotic systems. The viscosity dependence and effects of nonlinearity on the Faraday surface wave patterns in a stadium geometry were also investigated. The ray dynamics inside the stadium, a paradigm of quantum chaos, is completely chaotic. The majority of the observed patterns of the orbits resemble three eigenstates of the stadium: the bouncing ball, longitudinal, and bowtie patterns. We observed many disordered patterns that increase with the viscosity. The experimental results were analyzed using recent theoretical work that explains the suppression of certain modes. The theory also predicts that the perimeter dissipation is too strong for whispering gallery modes, which contradicts our observations of these modes for a fluid with low viscosity. Novel vortex patterns were
Sorting quantum systems efficiently.
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) - which direct photons according to their polarization - and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Sorting quantum systems efficiently
NASA Astrophysics Data System (ADS)
Ionicioiu, Radu
2016-05-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Andreev, P. A.; Kuzmenkov, L. S.; Trukhanova, M. I.
2011-12-15
In this paper, we explicate a method of quantum hydrodynamics (QHD) for the study of the quantum evolution of a system of polarized particles. Although we focused primarily on the two-dimensional (2D) physical systems, the method is valid for three-dimensional (3D) and one-dimensional (1D) systems too. The presented method is based upon the Schroedinger equation. Fundamental QHD equations for charged and neutral particles were derived from the many-particle microscopic Schroedinger equation. The fact that particles possess the electric dipole moment (EDM) was taken into account. The explicated QHD approach was used to study dispersion characteristics of various physical systems. We analyzed dispersion of waves in a two-dimensional ion and hole gas placed into an external electric field, which is orthogonal to the gas plane. Elementary excitations in a system of neutral polarized particles were studied for 1D, 2D, and 3D cases. The polarization dynamics in systems of both neutral and charged particles is shown to cause formation of a new type of waves as well as changes in the dispersion characteristics of already known waves. We also analyzed wave dispersion in 2D exciton systems, in 2D electron-ion plasma, and in 2D electron-hole plasma. Generation of waves in 3D-system neutral particles with EDM by means of the beam of electrons and neutral polarized particles is investigated.
Pudlak, M; Pichugin, K N; Nazmitdinov, R G; Pincak, R
2011-11-01
Creation of electrons or excitons by external fields in a system with initially statistically independent unrelaxed vibrational modes leads to an initial condition term. The contribution of this term in the time convolution generalized master-equation approach is studied in the second order of the perturbation theory in path-integral formalism. The developed approach, applied for the analysis of dynamics in the photosynthetic reaction center, exhibits the key role of the initial condition terms at the primary stage of electron transfer.
Zhang, Tianyuan; Evangelista, Francesco A
2016-09-13
In this work we propose a novel approach to solve the Schrödinger equation which combines projection onto the ground state with a path-filtering truncation scheme. The resulting projector configuration interaction (PCI) approach realizes a deterministic version of the full configuration interaction quantum Monte Carlo (FCIQMC) method [Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131, 054106]. To improve upon the linearized imaginary-time propagator, we develop an optimal projector scheme based on an exponential Chebyshev expansion in the limit of an infinite imaginary time step. After writing the exact projector as a path integral in determinant space, we introduce a path filtering procedure that truncates the size of the determinantal basis and approximates the Hamiltonian. The path filtering procedure is controlled by one real threshold that determines the accuracy of the PCI energy and is not biased toward any determinant. Therefore, the PCI approach can equally well describe static and dynamic electron correlation effects. This point is illustrated in benchmark computations on N2 at both equilibrium and stretched geometries. In both cases, the PCI achieves chemical accuracy with wave functions that contain less than 0.5% determinants of full CI space. We also report computations on the ground state of C2 with up to quaduple-ζ basis sets and wave functions as large as 200 million determinants, which allow a direct comparison of the PCI, FCIQMC, and density matrix renormalization group (DMRG) methods. The size of the PCI wave function grows modestly with the number of unoccupied orbitals, and its accuracy may be tuned to match that of FCIQMC and DMRG. PMID:27464301
Quantum system identification.
Burgarth, Daniel; Yuasa, Kazuya
2012-02-24
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. We show that controllable closed quantum systems can be estimated up to unitary conjugation. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.
Correlation diagrams: an intuitive approach to correlations in quantum Hall systems
NASA Astrophysics Data System (ADS)
Mulay, S. B.; Quinn, J. J.; Shattuck, M. A.
2016-03-01
A trial wave function Ψ(1, 2,..., N) of an N electron system can always be written as the product of an antisymmetric Fermion factor F{zij } = Π i
Kinetic Approach for Quantum Hydrodynamic Equations
NASA Astrophysics Data System (ADS)
Tessarotto, M.; Ellero, M.; Nicolini, P.
2008-12-01
A striking feature of standard quantum mechanics (SQM) is its analogy with classical fluid dynamics. In particular it is well known the Schrödinger equation can be viewed as describing a classical compressible and non-viscous fluid, described by two (quantum) fluid fields {ρ,V}, to be identified with the quantum probability density and velocity field. This feature has suggested the construction of a phase-space hidden-variable description based on a suitable inverse kinetic theory (IKT; Tessarotto et al., 2007). The discovery of this approach has potentially important consequences since it permits to identify the classical dynamical system which advances in time the quantum fluid fields. This type of approach, however requires the identification of additional fluid fields. These can be generally identified with suitable directional fluid temperatures TQM,i (for i = 1,2,3), to be related to the expectation values of momentum fluctuations appearing in the Heisenberg inequalities. Nevertheless the definition given previously for them (Tessarotto et al., 2007) is non-unique. In this paper we intend to propose a criterion, based on the validity of a constant H-theorem, which provides an unique definition for the quantum temperatures.
NASA Astrophysics Data System (ADS)
Trukhanova, M., Iv.
2013-11-01
In this paper, we explain a magneto quantum hydrodynamics (MQHD) method for the study of the quantum evolution of a system of spinning fermions in an external electromagnetic field. The fundamental equations of microscopic quantum hydrodynamics (the momentum balance equation and the magnetic moment density equation) are derived from the many-particle microscopic Schrödinger equation with a spin-spin and Coulomb modified Hamiltonian. Using the developed approach, an extended vorticity evolution equation for the quantum spinning plasma is derived. The effects of the new spin forces and spin-spin interaction contributions on the motion of fermions, the evolution of the magnetic moment density, and vorticity generation are predicted. The influence of the intrinsic spin of electrons on whistler mode turbulence is investigated. The results can be used for theoretical studies of spinning many-particle systems, especially dense quantum plasmas in compact astrophysical objects, plasmas in semiconductors, and micro-mechanical systems, in quantum X-ray free-electron lasers.
NASA Astrophysics Data System (ADS)
Xue, Shibei; Petersen, Ian R.
2016-02-01
In this paper, we develop a Green's function-based root locus approach to realizing a Lorentzian-noise-disturbed non-Markovian quantum system by Markovian coupled oscillators in an extended Hilbert space. By using a Green's function-based root locus method, we design an ancillary oscillator for Markovian coupled oscillators to be a Lorentzian noise generator. Thus a principal oscillator coupled to the ancillary oscillator via a direct interaction can capture the dynamics of a Lorentzian-noise-disturbed non-Markovian quantum system. By matching the root locus in the frequency domain, conditions for the realization are obtained and a critical transition in the non-Markovian quantum system can also be observed in the Markovian coupled oscillators.
Quantum information approach to the azurite mineral frustrated quantum magnet
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Abutalib, M.; Farouk, Ahmed; Abdalla, S.
2016-07-01
Quantum correlations are almost impossible to address in bulk systems. Quantum measures extended only to a few number of parties can be discussed in practice. In the present work, we study nonlocality for a cluster of spins belonging to a mineral whose structure is that of a quantum magnet. We reproduce at a much smaller scale the experimental outcomes, and then, we study the role of quantum correlations there. A macroscopic entanglement witness has been introduced in order to reveal nonlocal quantum correlations between individual constituents of the azurite mineral at nonzero temperatures. The critical point beyond which entanglement is zero is found at T_c < 1 K.
Novel Quantum Monte Carlo Approaches for Quantum Liquids
NASA Astrophysics Data System (ADS)
Rubenstein, Brenda M.
the eventual hope is to apply this algorithm to the exploration of yet unidentified high-pressure, low-temperature phases of hydrogen, I employ this algorithm to determine whether or not quantum hard spheres can form a low-temperature bcc solid if exchange is not taken into account. In the final chapter of this thesis, I use Path Integral Monte Carlo once again to explore whether glassy para-hydrogen exhibits superfluidity. Physicists have long searched for ways to coax hydrogen into becoming a superfluid. I present evidence that, while glassy hydrogen does not crystallize at the temperatures at which hydrogen might become a superfluid, it nevertheless does not exhibit superfluidity. This is because the average binding energy per p-H2 molecule poses a severe barrier to exchange regardless of whether the system is crystalline. All in all, this work extends the reach of Quantum Monte Carlo methods to new systems and brings the power of existing methods to bear on new problems. Portions of this work have been published in Rubenstein, PRE (2010) and Rubenstein, PRA (2012) [167;169]. Other papers not discussed here published during my Ph.D. include Rubenstein, BPJ (2008) and Rubenstein, PRL (2012) [166;168]. The work in Chapters 6 and 7 is currently unpublished. [166] Brenda M. Rubenstein, Ivan Coluzza, and Mark A. Miller. Controlling the folding and substrate-binding of proteins using polymer brushes. Physical Review Letters, 108(20):208104, May 2012. [167] Brenda M. Rubenstein, J.E. Gubernatis, and J.D. Doll. Comparative monte carlo efficiency by monte carlo analysis. Physical Review E, 82(3):036701, September 2010. [168] Brenda M. Rubenstein and Laura J. Kaufman. The role of extracellular matrix in glioma invasion: A cellular potts model approach. Biophysical Journal, 95(12):5661-- 5680, December 2008. [169] Brenda M. Rubenstein, Shiwei Zhang, and David R. Reichman. Finite-temperature auxiliary-field quantum monte carlo for bose-fermi mixtures. Physical Review A, 86
NASA Astrophysics Data System (ADS)
Afzali, R.; Ebrahimian, N.; Eghbalifar, B.
2016-10-01
By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.
Sokkar, Pandian; Boulanger, Eliot; Thiel, Walter; Sanchez-Garcia, Elsa
2015-04-14
We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.
Quantum iterated function systems.
Łoziński, Artur; Zyczkowski, Karol; Słomczyński, Wojciech
2003-10-01
An iterated function system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum IFS (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of completely positive maps acting in the space of density operators. This formalism is designed to describe certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.
Curtright, Thomas; Mezincescu, Luca
2007-09-15
Models of PT symmetric quantum mechanics provide examples of biorthogonal quantum systems. The latter incorporate all the structure of PT symmetric models, and allow for generalizations, especially in situations where the PT construction of the dual space fails. The formalism is illustrated by a few exact results for models of the form H=(p+{nu}){sup 2}+{sigma}{sub k>0}{mu}{sub k} exp(ikx). In some nontrivial cases, equivalent Hermitian theories are obtained and shown to be very simple: They are just free (chiral) particles. Field theory extensions are briefly considered.
Functional quantum computing: An optical approach
NASA Astrophysics Data System (ADS)
Rambo, Timothy M.; Altepeter, Joseph B.; Kumar, Prem; D'Ariano, G. Mauro
2016-05-01
Recent theoretical investigations treat quantum computations as functions, quantum processes which operate on other quantum processes, rather than circuits. Much attention has been given to the N -switch function which takes N black-box quantum operators as input, coherently permutes their ordering, and applies the result to a target quantum state. This is something which cannot be equivalently done using a quantum circuit. Here, we propose an all-optical system design which implements coherent operator permutation for an arbitrary number of input operators.
NASA Astrophysics Data System (ADS)
Trejos, Víctor M.; Gil-Villegas, Alejandro
2012-05-01
Thermodynamic properties of quantum fluids are described using an extended version of the statistical associating fluid theory for potentials of variable range (SAFT-VR) that takes into account quantum corrections to the Helmholtz free energy A, based on the Wentzel-Kramers-Brillouin approximation. We present the theoretical background of this approach (SAFT-VRQ), considering two different cases depending on the continuous or discontinuous nature of the particles pair interaction. For the case of continuous potentials, we demonstrate that the standard Wigner-Kirkwood theory for quantum fluids can be derived from the de Broglie-Bohm formalism for quantum mechanics that can be incorporated within the Barker and Henderson perturbation theory for liquids in a straightforward way. When the particles interact via a discontinuous pair potential, the SAFT-VR method can be combined with the perturbation theory developed by Singh and Sinha [J. Chem. Phys. 67, 3645 (1977); Singh and Sinha J. Chem. Phys. 68, 562 (1978)]. We present an analytical expression for the first-order quantum perturbation term for a square-well potential, and the theory is applied to model thermodynamic properties of hydrogen, deuterium, neon, and helium-4. Vapor-liquid equilibrium, liquid and vapor densities, isochoric and isobaric heat capacities, Joule-Thomson coefficients and inversion curves are predicted accurately with respect to experimental data. We find that quantum corrections are important for the global behavior of properties of these fluids and not only for the low-temperature regime. Predictions obtained for hydrogen compare very favorably with respect to cubic equations of state.
Trejos, Víctor M; Gil-Villegas, Alejandro
2012-05-14
Thermodynamic properties of quantum fluids are described using an extended version of the statistical associating fluid theory for potentials of variable range (SAFT-VR) that takes into account quantum corrections to the Helmholtz free energy A, based on the Wentzel-Kramers-Brillouin approximation. We present the theoretical background of this approach (SAFT-VRQ), considering two different cases depending on the continuous or discontinuous nature of the particles pair interaction. For the case of continuous potentials, we demonstrate that the standard Wigner-Kirkwood theory for quantum fluids can be derived from the de Broglie-Bohm formalism for quantum mechanics that can be incorporated within the Barker and Henderson perturbation theory for liquids in a straightforward way. When the particles interact via a discontinuous pair potential, the SAFT-VR method can be combined with the perturbation theory developed by Singh and Sinha [J. Chem. Phys. 67, 3645 (1977); and ibid. 68, 562 (1978)]. We present an analytical expression for the first-order quantum perturbation term for a square-well potential, and the theory is applied to model thermodynamic properties of hydrogen, deuterium, neon, and helium-4. Vapor-liquid equilibrium, liquid and vapor densities, isochoric and isobaric heat capacities, Joule-Thomson coefficients and inversion curves are predicted accurately with respect to experimental data. We find that quantum corrections are important for the global behavior of properties of these fluids and not only for the low-temperature regime. Predictions obtained for hydrogen compare very favorably with respect to cubic equations of state.
Richardson, W.H. . E-mail: whr@stanford.edu
2006-06-15
A technique for describing dissipative quantum systems that utilizes a fundamental Hamiltonian, which is composed of intrinsic operators of the system, is presented. The specific system considered is a capacitor (or free particle) that is coupled to a resistor (or dissipative medium). The microscopic mechanisms that lead to dissipation are represented by the standard Hamiltonian. Now dissipation is really a collective phenomenon of entities that comprise a macroscopic or mesoscopic object. Hence operators that describe the collective features of the dissipative medium are utilized to construct the Hamiltonian that represents the coupled resistor and capacitor. Quantization of the spatial gauge function is introduced. The magnetic energy part of the coupled Hamiltonian is written in terms of that quantized gauge function and the current density of the dissipative medium. A detailed derivation of the kinetic equation that represents the capacitor or free particle is presented. The partial spectral densities and functions related to spectral densities, which enter the kinetic equations as coefficients of commutators, are evaluated. Explicit expressions for the nonMarkoffian contribution in terms of products of spectral densities and related functions are given. The influence of all two-time correlation functions are considered. Also stated is a remainder term that is a product of partial spectral densities and which is due to higher order terms in the correlation density matrix. The Markoffian part of the kinetic equation is compared with the Master equation that is obtained using the standard generator in the axiomatic approach. A detailed derivation of the Master equation that represents the dissipative medium is also presented. The dynamical equation for the resistor depends on the spatial wavevector, and the influence of the free particle on the diagonal elements (in wavevector space) is stated.
Measurement theory for closed quantum systems
NASA Astrophysics Data System (ADS)
Wouters, Michiel
2015-07-01
We introduce the concept of a “classical observable” as an operator with vanishingly small quantum fluctuations on a set of density matrices. Their study provides a natural starting point to analyse the quantum measurement problem. In particular, it allows to identify Schrödinger cats and the associated projection operators intrinsically, without the need to invoke an environment. We discuss how our new approach relates to the open system analysis of quantum measurements and to thermalization studies in closed quantum systems.
Noisy quantum phase transitions: an intuitive approach
NASA Astrophysics Data System (ADS)
Dalla Torre, Emanuele G.; Demler, Eugene; Giamarchi, Thierry; Altman, Ehud
2012-11-01
Equilibrium thermal noise is known to destroy any quantum phase transition. What are the effects of non-equilibrium noise? In two recent papers, we have considered the specific case of a resistively shunted Josephson junction driven by 1/f charge noise. At equilibrium, this system undergoes a sharp quantum phase transition at a critical value of the shunt resistance. By applying a real-time renormalization group approach, we found that the noise has three main effects: it shifts the phase transition, renormalizes the resistance and generates an effective temperature. In this paper, we explain how to understand these effects using simpler arguments based on Kirchhoff laws and time-dependent perturbation theory. We also show how these effects modify physical observables and especially the current-voltage characteristic of the junction. In the appendix, we describe two possible realizations of the model with ultracold atoms confined to one dimension.
Tailoring superradiance to design artificial quantum systems
NASA Astrophysics Data System (ADS)
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-03-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Tailoring superradiance to design artificial quantum systems.
Longo, Paolo; Keitel, Christoph H; Evers, Jörg
2016-03-24
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.
Tailoring superradiance to design artificial quantum systems.
Longo, Paolo; Keitel, Christoph H; Evers, Jörg
2016-01-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems. PMID:27009604
Tailoring superradiance to design artificial quantum systems
Longo, Paolo; Keitel, Christoph H.; Evers, Jörg
2016-01-01
Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems. PMID:27009604
Adiabatic Quantum Search in Open Systems
NASA Astrophysics Data System (ADS)
Wild, Dominik S.; Gopalakrishnan, Sarang; Knap, Michael; Yao, Norman Y.; Lukin, Mikhail D.
2016-10-01
Adiabatic quantum algorithms represent a promising approach to universal quantum computation. In isolated systems, a key limitation to such algorithms is the presence of avoided level crossings, where gaps become extremely small. In open quantum systems, the fundamental robustness of adiabatic algorithms remains unresolved. Here, we study the dynamics near an avoided level crossing associated with the adiabatic quantum search algorithm, when the system is coupled to a generic environment. At zero temperature, we find that the algorithm remains scalable provided the noise spectral density of the environment decays sufficiently fast at low frequencies. By contrast, higher order scattering processes render the algorithm inefficient at any finite temperature regardless of the spectral density, implying that no quantum speedup can be achieved. Extensions and implications for other adiabatic quantum algorithms will be discussed.
Hybrid Quantum-Classical Approach to Correlated Materials
NASA Astrophysics Data System (ADS)
Bauer, Bela; Wecker, Dave; Millis, Andrew J.; Hastings, Matthew B.; Troyer, Matthias
2016-07-01
Recent improvements in the control of quantum systems make it seem feasible to finally build a quantum computer within a decade. While it has been shown that such a quantum computer can in principle solve certain small electronic structure problems and idealized model Hamiltonians, the highly relevant problem of directly solving a complex correlated material appears to require a prohibitive amount of resources. Here, we show that by using a hybrid quantum-classical algorithm that incorporates the power of a small quantum computer into a framework of classical embedding algorithms, the electronic structure of complex correlated materials can be efficiently tackled using a quantum computer. In our approach, the quantum computer solves a small effective quantum impurity problem that is self-consistently determined via a feedback loop between the quantum and classical computation. Use of a quantum computer enables much larger and more accurate simulations than with any known classical algorithm, and will allow many open questions in quantum materials to be resolved once a small quantum computer with around 100 logical qubits becomes available.
Hybrid quantum-classical approach to correlated materials
NASA Astrophysics Data System (ADS)
Bauer, Bela; Wecker, Dave; Millis, Andrew J.; Hastings, Matthew B.; Troyer, Matthias
Recent improvements in control of quantum systems make it seem feasible to finally build a programmable general-purpose quantum computer within a decade. While it has been shown that such a quantum computer can in principle solve certain small electronic structure problems and idealized model Hamiltonians, the highly relevant problem of directly solving a complex correlated material appears to require a prohibitive amount of resources. Here, we show that by using a hybrid quantum-classical algorithm that incorporates the power of a small quantum computer into a framework of classical embedding algorithms, the electronic structure of complex correlated materials can be efficiently tackled using a quantum computer. In our approach, the quantum computer solves a small effective quantum impurity problem that is self-consistently determined via a feedback loop between the quantum and classical computation. Use of a quantum computer enables much larger and more accurate simulations than with any known classical algorithm, and will allow many open questions in quantum materials to be resolved once a small quantum computer with around one hundred logical qubits becomes available.
Nonperturbative approach to relativistic quantum communication channels
NASA Astrophysics Data System (ADS)
Landulfo, André G. S.
2016-05-01
We investigate the transmission of both classical and quantum information between two arbitrary observers in globally hyperbolic spacetimes using a quantum field as a communication channel. The field is supposed to be in some arbitrary quasifree state and no choice of representation of its canonical commutation relations is made. Both sender and receiver possess some localized two-level quantum system with which they can interact with the quantum field to prepare the input and receive the output of the channel, respectively. The interaction between the two-level systems and the quantum field is such that one can trace out the field degrees of freedom exactly and thus obtain the quantum channel in a nonperturbative way. We end the paper determining the unassisted as well as the entanglement-assisted classical and quantum channel capacities.
Yan, YiJing
2014-02-07
This work establishes a strongly correlated system-and-bath dynamics theory, the many-dissipaton density operators formalism. It puts forward a quasi-particle picture for environmental influences. This picture unifies the physical descriptions and algebraic treatments on three distinct classes of quantum environments, electron bath, phonon bath, and two-level spin or exciton bath, as their participating in quantum dissipation processes. Dynamical variables for theoretical description are no longer just the reduced density matrix for system, but remarkably also those for quasi-particles of bath. The present theoretical formalism offers efficient and accurate means for the study of steady-state (nonequilibrium and equilibrium) and real-time dynamical properties of both systems and hybridizing environments. It further provides universal evaluations, exact in principle, on various correlation functions, including even those of environmental degrees of freedom in coupling with systems. Induced environmental dynamics could be reflected directly in experimentally measurable quantities, such as Fano resonances and quantum transport current shot noise statistics.
Teleportation in a noisy environment: a quantum trajectories approach.
Carlo, Gabriel G; Benenti, Giuliano; Casati, Giulio
2003-12-19
We study the fidelity of quantum teleportation for the situation in which quantum logic gates are used to provide the long distance entanglement required in the protocol, and where the effect of a noisy environment is modeled by means of a generalized amplitude damping channel. Our results demonstrate the effectiveness of the quantum trajectories approach, which allows the simulation of open systems with a large number of qubits (up to 24). This shows that the method is suitable for modeling quantum information protocols in realistic environments.
Hidden Statistics Approach to Quantum Simulations
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the
Towards scalable quantum communication and computation: Novel approaches and realizations
NASA Astrophysics Data System (ADS)
Jiang, Liang
Quantum information science involves exploration of fundamental laws of quantum mechanics for information processing tasks. This thesis presents several new approaches towards scalable quantum information processing. First, we consider a hybrid approach to scalable quantum computation, based on an optically connected network of few-qubit quantum registers. Specifically, we develop a novel scheme for scalable quantum computation that is robust against various imperfections. To justify that nitrogen-vacancy (NV) color centers in diamond can be a promising realization of the few-qubit quantum register, we show how to isolate a few proximal nuclear spins from the rest of the environment and use them for the quantum register. We also demonstrate experimentally that the nuclear spin coherence is only weakly perturbed under optical illumination, which allows us to implement quantum logical operations that use the nuclear spins to assist the repetitive-readout of the electronic spin. Using this technique, we demonstrate more than two-fold improvement in signal-to-noise ratio. Apart from direct application to enhance the sensitivity of the NV-based nano-magnetometer, this experiment represents an important step towards the realization of robust quantum information processors using electronic and nuclear spin qubits. We then study realizations of quantum repeaters for long distance quantum communication. Specifically, we develop an efficient scheme for quantum repeaters based on atomic ensembles. We use dynamic programming to optimize various quantum repeater protocols. In addition, we propose a new protocol of quantum repeater with encoding, which efficiently uses local resources (about 100 qubits) to identify and correct errors, to achieve fast one-way quantum communication over long distances. Finally, we explore quantum systems with topological order. Such systems can exhibit remarkable phenomena such as quasiparticles with anyonic statistics and have been proposed as
The quantum Hall effects: Philosophical approach
NASA Astrophysics Data System (ADS)
Lederer, P.
2015-05-01
The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.
Quantum approach to Bertrand duopoly
NASA Astrophysics Data System (ADS)
Fraçkiewicz, Piotr; Sładkowski, Jan
2016-09-01
The aim of the paper is to study the Bertrand duopoly example in the quantum domain. We use two ways to write the game in terms of quantum theory. The first one adapts the Li-Du-Massar scheme for the Cournot duopoly. The second one is a simplified model that exploits a two qubit entangled state. In both cases, we focus on finding Nash equilibria in the resulting games. Our analysis allows us to take another look at the classic model of Bertrand.
Quantum approach to Bertrand duopoly
NASA Astrophysics Data System (ADS)
Fra¸ckiewicz, Piotr; Sładkowski, Jan
2016-06-01
The aim of the paper is to study the Bertrand duopoly example in the quantum domain. We use two ways to write the game in terms of quantum theory. The first one adapts the Li-Du-Massar scheme for the Cournot duopoly. The second one is a simplified model that exploits a two qubit entangled state. In both cases, we focus on finding Nash equilibria in the resulting games. Our analysis allows us to take another look at the classic model of Bertrand.
Number-resolved master equation approach to quantum measurement and quantum transport
NASA Astrophysics Data System (ADS)
Li, Xin-Qi
2016-08-01
In addition to the well-known Landauer-Büttiker scattering theory and the nonequilibrium Green's function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the particle-number ( n)-resolved master equation ( n-ME) approach and its systematic applications in quantum measurement and quantum transport problems. The n-ME contains rich dynamical information, allowing efficient study of topics such as shot noise and full counting statistics analysis. Moreover, we also review a newly developed master equation approach (and its n-resolved version) under self-consistent Born approximation. The application potential of this new approach is critically examined via its ability to recover the exact results for noninteracting systems under arbitrary voltage and in presence of strong quantum interference, and the challenging non-equilibrium Kondo effect.
Universal freezing of quantum correlations within the geometric approach
Cianciaruso, Marco; Bromley, Thomas R.; Roga, Wojciech; Lo Franco, Rosario; Adesso, Gerardo
2015-01-01
Quantum correlations in a composite system can be measured by resorting to a geometric approach, according to which the distance from the state of the system to a suitable set of classically correlated states is considered. Here we show that all distance functions, which respect natural assumptions of invariance under transposition, convexity, and contractivity under quantum channels, give rise to geometric quantifiers of quantum correlations which exhibit the peculiar freezing phenomenon, i.e., remain constant during the evolution of a paradigmatic class of states of two qubits each independently interacting with a non-dissipative decohering environment. Our results demonstrate from first principles that freezing of geometric quantum correlations is independent of the adopted distance and therefore universal. This finding paves the way to a deeper physical interpretation and future practical exploitation of the phenomenon for noisy quantum technologies. PMID:26053239
NASA Astrophysics Data System (ADS)
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.
Numerical canonical transformation approach to quantum many-body problems
NASA Astrophysics Data System (ADS)
White, Steven R.
2002-10-01
We present a new approach for numerical solutions of ab initio quantum chemistry systems. The main idea of the approach, which we call canonical diagonalization, is to diagonalize directly the second-quantized Hamiltonian by a sequence of numerical canonical transformations.
Avoiding irreversible dynamics in quantum systems
NASA Astrophysics Data System (ADS)
Karasik, Raisa Iosifovna
2009-10-01
Devices that exploit laws of quantum physics offer revolutionary advances in computation and communication. However, building such devices presents an enormous challenge, since it would require technologies that go far beyond current capabilities. One of the main obstacles to building a quantum computer and devices needed for quantum communication is decoherence or noise that originates from the interaction between a quantum system and its environment, and which leads to the destruction of the fragile quantum information. Encoding into decoherence-free subspaces (DFS) provides an important strategy for combating decoherence effects in quantum systems and constitutes the focus of my dissertation. The theory of DFS relies on the existence of certain symmetries in the decoherence process, which allow some states of a quantum system to be completely decoupled from the environment and thus to experience no decoherence. In this thesis I describe various approaches to DFS that are developed in the current literature. Although the general idea behind various approaches to DFS is the same, I show that different mathematical definitions of DFS actually have different physical meaning. I provide a rigorous definition of DFS for every approach, explaining its physical meaning and relation to other definitions. I also examine the theory of DFS for Markovian systems. These are systems for which the environment has no memory, i.e., any change in the environment affects the quantum system instantaneously. Examples of such systems include many systems in quantum optics that have been proposed for implementation of a quantum computer, such as atomic and molecular gases, trapped ions, and quantum dots. Here I develop a rigorous theory that provides necessary and sufficient conditions for the existence of DFS. This theory allows us to identify a special new class of DFS that was not known before. Under particular circumstances, dynamics of a quantum system can connive together with
Classical command of quantum systems.
Reichardt, Ben W; Unger, Falk; Vazirani, Umesh
2013-04-25
Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics.
Classical command of quantum systems.
Reichardt, Ben W; Unger, Falk; Vazirani, Umesh
2013-04-25
Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics. PMID:23619692
Quantum Effects in Biological Systems
NASA Astrophysics Data System (ADS)
Roy, Sisir
2014-07-01
The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum thermodynamics: a nonequilibrium Green's function approach.
Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael
2015-02-27
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit. PMID:25768745
Entanglement and dephasing of quantum dissipative systems
Stauber, T.; Guinea, F.
2006-04-15
The von Neumann entropy of various quantum dissipative models is calculated in order to discuss the entanglement properties of these systems. First, integrable quantum dissipative models are discussed, i.e., the quantum Brownian motion and the quantum harmonic oscillator. In the case of the free particle, the related entanglement of formation shows no nonanalyticity. In the case of the dissipative harmonic oscillator, there is a nonanalyticity at the transition of underdamped to overdamped oscillations. We argue that this might be a general property of dissipative systems. We show that similar features arise in the dissipative two-level system and study different regimes using sub-Ohmic, Ohmic, and super-Ohmic baths, within a scaling approach.
Open quantum systems and error correction
NASA Astrophysics Data System (ADS)
Shabani Barzegar, Alireza
Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC
From quantum correlations in dissipative quantum walk to two-qubit systems
NASA Astrophysics Data System (ADS)
Nizama, Marco; Cáceres, Manuel O.
2014-04-01
A dissipative quantum walk (according to the semigroup approach) has been used as the starting point from which to study quantum correlations in an open system. This system is a fruitful model that allows the definition of several bipartite systems (sets of qubits). Thus the quantum correlations and the decoherence properties induced by a phonon bath can be investigated analytically using tools from quantum information. In particular we have studied the negativity, concurrence and quantum discord for different bipartitions in our dissipative system, and we have found analytical expression for these measures, using a local initial condition for the density matrix of the walker. In general quantum correlations are affected by dissipation in a complex non-monotonic way, showing at long time an expected asymptotic decrease with the increase of the dissipation. In addition, our results for the quantum correlations can be used as an indicator of the transition from the quantum to the classical regimen, as has recently been shown experimentally.
Marquette, Ian; Quesne, Christiane
2015-06-15
We extend the construction of 2D superintegrable Hamiltonians with separation of variables in spherical coordinates using combinations of shift, ladder, and supercharge operators to models involving rational extensions of the two-parameter Lissajous systems on the sphere. These new families of superintegrable systems with integrals of arbitrary order are connected with Jacobi exceptional orthogonal polynomials of type I (or II) and supersymmetric quantum mechanics. Moreover, we present an algebraic derivation of the degenerate energy spectrum for the one- and two-parameter Lissajous systems and the rationally extended models. These results are based on finitely generated polynomial algebras, Casimir operators, realizations as deformed oscillator algebras, and finite-dimensional unitary representations. Such results have only been established so far for 2D superintegrable systems separable in Cartesian coordinates, which are related to a class of polynomial algebras that display a simpler structure. We also point out how the structure function of these deformed oscillator algebras is directly related with the generalized Heisenberg algebras spanned by the nonpolynomial integrals.
Bose-Hubbard Hamiltonian: Quantum chaos approach
NASA Astrophysics Data System (ADS)
Kolovsky, Andrey R.
2016-03-01
We discuss applications of the theory of quantum chaos to one of the paradigm models of many-body quantum physics — the Bose-Hubbard (BH) model, which describes, in particular, interacting ultracold Bose atoms in an optical lattice. After preliminary, pure quantum analysis of the system we introduce the classical counterpart of the BH model and the governing semiclassical equations of motion. We analyze these equations for the problem of Bloch oscillations (BOs) of cold atoms where a number of experimental results are available. The paper is written for nonexperts and can be viewed as an introduction to the field.
Decoherence in infinite quantum systems
Blanchard, Philippe; Hellmich, Mario
2012-09-01
We review and discuss a notion of decoherence formulated in the algebraic framework of quantum physics. Besides presenting some sufficient conditions for the appearance of decoherence in the case of Markovian time evolutions we provide an overview over possible decoherence scenarios. The framework for decoherence we establish is sufficiently general to accommodate quantum systems with infinitely many degrees of freedom.
Pachón, Leonardo A; Yu, Li; Brumer, Paul
2013-01-01
The underlying mechanisms for one photon phase control are revealed through a master equation approach. Specifically, two mechanisms are identified, one operating on the laser time scale and the other on the time scale of the system-bath interaction. The effects of the secular and non-secular Markovian approximations are carefully examined.
Quantum Resonance Approach to Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Zak, Michail
1997-01-01
It is shown that quantum resonance can be used for combinatorial optimization. The advantage of the approach is in independence of the computing time upon the dimensionality of the problem. As an example, the solution to a constraint satisfaction problem of exponential complexity is demonstrated.
Quantum dissipation in unbounded systems.
Maddox, Jeremy B; Bittner, Eric R
2002-02-01
In recent years trajectory based methodologies have become increasingly popular for evaluating the time evolution of quantum systems. A revival of the de Broglie--Bohm interpretation of quantum mechanics has spawned several such techniques for examining quantum dynamics from a hydrodynamic perspective. Using techniques similar to those found in computational fluid dynamics one can construct the wave function of a quantum system at any time from the trajectories of a discrete ensemble of hydrodynamic fluid elements (Bohm particles) which evolve according to nonclassical equations of motion. Until very recently these schemes have been limited to conservative systems. In this paper, we present our methodology for including the effects of a thermal environment into the hydrodynamic formulation of quantum dynamics. We derive hydrodynamic equations of motion from the Caldeira-Leggett master equation for the reduced density matrix and give a brief overview of our computational scheme that incorporates an adaptive Lagrangian mesh. Our applications focus upon the dissipative dynamics of open unbounded quantum systems. Using both the Wigner phase space representation and the linear entropy, we probe the breakdown of the Markov approximation of the bath dynamics at low temperatures. We suggest a criteria for rationalizing the validity of the Markov approximation in open unbound systems and discuss decoherence, energy relaxation, and quantum/classical correspondence in the context of the Bohmian paths.
Measuring entanglement entropy in a quantum many-body system
NASA Astrophysics Data System (ADS)
Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus
2016-05-01
The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.
Coherent control in simple quantum systems
NASA Technical Reports Server (NTRS)
Prants, Sergey V.
1995-01-01
Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.
Mechanism for quantum speedup in open quantum systems
NASA Astrophysics Data System (ADS)
Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu
2016-02-01
The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Quantum cryptography approaching the classical limit.
Weedbrook, Christian; Pirandola, Stefano; Lloyd, Seth; Ralph, Timothy C
2010-09-10
We consider the security of continuous-variable quantum cryptography as we approach the classical limit, i.e., when the unknown preparation noise at the sender's station becomes significantly noisy or thermal (even by as much as 10(4) times greater than the variance of the vacuum mode). We show that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is not dependent on the channel transmission, and is therefore incredibly robust against significant amounts of excess preparation noise. We extend these results to consider for the first time quantum cryptography at wavelengths considerably longer than optical and find that regions of security still exist all the way down to the microwave.
Quantum cryptography approaching the classical limit.
Weedbrook, Christian; Pirandola, Stefano; Lloyd, Seth; Ralph, Timothy C
2010-09-10
We consider the security of continuous-variable quantum cryptography as we approach the classical limit, i.e., when the unknown preparation noise at the sender's station becomes significantly noisy or thermal (even by as much as 10(4) times greater than the variance of the vacuum mode). We show that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is not dependent on the channel transmission, and is therefore incredibly robust against significant amounts of excess preparation noise. We extend these results to consider for the first time quantum cryptography at wavelengths considerably longer than optical and find that regions of security still exist all the way down to the microwave. PMID:20867556
Kishi, Ryohei; Fujii, Hiroaki; Minami, Takuya; Shigeta, Yasuteru; Nakano, Masayoshi
2015-01-22
In this study, we apply the ab initio molecular orbital - configuration interaction based quantum master equation (MOQME) approach to the calculation and analysis of the dynamic first hyperpolarizabilities (β) of asymmetric π-conjugated molecules. In this approach, we construct the excited state models by the ab initio configuration interaction singles method. Then, time evolutions of system reduced density matrix ρ(t) and system polarization p(t) are calculated by the QME approach. Dynamic β in the second harmonic generation is calculated based on the nonperturbative definition of nonlinear optical susceptibility, using the frequency domain system polarization p(ω). Spatial contributions of electrons to β are analyzed based on the dynamic hyperpolarizability density map, which visualizes the second-order response of charge density oscillating with a frequency of 2ω. We apply the present method to the calculation of the dynamic β of a series of donor/acceptor substituted polyene oligomers, and then discuss the applicability of the MOQME method to the calculation and analysis of dynamic NLO properties of molecular systems.
NASA Astrophysics Data System (ADS)
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
Quantum localization in open chaotic systems.
Ryu, Jung-Wan; Hur, G; Kim, Sang Wook
2008-09-01
We study a quasibound state of a delta -kicked rotor with absorbing boundaries focusing on the nature of the dynamical localization in open quantum systems. The localization lengths xi of lossy quasibound states located near the absorbing boundaries decrease as they approach the boundary while the corresponding decay rates Gamma are dramatically enhanced. We find the relation xi approximately Gamma(-1/2) and explain it based upon the finite time diffusion, which can also be applied to a random unitary operator model. We conjecture that this idea is valid for the system exhibiting both the diffusion in classical dynamics and the exponential localization in quantum mechanics.
Time-dependent Kohn-Sham approach to quantum electrodynamics
Ruggenthaler, M.; Mackenroth, F.; Bauer, D.
2011-10-15
We prove a generalization of the van Leeuwen theorem toward quantum electrodynamics, providing the formal foundations of a time-dependent Kohn-Sham construction for coupled quantized matter and electromagnetic fields. We circumvent the symmetry-causality problems associated with the action-functional approach to Kohn-Sham systems. We show that the effective external four-potential and four-current of the Kohn-Sham system are uniquely defined and that the effective four-current takes a very simple form. Further we rederive the Runge-Gross theorem for quantum electrodynamics.
Bosson, Maël; Grudinin, Sergei; Redon, Stephane
2013-03-01
We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Incoherent control of locally controllable quantum systems
Dong Daoyi; Zhang Chenbin; Rabitz, Herschel; Pechen, Alexander; Tarn, T.-J.
2008-10-21
An incoherent control scheme for state control of locally controllable quantum systems is proposed. This scheme includes three steps: (1) amplitude amplification of the initial state by a suitable unitary transformation, (2) projective measurement of the amplified state, and (3) final optimization by a unitary controlled transformation. The first step increases the amplitudes of some desired eigenstates and the corresponding probability of observing these eigenstates, the second step projects, with high probability, the amplified state into a desired eigenstate, and the last step steers this eigenstate into the target state. Within this scheme, two control algorithms are presented for two classes of quantum systems. As an example, the incoherent control scheme is applied to the control of a hydrogen atom by an external field. The results support the suggestion that projective measurements can serve as an effective control and local controllability information can be used to design control laws for quantum systems. Thus, this scheme establishes a subtle connection between control design and controllability analysis of quantum systems and provides an effective engineering approach in controlling quantum systems with partial controllability information.
Dynamics of open bosonic quantum systems in coherent state representation
Dalvit, D. A. R.; Berman, G. P.; Vishik, M.
2006-01-15
We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.
Numerical approach for unstructured quantum key distribution.
Coles, Patrick J; Metodiev, Eric M; Lütkenhaus, Norbert
2016-05-20
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study 'unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown.
Numerical approach for unstructured quantum key distribution.
Coles, Patrick J; Metodiev, Eric M; Lütkenhaus, Norbert
2016-01-01
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study 'unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739
Numerical approach for unstructured quantum key distribution
Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert
2016-01-01
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739
Quantum walk public-key cryptographic system
NASA Astrophysics Data System (ADS)
Vlachou, C.; Rodrigues, J.; Mateus, P.; Paunković, N.; Souto, A.
2015-12-01
Quantum Cryptography is a rapidly developing field of research that benefits from the properties of Quantum Mechanics in performing cryptographic tasks. Quantum walks are a powerful model for quantum computation and very promising for quantum information processing. In this paper, we present a quantum public-key cryptographic system based on quantum walks. In particular, in the proposed protocol the public-key is given by a quantum state generated by performing a quantum walk. We show that the protocol is secure and analyze the complexity of public key generation and encryption/decryption procedures.
Duality quantum algorithm efficiently simulates open quantum systems
NASA Astrophysics Data System (ADS)
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Duality quantum algorithm efficiently simulates open quantum systems.
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Duality quantum algorithm efficiently simulates open quantum systems.
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-07-28
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d(3)) in contrast to O(d(4)) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm.
Duality quantum algorithm efficiently simulates open quantum systems
Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855
Quantum dynamics of nonlinear cavity systems
NASA Astrophysics Data System (ADS)
Nation, Paul David
In this work we investigate the quantum dynamics of three different configurations of nonlinear cavity systems. We begin by carrying out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprising a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing an external flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal and noise response where it is found that a soft-spring Duffing self-interaction enables a closer approach to the displacement detection standard quantum limit, as well as cooling closer to the ground state. Next, we consider the use of a superconducting transmission line formed from an array of dc-SQUIDs for investigating analogue Hawking radiation. We will show that biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. As a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process. Finally, we investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. The conditions are derived under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviation occurs once the pump mode (black hole) has released nearly half of its initial energy in the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum
Quantum energy teleportation in a quantum Hall system
Yusa, Go; Izumida, Wataru; Hotta, Masahiro
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
The SCOP-formalism: an Operational Approach to Quantum Mechanics
NASA Astrophysics Data System (ADS)
D'Hooghe, Bart
2010-05-01
We present the SCOP-formalism, an operational approach to quantum mechanics. If a State—COntext—Property—System (SCOP) satisfies a specific set of `quantum axioms,] it fits in a quantum mechanical representation in Hilbert space. We present a model in which the maximal change of state of the system due to interaction with the measurement context is controlled by a parameter N. In the case N = 2 the system reduces to a model for the spin measurements on a quantum spin-1/2 particle. In the limit N→∞ the system is classical. For the intermediate cases it is impossible to define an orthocomplementation on the set of properties. Another interesting feature is that the probability of a state transition also depends on the context which induces it. This contrasts sharply with standard quantum mechanics for which Gleason's theorem states the uniqueness of the state transition probability and independent of measurement context. We show that if a SCOP satisfies a Gleason-like condition, namely that all state transition probabilities are independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented.
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Reduced Operator Approximation for Modelling Open Quantum Systems
NASA Astrophysics Data System (ADS)
Werpachowska, A.
2015-06-01
We present the reduced operator approximation: a simple, physically transparent and computationally efficient method of modelling open quantum systems. It employs the Heisenberg picture of the quantum dynamics, which allows us to focus on the system degrees of freedom in a natural and easy way. We describe different variants of the method, low- and high-order in the system-bath interaction operators, defining them for either general quantum harmonic oscillator baths or specialising them for independent baths with Lorentzian spectral densities. Its wide applicability is demonstrated on the examples of systems coupled to different baths (with varying system-bath interaction strength and bath memory length), and compared with the exact pseudomode and the popular quantum state diffusion approach. The method captures the decoherence of the system interacting with the bath, while conserving the total energy. Our results suggest that quantum coherence effects persist in open quantum systems for much longer times than previously thought.
Green-function approach for scattering quantum walks
Andrade, F. M.; Luz, M. G. E. da
2011-10-15
In this work a Green-function approach for scattering quantum walks is developed. The exact formula has the form of a sum over paths and always can be cast into a closed analytic expression for arbitrary topologies and position-dependent quantum amplitudes. By introducing the step and path operators, it is shown how to extract any information about the system from the Green function. The method's relevant features are demonstrated by discussing in detail an example, a general diamond-shaped graph.
Coupled-Channels Approach for Dissipative Quantum Dynamics in Near-Barrier Collisions
Diaz-Torres, A.; Hinde, D. J.; Dasgupta, M.; Milburn, G. J.; Tostevin, J. A.
2009-03-04
A novel quantum dynamical model based on the dissipative quantum dynamics of open quantum systems is presented. It allows the treatment of both deep-inelastic processes and quantum tunneling (fusion) within a fully quantum mechanical coupled-channels approach. Model calculations show the transition from pure state (coherent) to mixed state (decoherent and dissipative) dynamics during a near-barrier nuclear collision. Energy dissipation, due to irreversible decay of giant-dipole excitations of the interacting nuclei, results in hindrance of quantum tunneling.
Quantum Entanglement and Quantum Discord in Gaussian Open Systems
Isar, Aurelian
2011-10-03
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that quantum discord decays asymptotically in time under the effect of the thermal bath.
Quantum cloning attacks against PUF-based quantum authentication systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Gao, Ming; Li, Mo; Zhang, Jian
2016-08-01
With the advent of physical unclonable functions (PUFs), PUF-based quantum authentication systems have been proposed for security purposes, and recently, proof-of-principle experiment has been demonstrated. As a further step toward completing the security analysis, we investigate quantum cloning attacks against PUF-based quantum authentication systems and prove that quantum cloning attacks outperform the so-called challenge-estimation attacks. We present the analytical expression of the false-accept probability by use of the corresponding optimal quantum cloning machines and extend the previous results in the literature. In light of these findings, an explicit comparison is made between PUF-based quantum authentication systems and quantum key distribution protocols in the context of cloning attacks. Moreover, from an experimental perspective, a trade-off between the average photon number and the detection efficiency is discussed in detail.
Quantization and Quantum-Like Phenomena: A Number Amplitude Approach
NASA Astrophysics Data System (ADS)
Robinson, T. R.; Haven, E.
2015-12-01
Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
NASA Astrophysics Data System (ADS)
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
-stationary systems, they nonetheless show some general trends. However, readers should remember that these comments represent the personal points of view of their authors. About a third of the comments are devoted to the evolution of quantum systems in the presence of dissipation or other sources of decoherence. This area, started by Landau in 1927, still contains many extremely interesting and unsolved problems. Here they are discussed in view of such different applications as the dynamics of quantum entanglement, cavity QED, optomechanics and the dynamical Casimir effect. Another group of comments deals with different (e.g. geometrical, tomographic, PT-symmetric) approaches to the dynamics of quantum systems, which have been developed in the past two decades. In particular, the problem of transition from quantum to classical description is considered and the inequalities generalizing the standard uncertainty relations are discussed in this connection. Three comments are devoted to the applications of nonclassical states, analytic representations and the algebraic techniques for resolving problems in quantum information and quantum statistical physics. The other contributions are related to different aspects of the dynamics of concrete physical systems, such as the wave-packet approach to the description of transport phenomena in mesoscopic systems, tunneling phenomena in low-dimensional semiconductor structures and resonance states of two-electron quantum dots. We thank all the authors and referees for their efforts in preparing this special issue. We hope that the comments in this collection will be useful for interested readers.
Control of the quantum open system via quantum generalized measurement
Zhang Ming; Zhu Xiaocai; Li Xingwei; Hu Dewen; Dai Hongyi
2006-03-15
For any specified pure state of quantum open system, we can construct a kind of quantum generalized measurement (QGM) that the state of the system after measurement will be deterministically collapsed into the specified pure state from any initial state. In other words, any pure state of quantum open system is reachable by QGM. Subsequently, whether the qubit is density matrix controllable is discussed in the case of pure dephasing. Our results reveal that combining QGM with coherent control will enhance the ability of controlling the quantum open system. Furthermore, it is found that the ability to perform QGM on the quantum open system, combined with the ability of coherence control and conditions of decoherence-free subspace, allows us to suppress quantum decoherence.
Biosensing with Quantum Dots: A Microfluidic Approach
Vannoy, Charles H.; Tavares, Anthony J.; Noor, M. Omair; Uddayasankar, Uvaraj; Krull, Ulrich J.
2011-01-01
Semiconductor quantum dots (QDs) have served as the basis for signal development in a variety of biosensing technologies and in applications using bioprobes. The use of QDs as physical platforms to develop biosensors and bioprobes has attracted considerable interest. This is largely due to the unique optical properties of QDs that make them excellent choices as donors in fluorescence resonance energy transfer (FRET) and well suited for optical multiplexing. The large majority of QD-based bioprobe and biosensing technologies that have been described operate in bulk solution environments, where selective binding events at the surface of QDs are often associated with relatively long periods to reach a steady-state signal. An alternative approach to the design of biosensor architectures may be provided by a microfluidic system (MFS). A MFS is able to integrate chemical and biological processes into a single platform and allows for manipulation of flow conditions to achieve, by sample transport and mixing, reaction rates that are not entirely diffusion controlled. Integrating assays in a MFS provides numerous additional advantages, which include the use of very small amounts of reagents and samples, possible sample processing before detection, ultra-high sensitivity, high throughput, short analysis time, and in situ monitoring. Herein, a comprehensive review is provided that addresses the key concepts and applications of QD-based microfluidic biosensors with an added emphasis on how this combination of technologies provides for innovations in bioassay designs. Examples from the literature are used to highlight the many advantages of biosensing in a MFS and illustrate the versatility that such a platform offers in the design strategy. PMID:22163723
NASA Astrophysics Data System (ADS)
Makino, Hironori; Minami, Nariyuki
2014-07-01
The theory of the quantal level statistics of a classically integrable system, developed by Makino et al. in order to investigate the non-Poissonian behaviors of level-spacing distribution (LSD) and level-number variance (LNV) [H. Makino and S. Tasaki, Phys. Rev. E 67, 066205 (2003); H. Makino and S. Tasaki, Prog. Theor. Phys. Suppl. 150, 376 (2003); H. Makino, N. Minami, and S. Tasaki, Phys. Rev. E 79, 036201 (2009); H. Makino and S. Tasaki, Prog. Theor. Phys. 114, 929 (2005)], is successfully extended to the study of the E(K,L) function, which constitutes a fundamental measure to determine most statistical observables of quantal levels in addition to LSD and LNV. In the theory of Makino et al., the eigenenergy level is regarded as a superposition of infinitely many components whose formation is supported by the Berry-Robnik approach in the far semiclassical limit [M. Robnik, Nonlinear Phenom. Complex Syst. 1, 1 (1998)]. We derive the limiting E(K,L) function in the limit of infinitely many components and elucidate its properties when energy levels show deviations from the Poisson statistics.
Thermalization of trapped ions: A quantum perturbation approach
NASA Astrophysics Data System (ADS)
Lamoreaux, S. K.
1997-12-01
The rate at which external random thermal fluctuations drive transitions between, and cause decoherence of, the near ground vibrational (harmonic oscillator) quantum states of trapped cold ions is of crucial importance in relation to quantum computing. Presented here is an estimate of these rates, for a single trapped ion, based on a quantum perturbation approach where an external thermal energy reservoir is electrically coupled to the ion. The results are for a general system, and it is shown that the relevant parameter in the interpretation of experimentally observed heating rates is the correlation time of the fluctuations. The rates due to the fluctuating electric field associated with blackbody radiation are also considered and shown to be negligible.
Constructing quantum games from a system of Bell's inequalities
NASA Astrophysics Data System (ADS)
Iqbal, Azhar; Abbott, Derek
2010-07-01
We report constructing quantum games directly from a system of Bell's inequalities using Arthur Fine's analysis published in early 1980s. This analysis showed that such a system of inequalities forms a set of both necessary and sufficient conditions required to find a joint distribution function compatible with a given set of joint probabilities, in terms of which the system of Bell's inequalities is usually expressed. Using the setting of a quantum correlation experiment for playing a quantum game, and considering the examples of Prisoners' Dilemma and Matching Pennies, we argue that this approach towards constructing quantum games addresses some of their well-known criticisms.
Alternative algebraic approaches in quantum chemistry
Mezey, Paul G.
2015-01-22
Various algebraic approaches of quantum chemistry all follow a common principle: the fundamental properties and interrelations providing the most essential features of a quantum chemical representation of a molecule or a chemical process, such as a reaction, can always be described by algebraic methods. Whereas such algebraic methods often provide precise, even numerical answers, nevertheless their main role is to give a framework that can be elaborated and converted into computational methods by involving alternative mathematical techniques, subject to the constraints and directions provided by algebra. In general, algebra describes sets of interrelations, often phrased in terms of algebraic operations, without much concern with the actual entities exhibiting these interrelations. However, in many instances, the very realizations of two, seemingly unrelated algebraic structures by actual quantum chemical entities or properties play additional roles, and unexpected connections between different algebraic structures are often giving new insight. Here we shall be concerned with two alternative algebraic structures: the fundamental group of reaction mechanisms, based on the energy-dependent topology of potential energy surfaces, and the interrelations among point symmetry groups for various distorted nuclear arrangements of molecules. These two, distinct algebraic structures provide interesting interrelations, which can be exploited in actual studies of molecular conformational and reaction processes. Two relevant theorems will be discussed.
Quantum Indeterminacy of Cosmic Systems
Hogan, Craig J.
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Taubman, Matthew S.; Myers, Tanya L.; Bernacki, Bruce E.; Stahl, Robert D.; Cannon, Bret D.; Schiffern, John T.; Phillips, Mark C.
2012-04-01
A multi-channel laser-based chemical sensor platform is presented, in which a modular architecture allows the exchange of complete sensor channels without disruption to overall operation. Each sensor channel contains custom optical and electronics packages, which can be selected to access laser wavelengths, interaction path lengths and modulation techniques optimal for a given application or mission. Although intended primarily to accommodate mid-infrared (MIR) external cavity quantum cascade lasers (ECQCLs)and astigmatic Herriott cells, channels using visible or near infrared (NIR) lasers or other gas cell architectures can also be used, making this a truly versatile platform. Analog and digital resources have been carefully chosen to facilitate small footprint, rapid spectral scanning, ow-noise signal recovery, failsafe autonomous operation, and in-situ chemometric data analysis, storage and transmission. Results from the demonstration of a two-channel version of this platform are also presented.
Advances in Quantum Trajectory Approaches to Dynamics
NASA Astrophysics Data System (ADS)
Askar, Attila
2001-03-01
The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)
Novel Numerical Approaches to Loop Quantum Cosmology
NASA Astrophysics Data System (ADS)
Diener, Peter
2015-04-01
Loop Quantum Gravity (LQG) is an (as yet incomplete) approach to the quantization of gravity. When applied to symmetry reduced cosmological spacetimes (Loop Quantum Cosmology or LQC) one of the predictions of the theory is that the Big Bang is replaced by a Big Bounce, i.e. a previously existing contracting universe underwent a bounce at finite volume before becoming our expanding universe. The evolution equations of LQC take the form of difference equations (with the discretization given by the theory) that in the large volume limit can be approximated by partial differential equations (PDEs). In this talk I will first discuss some of the unique challenges encountered when trying to numerically solve these difference equations. I will then present some of the novel approaches that have been employed to overcome the challenges. I will here focus primarily on the Chimera scheme that takes advantage of the fact that the LQC difference equations can be approximated by PDEs in the large volume limit. I will finally also briefly discuss some of the results that have been obtained using these numerical techniques by performing simulations in regions of parameter space that were previously unreachable. This work is supported by a grant from the John Templeton Foundation and by NSF grant PHYS1068743.
Polygamy of entanglement in multipartite quantum systems
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2009-08-01
We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.
Investigating non-Markovian dynamics of quantum open systems
NASA Astrophysics Data System (ADS)
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
Hybrid quantum systems with ultracold spins and optomechanics
NASA Astrophysics Data System (ADS)
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Date, Aditya; Schwab, Keith; Meystre, Pierre; Vengalattore, Mukund
2016-05-01
Linear cavity optomechanics has enabled radiation pressure cooling and sensing of mechanical resonators at the quantum limits. However, exciting and unrealized avenues such as generating massive macroscopic nonclassical states, quantum signal transduction, and phonon-based manybody physics each require strong, nonlinear interactions. In our group, we are exploring three approaches to realizing strong optomechanical nonlinearities - i. using atomically thin graphene membranes, ii. coupling optomechanical systems with ultracold atomic spins, and iii. using microtoroidal optomechanical resonators strongly coupled to atoms trapped in their evanescent fields. We describe our progress in each of these efforts and discuss ongoing studies on various aspects of quantum enhanced metrology, nonequilibrium dynamics of open quantum systems and quantum transduction using these novel hybrid quantum systems. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
Software Systems for High-performance Quantum Computing
Humble, Travis S; Britt, Keith A
2016-01-01
Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.
Quantum-information processing in disordered and complex quantum systems
Sen, Aditi; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej
2006-12-15
We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations.
Supersymmetric biorthogonal quantum systems
Curtright, Thomas; Mezincescu, Luca; Schuster, David
2007-09-15
We discuss supersymmetric biorthogonal systems, with emphasis given to the periodic solutions that occur at spectral singularities of PT symmetric models. For these periodic solutions, the dual functions are associated polynomials that obey inhomogeneous equations. We construct in detail some explicit examples for the supersymmetric pairs of potentials V{sub {+-}}(z)=-U(z){sup 2}{+-}z(d/dz)U(z) where U(z){identical_to}{sigma}{sub k>0}{upsilon}{sub k}z{sup k}. In particular, we consider the cases generated by U(z)=z and z/(1-z). We also briefly consider the effects of magnetic vector potentials on the partition functions of these systems.
Exchange fluctuation theorem for correlated quantum systems.
Jevtic, Sania; Rudolph, Terry; Jennings, David; Hirono, Yuji; Nakayama, Shojun; Murao, Mio
2015-10-01
We extend the exchange fluctuation theorem for energy exchange between thermal quantum systems beyond the assumption of molecular chaos, and describe the nonequilibrium exchange dynamics of correlated quantum states. The relation quantifies how the tendency for systems to equilibrate is modified in high-correlation environments. In addition, a more abstract approach leads us to a "correlation fluctuation theorem". Our results elucidate the role of measurement disturbance for such scenarios. We show a simple application by finding a semiclassical maximum work theorem in the presence of correlations. We also present a toy example of qubit-qudit heat exchange, and find that non-classical behaviour such as deterministic energy transfer and anomalous heat flow are reflected in our exchange fluctuation theorem. PMID:26565174
The Quantum as an Emergent System
NASA Astrophysics Data System (ADS)
Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.
2012-05-01
Double slit interference is explained with the aid of what we call "21st century classical physics". We model a particle as an oscillator ("bouncer") in a thermal context, which is given by some assumed "zero-point" field of the vacuum. In this way, the quantum is understood as an emergent system, i.e., a steady-state system maintained by a constant throughput of (vacuum) energy. To account for the particle's thermal environment, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a particle can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. Further, particular features of the relative phase are shown to be responsible for nonlocal effects not only in ordinary quantum theory, but also in our classical approach.
Dissipative Properties of Quantum Systems
Grecos, A. P.; Prigogine, I.
1972-01-01
We consider the dissipative properties of large quantum systems from the point of view of kinetic theory. The existence of a nontrivial collision operator imposes restrictions on the possible collisional invariants of the system. We consider a model in which a discrete level is coupled to a set of quantum states and which, in the limit of a large “volume,” becomes the Friedrichs model. Because of its simplicity this model allows a direct calculation of the collision operator as well as of related operators and the constants of the motion. For a degenerate spectrum the calculations become more involved but the conclusions remain simple. The special role played by the invariants that are functions of the Hamiltonion is shown to be a direct consequence of the existence of a nonvanishing collision operator. For a class of observables we obtain ergodic behavior, and this reformulation of the ergodic problem may be used in statistical mechanics to study the ergodicity of large quantum systems containing a small physical parameter such as the coupling constant or the concentration. PMID:16591994
Quantum Chaotic Attractor in a Dissipative System
NASA Astrophysics Data System (ADS)
Liu, W. Vincent; Schieve, William C.
1997-04-01
A dissipative quantum system is treated here by coupling it with a heat bath of harmonic oscillators. Through quantum Langevin equations and Ehrenfest's theorem, we establish explicitly the quantum Duffing equations with a double-well potential chosen. A quantum noise term appears the only driving force in dynamics. Numerical studies show that the chaotic attractor exists in this system while chaos is certainly forbidden in the classical counterpart.
Repeated interactions in open quantum systems
Bruneau, Laurent; Joye, Alain; Merkli, Marco
2014-07-15
Analyzing the dynamics of open quantum systems has a long history in mathematics and physics. Depending on the system at hand, basic physical phenomena that one would like to explain are, for example, convergence to equilibrium, the dynamics of quantum coherences (decoherence) and quantum correlations (entanglement), or the emergence of heat and particle fluxes in non-equilibrium situations. From the mathematical physics perspective, one of the main challenges is to derive the irreversible dynamics of the open system, starting from a unitary dynamics of the system and its environment. The repeated interactions systems considered in these notes are models of non-equilibrium quantum statistical mechanics. They are relevant in quantum optics, and more generally, serve as a relatively well treatable approximation of a more difficult quantum dynamics. In particular, the repeated interaction models allow to determine the large time (stationary) asymptotics of quantum systems out of equilibrium.
Quantum state engineering in hybrid open quantum systems
NASA Astrophysics Data System (ADS)
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Maxwell's demons in multipartite quantum correlated systems
NASA Astrophysics Data System (ADS)
Braga, Helena C.; Rulli, Clodoaldo C.; de Oliveira, Thiago R.; Sarandy, Marcelo S.
2014-10-01
We investigate the extraction of thermodynamic work by a Maxwell's demon in a multipartite quantum correlated system. We begin by adopting the standard model of a Maxwell's demon as a Turing machine, either in a classical or quantum setup depending on its ability to implement classical or quantum conditional dynamics. Then, for an n -partite system (A1,A2,⋯,An) , we introduce a protocol of work extraction that bounds the advantage of the quantum demon over its classical counterpart through the amount of multipartite quantum correlation present in the system, as measured by a thermal version of the global quantum discord. This result is illustrated for an arbitrary n -partite pure state of qubits with Schmidt decomposition, where it is shown that the thermal global quantum discord exactly quantifies the quantum advantage. Moreover, we also consider the work extraction via mixed multipartite states, where examples of tight upper bounds can be obtained.
Superlogic manifolds and geometric approach to quantum logic
NASA Astrophysics Data System (ADS)
da Costa, Newton; Kouneiher, Joseph
2016-10-01
The main purpose of this paper is to present a new approach to logic or what we will call superlogic. This approach constitutes a new way of looking at the connection between quantum mechanics and logic. It is a geometrization of the quantum logic. Note that this superlogic is not distributive reflecting a good propriety to describe quantum mechanics, non-commutative spaces and contains a nilpotent element.
NASA Astrophysics Data System (ADS)
Cui, Ping
celebrated Marcus' inversion and Kramers' turnover behaviors, the new theory also shows some distinct quantum solvation effects that can alter the ET mechanism. Moreover, the present theory predicts further for the ET reaction thermodynamics, such as equilibrium Gibbs free-energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. In Chapter 6, we discuss the constructed QDTs, in terms of their unified mathematical structure that supports a linear dynamics space, and thus facilitates their applications to various physical problems. The involving details are exemplified with the CODDE form of QDT. As the linear space is concerned, we identify the Schrodinger versus Heisenberg picture and the forward versus backward propagation of the reduced, dissipative Liouville dynamics. For applications we discuss the reduced linear response theory and the optimal control problems, in which the correlated effects of non-Markovian dissipation and field driving are shown to be important. In Chapter 7, we turn to quantum transport, i.e., electric current through molecular or mesoscopic systems under finite applied voltage. By viewing the nonequilibrium transport setup as a quantum open system, we develop a reduced-density-matrix approach to quantum transport. The resulting current is explicitly expressed in terms of the molecular reduced density matrix by tracing out the degrees of freedom of the electrodes at finite bias and temperature. We propose a conditional quantum master equation theory, which is an extension of the conventional (or unconditional) QDT by tracing out the well-defined bath subsets individually, instead of the entire bath degrees of freedom. Both the current and the noise spectrum can be conveniently analyzed in terms of the conditional reduced density matrix dynamics. By far, the QDT (including the conditional one) has only been exploited in second-order form. A self-consistent Born approximation for the system
Simulation of n-qubit quantum systems. III. Quantum operations
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2007-05-01
During the last decade, several quantum information protocols, such as quantum key distribution, teleportation or quantum computation, have attracted a lot of interest. Despite the recent success and research efforts in quantum information processing, however, we are just at the beginning of understanding the role of entanglement and the behavior of quantum systems in noisy environments, i.e. for nonideal implementations. Therefore, in order to facilitate the investigation of entanglement and decoherence in n-qubit quantum registers, here we present a revised version of the FEYNMAN program for working with quantum operations and their associated (Jamiołkowski) dual states. Based on the implementation of several popular decoherence models, we provide tools especially for the quantitative analysis of quantum operations. Apart from the implementation of different noise models, the current program extension may help investigate the fragility of many quantum states, one of the main obstacles in realizing quantum information protocols today. Program summaryTitle of program: Feynman Catalogue identifier: ADWE_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v3_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: None Operating systems: Any system that supports MAPLE; tested under Microsoft Windows XP, SuSe Linux 10 Program language used:MAPLE 10 Typical time and memory requirements: Most commands that act upon quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 processor with ⩾2 GHz or equivalent) and 5-20 MB of memory. Especially when working with symbolic expressions, however, the memory and time requirements critically depend on the number of qubits in the quantum registers, owing to the exponential dimension growth of the associated Hilbert space. For example, complex (symbolic) noise models (with several Kraus operators) for multi-qubit systems
Quantum chaos in nanoelectromechanical systems
NASA Astrophysics Data System (ADS)
Gusso, André; da Luz, M. G. E.; Rego, Luis G. C.
2006-01-01
We present a theoretical study of the electron-phonon coupling in suspended nanoelectromechanical systems and investigate the resulting quantum chaotic behavior. The phonons are associated with the vibrational modes of a suspended rectangular dielectric plate, with free or clamped boundary conditions, whereas the electrons are confined to a large quantum dot (QD) on the plate’s surface. The deformation potential and piezoelectric interactions are considered. By performing standard energy-level statistics we demonstrate that the spectral fluctuations exhibit the same distributions as those of the Gaussian orthogonal ensemble or the Gaussian unitary ensemble (GUE), therefore evidencing the emergence of quantum chaos. That is verified for a large range of material and geometry parameters. In particular, the GUE statistics occurs only in the case of a circular QD. It represents an anomalous phenomenon, previously reported for just a small number of systems, since the problem is time-reversal invariant. The obtained results are explained through a detailed analysis of the Hamiltonian matrix structure.
Enhanced autocompensating quantum cryptography system.
Bethune, Donald S; Navarro, Martha; Risk, William P
2002-03-20
We have improved the hardware and software of our autocompensating system for quantum key distribution by replacing bulk optical components at the end stations with fiber-optic equivalents and implementing software that synchronizes end-station activities, communicates basis choices, corrects errors, and performs privacy amplification over a local area network. The all-fiber-optic arrangement provides stable, efficient, and high-contrast routing of the photons. The low-bit error rate leads to high error-correction efficiency and minimizes data sacrifice during privacy amplification. Characterization measurements made on a number of commercial avalanche photodiodes are presented that highlight the need for improved devices tailored specifically for quantum information applications. A scheme for frequency shifting the photons returning from Alice's station to allow them to be distinguished from backscattered noise photons is also described.
Global quantum discord in multipartite systems
Rulli, C. C.; Sarandy, M. S.
2011-10-15
We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be nonnegative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ (Greenberger-Horne-Zeilinger) state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.
On Mathematical Modeling Of Quantum Systems
Achuthan, P.; Narayanankutty, Karuppath
2009-07-02
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
On Mathematical Modeling Of Quantum Systems
NASA Astrophysics Data System (ADS)
Achuthan, P.; Narayanankutty, Karuppath
2009-07-01
The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.
Green's function approach for quantum graphs: An overview
NASA Astrophysics Data System (ADS)
Andrade, Fabiano M.; Schmidt, A. G. M.; Vicentini, E.; Cheng, B. K.; da Luz, M. G. E.
2016-08-01
Here we review the many aspects and distinct phenomena associated to quantum dynamics on general graph structures. For so, we discuss such class of systems under the energy domain Green's function (G) framework. This approach is particularly interesting because G can be written as a sum over classical-like paths, where local quantum effects are taken into account through the scattering matrix elements (basically, transmission and reflection amplitudes) defined on each one of the graph vertices. Hence, the exact G has the functional form of a generalized semiclassical formula, which through different calculation techniques (addressed in detail here) always can be cast into a closed analytic expression. It allows to solve exactly arbitrary large (although finite) graphs in a recursive and fast way. Using the Green's function method, we survey many properties of open and closed quantum graphs as scattering solutions for the former and eigenspectrum and eigenstates for the latter, also considering quasi-bound states. Concrete examples, like cube, binary trees and Sierpiński-like topologies are presented. Along the work, possible distinct applications using the Green's function methods for quantum graphs are outlined.
Calvani, Dario; Cuccoli, Alessandro; Gidopoulos, Nikitas I.; Verrucchi, Paola
2013-01-01
The behavior of most physical systems is affected by their natural surroundings. A quantum system with an environment is referred to as open, and its study varies according to the classical or quantum description adopted for the environment. We propose an approach to open quantum systems that allows us to follow the cross-over from quantum to classical environments; to achieve this, we devise an exact parametric representation of the principal system, based on generalized coherent states for the environment. The method is applied to the Heisenberg star with frustration, where the quantum character of the environment varies with the couplings entering the Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it were in an effective magnetic field, pointing in the direction set by the environmental coherent-state angle variables , and broadened according to their quantum probability distribution. Such distribution is independent of φ, whereas as a function of θ is seen to get narrower as the quantum character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In such limit, because φ is left undetermined, the Von Neumann entropy of the central spin remains finite; in fact, it is equal to the entanglement of the original fully quantum model, a result that establishes a relation between this latter quantity and the Berry phase characterizing the dynamics of the central spin in the effective magnetic field. PMID:23572581
Calvani, Dario; Cuccoli, Alessandro; Gidopoulos, Nikitas I; Verrucchi, Paola
2013-04-23
The behavior of most physical systems is affected by their natural surroundings. A quantum system with an environment is referred to as open, and its study varies according to the classical or quantum description adopted for the environment. We propose an approach to open quantum systems that allows us to follow the cross-over from quantum to classical environments; to achieve this, we devise an exact parametric representation of the principal system, based on generalized coherent states for the environment. The method is applied to the s = 1/2 Heisenberg star with frustration, where the quantum character of the environment varies with the couplings entering the Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it were in an effective magnetic field, pointing in the direction set by the environmental coherent-state angle variables (θ, ϕ), and broadened according to their quantum probability distribution. Such distribution is independent of ϕ, whereas as a function of θ is seen to get narrower as the quantum character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In such limit, because ϕ is left undetermined, the Von Neumann entropy of the central spin remains finite; in fact, it is equal to the entanglement of the original fully quantum model, a result that establishes a relation between this latter quantity and the Berry phase characterizing the dynamics of the central spin in the effective magnetic field.
A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics
ERIC Educational Resources Information Center
Pujol, O.; Perez, J. P.
2007-01-01
The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…
Information-Technology Approach to Quantum Feedback Control
NASA Astrophysics Data System (ADS)
Dong, Dao-Yi; Zhang, Chen-Bin; Chen, Zong-Hai; Chen, Chun-Lin
Quantum control theory is profitably reexamined from the perspective of quantum information, two results on the role of quantum information technology in quantum feedback control are presented and two quantum feedback control schemes, teleportation-based distant quantum feedback control and quantum feedback control with quantum cloning, are proposed. In the first feedback scheme, the output from the quantum system to be controlled is fed back into the distant actuator via teleportation to alter the dynamics of system. The result theoretically shows that it can accomplish some tasks such as distant feedback quantum control that Markovian or Bayesian quantum feedback can not complete. In the second feedback strategy, the design of quantum feedback control algorithms is separated into a state recognition step, which gives "on-off" signal to the actuator through recognizing some copies from the cloning machine, and a feedback (control) step using another copies of cloning machine. A compromise between information acquisition and measurement disturbance is established, and this strategy can perform some quantum control tasks with coherent feedback.
Anonymous voting for multi-dimensional CV quantum system
NASA Astrophysics Data System (ADS)
Rong-Hua, Shi; Yi, Xiao; Jin-Jing, Shi; Ying, Guo; Moon-Ho, Lee
2016-06-01
We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012), and the MEST-NRF of Korea (Grant No. 2012-002521).
Anonymous voting for multi-dimensional CV quantum system
NASA Astrophysics Data System (ADS)
Rong-Hua, Shi; Yi, Xiao; Jin-Jing, Shi; Ying, Guo; Moon-Ho, Lee
2016-06-01
We investigate the design of anonymous voting protocols, CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables (CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy. The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission, which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states. It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security, especially in large-scale votes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61272495, 61379153, and 61401519), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130162110012), and the MEST-NRF of Korea (Grant No. 2012-002521).
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics. PMID:26967399
Thermodynamics of Weakly Measured Quantum Systems
NASA Astrophysics Data System (ADS)
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-01
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Thermodynamics of Weakly Measured Quantum Systems.
Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro
2016-02-26
We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.
Geometric phase for open quantum systems and stochastic unravelings
Bassi, Angelo; Ippoliti, Emiliano
2006-06-15
We analyze the geometric phase for an open quantum system when computed by resorting to a stochastic unraveling of the reduced density matrix (quantum jump approach or stochastic Schroedinger equations). We show that the resulting phase strongly depends on the type of unraveling used for the calculations: as such, this phase is not a geometric object since it depends on nonphysical parameters, which are not related to the path followed by the density matrix during the evolution of the system.
Quasiequilibria in open quantum systems
Walls, Jamie D.
2010-03-15
In this work, the steady-state or quasiequilibrium resulting from periodically modulating the Liouvillian of an open quantum system, L-circumflex-circumflex(t), is investigated. It is shown that differences between the quasiequilibrium and the instantaneous equilibrium occur due to nonadiabatic contributions from the gauge field connecting the instantaneous eigenstates of L-circumflex-circumflex(t) to a fixed basis. These nonadiabatic contributions are shown to result in an additional rotation and/or depolarization for a single spin-1/2 in a time-dependent magnetic field and to affect the thermal mixing of two coupled spins interacting with a time-dependent magnetic field.
The decoupling approach to quantum information theory
NASA Astrophysics Data System (ADS)
Dupuis, Frédéric
2010-04-01
Quantum information theory studies the fundamental limits that physical laws impose on information processing tasks such as data compression and data transmission on noisy channels. This thesis presents general techniques that allow one to solve many fundamental problems of quantum information theory in a unified framework. The central theorem of this thesis proves the existence of a protocol that transmits quantum data that is partially known to the receiver through a single use of an arbitrary noisy quantum channel. In addition to the intrinsic interest of this problem, this theorem has as immediate corollaries several central theorems of quantum information theory. The following chapters use this theorem to prove the existence of new protocols for two other types of quantum channels, namely quantum broadcast channels and quantum channels with side information at the transmitter. These protocols also involve sending quantum information partially known by the receiver with a single use of the channel, and have as corollaries entanglement-assisted and unassisted asymptotic coding theorems. The entanglement-assisted asymptotic versions can, in both cases, be considered as quantum versions of the best coding theorems known for the classical versions of these problems. The last chapter deals with a purely quantum phenomenon called locking. We demonstrate that it is possible to encode a classical message into a quantum state such that, by removing a subsystem of logarithmic size with respect to its total size, no measurement can have significant correlations with the message. The message is therefore "locked" by a logarithmic-size key. This thesis presents the first locking protocol for which the success criterion is that the trace distance between the joint distribution of the message and the measurement result and the product of their marginals be sufficiently small.
Geometry of a Quantized Spacetime: The Quantum Potential Approach
NASA Astrophysics Data System (ADS)
Mirza, Babur M.
2014-03-01
Quantum dynamics in a curved spacetime can be studied using a modified Lagrangian approach directly in terms of the spacetime variables [Mirza, B.M., Quantum Dynamics in Black Hole Spacetimes, IC-MSQUARE 2012]. Here we investigate the converse problem of determining the nature of the background spacetime when quantum dynamics of a test particle is known. We employ the quantum potential formalism here to obtain the modifications introduced by the quantum effects to the background spacetime. This leads to a novel geometry for the spacetime in which a test particle modifies the spacetime via interaction through the quantum potential. We present here the case of a Gaussian wave packet, and a localized quantum soliton, representing the test particle, and determine the corresponding geometries that emerge.
Zeno dynamics in quantum open systems
Zhang, Yu-Ran; Fan, Heng
2015-01-01
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states. PMID:26099840
Zeno dynamics in quantum open systems.
Zhang, Yu-Ran; Fan, Heng
2015-06-23
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states.
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.
An approach to experimental photonic quantum digital signatures in fiber
NASA Astrophysics Data System (ADS)
Donaldson, Ross J.; Collins, Robert J.; Dunjko, Vedran; Clarke, Partick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.
2013-10-01
As society becomes more reliant on electronic communication and transactions, ensuring the security of these interactions becomes more important. Digital signatures are a widely used form of cryptography which allows parties to certify the origins of their communications, meaning that one party, a sender, can send information to other parties in such a way that messages cannot be forged. In addition, messages are transferrable, meaning that a recipient who accepts a message as genuine can be sure that if it is forwarded to another recipient, it will again be accepted as genuine. The classical digital signature schemes currently employed typically rely on computational complexity for security. Quantum digital signatures offer the potential for increased security. In our system, quantum signature states are passed through a network of polarization maintaining fiber interferometers (a multiport) to ensure that recipients will not disagree on the validity of a message. These signatures are encoded in the phase of photonic coherent states and the choice of photon number, signature length and number of possible phase states affects the level of security possible by this approach. We will give a brief introduction into quantum digital signatures and present results from our experimental demonstration system.
A quantum-like approach to the stock market
NASA Astrophysics Data System (ADS)
Aerts, Diederik; D'Hooghe, Bart; Sozzo, Sandro
2012-03-01
Modern approaches to stock pricing in quantitative finance are typically founded on the Black-Scholes model and the underlying random walk hypothesis. Empirical data indicate that this hypothesis works well in stable situations but, in abrupt transitions such as during an economical crisis, the random walk model fails and alternative descriptions are needed. For this reason, several proposals have been recently forwarded which are based on the formalism of quantum mechanics. In this paper we apply the SCoP formalism, elaborated to provide an operational foundation of quantum mechanics, to the stock market. We argue that a stock market is an intrinsically contextual system where agents' decisions globally influence the market system and stocks prices, determining a nonclassical behavior. More specifically, we maintain that a given stock does not generally have a definite value, e.g., a price, but its value is actualized as a consequence of the contextual interactions in the trading process. This contextual influence is responsible of the non-Kolmogorovian quantumlike behavior of the market at a statistical level. Then, we propose a sphere model within our hidden measurement formalism that describes a buying/selling process of a stock and shows that it is intuitively reasonable to assume that the stock has not a definite price until it is traded. This result is relevant in our opinion since it provides a theoretical support to the use of quantum models in finance.
The operator algebra approach to quantum groups
Kustermans, Johan; Vaes, Stefaan
2000-01-01
A relatively simple definition of a locally compact quantum group in the C*-algebra setting will be explained as it was recently obtained by the authors. At the same time, we put this definition in the historical and mathematical context of locally compact groups, compact quantum groups, Kac algebras, multiplicative unitaries, and duality theory. PMID:10639116
Quantum teleportation of composite systems via mixed entangled states
Bandyopadhyay, Somshubhro; Sanders, Barry C.
2006-09-15
We analyze quantum teleportation for composite systems, specifically for concatenated teleporation (decomposing a large composite state into smaller states of dimension commensurate with the channel) and partial teleportation (teleporting one component of a larger quantum state). We obtain an exact expression for teleportation fidelity that depends solely on the dimension and singlet fraction for the entanglement channel and entanglement (measures by I concurrence) for the state; in fact quantum teleportation for composite systems provides an operational interpretation for I concurrence. In addition we obtain tight bounds on teleportation fidelity and prove that the average fidelity approaches the lower bound of teleportation fidelity in the high-dimension limit.
Avoiding degenerate coframes in an affine gauge approach to quantum gravity
Mielke, E.W.; McCrea, J.D.; Ne`eman, Y.; Hehl, F.W.
1993-04-01
This report discusses the following concepts on quantum gravity: The affine gauge approach; affine gauge transformations versus active differomorphisms; affine gauge approach to quantum gravity with topology change.
Closed-loop and robust control of quantum systems.
Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Nonadiabatic molecular dynamics simulation: An approach based on quantum measurement picture
Feng, Wei; Xu, Luting; Li, Xin-Qi; Fang, Weihai; Yan, YiJing
2014-07-15
Mixed-quantum-classical molecular dynamics simulation implies an effective quantum measurement on the electronic states by the classical motion of atoms. Based on this insight, we propose a quantum trajectory mean-field approach for nonadiabatic molecular dynamics simulations. The new protocol provides a natural interface between the separate quantum and classical treatments, without invoking artificial surface hopping algorithm. Moreover, it also bridges two widely adopted nonadiabatic dynamics methods, the Ehrenfest mean-field theory and the trajectory surface-hopping method. Excellent agreement with the exact results is illustrated with representative model systems, including the challenging ones for traditional methods.
Quantum Logic: Approach a Child's Environment from "Inside."
ERIC Educational Resources Information Center
Rhodes, William C.
1987-01-01
With the advent of quantum mechanics, physics has merged with psychology, and cognitive science has been revolutionized. Quantum logic supports the notion of influencing the environment by increasing the child's capacity for cognitive processing. This special educational approach is theoretically more effective than social and political…
Scattering approach to quantum transport and many body effects
NASA Astrophysics Data System (ADS)
Pichard, Jean-Louis; Freyn, Axel
2010-12-01
We review a series of works discussing how the scattering approach to quantum transport developed by Landauer and Buttiker for one body elastic scatterers can be extended to the case where electron-electron interactions act inside the scattering region and give rise to many body scattering. Firstly, we give an exact numerical result showing that at zero temperature a many body scatterer behaves as an effective one body scatterer, with an interaction dependent transmission. Secondly, we underline that this effective scatterer depends on the presence of external scatterers put in its vicinity. The implications of this non local scattering are illustrated studying the conductance of a quantum point contact where electrons interact with a scanning gate microscope. Thirdly, using the numerical renormalization group developed by Wilson for the Kondo problem, we study a double dot spinless model with an inter-dot interaction U and inter-dot hopping td, coupled to leads by hopping terms tc. We show that the quantum conductance as a function of td is given by a universal function, independently of the values of U and tc, if one measures td in units of a characteristic scale τ(U,tc). Mapping the double dot system without spin onto a single dot Anderson model with spin and magnetic field, we show that τ(U,tc) = 2TK, where TK is the Kondo temperature of the Anderson model.
NASA Astrophysics Data System (ADS)
Alonso, Daniel; de Vega, Inés
The dynamics of a system in interaction with another system, the later considered as a reservoir, is studied in many different domains in physics. This approach is useful not only to address fundamental questions like quantum decoherence decoherence and the measurement problem [1] but also to deal with practical and theoretical problems appearing in the emerging fields of nanotechnology nanotechnology [2, 3] and quantum computing quantum computing as well as in systems of ultracold atoms [7]. In many of these cases, the basic approximation is the Markov assumption in which there is a clear separation of the typical timescales associated with the system and the reservoir or environment. This separation of timescales, together with other assumptions like the weak coupling between the system and the reservoir, has been central in the development of several fields, in particular in quantum optics [8, 9]. However, in
A quantum approach to homomorphic encryption
Tan, Si-Hui; Kettlewell, Joshua A.; Ouyang, Yingkai; Chen, Lin; Fitzsimons, Joseph F.
2016-01-01
Encryption schemes often derive their power from the properties of the underlying algebra on the symbols used. Inspired by group theoretic tools, we use the centralizer of a subgroup of operations to present a private-key quantum homomorphic encryption scheme that enables a broad class of quantum computation on encrypted data. The quantum data is encoded on bosons of distinct species in distinct spatial modes, and the quantum computations are manipulations of these bosons in a manner independent of their species. A particular instance of our encoding hides up to a constant fraction of the information encrypted. This fraction can be made arbitrarily close to unity with overhead scaling only polynomially in the message length. This highlights the potential of our protocol to hide a non-trivial amount of information, and is suggestive of a large class of encodings that might yield better security. PMID:27658349
A quantum approach to homomorphic encryption
NASA Astrophysics Data System (ADS)
Tan, Si-Hui; Kettlewell, Joshua A.; Ouyang, Yingkai; Chen, Lin; Fitzsimons, Joseph F.
2016-09-01
Encryption schemes often derive their power from the properties of the underlying algebra on the symbols used. Inspired by group theoretic tools, we use the centralizer of a subgroup of operations to present a private-key quantum homomorphic encryption scheme that enables a broad class of quantum computation on encrypted data. The quantum data is encoded on bosons of distinct species in distinct spatial modes, and the quantum computations are manipulations of these bosons in a manner independent of their species. A particular instance of our encoding hides up to a constant fraction of the information encrypted. This fraction can be made arbitrarily close to unity with overhead scaling only polynomially in the message length. This highlights the potential of our protocol to hide a non-trivial amount of information, and is suggestive of a large class of encodings that might yield better security.
Scalable quantum mechanical simulation of large polymer systems
Goedecker, S.; Hoisie, A.; Kress, J.; Lubeck, O.; Wasserman, H.
1997-08-01
We describe a program for quantum mechanical calculations of very large hydrocarbon polymer systems. It is based on a new algorithmic approach to the quantum mechanical tight binding equations that naturally leads to a very efficient parallel implementation and that scales linearly with respect to the number of atoms. We get both very high single node performance as well as a significant parallel speedup on the SGI Origin 2000 parallel computer.
Probabilistic Approach to Teaching the Principles of Quantum Mechanics
ERIC Educational Resources Information Center
Santos, Emilio
1976-01-01
Approaches the representation of quantum mechanics through Hilbert space postulates. Demonstrates that if the representation is to be accurate, an evolution operator of the form of a Hamiltonian must be used. (CP)
Holonomy, quantum mechanics and the signal-tuned Gabor approach to the striate cortex
NASA Astrophysics Data System (ADS)
Torreão, José R. A.
2016-02-01
It has been suggested that an appeal to holographic and quantum properties will be ultimately required for the understanding of higher brain functions. On the other hand, successful quantum-like approaches to cognitive and behavioral processes bear witness to the usefulness of quantum prescriptions as applied to the analysis of complex non-quantum systems. Here, we show that the signal-tuned Gabor approach for modeling cortical neurons, although not based on quantum assumptions, also admits a quantum-like interpretation. Recently, the equation of motion for the signal-tuned complex cell response has been derived and proven equivalent to the Schrödinger equation for a dissipative quantum system whose solutions come under two guises: as plane-wave and Airy-packet responses. By interpreting the squared magnitude of the plane-wave solution as a probability density, in accordance with the quantum mechanics prescription, we arrive at a Poisson spiking probability — a common model of neuronal response — while spike propagation can be described by the Airy-packet solution. The signal-tuned approach is also proven consistent with holonomic brain theories, as it is based on Gabor functions which provide a holographic representation of the cell’s input, in the sense that any restricted subset of these functions still allows stimulus reconstruction.
Quantum Rotational Effects in Nanomagnetic Systems
NASA Astrophysics Data System (ADS)
O'Keeffe, Michael F.
Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions
Geometric approach to non-relativistic quantum dynamics of mixed states
NASA Astrophysics Data System (ADS)
Gimeno, Vicent; Sotoca, Jose M.
2013-05-01
In this paper we propose a geometrization of the non-relativistic quantum mechanics for mixed states. Our geometric approach makes use of the Uhlmann's principal fibre bundle to describe the space of mixed states and as a novelty tool, to define a dynamic-dependent metric tensor on the principal manifold, such that the projection of the geodesic flow to the base manifold gives the temporal evolution predicted by the von Neumann equation. Using that approach we can describe every conserved quantum observable as a Killing vector field, and provide a geometric proof for the Poincaré quantum recurrence in a physical system with finite energy levels.
Quantum Zeno effect with the Feynman-Mensky path-integral approach
NASA Astrophysics Data System (ADS)
Onofrio, Roberto; Presilla, Carlo; Tambini, Ubaldo
1993-12-01
A model for the quantum Zeno effect based upon an effective Schrödinger equation originated by the path-integral approach is developed and applied to a two-level system simultaneously stimulated by a resonant perturbation. It is shown that inhibition of stimulated transitions between the two levels appears as a consequence of the influence of the meter whenever measurements of energy, either continuous or pulsed, are performed at quantum level of sensitivity. The generality of this approach allows one to qualitatively understand the inhibition of spontaneous transitions as the decay of unstable particles, originally presented as a paradox of the quantum measurement theory.
Understanding electronic systems in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2013-11-01
Systems of confined electrons are found everywhere in nature in the form of atoms where the orbiting electrons are confined by the Coulomb attraction of the nucleus. Advancement of nanotechnology has, however, provided us with an alternative way to confine electrons by using artificial confining potentials. A typical structure of this nature is the quantum dot, a nanoscale system which consists of few confined electrons. There are many types of quantum dots ranging from self-assembled to miniaturized semiconductor quantum dots. In this work we are interested in electrostatically confined semiconductor quantum dot systems where the electrostatic confining potential that traps the electrons is generated by external electrodes, doping, strain or other factors. A large number of semiconductor quantum dots of this type are fabricated by applying lithographically patterned gate electrodes or by etching on two-dimensional electron gases in semiconductor heterostructures. Because of this, the whole structure can be treated as a confined two-dimensional electron system. Quantum confinement profoundly affects the way in which electrons interact with each other, and external parameters such as a magnetic field. Since a magnetic field affects both the orbital and the spin motion of the electrons, the interplay between quantum confinement, electron-electron correlation effects and the magnetic field gives rise to very interesting physical phenomena. Thus, confined systems of electrons in a semiconductor quantum dot represent a unique opportunity to study fundamental quantum theories in a controllable atomic-like setup. In this work, we describe some common theoretical models which are used to study confined systems of electrons in a two-dimensional semiconductor quantum dot. The main emphasis of the work is to draw attention to important physical phenomena that arise in confined two-dimensional electron systems under various quantum regimes.
Slightly anharmonic systems in quantum optics
NASA Technical Reports Server (NTRS)
Klimov, Andrey B.; Chumakov, Sergey M.
1995-01-01
We consider an arbitrary atomic system (n-level atom or many such atoms) interacting with a strong resonant quantum field. The approximate evolution operator for a quantum field case can be produced from the atomic evolution operator in an external classical field by a 'quantization prescription', passing the operator arguments to Wigner D-functions. Many important phenomena arising from the quantum nature of the field can be described by such a way.
A computational approach to quantum noise in time-dependent nanoelectronic devices
NASA Astrophysics Data System (ADS)
Gaury, Benoit; Waintal, Xavier
2016-01-01
We derive simple expressions that relate the noise and correlation properties of a general time-dependent quantum conductor to the wave functions of the system. The formalism provides a practical route for numerical calculations of quantum noise in an externally driven system. We illustrate the approach with numerical calculations of the noise properties associated to a voltage pulse applied on a one-dimensional conductor. The methodology is however fully general and can be used for a large class of mesoscopic conductors.
Reprint of : A computational approach to quantum noise in time-dependent nanoelectronic devices
NASA Astrophysics Data System (ADS)
Gaury, Benoit; Waintal, Xavier
2016-08-01
We derive simple expressions that relate the noise and correlation properties of a general time-dependent quantum conductor to the wave functions of the system. The formalism provides a practical route for numerical calculations of quantum noise in an externally driven system. We illustrate the approach with numerical calculations of the noise properties associated to a voltage pulse applied on a one-dimensional conductor. The methodology is however fully general and can be used for a large class of mesoscopic conductors.
Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach
Sirjoosingh, Andrew; Pak, Michael V.; Brorsen, Kurt R.; Hammes-Schiffer, Sharon
2015-06-07
The nuclear-electronic orbital (NEO) approach treats select nuclei quantum mechanically on the same level as the electrons and includes nonadiabatic effects between the electrons and the quantum nuclei. The practical implementation of this approach is challenging due to the significance of electron-nucleus dynamical correlation. Herein, we present a general extension of the previously developed reduced NEO explicitly correlated Hartree-Fock (RXCHF) approach, in which only select electronic orbitals are explicitly correlated to each quantum nuclear orbital via Gaussian-type geminal functions. Approximations of the electronic exchange between the geminal-coupled electronic orbitals and the other electronic orbitals are also explored. This general approach enables computationally tractable yet accurate calculations on molecular systems with quantum protons. The RXCHF method is applied to the hydrogen cyanide (HCN) and FHF{sup −} systems, where the proton and all electrons are treated quantum mechanically. For the HCN system, only the two electronic orbitals associated with the CH covalent bond are geminal-coupled to the proton orbital. For the FHF{sup −} system, only the four electronic orbitals associated with the two FH covalent bonds are geminal-coupled to the proton orbital. For both systems, the RXCHF method produces qualitatively accurate nuclear densities, in contrast to mean field-based NEO approaches. The development and implementation of the RXCHF method provide the framework to perform calculations on systems such as proton-coupled electron transfer reactions, where electron-proton nonadiabatic effects are important.
Simulation of n-qubit quantum systems. V. Quantum measurements
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2010-02-01
The FEYNMAN program has been developed during the last years to support case studies on the dynamics and entanglement of n-qubit quantum registers. Apart from basic transformations and (gate) operations, it currently supports a good number of separability criteria and entanglement measures, quantum channels as well as the parametrizations of various frequently applied objects in quantum information theory, such as (pure and mixed) quantum states, hermitian and unitary matrices or classical probability distributions. With the present update of the FEYNMAN program, we provide a simple access to (the simulation of) quantum measurements. This includes not only the widely-applied projective measurements upon the eigenspaces of some given operator but also single-qubit measurements in various pre- and user-defined bases as well as the support for two-qubit Bell measurements. In addition, we help perform generalized and POVM measurements. Knowing the importance of measurements for many quantum information protocols, e.g., one-way computing, we hope that this update makes the FEYNMAN code an attractive and versatile tool for both, research and education. New version program summaryProgram title: FEYNMAN Catalogue identifier: ADWE_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v5_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 27 210 No. of bytes in distributed program, including test data, etc.: 1 960 471 Distribution format: tar.gz Programming language: Maple 12 Computer: Any computer with Maple software installed Operating system: Any system that supports Maple; the program has been tested under Microsoft Windows XP and Linux Classification: 4.15 Catalogue identifier of previous version: ADWE_v4_0 Journal reference of previous version: Comput. Phys. Commun
Accidental degeneracies in nonlinear quantum deformed systems
NASA Astrophysics Data System (ADS)
Aleixo, A. N. F.; Balantekin, A. B.
2011-09-01
We construct a multi-parameter nonlinear deformed algebra for quantum confined systems that includes many other deformed models as particular cases. We demonstrate that such systems exhibit the property of accidental pairwise energy level degeneracies. We also study, as a special case of our multi-parameter deformation formalism, the extension of the Tamm-Dancoff cutoff deformed oscillator and the occurrence of accidental pairwise degeneracy in the energy levels of the deformed system. As an application, we discuss the case of a trigonometric Rosen-Morse potential, which is successfully used in models for quantum confined systems, ranging from electrons in quantum dots to quarks in hadrons.
Non-Lipschitz Approach to Quantum Mechnics
NASA Technical Reports Server (NTRS)
Zak, Michail
1997-01-01
An attempt to reconcile quantum mechanics with Newton's laws represented by the non-Lipschitz formalism has been made. As a Proof-of-concept, a line of equally spaced atoms was studied. It appeared that enforcement of atom incompressibility required relaxation of the lipschitz condition at the points of contact.
Quantum Supersymmetric Models in the Causal Approach
NASA Astrophysics Data System (ADS)
Grigore, Dan-Radu
2007-04-01
We consider the massless supersymmetric vector multiplet in a purely quantum framework. First order gauge invariance determines uniquely the interaction Lagrangian as in the case of Yang-Mills models. Going to the second order of perturbation theory produces an anomaly which cannot be eliminated. We make the analysis of the model working only with the component fields.
Self-assembled quantum dots in a nanowire system for quantum photonics
NASA Astrophysics Data System (ADS)
Heiss, M.; Fontana, Y.; Gustafsson, A.; Wüst, G.; Magen, C.; O'Regan, D. D.; Luo, J. W.; Ketterer, B.; Conesa-Boj, S.; Kuhlmann, A. V.; Houel, J.; Russo-Averchi, E.; Morante, J. R.; Cantoni, M.; Marzari, N.; Arbiol, J.; Zunger, A.; Warburton, R. J.; Fontcuberta I Morral, A.
2013-05-01
Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-in-nanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells.
Self-assembled quantum dots in a nanowire system for quantum photonics.
Heiss, M; Fontana, Y; Gustafsson, A; Wüst, G; Magen, C; O'Regan, D D; Luo, J W; Ketterer, B; Conesa-Boj, S; Kuhlmann, A V; Houel, J; Russo-Averchi, E; Morante, J R; Cantoni, M; Marzari, N; Arbiol, J; Zunger, A; Warburton, R J; Fontcuberta i Morral, A
2013-05-01
Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-in-nanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells. PMID:23377293
Schroedinger-equation formalism for a dissipative quantum system
Anisimovas, E.; Matulis, A.
2007-02-15
We consider a model dissipative quantum-mechanical system realized by coupling a quantum oscillator to a semi-infinite classical string which serves as a means of energy transfer from the oscillator to the infinity and thus plays the role of a dissipative element. The coupling between the two--quantum and classical--parts of the compound system is treated in the spirit of the mean-field approximation and justification of the validity of such an approach is given. The equations of motion of the classical subsystem are solved explicitly and an effective dissipative Schroedinger equation for the quantum subsystem is obtained. The proposed formalism is illustrated by its application to two basic problems: the decay of the quasistationary state and the calculation of the nonlinear resonance line shape.
Quantum Simulation for Open-System Dynamics
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry
2013-03-01
Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.
Quantum state discrimination: A geometric approach
NASA Astrophysics Data System (ADS)
Markham, Damian; Miszczak, Jarosław Adam; Puchała, Zbigniew; Życzkowski, Karol
2008-04-01
We analyze the problem of finding sets of quantum states that can be deterministically discriminated. From a geometric point of view, this problem is equivalent to that of embedding a simplex of points whose distances are maximal with respect to the Bures distance (or trace distance). We derive upper and lower bounds for the trace distance and for the fidelity between two quantum states, which imply bounds for the Bures distance between the unitary orbits of both states. We thus show that, when analyzing minimal and maximal distances between states of fixed spectra, it is sufficient to consider diagonal states only. Hence when optimal discrimination is considered, given freedom up to unitary orbits, it is sufficient to consider diagonal states. This is illustrated geometrically in terms of Weyl chambers.
A lattice approach to spinorial quantum gravity
NASA Technical Reports Server (NTRS)
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.
ERIC Educational Resources Information Center
Pronchik, Jeremy N.; Williams, Brian W.
2003-01-01
Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…
Optimized probabilistic quantum processors: A unified geometric approach 1
NASA Astrophysics Data System (ADS)
Bergou, Janos; Bagan, Emilio; Feldman, Edgar
Using probabilistic and deterministic quantum cloning, and quantum state separation as illustrative examples we develop a complete geometric solution for finding their optimal success probabilities. The method is related to the approach that we introduced earlier for the unambiguous discrimination of more than two states. In some cases the method delivers analytical results, in others it leads to intuitive and straightforward numerical solutions. We also present implementations of the schemes based on linear optics employing few-photon interferometry
Interpreting Quantum Mechanics according to a Pragmatist Approach
NASA Astrophysics Data System (ADS)
Bächtold, Manuel
2008-09-01
The aim of this paper is to show that quantum mechanics can be interpreted according to a pragmatist approach. The latter consists, first, in giving a pragmatic definition to each term used in microphysics, second, in making explicit the functions any theory must fulfil so as to ensure the success of the research activity in microphysics, and third, in showing that quantum mechanics is the only theory which fulfils exactly these functions.
An approach to nonstandard quantum mechanics
NASA Astrophysics Data System (ADS)
Raab, A.
2004-12-01
We use nonstandard analysis to formulate quantum mechanics in hyperfinite-dimensional spaces. Self-adjoint operators on hyperfinite-dimensional spaces have complete eigensets, and bound states and continuum states of a Hamiltonian can thus be treated on an equal footing. We show that the formalism extends the standard formulation of quantum mechanics. To this end we develop the Loeb-function calculus in nonstandard hulls. The idea is to perform calculations in a hyperfinite-dimensional space, but to interpret expectation values in the corresponding nonstandard hull. We further apply the framework to nonrelativistic quantum scattering theory. For time-dependent scattering theory, we identify the starting time and the finishing time of a scattering experiment, and we obtain a natural separation of time scales on which the preparation process, the interaction process, and the detection process take place. For time-independent scattering theory, we derive rigorously explicit formulas for the Mo/ller wave operators and the S-matrix.
Versatile microwave-driven trapped ion spin system for quantum information processing.
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof
2016-07-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Versatile microwave-driven trapped ion spin system for quantum information processing.
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof
2016-07-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer.
Versatile microwave-driven trapped ion spin system for quantum information processing
Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof
2016-01-01
Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233
Novel systems and methods for quantum communication, quantum computation, and quantum simulation
NASA Astrophysics Data System (ADS)
Gorshkov, Alexey Vyacheslavovich
Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly
Quantum entanglement in condensed matter systems
NASA Astrophysics Data System (ADS)
Laflorencie, Nicolas
2016-08-01
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
Quantum entanglement in photoactive prebiotic systems.
Tamulis, Arvydas; Grigalavicius, Mantas
2014-06-01
This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.
Quantum entanglement in photoactive prebiotic systems.
Tamulis, Arvydas; Grigalavicius, Mantas
2014-06-01
This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones. PMID:24799958
Characteristic Energy Scales of Quantum Systems.
ERIC Educational Resources Information Center
Morgan, Michael J.; Jakovidis, Greg
1994-01-01
Provides a particle-in-a-box model to help students understand and estimate the magnitude of the characteristic energy scales of a number of quantum systems. Also discusses the mathematics involved with general computations. (MVL)
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2013-01-01
We show how to extend the paradigm of software-defined communication to include quantum communication systems. We introduce the decomposition of a quantum communication terminal into layers separating the concerns of the hardware, software, and middleware. We provide detailed descriptions of how each component operates and we include results of an implementation of the super-dense coding protocol. We argue that the versatility of software-defined quantum communication test beds can be useful for exploring new regimes in communication and rapidly prototyping new systems.
Correlation inequalities for quantum spin systems with quenched centered disorder
NASA Astrophysics Data System (ADS)
Contucci, Pierluigi; Lebowitz, Joel L.
2010-02-01
It is shown that random quantum spin systems with centered disorder satisfy correlation inequalities previously proved [P. Contucci and J. Lebowitz, Ann. Henri Poincare 8, 1461 (2007)] in the classical case. Consequences include monotone approach of pressure and ground state energy to the thermodynamic limit. Signs and bounds on the surface pressures for different boundary conditions are also derived for finite range potentials.
Spectrum analysis with quantum dynamical systems
NASA Astrophysics Data System (ADS)
Ng, Shilin; Ang, Shan Zheng; Wheatley, Trevor A.; Yonezawa, Hidehiro; Furusawa, Akira; Huntington, Elanor H.; Tsang, Mankei
2016-04-01
Measuring the power spectral density of a stochastic process, such as a stochastic force or magnetic field, is a fundamental task in many sensing applications. Quantum noise is becoming a major limiting factor to such a task in future technology, especially in optomechanics for temperature, stochastic gravitational wave, and decoherence measurements. Motivated by this concern, here we prove a measurement-independent quantum limit to the accuracy of estimating the spectrum parameters of a classical stochastic process coupled to a quantum dynamical system. We demonstrate our results by analyzing the data from a continuous-optical-phase-estimation experiment and showing that the experimental performance with homodyne detection is close to the quantum limit. We further propose a spectral photon-counting method that can attain quantum-optimal performance for weak modulation and a coherent-state input, with an error scaling superior to that of homodyne detection at low signal-to-noise ratios.
A geometric approach to quantum vortices
NASA Astrophysics Data System (ADS)
Penna, Vittorio; Spera, Mauro
1989-12-01
In this paper a geometrical description is given of the theory of quantum vortices first developed by Rasetti and Regge [Physica A 80, 217 (1975)] relying on the symplectic techniques of Marsden and Weinstein [J. Phys. D 7, 305 (1983)], and Kirillov-Kostant-Souriau geometric quantization. The RR-current algebra is interpreted as the natural Hamiltonian algebra associated to a certain coadjoint orbit of the group G=SDiff(R3), the KKS prequantization condition of which is related to the Feynman-Onsager relation. This orbit is also shown to possess a G-invariant Kaehler structure, whence, in principle, it is possible to quantize it in a natural way.
Quantum ion acoustic solitary waves in electron ion plasmas: A Sagdeev potential approach
NASA Astrophysics Data System (ADS)
Mahmood, S.; Mushtaq, A.
2008-05-01
Linear and nonlinear ion acoustic waves are studied in unmagnetized electron-ion quantum plasmas. Sagdeev potential approach is employed to describe the nonlinear quantum ion acoustic waves. It is found that density dips structures are formed in the subsonic region in a electron-ion quantum plasma case. The amplitude of the nonlinear structures remains constant and the width is broadened with the increase in the quantization of the system. However, the nonlinear wave amplitude is reduced with the increase in the wave Mach number. The numerical results are also presented.
Quantum computing with collective ensembles of multilevel systems.
Brion, E; Mølmer, K; Saffman, M
2007-12-31
We propose a new physical approach for encoding and processing of quantum information in ensembles of multilevel quantum systems, where the different bits are not carried by individual particles but associated with the collective population of different internal levels. One- and two-bit gates are implemented by collective internal state transitions taking place in the presence of an excitation blockade mechanism, which restricts the population of each internal state to the values zero and unity. Quantum computers with 10-20 bits can be built via this scheme in single trapped clouds of ground state atoms subject to the Rydberg excitation blockade mechanism, and the linear dependence between register size and the number of internal quantum states in atoms offers realistic means to reach larger registers.
Software-defined Quantum Communication Systems
Humble, Travis S; Sadlier, Ronald J
2014-01-01
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulations of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.
Entanglement in algebraic quantum mechanics: Majorana fermion systems
NASA Astrophysics Data System (ADS)
Benatti, F.; Floreanini, R.
2016-07-01
Many-body entanglement is studied within the algebraic approach to quantum physics in systems made of Majorana fermions. In this framework, the notion of separability stems from partitions of the algebra of observables and properties of the associated correlation functions, rather than on particle tensor products. This allows a complete characterization of non-separable Majorana fermion states to be obtained. These results may have direct application in quantum metrology: using Majorana systems, sub-shot-noise accuracy in parameter estimations can be achieved without preliminary resource-consuming, state entanglement operations.
Prethermalization and universal dynamics in near-integrable quantum systems
NASA Astrophysics Data System (ADS)
Langen, Tim; Gasenzer, Thomas; Schmiedmayer, Jörg
2016-06-01
We review the recent progress in the understanding of the relaxation of isolated near-integrable quantum many-body systems. Focusing on prethermalization and universal dynamics following a quench, we describe the experiments with ultracold atomic gases that illustrate these phenomena and summarize the essential theoretical concepts employed to interpret them. Our discussion highlights the key topics that link the different approaches to this interdisciplinary field, including the generalized Gibbs ensemble, non-thermal fixed points, critical slowing and universal scaling. Finally, we point to new experimental challenges demonstrating these fundamental features of many-body quantum systems out of equilibrium.
Computational approach for calculating bound states in quantum field theory
NASA Astrophysics Data System (ADS)
Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.
2016-09-01
We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.
Superconducting circuitry for quantum electromechanical systems
NASA Astrophysics Data System (ADS)
LaHaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-Bo; Irish, Elinor K.
2015-05-01
Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and e orts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.
Robust observer for uncertain linear quantum systems
Yamamoto, Naoki
2006-09-15
In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although in the linear case much of classical control theory can be applied to quantum systems, the quantum robust observer obtained in this paper does not have a classical analog due to the system's specific structure with respect to the uncertainties. Moreover, by considering a typical quantum control problem, we show that the proposed robust observer is fairly robust against a parametric uncertainty of the system even when the other estimators--the optimal Kalman filter and risk-sensitive observer--fail in the estimation.
Quantum information processing in phase space: A modular variables approach
NASA Astrophysics Data System (ADS)
Ketterer, A.; Keller, A.; Walborn, S. P.; Coudreau, T.; Milman, P.
2016-08-01
Binary quantum information can be fault-tolerantly encoded in states defined in infinite-dimensional Hilbert spaces. Such states define a computational basis, and permit a perfect equivalence between continuous and discrete universal operations. The drawback of this encoding is that the corresponding logical states are unphysical, meaning infinitely localized in phase space. We use the modular variables formalism to show that, in a number of protocols relevant for quantum information and for the realization of fundamental tests of quantum mechanics, it is possible to loosen the requirements on the logical subspace without jeopardizing their usefulness or their successful implementation. Such protocols involve measurements of appropriately chosen modular variables that permit the readout of the encoded discrete quantum information from the corresponding logical states. Finally, we demonstrate the experimental feasibility of our approach by applying it to the transverse degrees of freedom of single photons.
Barnes, George L.; Kellman, Michael E.
2013-12-07
Simulations are performed of a small quantum system interacting with a quantum environment. The system consists of various initial states of two harmonic oscillators coupled to give normal modes. The environment is “designed” by its level pattern to have a thermodynamic temperature. A random coupling causes the system and environment to become entangled in the course of time evolution. The approach to a Boltzmann distribution is observed, and effective fitted temperatures close to the designed temperature are obtained. All initial pure states of the system are driven to equilibrium at very similar rates, with quick loss of memory of the initial state. The time evolution of the von Neumann entropy is calculated as a measure of equilibration and of quantum coherence. It is pointed out using spatial density distribution plots that quantum interference is eliminated only with maximal entropy, which corresponds thermally to infinite temperature. Implications of our results for the notion of “classicalizing” behavior in the approach to thermal equilibrium are briefly considered.
An operational approach to spacetime symmetries: Lorentz transformations from quantum communication
NASA Astrophysics Data System (ADS)
Höhn, Philipp A.; Müller, Markus P.
2016-06-01
In most approaches to fundamental physics, spacetime symmetries are postulated a priori and then explicitly implemented in the theory. This includes Lorentz covariance in quantum field theory and diffeomorphism invariance in quantum gravity, which are seen as fundamental principles to which the final theory has to be adjusted. In this paper, we suggest, within a much simpler setting, that this kind of reasoning can actually be reversed, by taking an operational approach inspired by quantum information theory. We consider observers in distinct laboratories, with local physics described by the laws of abstract quantum theory, and without presupposing a particular spacetime structure. We ask what information-theoretic effort the observers have to spend to synchronize their descriptions of local physics. If there are ‘enough’ observables that can be measured universally on several different quantum systems, we show that the observers’ descriptions are related by an element of the orthochronous Lorentz group {{{O}}}+(3,1), together with a global scaling factor. Not only does this operational approach predict the Lorentz transformations, but it also accurately describes the behavior of relativistic Stern-Gerlach devices in the WKB approximation, and it correctly predicts that quantum systems carry Lorentz group representations of different spin. This result thus hints at a novel information-theoretic perspective on spacetime.
Quantum annealing in a kinetically constrained system.
Das, Arnab; Chakrabarti, Bikas K; Stinchcombe, Robin B
2005-08-01
Classical and quantum annealing is discussed in the case of a generalized kinetically constrained model, where the relaxation dynamics of a system with trivial ground state is retarded by the appearance of energy barriers in the relaxation path, following a local kinetic rule. Effectiveness of thermal and quantum fluctuations in overcoming these kinetic barriers to reach the ground state are studied. It has been shown that for certain barrier characteristics, quantum annealing might by far surpass its thermal counter part in reaching the ground state faster.
A geometric approach to quantum state separation
NASA Astrophysics Data System (ADS)
Bagan, E.; Yerokhin, V.; Shehu, A.; Feldman, E.; Bergou, J. A.
2015-12-01
Probabilistic quantum state transformations can be characterized by the degree of state separation they provide. This, in turn, sets limits on the success rate of these transformations. We consider optimum state separation of two known pure states in the general case where the known states have arbitrary a priori probabilities. The problem is formulated from a geometric perspective and shown to be equivalent to the problem of finding tangent curves within two families of conics that represent the unitarity constraints and the objective functions to be optimized, respectively. We present the corresponding analytical solutions in various forms. In the limit of perfect state separation, which is equivalent to unambiguous state discrimination, the solution exhibits a phenomenon analogous to a second order symmetry breaking phase transition. We also propose a linear optics implementation of separation which is based on the dual rail representation of qubits and single-photon multiport interferometry.
Quantum optical properties in plasmonic systems
Ooi, C. H. Raymond
2015-04-24
Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.
Strong local passivity in finite quantum systems.
Frey, Michael; Funo, Ken; Hotta, Masahiro
2014-07-01
Passive states of quantum systems are states from which no system energy can be extracted by any cyclic (unitary) process. Gibbs states of all temperatures are passive. Strong local (SL) passive states are defined to allow any general quantum operation, but the operation is required to be local, being applied only to a specific subsystem. Any mixture of eigenstates in a system-dependent neighborhood of a nondegenerate entangled ground state is found to be SL passive. In particular, Gibbs states are SL passive with respect to a subsystem only at or below a critical system-dependent temperature. SL passivity is associated in many-body systems with the presence of ground state entanglement in a way suggestive of collective quantum phenomena such as quantum phase transitions, superconductivity, and the quantum Hall effect. The presence of SL passivity is detailed for some simple spin systems where it is found that SL passivity is neither confined to systems of only a few particles nor limited to the near vicinity of the ground state.
Note on quantum groups and integrable systems
NASA Astrophysics Data System (ADS)
Popolitov, A.
2016-01-01
The free-field formalism for quantum groups [preprint ITEP-M3/94, CRM-2202 hep-th/9409093] provides a special choice of coordinates on a quantum group. In these coordinates the construction of associated integrable system [arXiv:1207.1869] is especially simple. This choice also fits into general framework of cluster varieties [math.AG/0311245]—natural changes in coordinates are cluster mutations.
Critical properties of dissipative quantum spin systems in finite dimensions
NASA Astrophysics Data System (ADS)
Takada, Kabuki; Nishimori, Hidetoshi
2016-10-01
We study the critical properties of finite-dimensional dissipative quantum spin systems with uniform ferromagnetic interactions. Starting from the transverse field Ising model coupled to a bath of harmonic oscillators with Ohmic spectral density, we generalize its classical representation to classical spin systems with O(n) symmetry and then take the large-n limit to reduce the system to a spherical model. The exact solution to the resulting spherical model with long-range interactions along the imaginary time axis shows a phase transition with static critical exponents coinciding with those of the conventional short-range spherical model in d+2 dimensions, where d is the spatial dimensionality of the original quantum system. This implies that the dynamical exponent is z = 2. These conclusions are consistent with the results of Monte Carlo simulations and renormalization group calculations for dissipative transverse field Ising and O(n) models in one and two dimensions. The present approach therefore serves as a useful tool for analytically investigating the properties of quantum phase transitions of the dissipative transverse field Ising and other related models. Our method may also offer a platform to study more complex phase transitions in dissipative finite-dimensional quantum spin systems, which have recently received renewed interest in the context of quantum annealing in a noisy environment.
Quantum chemical approach to estimating the thermodynamics of metabolic reactions.
Jinich, Adrian; Rappoport, Dmitrij; Dunn, Ian; Sanchez-Lengeling, Benjamin; Olivares-Amaya, Roberto; Noor, Elad; Even, Arren Bar; Aspuru-Guzik, Alán
2014-11-12
Thermodynamics plays an increasingly important role in modeling and engineering metabolism. We present the first nonempirical computational method for estimating standard Gibbs reaction energies of metabolic reactions based on quantum chemistry, which can help fill in the gaps in the existing thermodynamic data. When applied to a test set of reactions from core metabolism, the quantum chemical approach is comparable in accuracy to group contribution methods for isomerization and group transfer reactions and for reactions not including multiply charged anions. The errors in standard Gibbs reaction energy estimates are correlated with the charges of the participating molecules. The quantum chemical approach is amenable to systematic improvements and holds potential for providing thermodynamic data for all of metabolism.
Quantum coherence and entanglement control for atom-cavity systems
NASA Astrophysics Data System (ADS)
Shu, Wenchong
consistently solved the control dynamics of open quantum systems using this stochastic QSD approach. By implementing the QSD equation, our numerical results have revealed that how the control efficacy depends on the designed time points and shapes of the applied control pulses, and the environment memory time scale.
Quantum Information with Continuous Variable systems
NASA Astrophysics Data System (ADS)
Rodó, Carles
2010-05-01
This thesis deals with the study of quantum communication protocols with Continuous Variable (CV) systems. Continuous Variable systems are those described by canonical conjugated coordinates x and p endowed with infinite dimensional Hilbert spaces, thus involving a complex mathematical structure. A special class of CV states, are the so-called Gaussian states. With them, it has been possible to implement certain quantum tasks as quantum teleportation, quantum cryptography and quantum computation with fantastic experimental success. The importance of Gaussian states is two-fold; firstly, its structural mathematical description makes them much more amenable than any other CV system. Secondly, its production, manipulation and detection with current optical technology can be done with a very high degree of accuracy and control. Nevertheless, it is known that in spite of their exceptional role within the space of all Continuous Variable states, in fact, Gaussian states are not always the best candidates to perform quantum information tasks. Thus non-Gaussian states emerge as potentially good candidates for communication and computation purposes.
The consistent histories approach to loop quantum cosmology
NASA Astrophysics Data System (ADS)
Craig, David A.
2016-06-01
We review the application of the consistent (or decoherent) histories formulation of quantum theory to canonical loop quantum cosmology. Conventional quantum theory relies crucially on “measurements” to convert unrealized quantum potentialities into physical outcomes that can be assigned probabilities. In the early universe and other physical contexts in which there are no observers or measuring apparatus (or indeed, in any closed quantum system), what criteria determine which alternative outcomes may be realized and what their probabilities are? In the consistent histories formulation it is the vanishing of interference between the branch wave functions describing alternative histories — as determined by the system’s decoherence functional — that determines which alternatives may be assigned probabilities. We describe the consistent histories formulation and how it may be applied to canonical loop quantum cosmology, describing in detail the application to homogeneous and isotropic cosmological models with scalar matter. We show how the theory may be used to make definite physical predictions in the absence of “observers”. As an application, we demonstrate how the theory predicts that loop quantum models “bounce” from large volume to large volume, while conventional “Wheeler-DeWitt”-quantized universes are invariably singular. We also briefly indicate the relation to other work.
An approximate approach to quantum mechanical study of biomacromolecules
NASA Astrophysics Data System (ADS)
Chen, Xihua
This thesis summarizes the author's major work in Prof. John Z.H. Zhang's Threoretical Chemistry research group. In Chapter 1, we present a general description of MFCC (molecular fractionation with conjugated caps) method that has been developed in this group to treat biomacromolecules in a divide-and-conquer fashion. Then we give in detail a computational study of MFCC application to peptide/protein that contains disulfide bonds. Continued on the basis of previous MFCC tests, this study provides another numerical support for the accuracy of the MFCC approach to full quantum mechanical calculation of protein/peptide-small molecule interaction. In Chapter 2, we further develop the MFCC scheme for quantum mechanical computation of DNA-ligand interaction energy. We study three oligonuclear acid interaction systems: dinucleotide dCG/water, trinucleotide dCGT/water and a Watson-Crick paired DNA segment dCGT/dGCA. The MFCC interaction energies are found to be in excellent agreement with the corresponding results obtained from the full system ab initio calculations. This study is an exemplification of the application of the general MFCC approach to biomacromolecules. In Chapter 3, firstly, a MFCC-downhill simplex method is proposed to study binding structures of ligands (atoms, ions, or small molecules) in large molecular complex systems. This method employs the MFCC approach to compute the interaction energy-structure relation of the system and implements the downhill simplex algorithm for structural optimization. Secondly, this method is numerically tested on a system of [KCp(18-crown-6)], as a simplest monatomic case study, to optimize the binding position of the potassium cation in a fixed coordination Cp and 18-crown-6 coordinating sphere. The result of the MFCC-downhill simplex optimization shows good agreement with both the crystal structure and with the full-system downhill simplex optimized structure. The effects of the initial structure of the simplex and of the
Quantum hacking: attacking practical quantum key distribution systems
NASA Astrophysics Data System (ADS)
Qi, Bing; Fung, Chi-Hang Fred; Zhao, Yi; Ma, Xiongfeng; Tamaki, Kiyoshi; Chen, Christine; Lo, Hoi-Kwong
2007-09-01
Quantum key distribution (QKD) can, in principle, provide unconditional security based on the fundamental laws of physics. Unfortunately, a practical QKD system may contain overlooked imperfections and violate some of the assumptions in a security proof. Here, we report two types of eavesdropping attacks against a practical QKD system. The first one is "time-shift" attack, which is applicable to QKD systems with gated single photon detectors (SPDs). In this attack, the eavesdropper, Eve, exploits the time mismatch between the open windows of the two SPDs. She can acquire a significant amount of information on the final key by simply shifting the quantum signals forwards or backwards in time domain. Our experimental results in [9] with a commercial QKD system demonstrate that, under this attack, the original QKD system is breakable. This is the first experimental demonstration of a feasible attack against a commercial QKD system. This is a surprising result. The second one is "phase-remapping" attack [10]. Here, Eve exploits the fact that a practical phase modulator has a finite response time. In principle, Eve could change the encoded phase value by time-shifting the signal pulse relative to the reference pulse.
NASA Astrophysics Data System (ADS)
Collins, Robert J.; Donaldon, Ross J.; Dunjko, Vedran; Wallden, Petros; Clarke, Patrick J.; Andersson, Erika; Jeffers, John; Buller, Gerald S.
2014-10-01
Classical digital signatures are commonly used in e-mail, electronic financial transactions and other forms of electronic communications to ensure that messages have not been tampered with in transit, and that messages are transferrable. The security of commonly used classical digital signature schemes relies on the computational difficulty of inverting certain mathematical functions. However, at present, there are no such one-way functions which have been proven to be hard to invert. With enough computational resources certain implementations of classical public key cryptosystems can be, and have been, broken with current technology. It is nevertheless possible to construct information-theoretically secure signature schemes, including quantum digital signature schemes. Quantum signature schemes can be made information theoretically secure based on the laws of quantum mechanics, while classical comparable protocols require additional resources such as secret communication and a trusted authority. Early demonstrations of quantum digital signatures required quantum memory, rendering them impractical at present. Our present implementation is based on a protocol that does not require quantum memory. It also uses the new technique of unambiguous quantum state elimination, Here we report experimental results for a test-bed system, recorded with a variety of different operating parameters, along with a discussion of aspects of the system security.
Bandt Pompe approach to the classical-quantum transition
NASA Astrophysics Data System (ADS)
Kowalski, A. M.; Martín, M. T.; Plastino, A.; Rosso, O. A.
2007-09-01
By regarding the celebrated classical-quantum transition problem as one pertaining to the domain of dynamic systems’ theory, we present a discussion that exhibits the superiority of the Bandt-Pompe approach to the extraction of a probability distribution from time series’ values.
Nonadiabatic approach to quantum optical information storage
NASA Astrophysics Data System (ADS)
Matsko, A. B.; Rostovtsev, Y. V.; Kocharovskaya, O.; Zibrov, A. S.; Scully, M. O.
2001-10-01
We show that there is no need for adiabatic passage in the storage and retrieval of information in the optically thick vapor of Lambda-type atoms. This information can be mapped into and retrieved out of long-lived atomic coherence with nearly perfect efficiency by strong writing and reading pulses with steep rising and falling edges. We elucidate similarities and differences between the ``adiabatic'' and ``instant'' light storage techniques, and conclude that for any switching time, an almost perfect information storage is possible if the group velocity of the signal pulse is much less than the speed of light in the vacuum c and the bandwidth of the signal pulse is much less then the width of the two-photon resonance. The maximum loss of the information appears in the case of instantaneous switching of the writing and reading fields compared with adiabatic switching, and is determined by the ratio of the initial group velocity of the signal pulse in the medium and speed of light in the vacuum c, which can be very small. Quantum restrictions to the storage efficiency are also discussed.
New approach to energy transfer and quantum correlations in a molecular dimer
NASA Astrophysics Data System (ADS)
Saberi, M.; Bagheri Harouni, M.; Roknizadeh, R.; Latifi, H.
2016-09-01
The dynamics of single-excitation energy transfer in a molecular dimer interacting with a phonon bath is studied. Although there are exact numerical solutions for this system, we propose an approach that provides exact analytical results with few electronic degrees of freedom. This approach is based on considering the phonon subsystem in the coherent state representation. Applying this approach, the long-lived coherence time is evaluated in the weak and strong coupling regimes. Moreover, by calculating the quantum entanglement and global quantum discord, the time evolution of quantum correlations is examined. The effects of two parameters, electronic coupling strength and bath temperature, on the energy transfer and quantum correlations are studied. It is shown, in agreement with previous results, that the long-lived coherence time in the weak coupling regime is longer than in the strong coupling regime. Also, the increasing bath temperature gives rise to faster delocalization of energy transfer. Furthermore, it is illustrated that the bath temperature has a significant effect on the quantum entanglement with respect to the global quantum discord.
The path integral picture of quantum systems
NASA Astrophysics Data System (ADS)
Ceperley, David
2011-03-01
The imaginary time path integral ``formalism'' was introduced in 1953 by Feynman to understand the superfluid transition in liquid helium. The equilibrium properties of quantum many body systems is isomorphic to the classical statistical mechanics of cross-linking polymer-like objects. With the Markov Chain Monte Carlo method, invented by Metropolis et al., also in 1953, a potential way of calculating properties of correlated quantum systems was in place. But calculations for many-body quantum systems did not become routine until computers and algorithms had become sufficiently powerful three decades later. Once such simulations could happen, it was realized that simulations provided a deeper insight into boson superfluids, in particular the relation of bose condensation to the polymer end-to-end distance, and the superfluid density to the polymer ``winding number.'' Some recent developments and applications to supersolids, and helium droplets will be given. Finally, limitations of the methodology e.g. to fermion systems are discussed.
Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.
Kantardjiev, Alexander A
2012-07-01
Quantum.Ligand.Dock (protein-ligand docking with graphic processing unit (GPU) quantum entanglement refinement on a GPU system) is an original modern method for in silico prediction of protein-ligand interactions via high-performance docking code. The main flavour of our approach is a combination of fast search with a special account for overlooked physical interactions. On the one hand, we take care of self-consistency and proton equilibria mutual effects of docking partners. On the other hand, Quantum.Ligand.Dock is the the only docking server offering such a subtle supplement to protein docking algorithms as quantum entanglement contributions. The motivation for development and proposition of the method to the community hinges upon two arguments-the fundamental importance of quantum entanglement contribution in molecular interaction and the realistic possibility to implement it by the availability of supercomputing power. The implementation of sophisticated quantum methods is made possible by parallelization at several bottlenecks on a GPU supercomputer. The high-performance implementation will be of use for large-scale virtual screening projects, structural bioinformatics, systems biology and fundamental research in understanding protein-ligand recognition. The design of the interface is focused on feasibility and ease of use. Protein and ligand molecule structures are supposed to be submitted as atomic coordinate files in PDB format. A customization section is offered for addition of user-specified charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. Final predicted complexes are ranked according to obtained scores and provided in PDB format as well as interactive visualization in a molecular viewer. Quantum.Ligand.Dock server can be accessed at http://87.116.85.141/LigandDock.html.
Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.
Kantardjiev, Alexander A
2012-07-01
Quantum.Ligand.Dock (protein-ligand docking with graphic processing unit (GPU) quantum entanglement refinement on a GPU system) is an original modern method for in silico prediction of protein-ligand interactions via high-performance docking code. The main flavour of our approach is a combination of fast search with a special account for overlooked physical interactions. On the one hand, we take care of self-consistency and proton equilibria mutual effects of docking partners. On the other hand, Quantum.Ligand.Dock is the the only docking server offering such a subtle supplement to protein docking algorithms as quantum entanglement contributions. The motivation for development and proposition of the method to the community hinges upon two arguments-the fundamental importance of quantum entanglement contribution in molecular interaction and the realistic possibility to implement it by the availability of supercomputing power. The implementation of sophisticated quantum methods is made possible by parallelization at several bottlenecks on a GPU supercomputer. The high-performance implementation will be of use for large-scale virtual screening projects, structural bioinformatics, systems biology and fundamental research in understanding protein-ligand recognition. The design of the interface is focused on feasibility and ease of use. Protein and ligand molecule structures are supposed to be submitted as atomic coordinate files in PDB format. A customization section is offered for addition of user-specified charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. Final predicted complexes are ranked according to obtained scores and provided in PDB format as well as interactive visualization in a molecular viewer. Quantum.Ligand.Dock server can be accessed at http://87.116.85.141/LigandDock.html. PMID:22669908
Controlling Atomic, Solid-State and Hybrid Systems for Quantum Information Processing
NASA Astrophysics Data System (ADS)
Gullans, Michael John
Quantum information science involves the use of precise control over quantum systems to explore new technologies. However, as quantum systems are scaled up they require an ever deeper understanding of many-body physics to achieve the required degree of control. Current experiments are entering a regime which requires active control of a mesoscopic number of coupled quantum systems or quantum bits (qubits). This thesis describes several approaches to this goal and shows how mesoscopic quantum systems can be controlled and utilized for quantum information tasks. The first system we consider is the nuclear spin environment of GaAs double quantum dots containing two electrons. We show that the through appropriate control of dynamic nuclear polarization one can prepare the nuclear spin environment in three distinct collective quantum states which are useful for quantum information processing with electron spin qubits. We then investigate a hybrid system in which an optical lattice is formed in the near field scattering off an array of metallic nanoparticles by utilizing the plasmonic resonance of the nanoparticles. We show that such a system would realize new regimes of dense, ultra-cold quantum matter and can be used to create a quantum network of atoms and plasmons. Finally we investigate quantum nonlinear optical systems. We show that the intrinsic nonlinearity for plasmons in graphene can be large enough to make a quantum gate for single photons. We also consider two nonlinear optical systems based on ultracold gases of atoms. In one case, we demonstrate an all-optical single photon switch using cavity quantum electrodynamics (QED) and slow light. In the second case, we study few photon physics in strongly interacting Rydberg polariton systems, where we demonstrate the existence of two and three photon bound states and study their properties.
Double-Slit Interference Pattern for a Macroscopic Quantum System
NASA Astrophysics Data System (ADS)
Naeij, Hamid Reza; Shafiee, Afshin
2016-07-01
In this study, we solve analytically the Schrödinger equation for a macroscopic quantum oscillator as a central system coupled to two environmental micro-oscillating particles. Then, the double-slit interference patterns are investigated in two limiting cases, considering the limits of uncertainty in the position probability distribution. Moreover, we analyze the interference patterns based on a recent proposal called stochastic electrodynamics with spin. Our results show that when the quantum character of the macro-system is decreased, the diffraction pattern becomes more similar to a classical one. We also show that, depending on the size of the slits, the predictions of quantum approach could be apparently different with those of the aforementioned stochastic description.
Quantum Bound States in a C-C60 System
NASA Astrophysics Data System (ADS)
Adam, R. M.; Sofianos, S. A.
2015-03-01
We investigate the quantum mechanical system of a carbon "test atom" in the proximity of a C60 molecule, both inside and outside the fullerene "cage". Two sets of bound states are found to exist, a deeply bound set inside the cage and another weakly bound set outside it. Tunnelling between these regions is highly unlikely to happen because of the extreme height and width of the potential barrier. However, we predict that a layer of atoms could be adsorbed onto C60 by forming a quantum mechanical bound state, with the adsorbed atoms being concentrated above the "panels" of the buckyball, consistent with "bucky onions" observed experimentally. Until now analysis of such fullerene systems has been via classical mechanics, but a quantum approach reveals new insights.
Theory of ground state factorization in quantum cooperative systems.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2008-05-16
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.
Theory of ground state factorization in quantum cooperative systems.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2008-05-16
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range. PMID:18518481
NASA Astrophysics Data System (ADS)
Onorato, P.
2011-03-01
An introduction to quantum mechanics based on the sum-over-paths (SOP) method originated by Richard P Feynman and developed by E F Taylor and coworkers is presented. The Einstein-Brillouin-Keller (EBK) semiclassical quantization rules are obtained following the SOP approach for bounded systems, and a general approach to the calculation of propagation amplitude is discussed for unbounded systems. These semiclassical results are obtained when the SOP is limited to the trajectories classically allowed. EBK semiclassical quantization and the topological Maslov index are used to deduce the correct quantum mechanical results for systems which live in a two-dimensional world as quantum dots and quantum rings. In the latter systems, the semiclassical propagation amplitude is used to discuss the Aharonov-Bohm effect. The development involves only elementary calculus and also provides a theoretical introduction to the quantum nature of low-dimensional nanostructures.
Quantum tomography of arbitrary spin states of particles: root approach
NASA Astrophysics Data System (ADS)
Bogdanov, Yu. I.
2006-05-01
A method of quantum tomography of arbitrary spin particle states is developed on the basis of the root approach. It is shown that the set of mutually complementary distributions of angular momentum projections can be naturally described by a set of basis functions based on the Kravchuk polynomials. The set of Kravchuk basis functions leads to a multiparametric statistical distribution that generalizes the binomial distribution. In order to analyze a statistical inverse problem of quantum mechanics, we investigated the likelihood equation and the statistical properties of the obtained estimates. The conclusions of the analytical researches are approved by the results of numerical calculations.
Distribution of Quantum Coherence in Multipartite Systems.
Radhakrishnan, Chandrashekar; Parthasarathy, Manikandan; Jambulingam, Segar; Byrnes, Tim
2016-04-15
The distribution of coherence in multipartite systems is examined. We use a new coherence measure with entropic nature and metric properties, based on the quantum Jensen-Shannon divergence. The metric property allows for the coherence to be decomposed into various contributions, which arise from local and intrinsic coherences. We find that there are trade-off relations between the various contributions of coherence, as a function of parameters of the quantum state. In bipartite systems the coherence resides on individual sites or is distributed among the sites, which contribute in a complementary way. In more complex systems, the characteristics of the coherence can display more subtle changes with respect to the parameters of the quantum state. In the case of the XXZ Heisenberg model, the coherence changes from a monogamous to a polygamous nature. This allows us to define the shareability of coherence, leading to monogamy relations for coherence. PMID:27127948
Keldysh field theory for driven open quantum systems
NASA Astrophysics Data System (ADS)
Sieberer, L. M.; Buchhold, M.; Diehl, S.
2016-09-01
Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Keldysh field theory for driven open quantum systems.
Sieberer, L M; Buchhold, M; Diehl, S
2016-09-01
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736
Keldysh field theory for driven open quantum systems
NASA Astrophysics Data System (ADS)
Sieberer, L. M.; Buchhold, M.; Diehl, S.
2016-09-01
Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Keldysh field theory for driven open quantum systems.
Sieberer, L M; Buchhold, M; Diehl, S
2016-09-01
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Open Quantum Systems with Applications to Precision Measurements
NASA Astrophysics Data System (ADS)
Tieri, David
A spectrally pure coherent light source is an important component in precision measurement applications, such as an atomic clock. The more spectrally pure the coherent light source, or the narrower the linewidth of its power spectrum, the better for atomic clock experiments. A coherent light light source, such as a laser, is intrinsically an open quantum system, meaning that it gains and loses energy from an external environment. The aim of this thesis is to study various open quantum systems in an attempt to discover a scheme in which an extremely spectrally pure coherent light source might be realized. Therefore, this thesis begins by introducing the two main approaches to treating open quantum systems, the quantum master equation approach, and the quantum Langevin equation approach. In addition to deriving these from first principles, many of the solution methods to these approaches are given and then demonstrated using computer simulations. These include the quantum jump algorithm, the quantum state diffusion algorithm, the cumulant expansion method, and the method of c-number Langevin equations. Using these methods, the theory of the crossover between lasing and steady state superradiance is presented. It is shown that lasing and steady state superradiance might be demonstrated in the same physical system, but in different parameter regimes. The parameter space between these two extreme limits is explored, and the benefits and drawbacks of operating a system at a given set of parameters, i.e. to achieve the most spectrally pure light source, are discussed. We also consider the phase stability of a laser that is locked to a cavity QED system comprised of atoms with an ultra-narrow optical transition. Although the atomic motion introduces Doppler broadening, the standing wave nature of the cavity causes saturated absorption, which can be used to achieve an extremely high degree of phase stabilization. The inhomogeneity introduced by finite atomic velocities can
ERIC Educational Resources Information Center
WIENS, JACOB H.
TO PERMIT COMPARATIVE ANALYSIS FOR PURPOSES OF EDUCATIONAL PLANNING AT SAN MATEO, FIVE INSTITUTIONS WITH SYSTEMS PROGRAMS ARE EVALUATED ON THE BASIS OF TRIP NOTES. OAKLAND COMMUNITY COLLEGE HAS BEEN COMPLETELY ORGANIZED AROUND THE VOLUNTARY WORK-STUDY LABORATORY APPROACH TO LEARNING. ORAL ROBERTS UNIVERSITY, OKLAHOMA CHRISTIAN COLLEGE, HENRY FORD…
Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates
NASA Astrophysics Data System (ADS)
Radtke, T.; Fritzsche, S.
2005-12-01
During recent years, quantum computations and the study of n-qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing quantum computations, however, these investigations also revealed a great deal of difficulties which still need to be solved in practice. In quantum computing, unitary and non-unitary quantum operations act on a given set of qubits to form (entangled) states, in which the information is encoded by the overall system often referred to as quantum registers. To facilitate the simulation of such n-qubit quantum systems, we present the FEYNMAN program to provide all necessary tools in order to define and to deal with quantum registers and quantum operations. Although the present version of the program is restricted to unitary transformations, it equally supports—whenever possible—the representation of the quantum registers both, in terms of their state vectors and density matrices. In addition to the composition of two or more quantum registers, moreover, the program also supports their decomposition into various parts by applying the partial trace operation and the concept of the reduced density matrix. Using an interactive design within the framework of MAPLE, therefore, we expect the FEYNMAN program to be helpful not only for teaching the basic elements of quantum computing but also for studying their physical realization in the future. Program summaryTitle of program:FEYNMAN Catalogue number:ADWE Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed:All computers with a license of the computer algebra system MAPLE [Maple is a registered trademark of Waterlo Maple Inc.] Operating systems or monitors under which the program has been tested:Linux, MS Windows XP Programming language used:MAPLE 9.5 (but should be compatible
Quantum Hall effect in semiconductor systems with quantum dots and antidots
Beltukov, Ya. M.; Greshnov, A. A.
2015-04-15
The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.
Quantum sweeps, synchronization, and Kibble-Zurek physics in dissipative quantum spin systems
NASA Astrophysics Data System (ADS)
Henriet, Loïc; Le Hur, Karyn
2016-02-01
We address dissipation effects on the nonequilibrium quantum dynamics of an ensemble of spins-1/2 coupled via an Ising interaction. Dissipation is modeled by a (Ohmic) bath of harmonic oscillators at zero temperature and correspond either to the sound modes of a one-dimensional Bose-Einstein (quasi-)condensate or to the zero-point fluctuations of a long transmission line. We consider the dimer comprising two spins and the quantum Ising chain with long-range interactions and develop an (mathematically and numerically) exact stochastic approach to address nonequilibrium protocols in the presence of an environment. For the two-spin case, we first investigate the dissipative quantum phase transition induced by the environment through quantum quenches and study the effect of the environment on the synchronization properties. Then we address Landau-Zener-Stueckelberg-Majorana protocols for two spins and for the spin array. In this latter case, we adopt a stochastic mean-field point of view and present a Kibble-Zurek-type argument to account for interaction effects in the lattice. Such dissipative quantum spin arrays can be realized in ultracold atoms, trapped ions, and mesoscopic systems and are related to Kondo lattice models.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new
Quantum temporal probabilities in tunneling systems
NASA Astrophysics Data System (ADS)
Anastopoulos, Charis; Savvidou, Ntina
2013-09-01
We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines 'classical' time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems.
Constraint algebra for interacting quantum systems
NASA Astrophysics Data System (ADS)
Fubini, S.; Roncadelli, M.
1988-04-01
We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.
Molecular dynamics of large systems with quantum corrections for the nuclei
Gu, Bing; Garashchuk, Sophya
2015-12-31
This paper describes an approximate approach to quantum dynamics based on the quantum trajectory formulation of the Schrödinger equation. The quantum-mechanical effects are incorporated through the quantum potential of the mean-field type, acting on a trajectory ensemble in addition to the classical potential. Efficiency for large systems is achieved by using the quantum corrections for selected degrees of freedom and introduction of empirical friction into the ground-state energy calculations. The classical potential, if needed, can be computed on-the-fly using the Density Functional Tight Binding method of electronic structure merged with the quantum trajectory dynamics code. The approach is practical for a few hundred atoms. Applications include a study of adsorption of quantum hydrogen colliding with the graphene model, C{sub 37}H{sub 15} and a calculation of the ground state of solid {sup 4}He simulated by a cell 180-atoms.
Systems Biology Approach to Developing “Systems Therapeutics”
2014-01-01
The standard drug development model uses reductionist approaches to discover small molecules targeting one pathway. Although systems biology analyzes multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. Similar to that in physics where a departure from the old reductionist “Copenhagen View” of quantum physics to a new and predictive systems based, collective model has emerged yielding new breakthroughs such as the LASER, a new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called “systems therapeutics.” PMID:24900858
Nonequilibrium quantum dynamics in optomechanical systems
NASA Astrophysics Data System (ADS)
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
NASA Astrophysics Data System (ADS)
Perdomo, Alejandro
The 20th century saw the first revolution of quantum mechanics, setting the rules for our understanding of light, matter, and their interaction. The 21st century is focused on using these quantum mechanical laws to develop technologies which allows us to solve challenging practical problems. One of the directions is the use quantum devices which promise to surpass the best computers and best known classical algorithms for solving certain tasks. Crucial to the design of realistic devices and technologies is to account for the open nature of quantum systems and to cope with their interactions with the environment. In the first part of this dissertation, we show how to tackle classical optimization problems of interest in the physical sciences within one of these quantum computing paradigms, known as quantum annealing (QA). We present the largest implementation of QA on a biophysical problem (six different experiments with up to 81 superconducting quantum bits). Although the cases presented here can be solved on a classical computer, we present the first implementation of lattice protein folding on a quantum device under the Miyazawa-Jernigan model. This is the first step towards studying optimization problems in biophysics and statistical mechanics using quantum devices. In the second part of this dissertation, we focus on the problem of excitonic energy transfer. We provide an intuitive platform for engineering exciton transfer dynamics and we show that careful consideration of the properties of the environment leads to opportunities to engineer the transfer of an exciton. Since excitons in nanostructures are proposed for use in quantum information processing and artificial photosynthetic designs, our approach paves the way for engineering a wide range of desired exciton dynamics. Finally, we develop the theory for a two-dimensional electronic spectroscopic technique based on fluorescence (2DFS) and challenge previous theoretical results claiming its equivalence to
Quantum temporal probabilities in tunneling systems
Anastopoulos, Charis Savvidou, Ntina
2013-09-15
We study the temporal aspects of quantum tunneling as manifested in time-of-arrival experiments in which the detected particle tunnels through a potential barrier. In particular, we present a general method for constructing temporal probabilities in tunneling systems that (i) defines ‘classical’ time observables for quantum systems and (ii) applies to relativistic particles interacting through quantum fields. We show that the relevant probabilities are defined in terms of specific correlation functions of the quantum field associated with tunneling particles. We construct a probability distribution with respect to the time of particle detection that contains all information about the temporal aspects of the tunneling process. In specific cases, this probability distribution leads to the definition of a delay time that, for parity-symmetric potentials, reduces to the phase time of Bohm and Wigner. We apply our results to piecewise constant potentials, by deriving the appropriate junction conditions on the points of discontinuity. For the double square potential, in particular, we demonstrate the existence of (at least) two physically relevant time parameters, the delay time and a decay rate that describes the escape of particles trapped in the inter-barrier region. Finally, we propose a resolution to the paradox of apparent superluminal velocities for tunneling particles. We demonstrate that the idea of faster-than-light speeds in tunneling follows from an inadmissible use of classical reasoning in the description of quantum systems. -- Highlights: •Present a general methodology for deriving temporal probabilities in tunneling systems. •Treatment applies to relativistic particles interacting through quantum fields. •Derive a new expression for tunneling time. •Identify new time parameters relevant to tunneling. •Propose a resolution of the superluminality paradox in tunneling.
Quantum harmonic Brownian motion in a general environment: A modified phase-space approach
Yeh, L. |
1993-06-23
After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented.
Non-Markovian correlation functions for open quantum systems
NASA Astrophysics Data System (ADS)
Jin, Jinshuang; Karlewski, Christian; Marthaler, Michael
2016-08-01
Beyond the conventional quantum regression theorem, a general formula for non-Markovian correlation functions of arbitrary system operators both in the time- and frequency-domain is given. We approach the problem by transforming the conventional time-non-local master equation into dispersed time-local equations-of-motion. The validity of our approximations is discussed and we find that the non-Markovian terms have to be included for short times. While calculations of the density matrix at short times suffer from the initial value problem, a correlation function has a well defined initial state. The resulting formula for the non-Markovian correlation function has a simple structure and is as convenient in its application as the conventional quantum regression theorem for the Markovian case. For illustrations, we apply our method to investigate the spectrum of the current fluctuations of interacting quantum dots contacted with two electrodes. The corresponding non-Markovian characteristics are demonstrated.
Cavity optomechanics mediated by a quantum two-level system.
Pirkkalainen, J-M; Cho, S U; Massel, F; Tuorila, J; Heikkilä, T T; Hakonen, P J; Sillanpää, M A
2015-04-27
Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum-mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation-pressure interaction by six orders of magnitude, allowing to approach the strong coupling regime. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping attributed to the qubit. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.
Quantum statistical ensemble for emissive correlated systems.
Shakirov, Alexey M; Shchadilova, Yulia E; Rubtsov, Alexey N
2016-06-01
Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N-particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems. PMID:27415223
Time-evolution of quantum systems via a complex nonlinear Riccati equation. II. Dissipative systems
NASA Astrophysics Data System (ADS)
Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar
2016-10-01
In our former contribution (Cruz et al., 2015), we have shown the sensitivity to the choice of initial conditions in the evolution of Gaussian wave packets via the nonlinear Riccati equation. The formalism developed in the previous work is extended to effective approaches for the description of dissipative quantum systems. By means of simple examples we show the effects of the environment on the quantum uncertainties, correlation function, quantum energy contribution and tunnelling currents. We prove that the environmental parameter γ is strongly related with the sensitivity to the choice of initial conditions.
Lyapunov Control of Quantum Systems with Impulsive Control Fields
Yang, Wei; Sun, Jitao
2013-01-01
We investigate the Lyapunov control of finite-dimensional quantum systems with impulsive control fields, where the studied quantum systems are governed by the Schrödinger equation. By three different Lyapunov functions and the invariant principle of impulsive systems, we study the convergence of quantum systems with impulsive control fields and propose new results for the mentioned quantum systems in the form of sufficient conditions. Two numerical simulations are presented to illustrate the effectiveness of the proposed control method. PMID:23766712
Thermal Phase Transitions in Finite Quantum Systems
Dean, D.J.
2001-10-18
In this Proceedings, the author will describe the behavior of two different quantum-mechanical systems as a function of increasing temperature. While these systems are somewhat different, the questions addressed are very similar, namely, how does one describe transitions in phase of a finite many-body system; how does one recognize these transitions in practical calculations; and how may one obtain the order of the transition.
Classical system boundaries cannot be determined within quantum Darwinism
NASA Astrophysics Data System (ADS)
Fields, Chris
Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.
Nonperturbative approach to circuit quantum electrodynamics.
Jonasson, Olafur; Tang, Chi-Shung; Goan, Hsi-Sheng; Manolescu, Andrei; Gudmundsson, Vidar
2012-10-01
We outline a rigorous method which can be used to solve the many-body Schrödinger equation for a Coulomb interacting electronic system in an external classical magnetic field as well as a quantized electromagnetic field. Effects of the geometry of the electronic system as well as the polarization of the quantized electromagnetic field are explicitly taken into account. We accomplish this by performing repeated truncations of many-body spaces in order to keep the size of the many particle basis on a manageable level. The electron-electron and electron-photon interactions are treated in a nonperturbative manner using "exact numerical diagonalization." Our results demonstrate that including the diamagnetic term in the photon-electron interaction Hamiltonian drastically improves numerical convergence. Additionally, convergence with respect to the number of photon states in the joint photon-electron Fock space basis is fast. However, the convergence with respect to the number of electronic states is slow and is the main bottleneck in calculations.
Quantum cluster approach to the spinful Haldane-Hubbard model
NASA Astrophysics Data System (ADS)
Wu, Jingxiang; Faye, Jean Paul Latyr; Sénéchal, David; Maciejko, Joseph
2016-02-01
We study the spinful fermionic Haldane-Hubbard model at half-filling using a combination of quantum cluster methods: cluster perturbation theory, the variational cluster approximation, and cluster dynamical mean-field theory. We explore possible zero-temperature phases of the model as a function of onsite repulsive interaction strength and next-nearest-neighbor hopping amplitude and phase. Our approach allows us to access the regime of intermediate interaction strength, where charge fluctuations are significant and effective spin model descriptions may not be justified. Our approach also improves upon mean-field solutions of the Haldane-Hubbard model by retaining local quantum fluctuations and treating them nonperturbatively. We find a correlated topological Chern insulator for weak interactions and a topologically trivial Néel antiferromagnetic insulator for strong interactions. For intermediate interactions, we find that topologically nontrivial Néel antiferromagnetic insulating phases and/or a topologically nontrivial nonmagnetic insulating phase may be stabilized.
Optimal control of complex atomic quantum systems
NASA Astrophysics Data System (ADS)
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-10-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Lithography system using quantum entangled photons
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-01-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688
Hidden supersymmetry in quantum bosonic systems
Correa, Francisco Plyushchay, Mikhail S.
2007-10-15
We show that some simple well-studied quantum mechanical systems without fermion (spin) degrees of freedom display, surprisingly, a hidden supersymmetry. The list includes the bound state Aharonov-Bohm, the Dirac delta and the Poeschl-Teller potential problems, in which the unbroken and broken N = 2 supersymmetry of linear and nonlinear (polynomial) forms is revealed.
Connectivity analysis of controlled quantum systems
NASA Astrophysics Data System (ADS)
Wu, Rong; Rabitz, Herschel; Turinici, Gabriel; Sola, Ignacio
2004-11-01
A connectivity analysis of controlled quantum systems assesses the feasibility of a field existing that can transfer at least some amplitude between any specified pair of states. Although Hamiltonians with special structure or symmetry may not produce full connectivity, it is argued and demonstrated that virtually any Hamiltonian is expected to be connected. The connectivity of any particular system is generally revealed in the quantum evolution over a single or at most a few time steps. A connectivity analysis is inexpensive to perform and it can also identify statistically significant intermediate states linking a specified initial and final state. These points are illustrated with several simple systems. The likelihood of an arbitrary system being connected implies that at least some product yield can be expected in the laboratory for virtually all systems subjected to a suitable control.
Plimak, L.I.; Fleischhauer, M.; Olsen, M.K.; Collett, M.J.
2003-01-01
We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (S{delta}E). Second, we show that introducing sources into the SDE's (or S{delta}E's) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo's linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.
Quantum cryptographic system with reduced data loss
Lo, Hoi-Kwong; Chau, Hoi Fung
1998-01-01
A secure method for distributing a random cryptographic key with reduced data loss. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically.
Quantum cryptographic system with reduced data loss
Lo, H.K.; Chau, H.F.
1998-03-24
A secure method for distributing a random cryptographic key with reduced data loss is disclosed. Traditional quantum key distribution systems employ similar probabilities for the different communication modes and thus reject at least half of the transmitted data. The invention substantially reduces the amount of discarded data (those that are encoded and decoded in different communication modes e.g. using different operators) in quantum key distribution without compromising security by using significantly different probabilities for the different communication modes. Data is separated into various sets according to the actual operators used in the encoding and decoding process and the error rate for each set is determined individually. The invention increases the key distribution rate of the BB84 key distribution scheme proposed by Bennett and Brassard in 1984. Using the invention, the key distribution rate increases with the number of quantum signals transmitted and can be doubled asymptotically. 23 figs.
An impurity-induced gap system as a quantum data bus for quantum state transfer
Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.
2014-09-15
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.
Periodic thermodynamics of open quantum systems.
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Periodic thermodynamics of open quantum systems
NASA Astrophysics Data System (ADS)
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.
Periodic thermodynamics of open quantum systems.
Brandner, Kay; Seifert, Udo
2016-06-01
The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature. PMID:27415235
Identification of open quantum systems from observable time traces
Zhang, Jun; Sarovar, Mohan
2015-05-27
Estimating the parameters that dictate the dynamics of a quantum system is an important task for quantum information processing and quantum metrology, as well as fundamental physics. In our paper we develop a method for parameter estimation for Markovian open quantum systems using a temporal record of measurements on the system. Furthermore, the method is based on system realization theory and is a generalization of our previous work on identification of Hamiltonian parameters.
Simulation of Ginger EPR Spectra Obtained by X-Irradiation:Quantum Approach
NASA Astrophysics Data System (ADS)
Laachir, S.; Moussetad, M.; Adhiri, R.; Fahli, A.; Aboulfatah, M.; Mikou, M.
2005-08-01
The ginger sample has been exposed to X-rays at cumulative doses. The foodstuffs irradiation is used in particular to improve their hygienic qualities and increase their shelf lives. This process has been approved by various international organizations: FAO -- AIEA -- WHO. In the present work, we propose to reproduce by simulation, based on a quantum approach, of the ESR (Electron Spin Resonance) spectra. The semi-classical approach is valid for a simple system, but not for a complex system such as an atom with hyperfine structure. In this case a quantum approach, based on spin Hamiltonian, is essential to interpret the ESR spectra. The main result is that the simulated spectra are in good agreement with the experimental ones obtained before and after irradiation.
Approach to non-equilibrium behaviour in quantum field theory
Kripfganz, J.; Perlt, H.
1989-05-01
We study the real-time evolution of quantum field theoretic systems in non-equilibrium situations. Results are presented for the example of scalar /lambda//phi//sup 4/ theory. The degrees of freedom are discretized by studying the system on a torus. Short-wavelength modes are integrated out to one-loop order. The long-wavelength modes considered to be the relevant degrees of freedom are treated by semiclassical phase-space methods. /copyright/ 1989 Academic Press, Inc.
Uncertainty relation for non-Hamiltonian quantum systems
Tarasov, Vasily E.
2013-01-15
General forms of uncertainty relations for quantum observables of non-Hamiltonian quantum systems are considered. Special cases of uncertainty relations are discussed. The uncertainty relations for non-Hamiltonian quantum systems are considered in the Schroedinger-Robertson form since it allows us to take into account Lie-Jordan algebra of quantum observables. In uncertainty relations, the time dependence of quantum observables and the properties of this dependence are discussed. We take into account that a time evolution of observables of a non-Hamiltonian quantum system is not an endomorphism with respect to Lie, Jordan, and associative multiplications.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Wei
Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the
One-qubit quantum gates in a circular graphene quantum dot: genetic algorithm approach
2013-01-01
The aim of this work was to design and control, using genetic algorithm (GA) for parameter optimization, one-charge-qubit quantum logic gates σx, σy, and σz, using two bound states as a qubit space, of circular graphene quantum dots in a homogeneous magnetic field. The method employed for the proposed gate implementation is through the quantum dynamic control of the qubit subspace with an oscillating electric field and an onsite (inside the quantum dot) gate voltage pulse with amplitude and time width modulation which introduce relative phases and transitions between states. Our results show that we can obtain values of fitness or gate fidelity close to 1, avoiding the leakage probability to higher states. The system evolution, for the gate operation, is presented with the dynamics of the probability density, as well as a visualization of the current of the pseudospin, characteristic of a graphene structure. Therefore, we conclude that is possible to use the states of the graphene quantum dot (selecting the dot size and magnetic field) to design and control the qubit subspace, with these two time-dependent interactions, to obtain the optimal parameters for a good gate fidelity using GA. PMID:23680153
Quantum mechanical molecular dynamics studies of chemical systems
NASA Astrophysics Data System (ADS)
Pavese, Marc
Methods for including quantum mechanical effects in molecular dynamics (MD) simulations are discussed in this thesis. The thesis focuses on the path integral centroid molecular dynamics (CMD) algorithm. This algorithm is first described and then used in simulations of low temperature para-hydrogen, and also in simulations of the excess proton in water clusters and in the bulk. The CMD method allows one to include the effects of nuclear quantization approximately while still maintaining a quasi-classical, trajectory based, description of the dynamics. The effects of quantization of the electronic degrees of freedom are also discussed. These effects are usually taken into account implicitly through parameterized potential functions. However, methods for including the quantum electronic degrees of freedom explicitly in a MD simulation are also discussed in this thesis. Most notably, the Car-Parrinello method, which combines density functional theory (DFT) with MD, is employed with the CMD algorithm. This yields a method which takes explicit account of the quantum electrons and nuclei. Thus, this work represents one feasible approach for considering the quantum nature of all the degrees of freedom of the system while still maintaining an MD framework. In the concluding remarks, future directions and possibilities for this type of approach are discussed.
Observable Measure of Quantum Coherence in Finite Dimensional Systems
NASA Astrophysics Data System (ADS)
Girolami, Davide
2014-10-01
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.
Observable measure of quantum coherence in finite dimensional systems.
Girolami, Davide
2014-10-24
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.
Observable measure of quantum coherence in finite dimensional systems.
Girolami, Davide
2014-10-24
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes. PMID:25379903
Focus on coherent control of complex quantum systems
NASA Astrophysics Data System (ADS)
Whaley, Birgitta; Milburn, Gerard
2015-10-01
The rapid growth of quantum information sciences over the past few decades has fueled a corresponding rise in high profile applications in fields such as metrology, sensors, spintronics, and attosecond dynamics, in addition to quantum information processing. Realizing this potential of today’s quantum science and the novel technologies based on this requires a high degree of coherent control of quantum systems. While early efforts in systematizing methods for high fidelity quantum control focused on isolated or closed quantum systems, recent advances in experimental design, measurement and monitoring, have stimulated both need and interest in the control of complex or large scale quantum systems that may also be coupled to an interactive environment or reservoir. This focus issue brings together new theoretical and experimental work addressing the formulation and implementation of quantum control for a broad range of applications in quantum science and technology today.
Optimization Approaches for Designing Quantum Reversible Arithmetic Logic Unit
NASA Astrophysics Data System (ADS)
Haghparast, Majid; Bolhassani, Ali
2016-03-01
Reversible logic is emerging as a promising alternative for applications in low-power design and quantum computation in recent years due to its ability to reduce power dissipation, which is an important research area in low power VLSI and ULSI designs. Many important contributions have been made in the literatures towards the reversible implementations of arithmetic and logical structures; however, there have not been many efforts directed towards efficient approaches for designing reversible Arithmetic Logic Unit (ALU). In this study, three efficient approaches are presented and their implementations in the design of reversible ALUs are demonstrated. Three new designs of reversible one-digit arithmetic logic unit for quantum arithmetic has been presented in this article. This paper provides explicit construction of reversible ALU effecting basic arithmetic operations with respect to the minimization of cost metrics. The architectures of the designs have been proposed in which each block is realized using elementary quantum logic gates. Then, reversible implementations of the proposed designs are analyzed and evaluated. The results demonstrate that the proposed designs are cost-effective compared with the existing counterparts. All the scales are in the NANO-metric area.
Multiple-state quantum Otto engine, 1D box system
Latifah, E.; Purwanto, A.
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Systemic approaches to biodegradation.
Trigo, Almudena; Valencia, Alfonso; Cases, Ildefonso
2009-01-01
Biodegradation, the ability of microorganisms to remove complex chemicals from the environment, is a multifaceted process in which many biotic and abiotic factors are implicated. The recent accumulation of knowledge about the biochemistry and genetics of the biodegradation process, and its categorization and formalization in structured databases, has recently opened the door to systems biology approaches, where the interactions of the involved parts are the main subject of study, and the system is analysed as a whole. The global analysis of the biodegradation metabolic network is beginning to produce knowledge about its structure, behaviour and evolution, such as its free-scale structure or its intrinsic robustness. Moreover, these approaches are also developing into useful tools such as predictors for compounds' degradability or the assisted design of artificial pathways. However, it is the environmental application of high-throughput technologies from the genomics, metagenomics, proteomics and metabolomics that harbours the most promising opportunities to understand the biodegradation process, and at the same time poses tremendous challenges from the data management and data mining point of view.
Correlated wavefunction quantum Monte Carlo approach to solids
Louie, S.G.
1992-10-01
A method for calculating the electronic and structural properties of solids using correlated wavefunctions together with quantum Monte Carlo techniques is described. The approach retains the exact Coulomb interaction between the electrons and employs a many-electron wavefunction of the Jastrow-Slater form. Several examples are given to illustrate the utility of the method. Topics discussed include the cohesive properties of bulk semiconductors, the magnetic-field- induced Wigner crystal in two dimensions, and the magnetic structure of bcc hydrogen. Landau level mixing is shown to be important in determining the transition between the fractional quantum Hall liquid and the Wigner crystal. Information on electron correlations such as the pair correlation functions which are not accessible to one- electron theories is also obtained. 24 refs, 5 figs, 1 tab.
Electron Dynamics in Finite Quantum Systems
NASA Astrophysics Data System (ADS)
McDonald, Christopher R.
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to
Inversion of Quantum Jumps in Quantum Optical Systems under Continuous Observation
NASA Astrophysics Data System (ADS)
Mabuchi, H.; Zoller, P.
1996-04-01
We formulate conditions for invertibility of quantum jumps in systems that decay by emission of quanta into a continuously monitored reservoir. We propose proof-of-principle experiments using techniques from cavity quantum electrodynamics and ion trapping, and briefly discuss the relevance of such methods for error correction in quantum computation.
Preparing ground states of quantum many-body systems on a quantum computer
NASA Astrophysics Data System (ADS)
Poulin, David
2009-03-01
The simulation of quantum many-body systems is a notoriously hard problem in condensed matter physics, but it could easily be handled by a quantum computer [4,1]. There is however one catch: while a quantum computer can naturally implement the dynamics of a quantum system --- i.e. solve Schr"odinger's equation --- there was until now no general method to initialize the computer in a low-energy state of the simulated system. We present a quantum algorithm [5] that can prepare the ground state and thermal states of a quantum many-body system in a time proportional to the square-root of its Hilbert space dimension. This is the same scaling as required by the best known algorithm to prepare the ground state of a classical many-body system on a quantum computer [3,2]. This provides strong evidence that for a quantum computer, preparing the ground state of a quantum system is in the worst case no more difficult than preparing the ground state of a classical system. 1 D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, Proc. 35th Annual ACM Symp. on Theo. Comp., (2003), p. 20. F. Barahona, On the computational complexity of ising spin glass models, J. Phys. A. Math. Gen., 15 (1982), p. 3241. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknessess of quantum computing, SIAM J. Comput., 26 (1997), pp. 1510--1523, quant-ph/9701001. S. Lloyd, Universal quantum simulators, Science, 273 (1996), pp. 1073--1078. D. Poulin and P. Wocjan, Preparing ground states of quantum many-body systems on a quantum computer, 2008, arXiv:0809.2705.
Energy Exchange in Driven Open Quantum Systems at Strong Coupling
NASA Astrophysics Data System (ADS)
Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich
2016-06-01
The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .
Thermodynamic signatures of an underlying quantum phase transition: A grand canonical approach
NASA Astrophysics Data System (ADS)
Jimenez, Kevin; Reslen, Jose
2016-08-01
The grand canonical formalism is employed to study the thermodynamic structure of a model displaying a quantum phase transition when studied with respect to the canonical formalism. A numerical survey shows that the grand partition function diverges following a power law when the interaction parameter approaches a limiting constant. The power-law exponent takes a distinctive value when such limiting constant coincides with the critical point of the subjacent quantum phase transition. An approximated expression for the grand partition function is derived analytically implementing a mean field scheme and a number of thermodynamic observables are obtained. The system observables show signatures that can be used to track the critical point of the underlying transition. This result provides a simple fact that can be exploited to verify the existence of a quantum phase transition avoiding the zero temperature regime.
Open quantum systems and random matrix theory
Mulhall, Declan
2014-10-15
A simple model for open quantum systems is analyzed with RMT. The system is coupled to the continuum in a minimal way. In this paper we see the effect of opening the system on the level statistics, in particular the level spacing, width distribution and Δ{sub 3}(L) statistic are examined as a function of the strength of this coupling. The usual super-radiant state is observed, and it is seen that as it is formed, the level spacing and Δ{sub 3}(L) statistic exhibit the signatures of missed levels.
Quantum entanglement in multiparticle systems of two-level atoms
Deb, Ram Narayan
2011-09-15
We propose the necessary and sufficient condition for the presence of quantum entanglement in arbitrary symmetric pure states of two-level atomic systems. We introduce a parameter to quantify quantum entanglement in such systems. We express the inherent quantum fluctuations of a composite system of two-level atoms as a sum of the quantum fluctuations of the individual constituent atoms and their correlation terms. This helps to separate out and study solely the quantum correlations among the atoms and obtain the criterion for the presence of entanglement in such multiatomic systems.
Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro
This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.
3D Lorentzian loop quantum gravity and the spinor approach
NASA Astrophysics Data System (ADS)
Girelli, Florian; Sellaroli, Giuseppe
2015-12-01
We consider the generalization of the "spinor approach" to the Lorentzian case, in the context of three-dimensional loop quantum gravity with cosmological constant Λ =0 . The key technical tool that allows this generalization is the recoupling theory between unitary infinite-dimensional representations and nonunitary finite-dimensional ones, obtained in the process of generalizing the Wigner-Eckart theorem to SU(1,1). We use SU(1,1) tensor operators to build observables and a solvable quantum Hamiltonian constraint, analogous to the one introduced by V. Bonzom and his collaborators in the Euclidean case (with both Λ =0 and Λ ≠0 ). We show that the Lorentzian Ponzano-Regge amplitude is the solution of the quantum Hamiltonian constraint by recovering the Biedenharn-Elliott relation [generalized to the case where unitary and nonunitary SU(1,1) representations are coupled to each other]. Our formalism is sufficiently general that both the Lorentzian and the Euclidean case can be recovered (with Λ =0 ).
Preface of the special issue quantum foundations: information approach.
D'Ariano, Giacomo Mauro; Khrennikov, Andrei
2016-05-28
This special issue is based on the contributions of a group of top experts in quantum foundations and quantum information and probability. It enlightens a number of interpretational, mathematical and experimental problems of quantum theory. PMID:27091161
Preface of the special issue quantum foundations: information approach
2016-01-01
This special issue is based on the contributions of a group of top experts in quantum foundations and quantum information and probability. It enlightens a number of interpretational, mathematical and experimental problems of quantum theory. PMID:27091161
Transport in molecular states language: Generalized quantum master equation approach
NASA Astrophysics Data System (ADS)
Esposito, Massimiliano; Galperin, Michael
2009-05-01
A simple scheme, capable of treating transport in molecular junctions in the language of many-body states, is presented. By introducing an ansatz in Liouville space, similar to the generalized Kadanoff-Baym approximation, a quantum master equation (QME)-like expression is derived starting from the exact equation of motion for Hubbard operators. Using an effective Liouville space propagation, a dressing similar to the standard diagrammatic one is proposed. The scheme is compared to the standard QME approach and its applicability to transport calculations is discussed.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Schwab, Keith
2008-09-01
diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new
Enhanced fault-tolerant quantum computing in d-level systems.
Campbell, Earl T
2014-12-01
Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.
Quantum jump model for a system with a finite-size environment
NASA Astrophysics Data System (ADS)
Suomela, S.; Kutvonen, A.; Ala-Nissila, T.
2016-06-01
Measuring the thermodynamic properties of open quantum systems poses a major challenge. A calorimetric detection has been proposed as a feasible experimental scheme to measure work and fluctuation relations in open quantum systems. However, the detection requires a finite size for the environment, which influences the system dynamics. This process cannot be modeled with the standard stochastic approaches. We develop a quantum jump model suitable for systems coupled to a finite-size environment. We use the method to study the common fluctuation relations and prove that they are satisfied.
Quantum jump model for a system with a finite-size environment.
Suomela, S; Kutvonen, A; Ala-Nissila, T
2016-06-01
Measuring the thermodynamic properties of open quantum systems poses a major challenge. A calorimetric detection has been proposed as a feasible experimental scheme to measure work and fluctuation relations in open quantum systems. However, the detection requires a finite size for the environment, which influences the system dynamics. This process cannot be modeled with the standard stochastic approaches. We develop a quantum jump model suitable for systems coupled to a finite-size environment. We use the method to study the common fluctuation relations and prove that they are satisfied. PMID:27415207
Classical and Quantum Vibration in a Nonseparable, Nonharmonic System
NASA Astrophysics Data System (ADS)
McDonald, Karen Marie
Studies of vibrational dynamics have been performed on a two-dimensional model potential surface V(x,z; R), adapted from the ab initio surface previously used in this laboratory to analyze dynamics of the bifluoride ion (FHF) ^-. The model potential has C _{2v} symmetry, but is strongly anharmonic and nonseparable in the dynamical variables (x,z); its character changes as the parameter R is varied. Quantum and classical descriptions of vibrational states in this system are compared with corresponding Self-Consistent Field (SCF) approximations. Insights provided by each approach are assessed. Systematic Fermi resonances appear in the quantum mechanical states (at energies up to approximately 10,000 cm^{-1}) arising from crossings of quantum SCF levels with two quanta of vibration exchanged between x and z modes. The lowest quantum states of each symmetry are well described by the SCF approximation except near such crossings. Calculations using Configuration Interaction were done to obtain accurate eigenstates and examine correlations in the quantum mechanics. The Classical Self-Consistent Field (CSCF) method provides a description of the mechanics similar to that given by its quantum counterpart. Classical bound state methods based on semiclassical quantization of quasiperiodic trajectories are unable to give a corresponding description. At energies as low as the quantum ground state, the true classical dynamics is strongly disturbed by resonant interactions. At higher energies the number and strength of these disruptions is so great that the motion is largely irregular. The most prominent effect is a 1:1 frequency resonance associated with strong reorganization of the classical motion along pronounced valleys of the potential surface lying at +/-26^circ to the x-axis. This phenomenon has been studied by analysis of the true dynamics and by application of classical canonical perturbation theory to the zero-order CSCF description. It is found that the latter gives a
Boundary driven open quantum many-body systems
Prosen, Tomaž
2014-01-08
In this lecture course I outline a simple paradigm of non-eqjuilibrium quantum statistical physics, namely we shall study quantum lattice systems with local, Hamiltonian (conservative) interactions which are coupled to the environment via incoherent processes only at the system's boundaries. This is arguably the simplest nontrivial context where one can study far from equilibrium steady states and their transport properties. We shall formulate the problem in terms of a many-body Markovian master equation (the so-called Lindblad equation, and some of its extensions, e.g. the Redfield eqaution). The lecture course consists of two main parts: Firstly, and most extensively we shall present canonical Liouville-space many-body formalism, the so-called 'third quantization' and show how it can be implemented to solve bi-linear open many-particle problems, the key peradigmatic examples being the XY spin 1/2 chains or quasi-free bosonic (or harmonic) chains. Secondly, we shall outline several recent approaches on how to approach exactly solvable open quantum interacting many-body problems, such as anisotropic Heisenberg ((XXZ) spin chain or fermionic Hubbard chain.
Confinement-induced resonances in low-dimensional quantum systems.
Haller, Elmar; Mark, Manfred J; Hart, Russell; Danzl, Johann G; Reichsöllner, Lukas; Melezhik, Vladimir; Schmelcher, Peter; Nägerl, Hanns-Christoph
2010-04-16
We report on the observation of confinement-induced resonances in strongly interacting quantum-gas systems with tunable interactions for one- and two-dimensional geometry. Atom-atom scattering is substantially modified when the s-wave scattering length approaches the length scale associated with the tight transversal confinement, leading to characteristic loss and heating signatures. Upon introducing an anisotropy for the transversal confinement we observe a splitting of the confinement-induced resonance. With increasing anisotropy additional resonances appear. In the limit of a two-dimensional system we find that one resonance persists. PMID:20481986
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Quartz-superconductor quantum electromechanical system
NASA Astrophysics Data System (ADS)
Woolley, Matt; Emzir, Muhammad; Milburn, Gerard; Jerger, Markus; Goryachev, Maxim; Tobar, Mike; Fedorov, Arkady
Quartz bulk acoustic wave oscillators support mechanical modes with very high resonance frequencies and extremely high quality factors. As such, they provide an appealing platform for quantum optics experiments with phonons, gravitational wave detection, and tests of quantum mechanics. We propose to cool and measure the motion of a quartz oscillator using a transmon, with the coupling mediated by a tuneable superconducting LC circuit. The mechanical motion (~250MHz) is resonantly coupled to the LC circuit (~250MHz) by a piezoelectric interaction, the LC circuit is coupled to the transmon (~8GHz) via sideband transitions, and there is a smaller direct coupling between the quartz oscillator and the transmon. By driving the transmon on its red sideband, the mechanical and electrical oscillators may be cooled close to their quantum ground state. By observing the fluorescence of the qubit, the occupations of the oscillators may be determined via the motional sidebands they induce. A minimal model of this system consists of a qubit coupled to two oscillators, which are themselves mutually coupled. The steady-state of the system and the qubit fluorescence spectrum are evaluated analytically using a perturbative projection operator technique, and verified numerically.
Statistical Mechanics of Quantum Integrable Systems
NASA Astrophysics Data System (ADS)
Wadati, Miki; Kato, Go; Iida, Toshiaki
Recent developments in statistical mechanics of quantum integrable systems are reviewed. Those studies are fundamental and have a renewed interest related to newly developing fields such as atomic Bose-Einstein condensations, photonic crystals and quantum computations. After a brief summary of the basic concepts and methods, the following three topics are discussed. First, by the thermal Bethe ansatz (TBA), a hard-core Bose gas is exactly solved. The model includes fully the effect of excluded volume and is identified to be a c=1 conformal field theory. Second, the cluster expansion method based on the periodic boundary condition for the Bethe wave function, which we call the Bethe ansatz cluster expansion (BACE) method, is developed for a δ-function gas and the XXX Heisenberg chain. This directly proves the TBA and reveals intrinsic properties of quantum integrable systems. Third, for a δ-function gas, the integral equations for the distribution functions of the quasi-momentum and the quasi-particle energy are solved in the form of power series. In the weak coupling case, the results reproduce those of Bogoliubov theory.
ERIC Educational Resources Information Center
Onorato, P.
2011-01-01
An introduction to quantum mechanics based on the sum-over-paths (SOP) method originated by Richard P. Feynman and developed by E. F. Taylor and coworkers is presented. The Einstein-Brillouin-Keller (EBK) semiclassical quantization rules are obtained following the SOP approach for bounded systems, and a general approach to the calculation of…
Floquet approach to bichromatically driven cavity-optomechanical systems
NASA Astrophysics Data System (ADS)
Malz, Daniel; Nunnenkamp, Andreas
2016-08-01
We develop a Floquet approach to solve time-periodic quantum Langevin equations in the steady state. We show that two-time correlation functions of system operators can be expanded in a Fourier series and that a generalized Wiener-Khinchin theorem relates the Fourier transform of their zeroth Fourier component to the measured spectrum. We apply our framework to bichromatically driven cavity optomechanical systems, a setting in which mechanical oscillators have recently been prepared in quantum-squeezed states. Our method provides an intuitive way to calculate the power spectral densities for time-periodic quantum Langevin equations in arbitrary rotating frames.
Energy concentration in composite quantum systems
Kurcz, Andreas; Beige, Almut; Capolupo, Antonio; Vitiello, Giuseppe; Del Giudice, Emilio
2010-06-15
The spontaneous emission of photons from optical cavities and from trapped atoms has been studied extensively in the framework of quantum optics. Theoretical predictions based on the rotating wave approximation (RWA) are, in general, in very good agreement with experimental findings. However, current experiments aim at combining better and better cavities with large numbers of tightly confined atoms. Here we predict an energy concentrating mechanism in the behavior of such a composite quantum system which cannot be described by the RWA. Its result is the continuous leakage of photons through the cavity mirrors, even in the absence of external driving. We conclude with a discussion of the predicted phenomenon in the context of thermodynamics.
Defense frontier analysis of quantum cryptographic systems.
Slutsky, B; Rao, R; Sun, P C; Tancevski, L; Fainman, S
1998-05-10
When a quantum cryptographic system operates in the presence of background noise, security of the key can be recovered by a procedure called key distillation. A key-distillation scheme effective against so-called individual (bitwise-independent) eavesdropping attacks involves sacrifice of some of the data through privacy amplification. We derive the amount of data sacrifice sufficient to defend against individual eavesdropping attacks in both BB84 and B92 protocols and show in what sense the communication becomes secure as a result. We also compare the secrecy capacity of various quantum cryptosystems, taking into account data sacrifice during key distillation, and conclude that the BB84 protocol may offer better performance characteristics than the B92. PMID:18273233
Quantum Random Access Codes Using Single d-Level Systems.
Tavakoli, Armin; Hameedi, Alley; Marques, Breno; Bourennane, Mohamed
2015-05-01
Random access codes (RACs) are used by a party to, with limited communication, access an arbitrary subset of information held by another party. Quantum resources are known to enable RACs that break classical limitations. Here, we study quantum and classical RACs with high-level communication. We derive average performances of classical RACs and present families of high-level quantum RACs. Our results show that high-level quantum systems can significantly increase the advantage of quantum RACs over their classical counterparts. We demonstrate our findings in an experimental realization of a quantum RAC with four-level communication.
Split kinetic energy method for quantum systems with competing potentials
Mineo, H.; Chao, Sheng D.
2012-09-15
For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into 'unperturbed' and 'perturbed' terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double {delta}-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: Black-Right-Pointing-Pointer A new basis set expansion method is proposed. Black-Right-Pointing-Pointer Split kinetic energy method is proposed to solve quantum eigenvalue problems. Black-Right-Pointing-Pointer Significant improvement has been obtained in converging to exact results. Black-Right-Pointing-Pointer Extension of such methods is promising and discussed.
Preparing Ground States of Quantum Many-Body Systems on a Quantum Computer
Poulin, David; Wocjan, Pawel
2009-04-03
Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time {radical}(N). Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.
Propagation of disturbances in degenerate quantum systems
NASA Astrophysics Data System (ADS)
Chancellor, Nicholas; Haas, Stephan
2011-07-01
Disturbances in gapless quantum many-body models are known to travel an unlimited distance throughout the system. Here, we explore this phenomenon in finite clusters with degenerate ground states. The specific model studied here is the one-dimensional J1-J2 Heisenberg Hamiltonian at and close to the Majumdar-Ghosh point. Both open and periodic boundary conditions are considered. Quenches are performed using a local magnetic field. The degenerate Majumdar-Ghosh ground state allows disturbances which carry quantum entanglement to propagate throughout the system and thus dephase the entire system within the degenerate subspace. These disturbances can also carry polarization, but not energy, as all energy is stored locally. The local evolution of the part of the system where energy is stored drives the rest of the system through long-range entanglement. We also examine approximations for the ground state of this Hamiltonian in the strong field limit and study how couplings away from the Majumdar-Ghosh point affect the propagation of disturbances. We find that even in the case of approximate degeneracy, a disturbance can be propagated throughout a finite system.
Evolution of Quantum Entanglement in Open Systems
Isar, A.
2010-08-04
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators interacting with a thermal environment. Using Peres-Simon necessary sufficient criterion for separability of two-mode Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, entanglement sudden death or a periodic collapse revival of entanglement take place.
Comparison of quantum discord and relative entropy in some bipartite quantum systems
NASA Astrophysics Data System (ADS)
Mahdian, M.; Arjmandi, M. B.
2016-04-01
The study of quantum correlations in high-dimensional bipartite systems is crucial for the development of quantum computing. We propose relative entropy as a distance measure of correlations may be measured by means of the distance from the quantum state to the closest classical-classical state. In particular, we establish relations between relative entropy and quantum discord quantifiers obtained by means of orthogonal projection measurements. We show that for symmetrical X-states density matrices the quantum discord is equal to relative entropy. At the end of paper, various examples of X-states such as two-qubit and qubit-qutrit have been demonstrated.
Precision and the approach to optimality in quantum annealing processors
NASA Astrophysics Data System (ADS)
Johnson, Mark W.
The last few years have seen both a significant technological advance towards the practical application of, and a growing scientific interest in the underlying behaviour of quantum annealing (QA) algorithms. A series of commercially available QA processors, most recently the D-Wave 2XTM 1000 qubit processor, have provided a valuable platform for empirical study of QA at a non-trivial scale. From this it has become clear that misspecification of Hamiltonian parameters is an important performance consideration, both for the goal of studying the underlying physics of QA, as well as that of building a practical and useful QA processor. The empirical study of the physics of QA requires a way to look beyond Hamiltonian misspecification.Recently, a solver metric called 'time-to-target' was proposed as a way to compare quantum annealing processors to classical heuristic algorithms. This approach puts emphasis on analyzing a solver's short time approach to the ground state. In this presentation I will review the processor technology, based on superconducting flux qubits, and some of the known sources of error in Hamiltonian specification. I will then discuss recent advances in reducing Hamiltonian specification error, as well as review the time-to-target metric and empirical results analyzed in this way.
Neutral current neutrino oscillation via quantum field theory approach
NASA Astrophysics Data System (ADS)
Ettefaghi, M. M.; Askaripour Ravari, Z.
2015-07-01
Neutrino and anti-neutrino states coming from the neutral current or Z0 decay are blind with respect to the flavor. The neutrino oscillation is observed and formulated when its flavor is known. However, it has been shown that we can see neutrino oscillation pattern for Z0 decay neutrinos provided that both neutrino and anti-neutrino are detected. In this paper, we restudy this oscillation via quantum field theory approach. Through this approach, we find that the oscillation pattern ceases if the distance between the detectors is larger than the coherence length, while both neutrino and antineutrino states may be coherent. Also the uncertainty of source (region of Z0 decay) does not have any role in the coherency of neutrino and antineutrino.
Non-equilibrium slave bosons approach to quantum pumping in interacting quantum dots
NASA Astrophysics Data System (ADS)
Citro, Roberta; Romeo, Francesco
2016-03-01
We review a time-dependent slave bosons approach within the non-equilibrium Green's function technique to analyze the charge and spin pumping in a strongly interacting quantum dot. We study the pumped current as a function of the pumping phase and of the dot energy level and show that a parasitic current arises, beyond the pure pumping one, as an effect of the dynamical constraints. We finally illustrate an all-electrical mean for spin-pumping and discuss its relevance for spintronics applications.
Systems approach to space plasma systems
NASA Astrophysics Data System (ADS)
Boynton, Richard; Walker, Simon
The application of nonlinear system identification methodology was used to review complex space plasma systems. It is shown how the nonlinear system identification approach can lead to a comprehensive description of dynamical processes in developed space plasma turbulences. It is also explained how nonlinear system identification can access the analytical approach to complex dynamical systems such as the magnetosphere.
Quantum arrival time for open systems
Yearsley, J. M.
2010-07-15
We extend previous work on the arrival time problem in quantum mechanics, in the framework of decoherent histories, to the case of a particle coupled to an environment. The usual arrival time probabilities are related to the probability current, so we explore the properties of the current for general open systems that can be written in terms of a master equation of the Lindblad form. We specialize to the case of quantum Brownian motion, and show that after a time of order the localization time of the current becomes positive. We show that the arrival time probabilities can then be written in terms of a positive operator-valued measure (POVM), which we compute. We perform a decoherent histories analysis including the effects of the environment and show that time-of-arrival probabilities are decoherent for a generic state after a time much greater than the localization time, but that there is a fundamental limitation on the accuracy {delta}t, with which they can be specified which obeys E{delta}t>>({h_bar}/2{pi}). We confirm that the arrival time probabilities computed in this way agree with those computed via the current, provided there is decoherence. We thus find that the decoherent histories formulation of quantum mechanics provides a consistent explanation for the emergence of the probability current as the classical arrival time distribution, and a systematic rule for deciding when probabilities may be assigned.
Advanced Topic: Quasi-Hermitian Quantum Systems
NASA Astrophysics Data System (ADS)
Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.
2014-11-01
So far, the discussion has limited itself to hermitian operators and systems. However, superficially non-hermitian Hamiltonian quantum systems are also of considerable current interest, especially in the context of PT symmetric models [Ben07, Mos05], although many of the main ideas appeared earlier [SGH92, XA96]. For such systems, the Hilbert space structure is at first sight very different from that for hermitian Hamiltonian systems, inasmuch as the dual wavefunctions are not just the complex conjugates of the wavefunctions, or, equivalently, the Hilbert space metric is not the usual one. While it is possible to keep most of the compact Dirac notation in analyzing such systems, here we work with explicit functions and avoid abstract notation, in the hope to fully expose all the structure, rather than to hide it...
Approximation, Proof Systems, and Correlations in a Quantum World
NASA Astrophysics Data System (ADS)
Gharibian, Sevag
2013-01-01
This thesis studies three topics in quantum computation and information: The approximability of quantum problems, quantum proof systems, and non-classical correlations in quantum systems. In the first area, we demonstrate a polynomial-time (classical) approximation algorithm for dense instances of the canonical QMA-complete quantum constraint satisfaction problem, the local Hamiltonian problem. In the opposite direction, we next introduce a quantum generalization of the polynomial-time hierarchy, and define problems which we prove are not only complete for the second level of this hierarchy, but are in fact hard to approximate. In the second area, we study variants of the interesting and stubbornly open question of whether a quantum proof system with multiple unentangled quantum provers is equal in expressive power to a proof system with a single quantum prover. Our results concern classes such as BellQMA(poly), and include a novel proof of perfect parallel repetition for SepQMA(m) based on cone programming duality. In the third area, we study non-classical quantum correlations beyond entanglement, often dubbed "non-classicality". Among our results are two novel schemes for quantifying non-classicality: The first proposes the new paradigm of exploiting local unitary operations to study non-classical correlations, and the second introduces a protocol through which non-classical correlations in a starting system can be "activated" into distillable entanglement with an ancilla system. An introduction to all required linear algebra and quantum mechanics is included.
Semidirect Products of C*-Quantum Groups: Multiplicative Unitaries Approach
NASA Astrophysics Data System (ADS)
Meyer, Ralf; Roy, Sutanu; Woronowicz, Stanisław Lech
2016-08-01
C*-quantum groups with projection are the noncommutative analogues of semidirect products of groups. Radford's Theorem about Hopf algebras with projection suggests that any C*-quantum group with projection decomposes uniquely into an ordinary C*-quantum group and a "braided" C*-quantum group. We establish this on the level of manageable multiplicative unitaries.
The origins of quantum interference and uncertainty broadening. A linear ribbon model approach
Tang, J.
1996-02-01
As an alternative to the orthodox Schroedinger wave mechanics or Heisenberg matrix mechanics approach, a simple linear ribbon model for quantum theory is presented. A different perspective and better physical insights into the origins of quantum interference and the mechanisms for uncertainty broadening are offered. Quantum interference in the atomic scale and superconducting behaviour in the macroscopic scale are compared.
Jin, Jinshuang; Li, Jun; Liu, Yu; Li, Xin-Qi; Yan, YiJing
2014-06-28
Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.
Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems
Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.
2010-11-15
The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.
Measuring entanglement entropy in a quantum many-body system
NASA Astrophysics Data System (ADS)
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M.; Eric Tai, M.; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-01
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-01
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
Partitioning technique for discrete quantum systems
Jin, L.; Song, Z.
2011-06-15
We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.
NASA Astrophysics Data System (ADS)
Srivastava, D. P.; Sahni, V.; Satsangi, P. S.
2014-08-01
Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.
Quantum diffusion wave-function approach to two-dimensional vibronic spectroscopy
Wehner, Johannes; Falge, Mirjam; Engel, Volker; Strunz, Walter T.
2014-10-07
We apply the quantum diffusion wavefunction approach to calculate vibronic two-dimensional (2D) spectra. As an example, we use a system consisting of two electronic states with harmonic oscillator potentials which are coupled to a bath and interact with three time-delayed laser pulses. The first- and second-order perturbative wave functions which enter into the expression for the third-order polarization are determined for a sufficient number of stochastic runs. The wave-packet approach, besides being an alternative technique to calculate the spectra, offers an intuitive insight into the dissipation dynamics and its relation to the 2D vibronic spectra.
Quantum mechanical study of a generic quadratically coupled optomechanical system
NASA Astrophysics Data System (ADS)
Shi, H.; Bhattacharya, M.
2013-04-01
Typical optomechanical systems involving optical cavities and mechanical oscillators rely on a coupling that varies linearly with the oscillator displacement. However, recently a coupling varying instead as the square of the mechanical displacement has been realized, presenting new possibilities for nondemolition measurements and mechanical squeezing. In this article we present a quantum mechanical study of a generic quadratic-coupling optomechanical Hamiltonian. First, neglecting dissipation, we provide analytical results for the dressed states, spectrum, phonon statistics and entanglement. Subsequently, accounting for dissipation, we supply a numerical treatment using a master equation approach. We expect our results to be of use to optomechanical spectroscopy, state transfer, wave-function engineering, and entanglement generation.
Detecting relay attacks on RFID communication systems using quantum bits
NASA Astrophysics Data System (ADS)
Jannati, Hoda; Ardeshir-Larijani, Ebrahim
2016-08-01
RFID systems became widespread in variety of applications because of their simplicity in manufacturing and usability. In the province of critical infrastructure protection, RFID systems are usually employed to identify and track people, objects and vehicles that enter restricted areas. The most important vulnerability which is prevalent among all protocols employed in RFID systems is against relay attacks. Until now, to protect RFID systems against this kind of attack, the only approach is the utilization of distance-bounding protocols which are not applicable over low-cost devices such as RFID passive tags. This work presents a novel technique using emerging quantum technologies to detect relay attacks on RFID systems. Recently, it is demonstrated that quantum key distribution (QKD) can be implemented in a client-server scheme where client only requires an on-chip polarization rotator that may be integrated into a handheld device. Now we present our technique for a tag-reader scenario which needs similar resources as the mentioned QKD scheme. We argue that our technique requires less resources and provides lower probability of false alarm for the system, compared with distance-bounding protocols, and may pave the way to enhance the security of current RFID systems.
Limit theorems for dilute quantum systems leading to quantum poisson processes
NASA Astrophysics Data System (ADS)
Alicki, Robert; Rudnicki, Sławomir; Sadowski, Sławomir
1993-12-01
The limit theorems for sums of independent or correlated operators representing observables of dilute quantum systems and leading to quantum Poisson processes are proved. Examples of systems of unstable particles and a Fermi lattice gas are discussed. For the latter, relations between low density limit and central limit are given.
Quantum revivals and magnetization tunneling in effective spin systems
NASA Astrophysics Data System (ADS)
Krizanac, M.; Altwein, D.; Vedmedenko, E. Y.; Wiesendanger, R.
2016-03-01
Quantum mechanical objects or nano-objects have been proposed as bits for information storage. While time-averaged properties of magnetic, quantum-mechanical particles have been extensively studied experimentally and theoretically, experimental investigations of the real time evolution of magnetization in the quantum regime were not possible until recent developments in pump-probe techniques. Here we investigate the quantum dynamics of effective spin systems by means of analytical and numerical treatments. Particular attention is paid to the quantum revival time and its relation to the magnetization tunneling. The quantum revival time has been initially defined as the recurrence time of a total wave-function. Here we show that the quantum revivals of wave-functions and expectation values in spin systems may be quite different which gives rise to a more sophisticated definition of the quantum revival within the realm of experimental research. Particularly, the revival times for integer spins coincide which is not the case for half-integer spins. Furthermore, the quantum revival is found to be shortest for integer ratios between the on-site anisotropy and an external magnetic field paving the way to novel methods of anisotropy measurements. We show that the quantum tunneling of magnetization at avoided level crossing is coherent to the quantum revival time of expectation values, leading to a connection between these two fundamental properties of quantum mechanical spins.
On the consistent histories approach to quantum mechanics
Dowker, F. |; Kent, A.
1996-03-01
We review the consistent histories formulations of quantum mechanics developed by Griffiths, Omnes, Gell-Man, and Hartle, and we describe the classifications of consistent sets. We illustrate some general features of consistent sets by a few lemmas and examples. We also consider various interpretations of the formalism, and we examine the new problems which arise in reconstructing the past and predicting the future. It is shown that Omnes characterization of true statements---statements that can be deduced unconditionally in his interpretation---is incorrect. We examine critically Gell-Mann and Hartle`s interpretation of the formalism, and in particular, their discussions of communication, prediction, and retrodiction, and we conclude that their explanation of the apparent persistence of quasiclassicality relies on assumptions about an as-yet-unknown theory of experience. Our overall conclusion is that the consistent histories approach illustrates the need to supplement quantum mechanics by some selection principle in order to produce a fundamental theory capable of unconditional predictions.
Position-dependent mass quantum Hamiltonians: general approach and duality
NASA Astrophysics Data System (ADS)
Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.
2016-03-01
We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.
Bahrami, M; Donadi, S; Ferialdi, L; Bassi, A; Curceanu, C; Di Domenico, A; Hiesmayr, B C
2013-01-01
Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration. PMID:22243147
Level statistics for quantum Hall systems
NASA Astrophysics Data System (ADS)
Kagalovsky, V.; Horovitz, B.; Avishai, Y.
2005-03-01
Level statistics for two classes of disordered systems at criticality are analyzed in terms of different realizations of the Chalker-Coddington network model. These include: 1) Re-examination of the standard U(1) model describing dynamics of electrons on the lowest Landau level in the quantum Hall effect, where it is shown that after proper local unfolding the nearest-neighbor spacing distribution (NNSD) at the critical energy follows the Wigner surmise for Gaussian unitary ensembles (GUE). 2) Quasi-particles in disordered superconductors with broken time reversal and spin rotation invariance (in the language of random matrix theory this system is a representative of symmetry class D in the classification scheme of Altland and Zirnbauer). Here again the NNSD obeys the Wigner surmise for GUE, reflecting therefore only "basic" discrete symmetries of the system (time reversal violation) and ignoring particle-hole symmetries and other finer details (criticality). In the localized regime level repulsion is suppressed.
An Adynamical, Graphical Approach to Quantum Gravity and Unification
NASA Astrophysics Data System (ADS)
Stuckey, W. M.; Silberstein, Michael; McDevitt, Timothy
We use graphical field gradients in an adynamical, background independent fashion to propose a new approach to quantum gravity (QG) and unification. Our proposed reconciliation of general relativity (GR) and quantum field theory (QFT) is based on a modification of their graphical instantiations, i.e. Regge calculus and lattice gauge theory (LGT), respectively, which we assume are fundamental to their continuum counterparts. Accordingly, the fundamental structure is a graphical amalgam of space, time, and sources (in parlance of QFT) called a "space-time source element". These are fundamental elements of space, time, and sources, not source elements in space and time. The transition amplitude for a space-time source element is computed using a path integral with discrete graphical action. The action for a space-time source element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint (AGC) between sources, the space-time metric, and the energy-momentum content of the element, rather than a dynamical law for time-evolved entities. In this view, one manifestation of quantum gravity becomes evident when, for example, a single space-time source element spans adjoining simplices of the Regge calculus graph. Thus, energy conservation for the space-time source element includes contributions to the deficit angles between simplices. This idea is used to correct proper distance in the Einstein-de Sitter (EdS) cosmology model yielding a fit of the Union2 Compilation supernova data that matches ΛCDM without having to invoke accelerating expansion or dark energy. A similar modification to LGT results in an adynamical account of quantum
Revealing electronic open quantum systems with subsystem TDDFT.
Krishtal, Alisa; Pavanello, Michele
2016-03-28
Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT. PMID:27036438
Revealing electronic open quantum systems with subsystem TDDFT
NASA Astrophysics Data System (ADS)
Krishtal, Alisa; Pavanello, Michele
2016-03-01
Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.
Locally Compact Quantum Groups. A von Neumann Algebra Approach
NASA Astrophysics Data System (ADS)
Van Daele, Alfons
2014-08-01
In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68-92] locally compact quantum groups are also studied in the von Neumann algebraic context. This approach is independent of the original C^*-algebraic approach in the sense that the earlier results are not used. However, this paper is not really independent because for many proofs, the reader is referred to the original paper where the C^*-version is developed. In this paper, we give a completely self-contained approach. Moreover, at various points, we do things differently. We have a different treatment of the antipode. It is similar to the original treatment in [Ann. Sci. & #201;cole Norm. Sup. (4) 33 (2000), 837-934]. But together with the fact that we work in the von Neumann algebra framework, it allows us to use an idea from [Rev. Roumaine Math. Pures Appl. 21 (1976), 1411-1449] to obtain the uniqueness of the Haar weights in an early stage. We take advantage of this fact when deriving the other main results in the theory. We also give a slightly different approach to duality. Finally, we collect, in a systematic way, several important formulas. In an appendix, we indicate very briefly how the C^*-approach and the von Neumann algebra approach eventually yield the same objects. The passage from the von Neumann algebra setting to the C^*-algebra setting is more or less standard. For the other direction, we use a new method. It is based on the observation that the Haar weights on the C^*-algebra extend to weights on the double dual with central support and that all these supports are the same. Of course, we get the von Neumann algebra by cutting down the double dual with this unique
Repetitive Interrogation of 2-Level Quantum Systems
NASA Technical Reports Server (NTRS)
Prestage, John D.; Chung, Sang K.
2010-01-01
Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.
Topics in biophysics and disordered quantum systems
NASA Astrophysics Data System (ADS)
Schwab, David Jason
We present a collection of problems applying the tools of statistical physics to biology. We also present work on the effects of disorder on quantum systems. First, we derive a mean-field phase diagram for the folding of a generic RNA molecule, focusing on the conditions under which a stable ribozyme may fold. Then, we study the statistical mechanics of nucleosorne positioning and trans-membrane protein alpha-helix prediction, applying related techniques. We compare the physical outcomes of each model, finding nucleosomes suffer from ubiquitous metastability while transmembrane proteins are designed to avoid this problem. Next we study the dynamical properties of a collection of neurons, believed to generate the spontaneous breathing rhythms of mammals, focusing on its ability to produce stable oscillations of activity. Next we address the competition between disorder and strong interaction in 2 D fermionic systems, finding that the Mott gap is completely washed out, leading to a glassy state. Finally, we study the rounding by disorder of first, order quantum phase transitions, both through a general heuristic argument and an in-depth study of a particular model.
On the no-signaling approach to quantum nonlocality
Méndez, J. M. Urías, Jesús
2015-03-15
The no-signaling approach to nonlocality deals with separable and inseparable multiparty correlations in the same set of probability states without conflicting causality. The set of half-spaces describing the polytope of no-signaling probability states that are admitted by the most general class of Bell scenarios is formulated in full detail. An algorithm for determining the skeleton that solves the no-signaling description is developed upon a new strategy that is partially pivoting and partially incremental. The algorithm is formulated rigorously and its implementation is shown to be effective to deal with the highly degenerate no-signaling descriptions. Several applications of the algorithm as a tool for the study of quantum nonlocality are mentioned. Applied to a large set of bipartite Bell scenarios, we found that the corresponding no-signaling polytopes have a striking high degeneracy that grows up exponentially with the size of the Bell scenario.
FPGA based digital phase-coding quantum key distribution system
NASA Astrophysics Data System (ADS)
Lu, XiaoMing; Zhang, LiJun; Wang, YongGang; Chen, Wei; Huang, DaJun; Li, Deng; Wang, Shuang; He, DeYong; Yin, ZhenQiang; Zhou, Yu; Hui, Cong; Han, ZhengFu
2015-12-01
Quantum key distribution (QKD) is a technology with the potential capability to achieve information-theoretic security. Phasecoding is an important approach to develop practical QKD systems in fiber channel. In order to improve the phase-coding modulation rate, we proposed a new digital-modulation method in this paper and constructed a compact and robust prototype of QKD system using currently available components in our lab to demonstrate the effectiveness of the method. The system was deployed in laboratory environment over a 50 km fiber and continuously operated during 87 h without manual interaction. The quantum bit error rate (QBER) of the system was stable with an average value of 3.22% and the secure key generation rate is 8.91 kbps. Although the modulation rate of the photon in the demo system was only 200 MHz, which was limited by the Faraday-Michelson interferometer (FMI) structure, the proposed method and the field programmable gate array (FPGA) based electronics scheme have a great potential for high speed QKD systems with Giga-bits/second modulation rate.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Zhang, Kun; Pang, Jinglong
2016-01-01
This paper focuses on the study of topological features in teleportation-based quantum computation and aims at presenting a detailed review on teleportation-based quantum computation (Gottesman and Chuang in Nature 402: 390, 1999). In the extended Temperley-Lieb diagrammatical approach, we clearly show that such topological features bring about the fault-tolerant construction of both universal quantum gates and four-partite entangled states more intuitive and simpler. Furthermore, we describe the Yang-Baxter gate by its extended Temperley-Lieb configuration and then study teleportation-based quantum circuit models using the Yang-Baxter gate. Moreover, we discuss the relationship between the extended Temperley-Lieb diagrammatical approach and the Yang-Baxter gate approach. With these research results, we propose a worthwhile subject, the extended Temperley-Lieb diagrammatical approach, for physicists in quantum information and quantum computation.
Holonomic Quantum Control with Continuous Variable Systems
NASA Astrophysics Data System (ADS)
Albert, Victor V.; Shu, Chi; Krastanov, Stefan; Shen, Chao; Liu, Ren-Bao; Yang, Zhen-Biao; Schoelkopf, Robert J.; Mirrahimi, Mazyar; Devoret, Michel H.; Jiang, Liang
2016-04-01
Universal computation of a quantum system consisting of superpositions of well-separated coherent states of multiple harmonic oscillators can be achieved by three families of adiabatic holonomic gates. The first gate consists of moving a coherent state around a closed path in phase space, resulting in a relative Berry phase between that state and the other states. The second gate consists of "colliding" two coherent states of the same oscillator, resulting in coherent population transfer between them. The third gate is an effective controlled-phase gate on coherent states of two different oscillators. Such gates should be realizable via reservoir engineering of systems that support tunable nonlinearities, such as trapped ions and circuit QED.
On microstates counting in many body polymer quantum systems
Chacon-Acosta, Guillermo; Morales-Tecotl, Hugo A.; Dagdug, Leonardo
2011-10-14
Polymer quantum systems are mechanical models quantized in a similar way as loop quantum gravity but in which loops/graphs resembling polymers are replaced by discrete sets of points. Such systems have allowed to study in a simpler context some novel aspects of loop quantum gravity. Although thermal aspects play a crucial role in cosmology and black hole physics little attention has been given to the thermostatistics of many body polymer quantum systems. In this work we explore how the features of a one-dimensional effective polymer gas, affect its microstate counting and hence the corresponding thermodynamical quantities.
Fast coherent manipulation of quantum states in open systems.
Song, Jie; Zhang, Zi-Jing; Xia, Yan; Sun, Xiu-Dong; Jiang, Yong-Yuan
2016-09-19
We present a method to manipulate quantum states in open systems. It is shown that a high-fidelity quantum state may be generated by designing an additional Hamiltonian without rotating wave approximation. Moreover, we find that a coherent transfer is possible using quantum feedback control even when feedback parameters and noise strength can not be exactly controlled. Our results demonstrate the feasibility of constructing the shortcuts to adiabatic passage beyond rotating wave approximation in open systems. PMID:27661905
Tasaki, Hal
2016-04-29
Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems.
Tasaki, Hal
2016-04-29
Based on quantum statistical mechanics and microscopic quantum dynamics, we prove Planck's and Kelvin's principles for macroscopic systems in a general and realistic setting. We consider a hybrid quantum system that consists of the thermodynamic system, which is initially in thermal equilibrium, and the "apparatus" which operates on the former, and assume that the whole system evolves autonomously. This provides a satisfactory derivation of the second law for macroscopic systems. PMID:27176507
Systems Approach to Environmental Pollution.
ERIC Educational Resources Information Center
Chacko, George K., Ed.
The objective of a two-day Symposium on Systems Approach to Environmental Pollution of the Operations Research Society of America at the 137th Annual Meeting of the American Association for the Advancement of Science, December 27-28, 1970 in Chicago, Illinois, was not to raise the litany of a systems approach as the answer to all environmental…
Computable measure of total quantum correlations of multipartite systems
NASA Astrophysics Data System (ADS)
Behdani, Javad; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen
2016-04-01
Quantum discord as a measure of the quantum correlations cannot be easily computed for most of density operators. In this paper, we present a measure of the total quantum correlations that is operationally simple and can be computed effectively for an arbitrary mixed state of a multipartite system. The measure is based on the coherence vector of the party whose quantumness is investigated as well as the correlation matrix of this part with the remainder of the system. Being able to detect the quantumness of multipartite systems, such as detecting the quantum critical points in spin chains, alongside with the computability characteristic of the measure, makes it a useful indicator to be exploited in the cases which are out of the scope of the other known measures.
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
Renner, R; Cirac, J I
2009-03-20
We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of quantum key distribution based on weak coherent states or other continuous variable states against general attacks.
Renner, R; Cirac, J I
2009-03-20
We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of quantum key distribution based on weak coherent states or other continuous variable states against general attacks. PMID:19392183
An excited-state approach within full configuration interaction quantum Monte Carlo
Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali
2015-10-07
We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available.
Matrix operator approach to the quantum evolution operator and the geometric phase
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo; Kim, Jewan; Soh, Kwang Sup
2013-11-01
The Moody-Shapere-Wilczek's adiabatic effective Hamiltonian and Lagrangian method is developed further into the matrix effective Hamiltonian (MEH) and Lagrangian (MEL) approach to a parameter-dependent quantum system. The matrix-operator approach formulated in the product integral (PI) provides not only a method to find the wave function efficiently in the MEH approach but also higher order corrections to the effective action systematically in the MEL approach, a la the Magnus expansion and the Kubo cumulant expansion. A coupled quantum system of a light particle of a harmonic oscillator is worked out, and as a by-product, a new kind of gauge potential (Berry's connection) is found even for nondegenerate cases (real eigenfunctions). Moreover, in the PI formulation the holonomy of the induced gauge potential is related to Schlesinger's exact formula for the gauge field tensor. A superadiabatic expansion is also constructed, and a generalized Dykhne formula, depending on the contour integrals of the homotopy class of complex degenerate points, is rephrased in the PI formulation.
Strain-Driven Approach to Quantum Criticality in A Fe2 As2 with A =K , Rb, and Cs
NASA Astrophysics Data System (ADS)
Eilers, Felix; Grube, Kai; Zocco, Diego A.; Wolf, Thomas; Merz, Michael; Schweiss, Peter; Heid, Rolf; Eder, Robert; Yu, Rong; Zhu, Jian-Xin; Si, Qimiao; Shibauchi, Takasada; Löhneysen, Hilbert v.
2016-06-01
The iron-based superconductors A Fe2 As2 with A =K , Rb, Cs exhibit large Sommerfeld coefficients approaching those of heavy-fermion systems. We have investigated the magnetostriction and thermal expansion of this series to shed light on this unusual behavior. Quantum oscillations of the magnetostriction allow identifying the band-specific quasiparticle masses which by far exceed the band-structure derived masses. The divergence of the Grüneisen ratio derived from thermal expansion indicates that with increasing volume along the series a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to weaken the superconducting state.
Strain-Driven Approach to Quantum Criticality in AFe_{2}As_{2} with A=K, Rb, and Cs.
Eilers, Felix; Grube, Kai; Zocco, Diego A; Wolf, Thomas; Merz, Michael; Schweiss, Peter; Heid, Rolf; Eder, Robert; Yu, Rong; Zhu, Jian-Xin; Si, Qimiao; Shibauchi, Takasada; Löhneysen, Hilbert V
2016-06-10
The iron-based superconductors AFe_{2}As_{2} with A=K, Rb, Cs exhibit large Sommerfeld coefficients approaching those of heavy-fermion systems. We have investigated the magnetostriction and thermal expansion of this series to shed light on this unusual behavior. Quantum oscillations of the magnetostriction allow identifying the band-specific quasiparticle masses which by far exceed the band-structure derived masses. The divergence of the Grüneisen ratio derived from thermal expansion indicates that with increasing volume along the series a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to weaken the superconducting state. PMID:27341252
Quantum Liquid Crystal Phases in Strongly Correlated Fermionic Systems
ERIC Educational Resources Information Center
Sun, Kai
2009-01-01
This thesis is devoted to the investigation of the quantum liquid crystal phases in strongly correlated electronic systems. Such phases are characterized by their partially broken spatial symmetries and are observed in various strongly correlated systems as being summarized in Chapter 1. Although quantum liquid crystal phases often involve…
Automated drawing system of quantum energy levels
NASA Astrophysics Data System (ADS)
Stampoultzis, M.; Sinatkas, J.; Tsakstara, V.; Kosmas, T. S.
2014-03-01
The purpose of this work is to derive an automated system that provides advantageous drawings of energy spectra for quantum systems (nuclei, atoms, molecules, etc.) required in various physical sciences. The automation involves the development of appropriate computational code and graphical imaging system based on raw data insertion, theoretical calculations and experimental or bibliographic data insertion. The system determines the appropriate scale to depict graphically with the best possible way in the available space. The presently developed code operates locally and the results are displayed on the screen and can be exported to a PostScript file. We note its main features to arrange and visualize in the available space the energy levels with their identity, taking care the existence in the final diagram the least auxiliary deviations. Future improvements can be the use of Java and the availability on the Internet. The work involves the automated plotting of energy levels in molecules, atoms, nuclei and other types of quantized energy spectra. The automation involves the development of an appropriate computational code and graphical imaging system.
NASA Astrophysics Data System (ADS)
Carr, Lincoln; Maeda, Kenji; Wall, Michael L.
2015-03-01
Ultracold molecules trapped in optical lattices present a new regime of physical chemistry and a new state of matter: complex dipolar matter. Such systems open up the prospect of tunable quantum complexity. We present models for the quantum many-body statics and dynamics of present experiments on polar bi-alkali dimer molecules. We are developing Hamiltonians and simulations for upcoming experiments on dimers beyond the alkali metals, including biologically and chemically important naturally occurring free radicals like the hydroxyl free radical (OH), as well as symmetric top polyatomic molecules like methyl fluoride (CH3F). These systems offer surprising opportunities in modeling and design of new materials. For example, symmetric top polyatomics can be used to study quantum molecular magnets and quantum liquid crystals. We use matrix-product-state (MPS) algorithms, supplemented by exact diagonalization, variational, perturbative, and other approaches. MPS algorithms not only produce experimentally measurable quantum phase diagrams but also explore the dynamical interplay between internal and external degrees of freedom inherent in complex dipolar matter. We maintain open source code (openTEBD and openMPS) available freely and used widely. Funded by NSF and AFOSR.
Measures of quantum synchronization in continuous variable systems.
Mari, A; Farace, A; Didier, N; Giovannetti, V; Fazio, R
2013-09-01
We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems. PMID:25166668
Quantum-classical correspondence in steady states of nonadiabatic systems
Fujii, Mikiya; Yamashita, Koichi
2015-12-31
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.
Phonon Overlaps in Molecular Quantum Dot Systems
NASA Astrophysics Data System (ADS)
Chang, Connie; Sethna, James
2004-03-01
We model the amplitudes and frequencies of the vibrational sidebands for the new molecular quantum dot systems. We calculate the Franck-Condon phonon overlaps in the 3N-dimensional configuration sapce. We solve the general case where the vibrational frequencies and eigenmodes change during the transition. We perform PM3 and DFT calculations for the case of the dumb bell-shaped C140 molecule. We find that the strongest amplitudes are associated with the 11 meV stretch mode, in agreement with experiment. The experimental amplitudes vary from molecule to molecule; indicating that the molecular overlaps are environment dependent. We explore overlaps in the presence of external electric fields from image charges and counter ions.
NASA Astrophysics Data System (ADS)
Gao, Zhe
As the dimensions of commonly used semiconductor devices have shrunk into nanometer regime, it is recognized that the influence of quantum effects on their electrostatic and transport properties cannot be ignored. In the past few decades, various computational models and approaches have been developed to analyze these properties in nanostructures and devices. Among these computational models, the Schrodinger-Poisson model has been widely adopted for quantum mechanical electrostatic and transport analysis of nanostructures and devices such as quantum wires, metal--oxide--semiconductor field effect transistors (MOSFETs) and nanoelectromechanical systems (NEMS). The numerical results allow for evaluations of the electrical properties such as charge concentration and potential profile in these structures. The emergence of MOSFETs with multiple gates, such as Trigates, FinFETs and Pi-gates, offers a superior electrostatic control of devices by the gates, which can be therefore used to reduce the short channel effects within those devices. Full 2-D electrostatic and transport analysis enables a better understanding of the scalability of devices, geometric effects on the potential and charge distribution, and transport characteristics of the transistors. The Schrodinger-Poisson model is attractive due to its simplicity and straightforward implementation by using standard numerical methods. However, as it is required to solve a generalized eigenvalue problem generated from the discretization of the Schrodinger equation, the computational cost of the analysis increases quickly when the system's degrees of freedom (DOFs) increase. For this reason, techniques that enable an efficient solution of discretized Schrodinger equation in multidimensional domains are desirable. In this work, we seek to accelerate the numerical solution of the Schrodinger equation by using a component mode synthesis (CMS) approach. In the CMS approach, a nanostructure is divided into a set of
Systems Science Approach to Data
NASA Astrophysics Data System (ADS)
Kadirkamanathan, Visakan
Behaviours of many complex systems of interest cannot be adequately described since the underlying science has not advanced enough to be able to tease out the mathematical relationships. There is a need therefore to use methods and tools that capture the structure in the data that is representative of the systems behaviour. The subject of system identification allows us to deduce mathematical relations that govern the dynamics of systems based on the observed data. In addition, it can also be used to understand the system from basic principles. In this brief talk, the main approaches of systems science to data are reviewed identifying their strengths and limitations. The approaches include computational intelligence methods such as neural networks, genetic algorithms and fuzzy logic, as well as system identification methods in both time and frequency domains. Examples from physical science, neuroscience and social science serve to highlight achievements of the systems science approach to data.
Fate of classical solitons in one-dimensional quantum systems.
Pustilnik, M.; Matveev, K. A.
2015-11-23
We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, and argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.
Quantum correlations in non-inertial cavity systems
NASA Astrophysics Data System (ADS)
Harsij, Zeynab; Mirza, Behrouz
2016-10-01
Non-inertial cavities are utilized to store and send Quantum Information between mode pairs. A two-cavity system is considered where one is inertial and the other accelerated in a finite time. Maclaurian series are applied to expand the related Bogoliubov coefficients and the problem is treated perturbatively. It is shown that Quantum Discord, which is a measure of quantumness of correlations, is degraded periodically. This is almost in agreement with previous results reached in accelerated systems where increment of acceleration decreases the degree of quantum correlations. As another finding of the study, it is explicitly shown that degradation of Quantum Discord disappears when the state is in a single cavity which is accelerated for a finite time. This feature makes accelerating cavities useful instruments in Quantum Information Theory.
Strong polygamy of quantum correlations in multi-party quantum systems
NASA Astrophysics Data System (ADS)
San Kim, Jeong
2014-10-01
We propose a new type of polygamy inequality for multi-party quantum entanglement. We first consider the possible amount of bipartite entanglement distributed between a fixed party and any subset of the rest parties in a multi-party quantum system. By using the summation of these distributed entanglements, we provide an upper bound of the distributed entanglement between a party and the rest in multi-party quantum systems. We then show that this upper bound also plays as a lower bound of the usual polygamy inequality, therefore the strong polygamy of multi-party quantum entanglement. For the case of multi-party pure states, we further show that the strong polygamy of entanglement implies the strong polygamy of quantum discord.
Quantum-capacity-approaching codes for the detected-jump channel
Grassl, Markus; Wei Zhaohui; Ji Zhengfeng; Zeng Bei
2010-12-15
The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasures and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.
Quantum Fisher information flow and non-Markovian processes of open systems
Lu Xiaoming; Wang Xiaoguang; Sun, C. P.
2010-10-15
We establish an information-theoretic approach for quantitatively characterizing the non-Markovianity of open quantum processes. Here, the quantum Fisher information (QFI) flow provides a measure to statistically distinguish Markovian and non-Markovian processes. A basic relation between the QFI flow and non-Markovianity is unveiled for quantum dynamics of open systems. For a class of time-local master equations, the exactly analytic solution shows that for each fixed time the QFI flow is decomposed into additive subflows according to different dissipative channels.
Nonequilibrium dynamical mean-field theory: an auxiliary quantum master equation approach.
Arrigoni, Enrico; Knap, Michael; von der Linden, Wolfgang
2013-02-22
We introduce a versatile method to compute electronic steady-state properties of strongly correlated extended quantum systems out of equilibrium. The approach is based on dynamical mean-field theory (DMFT), in which the original system is mapped onto an auxiliary nonequilibrium impurity problem imbedded in a Markovian environment. The steady-state Green's function of the auxiliary system is solved by full diagonalization of the corresponding Lindblad equation. The approach can be regarded as the nontrivial extension of the exact-diagonalization-based DMFT to the nonequilibrium case. As a first application, we consider an interacting Hubbard layer attached to two metallic leads and present results for the steady-state current and the nonequilibrium density of states.
Quantum interference in an electron-hole graphene ring system
Smirnov, D.; Schmidt, H.; Haug, R. J.
2013-12-04
Quantum interference is observed in a graphene ring system via the Aharonov Bohm effect. As graphene is a gapless semiconductor, this geometry allows to study the unique situation of quantum interference between electrons and holes in addition to the unipolar quantum interference. The period and amplitude of the observed Aharonov-Bohm oscillations are independent of the sign of the applied gate voltage showing the equivalence between unipolar and dipolar interference.
Numerical simulation of quantum systems using the Particle-In-Cell method
NASA Astrophysics Data System (ADS)
Dirkmann, Sven; Youssef, Ziad; Hemke, Torben; Mussenbrock, Thomas
2014-10-01
The Particle-In-Cell (PIC) method is a very powerful method for studying the dynamics of plasmas. It has been primarily developed for tracking the charged particle trajectories subject to selfconsistent and external electromagnetic fields. Exploiting the power of modern computers, one is able to track the classical paths of tens of millions of particles at the same time. In the late 1980th, it was Dawson (and later Dauger) who had the idea to apply the PIC method to the classical part in the semiclassical approach to quantum systems via path integral methods. One could estimate that if a thousands of classical paths are sufficient to describe the dynamics of one quantum particle, then millions classical paths could describe the dynamics of a quantum particle system. A PIC code in the frame of a semiclassical approach would therefore enable the investigation of a number of quantum phenomena, e.g., optical properties, electrical properties, and, ultimately, chemical reactions. In this contribution we explain the use of the PIC code yapic (developed by the authors) in the frame of the path integral method and discuss the numerical results for simple quantum phenomena, i.e., the quantum harmonic oscillator and quantum tunneling. This work is supported by the German Research Foundation in the frame of FOR 2093.
NASA Astrophysics Data System (ADS)
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Editorial: Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Cazalilla, M. A.; Rigol, M.
2010-05-01
The dynamics and thermalization of classical systems have been extensively studied in the past. However, the corresponding quantum phenomena remain, to a large extent, uncharted territory. Recent experiments with ultracold quantum gases have at last allowed exploration of the coherent dynamics of isolated quantum systems, as well as observation of non-equilibrium phenomena that challenge our current understanding of the dynamics of quantum many-body systems. These experiments have also posed many new questions. How can we control the dynamics to engineer new states of matter? Given that quantum dynamics is unitary, under which conditions can we expect observables of the system to reach equilibrium values that can be predicted by conventional statistical mechanics? And, how do the observables dynamically approach their statistical equilibrium values? Could the approach to equilibrium be hampered if the system is trapped in long-lived metastable states characterized, for example, by a certain distribution of topological defects? How does the dynamics depend on the way the system is perturbed, such as changing, as a function of time and at a given rate, a parameter across a quantum critical point? What if, conversely, after relaxing to a steady state, the observables cannot be described by the standard equilibrium ensembles of statistical mechanics? How would they depend on the initial conditions in addition to the other properties of the system, such as the existence of conserved quantities? The search for answers to questions like these is fundamental to a new research field that is only beginning to be explored, and to which researchers with different backgrounds, such as nuclear, atomic, and condensed-matter physics, as well as quantum optics, can make, and are making, important contributions. This body of knowledge has an immediate application to experiments in the field of ultracold atomic gases, but can also fundamentally change the way we approach and
Harmonic Measuring Approach Based on Quantum Neural Network
NASA Astrophysics Data System (ADS)
Li, Yueling; Wu, Xinghua
Develop a quantum neural network with more effective study and generalized ability. A method proposed to measure the parameters of harmonic is three lays quantum neural networks. With the example of 3rd and 5th harmonic parameters, elaborates the composition of the training method and training sample in the quantum neuron networks. A simulation which trains the quantum neutron network with training samples firstly, then measures untrained samples, is performed by Matlab programs. And the results of the simulation show the validity of the method.
Szymański, S
2012-07-21
Proton spin-lattice relaxation of the methyl group in solids had been one of the most thoroughly addressed theoretical problems in nuclear magnetic resonance (NMR) spectroscopy, considered at different levels of sophistication. For systems with substantial quantum tunneling effects, several quantum mechanical treatments were reported, although in practical applications the quantum models were always augmented with or replaced by the classical jump model. However, the latter has recently proved invalid in the description of NMR line shape effects in variable-temperature spectra of hindered methyl groups, while the competing theory of damped quantum rotation (DQR) was shown to be adequate. In this work, the spin-lattice relaxation issue for the methyl protons is readdressed using the latter theory. The main outcome is that, while the existing formulas for the relaxation rates remain unchanged, the crucial parameter entering them, the correlation time of the relevant random process, need to be reinterpreted. It proves to be the inverse of one of the two quantum-rate constants entering the DQR model, neither of which, when taken separately, can be related to the jump process. It can be identified with one describing the life-time broadening of the tunnel peaks in inelastic neutron scattering (INS) spectra of the methyl groups. Such a relationship between the relaxation and INS effects was reported from another laboratory long ago, but only for the low-temperature limit where thermal population of the excited torsional levels of the methyl group can be neglected. The whole spectrum of cases encountered in practical relaxation studies on protonated methyl groups is addressed for the first time. Preliminary experimental confirmation of this novel approach is reported, based on already published NMR data for a single crystal of methylmalonic acid. The once extensively debated issues of quenching of the coherent tunneling and of the classical limit in the dynamics of the
Wavefunction controllability for finite-dimensional bilinear quantum systems
NASA Astrophysics Data System (ADS)
Turinici, Gabriel; Rabitz, Herschel
2003-03-01
We present controllability results for quantum systems interacting with lasers. Exact controllability for the wavefunction in these bilinear systems is proved in the finite-dimensional case under very natural hypotheses.
Hexagonal-shaped monolayer-bilayer quantum disks in graphene: A tight-binding approach
NASA Astrophysics Data System (ADS)
da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Pereira, J. M.; Farias, G. A.; Peeters, F. M.
2016-07-01
Using the tight-binding approach, we investigate confined states in two different hybrid monolayer-bilayer systems: (i) a hexagonal monolayer area surrounded by bilayer graphene in the presence of a perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by monolayer graphene. The dependence of the energy levels on dot size and external magnetic field is calculated. We find that the energy spectrum for quantum dots with zigzag edges consists of states inside the gap which range from dot-localized states, edge states, to mixed states coexisting together, whereas for dots with armchair edges, only dot-localized states are observed.
Approaching the quantum limit for plasmonics: linear atomic chains
NASA Astrophysics Data System (ADS)
Bryant, Garnett W.
2016-07-01
Optical excitations in atomic-scale materials can be strongly mixed, with contributions from both single-particle transitions and collective response. This complicates the quantum description of these excitations, because there is no clear way to define their quantization. To develop a quantum theory for these optical excitations, they must first be characterized so that single-particle-like and collective excitations can be identified. Linear atomic chains, such as atom chains on surfaces, linear arrays of dopant atoms in semiconductors, or linear molecules, provide ideal testbeds for studying collective excitations in small atomic-scale systems. We use exact diagonalization to study the many-body excitations of finite (10 to 25) linear atomic chains described by a simplified model Hamiltonian. Exact diagonalization results can be very different from the density functional theory (DFT) results usually obtained. Highly correlated, multiexcitonic states, strongly dependent on the electron-electron interaction strength, dominate the exact spectral and optical response but are not present in DFT excitation spectra. The ubiquitous presence of excitonic many-body states in the spectra makes it hard to identify plasmonic excitations. A combination of criteria involving a many-body state’s transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution do strongly suggest which many-body states should be considered as plasmonic. This analysis can be used to reveal the few plasmonic many-body states hidden in the dense spectrum of low-energy single-particle-like states and many higher-energy excitonic-like states. These excitonic states are the predominant excitation because of the many possible ways to develop local correlations.
Adiabatic response and quantum thermoelectrics for ac-driven quantum systems
NASA Astrophysics Data System (ADS)
Ludovico, María Florencia; Battista, Francesca; von Oppen, Felix; Arrachea, Liliana
2016-02-01
We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving, accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.
A Systems Approach to Teaching.
ERIC Educational Resources Information Center
Kelly, Robert E.
The systematic approach to teaching provides a method for the functional organization and development of instruction. This method applies to preparation of materials for classroom use, as well as for print and non-print media. Inputs to the systems approach include well defined objectives, analysis of the intended audience, special criteria…
Illustrating the quantum approach with an Earth magnetic field MRI
NASA Astrophysics Data System (ADS)
Pars Benli, Kami; Dillmann, Baudouin; Louelh, Ryma; Poirier-Quinot, Marie; Darrasse, Luc
2015-05-01
Teaching imaging of magnetic resonance (MR) today is still as challenging as it has always been, because it requires admitting that we cannot express fundamental questions of quantum mechanics with straightforward language or without using extensive theory. Here we allow students to face a real MR setup based on the Earth's magnetic field. We address the applied side of teaching MR using a device that is affordable and that proves to be sufficiently robust, at universities in Orsay, France, and San Sebastian, Spain, in experimental practicals at undergraduate and graduate levels. We specifically present some of the advantages of low field for measuring R2 relaxation rates, reaching a power of separation of 1.5 μmol on Mn(II) ions between two water bottles each of half a liter. Finally we propose key approaches for the lecturers to adopt when they are asked to pass from theoretical knowledge to teachable knowhow. The outcomes are fast calibration and the MR acquisition protocols, demonstrating the reproducibility of energy transfer during the saturation pulses, and the quantitative nature of MR, with water protons and a helium-3 sample.
Perturbative approach to continuous-time quantum error correction
NASA Astrophysics Data System (ADS)
Ippoliti, Matteo; Mazza, Leonardo; Rizzi, Matteo; Giovannetti, Vittorio
2015-04-01
We present a discussion of the continuous-time quantum error correction introduced by J. P. Paz and W. H. Zurek [Proc. R. Soc. A 454, 355 (1998), 10.1098/rspa.1998.0165]. We study the general Lindbladian which describes the effects of both noise and error correction in the weak-noise (or strong-correction) regime through a perturbative expansion. We use this tool to derive quantitative aspects of the continuous-time dynamics both in general and through two illustrative examples: the three-qubit and five-qubit stabilizer codes, which can be independently solved by analytical and numerical methods and then used as benchmarks for the perturbative approach. The perturbatively accessible time frame features a short initial transient in which error correction is ineffective, followed by a slow decay of the information content consistent with the known facts about discrete-time error correction in the limit of fast operations. This behavior is explained in the two case studies through a geometric description of the continuous transformation of the state space induced by the combined action of noise and error correction.
On kaonic hydrogen. Quantum field theoretic and relativistic covariant approach
NASA Astrophysics Data System (ADS)
Ivanov, A. N.; Cargnelli, M.; Faber, M.; Marton, J.; Troitskaya, N. I.; Zmeskal, J.
2004-07-01
We study kaonic hydrogen, the bound K - p state A K p . Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic hydrogen in terms of the amplitude of K - p scattering for arbitrary relative momenta. The amplitude of low-energy K - p scattering near threshold is defined by the contributions of three resonances Λ(1405), Λ(1800) and Σ^0(1750) and a smooth elastic background. The amplitudes of inelastic channels of low-energy K - p scattering fit experimental data on the near-threshold behaviour of the cross-sections and the experimental data by the DEAR Collaboration. We use the soft-pion technique (leading order in Chiral Perturbation Theory) for the calculation of the partial width of the radiative decay of pionic hydrogen A_{π p} to n + γ and the Panofsky ratio. The theoretical prediction for the Panofsky ratio agrees well with experimental data. We apply the soft-kaon technique (leading order in Chiral Perturbation Theory) to the calculation of the partial widths of radiative decays of kaonic hydrogen A_{Kp} to Λ^0 + γ and A_{K p} to Σ^0 + γ. We show that the contribution of these decays to the width of the energy level of the ground state of kaonic hydrogen is less than 1%.
A non-equilibrium equation-of-motion approach to quantum transport utilizing projection operators
NASA Astrophysics Data System (ADS)
Ochoa, Maicol A.; Galperin, Michael; Ratner, Mark A.
2014-11-01
We consider a projection operator approach to the non-equilbrium Green function equation-of-motion (PO-NEGF EOM) method. The technique resolves problems of arbitrariness in truncation of an infinite chain of EOMs and prevents violation of symmetry relations resulting from the truncation (equivalence of left- and right-sided EOMs is shown and symmetry with respect to interchange of Fermi or Bose operators before truncation is preserved). The approach, originally developed by Tserkovnikov (1999 Theor. Math. Phys. 118 85) for equilibrium systems, is reformulated to be applicable to time-dependent non-equilibrium situations. We derive a canonical form of EOMs, thus explicitly demonstrating a proper result for the non-equilibrium atomic limit in junction problems. A simple practical scheme applicable to quantum transport simulations is formulated. We perform numerical simulations within simple models and compare results of the approach to other techniques and (where available) also to exact results.
Adaptive hybrid optimal quantum control for imprecisely characterized systems.
Egger, D J; Wilhelm, F K
2014-06-20
Optimal quantum control theory carries a huge promise for quantum technology. Its experimental application, however, is often hindered by imprecise knowledge of the input variables, the quantum system's parameters. We show how to overcome this by adaptive hybrid optimal control, using a protocol named Ad-HOC. This protocol combines open- and closed-loop optimal control by first performing a gradient search towards a near-optimal control pulse and then an experimental fidelity estimation with a gradient-free method. For typical settings in solid-state quantum information processing, adaptive hybrid optimal control enhances gate fidelities by an order of magnitude, making optimal control theory applicable and useful. PMID:24996074
Control of quantum correlations in solid state systems
NASA Astrophysics Data System (ADS)
Berrada, K.
2015-11-01
The quantum correlations between two independent qubits immersed in an anisotropic and isotropic photonic band-gab (PBG) crystal have been studied without Born or Markovian approximation. We show that the amount of the entanglement and quantum discord between the qubits in the photonic crystal is greatly different from that of qubits in vacuum or that subjected to the usual non-Markovian reservoir. The results also show that, for PBG materials as environment, high values of quantum correlation trapping can be achieved and thus prevention of correlation sudden drop occurs, which seriously enhances the coherence and increase the amount of the correlations. Moreover, we show that the quantum correlations in the isotropic PBG are more easily preserved than that in the anisotropic PBG under the same condition. These features make the quantum systems in PBG materials as a good candidate for implementation of different schemes of quantum optics and information with high performance.
Quantum cryptography with 3-state systems.
Bechmann-Pasquinucci, H; Peres, A
2000-10-01
We consider quantum cryptographic schemes where the carriers of information are 3-state particles. One protocol uses four mutually unbiased bases and appears to provide better security than obtainable with 2-state carriers. Another possible method allows quantum states to belong to more than one basis. Security is not better, but many curious features arise.
Evolution of a continuously collapsed quantum system
NASA Astrophysics Data System (ADS)
Damnjanović, Milan
1990-10-01
The process in which quantum evolution is continuously disturbed by a collapse is considered. It is shown that such process can be treated as an evolution generated by the changed-collapsed-Hamiltonian. The observable to which the collapse is related to, becomes an integral of motion. Exactly this fact is the source of the well known quantum Zeno paradox.
Kruse, J.; Gierl, C.; Schlosser, M.; Birkl, G.
2010-06-15
We trap atoms in versatile two-dimensional (2D) arrays of optical potentials, prepare flexible 2D spin configurations, perform site-selective coherent manipulation, and demonstrate the implementation of simultaneous measurements of different system properties, such as dephasing and decoherence. This approach for the flexible manipulation of atomic quantum systems is based on the combination of 2D arrays of microlenses and 2D arrays of liquid crystal light modulators. This offers extended types of control for the investigation of quantum degenerate gases, quantum information processing, and quantum simulations.
Quantum correlations in B and K meson systems
NASA Astrophysics Data System (ADS)
Banerjee, Subhashish; Alok, Ashutosh Kumar; MacKenzie, Richard
2016-05-01
The interplay between the various measures of quantum correlations is well known in stable optical and electronic systems. Here we study such foundational issues in unstable quantum systems. Specifically we study meson-antimeson systems ( Kbar{K}, Bd bar{B}d and Bsbar{B}s, which are produced copiously in meson factories. In particular, the nonclassicality of quantum correlations which can be characterized in terms of nonlocality (which is the strongest condition), entanglement, teleportation fidelity or weaker nonclassicality measures like quantum discord are analyzed. We also study the impact of decoherence on these measures of quantum correlations, using the semigroup formalism. A comparison of these measures brings out the fact that the relations between them can be nontrivially different from those of their stable counterparts such as neutrinos.
Moiseev, S. A.; Tittel, W.
2010-07-15
We study quantum compression and decompression of light pulses that carry quantum information using a photon-echo quantum memory technique with controllable inhomogeneous broadening of an isolated atomic absorption line. We investigate media with differently broadened absorption profiles, transverse and longitudinal, finding that the recall efficiency can be as large as unity and that the quantum information encoded into the photonic qubits can remain unperturbed. Our results provide insight into reversible light-atom interaction and are interesting in view of future quantum communication networks, where pulse compression and decompression may play an important role in increasing the qubit rate or in mapping quantum information from photonic carriers with large optical bandwidth into atomic memories with smaller bandwidth.
The transfer matrix approach to circular graphene quantum dots
NASA Astrophysics Data System (ADS)
Chau Nguyen, H.; Nguyen, Nhung T. T.; Nguyen, V. Lien
2016-07-01
We adapt the transfer matrix (T-matrix) method originally designed for one-dimensional quantum mechanical problems to solve the circularly symmetric two-dimensional problem of graphene quantum dots. Similar to one-dimensional problems, we show that the generalized T-matrix contains rich information about the physical properties of these quantum dots. In particular, it is shown that the spectral equations for bound states as well as quasi-bound states of a circular graphene quantum dot and related quantities such as the local density of states and the scattering coefficients are all expressed exactly in terms of the T-matrix for the radial confinement potential. As an example, we use the developed formalism to analyse physical aspects of a graphene quantum dot induced by a trapezoidal radial potential. Among the obtained results, it is in particular suggested that the thermal fluctuations and electrostatic disorders may appear as an obstacle to controlling the valley polarization of Dirac electrons.
Discrete-time quantum walk approach to state transfer
Kurzynski, Pawel; Wojcik, Antoni
2011-06-15
We show that a quantum-state transfer, previously studied as a continuous-time process in networks of interacting spins, can be achieved within the model of discrete-time quantum walks with a position-dependent coin. We argue that, due to additional degrees of freedom, discrete-time quantum walks allow one to observe effects which cannot be observed in the corresponding continuous-time case. First, we study a discrete-time version of the engineered coupling protocol due to Christandl et al. [Phys. Rev. Lett. 92, 187902 (2004)] and then we discuss the general idea of conversion between continuous-time quantum walks and discrete-time quantum walks.
Phase-modulation transmission system for quantum cryptography.
Mérolla, J M; Mazurenko, Y; Goedgebuer, J P; Porte, H; Rhodes, W T
1999-01-15
We describe a new method for quantum key distribution that utilizes phase modulation of sidebands of modulation by use of integrated electro-optic modulators at the transmitting and receiving modules. The system is shown to produce constructive or destructive interference with unity visibility, which should allow quantum cryptography to be carried out with high flexibility by use of conventional devices.
Security proof for quantum key distribution using qudit systems
Sheridan, Lana; Scarani, Valerio
2010-09-15
We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use d-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with d. The finite key corrections are found to be almost insensitive to d < or approx. 20.
Quantum-Classical Connection for Hydrogen Atom-Like Systems
ERIC Educational Resources Information Center
Syam, Debapriyo; Roy, Arup
2011-01-01
The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…
Achieving high visibility in subcarrier wave quantum key distribution system
NASA Astrophysics Data System (ADS)
Chistyakov, V. V.; Smirnov, S. V.; Nazarov, Yu V.; Kynev, S. M.; Gleim, A. V.
2016-08-01
We study influence of quantum signal polarization distortions in the optical fiber on the interference pattern visibility in a subcarrier wave quantum key distribution system. An optical scheme of the polarization compensation unit is suggested, and dynamics of the QBER depending on the unit architecture is explored.
Spectroscopic studies in open quantum systems
Rotter; Persson; Pichugin; Seba
2000-07-01
The Hamiltonian H of an open quantum system is non-Hermitian. Its complex eigenvalues E(R) are the poles of the S matrix and provide both the energies and widths of the states. We illustrate the interplay between Re(H) and Im(H) by means of the different interference phenomena between two neighboring resonance states. Level repulsion may occur along the real or imaginary axis (the latter is called resonance trapping). In any case, the eigenvalues of the two states avoid crossing in the complex plane. We then calculate the poles of the S matrix and the corresponding wave functions for a rectangular microwave resonator with a scatter as a function of the area of the resonator as well as of the degree of opening to a waveguide. The calculations are performed by using the method of exterior complex scaling. Re(H) and Im(H) cause changes in the structure of the wave functions which are permanent, as a rule. The resonance picture obtained from the microwave resonator shows all the characteristic features known from the study of many-body systems in spite of the absence of two-body forces. The effects arising from the interplay between resonance trapping and level repulsion along the real axis are not involved in the statistical theory (random matrix theory).
NANONIS TRAMEA - A Quantum Transport Measurement System
NASA Astrophysics Data System (ADS)
Kampen, Thorsten; Thissen, Andreas; Schaff, Oliver; Pioda, Alessandro
Nanonis Tramea is a quantum leap with respect to increased speed for transport measurements taking research onto a new level. Measurements which took several hours in the past can now be done in minutes without compromising signal quality. Tramea uses its fast, high-resolution, high-precision and ultra-low-noise outputs and inputs to generate and acquire up to 20000 data points per second on 24 channels in parallel. This is not only up to 1000 x faster than typical measurement systems but it is also time deterministic with highest precision. Here, the time separation between points is constant so that artefacts caused by unequal point spacings in non-deterministic measurement systems are avoided. The emphasis here is the real-time relation. Tramea comes with a built-in interface which allows for control of the instruments' basic functions from any programming environment. For users requiring more functionality and higher speeds a full-featured LabVIEW-based programming interface or scripting module are available as add-on modules. Due to the modularity and flexibility of the hardware and software architecture of Tramea upgrades with standardized add-on modules are possible. Non-standard requests can still be handled by the various programming options.
Chaos in Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Mitchell, G. E.
1997-11-01
Recent developments have led to a new appreciation of the significance of Random Matrix Theory (RMT). The Bohigas conjecture(O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52), 1 (1984). assumes a generic connection between RMT and the spectral fluctuations of quantum analogs of classically chaotic systems. Level statistics are now used as a signature of chaos. RMT has been applied to a large number and variety of physical systems.(T. Guhr, A. Müller, and H. A. Weidenmüller, Phys. Reports (to be published).) The theory was originally developed by Wigner and Dyson to describe the fluctuation properties of nuclear resonances. It is impressive that a theory developed for the nucleus has been applied to complex atoms and molecules. The successful description of the properties of disordered solids is more surprising. The successful description of the elastomechanical eigenfrequencies of irregularly shaped quartz crystals and of the eigenmodes of microwaves in two-dimensional superconducting cavities suggests a near universality of RMT.
Sum Rules, Classical and Quantum - A Pedagogical Approach
NASA Astrophysics Data System (ADS)
Karstens, William; Smith, David Y.
2014-03-01
Sum rules in the form of integrals over the response of a system to an external probe provide general analytical tools for both experiment and theory. For example, the celebrated f-sum rule gives a system's plasma frequency as an integral over the optical-dipole absorption spectrum regardless of the specific spectral distribution. Moreover, this rule underlies Smakula's equation for the number density of absorbers in a sample in terms of the area under their absorption bands. Commonly such rules are derived from quantum-mechanical commutation relations, but many are fundamentally classical (independent of ℏ) and so can be derived from more transparent mechanical models. We have exploited this to illustrate the fundamental role of inertia in the case of optical sum rules. Similar considerations apply to sum rules in many other branches of physics. Thus, the ``attenuation integral theorems'' of ac circuit theory reflect the ``inertial'' effect of Lenz's Law in inductors or the potential energy ``storage'' in capacitors. These considerations are closely related to the fact that the real and imaginary parts of a response function cannot be specified independently, a result that is encapsulated in the Kramers-Kronig relations. Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.
Against the empirical viability of the Deutsch-Wallace-Everett approach to quantum mechanics
NASA Astrophysics Data System (ADS)
Dawid, Richard; Thébault, Karim P. Y.
2014-08-01
The subjective Everettian approach to quantum mechanics presented by Deutsch and Wallace fails to constitute an empirically viable theory of quantum phenomena. The decision theoretic implementation of the Born rule realized in this approach provides no basis for rejecting Everettian quantum mechanics in the face of empirical data that contradicts the Born rule. The approach of Greaves and Myrvold, which provides a subjective implementation of the Born rule as well but derives it from empirical data rather than decision theoretic arguments, avoids the problem faced by Deutsch and Wallace and is empirically viable. However, there is good reason to cast doubts on its scientific value.
Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system.
Rouxinol, F; Hao, Y; Brito, F; Caldeira, A O; Irish, E K; LaHaye, M D
2016-09-01
Experiments to probe the basic quantum properties of motional degrees of freedom of mechanical systems have developed rapidly over the last decade. One promising approach is to use hybrid electromechanical systems incorporating superconducting qubits and microwave circuitry. However, a critical challenge facing the development of these systems is to achieve strong coupling between mechanics and qubits while simultaneously reducing coupling of both the qubit and mechanical mode to the environment. Here we report measurements of a qubit-coupled mechanical resonator system consisting of an ultra-high-frequency nanoresonator and a long coherence-time superconducting transmon qubit, embedded in a superconducting coplanar waveguide cavity. It is demonstrated that the nanoresonator and transmon have commensurate energies and transmon coherence times are one order of magnitude larger than for all previously reported qubit-coupled nanoresonators. Moreover, we show that numerical simulations of this new hybrid quantum system are in good agreement with spectroscopic measurements and suggest that the nanoresonator in our device resides at low thermal occupation number, near its ground state, acting as a dissipative bath seen by the qubit. We also outline how this system could soon be developed as a platform for implementing more advanced experiments with direct relevance to quantum information processing and quantum thermodynamics, including the study of nanoresonator quantum noise properties, reservoir engineering, and nanomechanical quantum state generation and detection. PMID:27483428
Measurements of nanoresonator-qubit interactions in a hybrid quantum electromechanical system
NASA Astrophysics Data System (ADS)
Rouxinol, F.; Hao, Y.; Brito, F.; Caldeira, A. O.; Irish, E. K.; LaHaye, M. D.
2016-09-01
Experiments to probe the basic quantum properties of motional degrees of freedom of mechanical systems have developed rapidly over the last decade. One promising approach is to use hybrid electromechanical systems incorporating superconducting qubits and microwave circuitry. However, a critical challenge facing the development of these systems is to achieve strong coupling between mechanics and qubits while simultaneously reducing coupling of both the qubit and mechanical mode to the environment. Here we report measurements of a qubit-coupled mechanical resonator system consisting of an ultra-high-frequency nanoresonator and a long coherence-time superconducting transmon qubit, embedded in a superconducting coplanar waveguide cavity. It is demonstrated that the nanoresonator and transmon have commensurate energies and transmon coherence times are one order of magnitude larger than for all previously reported qubit-coupled nanoresonators. Moreover, we show that numerical simulations of this new hybrid quantum system are in good agreement with spectroscopic measurements and suggest that the nanoresonator in our device resides at low thermal occupation number, near its ground state, acting as a dissipative bath seen by the qubit. We also outline how this system could soon be developed as a platform for implementing more advanced experiments with direct relevance to quantum information processing and quantum thermodynamics, including the study of nanoresonator quantum noise properties, reservoir engineering, and nanomechanical quantum state generation and detection.
Epilogue: Systems Approaches and Systems Practice
NASA Astrophysics Data System (ADS)
Reynolds, Martin; Holwell, Sue
Each of the five systems approaches discussed in this volume: system dynamics (SD), the viable systems model (VSM), strategic options development and analysis (SODA), soft systems methodology (SSM) and critical systems heuristics (CSH) has a pedigree. Not in the sense of the sometimes absurd spectacle of animals paraded at dog shows. Rather, their pedigree derives from their systems foundations, their capacity to evolve and their flexibility in use. None of the five approaches has developed out of use in restricted and controlled contexts of either low or high levels of complicatedness. Neither has any one of them evolved as a consequence of being applied only to situations with either presumed stakeholder agreement on purpose, or courteous disagreement amongst stakeholders, or stakeholder coercion. The compilation is not a celebration of abstract ‘methodologies', but of theoretically robust approaches that have a genuine pedigree in practice.
Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach.
Lee, Myeong H; Troisi, Alessandro
2016-06-01
Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems. PMID:27276944
Asymptotically Optimal Quantum Circuits for d-Level Systems
Bullock, Stephen S.; O'Leary, Dianne P.; Brennen, Gavin K.
2005-06-17
Scalability of a quantum computation requires that the information be processed on multiple subsystems. However, it is unclear how the complexity of a quantum algorithm, quantified by the number of entangling gates, depends on the subsystem size. We examine the quantum circuit complexity for exactly universal computation on many d-level systems (qudits). Both a lower bound and a constructive upper bound on the number of two-qudit gates result, proving a sharp asymptotic of {theta}(d{sup 2n}) gates. This closes the complexity question for all d-level systems (d finite). The optimal asymptotic applies to systems with locality constraints, e.g., nearest neighbor interactions.
Certifying single-system steering for quantum-information processing
NASA Astrophysics Data System (ADS)
Li, Che-Ming; Chen, Yueh-Nan; Lambert, Neill; Chiu, Ching-Yi; Nori, Franco
2015-12-01
Einstein-Podolsky-Rosen (EPR) steering describes how different ensembles of quantum states can be remotely prepared by measuring one particle of an entangled pair. Here, we investigate quantum steering for single quantum d -dimensional systems (qudits) and devise efficient conditions to certify the steerability therein, which we find are applicable both to single-system steering and EPR steering. In the single-system case our steering conditions enable the unambiguous ruling out of generic classical means of mimicking steering. Ruling out "false-steering" scenarios has implications for securing channels against both cloning-based individual attack and coherent attacks when implementing quantum key distribution using qudits. We also show that these steering conditions also have applications in quantum computation, in that they can serve as an efficient criterion for the evaluation of quantum logic gates of arbitrary size. Finally, we describe how the nonlocal EPR variant of these conditions also function as tools for identifying faithful one-way quantum computation, secure entanglement-based quantum communication, and genuine multipartite EPR steering.
Average diagonal entropy in nonequilibrium isolated quantum systems.
Giraud, Olivier; García-Mata, Ignacio
2016-07-01
The diagonal entropy was introduced as a good entropy candidate especially for isolated quantum systems out of equilibrium. Here we present an analytical calculation of the average diagonal entropy for systems undergoing unitary evolution and an external perturbation in the form of a cyclic quench. We compare our analytical findings with numerical simulations of various quantum systems. Our calculations elucidate various heuristic relations proposed recently in the literature. PMID:27575092
Average diagonal entropy in nonequilibrium isolated quantum systems
NASA Astrophysics Data System (ADS)
Giraud, Olivier; García-Mata, Ignacio
2016-07-01
The diagonal entropy was introduced as a good entropy candidate especially for isolated quantum systems out of equilibrium. Here we present an analytical calculation of the average diagonal entropy for systems undergoing unitary evolution and an external perturbation in the form of a cyclic quench. We compare our analytical findings with numerical simulations of various quantum systems. Our calculations elucidate various heuristic relations proposed recently in the literature.
Semonin, O.; Luther, J.; Beard, M.; Johnson, J.; Gao, J.; Nozik, A.
2012-01-01
One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.
Contextuality without nonlocality in a superconducting quantum system
NASA Astrophysics Data System (ADS)
Jerger, Markus; Reshitnyk, Yarema; Oppliger, Markus; Potočnik, Anton; Mondal, Mintu; Wallraff, Andreas; Goodenough, Kenneth; Wehner, Stephanie; Juliusson, Kristinn; Langford, Nathan K.; Fedorov, Arkady
2016-10-01
Classical realism demands that system properties exist independently of whether they are measured, while noncontextuality demands that the results of measurements do not depend on what other measurements are performed in conjunction with them. The Bell-Kochen-Specker theorem states that noncontextual realism cannot reproduce the measurement statistics of a single three-level quantum system (qutrit). Noncontextual realistic models may thus be tested using a single qutrit without relying on the notion of quantum entanglement in contrast to Bell inequality tests. It is challenging to refute such models experimentally, since imperfections may introduce loopholes that enable a realist interpretation. Here we use a superconducting qutrit with deterministic, binary-outcome readouts to violate a noncontextuality inequality while addressing the detection, individual-existence and compatibility loopholes. This evidence of state-dependent contextuality also demonstrates the fitness of superconducting quantum circuits for fault-tolerant quantum computation in surface-code architectures, currently the most promising route to scalable quantum computing.
Detecting quantum speedup in closed and open systems
NASA Astrophysics Data System (ADS)
Xu, Zhen-Yu
2016-07-01
We construct a general measure for detecting the quantum speedup in both closed and open systems. The speed measure is based on the changing rate of the position of quantum states on a manifold with appropriate monotone Riemannian metrics. Any increase in speed is a clear signature of dynamical speedup. To clarify the mechanisms for quantum speedup, we first introduce the concept of longitudinal and transverse types of speedup: the former stems from the time evolution process itself with fixed initial conditions, while the latter is a result of adjusting initial conditions. We then apply the proposed measure to several typical closed and open quantum systems, illustrating that quantum coherence (or entanglement) and the memory effect of the environment together can become resources for longitudinally or transversely accelerating dynamical evolution under specific conditions and assumptions.
Two dimensional electron systems for solid state quantum computation
NASA Astrophysics Data System (ADS)
Mondal, Sumit
electron systems. In an ultrapure two dimensional electron system (2DES) subjected to high magnetic field and very low temperatures, a large number of many-body ground states can emerge in a purely quantum phenomenon called the Fractional quantum Hall Effect (FQHE). The fractional state at nu=5/2 has drawn significant interest in recent times because of its predicted non-abelian excitations that can be utilized in constructing topologically protected quantum bits. In spite of having made significant advances in this direction, progress is hindered due to the fragility of this exotic state characterized by a small energy gap which puts very stringent requirements on the sample quality and the temperature scale. It is believed that the nu=5/2 activation gap is masked by disorders present in the sample which causes the experimentally observed gap to appear much smaller than the theoretically predicted intrinsic gap originating from purely electron-electron interactions in the clean-limit. Hence categorization of samples based on the strength of the nu=5/2 state hinges on the efficient quantification of disorder which is not a directly measurable quantity. Historically the zero-field transport mobility has been identified as the measure of disorder present in the sample. However careful comparison of data originating in our measurements with existing literature reveals that mobility is rather a weak indicator of the quality of FQHE in the 2nd Landau level and fails to reliably predict the nu=5/2 activation gap in a sample. In the absence of a single reliable indicator of sample quality in the 2nd Landau level, we propose a resistivity measured at nu=5/2 at T=0.3K as an alternative metric to characterize samples. Preliminary measurements involving a limited number of samples indicate that a resistivity measured at nu=5/2 might be better correlated with the nu=5/2 gap than mobility. Results also call for a more holistic approach in sample characterization by taking into
Motional stability of the quantum kicked rotor: A fidelity approach
NASA Astrophysics Data System (ADS)
Haug, F.; Bienert, M.; Schleich, W. P.; Seligman, T. H.; Raizen, M. G.
2005-04-01
We propose an atom optics experiment to measure the stability of the quantum kicked rotor under perturbations of the Hamiltonian. We avail ourselves of the theory of Loschmidt echoes, i.e., we consider the overlap of a quantum state evolved in a perturbed and an unperturbed potential. Atom interferometry allows us to determine the overlap integral in amplitude and phase. A numerical analysis of the kicked rotor in various regimes shows that the quantum signatures of specific classical properties can be detected experimentally.
A novel quantum field approach to photoexcited insulators
NASA Astrophysics Data System (ADS)
Klotins, E.
2016-07-01
In order to predict optical properties of insulating materials under intensive laser excitation, we generalized methods of quantum electrodynamics, allowing us to simulate excitation of electrons and holes, interacting with each other and acoustic phonons. The prototypical model considers a two-band dielectric material characterized by the dispersion relations for electron and hole states. We developed a universal description of excited electrons, holes and acoustic phonons within joint quantum kinetics formalism. Illustrative solutions for the quasiparticle birth-annihilation operators, applicable at short laser pulses at 0 K, are obtained by the transition from the macroscopic description to the quantum field formalism.
Semiquantal approach to finite systems of interacting particles.
Borgonovi, F; Celardo, G; Izrailev, F M; Casati, G
2002-02-01
A novel approach is suggested for the statistical description of quantum systems of interacting particles. We show that the occupation numbers for single-particle states can be represented as a convolution of a classical analog of the eigenstate, with the quantum occupation number for noninteracting particles. The latter takes into account the wave function symmetry and depends on the unperturbed energy spectrum only. As a result, the distribution of occupation numbers n(s) can be found even for a large number of interacting particles. Using the model of interacting spins, we demonstrate that this approach gives a correct description of n(s) even in deep quantum regions with few single-particle orbitals.
High Speed Quantum Key Distribution Over Optical Fiber Network System.
Ma, Lijun; Mink, Alan; Tang, Xiao
2009-01-01
The National Institute of Standards and Technology (NIST) has developed a number of complete fiber-based high-speed quantum key distribution (QKD) systems that includes an 850 nm QKD system for a local area network (LAN), a 1310 nm QKD system for a metropolitan area network (MAN), and a 3-node quantum network controlled by a network manager. This paper discusses the key techniques used to implement these systems, which include polarization recovery, noise reduction, frequency up-conversion detection based on a periodically polled lithium nitrate (PPLN) waveguide, custom high-speed data handling boards and quantum network management. Using our quantum network, a QKD secured video surveillance application has been demonstrated. Our intention is to show the feasibility and sophistication of QKD systems based on current technology. PMID:27504218
Effective quantum dynamics of interacting systems with inhomogeneous coupling
Lopez, C. E.; Retamal, J. C.; Christ, H.; Solano, E.
2007-03-15
We study the quantum dynamics of a single mode (particle) interacting inhomogeneously with a large number of particles and introduce an effective approach to find the accessible Hilbert space, where the dynamics takes place. Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g., N atomic qubits coupled to a single cavity mode, or to a motional mode in trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear spins in a quantum dot.
The Dalton quantum chemistry program system.
Aidas, Kestutis; Angeli, Celestino; Bak, Keld L; Bakken, Vebjørn; Bast, Radovan; Boman, Linus; Christiansen, Ove; Cimiraglia, Renzo; Coriani, Sonia; Dahle, Pål; Dalskov, Erik K; Ekström, Ulf; Enevoldsen, Thomas; Eriksen, Janus J; Ettenhuber, Patrick; Fernández, Berta; Ferrighi, Lara; Fliegl, Heike; Frediani, Luca; Hald, Kasper; Halkier, Asger; Hättig, Christof; Heiberg, Hanne; Helgaker, Trygve; Hennum, Alf Christian; Hettema, Hinne; Hjertenæs, Eirik; Høst, Stinne; Høyvik, Ida-Marie; Iozzi, Maria Francesca; Jansík, Branislav; Jensen, Hans Jørgen Aa; Jonsson, Dan; Jørgensen, Poul; Kauczor, Joanna; Kirpekar, Sheela; Kjærgaard, Thomas; Klopper, Wim; Knecht, Stefan; Kobayashi, Rika; Koch, Henrik; Kongsted, Jacob; Krapp, Andreas; Kristensen, Kasper; Ligabue, Andrea; Lutnæs, Ola B; Melo, Juan I; Mikkelsen, Kurt V; Myhre, Rolf H; Neiss, Christian; Nielsen, Christian B; Norman, Patrick; Olsen, Jeppe; Olsen, Jógvan Magnus H; Osted, Anders; Packer, Martin J; Pawlowski, Filip; Pedersen, Thomas B; Provasi, Patricio F; Reine, Simen; Rinkevicius, Zilvinas; Ruden, Torgeir A; Ruud, Kenneth; Rybkin, Vladimir V; Sałek, Pawel; Samson, Claire C M; de Merás, Alfredo Sánchez; Saue, Trond; Sauer, Stephan P A; Schimmelpfennig, Bernd; Sneskov, Kristian; Steindal, Arnfinn H; Sylvester-Hvid, Kristian O; Taylor, Peter R; Teale, Andrew M; Tellgren, Erik I; Tew, David P; Thorvaldsen, Andreas J; Thøgersen, Lea; Vahtras, Olav; Watson, Mark A; Wilson, David J D; Ziolkowski, Marcin; Agren, Hans
2014-05-01
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.
The Dalton quantum chemistry program system.
Aidas, Kestutis; Angeli, Celestino; Bak, Keld L; Bakken, Vebjørn; Bast, Radovan; Boman, Linus; Christiansen, Ove; Cimiraglia, Renzo; Coriani, Sonia; Dahle, Pål; Dalskov, Erik K; Ekström, Ulf; Enevoldsen, Thomas; Eriksen, Janus J; Ettenhuber, Patrick; Fernández, Berta; Ferrighi, Lara; Fliegl, Heike; Frediani, Luca; Hald, Kasper; Halkier, Asger; Hättig, Christof; Heiberg, Hanne; Helgaker, Trygve; Hennum, Alf Christian; Hettema, Hinne; Hjertenæs, Eirik; Høst, Stinne; Høyvik, Ida-Marie; Iozzi, Maria Francesca; Jansík, Branislav; Jensen, Hans Jørgen Aa; Jonsson, Dan; Jørgensen, Poul; Kauczor, Joanna; Kirpekar, Sheela; Kjærgaard, Thomas; Klopper, Wim; Knecht, Stefan; Kobayashi, Rika; Koch, Henrik; Kongsted, Jacob; Krapp, Andreas; Kristensen, Kasper; Ligabue, Andrea; Lutnæs, Ola B; Melo, Juan I; Mikkelsen, Kurt V; Myhre, Rolf H; Neiss, Christian; Nielsen, Christian B; Norman, Patrick; Olsen, Jeppe; Olsen, Jógvan Magnus H; Osted, Anders; Packer, Martin J; Pawlowski, Filip; Pedersen, Thomas B; Provasi, Patricio F; Reine, Simen; Rinkevicius, Zilvinas; Ruden, Torgeir A; Ruud, Kenneth; Rybkin, Vladimir V; Sałek, Pawel; Samson, Claire C M; de Merás, Alfredo Sánchez; Saue, Trond; Sauer, Stephan P A; Schimmelpfennig, Bernd; Sneskov, Kristian; Steindal, Arnfinn H; Sylvester-Hvid, Kristian O; Taylor, Peter R; Teale, Andrew M; Tellgren, Erik I; Tew, David P; Thorvaldsen, Andreas J; Thøgersen, Lea; Vahtras, Olav; Watson, Mark A; Wilson, David J D; Ziolkowski, Marcin; Agren, Hans
2014-05-01
Dalton is a powerful general-purpose program system for the study of molecular electronic structure at the Hartree-Fock, Kohn-Sham, multiconfigurational self-consistent-field, Møller-Plesset, configuration-interaction, and coupled-cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic-structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge-origin-invariant manner. Frequency-dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one-, two-, and three-photon processes. Environmental effects may be included using various dielectric-medium and quantum-mechanics/molecular-mechanics models. Large molecules may be studied using linear-scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms. PMID:25309629
Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach
Antipov, Sergey V.; Ye, Ziyu; Ananth, Nandini
2015-05-14
We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors.
Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach.
Antipov, Sergey V; Ye, Ziyu; Ananth, Nandini
2015-05-14
We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors. PMID:25978878
Valence atom with bohmian quantum potential: the golden ratio approach
2012-01-01
Background The alternative quantum mechanical description of total energy given by Bohmian theory was merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features with respect to the so-called DFT ground state and critical charge, respectively. Results The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic parabola to describe a quadratic charge dependency. Conclusions Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal” electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the atoms-in-molecules framework). PMID:23146157
Mascarenhas, E.; Marques, B.; Santos, M. Franca; Cavalcanti, D.; Cunha, M. Terra
2010-03-15
We study how to protect quantum information in quantum systems subjected to local dissipation. We show that combining the use of three-level systems, environment monitoring, and local feedback can fully and deterministically protect any available quantum information, including entanglement initially shared by different parties. These results can represent a gain in resources and/or distances in quantum communication protocols such as quantum repeaters and teleportation as well as time for quantum memories. Finally, we show that monitoring local environments physically implements the optimum singlet conversion protocol, which is essential for classical entanglement percolation.
Exact quantum dynamics of spin systems using the positive-P representation
NASA Astrophysics Data System (ADS)
Ng, Ray; Sorensen, Erik
2011-03-01
We discuss a scheme for simulating the exact real time quantum dynamics of interacting quantum spin systems within the positive-P formalism. As model systems we study the transverse field Ising model as well as the Heisenberg model undergoing a quench away from the classical ferromagnetic ordered state. In using the positive-P representation (PPR), the dynamics of the interacting quantum spin system is mapped onto a set of stochastic differential equations (SDEs). The number of which scales linearly with the number of spins, N, compared to an exact solution through diagonalization that in the case of the Heisenberg model would require matrices exponentially large in N. This mapping is exact and can in principle be extended to higher dimensional interacting systems as well as to systems with an explicit coupling to the environment. We compare the results from using a PPR approach based on both the optical coherent states as well as SU(2) Radcliff coherent states.
Nonresonant interaction of ultrashort electromagnetic pulses with multilevel quantum systems
NASA Technical Reports Server (NTRS)
Belenov, E.; Isakov, V.; Nazarkin, A.
1994-01-01
Some features of the excitation of multilevel quantum systems under the action of electromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are considered. It is shown that the interaction is characterized by a specific type of selectivity which is not connected with the resonant absorption of radiation. The simplest three-level model displays the inverse population of upper levels. The effect of an ultrashort laser pulse on a multilevel molecule was regarded as an instant reception of the oscillation velocity by the oscillator and this approach showed an effective excitation and dissociation of the molecule. The estimations testify to the fact that these effects can be observed using modern femtosecond lasers.
Who is afraid of POV measures? Unified approach to quantum phase observables
Busch, P. |; Grabowski, M.; Lahti, P.J.
1995-01-01
It is shown that introducing phase observables as shift-covariant positive-operator-valued measures yields a coherent unification of various conceptually different approaches to the phase in quantum theory. {copyright} 1995 Academic Press, Inc.
Evolution of Quantum Systems from Microscopic to Macroscopic Scales
Ovchinnikov, Serguei Yurevich; Macek, Joseph H; Sternberg, James; Lee, Teck G; Schultz, David Robert
2009-01-01
Even though the static properties of quantum systems have been known since the early days of quantum mechanics, accurate simulation of dynamical break-up or ionization remains a theoretical challenge despite our complete knowledge of the relevant interactions. The simulations are challenging because of highly oscillatory exponential phase factors in the electronic wave function and the infinitesimally small values of the continuum components of electronic probability density at large times after the collision. The approach we recently developed, so-called, the regularized time-dependent Schrodinger equation method, has addressed these difficulties by removing the diverging phase factors and transforming the time-dependent Schrodinger equation to an expanding space. The evolution of the electronic wave function was followed to internuclear distances of R = 1000,000 a.u. or 5 microns, which is of the order of the diameter of a human hair. Our calculations also revealed unexpected presence of free vortices in the electronic wave function. The discovered vortices also bring new light on the mechanism of transferring of the angular momentum from an external to internal motion. The connection between the observable momentum distribution and the time-dependent wave function implies that vortices in the wave function at large times are imaged in the momentum distribution.
The Bistable Potential:. AN Archetype for Classical and Quantum Systems
NASA Astrophysics Data System (ADS)
Spagnolo, B.; Caldara, P.; La Cognata, A.; Valenti, D.; Fiasconaro, A.; Dubkov, A. A.; Falci, G.
In this work we analyze the transient dynamics of three different classical and quantum systems. First, we consider a classical Brownian particle moving in an asymmetric bistable potential, subject to a multiplicative and additive noise source. We investigate the role of these two noise sources on the life time of the metastable state. A nonmonotonic behavior of the lifetime as a function of both additive and multiplicative noise intensities is found, revealing the phenomenon of noise enhanced stability. Afterward, by using a Lotka-Volterra model, the dynamics of two competing species in the presence of Lévy noise sources is analyzed. Quasiperiodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species are found. Finally the dynamics of a quantum particle subject to an asymmetric bistable potential and interacting with a thermal reservoir is investigated. We use the Caldeira-Leggett model and the approach of the Feynman-Vernon functional in discrete variable representation. We obtain the time evolution of the population distributions in energy eigenstates of the particle, for different values of the coupling strength with the thermal bath.
NASA Astrophysics Data System (ADS)
Lu, Yun-Gang
1995-01-01
The present article is devoted to the explanation of the irreversible behavior of quantum systems as a limiting case (in a sense to be made precise) of usual quantum dynamics. One starts with a system, whose Hamiltonian has a continuous spectrum, interacting with a reservoir and studies the limits of quantities related to the whole compound system. A macroscopic equation is obtained for the limit of the compound system, which is a quantum stochastic differential equation of Poisson type on some Hilbert module (no longer a space) and whose coefficients are uniquely determined by the one-particle Hamiltonian of the original system and whose driving noises are the creation, annihilation, and number (or gauge) processes living on the Fock module over this module.
Quantum Correlations, Separability, and Quantum Coherence Length in Equilibrium Many-Body Systems
NASA Astrophysics Data System (ADS)
Malpetti, Daniele; Roscilde, Tommaso
2016-09-01
Nonlocality is a fundamental trait of quantum many-body systems, both at the level of pure states, as well as at the level of mixed states. Because of nonlocality, mixed states of any two subsystems are correlated in a stronger way than what can be accounted for by considering the correlated probabilities of occupying some microstates. In the case of equilibrium mixed states, we explicitly build two-point quantum correlation functions, which capture the specific, superior correlations of quantum systems at finite temperature, and which are directly accessible to experiments when correlating measurable properties. When nonvanishing, these correlation functions rule out a precise form of separability of the equilibrium state. In particular, we show numerically that quantum correlation functions generically exhibit a finite quantum coherence length, dictating the characteristic distance over which degrees of freedom cannot be considered as separable. This coherence length is completely disconnected from the correlation length of the system—as it remains finite even when the correlation length of the system diverges at finite temperature—and it unveils the unique spatial structure of quantum correlations.
NASA Astrophysics Data System (ADS)
Lidar, Daniel A.; Brun, Todd A.
2013-09-01
Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and
Quantum Brayton cycle with coupled systems as working substance.
Huang, X L; Wang, L C; Yi, X X
2013-01-01
We explore the quantum version of the Brayton cycle with a composite system as the working substance. The actual Brayton cycle consists of two adiabatic and two isobaric processes. Two pressures can be defined in our isobaric process; one corresponds to the external magnetic field (characterized by F(x)) exerted on the system, while the other corresponds to the coupling constant between the subsystems (characterized by F(y)). As a consequence, we can define two types of quantum Brayton cycle for the composite system. We find that the subsystem experiences a quantum Brayton cycle in one quantum Brayton cycle (characterized by F(x)), whereas the subsystem's cycle is quantum Otto cycle in another Brayton cycle (characterized by F(y)). The efficiency for the composite system equals to that for the subsystem in both cases, but the work done by the total system is usually larger than the sum of the work done by the two subsystems. The other interesting finding is that for the cycle characterized by F(y), the subsystem can be a refrigerator, while the total system is a heat engine. The result in this paper can be generalized to a quantum Brayton cycle with a general coupled system as the working substance.
Lingley, Zachary; Lu, Siyuan; Madhukar, Anupam
2011-07-13
We present a new approach to ligand exchange on lead sulfide (PbS) quantum dots (QDs) in which the QDs are reacted with preformed Pb cation-ligand exchange units designed to promote reactions that replace surface Pb and oleate groups on the as-grown QDs. This process introduces negligible surface defects as the high quantum efficiency (∼55%) of the as-grown QDs is maintained. Infrared spectroscopy and electron microscopy are used to confirm the replacement of ligands and time-resolved photoluminescence to demonstrate the expected inverse sixth power dependence of the nonradiative resonant energy transfer rate on inter-QD spacing.
Linear-algebraic bath transformation for simulating complex open quantum systems
NASA Astrophysics Data System (ADS)
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; Yung, Man-Hong; Aspuru-Guzik, Alán
2014-12-01
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallel chains. The transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.
Modelling Systems of Classical/Quantum Identical Particles by Focusing on Algorithms
ERIC Educational Resources Information Center
Guastella, Ivan; Fazio, Claudio; Sperandeo-Mineo, Rosa Maria
2012-01-01
A procedure modelling ideal classical and quantum gases is discussed. The proposed approach is mainly based on the idea that modelling and algorithm analysis can provide a deeper understanding of particularly complex physical systems. Appropriate representations and physical models able to mimic possible pseudo-mechanisms of functioning and having…
Systems biology approach to bioremediation
Chakraborty, Romy; Wu, Cindy H.; Hazen, Terry C.
2012-06-01
Bioremediation has historically been approached as a ‘black box’ in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Finally, understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ‘black box’.
Invisibility of quantum systems to tunneling of matter waves
Cordero, Sergio; Garcia-Calderon, Gaston
2009-05-15
We show that an appropriate choice of the potential parameters in one-dimensional quantum systems allows for unity transmission of the tunneling particle at all incident tunneling energies, except at controllable exceedingly small incident energies. The corresponding dwell time and the transmission amplitude are indistinguishable from those of a free particle in the unity-transmission regime. This implies the possibility of designing quantum systems that are invisible to tunneling by a passing wave packet.
Entropies and correlations in classical and quantum systems
NASA Astrophysics Data System (ADS)
Man'ko, Margarita A.; Man'ko, Vladimir I.; Marmo, Giuseppe
2016-09-01
We present a review of entropy properties for classical and quantum systems including Shannon entropy, von Neumann entropy, Rényi entropy, and Tsallis entropy. We discuss known and new entropic and information inequalities for classical and quantum systems, both composite and noncomposite. We demonstrate matrix inequalities associated with the entropic subadditivity and strong subadditivity conditions and give a new inequality for matrix elements of unitary matrices.
Godsi, Oded; Peskin, Uri; Collins, Michael A.
2010-03-28
A quantum sampling algorithm for the interpolation of diabatic potential energy matrices by the Grow method is introduced. The new procedure benefits from penetration of the wave packet into classically forbidden regions, and the accurate quantum mechanical description of nonadiabatic transitions. The increased complexity associated with running quantum dynamics is reduced by using approximate low order expansions of the nuclear wave function within a Multi-configuration time-dependent Hartree scheme during the Grow process. The sampling algorithm is formulated and applied for three representative test cases, demonstrating the recovery of analytic potentials by the interpolated ones, and the convergence of a dynamic observable.
Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics
NASA Astrophysics Data System (ADS)
Auffèves, Alexia; Grangier, Philippe
2016-02-01
In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.
Dynamics of quantum correlation of four qubits system
NASA Astrophysics Data System (ADS)
Gebremariam, Tesfay; Li, Wenlin; Li, Chong
2016-09-01
In the present report, we investigate the dynamics of quantum correlation of four qubits system, and we characterize this kind of dynamics by quantum consonance and concurrence as measurement of quantum correlation and entanglement, respectively. By this measurement, one can easily study if non-entangled quantum correlation can transfer to entanglement. In our model, we find that this case cannot be realized. In addition, we constructed a four qubits swapping gate, which is made up of two bipartite swapping gates. Under this composite gate the quantum correlation is exchanged between two entangled pairs. The influence of the physical parameters like the purity and the amount of entanglement of the initial states is also examined.
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems
NASA Astrophysics Data System (ADS)
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language. PMID:27088565
Dreuw, Andreas
2006-11-13
With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented.
Controllable multiple-quantum transitions in a T-shaped small quantum dot-ring system
NASA Astrophysics Data System (ADS)
Chen, Xiongwen; Chen, Baoju; Song, Kehui; Zhou, Guanghui
2016-05-01
Based on the tight-binding model and the slave boson mean field approximation, we investigate the electron transport properties in a small quantum dot (QD)-ring system. Namely, a strongly correlated QD not only attaches directly to two normal metallic electrodes, but also forms a magnetic control Aharonov-Bohm quantum ring with a few noninteracting QDs. We show that the parity effect, the Kondo effect, and the multiple Fano effects coexist in our system. Moreover, the parities, defined by the odd- and even-numbered energy levels in this system, can be switched by adjusting magnetic flux phase ϕ located at the center of the quantum ring, which induces multiple controllable Fano-interference energy pathways. Therefore, the constructive and destructive multi-Fano interference transition, the Kondo and Fano resonance transition at the Fermi level, the Fano resonance and ani-resonance transition are realized in the even parity system. They can also be observed in the odd parity system when one adjusts the phase ϕ and the gate voltage Vg applied to the noninteracting QDs. The multi-quantum transitions determine some interesting transport properties such as the current switch and its multi-flatsteps, the differential conductance switch at zero bias voltage and its oscillation or quantization at the low bias voltage. These results may be useful for the observation of multiple quantum effect interplays experimentally and the design of controllable QD-based device.
Mixed quantum-classical versus full quantum dynamics: Coupled quasiparticle-oscillator system
NASA Astrophysics Data System (ADS)
Schanz, Holger; Esser, Bernd
1997-05-01
The relation between the dynamical properties of a coupled quasiparticle-oscillator system in the mixed quantum-classical and fully quantized descriptions is investigated. The system is considered as a model for applying a stepwise quantization. Features of the nonlinear dynamics in the mixed description such as the presence of a separatrix structure or regular and chaotic motion are shown to be reflected in the evolu- tion of the quantum state vector of the fully quantized system. In particular, it is demonstrated how wave packets propagate along the separatrix structure of the mixed description, and that chaotic dynamics leads to a strongly entangled quantum state vector. Special emphasis is given to viewing the system from a dyn- amical Born-Oppenheimer approximation defining integrable reference oscillators, and elucidating the role of the nonadiabatic couplings which complement this approximation into a rigorous quantization scheme.
Quantum algorithm for simulating the dynamics of an open quantum system
Wang Hefeng; Ashhab, S.; Nori, Franco
2011-06-15
In the study of open quantum systems, one typically obtains the decoherence dynamics by solving a master equation. The master equation is derived using knowledge of some basic properties of the system, the environment, and their interaction: One basically needs to know the operators through which the system couples to the environment and the spectral density of the environment. For a large system, it could become prohibitively difficult to even write down the appropriate master equation, let alone solve it on a classical computer. In this paper, we present a quantum algorithm for simulating the dynamics of an open quantum system. On a quantum computer, the environment can be simulated using ancilla qubits with properly chosen single-qubit frequencies and with properly designed coupling to the system qubits. The parameters used in the simulation are easily derived from the parameters of the system + environment Hamiltonian. The algorithm is designed to simulate Markovian dynamics, but it can also be used to simulate non-Markovian dynamics provided that this dynamics can be obtained by embedding the system of interest into a larger system that obeys Markovian dynamics. We estimate the resource requirements for the algorithm. In particular, we show that for sufficiently slow decoherence a single ancilla qubit could be sufficient to represent the entire environment, in principle.
Faraday-Michelson system for quantum cryptography.
Mo, Xiao-Fan; Zhu, Bing; Han, Zheng-Fu; Gui, You-Zhen; Guo, Guang-Can
2005-10-01
Quantum key distribution provides unconditional security for communication. Unfortunately, current experimental schemes are not suitable for long-distance fiber transmission because of phase drift or Rayleigh backscattering. In this Letter we present a unidirectional intrinsically stable scheme that is based on Michelson-Faraday interferometers, in which ordinary mirrors are replaced with 90 degree Faraday mirrors. With the scheme, a demonstration setup was built and excellent stability of interference fringe visibility was achieved over a fiber length of 175 km. Through a 125 km long commercial communication fiber cable between Beijing and Tianjin, the key exchange was performed with a quantum bit-error rate of less than 6%, which is to our knowledge the longest reported quantum key distribution experiment under field conditions.
Institutional Planning: A Systems Approach.
ERIC Educational Resources Information Center
Adamson, Willie D.
This four-chapter report explores the possible contributions of a systems approach to institutional planning. After introductory comments, Chapter I reviews the management theory of Henry Fayol, which emphasizes management tasks, such as planning, organizing, commanding, coordinating, and controlling, which are "universal" regardless of the level…
Building America Systems Engineering Approach
2011-12-15
The Building America Research Teams use a systems engineering approach to achieve higher quality and energy savings in homes. Using these techniques, the energy consumption of new houses can be reduced by 40% or more with little or no impact on the cost of ownership.
Phase-space approach to continuous variable quantum teleportation
Ban, Masashi
2004-05-01
The phase-space method is applied for considering continuous variable quantum teleportation. It is found that the continuous variable quantum teleportation transforms the s-parametrized phase-space function of an input state into the (s+{delta})-parametrized phase-space function, where the parameter {delta} is determined by the shared quantum entanglement. It is shown from this result that the Wigner function of the teleported state is always non-negative for F{sub c}{<=}2/3 and the Glauber-Sudarshan P function non-negative for F{sub c}{<=}1/2, where F{sub c} is the fidelity of the coherent-state teleportation. Furthermore the fidelity between input and output states is calculated when Gaussian states are teleported.