Science.gov

Sample records for quantum unique ergodicity

  1. The Eigenvector Moment Flow and Local Quantum Unique Ergodicity

    NASA Astrophysics Data System (ADS)

    Bourgade, P.; Yau, H.-T.

    2016-04-01

    We prove that the distribution of eigenvectors of generalized Wigner matrices is universal both in the bulk and at the edge. This includes a probabilistic version of local quantum unique ergodicity and asymptotic normality of the eigenvector entries. The proof relies on analyzing the eigenvector flow under the Dyson Brownian motion. The key new ideas are: (1) the introduction of the eigenvector moment flow, a multi-particle random walk in a random environment, (2) an effective estimate on the regularity of this flow based on maximum principle and (3) optimal finite speed of propagation holds for the eigenvector moment flow with very high probability.

  2. Ergodicity and mixing in quantum dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Dongliang; Quan, H. T.; Wu, Biao

    2016-08-01

    After a brief historical review of ergodicity and mixing in dynamics, particularly in quantum dynamics, we introduce definitions of quantum ergodicity and mixing using the structure of the system's energy levels and spacings. Our definitions are consistent with the usual understanding of ergodicity and mixing. Two parameters concerning the degeneracy in energy levels and spacings are introduced. They are computed for right triangular billiards and the results indicate a very close relation between quantum ergodicity (mixing) and quantum chaos. At the end, we argue that, besides ergodicity and mixing, there may exist a third class of quantum dynamics which is characterized by a maximized entropy.

  3. Ergodicity and mixing in quantum dynamics.

    PubMed

    Zhang, Dongliang; Quan, H T; Wu, Biao

    2016-08-01

    After a brief historical review of ergodicity and mixing in dynamics, particularly in quantum dynamics, we introduce definitions of quantum ergodicity and mixing using the structure of the system's energy levels and spacings. Our definitions are consistent with the usual understanding of ergodicity and mixing. Two parameters concerning the degeneracy in energy levels and spacings are introduced. They are computed for right triangular billiards and the results indicate a very close relation between quantum ergodicity (mixing) and quantum chaos. At the end, we argue that, besides ergodicity and mixing, there may exist a third class of quantum dynamics which is characterized by a maximized entropy. PMID:27627289

  4. Random Weighted Sobolev Inequalities and Application to Quantum Ergodicity

    NASA Astrophysics Data System (ADS)

    Robert, Didier; Thomann, Laurent

    2015-05-01

    This paper is a continuation of Poiret et al. (Ann Henri Poincaré 16:651-689, 2015), where we studied a randomisation method based on the Laplacian with harmonic potential. Here we extend our previous results to the case of any polynomial and confining potential V on . We construct measures, under concentration type assumptions, on the support of which we prove optimal weighted Sobolev estimates on . This construction relies on accurate estimates on the spectral function in a non-compact configuration space. Then we prove random quantum ergodicity results without specific assumption on the classical dynamics. Finally, we prove that almost all bases of Hermite functions are quantum uniquely ergodic.

  5. Quantum ergodicity for a class of non-generic systems

    NASA Astrophysics Data System (ADS)

    Asadi, P.; Bakhshinezhad, F.; Rezakhani, A. T.

    2016-02-01

    We examine quantum normal typicality and ergodicity properties for quantum systems whose dynamics are generated by Hamiltonians which have residual degeneracy in their spectrum and resonance in their energy gaps. Such systems can be considered atypical in the sense that degeneracy, which is usually a sign of symmetry, is naturally broken in typical systems due to stochastic perturbations. In particular, we prove a version of von Neumann’s quantum ergodic theorem, where a modified condition needs to hold in order to have normal typicality and ergodicity. As a result, we show that degeneracy of spectrum does not considerably modify the condition of the theorem, whereas the existence of resonance is more dominant for obstructing ergodicity.

  6. Ergodicity and quantum correlations in irrational triangular billiards

    NASA Astrophysics Data System (ADS)

    Araújo Lima, T.; Rodríguez-Pérez, S.; de Aguiar, F. M.

    2013-06-01

    Pseudochaotic properties are systematically investigated in a one-parameter family of irrational triangular billiards (all angles irrational with π). The absolute value of the position correlation function Cx(t) decays like ˜t-α. Fast (α≈1) and slow (0<α<1) decays are observed, thus indicating that the irrational triangles do not share a unique ergodic dynamics, which, instead, may vary smoothly between the opposite limits of strong mixing (α=1) and regular behaviors (α=0). Upgrading previous data, spectral statistical properties of the quantized counterparts are computed from 150000 energy eigenvalues numerically calculated for each billiard. Gaussian orthogonal ensemble spectral fluctuations are observed when α≈1 and intermediate statistics are found otherwise. Our irrational billiards have zero Kolmogorov-Sinai entropy and essentially infinity genus. Thus, differently from previous works on rational (pseudointegrable) enclosures, our results provide a missing classical-quantum correspondence regarding the ergodic hierarchy for a set of nonchaotic systems that might enjoy the strong mixing property.

  7. Quantum Uniqueness

    NASA Astrophysics Data System (ADS)

    Sych, Denis; Leuchs, Gerd

    2015-12-01

    Classical physics allows for the existence of pairs of absolutely identical systems. Pairwise application of identical measurements to each of those systems always leads to exactly alike results irrespectively of the choice of measurements. Here we ask a question how the picture looks like in the quantum domain. Surprisingly, we get a counterintuitive outcome. Pairwise application of identical (but a priori unknown) measurements cannot always lead to exactly alike results. We interpret this as quantum uniqueness—a feature that has no classical analog.

  8. Periodically driven ergodic and many-body localized quantum systems

    SciTech Connect

    Ponte, Pedro; Chandran, Anushya; Papić, Z.; Abanin, Dmitry A.

    2015-02-15

    We study dynamics of isolated quantum many-body systems whose Hamiltonian is switched between two different operators periodically in time. The eigenvalue problem of the associated Floquet operator maps onto an effective hopping problem. Using the effective model, we establish conditions on the spectral properties of the two Hamiltonians for the system to localize in energy space. We find that ergodic systems always delocalize in energy space and heat up to infinite temperature, for both local and global driving. In contrast, many-body localized systems with quenched disorder remain localized at finite energy. We support our conclusions by numerical simulations of disordered spin chains. We argue that our results hold for general driving protocols, and discuss their experimental implications.

  9. Towards a definition of the Quantum Ergodic Hierarchy: Kolmogorov and Bernoulli systems

    NASA Astrophysics Data System (ADS)

    Gomez, Ignacio; Castagnino, Mario

    2014-01-01

    In this paper we translate the two higher levels of the Ergodic Hierarchy [11], the Kolmogorov level and the Bernoulli level, to quantum language. Moreover, this paper can be considered as the second part of [3]. As in [3], we consider the formalism where the states are positive functionals on the algebra of observables and we use the properties of the Wigner transform [12]. We illustrate the physical relevance of the Quantum Ergodic Hierarchy with two emblematic examples of the literature: the Casati-Prosen model [13,14] and the kicked rotator [6-8].

  10. Open Quantum Random Walks: Ergodicity, Hitting Times, Gambler's Ruin and Potential Theory

    NASA Astrophysics Data System (ADS)

    Lardizabal, Carlos F.; Souza, Rafael R.

    2016-09-01

    In this work we study certain aspects of open quantum random walks (OQRWs), a class of quantum channels described by Attal et al. (J Stat Phys 147: 832-852, 2012). As a first objective we consider processes which are nonhomogeneous in time, i.e., at each time step, a possibly distinct evolution kernel. Inspired by a spectral technique described by Saloff-Coste and Zúñiga (Stoch Proc Appl 117: 961-979, 2007), we define a notion of ergodicity for finite nonhomogeneous quantum Markov chains and describe a criterion for ergodicity of such objects in terms of singular values. As a second objective, and based on a quantum trajectory approach, we study a notion of hitting time for OQRWs and we see that many constructions are variations of well-known classical probability results, with the density matrix degree of freedom on each site giving rise to systems which are seen to be nonclassical. In this way we are able to examine open quantum versions of the gambler's ruin, birth-and-death chain and a basic theorem on potential theory.

  11. Slowly changing potential problems in Quantum Mechanics: Adiabatic theorems, ergodic theorems, and scattering

    NASA Astrophysics Data System (ADS)

    Fishman, S.; Soffer, A.

    2016-07-01

    We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.

  12. Using Quantum Confinement to Uniquely Identify Devices

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-11-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature.

  13. Using Quantum Confinement to Uniquely Identify Devices

    PubMed Central

    Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.

    2015-01-01

    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature. PMID:26553435

  14. Quantum catastrophes and ergodicity in the dynamics of bosonic Josephson junctions.

    PubMed

    O'Dell, D H J

    2012-10-12

    We study rainbow (fold) and cusp catastrophes that form in Fock space following a quench in a Bose Josephson junction. In the Gross-Pitaevskii mean-field theory, the rainbows are singular caustics, but in the second-quantized theory a Poisson resummation of the wave function shows that they are described by well-behaved Airy functions. The structural stability of these Fock space caustics against variations in the initial conditions and Hamiltonian evolution is guaranteed by catastrophe theory. We also show that the long-time dynamics are ergodic. Our results are relevant to the question posed by Berry [M. V. Berry, Nonlinearity 21, T19 (2008)]: Are there circumstances when it is necessary to second quantize wave theory in order to avoid singularities? PMID:23102282

  15. Uniqueness of measures in loop quantum cosmology

    SciTech Connect

    Hanusch, Maximilian

    2015-09-15

    In Ashtekar and Campiglia [Classical Quantum Gravity 29, 242001 (2012)], residual diffeomorphisms have been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). We show that, in the homogeneous isotropic case, unitarity of the translations with respect to the extended ℝ-action (exponentiated reduced fluxes in the standard approach) singles out the Bohr measure on both the standard quantum configuration space ℝ{sub Bohr} as well as on the Fleischhack one (ℝ⊔ℝ{sub Bohr}). Thus, in both situations, the same condition singles out the standard kinematical Hilbert space of LQC.

  16. Ergodic theorem, ergodic theory, and statistical mechanics

    PubMed Central

    Moore, Calvin C.

    2015-01-01

    This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundamental problem of the subject—namely, the rationale for the hypothesis that time averages can be set equal to phase averages. The evolution of this problem is traced from the origins of statistical mechanics and Boltzman's ergodic hypothesis to the Ehrenfests' quasi-ergodic hypothesis, and then to the ergodic theorems. We discuss communications between von Neumann and Birkhoff in the Fall of 1931 leading up to the publication of these papers and related issues of priority. These ergodic theorems initiated a new field of mathematical-research called ergodic theory that has thrived ever since, and we discuss some of recent developments in ergodic theory that are relevant for statistical mechanics. PMID:25691697

  17. The equivalence principle of quantum mechanics: Uniqueness theorem

    SciTech Connect

    Faraggi, A.E.; Matone, M.

    1997-10-28

    Recently the authors showed that the postulated diffeomorphic equivalence of states implies quantum mechanics. This approach takes the canonical variables to be dependent by the relation p = {partial_derivative}{sub q}S{sub 0} and exploits a basic GL(2,C)-symmetry which underlies the canonical formalism. In particular, they looked for the special transformations leading to the free system with vanishing energy. Furthermore, they saw that while on the one hand the equivalence principle cannot be consistently implemented in classical mechanics, on the other it naturally led to the quantum analogue of the Hamilton-Jacobi equation, thus implying the Schroedinger equation. In this letter they show that actually the principle uniquely leads to this solution. The authors also express the canonical and Schroedinger equations by means of the brackets recently introduced in the framework of N = 2 SYM. These brackets are the analogue of the Poisson brackets with the canonical variables taken as dependent.

  18. Uniqueness of the equation for quantum state vector collapse.

    PubMed

    Bassi, Angelo; Dürr, Detlef; Hinrichs, Günter

    2013-11-22

    The linearity of quantum mechanics leads, under the assumption that the wave function offers a complete description of reality, to grotesque situations famously known as Schrödinger's cat. Ways out are either adding elements of reality or replacing the linear evolution by a nonlinear one. Models of spontaneous wave function collapses took the latter path. The way such models are constructed leaves the question of whether such models are in some sense unique, i.e., whether the nonlinear equations replacing Schrödinger's equation are uniquely determined as collapse equations. Various people worked on identifying the class of nonlinear modifications of the Schrödinger equation, compatible with general physical requirements. Here we identify the most general class of continuous wave function evolutions under the assumption of no-faster-than-light signaling.

  19. Proof of the ergodic theorem and the H-theorem in quantum mechanics. Translation of: Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik

    NASA Astrophysics Data System (ADS)

    von Neumann, J.

    2010-11-01

    It is shown how to resolve the apparent contradiction between the macroscopic approach of phase space and the validity of the uncertainty relations. The main notions of statistical mechanics are re-interpreted in a quantum-mechanical way, the ergodic theorem and the H-theorem are formulated and proven (without “assumptions of disorder”), followed by a discussion of the physical meaning of the mathematical conditions characterizing their domain of validity. The German original was published in Zeitschrift für Physik 57, 30-70 (1929) [paper received on May 10th, 1929] and is available as electronic supplementary material at www.epj.org. Translated by Roderich Tumulka, Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA; e-mail: tumulka@math.rutgers.edu. Additions in the text by the translator are put in square brackets. Footnotes are also footnotes in the original unless otherwise marked. Footnotes in the original containing only citations have been moved to the main text. In the original, equations and references are not numbered. The notation agrees essentially with the original, with the following exceptions: h/2π has been replaced with ħ; the notation [a,b] for intervals has been introduced to simplify some sentences. In a few cases, misprints and other mistakes in formulas have been identified by the translator, corrected in the text, and mentioned in a footnote. The translator is grateful to Wolf Beiglböck for suggesting improvements and librarian Mei Ling Lo of Rutgers University for help with the bibliography.

  20. Ergodicity in randomly forced Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Földes, J.; Glatt-Holtz, N. E.; Richards, G.; Whitehead, J. P.

    2016-11-01

    We consider the Boussinesq approximation for Rayleigh-Bénard convection perturbed by an additive noise and with boundary conditions corresponding to heating from below. In two space dimensions, with sufficient stochastic forcing in the temperature component and large Prandtl number Pr  >  0, we establish the existence of a unique ergodic invariant measure. In three space dimensions, we prove the existence of a statistically invariant state, and establish unique ergodicity for the infinite Prandtl Boussinesq system. Throughout this work we provide streamlined proofs of unique ergodicity which invoke an asymptotic coupling argument, a delicate usage of the maximum principle, and exponential martingale inequalities. Lastly, we show that the background method of Constantin and Doering (1996 Nonlinearity 9 1049-60) can be applied in our stochastic setting, and prove bounds on the Nusselt number relative to the unique invariant measure.

  1. Broken Ergodicity in Myoglobin

    NASA Astrophysics Data System (ADS)

    Shyamsunder, Erramilli

    Biomolecules need long-lived far from equilibrium states to function. These states have a high Gibbs free energy that is used for biologically important functions such as catalysis and they need to live for a sufficiently long time, comparable to reactant diffusion times that vary from 100 ns on up, to enable the system to use this free energy. Many theories have been put forth to explain the longevity of these states, such as "Bose condensation", "spontaneous symmetry breakdown", "dissipative structures", solitons and so on. We have isolated such transient far from equilibrium states in sperm whale myoglobin and measured the decays of these states as a function of time under vastly different conditions. Our studies have led us to a completely different mechanism for the longevity of these long-lived states, which is based on the idea that non -equilibrium states are examples of "broken ergodicity". Our experiments at low temperatures and high pressures prove the existence of broken ergodic states in myoglobin. These studies imply that proteins at short times are in broken ergodic states even at room temperature. These broken ergodic states give us a new mechanism for excited states to live long. The dynamics of these states in proteins involve structural hierarchies. The motions take so long because the system has to go through many levels of relaxation. This concept of "getting lost" in a hierarchy is quantified precisely through an unusual idea: we show that the number of proteins participating in the recombination reaction obeys a second order linear differential equation and use this to define and experimentally determine a frequency dependent friction coefficient. The idea of using such a number as a generalized coordinate is consistent with modern ideas of friction. We can now make the following alternative statement: the motions are so slow because friction slows them down. There is no need for solitons. The idea that friction is the mechanism by which an

  2. Ergodicity breaking and localization

    NASA Astrophysics Data System (ADS)

    Geneston, Elvis; Tuladhar, Rohisha; Beig, M. T.; Bologna, Mauro; Grigolini, Paolo

    2016-07-01

    We study the joint action of the non-Poisson renewal events (NPR) yielding Continuous-time random walk (CTRW) with index α <1 and two different generators of Hurst coefficient H ≠0.5 , one generating fractional Brownian motion (FBM) and another scaled Brownian motion (SBM). We discuss the ergodicity breaking emerging from these joint actions and we find that in both cases the adoption of time averages leads to localization. In the case of the joint action of NPR and SBM, localization occurs when SBM would produce subdiffusion. The joint action of NPR and FBM, on the contrary, may lead to localization when FBM is a source of superdiffusion. The joint action of NPR and FBM is equivalent to extending the CTRW to the case where the jumps of the runner are correlated and we argue that the the memory-induced localization requires a refinement of the theoretical perspective about determinism and randomness.

  3. Ergodicity breaking and localization.

    PubMed

    Geneston, Elvis; Tuladhar, Rohisha; Beig, M T; Bologna, Mauro; Grigolini, Paolo

    2016-07-01

    We study the joint action of the non-Poisson renewal events (NPR) yielding Continuous-time random walk (CTRW) with index α<1 and two different generators of Hurst coefficient H≠0.5, one generating fractional Brownian motion (FBM) and another scaled Brownian motion (SBM). We discuss the ergodicity breaking emerging from these joint actions and we find that in both cases the adoption of time averages leads to localization. In the case of the joint action of NPR and SBM, localization occurs when SBM would produce subdiffusion. The joint action of NPR and FBM, on the contrary, may lead to localization when FBM is a source of superdiffusion. The joint action of NPR and FBM is equivalent to extending the CTRW to the case where the jumps of the runner are correlated and we argue that the the memory-induced localization requires a refinement of the theoretical perspective about determinism and randomness. PMID:27575105

  4. Quantum mechanical embedding theory based on a unique embedding potential

    SciTech Connect

    Chen Huang; Pavone, Michele; Carter, Emily A.

    2011-04-21

    We remove the nonuniqueness of the embedding potential that exists in most previous quantum mechanical embedding schemes by letting the environment and embedded region share a common embedding (interaction) potential. To efficiently solve for the embedding potential, an optimized effective potential method is derived. This embedding potential, which eschews use of approximate kinetic energy density functionals, is then used to describe the environment while a correlated wavefunction (CW) treatment of the embedded region is employed. We first demonstrate the accuracy of this new embedded CW (ECW) method by calculating the van der Waals binding energy curve between a hydrogen molecule and a hydrogen chain. We then examine the prototypical adsorption of CO on a metal surface, here the Cu(111) surface. In addition to obtaining proper site ordering (top site most stable) and binding energies within this theory, the ECW exhibits dramatic changes in the p-character of the CO 4{sigma} and 5{sigma} orbitals upon adsorption that agree very well with x-ray emission spectra, providing further validation of the theory. Finally, we generalize our embedding theory to spin-polarized quantum systems and discuss the connection between our theory and partition density functional theory.

  5. Runaway losses in ergodized plasmas

    NASA Astrophysics Data System (ADS)

    Finken, K. H.; Abdullaev, S. S.; Jakubowski, M. W.; Jaspers, R.; Lehnen, M.; Schlickeiser, R.; Spatschek, K. H.; Wingen, A.; Wolf, R.; TEXTOR Team

    2007-02-01

    New results from the generation of runaways and the loss of runaway electrons in an ergodized magnetic field are presented. For the generation process, a clear difference between a 'normal' and a clean, freshly boronized wall condition has been found. Under clean wall conditions, one observes at low densities not only the runaway electrons with energies up to 30 MeV and at discharges with even lower electron density one finds more runaway electrons but at an energy in the low-MeV regime. The runaway electrons are utilized as test particles for revealing the ergodized magnetic field line structure. For the measurements the m/n = 6/2 base mode configuration of the dynamic ergodic divertor (DED), has been applied. One observes a clear modification of the radial runaway profile with preferential losses in the ergodized zone. From the loss rate of the runaway electrons due to ergodization and from the redistribution of the runaways after the DED phase, the diffusion rate is estimated to be of the order of 0.1 m2 s-1.

  6. Kinetic theory and ergodic properties

    PubMed Central

    Prigogine, I.; Grecos, A. P.; George, Cl.

    1976-01-01

    It is often assumed that the justification of kinetic theory lies in ergodic theory. From the properties of the collision operator, which plays a basic role in our kinetic description of dynamical systems, we show that this is not the case. We deduce that the asymptotic behavior of a class of states and observables is determined by the collisional invariants, independently of the ergodicity of the system. The relation between our conclusion and the stability concepts for classical Hamiltonian systems, introduced by Moser and others, is briefly indicated. PMID:16592325

  7. Ergodic theory, randomness, and "chaos".

    PubMed

    Ornstein, D S

    1989-01-13

    Ergodic theory is the theory of the long-term statistical behavior of dynamical systems. The baker's transformation is an object of ergodic theory that provides a paradigm for the possibility of deterministic chaos. It can now be shown that this connection is more than an analogy and that at some level of abstraction a large number of systems governed by Newton's laws are the same as the baker's transformation. Going to this level of abstraction helps to organize the possible kinds of random behavior. The theory also gives new concrete results. For example, one can show that the same process could be produced by a mechanism governed by Newton's laws or by a mechanism governed by coin tossing. It also gives a statistical analog of structural stability.

  8. Ergodicity of polygonal slap maps

    NASA Astrophysics Data System (ADS)

    Del Magno, Gianluigi; Lopes Dias, João; Duarte, Pedro; Gaivão, José Pedro

    2014-08-01

    Polygonal slap maps are piecewise affine expanding maps of the interval obtained by projecting the sides of a polygon along their normals onto the perimeter of the polygon. These maps arise in the study of polygonal billiards with non-specular reflection laws. We study the absolutely continuous invariant probabilities (acips) of the slap maps for several polygons, including regular polygons and triangles. We also present a general method for constructing polygons with slap maps with more than one ergodic acip.

  9. Ergodic properties of anomalous diffusion processes

    SciTech Connect

    Magdziarz, Marcin Weron, Aleksander

    2011-09-15

    In this paper we study ergodic properties of some classes of anomalous diffusion processes. Using the recently developed measure of dependence called the Correlation Cascade, we derive a generalization of the classical Khinchin theorem. This result allows us to determine ergodic properties of Levy-driven stochastic processes. Moreover, we analyze the asymptotic behavior of two different fractional Ornstein-Uhlenbeck processes, both originating from subdiffusive dynamics. We show that only one of them is ergodic. - Highlights: > We derive a generalization of the classical Khinchin ergodic theorem for the general class of Levy-driven processes. > We study ergodic properties of stable and tempered stable processes. > We verify ergodicity and mixing of two fractional Ornstein-Uhlenbeck processes, both originating from subdiffusive dynamics.

  10. Ergodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group

    SciTech Connect

    Bufetov, A I

    2014-02-28

    The aim of this paper is to prove ergodic decomposition theorems for probability measures which are quasi-invariant under Borel actions of inductively compact groups as well as for σ-finite invariant measures. For infinite measures the ergodic decomposition is not unique, but the measure class of the decomposing measure on the space of projective measures is uniquely defined by the initial invariant measure. Bibliography: 21 titles.

  11. Ergodicity of the generalized lemon billiards

    SciTech Connect

    Chen, Jingyu; Mohr, Luke; Zhang, Hong-Kun Zhang, Pengfei

    2013-12-15

    In this paper, we study a two-parameter family of convex billiard tables, by taking the intersection of two round disks (with different radii) in the plane. These tables give a generalization of the one-parameter family of lemon-shaped billiards. Initially, there is only one ergodic table among all lemon tables. In our generalized family, we observe numerically the prevalence of ergodicity among the some perturbations of that table. Moreover, numerical estimates of the mixing rate of the billiard dynamics on some ergodic tables are also provided.

  12. Ergodicity of the generalized lemon billiards

    NASA Astrophysics Data System (ADS)

    Chen, Jingyu; Mohr, Luke; Zhang, Hong-Kun; Zhang, Pengfei

    2013-12-01

    In this paper, we study a two-parameter family of convex billiard tables, by taking the intersection of two round disks (with different radii) in the plane. These tables give a generalization of the one-parameter family of lemon-shaped billiards. Initially, there is only one ergodic table among all lemon tables. In our generalized family, we observe numerically the prevalence of ergodicity among the some perturbations of that table. Moreover, numerical estimates of the mixing rate of the billiard dynamics on some ergodic tables are also provided.

  13. Ergodicity, ensembles, irreversibility in Boltzmann and beyond

    NASA Astrophysics Data System (ADS)

    Gallavotti, Giovanni

    1995-03-01

    The contents of a not too well-known paper by Boltzmann are critically examined. The etymology of the word ergodic and its implications are discussed. A connection with the modern theory of Ruelle is attempted.

  14. Ergodicity in natural earthquake fault networks

    SciTech Connect

    Tiampo, K. F.; Rundle, J. B.; Holliday, J.; Klein, W.; Sa Martins, J. S.

    2007-06-15

    Numerical simulations have shown that certain driven nonlinear systems can be characterized by mean-field statistical properties often associated with ergodic dynamics [C. D. Ferguson, W. Klein, and J. B. Rundle, Phys. Rev. E 60, 1359 (1999); D. Egolf, Science 287, 101 (2000)]. These driven mean-field threshold systems feature long-range interactions and can be treated as equilibriumlike systems with statistically stationary dynamics over long time intervals. Recently the equilibrium property of ergodicity was identified in an earthquake fault system, a natural driven threshold system, by means of the Thirumalai-Mountain (TM) fluctuation metric developed in the study of diffusive systems [K. F. Tiampo, J. B. Rundle, W. Klein, J. S. Sa Martins, and C. D. Ferguson, Phys. Rev. Lett. 91, 238501 (2003)]. We analyze the seismicity of three naturally occurring earthquake fault networks from a variety of tectonic settings in an attempt to investigate the range of applicability of effective ergodicity, using the TM metric and other related statistics. Results suggest that, once variations in the catalog data resulting from technical and network issues are accounted for, all of these natural earthquake systems display stationary periods of metastable equilibrium and effective ergodicity that are disrupted by large events. We conclude that a constant rate of events is an important prerequisite for these periods of punctuated ergodicity and that, while the level of temporal variability in the spatial statistics is the controlling factor in the ergodic behavior of seismic networks, no single statistic is sufficient to ensure quantification of ergodicity. Ergodicity in this application not only requires that the system be stationary for these networks at the applicable spatial and temporal scales, but also implies that they are in a state of metastable equilibrium, one in which the ensemble averages can be substituted for temporal averages in studying their spatiotemporal

  15. Are atmospheric surface layer flows ergodic?

    NASA Astrophysics Data System (ADS)

    Higgins, Chad W.; Katul, Gabriel G.; Froidevaux, Martin; Simeonov, Valentin; Parlange, Marc B.

    2013-06-01

    The transposition of atmospheric turbulence statistics from the time domain, as conventionally sampled in field experiments, is explained by the so-called ergodic hypothesis. In micrometeorology, this hypothesis assumes that the time average of a measured flow variable represents an ensemble of independent realizations from similar meteorological states and boundary conditions. That is, the averaging duration must be sufficiently long to include a large number of independent realizations of the sampled flow variable so as to represent the ensemble. While the validity of the ergodic hypothesis for turbulence has been confirmed in laboratory experiments, and numerical simulations for idealized conditions, evidence for its validity in the atmospheric surface layer (ASL), especially for nonideal conditions, continues to defy experimental efforts. There is some urgency to make progress on this problem given the proliferation of tall tower scalar concentration networks aimed at constraining climate models yet are impacted by nonideal conditions at the land surface. Recent advancements in water vapor concentration lidar measurements that simultaneously sample spatial and temporal series in the ASL are used to investigate the validity of the ergodic hypothesis for the first time. It is shown that ergodicity is valid in a strict sense above uniform surfaces away from abrupt surface transitions. Surprisingly, ergodicity may be used to infer the ensemble concentration statistics of a composite grass-lake system using only water vapor concentration measurements collected above the sharp transition delineating the lake from the grass surface.

  16. Losses of runaway electrons during ergodization

    NASA Astrophysics Data System (ADS)

    Finken, K. H.; Abdullaev, S. S.; Jakubowski, M.; Jaspers, R.; Lehnen, M.; Zimmermann, O.

    2006-04-01

    The dynamic ergodic divertor (DED) of TEXTOR has been applied to runaway discharges. The runaway electrons (ɛ < 30 MeV) are developed as probes for investigating the internal magnetic field line structure in the plasma. Complementary diagnostics are used, namely neutron measurements for the loss of the runaways and synchrotron radiation for the detection inside the plasma. During the DED phase, three features of the runaway electrons are found: a sudden loss from the just formed ergodic layer, an enhanced diffusive transport and very sudden loss events which may be related to field line reconnection processes.

  17. Ergodicity: a historical perspective. Equilibrium and Nonequilibrium

    NASA Astrophysics Data System (ADS)

    Gallavotti, Giovanni

    2016-10-01

    A view on the physical meaning of the so called ergodic hypothesis: its role on the foundations of equilibrium statistical mechanics in mid '1800, its interpretations and hints at its relevance for modern nonequilibrium statistical mechanics. Followed by appendices with detailed comments on the original papers.

  18. Ergodicity: a historical perspective. Equilibrium and Nonequilibrium

    NASA Astrophysics Data System (ADS)

    Gallavotti, Giovanni

    2016-09-01

    A view on the physical meaning of the so called ergodic hypothesis: its role on the foundations of equilibrium statistical mechanics in mid '1800, its interpretations and hints at its relevance for modern nonequilibrium statistical mechanics. Followed by appendices with detailed comments on the original papers.

  19. Ergodicity test of the eddy correlation method

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hu, Y.; Yu, Y.; Lü, S.

    2014-07-01

    The turbulent flux observation in the near-surface layer is a scientific issue which researchers in the fields of atmospheric science, ecology, geography science, etc. are commonly interested in. For eddy correlation measurement in the atmospheric surface layer, the ergodicity of turbulence is a basic assumption of the Monin-Obukhov (M-O) similarity theory, which is confined to steady turbulent flow and homogenous surface; this conflicts with turbulent flow under the conditions of complex terrain and unsteady, long observational period, which the study of modern turbulent flux tends to focus on. In this paper, two sets of data from the Nagqu Station of Plateau Climate and Environment (NaPlaCE) and the cooperative atmosphere-surface exchange study 1999 (CASE99) were used to analyze and verify the ergodicity of turbulence measured by the eddy covariance system. Through verification by observational data, the vortex of atmospheric turbulence, which is smaller than the scale of the atmospheric boundary layer (i.e., its spatial scale is less than 1000 m and temporal scale is shorter than 10 min) can effectively meet the conditions of the average ergodic theorem, and belong to a wide sense stationary random processes. Meanwhile, the vortex, of which the spatial scale is larger than the scale of the boundary layer, cannot meet the conditions of the average ergodic theorem, and thus it involves non-ergodic stationary random processes. Therefore, if the finite time average is used to substitute for the ensemble average to calculate the average random variable of the atmospheric turbulence, then the stationary random process of the vortex, of which spatial scale was less than 1000 m and thus below the scale of the boundary layer, was possibly captured. However, the non-ergodic random process of the vortex, of which the spatial scale was larger than that of the boundary layer, could not be completely captured. Consequently, when the finite time average was used to substitute

  20. Termolecular kinetics for the Mu + CO + M recombination reaction: A unique test of quantum rate theory.

    PubMed

    Pan, James J; Arseneau, Donald J; Senba, Masayoshi; Garner, David M; Fleming, Donald G; Xie, Tiao; Bowman, Joel M

    2006-07-01

    initially bound (J = 0) states become resonances for J > 0 is taken into account. This is the first time in IRM calculations of atom-molecule recombination reactions where J not equal to 0 states have proven to be so important, thus providing a truly unique test of quantum rate theory. PMID:16863298

  1. Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence

    NASA Technical Reports Server (NTRS)

    Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor

    2010-01-01

    We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.

  2. Applications of Ergodic Theory to Coverage Analysis

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.

    2003-01-01

    The study of differential equations, or dynamical systems in general, has two fundamentally different approaches. We are most familiar with the construction of solutions to differential equations. Another approach is to study the statistical behavior of the solutions. Ergodic Theory is one of the most developed methods to study the statistical behavior of the solutions of differential equations. In the theory of satellite orbits, the statistical behavior of the orbits is used to produce 'Coverage Analysis' or how often a spacecraft is in view of a site on the ground. In this paper, we consider the use of Ergodic Theory for Coverage Analysis. This allows us to greatly simplify the computation of quantities such as the total time for which a ground station can see a satellite without ever integrating the trajectory, see Lo 1,2. More over, for any quantity which is an integrable function of the ground track, its average may be computed similarly without the integration of the trajectory. For example, the data rate for a simple telecom system is a function of the distance between the satellite and the ground station. We show that such a function may be averaged using the Ergodic Theorem.

  3. Are there ergodic limits to evolution? Ergodic exploration of genome space and convergence.

    PubMed

    McLeish, Tom C B

    2015-12-01

    We examine the analogy between evolutionary dynamics and statistical mechanics to include the fundamental question of ergodicity-the representative exploration of the space of possible states (in the case of evolution this is genome space). Several properties of evolutionary dynamics are identified that allow a generalization of the ergodic dynamics, familiar in dynamical systems theory, to evolution. Two classes of evolved biological structure then arise, differentiated by the qualitative duration of their evolutionary time scales. The first class has an ergodicity time scale (the time required for representative genome exploration) longer than available evolutionary time, and has incompletely explored the genotypic and phenotypic space of its possibilities. This case generates no expectation of convergence to an optimal phenotype or possibility of its prediction. The second, more interesting, class exhibits an evolutionary form of ergodicity-essentially all of the structural space within the constraints of slower evolutionary variables have been sampled; the ergodicity time scale for the system evolution is less than the evolutionary time. In this case, some convergence towards similar optima may be expected for equivalent systems in different species where both possess ergodic evolutionary dynamics. When the fitness maximum is set by physical, rather than co-evolved, constraints, it is additionally possible to make predictions of some properties of the evolved structures and systems. We propose four structures that emerge from evolution within genotypes whose fitness is induced from their phenotypes. Together, these result in an exponential speeding up of evolution, when compared with complete exploration of genomic space. We illustrate a possible case of application and a prediction of convergence together with attaining a physical fitness optimum in the case of invertebrate compound eye resolution.

  4. Ergodic time-reversible chaos for Gibbs' canonical oscillator

    NASA Astrophysics Data System (ADS)

    Hoover, William Graham; Sprott, Julien Clinton; Patra, Puneet Kumar

    2015-12-01

    Nosé's pioneering 1984 work inspired a variety of time-reversible deterministic thermostats. Though several groups have developed successful doubly-thermostated models, single-thermostat models have failed to generate Gibbs' canonical distribution for the one-dimensional harmonic oscillator. A 2001 doubly-thermostated model, claimed to be ergodic, has a singly-thermostated version. Though neither of these models is ergodic this work has suggested a successful route toward singly-thermostated ergodicity. We illustrate both ergodicity and its lack for these models using phase-space cross sections and Lyapunov instability as diagnostic tools.

  5. Ergodicity of perpendicular cosmic ray transport

    NASA Astrophysics Data System (ADS)

    Tautz, R. C.

    2016-06-01

    Aims: The random walk of energetic charged particles in turbulent magnetic fields is investigated. Special focus is placed on transport across the mean magnetic field, which had been found to be subdiffusive on many occasions. Therefore, a characterization using the concept of ergodicity is attempted by noting the connection to the time evolution of the mean-square displacement. Methods: Based on the test-particle approach, a numerical Monte Carlo simulation code is used to integrate the equation of motion for particles that are scattered by magnetic turbulence. The turbulent fields are generated by superposing plane waves with a Kolmogorov-type power spectrum. The individual particle trajectories are then used to calculate a variety of statistical quantities. Results: The simulation results clearly demonstrate how the heterogeneity of the particle ensemble causes the system to be weakly non-ergodic. In addition, it is shown how the step length distribution varies with the particle energy. In conclusion, cross-field transport is non-Gaussian but still almost diffusive.

  6. Improved Confinement due to Open Ergodic Field Lines Imposed by the Dynamic Ergodic Divertor in TEXTOR

    NASA Astrophysics Data System (ADS)

    Finken, K. H.; Abdullaev, S. S.; Jakubowski, M. W.; de Bock, M. F. M.; Bozhenkov, S.; Busch, C.; von Hellermann, M.; Jaspers, R.; Kikuchi, Y.; Krämer-Flecken, A.; Lehnen, M.; Schega, D.; Schmitz, O.; Spatschek, K. H.; Unterberg, B.; Wingen, A.; Wolf, R. C.; Zimmermann, O.

    2007-02-01

    The ergodization of the magnetic field lines imposed by the dynamic ergodic diverter (DED) in TEXTOR can lead both to confinement improvement and to confinement deterioration. The cases of substantial improvement are in resonant ways related to particular conditions in which magnetic flux tubes starting at the X points of induced islands are connected with the wall. This opening process is connected with a characteristic modification of the heat deposition pattern at the divertor target plate and leads to a substantial increase and steepening of the core plasma density and pressure. The improvement is tentatively attributed to a modification of the electric potential in the plasma carried by the open field lines. The confinement improvement bases on a spontaneous density built up due to the application of the DED and is primarily a particle confinement improvement.

  7. Resonant magnetic perturbations and edge ergodization on the COMPASS tokamak

    SciTech Connect

    Cahyna, P.; Fuchs, V.; Krlin, L.

    2008-09-15

    Results of calculations of resonant magnetic perturbation spectra on the COMPASS tokamak are presented. Spectra of the perturbations are calculated from the vacuum field of the perturbation coils. Ergodization is then estimated by applying the criterion of overlap of the resulting islands and verified by field line tracing. Results show that for the chosen configuration of perturbation coils an ergodic layer appears in the pedestal region. The ability to form an ergodic layer is similar to the theoretical results for the ELM suppression experiment at DIII-D; thus, a comparable effect on ELMs can be expected.

  8. The challenge of non-ergodicity in network neuroscience.

    PubMed

    Medaglia, John D; Ramanathan, Deepa M; Venkatesan, Umesh M; Hillary, Frank G

    2011-01-01

    Ergodicity can be assumed when the structure of data is consistent across individuals and time. Neural network approaches do not frequently test for ergodicity in data which holds important consequences for data integration and intepretation. To demonstrate this problem, we present several network models in healthy and clinical samples where there exists considerable heterogeneity across individuals. We offer suggestions for the analysis, interpretation, and reporting of neural network data. The goal is to arrive at an understanding of the sources of non-ergodicity and approaches for valid network modeling in neuroscience.

  9. An Almost Sure Ergodic Theorem for Quasistatic Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Stenlund, Mikko

    2016-09-01

    We prove an almost sure ergodic theorem for abstract quasistatic dynamical systems, as an attempt of taking steps toward an ergodic theory of such systems. The result at issue is meant to serve as a working counterpart of Birkhoff's ergodic theorem which fails in the quasistatic setup. It is formulated so that the conditions, which essentially require sufficiently good memory-loss properties, could be verified in a straightforward way in physical applications. We also introduce the concept of a physical family of measures for a quasistatic dynamical system. These objects manifest themselves, for instance, in numerical experiments. We then illustrate the use of the theorem by examples.

  10. First results from the dynamic ergodic divertor at TEXTOR

    NASA Astrophysics Data System (ADS)

    Lehnen, M.; Abdullaev, S. S.; Biel, W.; Brezinsek, S.; Finken, K. H.; Harting, D.; von Hellermann, M.; Jakubowski, M.; Jaspers, R.; Kobayashi, M.; Koslowski, H. R.; Krämer-Flecken, A.; Matsunaga, G.; Pospieszczyk, A.; Reiter, D.; van Rompuy, T.; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Wolf, R.; Zimmermann, O.; Textor Team

    2005-03-01

    Experimental results from the dynamic ergodic divertor (DED) at TEXTOR are given, describing the complex structure of the edge plasma and the properties of the divertor as well as its influence on the plasma rotation.

  11. Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures

  12. A statistical evaluation of non-ergodic variogram estimators

    USGS Publications Warehouse

    Curriero, F.C.; Hohn, M.E.; Liebhold, A.M.; Lele, S.R.

    2002-01-01

    Geostatistics is a set of statistical techniques that is increasingly used to characterize spatial dependence in spatially referenced ecological data. A common feature of geostatistics is predicting values at unsampled locations from nearby samples using the kriging algorithm. Modeling spatial dependence in sampled data is necessary before kriging and is usually accomplished with the variogram and its traditional estimator. Other types of estimators, known as non-ergodic estimators, have been used in ecological applications. Non-ergodic estimators were originally suggested as a method of choice when sampled data are preferentially located and exhibit a skewed frequency distribution. Preferentially located samples can occur, for example, when areas with high values are sampled more intensely than other areas. In earlier studies the visual appearance of variograms from traditional and non-ergodic estimators were compared. Here we evaluate the estimators' relative performance in prediction. We also show algebraically that a non-ergodic version of the variogram is equivalent to the traditional variogram estimator. Simulations, designed to investigate the effects of data skewness and preferential sampling on variogram estimation and kriging, showed the traditional variogram estimator outperforms the non-ergodic estimators under these conditions. We also analyzed data on carabid beetle abundance, which exhibited large-scale spatial variability (trend) and a skewed frequency distribution. Detrending data followed by robust estimation of the residual variogram is demonstrated to be a successful alternative to the non-ergodic approach.

  13. The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems

    NASA Astrophysics Data System (ADS)

    Amigó, José M.; Kennel, Matthew B.; Kocarev, Ljupco

    2005-10-01

    Permutation entropy quantifies the diversity of possible orderings of the values a random or deterministic system can take, as Shannon entropy quantifies the diversity of values. We show that the metric and permutation entropy rates-measures of new disorder per new observed value-are equal for ergodic finite-alphabet information sources (discrete-time stationary stochastic processes). With this result, we then prove that the same holds for deterministic dynamical systems defined by ergodic maps on n-dimensional intervals. This result generalizes a previous one for piecewise monotone interval maps on the real line [C. Bandt, G. Keller, B. Pompe, Entropy of interval maps via permutations, Nonlinearity 15 (2002) 1595-1602.] at the expense of requiring ergodicity and using a definition of permutation entropy rate differing modestly in the order of two limits. The case of non-ergodic finite-alphabet sources is also studied and an inequality developed. Finally, the equality of permutation and metric entropy rates is extended to ergodic non-discrete information sources when entropy is replaced by differential entropy in the usual way.

  14. Weak ergodicity breaking, irreproducibility, and ageing in anomalous diffusion processes

    SciTech Connect

    Metzler, Ralf

    2014-01-14

    Single particle traces are standardly evaluated in terms of time averages of the second moment of the position time series r(t). For ergodic processes, one can interpret such results in terms of the known theories for the corresponding ensemble averaged quantities. In anomalous diffusion processes, that are widely observed in nature over many orders of magnitude, the equivalence between (long) time and ensemble averages may be broken (weak ergodicity breaking), and these time averages may no longer be interpreted in terms of ensemble theories. Here we detail some recent results on weakly non-ergodic systems with respect to the time averaged mean squared displacement, the inherent irreproducibility of individual measurements, and methods to determine the exact underlying stochastic process. We also address the phenomenon of ageing, the dependence of physical observables on the time span between initial preparation of the system and the start of the measurement.

  15. Weak ergodicity breaking induced by global memory effects

    NASA Astrophysics Data System (ADS)

    Budini, Adrián A.

    2016-08-01

    We study the phenomenon of weak ergodicity breaking for a class of globally correlated random walk dynamics defined over a finite set of states. The persistence in a given state or the transition to another one depends on the whole previous temporal history of the system. A set of waiting time distributions, associated to each state, sets the random times between consecutive steps. Their mean value is finite for all states. The probability density of time-averaged observables is obtained for different memory mechanisms. This statistical object explicitly shows departures between time and ensemble averages. While the residence time in each state may have a divergent mean value, we demonstrate that this condition is in general not necessary for breaking ergodicity. Hence, we conclude that global memory effects are an alternative mechanism able to induce ergodicity breaking without involving power-law statistics. Analytical and numerical calculations support these results.

  16. Weak ergodicity breaking induced by global memory effects.

    PubMed

    Budini, Adrián A

    2016-08-01

    We study the phenomenon of weak ergodicity breaking for a class of globally correlated random walk dynamics defined over a finite set of states. The persistence in a given state or the transition to another one depends on the whole previous temporal history of the system. A set of waiting time distributions, associated to each state, sets the random times between consecutive steps. Their mean value is finite for all states. The probability density of time-averaged observables is obtained for different memory mechanisms. This statistical object explicitly shows departures between time and ensemble averages. While the residence time in each state may have a divergent mean value, we demonstrate that this condition is in general not necessary for breaking ergodicity. Hence, we conclude that global memory effects are an alternative mechanism able to induce ergodicity breaking without involving power-law statistics. Analytical and numerical calculations support these results. PMID:27627247

  17. Dielectric relaxation in weakly ergodic dilute dipole systems.

    PubMed

    Lerner, Shimon E; Mierzwa, Michal; Paluch, Marian; Feldman, Yuri; Ishai, Paul Ben

    2013-05-28

    We introduce a method for calculating dipole correlations in systems containing hopping processes exhibiting weak ergodicity breaking. Modeled after the original Kirkwood-Fröhlich theory, the new method provides a bridge extending Fröhlich's insights from the realm of rigid dipoles into weakly non-ergodic fluctuating virtual dipolar entities. Relevant for the investigation of any system containing transport processes, it provides a testable parameter derived primarily from the static dielectric parameters. Three examples of systems including porous silicon, porous glass, and ferroelectric crystals are brought to demonstrate the model's versatility, including direct confirmation of Fröhlich's original idea.

  18. Zeno effect and ergodicity in finite-time quantum measurements

    SciTech Connect

    Sokolovski, D.

    2011-12-15

    We demonstrate that an attempt to measure a nonlocal in time quantity, such as the time average {sub T} of a dynamical variable A, by separating Feynman paths into ever narrower exclusive classes traps the system in eigensubspaces of the corresponding operator A. Conversely, in a long measurement of {sub T} to a finite accuracy, the system explores its Hilbert space and is driven to a universal steady state in which the von Neumann ensemble average of A coincides with {sub T}. Both effects are conveniently analyzed in terms of singularities and critical points of the corresponding amplitude distribution and the Zeno-like behavior is shown to be a consequence of the conservation of probability.

  19. An ergodic approach to eruption hazard scaling

    NASA Astrophysics Data System (ADS)

    De la Cruz-Reyna, Servando; Mendoza-Rosas, Ana Teresa

    2014-05-01

    The complexity and indeterminacy of volcanic processes demand the use of statistical methods to analyze the expectations of the occurrence and size of future eruptions. The probability of a volcano producing potentially destructive eruptions in a given time interval may be estimated analyzing the sequence of past eruptions assuming a physically plausible process. Since the threat posed by eruptions depends on their mass or energy release (magnitude) and on their emission rate (intensity), the Volcanic Explosivity Index is a suitable measure to quantify the eruptive events, particularly considering that the largest available global catalogues use that measure. The definition of volcanic hazard is thus posed here in terms of the expected annual release of energy by eruptions in each VEI category. This concept is based on the ergodic property of a large set of volcanoes to release about the same amount of energy in each VEI category over a sufficiently large time interval. This property is however constrained to the VEI range of eruptions that constitute complete catalogues (VEI >2) in the lower end, and to the extreme eruptions that may destroy or significantly alter a volcanic system, such as the large caldera-forming eruptions (VEI < 7). In such conditions, a simple power law for eruptions at the global level relating the global rate of energy release to the eruption magnitude has been proposed as a statistical basis for eruptive event model development. Following the above mentioned arguments, we assume that a similar scaling law rules the annual rate at which energy is released by eruptions at individual volcanoes as log(EmRm)=bM+a, where Em is the energy released by eruptions in the VEI magnitude class M, and Rm is the occurrence rate of such eruptions over times ranges in which catalogues may be considered complete. The parameters b and a depend on the eruptive history of individual volcanoes, the former determining the preferred mode of the volcano to release

  20. Transport and divertor properties of the dynamic ergodic divertor

    NASA Astrophysics Data System (ADS)

    Lehnen, M.; Abdullaev, S.; Biel, W.; de Bock, M. F. M.; Brezinsek, S.; Busch, C.; Classen, I.; Finken, K. H.; von Hellermann, M.; Jachmich, S.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Krämer-Flecken, A.; Kikuchi, Y.; Liang, Y.; Nicolai, A.; Pospieszczyk, A.; Van Rompuy, T.; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Wolf, R.; Zimmermann, O.; TEXTOR Team

    2005-12-01

    The concept of the dynamic ergodic divertor (DED) is based on plasma edge ergodization by a resonant perturbation. Such a divertor concept is closely related to helical or island divertors in stellerators. The base mode of the DED perturbation field can be m/n = 12/4, 6/2 or 3/1. The 3/1 base mode with its deep penetration of the perturbation field provides the excitation of tearing modes. This topic was presented elsewhere. In this contribution we concentrate on the divertor properties of the DED. We report on the characterization of the topology, transport properties in ergodic fields, impurity transport and density limit behaviour. The 12/4 base where the perturbation is restricted to the plasma edge is suitable for divertor operation. With increasing perturbation field island chains are built up at the resonance layers. Overlapping islands lead to ergodization. The plasma is guided in the laminar region via open field lines of short connection length to the divertor target. The magnetic topology is not only controlled by the coil current but especially by the edge safety factor. For appropriate edge safety factor we observe a strong temperature drop in the plasma edge, indicating an expansion of the laminar region, which is necessary to decouple the divertor plasma from the core plasma. The modifications of the magnetic topology can be directly seen, for example, from carbon emission lines. The magnetic structure is calculated by the ATLAS code and shows good agreement with the experimental findings.

  1. Toward Non-Ergodic and Site-Specific Probabilistic Seismic Hazard Assessment: Requirements for the Next Generation of Strong Motion Network and Databases.

    NASA Astrophysics Data System (ADS)

    Cotton, F.; Ktenidou, O. J.; Derras, B.; Roumelioti, Z.; Pierre-Yves, B.; Hollender, F.

    2014-12-01

    Ground-motion models used in engineering seismology are usually calibrated on global databases that are usually created by mixing data from different regions. These models also assume that the ground-motion variability observed in a global dataset is the same as the variability in ground motion at a single site-source combination. This assumption is referred to as the ergodic assumption. New data give a unique opportunity to remove the ergodic assumption and take into account regional source, path and site specificities. Using recent data analysis performed on the EUROSEISTEST valley (Greece) and global ground-motion datasets (Kiknet, Knet, NGA2 and the European strong-motion databases) we will show the impact of source parameters, site monitoring and site-characterisation on the uncertainty of the ground motion estimates and associated hazard curves. Our results suggest that future strong-motion networks should use higher sampling rates (to better evaluate site-specific high frequency attenuations) and record both strong and weak motions (to evaluate single-station sigma). These results also quantify the impact of a better characterisation of source parameters (depth, fault maturity, source to site distances) ans site parameters on ground-motion models. We finally will show how new networks and high-level strong-motion databases may help to built consistent ergodic PSHA at a regional scale and non-ergodic, site specific, PSHA.

  2. Ergodicity convergence test suggests telomere motion obeys fractional dynamics

    NASA Astrophysics Data System (ADS)

    Kepten, E.; Bronshtein, I.; Garini, Y.

    2011-04-01

    Anomalous diffusion, observed in many biological processes, is a generalized description of a wide variety of processes, all obeying the same law of mean-square displacement. Identifying the basic mechanisms of these observations is important for deducing the nature of the biophysical systems measured. We implement a previously suggested method for distinguishing between fractional Langevin dynamics, fractional Brownian motion, and continuous time random walk based on the ergodic nature of the data. We apply the method together with the recently suggested P-variation test and the displacement correlation to the lately measured dynamics of telomeres in the nucleus of mammalian cells and find strong evidence that the telomeres motion obeys fractional dynamics. The ergodic dynamics are observed experimentally to fit fractional Brownian or Langevin dynamics.

  3. Local ergodicity in coupled harmonic vibrators: classical and quantal treatments

    NASA Astrophysics Data System (ADS)

    Englman, R.

    2016-03-01

    Ensemble-time ergodicity is proven under some restrictive assumptions for a classical system, comprising interacting harmonic oscillators. An atom in a monatomic chain or lattice is shown to behave ergodically, in the sense that the time average behavior of a lattice point is identical to the ensemble average of the behavior of a lattice point at any long time (in large excess of the inverse vibrational frequencies). This equivalence (for ‘local observables’) differs from the Fermi-Pasta-Ulam result for mode energies (which are non-local). Then, the analogous quantal result is derived, with extensions to wider instances. Relationships to canonical typicality and to the eigenstate thermalization hypothesis are discussed and possibilities of experimental verifications of the results are indicated.

  4. Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models

    NASA Astrophysics Data System (ADS)

    Giona, M.; Brasiello, A.; Crescitelli, S.

    2015-11-01

    One of the main differences between parabolic transport, associated with Langevin equations driven by Wiener processes, and hyperbolic models related to generalized Kac equations driven by Poisson processes, is the occurrence in the latter of multiple stable invariant densities (Frobenius multiplicity) in certain regions of the parameter space. This phenomenon is associated with the occurrence in linear hyperbolic balance equations of a typical bifurcation, referred to as the ergodicity-breaking bifurcation, the properties of which are thoroughly analyzed.

  5. The ergodic decomposition of stationary discrete random processes

    NASA Technical Reports Server (NTRS)

    Gray, R. M.; Davisson, L. D.

    1974-01-01

    The ergodic decomposition is discussed, and a version focusing on the structure of individual sample functions of stationary processes is proved for the special case of discrete-time random processes with discrete alphabets. The result is stronger in this case than the usual theorem, and the proof is both intuitive and simple. Estimation-theoretic and information-theoretic interpretations are developed and applied to prove existence theorems for universal source codes, both noiseless and with a fidelity criterion.

  6. The ergodicity bias in the observed galaxy distribution

    SciTech Connect

    Pan, Jun; Zhang, Pengjie E-mail: pjzhang@shao.ac.cn

    2010-08-01

    The spatial distribution of galaxies we observed is subject to the given condition that we, human beings are sitting right in a galaxy — the Milky Way. Thus the ergodicity assumption is questionable in interpretation of the observed galaxy distribution. The resultant difference between observed statistics (volume average) and the true cosmic value (ensemble average) is termed as the ergodicity bias. We perform explicit numerical investigation of the effect for a set of galaxy survey depths and near-end distance cuts. It is found that the ergodicity bias in observed two- and three-point correlation functions in most cases is insignificant for modern analysis of samples from galaxy surveys and thus close a loophole in precision cosmology. However, it may become non-negligible in certain circumstances, such as those applications involving three-point correlation function at large scales of local galaxy samples. Thus one is reminded to take extra care in galaxy sample construction and interpretation of the statistics of the sample, especially when the characteristic redshift is low.

  7. Ergodic capacity analysis for DF strategies in cooperative FSO systems.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2015-08-24

    This paper focuses on the ergodic capacity analysis in the context of cooperative free-space optical (FSO) systems when the line of sight is available. Novel asymptotic closed-form expressions for the ergodic capacity corresponding to two different decode-and-forward (DF) strategies are obtained for a cooperative FSO communication system. Here, the atmospheric turbulence is modeled by a gamma-gamma distribution of parameters α and β which allows to study a wide range of turbulence conditions (moderate-to-strong) as well as the effect of the misalignment with zero boresight. It is demonstrated that cooperative communications are able to achieve not only a better performance in terms of the error rate performance as well as outage probability than direct transmission, but also in terms of the channel capacity in the context of FSO systems without much increase in hardware. In this way, a 3-way FSO communication setup is considered, in which the cooperative protocol can be applied to achieve a greater ergodic capacity compared to a direct transmission. It can be concluded that a greater and robust capacity strongly dependent on the relay location is achieved compared to a direct transmission without cooperative communication when line of sight is available. Here, the line of sight is taken into account in order to achieve a significant robustness under different turbulence conditions and more severe pointing errors regardless of the relay location. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.

  8. Ergodic properties of fractional Brownian-Langevin motion.

    PubMed

    Deng, Weihua; Barkai, Eli

    2009-01-01

    We investigate the time average mean-square displacement delta;{2}[over ](x(t))=integral_{0};{t-Delta}[x(t;{'}+Delta)-x(t;{'})];{2}dt;{'}(t-Delta) for fractional Brownian-Langevin motion where x(t) is the stochastic trajectory and Delta is the lag time. Unlike the previously investigated continuous-time random-walk model, delta;{2}[over ] converges to the ensemble average x;{2} approximately t;{2H} in the long measurement time limit. The convergence to ergodic behavior is slow, however, and surprisingly the Hurst exponent H=3/4 marks the critical point of the speed of convergence. When H<3/4 , the ergodicity breaking parameter E_{B}=[[delta;{2}[over ](x(t))];{2}-delta;{2}[over ](x(t));{2}]/delta;{2}[over ](x(t));{2} approximately k(H)Deltat;{-1} , when H=3/4 , E_{B} approximately (9/16)(lnt)Deltat;{-1} , and when 3/41 ergodicity is broken and E_{B} approximately 2 . The critical point H=3/4 is marked by the divergence of the coefficient k(H) . Fractional Brownian motion as a model for recent experiments of subdiffusion of mRNA in the cell is briefly discussed, and a comparison with the continuous-time random-walk model is made. PMID:19257006

  9. Improving hole injection and carrier distribution in InGaN light-emitting diodes by removing the electron blocking layer and including a unique last quantum barrier

    SciTech Connect

    Cheng, Liwen Chen, Haitao; Wu, Shudong

    2015-08-28

    The effects of removing the AlGaN electron blocking layer (EBL), and using a last quantum barrier (LQB) with a unique design in conventional blue InGaN light-emitting diodes (LEDs), were investigated through simulations. Compared with the conventional LED design that contained a GaN LQB and an AlGaN EBL, the LED that contained an AlGaN LQB with a graded-composition and no EBL exhibited enhanced optical performance and less efficiency droop. This effect was caused by an enhanced electron confinement and hole injection efficiency. Furthermore, when the AlGaN LQB was replaced with a triangular graded-composition, the performance improved further and the efficiency droop was lowered. The simulation results indicated that the enhanced hole injection efficiency and uniform distribution of carriers observed in the quantum wells were caused by the smoothing and thinning of the potential barrier for the holes. This allowed a greater number of holes to tunnel into the quantum wells from the p-type regions in the proposed LED structure.

  10. Improving hole injection and carrier distribution in InGaN light-emitting diodes by removing the electron blocking layer and including a unique last quantum barrier

    NASA Astrophysics Data System (ADS)

    Cheng, Liwen; Chen, Haitao; Wu, Shudong

    2015-08-01

    The effects of removing the AlGaN electron blocking layer (EBL), and using a last quantum barrier (LQB) with a unique design in conventional blue InGaN light-emitting diodes (LEDs), were investigated through simulations. Compared with the conventional LED design that contained a GaN LQB and an AlGaN EBL, the LED that contained an AlGaN LQB with a graded-composition and no EBL exhibited enhanced optical performance and less efficiency droop. This effect was caused by an enhanced electron confinement and hole injection efficiency. Furthermore, when the AlGaN LQB was replaced with a triangular graded-composition, the performance improved further and the efficiency droop was lowered. The simulation results indicated that the enhanced hole injection efficiency and uniform distribution of carriers observed in the quantum wells were caused by the smoothing and thinning of the potential barrier for the holes. This allowed a greater number of holes to tunnel into the quantum wells from the p-type regions in the proposed LED structure.

  11. Ergodicity of Truncated Stochastic Navier Stokes with Deterministic Forcing and Dispersion

    NASA Astrophysics Data System (ADS)

    Majda, Andrew J.; Tong, Xin T.

    2016-10-01

    Turbulence in idealized geophysical flows is a very rich and important topic. The anisotropic effects of explicit deterministic forcing, dispersive effects from rotation due to the β -plane and F-plane, and topography together with random forcing all combine to produce a remarkable number of realistic phenomena. These effects have been studied through careful numerical experiments in the truncated geophysical models. These important results include transitions between coherent jets and vortices, and direct and inverse turbulence cascades as parameters are varied, and it is a contemporary challenge to explain these diverse statistical predictions. Here we contribute to these issues by proving with full mathematical rigor that for any values of the deterministic forcing, the β - and F-plane effects and topography, with minimal stochastic forcing, there is geometric ergodicity for any finite Galerkin truncation. This means that there is a unique smooth invariant measure which attracts all statistical initial data at an exponential rate. In particular, this rigorous statistical theory guarantees that there are no bifurcations to multiple stable and unstable statistical steady states as geophysical parameters are varied in contrast to claims in the applied literature. The proof utilizes a new statistical Lyapunov function to account for enstrophy exchanges between the statistical mean and the variance fluctuations due to the deterministic forcing. It also requires careful proofs of hypoellipticity with geophysical effects and uses geometric control theory to establish reachability. To illustrate the necessity of these conditions, a two-dimensional example is developed which has the square of the Euclidean norm as the Lyapunov function and is hypoelliptic with nonzero noise forcing, yet fails to be reachable or ergodic.

  12. The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights.

    PubMed

    Thomas, Kolle E; Alemayehu, Abraham B; Conradie, Jeanet; Beavers, Christine M; Ghosh, Abhik

    2012-08-21

    Although they share some superficial structural similarities with porphyrins, corroles, trianionic ligands with contracted cores, give rise to fundamentally different transition metal complexes in comparison with the dianionic porphyrins. Many metallocorroles are formally high-valent, although a good fraction of them are also noninnocent, with significant corrole radical character. These electronic-structural characteristics result in a variety of fascinating spectroscopic behavior, including highly characteristic, paramagnetically shifted NMR spectra and textbook cases of charge-transfer spectra. Although our early research on corroles focused on spectroscopy, we soon learned that the geometric structures of metallocorroles provide a fascinating window into their electronic-structural characteristics. Thus, we used X-ray structure determinations and quantum chemical studies, chiefly using DFT, to obtain a comprehensive understanding of metallocorrole geometric and electronic structures. This Account describes our studies of the structural chemistry of metallocorroles. At first blush, the planar or mildly domed structure of metallocorroles might appear somewhat uninteresting particularly when compared to metalloporphyrins. Metalloporphyrins, especially sterically hindered ones, are routinely ruffled or saddled, but the missing meso carbon apparently makes the corrole skeleton much more resistant to nonplanar distortions. Ruffling, where the pyrrole rings are alternately twisted about the M-N bonds, is energetically impossible for metallocorroles. Saddling is also uncommon; thus, a number of sterically hindered, fully substituted metallocorroles exhibit almost perfectly planar macrocycle cores. Against this backdrop, copper corroles stand out as an important exception. As a result of an energetically favorable Cu(d(x2-y2))-corrole(π) orbital interaction, copper corroles, even sterically unhindered ones, are inherently saddled. Sterically hindered substituents

  13. Fractional Feynman-Kac equation for weak ergodicity breaking.

    PubMed

    Carmi, Shai; Barkai, Eli

    2011-12-01

    The continuous-time random walk (CTRW) is a model of anomalous subdiffusion in which particles are immobilized for random times between successive jumps. A power-law distribution of the waiting times, ψ(τ) ~ τ(-(1+α)), leads to subdiffusion (x(2) ~ t(α)) for 0 < α < 1. In closed systems, the long stagnation periods cause time averages to divert from the corresponding ensemble averages, which is a manifestation of weak ergodicity breaking. The time average of a general observable U(t) = 1/t ∫(0)(t) U[x(τ)]dτ is a functional of the path and is described by the well-known Feynman-Kac equation if the motion is Brownian. Here, we derive forward and backward fractional Feynman-Kac equations for functionals of CTRW in a binding potential. We use our equations to study two specific time averages: the fraction of time spent by a particle in half-box, and the time average of the particle's position in a harmonic field. In both cases, we obtain the probability density function of the time averages for t → ∞ and the first two moments. Our results show that both the occupation fraction and the time-averaged position are random variables even for long times, except for α = 1, when they are identical to their ensemble averages. Using our fractional Feynman-Kac equation, we also study the dynamics leading to weak ergodicity breaking, namely the convergence of the fluctuations to their asymptotic values.

  14. The Entropy of Non-Ergodic Complex Systems — a Derivation from First Principles

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Hanel, Rudolf

    In information theory the 4 Shannon-Khinchin1,2 (SK) axioms determine Boltzmann Gibbs entropy, S -∑i pilog pi, as the unique entropy. Physics is different from information in the sense that physical systems can be non-ergodic or non-Markovian. To characterize such strongly interacting, statistical systems - complex systems in particular - within a thermodynamical framework it might be necessary to introduce generalized entropies. A series of such entropies have been proposed in the past decades. Until now the understanding of their fundamental origin and their deeper relations to complex systems remains unclear. To clarify the situation we note that non-ergodicity explicitly violates the fourth SK axiom. We show that by relaxing this axiom the entropy generalizes to, S ∑i Γ(d + 1, 1 - c log pi), where Γ is the incomplete Gamma function, and c and d are scaling exponents. All recently proposed entropies compatible with the first 3 SK axioms appear to be special cases. We prove that each statistical system is uniquely characterized by the pair of the two scaling exponents (c, d), which defines equivalence classes for all systems. The corresponding distribution functions are special forms of Lambert-W exponentials containing, as special cases, Boltzmann, stretched exponential and Tsallis distributions (power-laws) - all widely abundant in nature. This derivation is the first ab initio justification for generalized entropies. We next show how the phasespace volume of a system is related to its generalized entropy, and provide a concise criterion when it is not of Boltzmann-Gibbs type but assumes a generalized form. We show that generalized entropies only become relevant when the dynamically (statistically) relevant fraction of degrees of freedom in a system vanishes in the thermodynamic limit. These are systems where the bulk of the degrees of freedom is frozen. Systems governed by generalized entropies are therefore systems whose phasespace volume effectively

  15. Ergodic transition in a simple model of the continuous double auction.

    PubMed

    Radivojević, Tijana; Anselmi, Jonatha; Scalas, Enrico

    2014-01-01

    We study a phenomenological model for the continuous double auction, whose aggregate order process is equivalent to two independent M/M/1 queues. The continuous double auction defines a continuous-time random walk for trade prices. The conditions for ergodicity of the auction are derived and, as a consequence, three possible regimes in the behavior of prices and logarithmic returns are observed. In the ergodic regime, prices are unstable and one can observe a heteroskedastic behavior in the logarithmic returns. On the contrary, non-ergodicity triggers stability of prices, even if two different regimes can be seen.

  16. Ergodic Transition in a Simple Model of the Continuous Double Auction

    PubMed Central

    Radivojević, Tijana; Anselmi, Jonatha; Scalas, Enrico

    2014-01-01

    We study a phenomenological model for the continuous double auction, whose aggregate order process is equivalent to two independent queues. The continuous double auction defines a continuous-time random walk for trade prices. The conditions for ergodicity of the auction are derived and, as a consequence, three possible regimes in the behavior of prices and logarithmic returns are observed. In the ergodic regime, prices are unstable and one can observe a heteroskedastic behavior in the logarithmic returns. On the contrary, non-ergodicity triggers stability of prices, even if two different regimes can be seen. PMID:24558377

  17. Ergodicity and slow diffusion in a supercooled liquid

    NASA Astrophysics Data System (ADS)

    Bidhoodi, Neeta; Das, Shankar P.

    2016-05-01

    A model for the slow dynamics of the supercooled liquid is formulated in terms of the standard equations of fluctuating nonlinear hydrodynamics (FNH) with the inclusion of an extra diffusive mode for the collective density fluctuations. If the compressible nature of the liquid is completely ignored, this diffusive mode sets the longest relaxation times in the supercooled state and smooths off a possible sharp ergodicity-nonergodicity (ENE) transition predicted in a mode coupling theory. The scenario changes when the complete dynamics is considered with the inclusion of 1 / ρ nonlinearities in the FNH equations, reflecting the compressible nature of the liquid. The latter primarily determines the extent of slowing down in the supercooled liquid. The presence of slow diffusive modes in the supercooled liquid do not give rise to very long relaxation times unless the role of couplings between density and currents in the compressible liquid is negligible.

  18. Ergodicity and Parameter Estimates for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process

    SciTech Connect

    Maslowski, Bohdan Pospisil, Jan

    2008-06-15

    Existence and ergodicity of a strictly stationary solution for linear stochastic evolution equations driven by cylindrical fractional Brownian motion are proved. Ergodic behavior of non-stationary infinite-dimensional fractional Ornstein-Uhlenbeck processes is also studied. Based on these results, strong consistency of suitably defined families of parameter estimators is shown. The general results are applied to linear parabolic and hyperbolic equations perturbed by a fractional noise.

  19. Particle recirculation in the ergodic divertor of Tore Supra

    NASA Astrophysics Data System (ADS)

    Gunn, J. P.; Azéroual, A.; Bécoulet, M.; Bucalossi, J.; Bush, C.; Corre, Y.; Costanzo, L.; Devynck, P.; Ghendrih, Ph; Gianella, R.; Grisolia, C.; Guirlet, R.; Grosman, A.; Laugier, F.; Loarer, T.; Martin, G.; Meslin, B.; Monier-Garbet, P.; Moulin, D.; Pascal, J.-Y.; Pégourié, B.; Reichle, R.; Saint-Laurent, F.; Schunke, B.; Vallet, J.-C.

    1999-12-01

    The present paper addresses the issue of particle recirculation in discharges where low-energy flux to ergodic divertor target plates is achieved in highly-radiating detached ohmic plasmas. Plasma temperature and particle flux are measured by flush-mounted probes in the divertor plates and by an upstream fast scanning Mach probe. The scalings with core density of the ion flux and electron temperature are well described by the simple two-point model used in axisymmetric poloidal divertors. The detachment signature is a pressure drop that occurs when the edge temperature falls below 10 eV. The parallel ion flux gradient is always positive, indicating that recombination is unlikely to play an important role in detachment. Visible spectroscopy of a neutralizer plate shows that attainment of cold detached plasmas near the density limit coincides with an abrupt increase of fuelling efficiency for both deuterium and impurities. A feedback algorithm based on real-time Langmuir probe measurements has been developed to monitor detachment and avoid disruptions.

  20. Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey G.; Metzler, Ralf

    2015-04-01

    We study noisy heterogeneous diffusion processes with a position dependent diffusivity of the form D(x) ˜ D0|x|α0 in the presence of annealed and quenched disorder of the environment, corresponding to an effective variation of the exponent α in time and space. In the case of annealed disorder, for which effectively α0 = α0(t), we show how the long time scaling of the ensemble mean squared displacement (MSD) and the amplitude variation of individual realizations of the time averaged MSD are affected by the disorder strength. For the case of quenched disorder, the long time behavior becomes effectively Brownian after a number of jumps between the domains of a stratified medium. In the latter situation, the averages are taken over both an ensemble of particles and different realizations of the disorder. As physical observables, we analyze in detail the ensemble and time averaged MSDs, the ergodicity breaking parameter, and higher order moments of the time averages.

  1. Quantum Computer Games: Quantum Minesweeper

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  2. Density fluctuations at high density in the ergodic divertor configuration of Tore Supra

    NASA Astrophysics Data System (ADS)

    Devynck, P.; Gunn, J.; Ghendrih, Ph.; Garbet, X.; Antar, G.; Beyer, P.; Boucher, C.; Honore, C.; Gervais, F.; Hennequin, P.; Quémeneur, A.; Truc, A.

    2001-03-01

    The effect of the ergodic divertor on the plasma edge in Tore Supra is to enhance the perpendicular transport through ergodization of the magnetic field lines [Ph. Ghendrih et al., Contrib. Plasma Phys. 32 (3&4) (1992) 179]. Nevertheless, the hot spots observed on the divertor plates during ergodic divertor operation indicate that the cross-field transport driven by the fluctuations is still playing an important role, although measurements by CO 2 laser scattering and reflectometry show a decrease of the turbulence level [J. Payan, X. Garbet, J.H. Chatenet et al., Nucl. Fusion 35 (1995) 1357; P. Beyer, X. Garbet, P. Ghendrih, Phys. Plasmas 5 (12) (1998) 4271]. In order to gain more understanding, fluctuation level and poloidal velocity have been measured with a reciprocating Langmuir probe biased to collect the ion saturation current ( jsat) and with a CO 2 laser scattering diagnostic. Though the relative fluctuation level behaves as previously observed at low density, a new interesting result is that this picture is gradually modified when the density is increased. Both diagnostics observe an increase of δn/ n with density in the ergodic region, which is not the usual behavior observed in limiter configuration. This increase is detected on both sides of the Er inversion radius and is therefore also affecting the plasma bulk. Finally, the confinement time is found to follow an L-mode law at all densities indicating that the ergodic divertor does not change the global confinement properties of the plasma.

  3. Granular Contact Forces: Proof of "Self-Ergodicity" by Generalizing Boltzmann's Stosszahlansatz and H Theorem

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.

    2006-01-01

    Ergodicity is proved for granular contact forces. To obtain this proof from first principles, this paper generalizes Boltzmann's stosszahlansatz (molecular chaos) so that it maintains the necessary correlations and symmetries of granular packing ensembles. Then it formally counts granular contact force states and thereby defines the proper analog of Boltzmann's H functional. This functional is used to prove that (essentially) all static granular packings must exist at maximum entropy with respect to their contact forces. Therefore, the propagation of granular contact forces through a packing is a truly ergodic process in the Boltzmannian sense, or better, it is self-ergodic. Self-ergodicity refers to the non-dynamic, internal relationships that exist between the layer-by-layer and column-by-column subspaces contained within the phase space locus of any particular granular packing microstate. The generalized H Theorem also produces a recursion equation that may be solved numerically to obtain the density of single particle states and hence the distribution of granular contact forces corresponding to the condition of self-ergodicity. The predictions of the theory are overwhelmingly validated by comparison to empirical data from discrete element modeling.

  4. Ergodic theory and experimental visualization of chaos in 3D flows

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Mezic, Igor

    2000-11-01

    In his motivation for the ergodic hypothesis Gibbs invoked an analogy with fluid mixing: “…Yet no fact is more familiar to us than that stirring tends to bring a liquid to a state of uniform mixture, or uniform densities of its components…”. Although proof of the ergodic hypothesis is possible only for the simplest of systems using methods from ergodic theory, the use of the hypothesis has led to many accurate predictions in statistical mechanics. The problem of fluid mixing, however, turned out to be considerably more complicated than Gibbs envisioned. Chaotic advection can indeed lead to efficient mixing even in non-turbulent flows, but many non-mixed islands are known to persist within well-mixed regions. In numerical studies, Poincaré maps can be used to reveal the structure of such islands but their visualization in the laboratory requires laborious experimental procedures and is possible only for certain types of flows. Here we propose the first non-intrusive, simple to implement, and generally applicable technique for constructing experimental Poincaré maps and apply it to a steady, 3D, vortex breakdown bubble. We employ standard laser-induced fluorescence (LIF) and construct Poincaré maps by time averaging a sufficiently long sequence of instantaneous LIF images. We also show that ergodic theory methods provide a rigorous theoretical justification for this approach whose main objective is to reveal the non-ergodic regions of the flow.

  5. Influence of the dynamic ergodic divertor on transport properties in TEXTOR

    NASA Astrophysics Data System (ADS)

    Finken, K. H.; Unterberg, B.; Xu, Y.; Abdullaev, S. S.; Jakubowski, M.; Lehnen, M.; de Bock, M. F. M.; Bozhenkov, S.; Brezinsek, S.; Busch, C.; Classen, I. G. J.; Coenen, J. W.; Harting, D.; von Hellermann, M.; Jachmich, S.; Jaspers, R. J. E.; Kikuchi, Y.; Krämer-Flecken, A.; Liang, Y.; Mitri, M.; Peleman, P.; Pospieszczyk, A.; Reiser, D.; Reiter, D.; Samm, U.; Schega, D.; Schmitz, O.; Soldatov, S.; Van Schoor, M.; Vergote, M.; Weynants, R. R.; Wolf, R.; Zimmermann, O.; TEXTOR Team

    2007-07-01

    Experiments to investigate transport properties under the influence of the dynamic ergodic divertor (DED) on TEXTOR are discussed. Relativistic runaway electrons are applied for studying transport properties of ergodization such as enhanced runaway loss. The ergodization causes an enhanced loss rate; this loss is higher for low relativistic electrons than for highly relativistic ones, in good agreement with particle orbit mapping. Edge transport can be controlled by the DED perturbation: in limiter H-mode plasmas ELM-like particle and heat bursts associated with the formation of enhanced edge pressure gradients are mitigated in the 6/2 configuration on the expense of a reduced pedestal height. Finally, the plasma is driven back to L-mode under the influence of the magnetic perturbation. In the 3/1 configuration the onset of tearing modes limits the possibility to affect edge transport. A mode of spontaneous density built-up has been found for the TEXTOR-DED as well. This mode is in particular strong for an inward shifted plasma; the built-up has a resonant character with respect to q(a). Langmuir probe measurements with two probe arrays show a strong influence of the magnetic ergodization on both the edge plasma equilibrium and fluctuation parameters. In particular, in the ergodic zone the turbulence properties and turbulence-driven flux are profoundly modified.

  6. Derivation of a true (t → 0+) quantum transition-state theory. I. Uniqueness and equivalence to ring-polymer molecular dynamics transition-state-theory.

    PubMed

    Hele, Timothy J H; Althorpe, Stuart C

    2013-02-28

    Surprisingly, there exists a quantum flux-side time-correlation function which has a non-zero t → 0+ limit and thus yields a rigorous quantum generalization of classical transition-state theory (TST). In this Part I of two articles, we introduce the new time-correlation function and derive its t → 0+ limit. The new ingredient is a generalized Kubo transform which allows the flux and side dividing surfaces to be the same function of path-integral space. Choosing this function to be a single point gives a t → 0+ limit which is identical to an expression introduced on heuristic grounds by Wigner in 1932; however, this expression does not give positive-definite quantum statistics, causing it to fail while still in the shallow-tunnelling regime. Positive-definite quantum statistics is obtained only if the dividing surface is invariant to imaginary-time translation, in which case the t → 0+ limit is identical to ring-polymer molecular dynamics (RPMD) TST. The RPMD-TST rate is not a strict upper bound to the exact quantum rate, but is a good approximation to one if real-time coherence effects are small. Part II will show that the RPMD-TST rate is equal to the exact quantum rate in the absence of recrossing.

  7. Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: Aging and gelation

    NASA Astrophysics Data System (ADS)

    Tanaka, Hajime; Jabbari-Farouji, Sara; Meunier, Jacques; Bonn, Daniel

    2005-02-01

    There are two types of isotropic disordered nonergodic states in colloidal suspensions: colloidal glasses and gels. In a recent paper [H. Tanaka, J. Meunier, and D. Bonn, Phys. Rev. E 69, 031404 (2004)], we discussed the static aspect of the differences and the similarities between the two. In this paper, we focus on the dynamic aspect. The kinetics of the liquid-glass transition is called “aging,” while that of the sol-gel transition is called “gelation.” The former is primarily governed by repulsive interactions between particles, while the latter is dominated by attractive interactions. Slowing down of the dynamics during aging reflects the increasing cooperativity required for the escape of a particle from the cage formed by the surrounding particles, while that during gelation reflects the increase in the size of particle clusters towards the percolation transition. Despite these clear differences in the origin of the slowing down of the kinetics between the two, it is not straightforward experimentally to distinguish them in a clear manner. For an understanding of the universal nature of ergodic-to-nonergodic transitions, it is of fundamental importance to elucidate the differences and the similarities in the kinetics between aging and gelation. We consider this problem, taking Laponite suspension as an explicit example. In particular, we focus on the two types of nonergodic states: (i) an attractive gel formed by van der Waals attractions for high ionic strengths and (ii) a repulsive Wigner glass stabilized by long-range Coulomb repulsions for low ionic strengths. We demonstrate that the aging of colloidal Wigner glass crucially differs not only from gelation, but also from the aging of structural and spin glasses. The aging of the colloidal Wigner glass is characterized by the unique cage-forming regime that does not exist in the aging of spin and structural glasses.

  8. The dynamic ergodic divertor in the TEXTOR tokamak: plasma response to dynamic helical magnetic field perturbations

    NASA Astrophysics Data System (ADS)

    Finken, K. H.; Abdullaev, S. S.; Biel, W.; de Bock, M. F. M.; Busch, C.; Farshi, E.; von Hellermann, M.; Hogeweij, G. M. D.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Kraemer-Flecken, A.; Lazaros, A.; Lehnen, M.; Liang, Y.; Nicolai, A.; Schmitz, O.; Unterberg, B.; Westerhof, E.; Wolf, R.; Zimmermann, O.; de Baar, M.; Bertschinger, G.; Brezinsek, S.; Classen, I. G. J.; Donné, A. J. H.; Esser, H. G.; Gerhauser, H.; Giesen, B.; Harting, D.; Hoekzema, J. A.; Huettemann, P. W.; Jachmich, S.; Jakubowska, K.; Kalupin, D.; Kelly, F.; Kikuchi, Y.; Kirschner, A.; Koch, R.; Korten, M.; Kreter, A.; Krom, J.; Kruezi, U.; Litnovsky, A.; Loozen, X.; Lopes Cardozo, N. J.; Lyssoivan, A.; Marchuk, O.; Mertens, Ph; Messiaen, A.; Neubauer, O.; Philipps, V.; Pospieszczyk, A.; Reiser, D.; Reiter, D.; Rogister, A. L.; Van Rompuy, T.; Savtchkov, A.; Samm, U.; Schorn, R. P.; Schueller, F. C.; Schweer, B.; Sergienko, G.; Telesca, K. H. G.; Tokar, M.; Van Oost, G.; Uhlemann, R.; Van Wassenhove, G.; Weynants, R.; Wiesen, S.; Xu, Y.

    2004-12-01

    Recently, the dynamic ergodic divertor (DED) of TEXTOR has been studied in an m/n = 3/1 set-up which is characterized by a relatively deep penetration of the perturbation field. The perturbation field creates (a) a helical divertor, (b) an ergodic pattern and/or (c) excitation of tearing modes, depending on whether the DED current is static, rotating in the co-current direction or in the counter-current direction. Characteristic divertor properties such as the high recycling regime or enhanced shielding have been studied. A strong effect of the ergodization is spin up of the plasma rotation, possibly due to the electric field at the plasma edge. Tearing modes are excited in a rather reproducible way and their excitation threshold value, their motion and their reduction due to the ECRH/ECCD have been studied. The different scenarios are characterized by strong modifications of the toroidal velocity profile and by a reduced or enhanced radial transport.

  9. Self-averaging and ergodicity of subdiffusion in quenched random media.

    PubMed

    Dentz, Marco; Russian, Anna; Gouze, Philippe

    2016-01-01

    We study the self-averaging properties and ergodicity of the mean square displacement m(t) of particles diffusing in d dimensional quenched random environments which give rise to subdiffusive average motion. These properties are investigated in terms of the sample to sample fluctuations as measured by the variance of m(t). We find that m(t) is not self-averaging for d<2 due to the inefficient disorder sampling by random motion in a single realization. For d≥2 in contrast, the efficient sampling of heterogeneity by the space random walk renders m(t) self-averaging and thus ergodic. This is remarkable because the average particle motion in d>2 obeys a CTRW, which by itself displays weak ergodicity breaking. This paradox is resolved by the observation that the CTRW as an average model does not reflect the disorder sampling by random motion in a single medium realization.

  10. Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking

    PubMed Central

    Weigel, Aubrey V.; Simon, Blair; Tamkun, Michael M.; Krapf, Diego

    2011-01-01

    Diffusion in the plasma membrane of living cells is often found to display anomalous dynamics. However, the mechanism underlying this diffusion pattern remains highly controversial. Here, we study the physical mechanism underlying Kv2.1 potassium channel anomalous dynamics using single-molecule tracking. Our analysis includes both time series of individual trajectories and ensemble averages. We show that an ergodic and a nonergodic process coexist in the plasma membrane. The ergodic process resembles a fractal structure with its origin in macromolecular crowding in the cell membrane. The nonergodic process is found to be regulated by transient binding to the actin cytoskeleton and can be accurately modeled by a continuous-time random walk. When the cell is treated with drugs that inhibit actin polymerization, the diffusion pattern of Kv2.1 channels recovers ergodicity. However, the fractal structure that induces anomalous diffusion remains unaltered. These results have direct implications on the regulation of membrane receptor trafficking and signaling. PMID:21464280

  11. Heat diffusion across magnetic islands and ergodized plasma regions in realistic tokamak geometry

    SciTech Connect

    Hoelzl, M.; Guenter, S.

    2008-07-15

    Heat diffusion in magnetized plasmas is investigated numerically for tokamak geometry and realistic plasma parameters. Heat transport across single and overlapping magnetic islands is studied. As an application, the influence of an (n+1,m+1) helical perturbation onto the temperature perturbation caused by an (n,m) neoclassical tearing mode is examined. It is shown that the resulting ergodization of the magnetic field structure is able to reduce the resonant bootstrap current perturbation of a neoclassical tearing mode. This might explain the drop in the mode amplitude observed in the frequently interrupted regime. Furthermore, the influence of edge ergodization as generated by external perturbation coils onto the electron temperature is studied. It is shown that ergodization of the plasma boundary can decrease the pedestal temperature gradient significantly. This effect might be one element in the mitigation effects of edge-localized modes achieved by external resonant perturbation fields.

  12. Self-averaging and ergodicity of subdiffusion in quenched random media.

    PubMed

    Dentz, Marco; Russian, Anna; Gouze, Philippe

    2016-01-01

    We study the self-averaging properties and ergodicity of the mean square displacement m(t) of particles diffusing in d dimensional quenched random environments which give rise to subdiffusive average motion. These properties are investigated in terms of the sample to sample fluctuations as measured by the variance of m(t). We find that m(t) is not self-averaging for d<2 due to the inefficient disorder sampling by random motion in a single realization. For d≥2 in contrast, the efficient sampling of heterogeneity by the space random walk renders m(t) self-averaging and thus ergodic. This is remarkable because the average particle motion in d>2 obeys a CTRW, which by itself displays weak ergodicity breaking. This paradox is resolved by the observation that the CTRW as an average model does not reflect the disorder sampling by random motion in a single medium realization. PMID:26871007

  13. The Ergodic Structure of Passive Scalar Turbulence Statistics within Dense Canopies

    NASA Astrophysics Data System (ADS)

    Ghannam, K.; Poggi, D.; Porporato, A. M.; Katul, G. G.

    2014-12-01

    The ergodic hypothesis, implicitly used in virtually all atmospheric boundary layer studies, assumes that the time/space average of a measured flow variable converges to an ensemble of independent realizations from similar initial states and boundary conditions and for sufficiently long sampling times. Turbulent flows within roughness elements such as canopies differ from their classical boundary layer counterparts due to the short-circuiting of the energy cascade and the prevalence of von Karman vortex streets in the deeper layers of the canopy (see Figure). Despite recent experimental support for the validity of the ergodic hypothesis on turbulence statistics in the atmospheric surface layer, the impact of the aforementioned phenomena on the ergodicity of passive scalars within dense canopies remains unexplored. Using Laser Induced Florescence (LIF) measurements and flow visualization of scalar concentration within a rod canopy situated in a flume (see Figure), the necessary conditions for ergodicity of passive scalar turbulence statistics at two different depths were considered. The integral time and length scales were first analyzed and their corresponding maximum values were used to construct an ensemble of (weak) independent realizations. To within experimental limitation, a Kolmogorov-Smirnov test on the distributions of temporal and spatial concentration series against the ensembles revealed that the ergodic hypothesis was reasonable, except close to the rods where wake-induced inhomogeneity and damped turbulence prevail. The spatial concentration statistics within a repeated rod-cell configuration appeared less ergodic than their temporal counterpart given the periodicity and persistence of von Karman vortices on the flow field. Using lagged cross-correlations of scalar concentration time series at different spatial locations, the local advection velocity of dominant eddies was inferred. The computed probability density function of the longitudinal

  14. Weak Ergodicity Breaking and Aging of Chaotic Transport in Hamiltonian Systems

    NASA Astrophysics Data System (ADS)

    Albers, Tony; Radons, Günter

    2014-10-01

    Momentum diffusion is a widespread phenomenon in generic Hamiltonian systems. We show for the prototypical standard map that this implies weak ergodicity breaking for the superdiffusive transport in coordinate direction with an averaging-dependent quadratic and cubic increase of the mean-squared displacement (MSD), respectively. This is explained via integrated Brownian motion, for which we derive aging time dependent expressions for the ensemble-averaged MSD, the distribution of time-averaged MSDs, and the ergodicity breaking parameter. Generalizations to other systems showing momentum diffusion are pointed out.

  15. The dynamic ergodic divertor in the TEXTOR tokamak: First results and future prospects

    NASA Astrophysics Data System (ADS)

    Wolf, R. C.; Finken, K. H.; Abdullaev, S. S.; Giesen, B.; Jakubowski, M.; Kobayashi, M.; Koslowski, H. R.; Krämer-Flecken, A.; Lehnen, M.; Neubauer, O.; Pospieszczyk, A.; Samm, U.; Schweer, B.; Sergienko, G.; Unterberg, B.; Zimmermann, O.; Jaspers, R.; Westerhof, E.; Jachmich, S.; Koch, R.; Spatschek, K. H.

    2003-10-01

    The tokamak TEXTOR has been equipped with a dynamic ergodic divertor which is resonant to the edge magnetic flux surface with q=3 and can be operated between DC and 10 kHz. First results indicate a redistribution of particle and energy fluxes which becomes evident in a characteristic stripe pattern. The dynamic mode leads to a uniform divertor target load. Prospects of confinement and MHD stability control, based on the specific edge properties outside the last closed flux surface (an ergodic region followed by a laminar zone with short connection lengths) together with the possibility to transfer momentum to the plasma, are discussed.

  16. Dissipative Properties of Quantum Systems

    PubMed Central

    Grecos, A. P.; Prigogine, I.

    1972-01-01

    We consider the dissipative properties of large quantum systems from the point of view of kinetic theory. The existence of a nontrivial collision operator imposes restrictions on the possible collisional invariants of the system. We consider a model in which a discrete level is coupled to a set of quantum states and which, in the limit of a large “volume,” becomes the Friedrichs model. Because of its simplicity this model allows a direct calculation of the collision operator as well as of related operators and the constants of the motion. For a degenerate spectrum the calculations become more involved but the conclusions remain simple. The special role played by the invariants that are functions of the Hamiltonion is shown to be a direct consequence of the existence of a nonvanishing collision operator. For a class of observables we obtain ergodic behavior, and this reformulation of the ergodic problem may be used in statistical mechanics to study the ergodicity of large quantum systems containing a small physical parameter such as the coupling constant or the concentration. PMID:16591994

  17. An ergodic configurational thermostat using selective control of higher order temperatures.

    PubMed

    Patra, Puneet Kumar; Bhattacharya, Baidurya

    2015-05-21

    The conventional Nosé-Hoover type deterministic thermostat scheme for controlling temperature by configurational variables (Braga-Travis (BT) thermostat) is non-ergodic for systems with a few degrees of freedom. While for the original Nosé-Hoover kinetic thermostat ergodicity has been achieved by controlling the higher order moments of kinetic energy, the issues of nonergodicity of BT thermostat persists. In this paper, we introduce two new measures of configurational temperature (second and third order) based on the generalized temperature-curvature relationship and obtain a family of deterministic thermostatting schemes by selectively (and simultaneously) controlling the different orders of temperatures through pseudo-friction terms. The ergodic characteristics of the proposed thermostats are tested using a single harmonic oscillator through statistical (normality of joint distributions at different Poincare sections) as well as dynamical tests (difference of the minimum and maximum largest Lyapunov exponent). Our results indicate that simultaneously controlling the first and the second order configurational temperatures (C(1,2) thermostat) is sufficient to make the dynamics ergodic. A 2000 particle Lennard-Jones system is subjected to (i) equilibrium and (ii) sudden temperature change under BT and C(1,2) thermostatting schemes. The C(1,2) thermostat is found to be more robust than the BT thermostat without increasing computational costs.

  18. The Spatio-temporal Statistical Structure and Ergodic Behaviour of Scalar Turbulence Within a Rod Canopy

    NASA Astrophysics Data System (ADS)

    Ghannam, Khaled; Poggi, Davide; Porporato, Amilcare; Katul, Gabriel G.

    2015-12-01

    Connections between the spatial and temporal statistics of turbulent flow, and their possible convergence to ensemble statistics as assumed by the ergodic hypothesis, are explored for passive scalars within a rod canopy. While complete ergodicity is not expected to apply over all the spatial domain within such heterogeneous flows, the fact that canopy turbulence exhibits self-similar characteristics at a given depth within the canopy encourages a discussion on necessary conditions for an `operational' ergodicity framework. Flows between roughness elements such as within canopies exhibit features that distinguish them from their well-studied classical boundary-layer counterparts. These differences are commonly attributed to short-circuiting of the energy cascade and the prevalence of intermittent von Kármán vortex streets in the deeper layers of the canopy. Using laser-induced fluorescence measurements at two different depths within a rod canopy situated in a large flume, the spatio-temporal statistical properties and concomitant necessary conditions for ergodicity of passive scalar turbulence statistics are evaluated. First, the integral time and length scales are analyzed and their corresponding maximum values are used to guide the construction of an ensemble of independent realizations from repeated spatio-temporal concentration measurements. As a statistical analysis for an operational ergodicity check, a Kolmogorov-Smirnov test on the distributions of temporal and spatial concentration series against the ensemble was conducted. The outcome of this test reveals that ergodicity is reasonably valid over the entire domain except close to the rod elements where wake-induced inhomogeneities and damped turbulence prevail. The spatial concentration statistics within a grid-cell (square domain formed by four corner rods) appear to be less ergodic than their temporal counterparts, which is not surprising given the periodicity and persistence of von Kármán vortices in

  19. Loss of Ergodicity in the Transition from Annealed to Quenched Disorder in a Finite Kinetic Ising Model

    NASA Astrophysics Data System (ADS)

    Pigeard de Almeida Prado, Fernando; Schütz, Gunter M.

    2011-03-01

    We consider a kinetic Ising model which represents a generic agent-based model for various types of socio-economic systems. We study the case of a finite (and not necessarily large) number of agents N as well as the asymptotic case when the number of agents tends to infinity. The main ingredient are individual decision thresholds which are either fixed over time (corresponding to quenched disorder in the Ising model, leading to nonlinear deterministic dynamics which are generically non-ergodic) or which may change randomly over time (corresponding to annealed disorder, leading to ergodic dynamics). We address the question how increasing the strength of annealed disorder relative to quenched disorder drives the system from non-ergodic behavior to ergodicity. Mathematically rigorous analysis provides an explicit and detailed picture for arbitrary realizations of the quenched initial thresholds, revealing an intriguing "jumpy" transition from non-ergodicity with many absorbing sets to ergodicity. For large N we find a critical strength of annealed randomness, above which the system becomes asymptotically ergodic. Our theoretical results suggests how to drive a system from an undesired socio-economic equilibrium (e.g. high level of corruption) to a desirable one (low level of corruption).

  20. Ergodicity, configurational entropy and free energy in pigment solutions and plant photosystems: influence of excited state lifetime.

    PubMed

    Jennings, Robert C; Zucchelli, Giuseppe

    2014-01-01

    We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero.

  1. The uncertainty principle and quantum chaos

    NASA Technical Reports Server (NTRS)

    Chirikov, Boris V.

    1993-01-01

    The conception of quantum chaos is described in some detail. The most striking feature of this novel phenomenon is that all the properties of classical dynamical chaos persist here but, typically, on the finite and different time scales only. The ultimate origin of such a universal quantum stability is in the fundamental uncertainty principle which makes discrete the phase space and, hence, the spectrum of bounded quantum motion. Reformulation of the ergodic theory, as a part of the general theory of dynamical systems, is briefly discussed.

  2. Toroidal Plasma Rotation Induced by the Dynamic Ergodic Divertor in the TEXTOR Tokamak

    NASA Astrophysics Data System (ADS)

    Finken, K. H.; Abdullaev, S. S.; de Bock, M. F.; von Hellermann, M.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Krämer-Flecken, A.; Lehnen, M.; Liang, Y.; Nicolai, A.; Wolf, R. C.; Zimmermann, O.; de Baar, M.; Bertschinger, G.; Biel, W.; Brezinsek, S.; Busch, C.; Donné, A. J.; Esser, H. G.; Farshi, E.; Gerhauser, H.; Giesen, B.; Harting, D.; Hoekzema, J. A.; Hogeweij, G. M.; Hüttemann, P. W.; Jachmich, S.; Jakubowska, K.; Kalupin, D.; Kelly, F.; Kikuchi, Y.; Kirschner, A.; Koch, R.; Korten, M.; Kreter, A.; Krom, J.; Kruezi, U.; Lazaros, A.; Litnovsky, A.; Loozen, X.; Lopes Cardozo, N. J.; Lyssoivan, A.; Marchuk, O.; Matsunaga, G.; Mertens, Ph.; Messiaen, A.; Neubauer, O.; Noda, N.; Philipps, V.; Pospieszczyk, A.; Reiser, D.; Reiter, D.; Rogister, A. L.; Sakamoto, M.; Savtchkov, A.; Samm, U.; Schmitz, O.; Schorn, R. P.; Schweer, B.; Schüller, F. C.; Sergienko, G.; Spatschek, K. H.; Telesca, G.; Tokar, M.; Uhlemann, R.; Unterberg, B.; van Oost, G.; van Rompuy, T.; van Wassenhove, G.; Westerhof, E.; Weynants, R.; Wiesen, S.; Xu, Y. H.

    2005-01-01

    The first results of the Dynamic Ergodic Divertor in TEXTOR, when operating in the m/n=3/1 mode configuration, are presented. The deeply penetrating external magnetic field perturbation of this configuration increases the toroidal plasma rotation. Staying below the excitation threshold for the m/n=2/1 tearing mode, this toroidal rotation is always in the direction of the plasma current, even if the toroidal projection of the rotating magnetic field perturbation is in the opposite direction. The observed toroidal rotation direction is consistent with a radial electric field, generated by an enhanced electron transport in the ergodic layers near the resonances of the perturbation. This is an effect different from theoretical predictions, which assume a direct coupling between rotating perturbation and plasma to be the dominant effect of momentum transfer.

  3. Impact of nonzero boresight pointing error on ergodic capacity of MIMO FSO communication systems.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2016-02-22

    A thorough investigation of the impact of nonzero boresight pointing errors on the ergodic capacity of multiple-input/multiple-output (MIMO) free-space optical (FSO) systems with equal gain combining (EGC) reception under different turbulence models, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.) is addressed in this paper. Novel closed-form asymptotic expressions at high signal-to-noise ratio (SNR) for the ergodic capacity of MIMO FSO systems are derived when different geometric arrangements of the receive apertures at the receiver are considered in order to reduce the effect of nonzero inherent boresight displacement, which is inevitably present when more than one receive aperture is considered. As a result, the asymptotic ergodic capacity of MIMO FSO systems is evaluated over log-normal (LN), gamma-gamma (GG) and exponentiated Weibull (EW) atmospheric turbulence in order to study different turbulence conditions, different sizes of receive apertures as well as different aperture averaging conditions. It is concluded that the use of single-input/multiple-output (SIMO) and MIMO techniques can significantly increase the ergodic capacity respect to the direct path link when the inherent boresight displacement takes small values, i.e. when the spacing among receive apertures is not too big. The effect of nonzero additional boresight errors, which is due to the thermal expansion of the building, is evaluated in multiple-input/single-output (MISO) and single-input/single-output (SISO) FSO systems. Simulation results are further included to confirm the analytical results. PMID:26907009

  4. A Linear PDE Approach to the Bellman Equation of Ergodic Control with Periodic Structure

    SciTech Connect

    Fujita, Y.

    2003-03-12

    In this paper we give a new proof of the existence result of Bensoussan [1, Theorem II-6.1] for the Bellman equation of ergodic control with periodic structure. This Bellman equation is a nonlinear PDE, and he constructed its solution by using the solution of a nonlinear PDE. On the contrary, our key idea is to solve two linear PDEs. Hence, we propose a linear PDE approach to this Bellman equation.

  5. Impact of nonzero boresight pointing error on ergodic capacity of MIMO FSO communication systems.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Beatriz; Castillo-Vázquez, Carmen

    2016-02-22

    A thorough investigation of the impact of nonzero boresight pointing errors on the ergodic capacity of multiple-input/multiple-output (MIMO) free-space optical (FSO) systems with equal gain combining (EGC) reception under different turbulence models, which are modeled as statistically independent, but not necessarily identically distributed (i.n.i.d.) is addressed in this paper. Novel closed-form asymptotic expressions at high signal-to-noise ratio (SNR) for the ergodic capacity of MIMO FSO systems are derived when different geometric arrangements of the receive apertures at the receiver are considered in order to reduce the effect of nonzero inherent boresight displacement, which is inevitably present when more than one receive aperture is considered. As a result, the asymptotic ergodic capacity of MIMO FSO systems is evaluated over log-normal (LN), gamma-gamma (GG) and exponentiated Weibull (EW) atmospheric turbulence in order to study different turbulence conditions, different sizes of receive apertures as well as different aperture averaging conditions. It is concluded that the use of single-input/multiple-output (SIMO) and MIMO techniques can significantly increase the ergodic capacity respect to the direct path link when the inherent boresight displacement takes small values, i.e. when the spacing among receive apertures is not too big. The effect of nonzero additional boresight errors, which is due to the thermal expansion of the building, is evaluated in multiple-input/single-output (MISO) and single-input/single-output (SISO) FSO systems. Simulation results are further included to confirm the analytical results.

  6. The Wave Function and Quantum Reality

    SciTech Connect

    Gao Shan

    2011-03-28

    We investigate the meaning of the wave function by analyzing the mass and charge density distributions of a quantum system. According to protective measurement, a charged quantum system has effective mass and charge density distributing in space, proportional to the square of the absolute value of its wave function. In a realistic interpretation, the wave function of a quantum system can be taken as a description of either a physical field or the ergodic motion of a particle. The essential difference between a field and the ergodic motion of a particle lies in the property of simultaneity; a field exists throughout space simultaneously, whereas the ergodic motion of a particle exists throughout space in a time-divided way. If the wave function is a physical field, then the mass and charge density will be distributed in space simultaneously for a charged quantum system, and thus there will exist gravitational and electrostatic self-interactions of its wave function. This not only violates the superposition principle of quantum mechanics but also contradicts experimental observations. Thus the wave function cannot be a description of a physical field but be a description of the ergodic motion of a particle. For the later there is only a localized particle with mass and charge at every instant, and thus there will not exist any self-interaction for the wave function. It is further argued that the classical ergodic models, which assume continuous motion of particles, cannot be consistent with quantum mechanics. Based on the negative result, we suggest that the wave function is a description of the quantum motion of particles, which is random and discontinuous in nature. On this interpretation, the square of the absolute value of the wave function not only gives the probability of the particle being found in certain locations, but also gives the probability of the particle being there. The suggested new interpretation of the wave function provides a natural realistic

  7. Great-enhanced performance of Pt nanoparticles by the unique carbon quantum dot/reduced graphene oxide hybrid supports towards methanol electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Hong, Tian-Zeng; Xue, Qiong; Yang, Zhi-Yong; Dong, Ya-Ping

    2016-01-01

    The Pt-carbon quantum dot (CQD)/reduced graphene oxide (RGO) catalysts are prepared by one pot reduction method and demonstrate ultraefficient performance towards methanol oxidation reaction (MOR). In the high content CQD products, Pt nanoparticles around 2-3 nm are dispersed uniformly on supporting materials. And the X-ray photoelectron spectroscopy analysis indicates that in the high content CQD products a large part of surface oxygen groups is contributed by CQD. The electrochemical tests reveal that the catalyst with the saturated CQD exhibits best performance in MOR: the mass and specific activity at forward peak position, the potential close to fuel cell operation and 3600 s of chronoamperometric curve are roughly 2-3 folds of the commercial Pt/C. Furthermore, the electrochemical data on the series of catalysts with different quantity of CQD disclose the improving tendency of MOR performance with the increasing content of CQD evidently. Overview the electrochemical and characterization results, we suggest CQD play multiple roles in the enhancement of Pt performance: present abundant nucleating and anchoring points to facilitate the formation of small size and uniform distributed Pt particles; act as spacer to alleviate restacking of RGO sheets; and provide fruitful surface oxygen groups to improve the antipoisonous ability of Pt.

  8. Implications of lack-of-ergodicity in 2D Potts model

    NASA Astrophysics Data System (ADS)

    Ota, Smita

    2015-03-01

    Microcanonical Monte Carlo simulation is used to study two dimensional (2D) q state Potts model. We consider a 2D square lattice having NxN spins with periodic boundary condition and simulated the system with N =15 and q =10. The demon energy distribution is found to be exponential for high system energy and large system size. For smaller system size and above the first order transition the demon energy distribution is found to deviate from exp(- βED) and has the form exp(- βED + γ ED2). Here β = 1/kBT and kB is the Boltzmann constant. It is found that γ is finite at higher temperatures. As the system energy is reduced γ becomes zero near the first order transition. It is found that during cooling γ changes sign from negative to positive and then to negative again near the 1st order transition. Therefore the demon energy distribution becomes exp(- βED) (or ergodic) at two values of system energy near the 1st order transition. Further cooling or at still lower temperatures the system shows lack of ergodicity. However, difference in heating cooling curves are apparent in E vs γ. The system energies for which γ is zero during cooling can represent the 'ergodic' states. This can be related to the two-level systems observed in glasses at low temperatures.

  9. Topological-sector fluctuations and ergodicity breaking at the Berezinskii-Kosterlitz-Thouless transition

    NASA Astrophysics Data System (ADS)

    Faulkner, Michael F.; Bramwell, Steven T.; Holdsworth, Peter C. W.

    2015-04-01

    The Berezinskii-Kosterlitz-Thouless (BKT) phase transition drives the unbinding of topological defects in many two-dimensional systems. In the two-dimensional Coulomb gas, it corresponds to an insulator-conductor transition driven by charge deconfinement. We investigate the global topological properties of this transition, both analytically and by numerical simulation, using a lattice-field description of the two-dimensional Coulomb gas on a torus. The BKT transition is shown to be an ergodicity breaking between the topological sectors of the electric field, which implies a definition of topological order in terms of broken ergodicity. The breakdown of local topological order at the BKT transition leads to the excitation of global topological defects in the electric field, corresponding to different topological sectors. The quantized nature of these classical excitations, and their strict suppression by ergodicity breaking in the low-temperature phase, afford striking global signatures of topological-sector fluctuations at the BKT transition. We discuss how these signatures could be detected in experiments on, for example, magnetic films and cold-atom systems.

  10. Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Patra, Puneet Kumar; Sprott, Julien Clinton; Hoover, William Graham; Griswold Hoover, Carol

    2015-09-01

    The relative stability and ergodicity of deterministic time-reversible thermostats, both singly and in coupled pairs, are assessed through their Lyapunov spectra. Five types of thermostat are coupled to one another through a single Hooke's-law harmonic spring. The resulting dynamics shows that three specific thermostat types, Hoover-Holian, Ju-Bulgac, and Martyna-Klein-Tuckerman, have very similar Lyapunov spectra in their equilibrium four-dimensional phase spaces and when coupled in equilibrium or nonequilibrium pairs. All three of these oscillator-based thermostats are shown to be ergodic, with smooth analytic Gaussian distributions in their extended phase spaces (coordinate, momentum, and two control variables). Evidently these three ergodic and time-reversible thermostat types are particularly useful as statistical-mechanical thermometers and thermostats. Each of them generates Gibbs' universal canonical distribution internally as well as for systems to which they are coupled. Thus they obey the zeroth law of thermodynamics, as a good heat bath should. They also provide dissipative heat flow with relatively small nonlinearity when two or more such temperature baths interact and provide useful deterministic replacements for the stochastic Langevin equation.

  11. Characterization of microstructure, viscoelasticity, heterogeneity and ergodicity in pectin-laponite-CTAB-calcium nanocomposite hydrogels.

    PubMed

    Joshi, Nidhi; Rawat, Kamla; Bohidar, H B

    2016-01-20

    In order to customize the viscoelastic properties of pectin gels, it is necessary to work on a composite platform. Herein, the gelation kinetics, and viscoelastic characterization of anionic polysaccharide pectin dispersion prepared in presence of nanoclay laponite are reported using dynamic light scattering and rheology measurements. The ratio Rg/Rh (Rg and Rh are radius of gyration and hydrodynamic radius respectively) determined from light scattering data revealed the presence of random coils of pectin chains inside the gel matrix. When nanoclay laponite was added to the pectin chains solution, two-phase separation was noticed instantaneously. Therefore, the surfactant cetyltrimethylammonium bromide [CTAB] was added to exfoliate the clay platelets in the dispersion, and also in its gel phase. The exfoliating agent cetyltrimethylammonium bromide ([CTAB]≈ cmc/10) helped to enhance the homogeneity and stability of the pectin-clay sols and gels. The storage and loss moduli (G' and G") of the composite gel changed significantly as function of nanoclay laponite content for concentration up to 0.03% (w/v) causing the softening of the gels (gel strength reduced by close to 50%) compared to pectin-calcium gel. However, as the concentration of nanoclay laponite was maintained between 0.01% and 0.03% (w/v), the gel rigidity (G') recovered by 30% (35-45 Pa). The transition from ergodic to non-ergodic state occurred during sol-gel transition owing to the presence of the nanoclay laponite. The gelation time was not too different from the ergodicity breaking time. Thus, the presence of nanoclay laponite in such minute concentration is shown to cause considerable change in the thermo-physical property of the composite gels. This material property modulation will facilitate designing of soft gels having storage modulus continuously varying in the wide range of 10-70 Pa while keeping the gelation temperature mostly unaltered. PMID:26572352

  12. Characterization of microstructure, viscoelasticity, heterogeneity and ergodicity in pectin-laponite-CTAB-calcium nanocomposite hydrogels.

    PubMed

    Joshi, Nidhi; Rawat, Kamla; Bohidar, H B

    2016-01-20

    In order to customize the viscoelastic properties of pectin gels, it is necessary to work on a composite platform. Herein, the gelation kinetics, and viscoelastic characterization of anionic polysaccharide pectin dispersion prepared in presence of nanoclay laponite are reported using dynamic light scattering and rheology measurements. The ratio Rg/Rh (Rg and Rh are radius of gyration and hydrodynamic radius respectively) determined from light scattering data revealed the presence of random coils of pectin chains inside the gel matrix. When nanoclay laponite was added to the pectin chains solution, two-phase separation was noticed instantaneously. Therefore, the surfactant cetyltrimethylammonium bromide [CTAB] was added to exfoliate the clay platelets in the dispersion, and also in its gel phase. The exfoliating agent cetyltrimethylammonium bromide ([CTAB]≈ cmc/10) helped to enhance the homogeneity and stability of the pectin-clay sols and gels. The storage and loss moduli (G' and G") of the composite gel changed significantly as function of nanoclay laponite content for concentration up to 0.03% (w/v) causing the softening of the gels (gel strength reduced by close to 50%) compared to pectin-calcium gel. However, as the concentration of nanoclay laponite was maintained between 0.01% and 0.03% (w/v), the gel rigidity (G') recovered by 30% (35-45 Pa). The transition from ergodic to non-ergodic state occurred during sol-gel transition owing to the presence of the nanoclay laponite. The gelation time was not too different from the ergodicity breaking time. Thus, the presence of nanoclay laponite in such minute concentration is shown to cause considerable change in the thermo-physical property of the composite gels. This material property modulation will facilitate designing of soft gels having storage modulus continuously varying in the wide range of 10-70 Pa while keeping the gelation temperature mostly unaltered.

  13. Localization to ergodic transitions: is Rosenzweig-Porter ensemble the hidden skeleton?

    NASA Astrophysics Data System (ADS)

    Shukla, Pragya

    2016-02-01

    The presence of local interactions and wave-localization phenomena is quite generic to a wide range of complex systems. Based on the evidence of two transitions similar to those in many body states as well as single particle states, the work by Kravtsov et al (2015 New J. Phys. 17 122002) indicates the strong prospect of Rosenzweig-Porter ensemble to serve as the good model for many particle localization as well as that of single particle. With already well-known statistical universality of ergodic dynamics, this also reveals the next level in the hierarchy of the universality of statistical fluctuations.

  14. Surveying a complex potential energy landscape: Overcoming broken ergodicity using basin-sampling

    NASA Astrophysics Data System (ADS)

    Wales, David J.

    2013-10-01

    A new basin-sampling scheme is introduced to obtain equilibrium thermodynamic properties by combining results from global optimisation and parallel tempering calculations. Regular minimisation is used to obtain a two-dimensional density of states. A model anharmonic form is optimised using a multihistogram approach for potential energy bins corresponding to local minima, connecting the results obtained for low and high temperatures. This procedure provides accurate densities of states and thermodynamic properties for benchmark atomic clusters exhibiting broken ergodicity. It can also be used to calculate the potential energy density of local minima for distinct permutation-inversion isomers and distinct structures.

  15. The effect of the magnetic topology on particle recycling in the ergodic divertor of TEXTOR

    NASA Astrophysics Data System (ADS)

    Lehnen, M.; Abdullaev, S. S.; Brezinsek, S.; Finken, K. H.; Harting, D.; von Hellermann, M.; Jakubowski, M. W.; Jaspers, R.; Kirschner, A.; Pospieszczyk, A.; Reiter, D.; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Wolf, R.; Textor Team

    2007-06-01

    The influence of the divertor geometry of the dynamic ergodic divertor (DED) in TEXTOR on particle recycling is discussed. The geometry can be varied by the choice of the base mode, the edge safety factor and the divertor coil current. The divertor volume is split into the upstream and the downstream area. Strong plasma flows in the downstream area, essential for high screening efficiency, are predicted. The source strength of deuterium and carbon in the downstream area is estimated by using the two-dimensional distribution of Dα and CIII emission in front of the target. The results are compared to EMC3 and ERO-code calculations.

  16. Derivation of quantum mechanics from a single fundamental modification of the relations between physical properties

    NASA Astrophysics Data System (ADS)

    Hofmann, Holger F.

    2014-04-01

    Recent results obtained in quantum measurements indicate that the fundamental relations between three physical properties of a system can be represented by complex conditional probabilities. Here, it is shown that these relations provide a fully deterministic and universally valid framework on which all of quantum mechanics can be based. Specifically, quantum mechanics can be derived by combining the rules of Bayesian probability theory with only a single additional law that explains the phases of complex probabilities. This law, which I introduce here as the law of quantum ergodicity, is based on the observation that the reality of physical properties cannot be separated from the dynamics by which they emerge in measurement interactions. The complex phases are an expression of this inseparability and represent the dynamical structure of transformations between the different properties. In its quantitative form, the law of quantum ergodicity describes a fundamental relation between the ergodic probabilities obtained by dynamical averaging and the deterministic relations between three properties expressed by the complex conditional probabilities. The complete formalism of quantum mechanics can be derived from this one relation, without any axiomatic mathematical assumptions about state vectors or superpositions. It is therefore possible to explain all quantum phenomena as the consequence of a single fundamental law of physics.

  17. Tracking single Kv2.1 channels in live cells reveals anomalous subdiffusion and ergodicity breaking

    NASA Astrophysics Data System (ADS)

    Weigel, Aubrey; Simon, Blair; Tamkun, Michael; Krapf, Diego

    2011-03-01

    The dynamic organization of the plasma membrane is responsible for essential cellular processes, such as receptor trafficking and signaling. By studying the dynamics of transmembrane proteins a greater understanding of these processes as a whole can be achieved. It is broadly observed that the diffusion pattern of membrane protein displays anomalous subdiffusion. However, the mechanisms responsible for this behavior are not yet established. We explore the dynamics of the voltage gated potassium channel Kv2.1 by using single-particle tracking. We analyze Kv2.1 channel trajectories in terms of the time and ensemble distributions of square displacements. Our results reveal that all Kv2.1 channels experience anomalous subdiffusion and we observe that the Kv2.1 diffusion pattern is non-ergodic. We further investigated the role of the actin cytoskeleton in these channel dynamics by applying actin depolymerizing drugs. It is seen that with the breakdown of the actin cytoskeleton the Kv2.1 channel trajectories recover ergodicity.

  18. Edge turbulence during the static dynamic ergodic divertor experiments in TEXTOR

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Van Schoor, M.; Weynants, R. R.; Jachmich, S.; Vergote, M.; Jakubowski, M. W.; Beyer, P.; Mitri, M.; Schweer, B.; Reiser, D.; Unterberg, B.; Finken, K. H.; Lehnen, M.; Jaspers, R.; TEXTOR Team

    2007-12-01

    The influence of the magnetic ergodization on edge turbulence and turbulence-induced transport has been investigated by Langmuir probes in TEXTOR under three different static DED configurations. Common features are observed. With DED, the edge equilibrium profiles are altered and the resultant positive Er is in agreement with modelling. In the ergodic zone, the potential fluctuations are strongly reduced and the local turbulent flux changes direction from radially outwards to inwards. In the same zone, the turbulence properties are profoundly modified by energy redistribution in frequency spectra, suppression of large-scale structures and reduction of the radial and poloidal correlation lengths for all frequencies. Meanwhile, the fluctuation poloidal phase velocity changes sign from the electron to ion diamagnetic drift, consistent with the change of the Er × B flow, whereas the slight radially outward propagation of fluctuations is hindered by the DED. In the laminar region, the turbulence correlation is found to react to the observed reduced flow shear. Before the DED the Reynolds stress displays a radial gradient at the plasma edge while during DED the profile is suppressed, suggesting a rearrangement by the DED on the flow momentum profile.

  19. Fluctuations around equilibrium laws in ergodic continuous-time random walks.

    PubMed

    Schulz, Johannes H P; Barkai, Eli

    2015-06-01

    We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables. PMID:26172683

  20. Fluctuations around equilibrium laws in ergodic continuous-time random walks.

    PubMed

    Schulz, Johannes H P; Barkai, Eli

    2015-06-01

    We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.

  1. A review of sigma models for quantum chaotic dynamics.

    PubMed

    Altland, Alexander; Gnutzmann, Sven; Haake, Fritz; Micklitz, Tobias

    2015-07-01

    We review the construction of the supersymmetric sigma model for unitary maps, using the color-flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization. PMID:26181515

  2. A review of sigma models for quantum chaotic dynamics.

    PubMed

    Altland, Alexander; Gnutzmann, Sven; Haake, Fritz; Micklitz, Tobias

    2015-07-01

    We review the construction of the supersymmetric sigma model for unitary maps, using the color-flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization.

  3. A review of sigma models for quantum chaotic dynamics

    NASA Astrophysics Data System (ADS)

    Altland, Alexander; Gnutzmann, Sven; Haake, Fritz; Micklitz, Tobias

    2015-07-01

    We review the construction of the supersymmetric sigma model for unitary maps, using the color-flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization.

  4. Transient anomalous diffusion in periodic systems: ergodicity, symmetry breaking and velocity relaxation

    PubMed Central

    Spiechowicz, Jakub; Łuczka, Jerzy; Hänggi, Peter

    2016-01-01

    We study far from equilibrium transport of a periodically driven inertial Brownian particle moving in a periodic potential. As detected for a SQUID ratchet dynamics, the mean square deviation of the particle position from its average may involve three distinct intermediate, although extended diffusive regimes: initially as superdiffusion, followed by subdiffusion and finally, normal diffusion in the asymptotic long time limit. Even though these anomalies are transient effects, their lifetime can be many, many orders of magnitude longer than the characteristic time scale of the setup and turns out to be extraordinarily sensitive to the system parameters like temperature or the potential asymmetry. In the paper we reveal mechanisms of diffusion anomalies related to ergodicity of the system, symmetry breaking of the periodic potential and ultraslow relaxation of the particle velocity towards its steady state. Similar sequences of the diffusive behaviours could be detected in various systems including, among others, colloidal particles in random potentials, glass forming liquids and granular gases. PMID:27492219

  5. Diffusive and Subdiffusive Spin Transport in the Ergodic Phase of a Many-Body Localizable System.

    PubMed

    Žnidarič, Marko; Scardicchio, Antonello; Varma, Vipin Kerala

    2016-07-22

    We study high temperature spin transport in a disordered Heisenberg chain in the ergodic regime. By employing a density matrix renormalization group technique for the study of the stationary states of the boundary-driven Lindblad equation we are able to study extremely large systems (400 spins). We find both a diffusive and a subdiffusive phase depending on the strength of the disorder and on the anisotropy parameter of the Heisenberg chain. Studying finite-size effects, we show numerically and theoretically that a very large crossover length exists that controls the passage of a clean-system dominated dynamics to one observed in the thermodynamic limit. Such a large length scale, being larger than the sizes studied before, explains previous conflicting results. We also predict spatial profiles of magnetization in steady states of generic nondiffusive systems. PMID:27494464

  6. Transient anomalous diffusion in periodic systems: ergodicity, symmetry breaking and velocity relaxation

    NASA Astrophysics Data System (ADS)

    Spiechowicz, Jakub; Łuczka, Jerzy; Hänggi, Peter

    2016-08-01

    We study far from equilibrium transport of a periodically driven inertial Brownian particle moving in a periodic potential. As detected for a SQUID ratchet dynamics, the mean square deviation of the particle position from its average may involve three distinct intermediate, although extended diffusive regimes: initially as superdiffusion, followed by subdiffusion and finally, normal diffusion in the asymptotic long time limit. Even though these anomalies are transient effects, their lifetime can be many, many orders of magnitude longer than the characteristic time scale of the setup and turns out to be extraordinarily sensitive to the system parameters like temperature or the potential asymmetry. In the paper we reveal mechanisms of diffusion anomalies related to ergodicity of the system, symmetry breaking of the periodic potential and ultraslow relaxation of the particle velocity towards its steady state. Similar sequences of the diffusive behaviours could be detected in various systems including, among others, colloidal particles in random potentials, glass forming liquids and granular gases.

  7. Natural Divertor Spherical Tokamak Plasmas with bean shape and ergodic limiter

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso; Herrera, Julio; Chavez, Esteban; Tritz, Kevin

    2013-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, R < 0.14 m, a < 0.10 m, BT < 0.5T, Ip < 40 kA, 3 ms pulse) is being recommissioned in Costa Rica Institute of Technology. The main objectives of the MEDUSA-CR project are training and to clarify several issues in relevant physics for conventional and mainly STs, including beta studies in bean-shaped ST plasmas, transport, heating and current drive via Alfvén wave, and natural divertor STs with ergodic magnetic limiter. We report here improvements in the self-consistency of these equilibrium comparisons and a preliminary study of their MHD stability beta limits. VIE-ITCR, IAEA-CRP contract 17592, National Instruments of Costa Rica.

  8. Ergodic theory and Diophantine approximation for translation surfaces and linear forms

    NASA Astrophysics Data System (ADS)

    Athreya, Jayadev; Parrish, Andrew; Tseng, Jimmy

    2016-08-01

    We derive results on the distribution of directions of saddle connections on translation surfaces using only the Birkhoff ergodic theorem applied to the geodesic flow on the moduli space of translation surfaces. Our techniques, together with an approximation argument, also give an alternative proof of a weak version of a classical theorem in multi-dimensional Diophantine approximation due to Schmidt (1960 Can. J. Math. 12 619–31, 1964 Trans. Am. Math. Soc. 110 493–518). The approximation argument allows us to deduce the Birkhoff genericity of almost all lattices in a certain submanifold of the space of unimodular lattices from the Birkhoff genericity of almost all lattices in the whole space and similarly for the space of affine unimodular lattices.

  9. Effective ergodicity breaking in an exclusion process with varying system length

    NASA Astrophysics Data System (ADS)

    Schultens, Christoph; Schadschneider, Andreas; Arita, Chikashi

    2015-09-01

    Stochastic processes of interacting particles in systems with varying length are relevant e.g. for several biological applications. We try to explore what kind of new physical effects one can expect in such systems. As an example, we extend the exclusive queueing process that can be viewed as a one-dimensional exclusion process with varying length, by introducing Langmuir kinetics. This process can be interpreted as an effective model for a queue that interacts with other queues by allowing incoming and leaving of customers in the bulk. We find surprising indications for breaking of ergodicity in a certain parameter regime, where the asymptotic growth behavior depends on the initial length. We show that a random walk with site-dependent hopping probabilities exhibits qualitatively the same behavior.

  10. Non-Ergodic Electron Transfer in Mixed-Valence Charge-Transfer Complexes.

    PubMed

    Matyushov, Dmitry V

    2012-06-21

    Theories of activated transitions traditionally separate the dynamics and statistics of the thermal bath in the reaction rate into the preexponential frequency factor for the dynamics and a Boltzmann factor for the statistics. When the reaction rate is comparable to relaxation frequencies of the medium, the statistics loses ergodicity and the activation barrier becomes dependent on the medium dynamics. This scenario is realized for mixed-valence self-exchange electron transfer at temperatures near the point of solvent crystallization. These complexes, studied by Kubiak and coworkers, display anti-Arrhenius temperature dependence on lowering temperature when approaching crystallization; that is, the reaction rate increases nonlinearly in Arrhenius coordinates. Accordingly, the solvent relaxation slows down following a power temperature law. With this functional form for the relaxation time, nonergodic reaction kinetics accounts well for the observations.

  11. Transient anomalous diffusion in periodic systems: ergodicity, symmetry breaking and velocity relaxation.

    PubMed

    Spiechowicz, Jakub; Łuczka, Jerzy; Hänggi, Peter

    2016-01-01

    We study far from equilibrium transport of a periodically driven inertial Brownian particle moving in a periodic potential. As detected for a SQUID ratchet dynamics, the mean square deviation of the particle position from its average may involve three distinct intermediate, although extended diffusive regimes: initially as superdiffusion, followed by subdiffusion and finally, normal diffusion in the asymptotic long time limit. Even though these anomalies are transient effects, their lifetime can be many, many orders of magnitude longer than the characteristic time scale of the setup and turns out to be extraordinarily sensitive to the system parameters like temperature or the potential asymmetry. In the paper we reveal mechanisms of diffusion anomalies related to ergodicity of the system, symmetry breaking of the periodic potential and ultraslow relaxation of the particle velocity towards its steady state. Similar sequences of the diffusive behaviours could be detected in various systems including, among others, colloidal particles in random potentials, glass forming liquids and granular gases. PMID:27492219

  12. Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets

    SciTech Connect

    Levnajić, Zoran; Mezić, Igor

    2015-05-15

    We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone, and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.

  13. The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Yuan, Sanling; Zhang, Tonghua

    2016-08-01

    The effect of toxin-producing phytoplankton and environmental stochasticity are interesting problems in marine plankton ecology. In this paper, we develop and analyze a stochastic phytoplankton allelopathy model, which takes both white and colored noises into account. We first prove the existence of the global positive solution of the model. And then by using the stochastic Lyapunov functions, we investigate the positive recurrence and ergodic property of the model, which implies the existence of a stationary distribution of the solution. Moreover, we obtain the mean and variance of the stationary distribution. Our results show that both the two kinds of environmental noises and toxic substances have great impacts on the evolution of the phytoplankton populations. Finally, numerical simulations are carried out to illustrate our theoretical results.

  14. BBQ Modeling of Recycling from the Tore Supra Ergodic Divertor Neutraliser

    NASA Astrophysics Data System (ADS)

    Giannella, R.; Guirlet, R.; Demichelis, C.; Hogan, J.; Cherigier, L.

    1998-11-01

    Generation and recycling of carbon and hydrocarbon impurities, and recycling of neon at the Tore Supra pumped ergodic divertor have been analyzed using the BBQ 3-D scrape-off layer transport code. Code results are compared with spectroscopic observations from fibres located on the neutralizer plates, and background plasma conditions used in the code are constrained with data from langmuir probes embedded in the plates. The sensitivity of neon recycling to assumed reflection coefficients has been studied. A detailed 3-D geometry model for the neutralizer, including all 4 plates, and recycling from the notches between plates, has been prepared. A version of the code describing deuterium processes is being developed to study conditions during the onset of detachment at high density

  15. On exact statistics and classification of ergodic systems of integer dimension

    SciTech Connect

    Guralnik, Zachary Guralnik, Gerald; Pehlevan, Cengiz

    2014-06-01

    We describe classes of ergodic dynamical systems for which some statistical properties are known exactly. These systems have integer dimension, are not globally dissipative, and are defined by a probability density and a two-form. This definition generalizes the construction of Hamiltonian systems by a Hamiltonian and a symplectic form. Some low dimensional examples are given, as well as a discretized field theory with a large number of degrees of freedom and a local nearest neighbor interaction. We also evaluate unequal-time correlations of these systems without direct numerical simulation, by Padé approximants of a short-time expansion. We briefly speculate on the possibility of constructing chaotic dynamical systems with non-integer dimension and exactly known statistics. In this case there is no probability density, suggesting an alternative construction in terms of a Hopf characteristic function and a two-form.

  16. Diffusive and Subdiffusive Spin Transport in the Ergodic Phase of a Many-Body Localizable System

    NASA Astrophysics Data System (ADS)

    Žnidarič, Marko; Scardicchio, Antonello; Varma, Vipin Kerala

    2016-07-01

    We study high temperature spin transport in a disordered Heisenberg chain in the ergodic regime. By employing a density matrix renormalization group technique for the study of the stationary states of the boundary-driven Lindblad equation we are able to study extremely large systems (400 spins). We find both a diffusive and a subdiffusive phase depending on the strength of the disorder and on the anisotropy parameter of the Heisenberg chain. Studying finite-size effects, we show numerically and theoretically that a very large crossover length exists that controls the passage of a clean-system dominated dynamics to one observed in the thermodynamic limit. Such a large length scale, being larger than the sizes studied before, explains previous conflicting results. We also predict spatial profiles of magnetization in steady states of generic nondiffusive systems.

  17. Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets.

    PubMed

    Levnajić, Zoran; Mezić, Igor

    2015-05-01

    We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone, and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.

  18. Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors

    SciTech Connect

    Dittmer, Robert; Jo, Wook Rödel, Jürgen; Gobeljic, Danka; Shvartsman, Vladimir V.; Lupascu, Doru C.; Jones, Jacob L.

    2014-02-28

    The effect of heterovalent B-site doping on ergodicity of relaxor ferroelectrics is studied using (1 − y)(0.81Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-0.19Bi{sub 1/2}K{sub 1/2}TiO{sub 3})-yBiZn{sub 1/2}Ti{sub 1/2}O{sub 3} (BNT-BKT-BZT) with y = (0.02;0.03;0.04) as a model system. Both the large- and small-signal parameters are studied as a function of electric field. The crystal structure is assessed by means of neutron diffraction in the initial state and after exposure to a high electric field. In order to measure ferroelastic domain textures, diffraction patterns of the poled samples are collected as a function of sample rotation angle. Piezoresponse force microscopy (PFM) is employed to probe the microstructure for polar regions at a nanoscopic scale. For low electric fields E < 2 kV·mm{sup −1}, large- and small-signal constitutive behavior do not change with composition. At high electric fields, however, drastic differences are observed due to a field-induced phase transition into a long-range ordered state. It is hypothesized that increasing BZT content decreases the degree of non-ergodicity; thus, the formation of long-range order is impeded. It is suggested that frozen and dynamic polar nano regions exist to a different degree, depending on the BZT content. This image is supported by PFM measurements. Moreover, PFM measurements suggest that the relaxation mechanism after removal of the bias field is influenced by surface charges.

  19. Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors

    NASA Astrophysics Data System (ADS)

    Dittmer, Robert; Gobeljic, Danka; Jo, Wook; Shvartsman, Vladimir V.; Lupascu, Doru C.; Jones, Jacob L.; Rödel, Jürgen

    2014-02-01

    The effect of heterovalent B-site doping on ergodicity of relaxor ferroelectrics is studied using (1 - y)(0.81Bi1/2Na1/2TiO3-0.19Bi1/2K1/2TiO3)-yBiZn1/2Ti1/2O3 (BNT-BKT-BZT) with y = {0.02;0.03;0.04} as a model system. Both the large- and small-signal parameters are studied as a function of electric field. The crystal structure is assessed by means of neutron diffraction in the initial state and after exposure to a high electric field. In order to measure ferroelastic domain textures, diffraction patterns of the poled samples are collected as a function of sample rotation angle. Piezoresponse force microscopy (PFM) is employed to probe the microstructure for polar regions at a nanoscopic scale. For low electric fields E < 2 kV.mm-1, large- and small-signal constitutive behavior do not change with composition. At high electric fields, however, drastic differences are observed due to a field-induced phase transition into a long-range ordered state. It is hypothesized that increasing BZT content decreases the degree of non-ergodicity; thus, the formation of long-range order is impeded. It is suggested that frozen and dynamic polar nano regions exist to a different degree, depending on the BZT content. This image is supported by PFM measurements. Moreover, PFM measurements suggest that the relaxation mechanism after removal of the bias field is influenced by surface charges.

  20. Numerical study of long-time dynamics and ergodic-nonergodic transitions in dense simple fluids

    NASA Astrophysics Data System (ADS)

    McCowan, David D.

    2015-08-01

    Since the mid-1980s, mode-coupling theory (MCT) has been the de facto theoretic description of dense fluids and the transition from the fluid state to the glassy state. MCT, however, is limited by the approximations used in its construction and lacks an unambiguous mechanism to institute corrections. We use recent results from a new theoretical framework—developed from first principles via a self-consistent perturbation expansion in terms of an effective two-body potential—to numerically explore the kinetics of systems of classical particles, specifically hard spheres governed by Smoluchowski dynamics. We present here a full solution for such a system to the kinetic equation governing the density-density time correlation function and show that the function exhibits the characteristic two-step decay of supercooled fluids and an ergodic-nonergodic transition to a dynamically arrested state. Unlike many previous numerical studies—and in stark contrast to experiment—we have access to the full time and wave-number range of the correlation function with great precision and are able to track the solution unprecedentedly close to the transition, covering nearly 15 decades in scaled time. Using asymptotic approximation techniques analogous to those developed for MCT, we fit the solution to predicted forms and extract critical parameters. We find complete qualitative agreement with known glassy behavior (e.g. power-law divergence of the α -relaxation time scale in the ergodic phase and square-root growth of the glass form factors in the nonergodic phase), as well as some limited quantitative agreement [e.g. the transition at packing fraction η*=0.60149761 (10 ) ] , consistent with previous static solutions under this theory and with comparable colloidal suspension experiments. However, most importantly, we establish that this new theory is able to reproduce the salient features seen in other theories, experiments, and simulations but has the advantages of being

  1. Numerical study of long-time dynamics and ergodic-nonergodic transitions in dense simple fluids.

    PubMed

    McCowan, David D

    2015-08-01

    Since the mid-1980s, mode-coupling theory (MCT) has been the de facto theoretic description of dense fluids and the transition from the fluid state to the glassy state. MCT, however, is limited by the approximations used in its construction and lacks an unambiguous mechanism to institute corrections. We use recent results from a new theoretical framework--developed from first principles via a self-consistent perturbation expansion in terms of an effective two-body potential--to numerically explore the kinetics of systems of classical particles, specifically hard spheres governed by Smoluchowski dynamics. We present here a full solution for such a system to the kinetic equation governing the density-density time correlation function and show that the function exhibits the characteristic two-step decay of supercooled fluids and an ergodic-nonergodic transition to a dynamically arrested state. Unlike many previous numerical studies--and in stark contrast to experiment--we have access to the full time and wave-number range of the correlation function with great precision and are able to track the solution unprecedentedly close to the transition, covering nearly 15 decades in scaled time. Using asymptotic approximation techniques analogous to those developed for MCT, we fit the solution to predicted forms and extract critical parameters. We find complete qualitative agreement with known glassy behavior (e.g. power-law divergence of the α-relaxation time scale in the ergodic phase and square-root growth of the glass form factors in the nonergodic phase), as well as some limited quantitative agreement [e.g. the transition at packing fraction η*=0.60149761(10)], consistent with previous static solutions under this theory and with comparable colloidal suspension experiments. However, most importantly, we establish that this new theory is able to reproduce the salient features seen in other theories, experiments, and simulations but has the advantages of being derived from

  2. Beyond the Quantum

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Mehmani, Bahar; Špička, Václav; Aghdami, Maryam J.; Khrennikov, Andrei Yu

    2007-09-01

    electrodynamics. Some quantum experiments from the point of view of Stochastic electrodynamics / V. Spicka ... [et al.]. On the ergodic behaviour of atomic systems under the action of the zero-point radiation field / L. De La Peña and A. M. Cetto. Inertia and the vacuum-view on the emergence of the inertia reaction force / A. Rueda and H. Sunahata -- pt. F. Models for the electron. Rotating Hopf-Kinks: oscillators in the sense of de Broglie / U. Enz. Kerr-Newman particles: symmetries and other properties / H.I. Arcos and J.G. Pereira. Kerr geometry beyond the quantum theory / Th. M. Nieuwenhuizen -- pt. G. Philosophical considerations. Probability in non-collapse interpretations of a quantum mechanics / D. Dieks. The Schrödinger-Park paradox about the concept of "State" in quantum statistical mechanics and quantum information theory is still open: one more reason to go beyond? / G.P. Beretta. The conjecture that local realism is possible / E. Santos -- pt. H. The round table. Round table discussion / A.M. Cetto ... [et al.].

  3. Semiclassical Foundation of Universality in Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Müller, Sebastian; Heusler, Stefan; Braun, Petr; Haake, Fritz; Altland, Alexander

    2004-07-01

    We sketch the semiclassical core of a proof of the so-called Bohigas-Giannoni-Schmit conjecture: A dynamical system with full classical chaos has a quantum energy spectrum with universal fluctuations on the scale of the mean level spacing. We show how in the semiclassical limit all system specific properties fade away, leaving only ergodicity, hyperbolicity, and combinatorics as agents determining the contributions of pairs of classical periodic orbits to the quantum spectral form factor. The small-time form factor is thus reproduced semiclassically. Bridges between classical orbits and (the nonlinear sigma model of) quantum field theory are built by revealing the contributing orbit pairs as topologically equivalent to Feynman diagrams.

  4. Ergodicity breaking and wave-function statistics in disordered interacting systems

    SciTech Connect

    De Luca, Andrea

    2014-08-20

    We present the study of the structure of many-body eigenfunctions in a one-dimensional disordered spin chain. We discuss the choice of an appropriate basis in the Hilbert space, where the problem can be seen as an Anderson model defined on a high-dimensional non-trivial graph, determined by the many-body Hamiltonian. The comparison with the usual behavior of wave-functions in finite dimensional Anderson localization allows us to put in light the main differences of the many-body case. At high disorder, the typical eigenfunctions do not seem to localize though they occupy a infinitesimal portion of the Hilbert space in the thermodynamic limit. We perform a detailed analysis of the distribution of the wave-function coefficients and their peculiar scaling in the small and large disorder phase. We propose a criterion to identify the position of the transition by looking at the long tails of these distributions. The results coming from exact diagonalization show signs of breaking of ergodicity when the disorder reaches a critical value that agrees with the estimation of the many-body localization transition in the same model.

  5. Evidence for broken ergodicity due to chemical alloying from the dissociation kinetics of binary clusters

    NASA Astrophysics Data System (ADS)

    Calvo, F.; Yurtsever, E.

    2014-06-01

    The interplay between thermal relaxation and statistical dissociation in binary Morse clusters (AB)N has been investigated using numerical simulations and simple statistical approaches, for a variety of interaction parameters covering miscible and non-miscible regimes. While all clusters exhibit a core/shell phase separation pattern in their most stable, T = 0 structure, different melting mechanisms are identified depending on the ranges and their mismatch, including two-step melting of the surface and the core or premelting as alloying. The preference for emitting A or B particles upon evaporation has been evaluated assuming that the cluster is either thermally equilibrated or vibrationally excited in its ground state structure, and compared to the predictions of the Weisskopf theory. The variations of the dissociation rate constants with increasing energy and the branching ratio between the two channels show significant differences in both cases, especially when the clusters are miscible and bound by short-range forces, which indicates that the time scale for evaporation is much shorter than the equilibration time. Our results suggest that dissociation properties could be used to test the ergodic hypothesis in such compounds.

  6. Communication: Evidence for non-ergodicity in quiescent states of periodically sheared suspensions

    NASA Astrophysics Data System (ADS)

    Schrenk, K. Julian; Frenkel, Daan

    2015-12-01

    We present simulations of an equilibrium statistical-mechanics model that uniformly samples the space of quiescent states of a periodically sheared suspension. In our simulations, we compute the structural properties of this model as a function of density. We compare the results of our simulations with the structural data obtained in the corresponding non-equilibrium model of Corté et al. [Nat. Phys. 4, 420 (2008)]. We find that the structural properties of the non-equilibrium model are very different from those of the equilibrium model, even though the two models have exactly the same set of accessible states. This observation shows that the dynamical protocol does not sample all quiescent states with equal probability. In particular, we find that, whilst quiescent states prepared in a non-equilibrium protocol can be hyperuniform [see D. Hexner and D. Levine, Phys. Rev. Lett. 114, 110602 (2015); E. Tjhung and L. Berthier, Phys. Rev. Lett. 114, 148301 (2015); and J. H. Weijs et al., Phys. Rev. Lett. 115, 108301 (2015)], ergodic sampling never leads to hyperuniformity. In addition, we observe ordering phase transitions and a percolation transition in the equilibrium model that do not show up in the non-equilibrium model. Conversely, the quiescent-to-diffusive transition in the dynamical model does not correspond to a phase transition, nor a percolation transition, in the equilibrium model.

  7. Ergodicity and spectral cascades in point vortex flows on the sphere.

    PubMed

    Dritschel, David G; Lucia, Marcello; Poje, Andrew C

    2015-06-01

    We present results for the equilibrium statistics and dynamic evolution of moderately large [n=O(10(2)-10(3))] numbers of interacting point vortices on the sphere under the constraint of zero mean angular momentum. For systems with equal numbers of positive and negative identical circulations, the density of rescaled energies, p(E), converges rapidly with n to a function with a single maximum with maximum entropy. Ensemble-averaged wave-number spectra of the nonsingular velocity field induced by the vortices exhibit the expected k(-1) behavior at small scales for all energies. Spectra at the largest scales vary continuously with the inverse temperature of the system. For positive temperatures, spectra peak at finite intermediate wave numbers; for negative temperatures, spectra decrease everywhere. Comparisons of time and ensemble averages, over a large range of energies, strongly support ergodicity in the dynamics even for highly atypical initial vortex configurations. Crucially, rapid relaxation of spectra toward the microcanonical average implies that the direction of any spectral cascade process depends only on the relative difference between the initial spectrum and the ensemble mean spectrum at that energy, not on the energy, or temperature, of the system. PMID:26172799

  8. Plasma flow and carbon production and circulation with the ergodic divertor of Tore Supra

    NASA Astrophysics Data System (ADS)

    Corre, Y.; Gunn, J.; Pégourié, B.; Guirlet, R.; DeMichelis, C.; Giannella, R.; Ghendrih, P.; Hogan, J.; Monier-Garbet, P.; Azéroual, A.; Escarguel, A.; Gauthier, E.

    2007-02-01

    This paper presents a detailed study of carbon production and transport from the ergodic divertor (ED) target plates to the plasma core in the Tore Supra tokamak. Adapted experimental and numerical modelling techniques have been used to describe each of the main phenomena in play. Edge electron density and temperature are measured with Langmuir probes. The C II, C III and Hα emission is measured with optical fibres and cameras. The background plasma flow is calculated consistently with the observed recycling pattern by the neutral transport code EDCOLL for the two magnetic connection schemes of interest (short or long connection lengths). 3D Monte-Carlo modelling of carbon near the neutralizer plate (BBQ code) shows that the transport of carbon ions is governed by the friction force in addition to the electric field. Finally, a simplified 3D test particle model is used to estimate the core penetration fraction of carbon. A high value is found for the carbon screening efficiency (fraction of particles that does not penetrate in the plasma core), in the range 95-97% depending on the edge plasma conditions. This value, combined with the calculated carbon influxes, yields the first quantitative estimate of the carbon core contamination during ED operation. The paper shows that the screening of carbon and core contamination are mainly dependent on the carbon source (partially controlled with the ED) and the plasma flow distribution in the laminar region (magnetic topology and particle drifts).

  9. Tearing mode physics studies applying the dynamic ergodic divertor on TEXTOR

    NASA Astrophysics Data System (ADS)

    Koslowski, H. R.; Westerhof, E.; de Bock, M.; Classen, I.; Jaspers, R.; Kikuchi, Y.; Krämer-Flecken, A.; Lazaros, A.; Liang, Y.; Löwenbrück, K.; Varshney, S.; von Hellermann, M.; Wolf, R.; Zimmermann, O.; TEXTOR Team

    2006-12-01

    The dynamic ergodic divertor (DED) on the TEXTOR tokamak allows for the reproducible destabilization of the m/n = 2/1 tearing mode which is phase locked to the external static or rotating perturbation field. In combination with its flexible heating systems (co- and counter-neutral beam injection, ion cyclotron resonance heating, electron cyclotron resonance heating (ECRH) with steerable launcher) dedicated experiments to study the mode onset, properties of large islands and mode stabilization can be performed. The dependence of the mode excitation threshold (field penetration) on the plasma rotation shows a resonance character, with minimum threshold when the external perturbation frequency matches the MHD frequency of the 2/1 mode. Mode stabilization by ECRH heating shows that for the TEXTOR plasma heating is more effective than the current drive in O-point. Extrapolation to ITER yields a significant contribution to the mode suppression originating from the temperature increase within the island. Alfvén-like modes, which have been previously identified in the vicinity of large islands on FTU (Buratti et al 2005 Nuclear Fusion 45 1446), are found to be created already before island formation above a certain threshold of the externally applied perturbation field.

  10. Heat pulse propagation studies around magnetic islands induced by the Dynamic Ergodic Divertor in TEXTOR

    NASA Astrophysics Data System (ADS)

    Spakman, G. W.; Hogeweij, G. M. D.; Jaspers, R. J. E.; Schüller, F. C.; Westerhof, E.; Boom, J. E.; Classen, I. G. J.; Delabie, E.; Domier, C.; Donné, A. J. H.; Kantor, M. Yu.; Krämer-Flecken, A.; Liang, Y.; Luhmann, N. C., Jr.; Park, H. K.; van de Pol, M. J.; Schmitz, O.; Oosterbeek, J. W.; TEXTOR Team

    2008-11-01

    Since the efficiency of the tearing mode suppression by heating depends on the electron heat diffusivity it is important to know if the electron heat transport coefficients inside the island are reduced compared with the ambient plasma. With that aim, modulated ECRH has been employed for heat pulse propagation studies in and around magnetic islands at the TEXTOR tokamak. The combination of its special hardware tools of the Dynamic Ergodic Divertor to generate tearing modes, the ECRH system for producing heat pulses and the electron cyclotron emission imaging (ECE-Imaging) diagnostic for its analysis offered a direct view of the perturbed two-dimensional heat flow in around the magnetic island. Inside m/n = 2/1 and m/n = 3/1 islands with a flattened temperature profile, the electron heat transport is shown to be strongly reduced with respect to the surrounding plasma. Inside the islands a heat pulse diffusion coefficients χe ~ 0.4 m2 s-1 was derived, while outside the island it is an order of magnitude larger χe > 3 m2 s-1. In contrast, power balance calculations of strongly heated islands show that the electron transport is similar to the surrounding plasma. These results suggest that the heat transport inside a magnetic island is also governed by a critical gradient-like behaviour, similar to the bulk plasma.

  11. Geometric ergodicity of a hybrid sampler for Bayesian inference of phylogenetic branch lengths.

    PubMed

    Spade, David A; Herbei, Radu; Kubatko, Laura S

    2015-10-01

    One of the fundamental goals in phylogenetics is to make inferences about the evolutionary pattern among a group of individuals, such as genes or species, using present-day genetic material. This pattern is represented by a phylogenetic tree, and as computational methods have caught up to the statistical theory, Bayesian methods of making inferences about phylogenetic trees have become increasingly popular. Bayesian inference of phylogenetic trees requires sampling from intractable probability distributions. Common methods of sampling from these distributions include Markov chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods, and one way that both of these methods can proceed is by first simulating a tree topology and then taking a sample from the posterior distribution of the branch lengths given the tree topology and the data set. In many MCMC methods, it is difficult to verify that the underlying Markov chain is geometrically ergodic, and thus, it is necessary to rely on output-based convergence diagnostics in order to assess convergence on an ad hoc basis. These diagnostics suffer from several important limitations, so in an effort to circumvent these limitations, this work establishes geometric convergence for a particular Markov chain that is used to sample branch lengths under a fairly general class of nucleotide substitution models and provides a numerical method for estimating the time this Markov chain takes to converge.

  12. GR uniqueness and deformations

    NASA Astrophysics Data System (ADS)

    Krasnov, Kirill

    2015-10-01

    In the metric formulation gravitons are described with the parity symmetric S + 2 ⊗ S - 2 representation of Lorentz group. General Relativity is then the unique theory of interacting gravitons with second order field equations. We show that if a chiral S + 3 ⊗ S - representation is used instead, the uniqueness is lost, and there is an infinite-parametric family of theories of interacting gravitons with second order field equations. We use the language of graviton scattering amplitudes, and show how the uniqueness of GR is avoided using simple dimensional analysis. The resulting distinct from GR gravity theories are all parity asymmetric, but share the GR MHV amplitudes. They have new all same helicity graviton scattering amplitudes at every graviton order. The amplitudes with at least one graviton of opposite helicity continue to be determinable by the BCFW recursion.

  13. Crowding Induces Complex Ergodic Diffusion and Dynamic Elongation of Large DNA Molecules

    PubMed Central

    Chapman, Cole D.; Gorczyca, Stephanie; Robertson-Anderson, Rae M.

    2015-01-01

    Despite the ubiquity of molecular crowding in living cells, the effects of crowding on the dynamics of genome-sized DNA are poorly understood. Here, we track single, fluorescent-labeled large DNA molecules (11, 115 kbp) diffusing in dextran solutions that mimic intracellular crowding conditions (0–40%), and determine the effects of crowding on both DNA mobility and conformation. Both DNAs exhibit ergodic Brownian motion and comparable mobility reduction in all conditions; however, crowder size (10 vs. 500 kDa) plays a critical role in the underlying diffusive mechanisms and dependence on crowder concentration. Surprisingly, in 10-kDa dextran, crowder influence saturates at ∼20% with an ∼5× drop in DNA diffusion, in stark contrast to exponentially retarded mobility, coupled to weak anomalous subdiffusion, with increasing concentration of 500-kDa dextran. Both DNAs elongate into lower-entropy states (compared to random coil conformations) when crowded, with elongation states that are gamma distributed and fluctuate in time. However, the broadness of the distribution of states and the time-dependence and length scale of elongation length fluctuations depend on both DNA and crowder size with concentration having surprisingly little impact. Results collectively show that mobility reduction and coil elongation of large crowded DNAs are due to a complex interplay between entropic effects and crowder mobility. Although elongation and initial mobility retardation are driven by depletion interactions, subdiffusive dynamics, and the drastic exponential slowing of DNA, up to ∼300×, arise from the reduced mobility of larger crowders. Our results elucidate the highly important and widely debated effects of cellular crowding on genome-sized DNA. PMID:25762333

  14. Unique Access to Learning

    ERIC Educational Resources Information Center

    Goble, Don

    2009-01-01

    This article describes the many learning opportunities that broadcast technology students at Ladue Horton Watkins High School in St. Louis, Missouri, experience because of their unique access to technology and methods of learning. Through scaffolding, stepladder techniques, and trial by fire, students learn to produce multiple television programs,…

  15. Velocity of a Molecule Evaporated from a Water Nanodroplet: Maxwell–Boltzmann Statistics versus Non-Ergodic Events

    PubMed Central

    Abdoul-Carime, Hassan; Berthias, Francis; Feketeová, Linda; Marciante, Mathieu; Calvo, Florent; Forquet, Valérian; Chermette, Henry; Farizon, Bernadette; Farizon, Michel; Märk, Tilmann D

    2015-01-01

    The velocity of a molecule evaporated from a mass-selected protonated water nanodroplet is measured by velocity map imaging in combination with a recently developed mass spectrometry technique. The measured velocity distributions allow probing statistical energy redistribution in ultimately small water nanodroplets after ultrafast electronic excitation. As the droplet size increases, the velocity distribution rapidly approaches the behavior expected for macroscopic droplets. However, a distinct high-velocity contribution provides evidence of molecular evaporation before complete energy redistribution, corresponding to non-ergodic events. PMID:26473406

  16. Comment on "Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems" [J. Chem. Phys. 133, 164503 (2010)].

    PubMed

    Johari, G P

    2011-04-14

    A critical examination shows that the specific heat and shear modulus relaxation spectra do not support the notions of continuously broken ergodicity and loss of configurational contribution on isothermal glass transition, nor does the long-known result that C(p) → 0 as T → 0 K prove that S(conf) → 0. Spectra show variation of the real and imaginary components due to phase lag and not due to loss of configurational degrees of freedom. The high-frequency shear modulus, G(∞), of glass increases with time as its fictive temperature decreases and dG(∞)∕dT decreases when a glass forms. PMID:21495772

  17. A proof of the log-concavity conjecture related to the computation of the ergodic capacity of MIMO channels

    SciTech Connect

    Gurvitis, Leonid

    2009-01-01

    An upper bound on the ergodic capacity of MIMO channels was introduced recently in [1]. This upper bound amounts to the maximization on the simplex of some multilinear polynomial p({lambda}{sub 1}, ..., {lambda}{sub n}) with non-negative coefficients. In general, such maximizations problems are NP-HARD. But if say, the functional log(p) is concave on the simplex and can be efficiently evaluated, then the maximization can also be done efficiently. Such log-concavity was conjectured in [1]. We give in this paper self-contained proof of the conjecture, based on the theory of H-Stable polynomials.

  18. Simulations of Quantum Spin Models on 2D Frustrated Lattices

    NASA Astrophysics Data System (ADS)

    Melko, Roger

    2006-03-01

    Algorithmic advances in quantum Monte Carlo techniques have opened up the possibility of studying models in the general class of the S=1/2 XXZ model (equivalent to hard-core bosons) on frustrated lattices. With an antiferromagnetic diagonal interaction (Jz), these models can be solved exactly with QMC, albeit with some effort required to retain ergodicity in the near-degenerate manifold of states that exists for large Jz. The application of the quantum (ferromagnetic off-diagonal) interaction to this classically degenerate manifold produces a variety of intriguing physics, including an order-by-disorder supersolid phase, novel insulating states, and possible exotic quantum critical phenomena. We discuss numerical results for the triangular and kagome lattices with nearest and next-nearest neighbor exchange interactions, and focus on the relevance of the simulations to related areas of physics, such as experiments of cold trapped atomic gasses and the recent theory of deconfined quantum criticality.

  19. The Equivalence of Dissipation from Gibbs’ Entropy Production with Phase-Volume Loss in Ergodic Heat-Conducting Oscillators

    NASA Astrophysics Data System (ADS)

    Patra, Puneet Kumar; Hoover, William Graham; Hoover, Carol Griswold; Sprott, Julien Clinton

    Gibbs’ thermodynamic entropy is given by the logarithm of the phase volume, which itself responds to heat transfer to and from thermal reservoirs. We compare the thermodynamic dissipation described by (i) phase-volume loss with (ii) heat-transfer entropy production. Their equivalence is documented for computer simulations of the response of an ergodic harmonic oscillator to thermostated temperature gradients. In the simulations one or two thermostat variables control the kinetic energy or the kinetic energy and its fluctuation. All of the motion equations are time-reversible. We consider both strong and weak control variables. In every case, the time-averaged dissipative loss of phase-space volume coincides with the entropy produced by heat transfer. Linear-response theory nicely reproduces the small-gradient results obtained by computer simulation. The thermostats considered here are ergodic and provide simple dynamical models, some of them with as few as three ordinary differential equations, while remaining capable of reproducing Gibbs’ canonical phase-space distribution and are precisely consistent with irreversible thermodynamics.

  20. Is Life Unique?

    PubMed Central

    Abel, David L.

    2011-01-01

    Is life physicochemically unique? No. Is life unique? Yes. Life manifests innumerable formalisms that cannot be generated or explained by physicodynamics alone. Life pursues thousands of biofunctional goals, not the least of which is staying alive. Neither physicodynamics, nor evolution, pursue goals. Life is largely directed by linear digital programming and by the Prescriptive Information (PI) instantiated particularly into physicodynamically indeterminate nucleotide sequencing. Epigenomic controls only compound the sophistication of these formalisms. Life employs representationalism through the use of symbol systems. Life manifests autonomy, homeostasis far from equilibrium in the harshest of environments, positive and negative feedback mechanisms, prevention and correction of its own errors, and organization of its components into Sustained Functional Systems (SFS). Chance and necessity—heat agitation and the cause-and-effect determinism of nature’s orderliness—cannot spawn formalisms such as mathematics, language, symbol systems, coding, decoding, logic, organization (not to be confused with mere self-ordering), integration of circuits, computational success, and the pursuit of functionality. All of these characteristics of life are formal, not physical. PMID:25382119

  1. The New Quantum Logic

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2014-06-01

    It is shown how all the major conceptual difficulties of standard (textbook) quantum mechanics, including the two measurement problems and the (supposed) nonlocality that conflicts with special relativity, are resolved in the consistent or decoherent histories interpretation of quantum mechanics by using a modified form of quantum logic to discuss quantum properties (subspaces of the quantum Hilbert space), and treating quantum time development as a stochastic process. The histories approach in turn gives rise to some conceptual difficulties, in particular the correct choice of a framework (probabilistic sample space) or family of histories, and these are discussed. The central issue is that the principle of unicity, the idea that there is a unique single true description of the world, is incompatible with our current understanding of quantum mechanics.

  2. How periodic driving heats a disordered quantum spin chain

    NASA Astrophysics Data System (ADS)

    Rehn, Jorge; Lazarides, Achilleas; Pollmann, Frank; Moessner, Roderich

    2016-07-01

    We study the energy absorption in real time of a disordered quantum spin chain subjected to coherent monochromatic periodic driving. We determine characteristic fingerprints of the well-known ergodic (Floquet-Eigenstate thermalization hypothesis for slow driving/weak disorder) and many-body localized (Floquet-many-body localization for fast driving/strong disorder) phases. In addition, we identify an intermediate regime, where the energy density of the system—unlike the entanglement entropy a local and bounded observable—grows logarithmically slowly over a very large time window.

  3. Quantum backreaction through the Bohmian particle.

    PubMed

    Prezhdo, O V; Brooksby, C

    2001-04-01

    A novel solution to the quantum backreaction problem in a mixed quantum-classical simulation is provided using the Bohmian interpretation of quantum mechanics. The Bohmian backreaction is unique, computationally simple, features reaction channel branching, and easily gives the full classical limit. The Bohmian quantum-classical method is illustrated by application to a model of O2 interacting with a Pt surface.

  4. Production model in the conditions of unstable demand taking into account the influence of trading infrastructure: Ergodicity and its application

    NASA Astrophysics Data System (ADS)

    Obrosova, N. K.; Shananin, A. A.

    2015-04-01

    A production model with allowance for a working capital deficit and a restricted maximum possible sales volume is proposed and analyzed. The study is motivated by an attempt to analyze the problems of functioning of low competitive macroeconomic structures. The model is formalized in the form of a Bellman equation, for which a closed-form solution is found. The stochastic process of product stock variations is proved to be ergodic and its final probability distribution is found. Expressions for the average production load and the average product stock are found by analyzing the stochastic process. A system of model equations relating the model variables to official statistical parameters is derived. The model is identified using data from the Fiat and KAMAZ companies. The influence of the credit interest rate on the firm market value assessment and the production load level are analyzed using comparative statics methods.

  5. On the ergodicity of supercooled molecular glass-forming liquids at the dynamical arrest: the o-terphenyl case

    PubMed Central

    Mallamace, Francesco; Corsaro, Carmelo; Leone, Nancy; Villari, Valentina; Micali, Norberto; Chen, Sow-Hsin

    2014-01-01

    The dynamics of supercooled ortho-terphenyl has been studied using photon-correlation spectroscopy (PCS) in the depolarized scattering geometry. The obtained relaxation curves are analyzed according to the mode-coupling theory (MCT) for supercooled liquids. The main results are: i) the observation of the secondary Johari-Goldstein relaxation (β) that has its onset just at the dynamical crossover temperature TB (TM > TB > Tg); ii) the confirmation, of the suggestion of a recent statistical mechanical study, that such a molecular system remains ergodic also below the calorimetric glass-transition temperature Tg. Our experimental data give evidence that the time scales of the primary (α) and this secondary relaxations are correlated. Finally a comparison with recent PCS experiments in a colloidal system confirms the primary role of the dynamical crossover in the physics of the dynamical arrest. PMID:24434872

  6. On the ergodicity of supercooled molecular glass-forming liquids at the dynamical arrest: the o-terphenyl case.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Leone, Nancy; Villari, Valentina; Micali, Norberto; Chen, Sow-Hsin

    2014-01-17

    The dynamics of supercooled ortho-terphenyl has been studied using photon-correlation spectroscopy (PCS) in the depolarized scattering geometry. The obtained relaxation curves are analyzed according to the mode-coupling theory (MCT) for supercooled liquids. The main results are: i) the observation of the secondary Johari-Goldstein relaxation (β) that has its onset just at the dynamical crossover temperature TB (TM > TB > Tg); ii) the confirmation, of the suggestion of a recent statistical mechanical study, that such a molecular system remains ergodic also below the calorimetric glass-transition temperature Tg. Our experimental data give evidence that the time scales of the primary (α) and this secondary relaxations are correlated. Finally a comparison with recent PCS experiments in a colloidal system confirms the primary role of the dynamical crossover in the physics of the dynamical arrest.

  7. Effect of the dynamic ergodic divertor in the TEXTOR tokamak on MHD stability, plasma rotation and transport

    NASA Astrophysics Data System (ADS)

    Wolf, R. C.; Biel, W.; de Bock, M. F. M.; Finken, K. H.; Günter, S.; Hogeweij, G. M. D.; Jachmich, S.; Jakubowski, M. W.; Jaspers, R. J. E.; Krämer-Flecken, A.; Koslowski, H. R.; Lehnen, M.; Liang, Y.; Unterberg, B.; Varshney, S. K.; von Hellermann, M.; Yu, Q.; Zimmermann, O.; Abdullaev, S. S.; Donné, A. J. H.; Samm, U.; Schweer, B.; Tokar, M.; Westerhof, E.; TEXTOR Team

    2005-12-01

    With the dynamic ergodic divertor in TEXTOR fundamental effects of the coupling of external magnetic field perturbations to the confined plasma have been studied. The non-linear coupling between external (m/n = 12/4) and internal modes (m/n = 3/1) has been investigated. The critical perturbation field (m/n = 3/1) for the excitation of an m/n = 2/1 tearing mode depends not only on the magnitude but also on the direction of the toroidal angular momentum input by neutral beam injection (NBI). Below the excitation threshold of this mode a toroidal spin-up of the plasma has been observed, which only depends on the strength of the perturbation field. It is independent of both the rotation direction of the external perturbation field and the toroidal angular momentum supplied by the NBI.

  8. Quantum rendering

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.

    2003-08-01

    In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.

  9. Extended quantum U(1)-liquid phase in a three-dimensional quantum dimer model

    SciTech Connect

    Sikora, Olga; Shannon, Nic; Pollmann, Frank; Penc, Karlo; Fulde, Peter

    2011-09-15

    Recently, quantum dimer models have attracted a great deal of interest as a paradigm for the study of exotic quantum phases. Much of this excitement has centered on the claim that a certain class of quantum dimer model can support a quantum U(1)-liquid phase with deconfined fractional excitations in three dimensions. These fractional monomer excitations are quantum analogs of the magnetic monopoles found in spin ice. In this paper, we use extensive quantum Monte Carlo simulations to establish the ground-state phase diagram of the quantum dimer model on the three-dimensional diamond lattice as a function of the ratio {mu} of the potential to kinetic-energy terms in the Hamiltonian. We find that, for {mu}{sub c}=0.75{+-}0.02, the model undergoes a first-order quantum phase transition from an ordered ''R state'' into an extended quantum U(1)-liquid phase, which terminates in a quantum critical Rokhsar-Kivelson (RK) point for {mu}=1. This confirms the published field-theoretical scenario. We present detailed evidence for the existence of the U(1)-liquid phase and indirect evidence for the existence of its photon and monopole excitations. Simulations are benchmarked against a variety of exact and perturbative results, and a comparison is made of different variational wave functions. We also explore the ergodicity of the quantum dimer model on a diamond lattice within a given flux sector, identifying a new conserved quantity related to transition graphs of dimer configurations. These results complete and extend the previous analysis of O. Sikora et al.[Phys. Rev. Lett. 103, 247001 (2009)].

  10. TRIQS/CTHYB: A continuous-time quantum Monte Carlo hybridisation expansion solver for quantum impurity problems

    NASA Astrophysics Data System (ADS)

    Seth, Priyanka; Krivenko, Igor; Ferrero, Michel; Parcollet, Olivier

    2016-03-01

    We present TRIQS/CTHYB, a state-of-the art open-source implementation of the continuous-time hybridisation expansion quantum impurity solver of the TRIQS package. This code is mainly designed to be used with the TRIQS library in order to solve the self-consistent quantum impurity problem in a multi-orbital dynamical mean field theory approach to strongly-correlated electrons, in particular in the context of realistic electronic structure calculations. It is implemented in C++ for efficiency and is provided with a high-level Python interface. The code ships with a new partitioning algorithm that divides the local Hilbert space without any user knowledge of the symmetries and quantum numbers of the Hamiltonian. Furthermore, we implement higher-order configuration moves and show that such moves are necessary to ensure ergodicity of the Monte Carlo in common Hamiltonians even without symmetry-breaking.

  11. Ideal quantum glass transitions: Many-body localization without quenched disorder

    SciTech Connect

    Schiulaz, M.; Müller, M.

    2014-08-20

    We explore the possibility for translationally invariant quantum many-body systems to undergo a dynamical glass transition, at which ergodicity and translational invariance break down spontaneously, driven entirely by quantum effects. In contrast to analogous classical systems, where the existence of such an ideal glass transition remains a controversial issue, a genuine phase transition is predicted in the quantum regime. This ideal quantum glass transition can be regarded as a many-body localization transition due to self-generated disorder. Despite their lack of thermalization, these disorder-free quantum glasses do not possess an extensive set of local conserved operators, unlike what is conjectured for many-body localized systems with strong quenched disorder.

  12. Experimental study of impurity screening in the edge ergodic layer of the Large Helical Device using carbon emissions of CIII to CVI

    NASA Astrophysics Data System (ADS)

    Chowdhuri, Malay Bikas; Morita, Shigeru; Kobayashi, Masahiro; Goto, Motoshi; Zhou, Hangyu; Masuzaki, Suguru; Morisaki, Tomohiro; Narihara, Kazumichi; Yamada, Ichihiro; Feng, Yuehe

    2009-06-01

    Four resonance transitions of CIII (977.03 Å:2 s2 S10-2s2pP11), CIV (1550 Å:2s S2-2p P2), CV (40.27 Å:1s2 S10-1s2pP11), and CVI (33.73 Å:1s S2-2p P2) have been observed in vacuum ultraviolet and extreme ultraviolet regions to study the edge carbon impurity transport in the Large Helical Device ergodic layer. Here, CIII and CIV indicate the carbon influx at the outside boundary of the ergodic layer and CV and CVI indicate the ions in higher ionization stages, which have already experienced the transport in the ergodic layer. The intensity ratio of CV+CVI to CIII+CIV, therefore, represents the degree of impurity screening, which has been analyzed with different edge plasma parameters and ergodic magnetic field structures. The ratio decreases by two orders of magnitude with an increase in electron density ne in the range of 1-8×1019 m-3. The CV and CVI emissions tend to decrease with ne, whereas the CIII and CIV emissions monotonically increase with ne. The result suggests an enhancement of the impurity screening in the higher ne range due to the increasing ion-impurity collision frequency (νΖi≡1/τs=3.4×104 s-1 at ne=2×1019 m-3 and 1.0×105 s-1 at 6×1019 m-3 for CV). The friction force parallel to the magnetic fields plays an important role in the edge impurity transport within the ergodic layer. When the ergodic layer structure is thicker, the ratio systematically decreases mainly due to a reduction in CV+CVI emissions. The ratio is also studied by changing the radial position of an externally supplied m /n=1/1 island. When the island is positioned in the ergodic layer, the ratio indicates a remarkable change, i.e., reduction in CV+CVI and increase in CIII+CIV. These experiments demonstrate that the modification of the ergodic magnetic field structure makes a clear change to the edge impurity transport. When the background ion species is changed from hydrogen to helium, the ratio is clearly reduced, at least at ne≤4×1019 m-3, suggesting the

  13. Some characterizations of unique extremality

    NASA Astrophysics Data System (ADS)

    Yao, Guowu

    2008-07-01

    In this paper, it is shown that some necessary characteristic conditions for unique extremality obtained by Zhu and Chen are also sufficient and some sufficient ones by them actually imply that the uniquely extremal Beltrami differentials have a constant modulus. In addition, some local properties of uniquely extremal Beltrami differentials are given.

  14. Quantum stochastic calculus associated with quadratic quantum noises

    NASA Astrophysics Data System (ADS)

    Ji, Un Cig; Sinha, Kalyan B.

    2016-02-01

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus.

  15. Theory of Quantum Loschmidt Echoes

    NASA Astrophysics Data System (ADS)

    Prosen, T.; Seligman, T. H.; Žnidarič, M.

    In this paper we review our recent work on the theoretical approach to quantum Loschmidt echoes, i.e., various properties of the so-called echo dynamics -- the composition of forward and backward time evolutions generated by two slightly different Hamiltonians, such as the state autocorrelation function (fidelity) and the purity of a reduced density matrix traced over a subsystem (purity fidelity). Our main theoretical result is a linear response formalism, expressing the fidelity and purity fidelity in terms of integrated time autocorrelation function of the generator of the perturbation. Surprisingly, this relation predicts that the decay of fidelity is the slower the faster the decay of correlations. In particular for a static (time-independent) perturbation, and for non-ergodic and non-mixing dynamics where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale ∝ 1/δ as opposed to mixing dynamics where the fidelity is found to decay exponentially on a time-scale ∝ 1/δ2, where δ is a strength of perturbation. A detailed discussion of a semi-classical regime of small effective values of Planck constant hbar is given where classical correlation functions can be used to predict quantum fidelity decay. Note that the correct and intuitively expected classical stability behavior is recovered in the classical limit hbarto 0, as the two limits δto 0 and hbarto 0 do not commute. The theoretical results are demonstrated numerically for two models, the quantized kicked top and the multi-level Jaynes Cummings model. Our method can for example be applied to the stability analysis of quantum computation and quantum information processing.

  16. Quantum Information and Computing

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Ohya, Masanori; Watanabe, N.

    2006-03-01

    Preface -- Coherent quantum control of [symbol]-atoms through the stochastic limit / L. Accardi, S. V. Kozyrev and A. N. Pechen -- Recent advances in quantum white noise calculus / L. Accardi and A. Boukas -- Control of quantum states by decoherence / L. Accardi and K. Imafuku -- Logical operations realized on the Ising chain of N qubits / M. Asano, N. Tateda and C. Ishii -- Joint extension of states of fermion subsystems / H. Araki -- Quantum filtering and optimal feedback control of a Gaussian quantum free particle / S. C. Edwards and V. P. Belavkin -- On existence of quantum zeno dynamics / P. Exner and T. Ichinose -- Invariant subspaces and control of decoherence / P. Facchi, V. L. Lepore and S. Pascazio -- Clauser-Horner inequality for electron counting statistics in multiterminal mesoscopic conductors / L. Faoro, F. Taddei and R. Fazio -- Fidelity of quantum teleportation model using beam splittings / K.-H. Fichtner, T. Miyadera and M. Ohya -- Quantum logical gates realized by beam splittings / W. Freudenberg ... [et al.] -- Information divergence for quantum channels / S. J. Hammersley and V. P. Belavkin -- On the uniqueness theorem in quantum information geometry / H. Hasegawa -- Noncanonical representations of a multi-dimensional Brownian motion / Y. Hibino -- Some of future directions of white noise theory / T. Hida -- Information, innovation and elemental random field / T. Hida -- Generalized quantum turing machine and its application to the SAT chaos algorithm / S. Iriyama, M. Ohya and I. Volovich -- A Stroboscopic approach to quantum tomography / A. Jamiolkowski -- Positive maps and separable states in matrix algebras / A. Kossakowski -- Simulating open quantum systems with trapped ions / S. Maniscalco -- A purification scheme and entanglement distillations / H. Nakazato, M. Unoki and K. Yuasa -- Generalized sectors and adjunctions to control micro-macro transitions / I. Ojima -- Saturation of an entropy bound and quantum Markov states / D. Petz -- An

  17. Edwards thermodynamics of the jamming transition for frictionless packings: Ergodicity test and role of angoricity and compactivity

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Song, Chaoming; Wang, Ping; Makse, Hernán A.

    2012-07-01

    This paper illustrates how the tools of equilibrium statistical mechanics can help to describe a far-from-equilibrium problem: the jamming transition in frictionless granular materials. Edwards ideas consist of proposing a statistical ensemble of volume and stress fluctuations through the thermodynamic notion of entropy, compactivity, X, and angoricity, A (two temperature-like variables). We find that Edwards thermodynamics is able to describe the jamming transition (J point) in frictionless packings. Using the ensemble formalism we elucidate the following: (i) We test the combined volume-stress ensemble by comparing the statistical properties of jammed configurations obtained by dynamics with those averaged over the ensemble of minima in the potential energy landscape as a test of ergodicity. Agreement between both methods supports the idea of ergodicity and “thermalization” at a given angoricity and compactivity. (ii) A microcanonical ensemble analysis supports the maximum entropy principle for grains. (iii) The intensive variables A and X describe the approach to jamming through a series of scaling relations as A→0+ and X→0-. Due to the force-strain coupling in the interparticle forces, the jamming transition is probed thermodynamically by a “jamming temperature” TJ composed of contributions from A and X. (iv) The thermodynamic framework reveals the order of the jamming phase transition by showing the absence of critical fluctuations at jamming in static observables like pressure and volume, and we discuss other critical scenarios for the jamming transition. (v) Finally, we elaborate on a comparison with relevant studies by Gao, Blawzdziewicz, and O’Hern [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.74.061304 74, 061304 (2006)], showing a breakdown of equiprobability of microstates obtained via fast quenches. A network analysis of the energy landscape reveals the origin of the inhomogeneities in the uneven distribution of the areas of the basins

  18. Quantum computing

    PubMed Central

    Li, Shu-Shen; Long, Gui-Lu; Bai, Feng-Shan; Feng, Song-Lin; Zheng, Hou-Zhi

    2001-01-01

    Quantum computing is a quickly growing research field. This article introduces the basic concepts of quantum computing, recent developments in quantum searching, and decoherence in a possible quantum dot realization. PMID:11562459

  19. Uniqueness Theorem for Black Objects

    SciTech Connect

    Rogatko, Marek

    2010-06-23

    We shall review the current status of uniqueness theorem for black objects in higher dimensional spacetime. At the beginning we consider static charged asymptotically flat spacelike hypersurface with compact interior with both degenerate and non-degenerate components of the event horizon in n-dimensional spacetime. We gave some remarks concerning partial results in proving uniqueness of stationary axisymmetric multidimensional solutions and winding numbers which can uniquely characterize the topology and symmetry structure of black objects.

  20. Is quantum mechanics exact?

    NASA Astrophysics Data System (ADS)

    Kapustin, Anton

    2013-06-01

    We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.

  1. Is quantum mechanics exact?

    SciTech Connect

    Kapustin, Anton

    2013-06-15

    We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.

  2. On the approach to thermal equilibrium of macroscopic quantum systems

    SciTech Connect

    Goldstein, Sheldon; Tumulka, Roderich

    2011-03-24

    In joint work with J. L. Lebowitz, C. Mastrodonato, and N. Zanghi[2, 3, 4], we considered an isolated, macroscopic quantum system. Let H be a micro-canonical 'energy shell', i.e., a subspace of the system's Hilbert space spanned by the (finitely) many energy eigenstates with energies between E and E+{delta}E. The thermal equilibrium macro-state at energy E corresponds to a subspace H{sub eq} of H such that dimHeq/dimH is close to 1. We say that a system with state vector {psi}{epsilon}H is in thermal equilibrium if {psi} is 'close' to H{sub eq}. We argue that for 'typical' Hamiltonians, all initial state vectors {psi}{sub 0} evolve in such a way that {psi}{sub t} is in thermal equilibrium for most times t. This is closely related to von Neumann's quantum ergodic theorem of 1929.

  3. Connected components of irreducible maps and 1D quantum phases

    NASA Astrophysics Data System (ADS)

    Szehr, Oleg; Wolf, Michael M.

    2016-08-01

    We investigate elementary topological properties of sets of completely positive (CP) maps that arise in quantum Perron-Frobenius theory. We prove that the set of primitive CP maps of fixed Kraus rank is path-connected and we provide a complete classification of the connected components of irreducible CP maps at given Kraus rank and fixed peripheral spectrum in terms of a multiplicity index. These findings are then applied to analyse 1D quantum phases by studying equivalence classes of translational invariant matrix product states that correspond to the connected components of the respective CP maps. Our results extend the previously obtained picture in that they do not require blocking of physical sites, they lead to analytic paths, and they allow us to decompose into ergodic components and to study the breaking of translational symmetry.

  4. A note on the Landauer principle in quantum statistical mechanics

    SciTech Connect

    Jakšić, Vojkan; Pillet, Claude-Alain

    2014-07-01

    The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than kBT log 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work [Reeb, D. and Wolf M. M., “(Im-)proving Landauer's principle,” preprint http://arxiv.org/abs/arXiv:1306.4352v2 (2013)] on the subject is discussed and compared.

  5. Exploring Unique Roles for Psychologists

    ERIC Educational Resources Information Center

    Ahmed, Mohiuddin; Boisvert, Charles M.

    2005-01-01

    This paper presents comments on "Psychological Treatments" by D. H. Barlow. Barlow highlighted unique roles that psychologists can play in mental health service delivery by providing psychological treatments--treatments that psychologists would be uniquely qualified to design and deliver. In support of Barlow's position, the authors draw from…

  6. On the Meaning of Uniqueness

    ERIC Educational Resources Information Center

    Shipman, Barbara A.

    2013-01-01

    This article analyzes four questions on the meaning of uniqueness that have contrasting answers in common language versus mathematical language. The investigations stem from a scenario in which students interpreted uniqueness according to a definition from standard English, that is, different from the mathematical meaning, in defining an injective…

  7. Transition from distributional to ergodic behavior in an inhomogeneous diffusion process: Method revealing an unknown surface diffusivity.

    PubMed

    Akimoto, Takuma; Seki, Kazuhiko

    2015-08-01

    Diffusion of molecules in cells plays an important role in providing a biological reaction on the surface by finding a target on the membrane surface. The water retardation (slow diffusion) near the target assists the searching molecules to recognize the target. Here, we consider effects of the surface diffusivity on the effective diffusivity, where diffusion on the surface is slower than that in bulk. We show that the ensemble-averaged mean-square displacements increase linearly with time when the desorption rate from the surface is finite, which is valid even when the diffusion on the surface is anomalous (subdiffusion). Moreover, this slow diffusion on the surface affects the fluctuations of the time-averaged mean-square displacements (TAMSDs). We find that fluctuations of the TAMSDs remain large when the measurement time is smaller than a characteristic time, and decays according to an increase of the measurement time for a relatively large measurement time. Therefore, we find a transition from nonergodic (distributional) to ergodic diffusivity in a target search process. Moreover, this fluctuation analysis provides a method to estimate an unknown surface diffusivity.

  8. Another look at low-frequency variability in climate dynamics, from the ergodic theory of dynamical systems

    NASA Astrophysics Data System (ADS)

    Chekroun, M. D.

    2012-04-01

    Climate variability, oceanic currents, and geophysical turbulent flows in general exhibit recurrent large-scale patterns which although evolving irregularly in time, exhibit characteristic dominant frequencies across a large range of time-scales from intraseasonal through seasonal-interannual up to interdecadal. The understanding of the associated low-frequency variability (LFV) is essential for simulation and prediction of the irregularly occurring events in each of these bands. In the case of El-Niño-Southern Oscillation (ENSO), Chekroun et al. (PNAS, 108, 2011) showed that a better understanding of these modes - and their interactions with higher-frequency variability - allows an extension of predictability for a stochastic model exhibiting the appropriate LFV (for ENSO, the quasi-biennial and quasi-quadrennial modes essentially). Several approaches have been proposed to explain the origin of such LFV over the past decades such as the mechanisms of nonlinear resonance or the ones of noise-sustained oscillations from non-normal modes, to name a few. In this talk, new perspectives stemming from the ergodic theory of dynamical systems will be presented which will point out other mathematical representations of LFV as arising in dissipative chaotic systems subject to random disturbance or not. The theory of time-dependent Sinaï-Ruelle-Bowen measures (Chekroun et al., Physica D, 240, 2011) and the theory of Koopman operator will serve us in that perspective. Idealized models of intermediate complexity will illustrate our theoretical approach and challenges for more realistic models will be discussed.

  9. Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Auletta, Gennaro; Fortunato, Mauro; Parisi, Giorgio

    2014-01-01

    Introduction; Part I. Basic Features of Quantum Mechanics: 1. From classical mechanics to quantum mechanics; 2. Quantum observable and states; 3. Quantum dynamics; 4. Examples of quantum dynamics; 5. Density matrix; Part II. More Advanced Topics: 6. Angular momentum and spin; 7. Identical particles; 8. Symmetries and conservation laws; 9. The measurement problem; Part III. Matter and Light: 10. Perturbations and approximation methods; 11. Hydrogen and helium atoms; 12. Hydrogen molecular ion; 13. Quantum optics; Part IV. Quantum Information: State and Correlations: 14. Quantum theory of open systems; 15. State measurement in quantum mechanics; 16. Entanglement: non-separability; 17. Entanglement: quantum information; References; Index.

  10. Quantum Computer Games: Schrodinger Cat and Hounds

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  11. Quantum Complexity in Graphene

    NASA Astrophysics Data System (ADS)

    Baskaran, G.

    Carbon has a unique position among elements in the periodic table. It produces an allotrope, graphene, a mechanically robust two dimensional semimetal. The multifarious properties that graphene exhibits has few parallels among elemental metals. From simplicity, namely carbon atoms connected by pure sp2 bonds, a wealth of novel quantum properties emerge. In classical complex systems such as a spin glass or a finance market, several competing agents or elements are responsible for unanticipated and difficult to predict emergent properties. The complex (sic) structure of quantum mechanics is responsbile for an unanticipated set of emergent properties in graphene. We call this quantum complexity. In fact, most quantum systems, phenomena and modern quantum field theory could be viewed as examples of quantum complexity. After giving a brief introduction to the quantum complexity we focus on our own work, which indicates the breadth in the type of quantum phenomena that graphene could support. We review our theoretical suggestions of, (i) spin-1 collective mode in netural graphene, (ii) relativistic type of phenomena in crossed electric and magnetic fields, (iii) room temperature superconductivity in doped graphene and (iv) composite Fermi sea in neutral graphene in uniform magnetic field and (v) two-channel Kondo effect. Except for the relativistic type of phenomena, the rest depend in a fundamental way on a weak electron correlation that exists in the broad two-dimensional band of graphene.

  12. Uniqueness of the momentum map

    NASA Astrophysics Data System (ADS)

    Esposito, Chiara; Nest, Ryszard

    2016-08-01

    We give a detailed discussion of existence and uniqueness of the momentum map associated to Poisson Lie actions, which was defined by Lu. We introduce a weaker notion of momentum map, called infinitesimal momentum map, which is defined on one-forms and we analyze its integrability to the Lu's momentum map. Finally, the uniqueness of the Lu's momentum map is studied by describing, explicitly, the tangent space to the space of momentum maps.

  13. Roadmap on quantum optical systems

    NASA Astrophysics Data System (ADS)

    Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.

    2016-09-01

    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.

  14. Semidirect Products of C*-Quantum Groups: Multiplicative Unitaries Approach

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Roy, Sutanu; Woronowicz, Stanisław Lech

    2016-08-01

    C*-quantum groups with projection are the noncommutative analogues of semidirect products of groups. Radford's Theorem about Hopf algebras with projection suggests that any C*-quantum group with projection decomposes uniquely into an ordinary C*-quantum group and a "braided" C*-quantum group. We establish this on the level of manageable multiplicative unitaries.

  15. Weak Ergodicity Breaking of Receptor Motion in Living Cells Stemming from Random Diffusivity

    NASA Astrophysics Data System (ADS)

    Manzo, Carlo; Torreno-Pina, Juan A.; Massignan, Pietro; Lapeyre, Gerald J.; Lewenstein, Maciej; Garcia Parajo, Maria F.

    2015-01-01

    Molecular transport in living systems regulates numerous processes underlying biological function. Although many cellular components exhibit anomalous diffusion, only recently has the subdiffusive motion been associated with nonergodic behavior. These findings have stimulated new questions for their implications in statistical mechanics and cell biology. Is nonergodicity a common strategy shared by living systems? Which physical mechanisms generate it? What are its implications for biological function? Here, we use single-particle tracking to demonstrate that the motion of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN), a receptor with unique pathogen-recognition capabilities, reveals nonergodic subdiffusion on living-cell membranes In contrast to previous studies, this behavior is incompatible with transient immobilization, and, therefore, it cannot be interpreted according to continuous-time random-walk theory. We show that the receptor undergoes changes of diffusivity, consistent with the current view of the cell membrane as a highly dynamic and diverse environment. Simulations based on a model of an ordinary random walk in complex media quantitatively reproduce all our observations, pointing toward diffusion heterogeneity as the cause of DC-SIGN behavior. By studying different receptor mutants, we further correlate receptor motion to its molecular structure, thus establishing a strong link between nonergodicity and biological function. These results underscore the role of disorder in cell membranes and its connection with function regulation. Because of its generality, our approach offers a framework to interpret anomalous transport in other complex media where dynamic heterogeneity might play a major role, such as those found, e.g., in soft condensed matter, geology, and ecology.

  16. Quantum memory Quantum memory

    NASA Astrophysics Data System (ADS)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  17. Quantum Opportunities and Challenges for Fundamental Sciences in Space

    NASA Technical Reports Server (NTRS)

    Yu, Nan

    2012-01-01

    Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.

  18. Quantum Communication

    NASA Astrophysics Data System (ADS)

    Weinfurter, Harald; Zeilinger, Anton

    Quantum entanglement lies at the heart of the new field of quantum communication and computation. For a long time, entanglement was seen just as one of those fancy features which make quantum mechanics so counterintuitive. But recently, quantum information theory has shown the tremendous importance of quantum correlations for the formulation of new methods of information transfer and for algorithms exploiting the capabilities of quantum computers.This chapter describes the first experimental realizations of quantum communication schemes using entangled photon pairs. We show how to make communication secure against eavesdropping using entanglement-based quantum cryptography, how to increase the information capacity of a quantum channel by quantum dense coding and, finally, how to communicate quantum information itself in the process of quantum teleportation.

  19. Vance Tartar: a unique biologist.

    PubMed

    Frankel, J; Whiteley, A H

    1993-01-01

    Vance Tartar (1911-1991) has made major discoveries concerning morphogenesis, patterning, and nucleocytoplasmic relations in the giant ciliate Stentor coeruleus, mostly by means of hand-grafting using glass microneedles. This article provides a chronological account of the major events of Vance Tartar's life, a brief description of some of his major scientific achievements, and a discussion of his distinctive personality and multifaceted interests. It concludes with a consideration of how his unique style of life and work contributed to his equally unique scientific contributions. PMID:8457795

  20. The liberal illusion of uniqueness.

    PubMed

    Stern, Chadly; West, Tessa V; Schmitt, Peter G

    2014-01-01

    In two studies, we demonstrated that liberals underestimate their similarity to other liberals (i.e., display truly false uniqueness), whereas moderates and conservatives overestimate their similarity to other moderates and conservatives (i.e., display truly false consensus; Studies 1 and 2). We further demonstrated that a fundamental difference between liberals and conservatives in the motivation to feel unique explains this ideological distinction in the accuracy of estimating similarity (Study 2). Implications of the accuracy of consensus estimates for mobilizing liberal and conservative political movements are discussed. PMID:24247730

  1. Quantum control in spintronics.

    PubMed

    Ardavan, A; Briggs, G A D

    2011-08-13

    Superposition and entanglement are uniquely quantum phenomena. Superposition incorporates a phase that contains information surpassing any classical mixture. Entanglement offers correlations between measurements in quantum systems that are stronger than any that would be possible classically. These give quantum computing its spectacular potential, but the implications extend far beyond quantum information processing. Early applications may be found in entanglement-enhanced sensing and metrology. Quantum spins in condensed matter offer promising candidates for investigating and exploiting superposition and entanglement, and enormous progress is being made in quantum control of such systems. In gallium arsenide (GaAs), individual electron spins can be manipulated and measured, and singlet-triplet states can be controlled in double-dot structures. In silicon, individual electron spins can be detected by ionization of phosphorus donors, and information can be transferred from electron spins to nuclear spins to provide long memory times. Electron and nuclear spins can be manipulated in nitrogen atoms incarcerated in fullerene molecules, which in turn can be assembled in ordered arrays. Spin states of charged nitrogen vacancy centres in diamond can be manipulated and read optically. Collective spin states in a range of materials systems offer scope for holographic storage of information. Conditions are now excellent for implementing superposition and entanglement in spintronic devices, thereby opening up a new era of quantum technologies.

  2. COPD: Unique to Older Adults

    MedlinePlus

    ... Multiple Health Problems Prevention Join our e-newsletter! Aging & Health A to Z COPD Unique to Older Adults This section provides information ... not a weakness or a normal part of aging. Most people feel better with ... help you can, so that your COPD does not prevent you from living your life ...

  3. Milton: A New, Unique Pallasite

    NASA Technical Reports Server (NTRS)

    Jones, R. H.; Wasson, J. T.; Larson, T.; Sharp, Z. D.

    2003-01-01

    The Milton pallasite was found in Missouri, U.S.A. in October, 2000. It consists of a single stone that originally weighed approximately 2040 g. The chemistry of the olivine and metal phases, plus the oxygen isotope ratios of the olivines, differ significantly from other pallasites, making Milton unique. Unfortunately, the meteorite is heavily fractured and weathered.

  4. Rufus Choate: A Unique Orator.

    ERIC Educational Resources Information Center

    Markham, Reed

    Rufus Choate, a Massachusetts lawyer and orator, has been described as a "unique and romantic phenomenon" in America's history. Born in 1799 in Essex, Massachusetts, Choate graduated from Dartmouth College and attended Harvard Law School. Choate's goal was to be the top in his profession. Daniel Webster was Choate's hero. Choate became well…

  5. Uniquely identifying wheat plant structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniquely naming wheat (Triticum aestivum L. em Thell) plant parts is useful for communicating plant development research and the effects of environmental stresses on normal wheat development. Over the past 30+ years, several naming systems have been proposed for wheat shoot, leaf, spike, spikelet, ...

  6. Quantum simulation

    NASA Astrophysics Data System (ADS)

    Georgescu, I. M.; Ashhab, S.; Nori, Franco

    2014-01-01

    Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems. However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, i.e., quantum simulation. Quantum simulation promises to have applications in the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry, and cosmology. Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct. A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins, and photons have been proposed as quantum simulators. This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field.

  7. On the uniqueness of the solution of inverse problems in saturation fluorimetry of polyatomic organic compounds

    SciTech Connect

    Kozyreva, O V; Popov, K V

    2000-10-31

    The theoretical and practical uniqueness of the results obtained by the method of nonlinear laser fluorimetry is considered. The theoretical uniqueness of measuring three basic photophysical parameters (the absorption cross section, the excited-state lifetime, and the quantum yield of intersystem crossing) from fluorescence saturation curves is proved rigorously mathematically. The practical uniqueness of the results obtained by this method is proved by the measurements of the absorption cross section and the excited-state lifetime from the calculated curves of fluorescence saturation simulating fluorescence saturation of aqueous solutions of rhodamine 6G, eosin, and Bengal rose dyes. (laser applications and other topics in quantum electronics)

  8. Unique MSV for every job

    SciTech Connect

    Not Available

    1985-06-01

    Consafe is now using a computer-aided design and drafting system adapting its multipurpose support vessels (MSVS) to specific user requirements. The vessels are based on the concept of standard container modules adapted into living quarters, workshops, service units, offices with each application for a specific project demanding a unique mix. There is also the need for constant refurbishment program as service conditions take their toll on the modules. The computer-aided design system is described.

  9. Holographic quantum computing.

    PubMed

    Tordrup, Karl; Negretti, Antonio; Mølmer, Klaus

    2008-07-25

    We propose to use a single mesoscopic ensemble of trapped polar molecules for quantum computing. A "holographic quantum register" with hundreds of qubits is encoded in collective excitations with definite spatial phase variations. Each phase pattern is uniquely addressed by optical Raman processes with classical optical fields, while one- and two-qubit gates and qubit readout are accomplished by transferring the qubit states to a stripline microwave cavity field and a Cooper pair box where controllable two-level unitary dynamics and detection is governed by classical microwave fields.

  10. Quantum ontologies

    SciTech Connect

    Stapp, H.P.

    1988-12-01

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs.

  11. Static and dynamical quantum correlations in phases of an alternating-field X Y model

    NASA Astrophysics Data System (ADS)

    Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal

    2016-10-01

    We investigate the static and dynamical patterns of entanglement in an anisotropic X Y model with an alternating transverse magnetic field, which is equivalent to a two-component one-dimensional Fermi gas on a lattice, a system realizable with current technology. Apart from the antiferromagnetic and paramagnetic phases, the model possesses a dimer phase which is not present in the transverse X Y model. At zero temperature, we find that the first derivative of bipartite entanglement can detect all the three phases. We analytically show that the model has a "factorization line" on the plane of system parameters, in which the zero-temperature state is separable. Along with investigating the effect of temperature on entanglement in a phase plane, we also report a nonmonotonic behavior of entanglement with respect to temperature in the antiferromagnetic and paramagnetic phases, which is surprisingly absent in the dimer phase. Since the time dynamics of entanglement in a realizable physical system plays an important role in quantum information processing tasks, the evolutions of entanglement at small as well as large time are examined. Consideration of large-time behavior of entanglement helps us to prove that in this model, entanglement is always ergodic. We observe that other quantum correlation measures can qualitatively show similar features in zero and finite temperatures. However, unlike nearest-neighbor entanglement, the nearest-neighbor information-theoretic measures can be both ergodic as well as nonergodic, depending on the system parameters.

  12. Random scattering matrices for Andreev quantum dots with nonideal leads

    NASA Astrophysics Data System (ADS)

    Béri, B.

    2009-06-01

    We calculate the distribution of the scattering matrix at the Fermi level for chaotic normal-superconducting systems for the case of arbitrary coupling of the scattering region to the scattering channels. The derivation is based on the assumption of uniformly distributed scattering matrices at ideal coupling, which holds in the absence of a gap in the quasiparticle excitation spectrum. The resulting distribution is the analog of the Poisson kernel for the nonstandard symmetry classes introduced by Altland and Zirnbauer. We show that unlike the Poisson kernel, the analyticity-ergodicity constraint does not apply to our result. As a simple application, we calculate the distribution of the conductance for a single-channel chaotic Andreev quantum dot in a magnetic field.

  13. Quantum diffusion with drift and the Einstein relation. I

    SciTech Connect

    De Roeck, Wojciech; Fröhlich, Jürg; Schnelli, Kevin

    2014-07-15

    We study the dynamics of a quantum particle hopping on a simple cubic lattice and driven by a constant external force. It is coupled to an array of identical, independent thermal reservoirs consisting of free, massless Bose fields, one at each site of the lattice. When the particle visits a site x of the lattice it can emit or absorb field quanta of the reservoir at x. Under the assumption that the coupling between the particle and the reservoirs and the driving force are sufficiently small, we establish the following results: The ergodic average over time of the state of the particle approaches a non-equilibrium steady state describing a non-zero mean drift of the particle. Its motion around the mean drift is diffusive, and the diffusion constant and the drift velocity are related to one another by the Einstein relation.

  14. Quantum memristors

    PubMed Central

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  15. Quantum memristors.

    PubMed

    Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  16. Quantum memristors.

    PubMed

    Pfeiffer, P; Egusquiza, I L; Di Ventra, M; Sanz, M; Solano, E

    2016-07-06

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.

  17. Quantum memristors

    NASA Astrophysics Data System (ADS)

    Pfeiffer, P.; Egusquiza, I. L.; di Ventra, M.; Sanz, M.; Solano, E.

    2016-07-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.

  18. Solving quantum trajectories in Coulomb potential by quantum Hamilton-Jacobi theory

    NASA Astrophysics Data System (ADS)

    Yang, Ciann-Dong

    We show that the quantum central-force problems can be modeled and solved exactly by quantum Hamilton-Jacobi formulation, from which the quantum operators z, 2, and can be derived without using the quantization principle p ? (/i)?/?x. Quantum conservation laws expressed by the Poisson bracket show that the eigenvalues of these quantum operators are just equal to the constants of motion along the eigen-trajectories defined in a complex domain. The shell structure observed in bound systems, such as the hydrogen atom, is found to stem from the structure of the quantum potential, by which the quantum forces acting on the electron can be uniquely determined, the stability of atomic configuration can be justified, and the quantum trajectories of the electron can be obtained by integrating the related quantum Lagrange equations. On solving the quantum equations of motion, the solution of the Schrödinger equation serves as the first integration of the second-order quantum Lagrange equations. The stable equilibrium points of the derived first-order nonlinear quantum dynamics are shown to be identical to the positions with maximum probability predicted by standard quantum mechanics. The internal mechanism of how the quantum dynamics evolve continuously to classical dynamics and of how the quantum conservation laws transit continuously to the classical conservation laws as n ? ? are analyzed in detail. The construction of the quantum scattering trajectory by searching for an unbound solution for the Schrödinger equation is investigated.

  19. Quantum Teardrops

    NASA Astrophysics Data System (ADS)

    Brzeziński, Tomasz; Fairfax, Simon A.

    2012-11-01

    Algebras of functions on quantum weighted projective spaces are introduced, and the structure of quantum weighted projective lines or quantum teardrops is described in detail. In particular the presentation of the coordinate algebra of the quantum teardrop in terms of generators and relations and classification of irreducible *-representations are derived. The algebras are then analysed from the point of view of Hopf-Galois theory or the theory of quantum principal bundles. Fredholm modules and associated traces are constructed. C*-algebras of continuous functions on quantum weighted projective lines are described and their K-groups computed.

  20. Quantum pump in quantum spin Hall edge states

    NASA Astrophysics Data System (ADS)

    Cheng, Fang

    2016-09-01

    We present a theory for quantum pump in a quantum spin Hall bar with two quantum point contacts (QPCs). The pump currents can be generated by applying harmonically modulating gate voltages at QPCs. The phase difference between the gate voltages introduces an effective gauge field, which breaks the time-reversal symmetry and generates pump currents. The pump currents display very different pump frequency dependence for weak and strong e-e interaction. These unique properties are induced by the helical feature of the edge states, and therefore can be used to detect and control edge state transport.

  1. Consistent quantum measurements

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2015-11-01

    In response to recent criticisms by Okon and Sudarsky, various aspects of the consistent histories (CH) resolution of the quantum measurement problem(s) are discussed using a simple Stern-Gerlach device, and compared with the alternative approaches to the measurement problem provided by spontaneous localization (GRW), Bohmian mechanics, many worlds, and standard (textbook) quantum mechanics. Among these CH is unique in solving the second measurement problem: inferring from the measurement outcome a property of the measured system at a time before the measurement took place, as is done routinely by experimental physicists. The main respect in which CH differs from other quantum interpretations is in allowing multiple stochastic descriptions of a given measurement situation, from which one (or more) can be selected on the basis of its utility. This requires abandoning a principle (termed unicity), central to classical physics, that at any instant of time there is only a single correct description of the world.

  2. Quantum cosmology: a review.

    PubMed

    Bojowald, Martin

    2015-02-01

    In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.

  3. The unique biochemistry of methanogenesis.

    PubMed

    Deppenmeier, Uwe

    2002-01-01

    Methanogenic archaea have an unusual type of metabolism because they use H2 + CO2, formate, methylated C1 compounds, or acetate as energy and carbon sources for growth. The methanogens produce methane as the major end product of their metabolism in a unique energy-generating process. The organisms received much attention because they catalyze the terminal step in the anaerobic breakdown of organic matter under sulfate-limiting conditions and are essential for both the recycling of carbon compounds and the maintenance of the global carbon flux on Earth. Furthermore, methane is an important greenhouse gas that directly contributes to climate changes and global warming. Hence, the understanding of the biochemical processes leading to methane formation are of major interest. This review focuses on the metabolic pathways of methanogenesis that are rather unique and involve a number of unusual enzymes and coenzymes. It will be shown how the previously mentioned substrates are converted to CH4 via the CO2-reducing, methylotrophic, or aceticlastic pathway. All catabolic processes finally lead to the formation of a mixed disulfide from coenzyme M and coenzyme B that functions as an electron acceptor of certain anaerobic respiratory chains. Molecular hydrogen, reduced coenzyme F420, or reduced ferredoxin are used as electron donors. The redox reactions as catalyzed by the membrane-bound electron transport chains are coupled to proton translocation across the cytoplasmic membrane. The resulting electrochemical proton gradient is the driving force for ATP synthesis as catalyzed by an A1A0-type ATP synthase. Other energy-transducing enzymes involved in methanogenesis are the membrane-integral methyltransferase and the formylmethanofuran dehydrogenase complex. The former enzyme is a unique, reversible sodium ion pump that couples methyl-group transfer with the transport of Na+ across the membrane. The formylmethanofuran dehydrogenase is a reversible ion pump that catalyzes

  4. Uniqueness of the gauge invariant action for cosmological perturbations

    SciTech Connect

    Prokopec, Tomislav; Weenink, Jan E-mail: j.g.weenink@uu.nl

    2012-12-01

    In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cubic action for one choice of gauge invariant variables is unique in the following sense: the action for any other, non-linearly related variable can be brought to the same bulk action, plus additional boundary terms. These boundary terms correspond to the choice of hypersurface and generate extra, disconnected contributions to the bispectrum. We also discuss uniqueness of the action with respect to conformal frames. When expressed in terms of the gauge invariant curvature perturbation on uniform field hypersurfaces the action for cosmological perturbations has a unique form, independent of the original Einstein or Jordan frame. Crucial is that the gauge invariant comoving curvature perturbation is frame independent, which makes it extremely helpful in showing the quantum equivalence of the two frames, and therefore in calculating quantum effects in nonminimally coupled theories such as Higgs inflation.

  5. Unique features of space reactors

    SciTech Connect

    Buden, D.

    1990-01-01

    Space reactors are designed to meet a unique set of requirements; they must be sufficiently compact to be launched in a rocket to their operational location, operate for many years without maintenance and servicing, operate in extreme environments, and reject heat by radiation to space. To meet these restrictions, operating temperatures are much greater than in terrestrial power plants, and the reactors tend to have a fast neutron spectrum. Currently, a new generation of space reactor power plants is being developed. The major effort is in the SP-100 program, where the power plant is being designed for seven years of full power, and no maintenance operation at a reactor outlet operating temperature of 1350 K. 8 refs., 3 figs., 1 tab.

  6. The Probabilities of Unique Events

    PubMed Central

    Khemlani, Sangeet S.; Lotstein, Max; Johnson-Laird, Phil

    2012-01-01

    Many theorists argue that the probabilities of unique events, even real possibilities such as President Obama's re-election, are meaningless. As a consequence, psychologists have seldom investigated them. We propose a new theory (implemented in a computer program) in which such estimates depend on an intuitive non-numerical system capable only of simple procedures, and a deliberative system that maps intuitions into numbers. The theory predicts that estimates of the probabilities of conjunctions should often tend to split the difference between the probabilities of the two conjuncts. We report two experiments showing that individuals commit such violations of the probability calculus, and corroborating other predictions of the theory, e.g., individuals err in the same way even when they make non-numerical verbal estimates, such as that an event is highly improbable. PMID:23056224

  7. Split liver transplantation: What's unique?

    PubMed

    Dalal, Aparna R

    2015-09-24

    The intraoperative management of split liver transplantation (SLT) has some unique features as compared to routine whole liver transplantations. Only the liver has this special ability to regenerate that confers benefits in survival and quality of life for two instead of one by splitting livers. Primary graft dysfunction may result from small for size syndrome. Graft weight to recipient body weight ratio is significant for both trisegmental and hemiliver grafts. Intraoperative surgical techniques aim to reduce portal hyperperfusion and decrease venous portal pressure. Ischemic preconditioning can be instituted to protect against ischemic reperfusion injury which impacts graft regeneration. Advancement of the technique of SLT is essential as use of split cadaveric grafts expands the donor pool and potentially has an excellent future. PMID:26421261

  8. Quantum dots: Rethinking the electronics

    NASA Astrophysics Data System (ADS)

    Bishnoi, Dimple

    2016-05-01

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including "waste heat" from the sun's energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  9. Quantum Darwinism

    SciTech Connect

    Zurek, Wojciech H

    2008-01-01

    Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.

  10. Quantum memristors

    DOE PAGESBeta

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-07-06

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantummore » regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.« less

  11. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms.

  12. Quantum criticality

    NASA Astrophysics Data System (ADS)

    Coleman, Piers; Schofield, Andrew J.

    2005-01-01

    As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary - that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures.

  13. CYP1B1: a unique gene with unique characteristics.

    PubMed

    Faiq, Muneeb A; Dada, Rima; Sharma, Reetika; Saluja, Daman; Dada, Tanuj

    2014-01-01

    CYP1B1, a recently described dioxin inducible oxidoreductase, is a member of the cytochrome P450 superfamily involved in the metabolism of estradiol, retinol, benzo[a]pyrene, tamoxifen, melatonin, sterols etc. It plays important roles in numerous physiological processes and is expressed at mRNA level in many tissues and anatomical compartments. CYP1B1 has been implicated in scores of disorders. Analyses of the recent studies suggest that CYP1B1 can serve as a universal/ideal cancer marker and a candidate gene for predictive diagnosis. There is plethora of literature available about certain aspects of CYP1B1 that have not been interpreted, discussed and philosophized upon. The present analysis examines CYP1B1 as a peculiar gene with certain distinctive characteristics like the uniqueness in its chromosomal location, gene structure and organization, involvement in developmentally important disorders, tissue specific, not only expression, but splicing, potential as a universal cancer marker due to its involvement in key aspects of cellular metabolism, use in diagnosis and predictive diagnosis of various diseases and the importance and function of CYP1B1 mRNA in addition to the regular translation. Also CYP1B1 is very difficult to express in heterologous expression systems, thereby, halting its functional studies. Here we review and analyze these exceptional and startling characteristics of CYP1B1 with inputs from our own experiences in order to get a better insight into its molecular biology in health and disease. This may help to further understand the etiopathomechanistic aspects of CYP1B1 mediated diseases paving way for better research strategies and improved clinical management. PMID:25658124

  14. Respiratory infections unique to Asia.

    PubMed

    Tsang, Kenneth W; File, Thomas M

    2008-11-01

    Asia is a highly heterogeneous region with vastly different cultures, social constitutions and populations affected by a wide spectrum of respiratory diseases caused by tropical pathogens. Asian patients with community-acquired pneumonia differ from their Western counterparts in microbiological aetiology, in particular the prominence of Gram-negative organisms, Mycobacterium tuberculosis, Burkholderia pseudomallei and Staphylococcus aureus. In addition, the differences in socioeconomic and health-care infrastructures limit the usefulness of Western management guidelines for pneumonia in Asia. The importance of emerging infectious diseases such as severe acute respiratory syndrome and avian influenza infection remain as close concerns for practising respirologists in Asia. Specific infections such as melioidosis, dengue haemorrhagic fever, scrub typhus, leptospirosis, salmonellosis, penicilliosis marneffei, malaria, amoebiasis, paragonimiasis, strongyloidiasis, gnathostomiasis, trinchinellosis, schistosomiasis and echinococcosis occur commonly in Asia and manifest with a prominent respiratory component. Pulmonary eosinophilia, endemic in parts of Asia, could occur with a wide range of tropical infections. Tropical eosinophilia is believed to be a hyper-sensitivity reaction to degenerating microfilariae trapped in the lungs. This article attempts to address the key respiratory issues in these respiratory infections unique to Asia and highlight the important diagnostic and management issues faced by practising respirologists.

  15. Quantum frames

    NASA Astrophysics Data System (ADS)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  16. Quantum cheques

    NASA Astrophysics Data System (ADS)

    Moulick, Subhayan Roy; Panigrahi, Prasanta K.

    2016-06-01

    We propose the idea of a quantum cheque scheme, a cryptographic protocol in which any legitimate client of a trusted bank can issue a cheque, that cannot be counterfeited or altered in anyway, and can be verified by a bank or any of its branches. We formally define a quantum cheque and present the first unconditionally secure quantum cheque scheme and show it to be secure against any no-signalling adversary. The proposed quantum cheque scheme can been perceived as the quantum analog of Electronic Data Interchange, as an alternate for current e-Payment Gateways.

  17. Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Zurek, Wojciech Hubert

    2009-03-01

    Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.

  18. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation

    NASA Astrophysics Data System (ADS)

    Ohba, Tomonori

    2016-07-01

    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2–5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4–0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems.

  19. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation.

    PubMed

    Ohba, Tomonori

    2016-01-01

    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2-5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4-0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems. PMID:27363671

  20. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation

    PubMed Central

    Ohba, Tomonori

    2016-01-01

    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2–5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4–0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems. PMID:27363671

  1. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation.

    PubMed

    Ohba, Tomonori

    2016-07-01

    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2-5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4-0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems.

  2. Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Fehr, Serge

    2010-05-01

    Quantum cryptography makes use of the quantum-mechanical behavior of nature for the design and analysis of cryptographic schemes. Optimally (but not always), quantum cryptography allows for the design of cryptographic schemes whose security is guaranteed solely by the laws of nature. This is in sharp contrast to standard cryptographic schemes, which can be broken in principle, i.e., when given sufficient computing power. From a theory point of view, quantum cryptography offers a beautiful interplay between the mathematics of adversarial behavior and quantum information theory. In this review article, we discuss the traditional application of quantum cryptography, quantum key distribution (QKD), from a modern perspective, and we discuss some recent developments in the context of quantum two-party cooperation (2PC). QKD allows two distant parties to communicate in a provably-secure way in the presence of an outside eavesdropper, whereas 2PC is concerned with protecting information against possibly malicious insiders. We show the basic idea of constructing quantum cryptographic schemes, but we also show some connections to quantum information theory as needed for the rigorous security analyses, and we discuss some of the relevant quantum-information-theoretic results.

  3. Quantum Optics

    NASA Astrophysics Data System (ADS)

    Orvil Scully, Marlan; Zubairy, Muhammad Suhail

    1997-09-01

    Quantum optics has witnessed significant theoretical and experimental developments in recent years. This book provides an in-depth and wide-ranging introduction to the subject, emphasizing throughout the basic principles and their applications. The book begins by developing the basic tools of quantum optics, and goes on to show the application of these tools in a variety of quantum optical systems, including lasing without inversion, squeezed states, and atom optics. The final four chapters discuss quantum optical tests of the foundations of quantum mechanics, and particular aspects of measurement theory. Assuming only a background of standard quantum mechanics and electromagnetic theory, and containing many problems and references, this book will be invaluable to graduate students of quantum optics, as well as to researchers in this field.

  4. Symbols are not uniquely human.

    PubMed

    Ribeiro, Sidarta; Loula, Angelo; de Araújo, Ivan; Gudwin, Ricardo; Queiroz, João

    2007-01-01

    Modern semiotics is a branch of logics that formally defines symbol-based communication. In recent years, the semiotic classification of signs has been invoked to support the notion that symbols are uniquely human. Here we show that alarm-calls such as those used by African vervet monkeys (Cercopithecus aethiops), logically satisfy the semiotic definition of symbol. We also show that the acquisition of vocal symbols in vervet monkeys can be successfully simulated by a computer program based on minimal semiotic and neurobiological constraints. The simulations indicate that learning depends on the tutor-predator ratio, and that apprentice-generated auditory mistakes in vocal symbol interpretation have little effect on the learning rates of apprentices (up to 80% of mistakes are tolerated). In contrast, just 10% of apprentice-generated visual mistakes in predator identification will prevent any vocal symbol to be correctly associated with a predator call in a stable manner. Tutor unreliability was also deleterious to vocal symbol learning: a mere 5% of "lying" tutors were able to completely disrupt symbol learning, invariably leading to the acquisition of incorrect associations by apprentices. Our investigation corroborates the existence of vocal symbols in a non-human species, and indicates that symbolic competence emerges spontaneously from classical associative learning mechanisms when the conditioned stimuli are self-generated, arbitrary and socially efficacious. We propose that more exclusive properties of human language, such as syntax, may derive from the evolution of higher-order domains for neural association, more removed from both the sensory input and the motor output, able to support the gradual complexification of grammatical categories into syntax.

  5. Quantum entanglement, quantum communication and the limits of quantum computing

    NASA Astrophysics Data System (ADS)

    Ambainis, Andris

    Quantum entanglement is a term describing the quantum correlations between different parts of a quantum system. Quantum information theory has developed sophisticated techniques to quantify and study quantum entanglement. In this thesis, we show how to apply those techniques to problems in quantum algorithms, complexity theory, communication and cryptography. The main results are: (1) quantum communication protocols that are exponentially more efficient that conventional (classical) communication protocols, (2) unconditionally secure quantum protocols for cryptographic problems, (3) a new "quantum adversary" method for proving lower bounds on quantum algorithms, (4) a study of "one clean qubit computation", a model related to the experimental implementation of quantum computers using NMR (nucleo-magnetic resonance) technology.

  6. Quantum volume

    NASA Astrophysics Data System (ADS)

    Ryabov, V. A.

    2015-08-01

    Quantum systems in a mechanical embedding, the breathing mode of a small particles, optomechanical system, etc. are far not the full list of examples in which the volume exhibits quantum behavior. Traditional consideration suggests strain in small systems as a result of a collective movement of particles, rather than the dynamics of the volume as an independent variable. The aim of this work is to show that some problem here might be essentially simplified by introducing periodic boundary conditions. At this case, the volume is considered as the independent dynamical variable driven by the internal pressure. For this purpose, the concept of quantum volume based on Schrödinger’s equation in 𝕋3 manifold is proposed. It is used to explore several 1D model systems: An ensemble of free particles under external pressure, quantum manometer and a quantum breathing mode. In particular, the influence of the pressure of free particle on quantum oscillator is determined. It is shown also that correction to the spectrum of the breathing mode due to internal degrees of freedom is determined by the off-diagonal matrix elements of the quantum stress. The new treatment not using the “force” theorem is proposed for the quantum stress tensor. In the general case of flexible quantum 3D dynamics, quantum deformations of different type might be introduced similarly to monopole mode.

  7. Heisenberg picture approach to the stability of quantum Markov systems

    SciTech Connect

    Pan, Yu E-mail: zibo.miao@anu.edu.au; Miao, Zibo E-mail: zibo.miao@anu.edu.au; Amini, Hadis; Gough, John; Ugrinovskii, Valery; James, Matthew R.

    2014-06-15

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, which extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.

  8. Contextuality supplies the 'magic' for quantum computation.

    PubMed

    Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph

    2014-06-19

    Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms. PMID:24919152

  9. Contextuality supplies the 'magic' for quantum computation.

    PubMed

    Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph

    2014-06-19

    Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.

  10. Contextuality supplies the `magic' for quantum computation

    NASA Astrophysics Data System (ADS)

    Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph

    2014-06-01

    Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via `magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple `hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.

  11. Quantum flywheel

    NASA Astrophysics Data System (ADS)

    Levy, Amikam; Diósi, Lajos; Kosloff, Ronnie

    2016-05-01

    In this work we present the concept of a quantum flywheel coupled to a quantum heat engine. The flywheel stores useful work in its energy levels, while additional power is extracted continuously from the device. Generally, the energy exchange between a quantum engine and a quantized work repository is accompanied by heat, which degrades the charging efficiency. Specifically when the quantum harmonic oscillator acts as a work repository, quantum and thermal fluctuations dominate the dynamics. Quantum monitoring and feedback control are applied to the flywheel in order to reach steady state and regulate its operation. To maximize the charging efficiency one needs a balance between the information gained by measuring the system and the information fed back to the system. The dynamics of the flywheel are described by a stochastic master equation that accounts for the engine, the external driving, the measurement, and the feedback operations.

  12. Quantifying quantumness and the quest for Queens of Quantum

    NASA Astrophysics Data System (ADS)

    Giraud, Olivier; Braun, Petr; Braun, Daniel

    2010-06-01

    We introduce a measure of 'quantumness' for any quantum state in a finite-dimensional Hilbert space, based on the distance between the state and the convex set of classical states. The latter are defined as states that can be written as a convex sum of projectors onto coherent states. We derive the general properties of this measure of non-classicality and use it to identify, for a given dimension of Hilbert space, the 'Queen of Quantum' (QQ) states, i.e. the most non-classical quantum states. In three dimensions, we obtain the QQ state analytically and show that it is unique up to rotations. In up to 11-dimensional Hilbert spaces, we find the QQ states numerically, and show that in terms of their Majorana representation they are highly symmetric bodies, which for dimensions 5 and 7 correspond to Platonic bodies.

  13. Quantum criticality.

    PubMed

    Coleman, Piers; Schofield, Andrew J

    2005-01-20

    As we mark the centenary of Albert Einstein's seminal contribution to both quantum mechanics and special relativity, we approach another anniversary--that of Einstein's foundation of the quantum theory of solids. But 100 years on, the same experimental measurement that puzzled Einstein and his contemporaries is forcing us to question our understanding of how quantum matter transforms at ultra-low temperatures. PMID:15662409

  14. Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins

    NASA Astrophysics Data System (ADS)

    Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain

    2015-03-01

    We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ξk ~eαk3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ∞ . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).

  15. Quantum seismography

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas, Salvador

    2016-05-01

    A major scientific thrust from recent years has been to try to harness quantum phenomena to increase the performance of a wide variety of information processing devices. In particular, quantum radar has emerged as an intriguing theoretical concept that could revolutionize electromagnetic standoff sensing. In this paper we will discuss how the techniques developed for quantum radar could also be used towards the design of novel seismographs able to detect small ground vibrations., We use a hypothetical earthquake warning system in order to compare quantum seismography with traditional seismographic techniques.

  16. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  17. Dissipative quantum computing with open quantum walks

    SciTech Connect

    Sinayskiy, Ilya; Petruccione, Francesco

    2014-12-04

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  18. Quantumness and the role of locality on quantum correlations

    NASA Astrophysics Data System (ADS)

    Bellomo, G.; Plastino, A.; Plastino, A. R.

    2016-06-01

    Quantum correlations in a physical system are usually studied with respect to a unique and fixed decomposition of the system into subsystems, without fully exploiting the rich structure of the state space. Here, we show several examples in which the consideration of different ways to decompose a physical system enhances the quantum resources and accounts for a more flexible definition of quantumness measures. Furthermore, we give a different perspective regarding how to reassess the fact that local operations play a key role in general quantumness measures that go beyond entanglement—as discordlike ones. We propose a family of measures to quantify the maximum quantumness of a given state. For the discord-based case, we present some analytical results for 2 ×d -dimensional states. Applying our definition to low-dimensional bipartite states, we show that different behaviors can be reported for separable and entangled states vis-à-vis those corresponding to the usual measures of quantum correlations. We show that there is a close link between our proposal and the criterion to witness quantum correlations based on the rank of the correlation matrix, proposed by Dakić, Vedral, and Brukner [Phys. Rev. Lett. 105, 190502 (2010), 10.1103/PhysRevLett.105.190502].

  19. Rhodomentones A and B, novel meroterpenoids with unique NMR characteristics from Rhodomyrtus tomentosa.

    PubMed

    Liu, Hong-Xin; Chen, Kai; Yuan, Yao; Xu, Zhi-Fang; Tan, Hai-Bo; Qiu, Sheng-Xiang

    2016-07-26

    Two novel meroterpenoids, rhodomentones A and B bearing an unprecedented caryophyllene-conjugated oxa-spiro[5.8] tetradecadiene skeleton, were isolated from the leaves of Rhodomyrtus tomentosa. Their structures with unique NMR characteristics were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction, quantum molecular calculation, chemical transformation as well as total synthesis. PMID:27405792

  20. Quantum metrology

    NASA Technical Reports Server (NTRS)

    Lee, H.; Kok, P.; Dowling, J. P.

    2002-01-01

    This paper addresses the formal equivalence between the Mach-Zehnder interferometer, the Ramsey spectroscope, and a specific quantum logical gate. Based on this equivalence we introduce the quantum Rosetta Stone, and we describe a projective measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity.

  1. Quantum microbiology.

    PubMed

    Trevors, J T; Masson, L

    2011-01-01

    During his famous 1943 lecture series at Trinity College Dublin, the reknown physicist Erwin Schrodinger discussed the failure and challenges of interpreting life by classical physics alone and that a new approach, rooted in Quantum principles, must be involved. Quantum events are simply a level of organization below the molecular level. This includes the atomic and subatomic makeup of matter in microbial metabolism and structures, as well as the organic, genetic information code of DNA and RNA. Quantum events at this time do not elucidate, for example, how specific genetic instructions were first encoded in an organic genetic code in microbial cells capable of growth and division, and its subsequent evolution over 3.6 to 4 billion years. However, due to recent technological advances, biologists and physicists are starting to demonstrate linkages between various quantum principles like quantum tunneling, entanglement and coherence in biological processes illustrating that nature has exerted some level quantum control to optimize various processes in living organisms. In this article we explore the role of quantum events in microbial processes and endeavor to show that after nearly 67 years, Schrödinger was prophetic and visionary in his view of quantum theory and its connection with some of the fundamental mechanisms of life. PMID:21368338

  2. Quantum picturalism

    NASA Astrophysics Data System (ADS)

    Coecke, Bob

    2010-01-01

    Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown quantum states cannot be cloned? Yet, the proof of the 'no-cloning theorem' is easy, and its consequences and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually intriguing and easily derivable physical phenomenon of 'quantum teleportation'? We claim that the quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from computer science, the quantum mechanical formalism is 'low-level'. In this review we present steps towards a diagrammatic 'high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports 'automation': it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design protocols. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly

  3. Quantum Mechanics and Narratability

    NASA Astrophysics Data System (ADS)

    Myrvold, Wayne C.

    2016-07-01

    As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.

  4. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    2006-11-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  5. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    1995-04-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  6. Quantum strategies of quantum measurements

    NASA Astrophysics Data System (ADS)

    Li, Chuan-Feng; Zhang, Yong-Sheng; Huang, Yun-Feng; Guo, Guang-Can

    2001-03-01

    In the classical Monty Hall problem, one player can always win with probability 2/3. We generalize the problem to the quantum domain and show that a fair two-party zero-sum game can be carried out if the other player is permitted to adopt quantum measurement strategy.

  7. Quantum physics without quantum philosophy

    NASA Astrophysics Data System (ADS)

    Dürr, Detlef; Goldstein, Sheldon; Zanghì, Nino

    Quantum philosophy, a peculiar twentieth-century malady, is responsible for most of the conceptual muddle plaguing the foundations of quantum physics. When this philosophy is eschewed, one naturally arrives at Bohmian mechanics, which is what emerges from Schrödinger's equation for a nonrelativistic system of particles when we merely insist that 'particles' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. The quantum formalism emerges when measurement situations are analyzed according to this theory. When the quantum formalism is regarded as arising in this way, the paradoxes and perplexities so often associated with quantum theory simply evaporate.

  8. Quantum-polarization state tomography

    NASA Astrophysics Data System (ADS)

    Bayraktar, Ömer; Swillo, Marcin; Canalias, Carlota; Björk, Gunnar

    2016-08-01

    We propose and demonstrate a method for quantum-state tomography of qudits encoded in the quantum polarization of N -photon states. This is achieved by distributing N photons nondeterministically into three paths and their subsequent projection, which for N =1 is equivalent to measuring the Stokes (or Pauli) operators. The statistics of the recorded N -fold coincidences determines the unknown N -photon polarization state uniquely. The proposed, fixed setup manifestly rules out any systematic measurement errors due to moving components and allows for simple switching between tomography of different states, which makes it ideal for adaptive tomography schemes.

  9. Generalized quantum Hall projection Hamiltonians

    NASA Astrophysics Data System (ADS)

    Simon, Steven H.; Rezayi, E. H.; Cooper, Nigel R.

    2007-02-01

    Certain well known quantum Hall states—including the Laughlin states, the Moore-Read Pfaffian, and the Read-Rezayi Parafermion states—can be defined as the unique lowest degree symmetric analytic function that vanishes as at least p powers as some number (g+1) of particles approach the same point. Analogously, these same quantum Hall states can be generated as the exact highest density zero energy state of simple angular momentum projection operators. Following this theme we determine the highest density zero energy state for many other values of p and g .

  10. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  11. On the fundamental role of dynamics in quantum physics

    NASA Astrophysics Data System (ADS)

    Hofmann, Holger F.

    2016-05-01

    Quantum theory expresses the observable relations between physical properties in terms of probabilities that depend on the specific context described by the "state" of a system. However, the laws of physics that emerge at the macroscopic level are fully deterministic. Here, it is shown that the relation between quantum statistics and deterministic dynamics can be explained in terms of ergodic averages over complex valued probabilities, where the fundamental causality of motion is expressed by an action that appears as the phase of the complex probability multiplied with the fundamental constant ħ. Importantly, classical physics emerges as an approximation of this more fundamental theory of motion, indicating that the assumption of a classical reality described by differential geometry is merely an artefact of an extrapolation from the observation of macroscopic dynamics to a fictitious level of precision that does not exist within our actual experience of the world around us. It is therefore possible to completely replace the classical concepts of trajectories with the more fundamental concept of action phase probabilities as a universally valid description of the deterministic causality of motion that is observed in the physical world.

  12. Quantum Baseball.

    ERIC Educational Resources Information Center

    Peterson, Ivars

    1989-01-01

    An analogy from the game of baseball can be used to examine the philosophy involved in statistics surrounding quantum mechanical events. The "Strong Baseball Principle" is proposed and discussed. (CW)

  13. Quantum Locality?

    NASA Astrophysics Data System (ADS)

    Stapp, Henry P.

    2012-05-01

    Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows

  14. Compatible quantum theory.

    PubMed

    Friedberg, R; Hohenberg, P C

    2014-09-01

    Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call 'compatible quantum theory (CQT)', consists of a 'microscopic' part (MIQM), which applies to a closed quantum system of any size, and a 'macroscopic' part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths ('c-truths'), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The completion of the theory

  15. Quantum correlations and distinguishability of quantum states

    SciTech Connect

    Spehner, Dominique

    2014-07-15

    A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.

  16. Powerlaw Decays and Thermalization in Isolated Many-Body Quantum Systems

    NASA Astrophysics Data System (ADS)

    Tavora, Marco; Torres-Herrera, E. J.; Santos, Lea

    2016-05-01

    We propose a new criterion for thermalization in isolated many-body quantum systems. It is based on the powerlaw behavior of the survival probability at long times. The value of the powerlaw exponent depends on the shape and filling of the energy distribution of the initial state. Exponents larger than or equal to 2 correspond to ergodic filling and consequent thermalization. We show that the algebraic behavior, which occurs in both integrable and chaotic systems, may be caused by bounds in the spectrum or by the presence of correlations between the eigenstates of the Hamiltonian. Numerical and analytical results as well as comparisons with existing rigorous mathematical derivations are presented. Our focus are on initial states that can be prepared experimentally using cold atoms in optical lattices. NSF Grant No. DMR-1147430.

  17. Discord as a quantum resource for bi-partite communication

    SciTech Connect

    Chrzanowski, Helen M.; Assad, Syed M.; Symul, Thomas; Lam, Ping Koy; Gu, Mile; Modi, Kavan; Vedral, Vlatko; Ralph, Timothy C.

    2014-12-04

    Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we experimentally demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this ‘quantum advantage’.

  18. Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mandl, F.

    1992-07-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Quantum Mechanics aims to teach those parts of the subject which every physicist should know. The object is to display the inherent structure of quantum mechanics, concentrating on general principles and on methods of wide applicability without taking them to their full generality. This book will equip students to follow quantum-mechanical arguments in books and scientific papers, and to cope with simple cases. To bring the subject to life, the theory is applied to the all-important field of atomic physics. No prior knowledge of quantum mechanics is assumed. However, it would help most readers to have met some elementary wave mechanics before. Primarily written for students, it should also be of interest to experimental research workers who require a good grasp of quantum mechanics without the full formalism needed by the professional theorist. Quantum Mechanics features: A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialized material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints and solutions to the problems are given at the end of the book.

  19. Introduction to Quantum Simulation

    NASA Technical Reports Server (NTRS)

    Williams, Colin P.

    2005-01-01

    This viewgraph presentation addresses the problem of efficiently simulating the evolution of a quantum system. The contents include: 1) Quantum Simulation; 2) Extracting Answers from Quantum Simulations; 3) Quantum Fourier Transform; 4) Eigenvalue Estimation; 5) Fermionic Simulations.

  20. Quantum Physics for Beginners.

    ERIC Educational Resources Information Center

    Strand, J.

    1981-01-01

    Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)

  1. Quantum capacitance in topological insulators.

    PubMed

    Xiu, Faxian; Meyer, Nicholas; Kou, Xufeng; He, Liang; Lang, Murong; Wang, Yong; Yu, Xinxin; Fedorov, Alexei V; Zou, Jin; Wang, Kang L

    2012-01-01

    Topological insulators show unique properties resulting from massless, Dirac-like surface states that are protected by time-reversal symmetry. Theory predicts that the surface states exhibit a quantum spin Hall effect with counter-propagating electrons carrying opposite spins in the absence of an external magnetic field. However, to date, the revelation of these states through conventional transport measurements remains a significant challenge owing to the predominance of bulk carriers. Here, we report on an experimental observation of Shubnikov-de Haas oscillations in quantum capacitance measurements, which originate from topological helical states. Unlike the traditional transport approach, the quantum capacitance measurements are remarkably alleviated from bulk interference at high excitation frequencies, thus enabling a distinction between the surface and bulk. We also demonstrate easy access to the surface states at relatively high temperatures up to 60 K. Our approach may eventually facilitate an exciting exploration of exotic topological properties at room temperature.

  2. Falls Prevention: Unique to Older Adults

    MedlinePlus

    ... Prevention Sleep Problems Stroke Join our e-newsletter! Aging & Health A to Z Falls Prevention Unique to ... difficulties. Optimizing Management of Congestive Heart Failure and COPD Congestive Heart Failure (CHF) Many older people develop ...

  3. Unique Biosignatures in Caves of All Lithologies

    NASA Astrophysics Data System (ADS)

    Boston, P. J.; Schubert, K. E.; Gomez, E.; Conrad, P. G.

    2015-10-01

    Unique maze-like microbial communities on cave surfaces on all lithologies all over the world are an excellent candidate biosignatures for life detection missions into caves and other extraterrestrial environments.

  4. Unique Ideas in a New Facility

    ERIC Educational Resources Information Center

    Hamby, G. W.

    1977-01-01

    Unique features of a new vocational agriculture department facility in Diamond, Missouri, are described, which include an overhead hoist system, arc welders, storage areas, paint room, and greenhouse. (TA)

  5. Localization in the quantum sawtooth map emulated on a quantum-information processor

    SciTech Connect

    Henry, Michael K.; Cory, David G.; Emerson, Joseph; Martinez, Rudy

    2006-12-15

    Quantum computers will be unique tools for understanding complex quantum systems. We report an experimental implementation of a sensitive, quantum coherence-dependent localization phenomenon on a quantum information processor (QIP). The localization effect was studied by emulating the dynamics of the quantum sawtooth map in the perturbative regime on a three-qubit QIP. Our results show that the width of the probability distribution in momentum space remained essentially unchanged with successive iterations of the sawtooth map, a result that is consistent with localization. The height of the peak relative to the baseline of the probability distribution did change, a result that is consistent with our QIP being an ensemble of quantum systems with a distribution of errors over the ensemble. We further show that the previously measured distributions of control errors correctly account for the observed changes in the probability distribution.

  6. A potential application in quantum networks—Deterministic quantum operation sharing schemes with Bell states

    NASA Astrophysics Data System (ADS)

    Zhang, KeJia; Zhang, Long; Song, TingTing; Yang, YingHui

    2016-06-01

    In this paper, we propose certain different design ideas on a novel topic in quantum cryptography — quantum operation sharing (QOS). Following these unique ideas, three QOS schemes, the "HIEC" (The scheme whose messages are hidden in the entanglement correlation), "HIAO" (The scheme whose messages are hidden with the assistant operations) and "HIMB" (The scheme whose messages are hidden in the selected measurement basis), have been presented to share the single-qubit operations determinately on target states in a remote node. These schemes only require Bell states as quantum resources. Therefore, they can be directly applied in quantum networks, since Bell states are considered the basic quantum channels in quantum networks. Furthermore, after analyse on the security and resource consumptions, the task of QOS can be achieved securely and effectively in these schemes.

  7. Constraint algebra for interacting quantum systems

    NASA Astrophysics Data System (ADS)

    Fubini, S.; Roncadelli, M.

    1988-04-01

    We consider relativistic constrained systems interacting with external fields. We provide physical arguments to support the idea that the quantum constraint algebra should be the same as in the free quantum case. For systems with ordering ambiguities this principle is essential to obtain a unique quantization. This is shown explicitly in the case of a relativistic spinning particle, where our assumption about the constraint algebra plus invariance under general coordinate transformations leads to a unique S-matrix. On leave from Dipartimento di Fisica Nucleare e Teorica, Università di Pavia and INFN, I-27100 Pavia, Italy.

  8. Quantum Physics

    NASA Astrophysics Data System (ADS)

    Le Bellac, Michel

    2006-03-01

    Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises

  9. Modularity, comparative cognition and human uniqueness

    PubMed Central

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the ‘core knowledge’ account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  10. Modularity, comparative cognition and human uniqueness.

    PubMed

    Shettleworth, Sara J

    2012-10-01

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  11. Right temporopolar activation associated with unique perception.

    PubMed

    Asari, Tomoki; Konishi, Seiki; Jimura, Koji; Chikazoe, Junichi; Nakamura, Noriko; Miyashita, Yasushi

    2008-05-15

    Unique mode of perception, or the ability to see things differently from others, is one of the psychological resources required for creative mental activities. Behavioral studies using ambiguous visual stimuli have successfully induced diverse responses from subjects, and the unique responses defined in this paradigm were observed in higher frequency in the artistic population as compared to the nonartistic population. However, the neural substrates that underlie such unique perception have yet to be investigated. In the present study, ten ambiguous figures were used as stimuli. The subjects were instructed to say what the figures looked like during functional MRI scanning. The responses were classified as "frequent", "infrequent" or "unique" responses based on the appearance frequency of the same response in an independent age- and gender-matched control group. An event-related analysis contrasting unique vs. frequent responses revealed the greatest activation in the right temporal pole, which survived a whole brain multiple comparison. An alternative parametric modulation analysis was also performed to show that potentially confounding perceptual effects deriving from differences in visual stimuli make no significant contribution to this temporopolar activation. Previous neuroimaging and neuropsychological studies have shown the involvement of the temporal pole in perception-emotion linkage. Thus, our results suggest that unique perception is produced by the integration of perceptual and emotional processes, and this integration might underlie essential parts of creative mental activities.

  12. Simple understanding of quantum weak values

    NASA Astrophysics Data System (ADS)

    Qin, Lupei; Feng, Wei; Li, Xin-Qi

    2016-02-01

    In this work we revisit the important and controversial concept of quantum weak values, aiming to provide a simplified understanding to its associated physics and the origin of anomaly. Taking the Stern-Gerlach setup as a working system, we base our analysis on an exact treatment in terms of quantum Bayesian approach. We also make particular connection with a very recent work, where the anomaly of the weak values was claimed from the pure statistics in association with “disturbance” and “post-selection”, rather than the unique quantum nature. Our analysis resolves the related controversies through a clear and quantitative way.

  13. Simple understanding of quantum weak values

    PubMed Central

    Qin, Lupei; Feng, Wei; Li, Xin-Qi

    2016-01-01

    In this work we revisit the important and controversial concept of quantum weak values, aiming to provide a simplified understanding to its associated physics and the origin of anomaly. Taking the Stern-Gerlach setup as a working system, we base our analysis on an exact treatment in terms of quantum Bayesian approach. We also make particular connection with a very recent work, where the anomaly of the weak values was claimed from the pure statistics in association with “disturbance” and “post-selection”, rather than the unique quantum nature. Our analysis resolves the related controversies through a clear and quantitative way. PMID:26838670

  14. Non-Markovianity hinders Quantum Darwinism.

    PubMed

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  15. Non-Markovianity hinders Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  16. Non-Markovianity hinders Quantum Darwinism

    PubMed Central

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors. PMID:26786857

  17. Quantum Security for the Physical Layer

    SciTech Connect

    Humble, Travis S

    2013-01-01

    The physical layer describes how communication signals are encoded and transmitted across a channel. Physical security often requires either restricting access to the channel or performing periodic manual inspections. In this tutorial, we describe how the field of quantum communication offers new techniques for securing the physical layer. We describe the use of quantum seals as a unique way to test the integrity and authenticity of a communication channel and to provide security for the physical layer. We present the theoretical and physical underpinnings of quantum seals including the quantum optical encoding used at the transmitter and the test for non-locality used at the receiver. We describe how the envisioned quantum physical sublayer senses tampering and how coordination with higher protocol layers allow quantum seals to influence secure routing or tailor data management methods. We conclude by discussing challenges in the development of quantum seals, the overlap with existing quantum key distribution cryptographic services, and the relevance of a quantum physical sublayer to the future of communication security.

  18. Quantum walk computation

    SciTech Connect

    Kendon, Viv

    2014-12-04

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.

  19. Dirac Cellular Automaton from Split-step Quantum Walk

    NASA Astrophysics Data System (ADS)

    Mallick, Arindam; Chandrashekar, C. M.

    2016-05-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory.

  20. Dirac Cellular Automaton from Split-step Quantum Walk.

    PubMed

    Mallick, Arindam; Chandrashekar, C M

    2016-05-17

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory.

  1. Dirac Cellular Automaton from Split-step Quantum Walk

    PubMed Central

    Mallick, Arindam; Chandrashekar, C. M.

    2016-01-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory. PMID:27184159

  2. Quantum interference in an electron-hole graphene ring system

    SciTech Connect

    Smirnov, D.; Schmidt, H.; Haug, R. J.

    2013-12-04

    Quantum interference is observed in a graphene ring system via the Aharonov Bohm effect. As graphene is a gapless semiconductor, this geometry allows to study the unique situation of quantum interference between electrons and holes in addition to the unipolar quantum interference. The period and amplitude of the observed Aharonov-Bohm oscillations are independent of the sign of the applied gate voltage showing the equivalence between unipolar and dipolar interference.

  3. Quantum Foam

    SciTech Connect

    Lincoln, Don

    2014-10-24

    The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isn’t empty at all – it’s a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs “quantum foam.” In this video, Fermilab’s Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.

  4. Quantum control limited by quantum decoherence

    SciTech Connect

    Xue, Fei; Sun, C. P.; Yu, S. X.

    2006-01-15

    We describe quantum controllability under the influences of the quantum decoherence induced by the quantum control itself. It is shown that, when the controller is considered as a quantum system, it will entangle with its controlled system and then cause quantum decoherence in the controlled system. In competition with this induced decoherence, the controllability will be limited by some uncertainty relation in a well-armed quantum control process. In association with the phase uncertainty and the standard quantum limit, a general model is studied to demonstrate the possibility of realizing a decoherence-free quantum control with a finite energy within a finite time. It is also shown that if the operations of quantum control are to be determined by the initial state of the controller, then due to the decoherence which results from the quantum control itself, there exists a low bound for quantum controllability.

  5. Amygdalar enlargement associated with unique perception.

    PubMed

    Asari, Tomoki; Konishi, Seiki; Jimura, Koji; Chikazoe, Junichi; Nakamura, Noriko; Miyashita, Yasushi

    2010-01-01

    Interference by amygdalar activity in perceptual processes has been reported in many previous studies. Consistent with these reports, previous clinical studies have shown amygdalar volume change in multiple types of psychotic disease presenting with unusual perception. However, the relationship between variation in amygdalar volume in the normal population and the tendency toward unusual or unique perception has never been investigated. To address this issue, we defined an index to represent the tendency toward unique perception using ambiguous stimuli: subjects were instructed to state what the figures looked like to them, and "unique responses" were defined depending on the appearance frequency of the same responses in an age- and gender-matched control group. The index was defined as the ratio of unique responses to total responses per subject. We obtained structural brain images and values of the index from sixty-eight normal subjects. Voxel-based morphometry analyses revealed a positive correlation between amygdalar volume and the index. Since previous reports have indicated that unique responses were observed at higher frequency in the artistic population than in the nonartistic normal population, this positive correlation suggests that amygdalar enlargement in the normal population might be related to creative mental activity.

  6. Quantum dice

    SciTech Connect

    Sassoli de Bianchi, Massimiliano

    2013-09-15

    In a letter to Born, Einstein wrote [42]: “Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real thing. The theory says a lot, but does not really bring us any closer to the secret of the ‘old one.’ I, at any rate, am convinced that He does not throw dice.” In this paper we take seriously Einstein’s famous metaphor, and show that we can gain considerable insight into quantum mechanics by doing something as simple as rolling dice. More precisely, we show how to perform measurements on a single die, to create typical quantum interference effects, and how to connect (entangle) two identical dice, to maximally violate Bell’s inequality. -- Highlights: •Rolling a die is a quantum process admitting a Hilbert space representation. •Rolling experiments with a single die can produce interference effects. •Two connected dice can violate Bell’s inequality. •Correlations need to be created by the measurement, to violate Bell’s inequality.

  7. Quantum wormholes

    SciTech Connect

    Visser, M. )

    1991-01-15

    This paper presents an application of quantum-mechanical principles to a microscopic variant of the traversable wormholes recently introduced by Morris and Thorne. The analysis, based on the surgical grafting of two Reissner-Nordstroem spacetimes, proceeds by using a minisuperspace model to approximate the geometry of these wormholes. The thin shell'' formalism is applied to this minisuperspace model to extract the effective Lagrangian appropriate to this one-degree-of-freedom system. This effective Lagrangian is then quantized and the wave function for the wormhole is explicitly exhibited. A slightly more general class of wormholes---corresponding to the addition of some dust'' to the wormhole throat---is analyzed by recourse to WKB techniques. In all cases discussed in this paper, the expectation value of the wormhole radius is calculated to be of the order of the Planck length. Accordingly, though these quantum wormholes are of considerable theoretical interest they do not appear to be useful as a means for interstellar travel. The results of this paper may also have a bearing on the question of topological fluctuations in quantum gravity. These calculations serve to suggest that topology-changing effects might in fact be {ital suppressed} by quantum-gravity effects.

  8. Quantum abacus

    NASA Astrophysics Data System (ADS)

    Cheon, Taksu; Tsutsui, Izumi; Fülöp, Tamás

    2004-09-01

    We show that the point interactions on a line can be utilized to provide U(2) family of qubit operations for quantum information processing. Qubits are realized as states localized in either side of the point interaction which represents a controllable gate. The qubit manipulation proceeds in a manner analogous to the operation of an abacus.

  9. Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2009-11-01

    The continuing search for quantum gravity and never ending attempts to unify gravity with other forces of nature represent tremendous waste of public and private funds directing students' energy towards non-creative manipulative work instead of learning from the scientific creativity in Einstein's 1919 paper that unifies gravity with nuclear force. It reflects Einstein's 1919 jump beyond his own 1915 theory of gravity, including that of Newton as implicitly demanded by Newton in 1686. Einstein corrected and retracted his 1917 introduction of cosmological constant in 1919. Dislike of the fact that Einstein did not use quantum mechanics to prove his point has no real value now, because we will use key ingredients (Planck scale and probabilistic aspect) of quantum mechanics and show that they reach the same conclusion. Newton explained the solar system known after Kepler. Likewise, our quantum mechanical approach explains the strong coupling as well the solar system and shows new horizons, otherwise unexplained. Explanation of unexplained observations need no prediction per Hawking, and obviously otherwise.

  10. Quantum Interferometry

    NASA Technical Reports Server (NTRS)

    Dowling, Jonathan P.

    2000-01-01

    Recently, several researchers, including yours truly, have been able to demonstrate theoretically that quantum photon entanglement has the potential to also revolutionize the entire field of optical interferometry, by providing many orders of magnitude improvement in interferometer sensitivity. The quantum entangled photon interferometer approach is very general and applies to many types of interferometers. In particular, without nonlocal entanglement, a generic classical interferometer has a statistical-sampling shot-noise limited sensitivity that scales like 1/Sqrt[N], where N is the number of particles (photons, electrons, atoms, neutrons) passing through the interferometer per unit time. However, if carefully prepared quantum correlations are engineered between the particles, then the interferometer sensitivity improves by a factor of Sqrt[N] (square root of N) to scale like 1/N, which is the limit imposed by the Heisenberg Uncertainty Principle. For optical (laser) interferometers operating at milliwatts of optical power, this quantum sensitivity boost corresponds to an eight-order-of-magnitude improvement of signal to noise. Applications are to tests of General Relativity such as ground and orbiting optical interferometers for gravity wave detection, Laser Interferometer Gravity Observatory (LIGO) and the European Laser Interferometer Space Antenna (LISA), respectively.

  11. Quantum transformations

    SciTech Connect

    Faraggi, A.E.; Matone, M.

    1998-01-09

    We show that the quantum Hamilton-Jacobi equation can be written in the classical form with the spatial derivative {partial_derivative}{sub q} replaced by {partial_derivative}{sub q} with dq = dq/{radical}1{minus}{beta}{sup 2}(q), where {beta}{sup 2}(q) is strictly related to the quantum potential. This can be seen as the opposite of the problem of finding the wave function representation of classical mechanics as formulated by Schiller and Rosen. The structure of the above {open_quotes}quantum transformation{close_quotes}, related to the recently formulated equivalence principle, indicates that the potential deforms space geometry. In particular, a result by Flanders implies that both W(q) = V(q) {minus} E and the quantum potential Q are proportional to the curvatures {kappa}{sub W} and {kappa}{sub Q} which arise as natural invariants in an equivalence problem for curves in the projective line. In this formulation the Schroedinger equation takes the geometrical form ({partial_derivative}{sub q}{sup 2} + {kappa}{sub W}){psi} = 0.

  12. Unique sugar metabolic pathways of bifidobacteria.

    PubMed

    Fushinobu, Shinya

    2010-01-01

    Bifidobacteria have many beneficial effects for human health. The gastrointestinal tract, where natural colonization of bifidobacteria occurs, is an environment poor in nutrition and oxygen. Therefore, bifidobacteria have many unique glycosidases, transporters, and metabolic enzymes for sugar fermentation to utilize diverse carbohydrates that are not absorbed by host humans and animals. They have a unique, effective central fermentative pathway called bifid shunt. Recently, a novel metabolic pathway that utilizes both human milk oligosaccharides and host glycoconjugates was found. The galacto-N-biose/lacto-N-biose I metabolic pathway plays a key role in colonization in the infant gastrointestinal tract. These pathways involve many unique enzymes and proteins. This review focuses on their molecular mechanisms, as revealed by biochemical and crystallographic studies.

  13. QUANTUM: A Wolfram Mathematica add-on for Dirac Bra-Ket Notation, Non-Commutative Algebra, and Simulation of Quantum Computing Circuits

    NASA Astrophysics Data System (ADS)

    Gómez Muñoz, J. L.; Delgado, F.

    2016-03-01

    This paper introduces QUANTUM, a free library of commands of Wolfram Mathematica that can be used to perform calculations directly in Dirac braket and operator notation. Its development started several years ago, in order to study quantum random walks. Later, many other features were included, like operator and commutator algebra, simulation and graphing of quantum computing circuits, generation and solution of Heisenberg equations of motion, among others. To the best of our knowledge, QUANTUM remains a unique tool in its use of Dirac notation, because it is used both in the input and output of the calculations. This work depicts its usage and features in Quantum Computing and Quantum Hamilton Dynamics.

  14. Uniquely designed nuclear structures of lower eukaryotes.

    PubMed

    Iwamoto, Masaaki; Hiraoka, Yasushi; Haraguchi, Tokuko

    2016-06-01

    The nuclear structures of lower eukaryotes, specifically protists, often vary from those of yeasts and metazoans. Several studies have demonstrated the unique and fascinating features of these nuclear structures, such as a histone-independent condensed chromatin in dinoflagellates and two structurally distinct nuclear pore complexes in ciliates. Despite their unique molecular/structural features, functions required for formation of their cognate molecules/structures are highly conserved. This provides important information about the structure-function relationship of the nuclear structures. In this review, we highlight characteristic nuclear structures found in lower eukaryotes, and discuss their attractiveness as potential biological systems for studying nuclear structures.

  15. Uniqueness of Nash equilibrium in vaccination games.

    PubMed

    Bai, Fan

    2016-12-01

    One crucial condition for the uniqueness of Nash equilibrium set in vaccination games is that the attack ratio monotonically decreases as the vaccine coverage level increasing. We consider several deterministic vaccination models in homogeneous mixing population and in heterogeneous mixing population. Based on the final size relations obtained from the deterministic epidemic models, we prove that the attack ratios can be expressed in terms of the vaccine coverage levels, and also prove that the attack ratios are decreasing functions of vaccine coverage levels. Some thresholds are presented, which depend on the vaccine efficacy. It is proved that for vaccination games in homogeneous mixing population, there is a unique Nash equilibrium for each game.

  16. Transcriptomics exposes the uniqueness of parasitic plants.

    PubMed

    Ichihashi, Yasunori; Mutuku, J Musembi; Yoshida, Satoko; Shirasu, Ken

    2015-07-01

    Parasitic plants have the ability to obtain nutrients directly from other plants, and several species are serious biological threats to agriculture by parasitizing crops of high economic importance. The uniqueness of parasitic plants is characterized by the presence of a multicellular organ called a haustorium, which facilitates plant-plant interactions, and shutting down or reducing their own photosynthesis. Current technical advances in next-generation sequencing and bioinformatics have allowed us to dissect the molecular mechanisms behind the uniqueness of parasitic plants at the genome-wide level. In this review, we summarize recent key findings mainly in transcriptomics that will give us insights into the future direction of parasitic plant research.

  17. Unique Phase Recovery for Nonperiodic Objects

    NASA Astrophysics Data System (ADS)

    Nugent, K. A.; Peele, A. G.; Chapman, H. N.; Mancuso, A. P.

    2003-11-01

    It is well known that the loss of phase information at detection means that a diffraction pattern may be consistent with a multitude of physically different structures. This Letter shows that it is possible to perform unique structural determination in the absence of a priori information using x-ray fields with phase curvature. We argue that significant phase curvature is already available using modern x-ray optics and we demonstrate an algorithm that allows the phase to be recovered uniquely and reliably.

  18. Unique forbidden beta decays and neutrino mass

    SciTech Connect

    Dvornický, Rastislav; Šimkovic, Fedor

    2015-10-28

    The measurement of the electron energy spectrum in single β decays close to the endpoint provides a direct determination of the neutrino masses. The most sensitive experiments use β decays with low Q value, e.g. KATRIN (tritium) and MARE (rhenium). We present the theoretical spectral shape of electrons emitted in the first, second, and fourth unique forbidden β decays. Our findings show that the Kurie functions for these unique forbidden β transitions are linear in the limit of massless neutrinos like the Kurie function of the allowed β decay of tritium.

  19. Quantum roulette: an extended quantum strategy

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Bin; Kwek, L. C.; Oh, C. H.

    2000-12-01

    In a recent paper, Meyer demonstrated that with a quantum computer, an analogous zero-sum classically strategic game played with quantum strategy essentially become a bias game under a mixture of quantum and classical strategy. To illustrate his point, Meyer used a quantum coin tossing event. In this Letter, we generalize Meyer's argument to an N-state game.

  20. Quantum state and quantum entanglement protection using quantum measurements

    NASA Astrophysics Data System (ADS)

    Wang, Shuchao; Li, Ying; Wang, Xiangbin; Kwek, Leong Chuan; Yu, Zongwen; Zou, Wenjie

    2015-03-01

    The time evolution of some quantum states can be slowed down or even stopped under frequent measurements. This is the usual quantum Zeno effect. Here we report an operator quantum Zeno effect, in which the evolution of some physical observables is slowed down through measurements even though thequantum state changes randomly with time. Based on the operator quantum Zeno effect, we show how we can protect quantum information from decoherence with two-qubit measurements, realizable with noisy two-qubit interactions. Besides, we report the quantum entanglement protection using weak measurement and measurement reversal scheme. Exposed in the nonzero temperature environment, a quantum system can both lose and gain excitations by interacting with the environment. In this work, we show how to optimally protect quantum states and quantum entanglement in such a situation based on measurement reversal from weak measurement. In particular, we present explicit formulas of protection. We find that this scheme can circumvent the entanglement sudden death in certain conditions.

  1. Efficient quantum walk on a quantum processor.

    PubMed

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  2. Efficient quantum walk on a quantum processor

    NASA Astrophysics Data System (ADS)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-05-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  3. Efficient quantum walk on a quantum processor.

    PubMed

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F

    2016-05-05

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.

  4. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  5. Quantum error correction for quantum memories

    NASA Astrophysics Data System (ADS)

    Terhal, Barbara M.

    2015-04-01

    Active quantum error correction using qubit stabilizer codes has emerged as a promising, but experimentally challenging, engineering program for building a universal quantum computer. In this review the formalism of qubit stabilizer and subsystem stabilizer codes and their possible use in protecting quantum information in a quantum memory are considered. The theory of fault tolerance and quantum error correction is reviewed, and examples of various codes and code constructions, the general quantum error-correction conditions, the noise threshold, the special role played by Clifford gates, and the route toward fault-tolerant universal quantum computation are discussed. The second part of the review is focused on providing an overview of quantum error correction using two-dimensional (topological) codes, in particular, the surface code architecture. The complexity of decoding and the notion of passive or self-correcting quantum memories are discussed. The review does not focus on a particular technology but discusses topics that will be relevant for various quantum technologies.

  6. The Interplay of Quantum Confinement and Hydrogenation in Amorphous Silicon Quantum Dots.

    PubMed

    Askari, Sadegh; Svrcek, Vladmir; Maguire, Paul; Mariotti, Davide

    2015-12-22

    Hydrogenation in amorphous silicon quantum dots (QDs) has a dramatic impact on the corresponding optical properties and band energy structure, leading to a quantum-confined composite material with unique characteristics. The synthesis of a-Si:H QDs is demonstrated with an atmospheric-pressure plasma process, which allows for accurate control of a highly chemically reactive non-equilibrium environment with temperatures well below the crystallization temperature of Si QDs.

  7. Unique hues as revealed by unique-hue selecting versus partial hue-matching.

    PubMed

    Logvinenko, Alexander D; Geithner, Coryn

    2015-04-01

    Unique hues are usually defined as those that cannot be introspectively reduced to any other hue. According to a major dogma of color science, there are four unique hues: yellow, blue, red, and green. Yet only 55 of the 173 inexperienced observers who participated in our experiment selected exactly four Munsell papers that, according to their judgment, had a unique hue. The number of papers selected by the rest of the observers varied from zero to nine. We believe that such variability of unique hue selection is due to the ambiguity of the introspective criteria for hue uniqueness. Along with the traditional technique of unique hue selection, an alternative method based on partial hue-matching has also been used to establish the nomenclature of unique hues. The partial hue-matching method is based on observer judgments concerning the presence of a common hue in a pair of colors. Observers are not supposed to name (or make any other judgments of) this common hue. Without presupposing their number, the unique hues are derived from the observer's responses to a sample of color pairs. The results obtained by this new method generally support the classical notion of four unique hues.

  8. Optical properties of quantum-dot-doped liquid scintillators

    PubMed Central

    Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L.

    2014-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO. PMID:25392711

  9. (-)-Botryodiplodin, A Unique Ribose Analog Toxin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many toxins owe their mechanisms of action to being structural analogs of essential metabolites, messengers or structural components. Examples range from tubo-curare to penicillin. Ribose plays a unique role in the metabolism of living organisms, whether prokaryotes or eukaryotes. It and its deri...

  10. LCA – Unique and Controversial Case Studies

    EPA Science Inventory

    This session will focus on case studies and applications that have a unique or controversial aspect. Some of the most recent topics that seem to have significant interest include: LCA-based product declarations, LCA-based standards, LCA-based labels, alternative energy, agricul...

  11. A Unique Approach to Phlebotomy Instruction.

    ERIC Educational Resources Information Center

    Brock, Ann; Kelly, Mary Lou

    Unique characteristics of a continuing education course in phlebotomy offered through Tarrant County Junior College in Forth Worth, Texas, are described. The course was created to address the lack of theoretical knowledge in the hospital-trained phlebotomist. The first course was offered in July 1979 on a noncredit basis for 2 nights a week for 4…

  12. 77 FR 40735 - Unique Device Identification System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... intended to be sterilized before each use; and stand-alone software. These types of devices have physical... Systems by Hospitals and Other Healthcare Facilities and on Statistical Methodologies to Interpret the... each use; and Stand-alone software. These devices involve unique risks to patients, and consequently...

  13. Is There a Unique Black Personality?

    ERIC Educational Resources Information Center

    Mosby, Doris P.

    This article reviews research from the 1940's, 1950's and 1960's on the effects of discrimination on blacks. Data from these studies indicate that adverse cultural restrictions have fostered a unique and distinctive black personality. Among traits identified are: a negative or inferior self-image, pessimism about the future, attachment to the…

  14. Unique rig fulfills unusual mobility requirements

    SciTech Connect

    Not Available

    1989-10-01

    This article describes a unique rig designed by SEDCO FOREX operating in the Paris basin of France. Built to drill clusters of wells from a single pad, Rig 47 significantly reduces the time needed to move from well to well on a pad and from location to location.

  15. Unraveling the evolution of uniquely human cognition

    PubMed Central

    MacLean, Evan L.

    2016-01-01

    A satisfactory account of human cognitive evolution will explain not only the psychological mechanisms that make our species unique, but also how, when, and why these traits evolved. To date, researchers have made substantial progress toward defining uniquely human aspects of cognition, but considerably less effort has been devoted to questions about the evolutionary processes through which these traits have arisen. In this article, I aim to link these complementary aims by synthesizing recent advances in our understanding of what makes human cognition unique, with theory and data regarding the processes of cognitive evolution. I review evidence that uniquely human cognition depends on synergism between both representational and motivational factors and is unlikely to be accounted for by changes to any singular cognitive system. I argue that, whereas no nonhuman animal possesses the full constellation of traits that define the human mind, homologies and analogies of critical aspects of human psychology can be found in diverse nonhuman taxa. I suggest that phylogenetic approaches to the study of animal cognition—which can address questions about the selective pressures and proximate mechanisms driving cognitive change—have the potential to yield important insights regarding the processes through which the human cognitive phenotype evolved. PMID:27274041

  16. A Graduation Stole Uniquely Designed for Physics

    ERIC Educational Resources Information Center

    Day, Lawrence H.

    2009-01-01

    In response to student requests, and to help celebrate the graduation of our physics majors, we have designed a graduation stole uniquely befitting physics. The design incorporates the four visible spectral lines of hydrogen--the Balmer series. Since the 2002 debut of the design, all our graduates have proudly worn their physics graduation stoles…

  17. Martian Alteration in Unique Meteorite NWA 8159?

    NASA Astrophysics Data System (ADS)

    Hallis, L. J.; Simpson, S.; Mark, D.; Lee, M. R.

    2016-08-01

    This study aims to determine if the olivine alteration in martian meteorite NWA 8159 has a martian origin. If so, the unique nature of this meteorite presents evidence for aqueous processes at a new time and location on the martian surface.

  18. Art Libraries: Creating Access to Unique Collections

    ERIC Educational Resources Information Center

    Falls, Sarah E.

    2009-01-01

    Art libraries face similar issues to other types of libraries during the digital transition but have unique twists driven by the needs of their collections. Art library information seekers may possess a sense of what an art library is: a library, set apart, to support the study of art and art history. For art libraries, it is the collection,…

  19. Static black hole uniqueness and Penrose inequality

    SciTech Connect

    Mizuno, Ryosuke; Shiromizu, Tetsuya; Ohashi, Seiju

    2010-02-15

    Under certain conditions, we offer a new way to prove the uniqueness of the static black hole in higher dimensional asymptotically flat spacetimes. In the proof, the Penrose inequality plays a key role in higher dimensions as well as four dimensions.

  20. The Uniqueness of Speech among Motor Systems

    ERIC Educational Resources Information Center

    Kent, Ray

    2004-01-01

    This paper considers evidence that the speech muscles are unique in their genetic, developmental, functional and phenotypical properties. The literature was reviewed using PubMed, ScienceDirect, ComDisDome and other literature-retrieval systems to identify studies reporting on the craniofacial and laryngeal muscles. Particular emphasis was given…

  1. Author Identification, Idiolect, and Linguistic Uniqueness

    ERIC Educational Resources Information Center

    Coulthard, Malcolm

    2004-01-01

    For forty years linguists have talked about idiolect and the uniqueness of individual utterances. This article explores how far these two concepts can be used to answer certain questions about the authorship of written documents--for instance how similar can two student essays be before one begins to suspect plagiarism? The article examines two…

  2. Marketing the Uniqueness of Small Towns. Revised.

    ERIC Educational Resources Information Center

    Dunn, Douglas; Hogg, David H.

    The key to marketing a town is determining and promoting the town's "differential advantage" or uniqueness that would make people want to visit or live there. Exercises to help communities gain important insights into the town's competitive edge include a brainstorming session with knowledgeable community members, a visitor questionnaire, a…

  3. Quantum random walks using quantum accelerator modes

    SciTech Connect

    Ma, Z.-Y.; Burnett, K.; D'Arcy, M. B.; Gardiner, S. A.

    2006-01-15

    We discuss the use of high-order quantum accelerator modes to achieve an atom optical realization of a biased quantum random walk. We first discuss how one can create coexistent quantum accelerator modes, and hence how momentum transfer that depends on the atoms' internal state can be achieved. When combined with microwave driving of the transition between the states, a different type of atomic beam splitter results. This permits the realization of a biased quantum random walk through quantum accelerator modes.

  4. Ergodic Relaxor State with High Energy Storage Performance Induced by Doping Sr0.85Bi0.1TiO3 in Bi0.5Na0.5TiO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Li, Qing-Ning; Zhou, Chong-Rong; Xu, Ji-Wen; Yang, Ling; Zhang, Xin; Zeng, Wei-Dong; Yuan, Chang-Lai; Chen, Guo-Hua; Rao, Guang-Hui

    2016-10-01

    The large maximum polarization P max and low remnant polarization P r in relaxor ferroelectrics are key features for the energy storage density ( W) and energy-storage efficiency ( η) in materials selection. In this study, the ergodic relaxor (ER) state with high energy storage performance associated with low P r and large P max, induced by Sr0.85Bi0.1TiO3(SBT) addition in (1 - x)Bi0.5Na0.5TiO3- xSr0.85Bi0.1TiO3 (BNT-SBT x with x = 0.25-0.45, Bi0.5Na0.5TiO3 abbreviated as BNT) ceramics has been observed. In particular, significantly increased energy storage density ( W = 1.5 J/cm3) and energy-storage efficiency ( η = 73%) are obtained for BNT-SBT ergodic relaxor ceramics. These results suggest a new means of designing lead-free energy-storage materials.

  5. Quantum Supersymmetric Models in the Causal Approach

    NASA Astrophysics Data System (ADS)

    Grigore, Dan-Radu

    2007-04-01

    We consider the massless supersymmetric vector multiplet in a purely quantum framework. First order gauge invariance determines uniquely the interaction Lagrangian as in the case of Yang-Mills models. Going to the second order of perturbation theory produces an anomaly which cannot be eliminated. We make the analysis of the model working only with the component fields.

  6. Scanning quantum decoherence microscopy

    NASA Astrophysics Data System (ADS)

    Cole, Jared H.; Hollenberg, Lloyd C. L.

    2009-12-01

    The use of qubits as sensitive nanoscale magnetometers has been studied theoretically and recently demonstrated experimentally. In this paper we propose a new concept, in which a scanning two-state quantum system is used to probe a sample through the subtle effects of decoherence. Mapping both the Hamiltonian and decoherence properties of a qubit simultaneously provides a unique image of the magnetic (or electric) field properties at the nanoscale. The resulting images are sensitive to the temporal as well as spatial variation in the fields created by the sample. As examples we theoretically study two applications; one from condensed matter physics, the other biophysics. The individual components required to realize the simplest version of this device (characterization and measurement of qubits, nanoscale positioning) have already been demonstrated experimentally.

  7. Understanding electronic systems in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2013-11-01

    Systems of confined electrons are found everywhere in nature in the form of atoms where the orbiting electrons are confined by the Coulomb attraction of the nucleus. Advancement of nanotechnology has, however, provided us with an alternative way to confine electrons by using artificial confining potentials. A typical structure of this nature is the quantum dot, a nanoscale system which consists of few confined electrons. There are many types of quantum dots ranging from self-assembled to miniaturized semiconductor quantum dots. In this work we are interested in electrostatically confined semiconductor quantum dot systems where the electrostatic confining potential that traps the electrons is generated by external electrodes, doping, strain or other factors. A large number of semiconductor quantum dots of this type are fabricated by applying lithographically patterned gate electrodes or by etching on two-dimensional electron gases in semiconductor heterostructures. Because of this, the whole structure can be treated as a confined two-dimensional electron system. Quantum confinement profoundly affects the way in which electrons interact with each other, and external parameters such as a magnetic field. Since a magnetic field affects both the orbital and the spin motion of the electrons, the interplay between quantum confinement, electron-electron correlation effects and the magnetic field gives rise to very interesting physical phenomena. Thus, confined systems of electrons in a semiconductor quantum dot represent a unique opportunity to study fundamental quantum theories in a controllable atomic-like setup. In this work, we describe some common theoretical models which are used to study confined systems of electrons in a two-dimensional semiconductor quantum dot. The main emphasis of the work is to draw attention to important physical phenomena that arise in confined two-dimensional electron systems under various quantum regimes.

  8. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  9. Quantum gate decomposition algorithms.

    SciTech Connect

    Slepoy, Alexander

    2006-07-01

    Quantum computing algorithms can be conveniently expressed in a format of a quantum logical circuits. Such circuits consist of sequential coupled operations, termed ''quantum gates'', or quantum analogs of bits called qubits. We review a recently proposed method [1] for constructing general ''quantum gates'' operating on an qubits, as composed of a sequence of generic elementary ''gates''.

  10. Quantum Foam

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The laws of quantum mechanics and relativity are quite perplexing however it is when the two theories are merged that things get really confusing. This combined theory predicts that empty space isn’t empty at all – it’s a seething and bubbling cauldron of matter and antimatter particles springing into existence before disappearing back into nothingness. Scientists call this complicated state of affairs “quantum foam.” In this video, Fermilab’s Dr. Don Lincoln discusses this mind-bending idea and sketches some of the experiments that have convinced scientists that this crazy prediction is actually true.

  11. Quantum nonlocality

    SciTech Connect

    Stapp, H.P.

    1988-04-01

    It is argued that the validity of the predictions of quantum theory in certain spin-correlation experiments entails a violation of Einstein's locality idea that no causal influence can act outside the forward light cone. First, two preliminary arguments suggesting such a violation are reviewed. They both depend, in intermediate stages, on the idea that the results of certain unperformed experiments are physically determinate. The second argument is entangled also with the problem of the meaning of physical reality. A new argument having neither of these characteristics is constructed. It is based strictly on the orthodox ideas of Bohr and Heisenberg, and has no realistic elements, or other ingredients, that are alien to orthodox quantum thinking.

  12. Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...

  13. Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Maroun, Michael Anthony

    This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.

  14. Quantum walks and quantum simulations with Bloch-oscillating spinor atoms

    SciTech Connect

    Witthaut, D.

    2010-09-15

    We propose a scheme for the realization of a quantum walker and a quantum simulator for the Dirac equation with ultracold spinor atoms in driven optical lattices. A precise control of the dynamics of the atomic matter wave can be realized using time-dependent external forces. If the force depends on the spin state of the atoms, the dynamics will entangle the inner and outer degrees of freedom, which offers unique opportunities for quantum information and quantum simulation. Here we introduce a method to realize a quantum walker based on the state-dependent transport of spinor atoms and a coherent driving of the internal state. In the limit of weak driving the dynamics are equivalent to that of a Dirac particle in 1+1 dimensions. Thus it becomes possible to simulate relativistic effects such as Zitterbewegung and Klein tunneling.

  15. Efficient Quantum Information Processing via Quantum Compressions

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Luo, M. X.; Ma, S. Y.

    2016-01-01

    Our purpose is to improve the quantum transmission efficiency and reduce the resource cost by quantum compressions. The lossless quantum compression is accomplished using invertible quantum transformations and applied to the quantum teleportation and the simultaneous transmission over quantum butterfly networks. New schemes can greatly reduce the entanglement cost, and partially solve transmission conflictions over common links. Moreover, the local compression scheme is useful for approximate entanglement creations from pre-shared entanglements. This special task has not been addressed because of the quantum no-cloning theorem. Our scheme depends on the local quantum compression and the bipartite entanglement transfer. Simulations show the success probability is greatly dependent of the minimal entanglement coefficient. These results may be useful in general quantum network communication.

  16. Periodic-orbit theory of universality in quantum chaos.

    PubMed

    Müller, Sebastian; Heusler, Stefan; Braun, Petr; Haake, Fritz; Altland, Alexander

    2005-10-01

    We argue semiclassically, on the basis of Gutzwiller's periodic-orbit theory, that full classical chaos is paralleled by quantum energy spectra with universal spectral statistics, in agreement with random-matrix theory. For dynamics from all three Wigner-Dyson symmetry classes, we calculate the small-time spectral form factor K(tau) as power series in the time tau. Each term tau(n) of that series is provided by specific families of pairs of periodic orbits. The contributing pairs are classified in terms of close self-encounters in phase space. The frequency of occurrence of self-encounters is calculated by invoking ergodicity. Combinatorial rules for building pairs involve nontrivial properties of permutations. We show our series to be equivalent to perturbative implementations of the nonlinear sigma models for the Wigner-Dyson ensembles of random matrices and for disordered systems; our families of orbit pairs have a one-to-one relationship with Feynman diagrams known from the sigma model.

  17. User applications unique to mobile satellites

    NASA Astrophysics Data System (ADS)

    Castiel, David

    As AMSC enters the market with its mobile satellite services, it faces a sophisticated user group that has already experimented with a wide range of communications services, including cellular radio and Ku-band satellite messaging. AMSC's challenge is to define applications unique to the capabilities of its dedicated L band satellite and consistent with the provisions outlined in its FCC license. Through a carefully researched approach to its three main markets (aeronautical, land mobile, and maritime) AMSC is discovering a wellspring of interest in corporate and general aviation, trucking companies, pipeline monitoring and control companies, maritime management firms, telecommunications companies, and government agencies. A general overview is provided of AMSC's FCC license and corporate history, and the specific applications unique to each user group is discussed.

  18. Uniqueness of Nash equilibrium in vaccination games.

    PubMed

    Bai, Fan

    2016-12-01

    One crucial condition for the uniqueness of Nash equilibrium set in vaccination games is that the attack ratio monotonically decreases as the vaccine coverage level increasing. We consider several deterministic vaccination models in homogeneous mixing population and in heterogeneous mixing population. Based on the final size relations obtained from the deterministic epidemic models, we prove that the attack ratios can be expressed in terms of the vaccine coverage levels, and also prove that the attack ratios are decreasing functions of vaccine coverage levels. Some thresholds are presented, which depend on the vaccine efficacy. It is proved that for vaccination games in homogeneous mixing population, there is a unique Nash equilibrium for each game. PMID:27465224

  19. Is mankind unique in the Galaxy?

    NASA Astrophysics Data System (ADS)

    Martin, A. R.; Bond, A.

    1984-10-01

    There is a relation between questions regarding the uniqueness of mankind in the Galaxy and the 'Fermi Paradox'. It has appeared to Fermi that the eventual controlled command of astronomical quantities of energy, and the ability for mankind to head out into the universe was only a matter of time. On the other hand, he reasoned that a large number of sites for intelligence should have developed in the Galaxy a long time ago. He expected that such civilizations in colonizing the Galaxy would come in contact with the earth, and yet, there is no evidence regarding such contacts. Many aspects of the Fermi Paradox have been debated. The present investigation represents an attempt to further contribute to that debate by exploring some of the arguments prompted by the Paradox. It is concluded that all of the arguments have only one self-consistent resolution. According to this resolution, mankind is unique in the Galaxy.

  20. Quantum Locality?

    SciTech Connect

    Stapp, Henry

    2011-11-10

    Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties of a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the

  1. Metalworking Techniques Unlock a Unique Alloy

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Approached by West Hartford, Connecticut-based Abbot Ball Company, Glenn Research Center agreed to test an intriguing alloy called Nitinol 60 that had been largely unused for a half century. Using powdered metallurgy, the partners developed a method for manufacturing and working with the material, which Abbott Ball has now commercialized. Nitinol 60 provides a unique combination of qualities that make it an excellent material for ball bearings, among other applications.

  2. Unique nature of hydroplant complicates design

    SciTech Connect

    Not Available

    1990-01-01

    This article describes the unique nature of the Niagara Power Project as it affected upgrading of the Robert Moses powerplant and operation of the powerplant and pumped storage facility. To be taken into account are the variable flow of the Niagara River, treaties regarding division of river flow between Canada and USA and maintenance of river flow over the falls, and the level of Lake Erie.

  3. Construction of relativistic quantum theory: a progress report

    SciTech Connect

    Noyes, H.P.

    1986-06-01

    We construct the particulate states of quantum physics using a recursive computer program that incorporates non-determinism by means of locally arbitrary choices. Quantum numbers and coupling constants arise from the construction via the unique 4-level combinatorial hierarchy. The construction defines indivisible quantum events with the requisite supraluminal correlations, yet does not allow supraluminal communication. Measurement criteria incorporate c, h-bar and m/sub p/ or (not ''and'') G, connected to laboratory events via finite particle number scattering theory and the counter paradigm. The resulting theory is discrete throughout, contains no infinities, and, as far as we have developed it, is in agreement with quantum mechanical and cosmological fact.

  4. Cochlear Implantation in Unique Pediatric Populations

    PubMed Central

    Hang, Anna X.; Kim, Grace G.; Zdanski, Carlton J.

    2012-01-01

    Purpose of review Over the last decade, the selection criteria for cochlear implantation have expanded to include children with special auditory, otologic, and medical problems. Included within this expanded group of candidates are those children with auditory neuropathy spectrum disorder, cochleovestibular malformations, cochlear nerve deficiency, associated syndromes, as well as multiple medical and developmental disorders. Definitive indications for cochlear implantation in these unique pediatric populations are in evolution. This review will provide an overview of managing and habilitating hearing loss within these populations with specific focus on cochlear implantation as a treatment option. Recent findings Cochlear implants have been successfully implanted in children within unique populations with variable results. Evaluation for cochlear implant candidacy includes the core components of a full medical, audiologic, and speech and language evaluations. When considering candidacy in these children, additional aspects to consider include disorder specific surgical considerations and child/care-giver counseling regarding reasonable post-implantation outcome expectations. Summary Cochlear implantations are accepted as the standard of care for improving hearing and speech development in children with severe to profound hearing loss. However, children with sensorineural hearing loss who meet established audiologic criteria for cochlear implantation may have unique audiologic, medical, and anatomic characteristics that necessitate special consideration regarding cochlear implantation candidacy and outcome. Individualized pre-operative candidacy and counseling, surgical evaluation, and reasonable post-operative outcome expectations should be taken into account in the management of these children. PMID:23128686

  5. Quantum Russian roulette

    NASA Astrophysics Data System (ADS)

    Schmidt, Alexandre G. M.; da Silva, Ladário

    2013-01-01

    We quantize the gamble known as Russian roulette and we study it in two versions for two- and three-persons when: (i) players use a fully loaded quantum gun; (ii) the quantum gun has only one quantum bullet.

  6. Interpreting quantum discord through quantum state merging

    SciTech Connect

    Madhok, Vaibhav; Datta, Animesh

    2011-03-15

    We present an operational interpretation of quantum discord based on the quantum state merging protocol. Quantum discord is the markup in the cost of quantum communication in the process of quantum state merging, if one discards relevant prior information. Our interpretation has an intuitive explanation based on the strong subadditivity of von Neumann entropy. We use our result to provide operational interpretations of other quantities like the local purity and quantum deficit. Finally, we discuss in brief some instances where our interpretation is valid in the single-copy scenario.

  7. Quantum probability and quantum decision-making.

    PubMed

    Yukalov, V I; Sornette, D

    2016-01-13

    A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary.

  8. Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge

    NASA Astrophysics Data System (ADS)

    Li, Xiaopeng; Pixley, J. H.; Deng, Dong-Ling; Ganeshan, Sriram; Das Sarma, S.

    2016-05-01

    We study the many-body localization aspects of single-particle mobility edges in fermionic systems. We investigate incommensurate lattices and random disorder Anderson models. Many-body localization and quantum nonergodic properties are studied by comparing entanglement and thermal entropy, and by calculating the scaling of subsystem particle-number fluctuations, respectively. We establish a nonergodic extended phase as a generic intermediate phase (between purely ergodic extended and nonergodic localized phases) for the many-body localization transition of noninteracting fermions where the entanglement entropy manifests a volume law (hence, "extended"), but there are large fluctuations in the subsystem particle numbers (hence, "nonergodic"). Based on the numerical results, we expect such an intermediate phase scenario may continue to hold even for the many-body localization in the presence of interactions as well. We find for many-body fermionic states in noninteracting one-dimensional Aubry-André and three-dimensional Anderson models that the entanglement entropy density and the normalized particle-number fluctuation have discontinuous jumps at the localization transition where the entanglement entropy is subthermal but obeys the "volume law." In the vicinity of the localization transition, we find that both the entanglement entropy and the particle-number fluctuations obey a single parameter scaling based on the diverging localization length. We argue using numerical and theoretical results that such a critical scaling behavior should persist for the interacting many-body localization problem with important observable consequences. Our work provides persuasive evidence in favor of there being two transitions in many-body systems with single-particle mobility edges, the first one indicating a transition from the purely localized nonergodic many-body localized phase to a nonergodic extended many-body metallic phase, and the second one being a transition

  9. Experimental Realization of a Quantum Pentagonal Lattice

    PubMed Central

    Yamaguchi, Hironori; Okubo, Tsuyoshi; Kittaka, Shunichiro; Sakakibara, Toshiro; Araki, Koji; Iwase, Kenji; Amaya, Naoki; Ono, Toshio; Hosokoshi, Yuko

    2015-01-01

    Geometric frustration, in which competing interactions give rise to degenerate ground states, potentially induces various exotic quantum phenomena in magnetic materials. Minimal models comprising triangular units, such as triangular and Kagome lattices, have been investigated for decades to realize novel quantum phases, such as quantum spin liquid. A pentagon is the second-minimal elementary unit for geometric frustration. The realization of such systems is expected to provide a distinct platform for studying frustrated magnetism. Here, we present a spin-1/2 quantum pentagonal lattice in the new organic radical crystal α-2,6-Cl2-V [=α-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl]. Its unique molecular arrangement allows the formation of a partially corner-shared pentagonal lattice (PCPL). We find a clear 1/3 magnetization plateau and an anomalous change in magnetization in the vicinity of the saturation field, which originate from frustrated interactions in the PCPL. PMID:26468930

  10. Experimental Realization of a Quantum Pentagonal Lattice.

    PubMed

    Yamaguchi, Hironori; Okubo, Tsuyoshi; Kittaka, Shunichiro; Sakakibara, Toshiro; Araki, Koji; Iwase, Kenji; Amaya, Naoki; Ono, Toshio; Hosokoshi, Yuko

    2015-01-01

    Geometric frustration, in which competing interactions give rise to degenerate ground states, potentially induces various exotic quantum phenomena in magnetic materials. Minimal models comprising triangular units, such as triangular and Kagome lattices, have been investigated for decades to realize novel quantum phases, such as quantum spin liquid. A pentagon is the second-minimal elementary unit for geometric frustration. The realization of such systems is expected to provide a distinct platform for studying frustrated magnetism. Here, we present a spin-1/2 quantum pentagonal lattice in the new organic radical crystal α-2,6-Cl2-V [=α-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl]. Its unique molecular arrangement allows the formation of a partially corner-shared pentagonal lattice (PCPL). We find a clear 1/3 magnetization plateau and an anomalous change in magnetization in the vicinity of the saturation field, which originate from frustrated interactions in the PCPL. PMID:26468930

  11. Experimental Realization of a Quantum Pentagonal Lattice

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hironori; Okubo, Tsuyoshi; Kittaka, Shunichiro; Sakakibara, Toshiro; Araki, Koji; Iwase, Kenji; Amaya, Naoki; Ono, Toshio; Hosokoshi, Yuko

    2015-10-01

    Geometric frustration, in which competing interactions give rise to degenerate ground states, potentially induces various exotic quantum phenomena in magnetic materials. Minimal models comprising triangular units, such as triangular and Kagome lattices, have been investigated for decades to realize novel quantum phases, such as quantum spin liquid. A pentagon is the second-minimal elementary unit for geometric frustration. The realization of such systems is expected to provide a distinct platform for studying frustrated magnetism. Here, we present a spin-1/2 quantum pentagonal lattice in the new organic radical crystal α-2,6-Cl2-V [=α-3-(2,6-dichlorophenyl)-1,5-diphenylverdazyl]. Its unique molecular arrangement allows the formation of a partially corner-shared pentagonal lattice (PCPL). We find a clear 1/3 magnetization plateau and an anomalous change in magnetization in the vicinity of the saturation field, which originate from frustrated interactions in the PCPL.

  12. A Unique Origin for Mojave Crater?

    NASA Astrophysics Data System (ADS)

    Zahnle, K.; Colaprete, A.

    2004-12-01

    Williams et al (LPSC 2004; see also Kerr, Science vol. 304, 196 ) recently reported the discovery of a spectacularly eroded, apparently water-carved impact crater on Mars. The ~60 km diameter crater, dubbed "Mojave Crater" for the resemblance of its alluvial fans to alluvial fans seen on Earth, is located on Xanthe Terra, Mars. The crater is rated as late Hesperian or Amazonian, meaning that the impact took place some time in the past 3.5 billion years; there is some evidence that it is not extraordinarily young. Yet the crater seems unique for its size. This crater, and to present knowledge this crater alone, is the obvious source of its own precipitation. Impact by a live, ice-rich comet may provide a unique origin for this unique crater. Impacts by live comets are surprisingly rare in the inner solar system. To make a 60 km crater on Mars requires either a ~6 km diameter nearly isotropic comet (NIC), or an ~10 km diameter Jupiter-family comet (JFC). NICs strike Mars about 3 times in 10 billion if they pass its orbit. The latter happens about 6 times per decade for NICs bigger than 6 km, so that at current rates a NIC makes a 60 km crater on Mars about once every 5 billion years. The typical Mars-crossing JFCs actually hits Mars at a rate of about 8e-11 per comet per year. There are currently 3 known Mars-crossing JFCs that may be big enough to make 60 km craters on Mars (the nearly extinct P/28 Neujmin 1, P/10 Tempel 2, and perhaps P/49 Arend-Rigaux). The rate is about once per 4 billion years. Thus we expect on the order of one 60 km martian impact crater in the past 3.5 Gyr made by a comet. There would be on the order of ten 30 km craters. Preliminary GCM simulations of comet impacts indicate that, while very large impact events generate global climate effects that can lead to precipitation in topographically favored locations anywhere on Mars, on the scale of 60 km craters the impact-generated rainfall becomes localized, such that, to first approximation, a

  13. Relativistic quantum cryptography

    SciTech Connect

    Molotkov, S. N.

    2011-03-15

    A new protocol of quantum key distribution is proposed to transmit keys through free space. Along with quantum-mechanical restrictions on the discernibility of nonorthogonal quantum states, the protocol uses additional restrictions imposed by special relativity theory. Unlike all existing quantum key distribution protocols, this protocol ensures key secrecy for a not strictly one-photon source of quantum states and an arbitrary length of a quantum communication channel.

  14. Tuning, ergodicity, equilibrium, and cosmology

    NASA Astrophysics Data System (ADS)

    Albrecht, Andreas

    2015-05-01

    I explore the possibility that the cosmos is fundamentally an equilibrium system and review the attractive features of such theories. Equilibrium cosmologies are commonly thought to fail due to the "Boltzmann brain" problem. I show that it is possible to evade the Boltzmann brain problem if there is a suitable coarse-grained relationship between the fundamental degrees of freedom and the cosmological observables. I make my main points with simple toy models and then review the de Sitter equilibrium model as an illustration.

  15. Quantum information does exist

    NASA Astrophysics Data System (ADS)

    Duwell, Armond

    2008-01-01

    This paper advocates a concept of quantum information whose origins can be traced to Schumacher [1995. Quantum coding. Physical Review A 51, 2738-2747]. The concept of quantum information advocated is elaborated using an analogy to Shannon's theory provided by Schumacher coding. In particular, this paper extends Timpson's [2004. Quantum information theory and the foundations of quantum mechanics. Ph.D. dissertation, University of Oxford. Preprint, quant-ph/0412063] framework for interpreting Shannon information theory to the quantum context. Entanglement fidelity is advocated as the appropriate success criterion for the reproduction of quantum information. The relationship between the Shannon theory and quantum information theory is discussed.

  16. Interference of quantum market strategies

    NASA Astrophysics Data System (ADS)

    Piotrowski, Edward W.; Sładkowski, Jan; Syska, Jacek

    2003-02-01

    Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The paper is devoted to the analysis of interference of quantum strategies in quantum market games.

  17. Robust quantum data locking from phase modulation

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Wilde, Mark M.; Lloyd, Seth

    2014-08-01

    Quantum data locking is a uniquely quantum phenomenon that allows a relatively short key of constant size to (un)lock an arbitrarily long message encoded in a quantum state, in such a way that an eavesdropper who measures the state but does not know the key has essentially no information about the message. The application of quantum data locking in cryptography would allow one to overcome the limitations of the one-time pad encryption, which requires the key to have the same length as the message. However, it is known that the strength of quantum data locking is also its Achilles heel, as the leakage of a few bits of the key or the message may in principle allow the eavesdropper to unlock a disproportionate amount of information. In this paper we show that there exist quantum data locking schemes that can be made robust against information leakage by increasing the length of the key by a proportionate amount. This implies that a constant size key can still lock an arbitrarily long message as long as a fraction of it remains secret to the eavesdropper. Moreover, we greatly simplify the structure of the protocol by proving that phase modulation suffices to generate strong locking schemes, paving the way to optical experimental realizations. Also, we show that successful data locking protocols can be constructed using random code words, which very well could be helpful in discovering random codes for data locking over noisy quantum channels.

  18. Integration of quantum hydrodynamical equation

    NASA Astrophysics Data System (ADS)

    Ulyanova, Vera G.; Sanin, Andrey L.

    2007-04-01

    Quantum hydrodynamics equations describing the dynamics of quantum fluid are a subject of this report (QFD).These equations can be used to decide the wide class of problem. But there are the calculated difficulties for the equations, which take place for nonlinear hyperbolic systems. In this connection, It is necessary to impose the additional restrictions which assure the existence and unique of solutions. As test sample, we use the free wave packet and study its behavior at the different initial and boundary conditions. The calculations of wave packet propagation cause in numerical algorithm the division. In numerical algorithm at the calculations of wave packet propagation, there arises the problem of division by zero. To overcome this problem we have to sew together discrete numerical and analytical continuous solutions on the boundary. We demonstrate here for the free wave packet that the numerical solution corresponds to the analytical solution.

  19. Uniqueness of the macromolecular crystallographic phase problem.

    PubMed

    Millane, Rick P; Arnal, Romain D

    2015-11-01

    Uniqueness of the phase problem in macromolecular crystallography, and its relationship to the case of single particle imaging, is considered. The crystallographic problem is characterized by a constraint ratio that depends only on the size and symmetry of the molecule and the unit cell. The results are used to evaluate the effect of various real-space constraints. The case of an unknown molecular envelope is considered in detail. The results indicate the quite wide circumstances under which ab initio phasing should be possible. PMID:26522408

  20. The Parisi Formula has a Unique Minimizer

    NASA Astrophysics Data System (ADS)

    Auffinger, Antonio; Chen, Wei-Kuo

    2015-05-01

    In 1979, Parisi (Phys Rev Lett 43:1754-1756, 1979) predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington-Kirkpatrick model, and described the role played by its minimizer. This formula was verified in the seminal work of Talagrand (Ann Math 163(1):221-263, 2006) and later generalized to the mixed p-spin models by Panchenko (Ann Probab 42(3):946-958, 2014). In this paper, we prove that the minimizer in Parisi's formula is unique at any temperature and external field by establishing the strict convexity of the Parisi functional.

  1. Cogels -- A unique family of Isocracking catalysts

    SciTech Connect

    Bridge, A.G. ); Cash, D.R.; Mayer, J.F. )

    1993-01-01

    The Chevron Isocracking Process has been developed to efficiently convert heavy feedstocks into good quality middle distillates and lube oil basestocks. This has been demonstrated in many commercial plants which have employed a family of unique cogel Isocracking catalysts. The Isocracking technology has been tailored to meet specific customer needs and has been integrated in many complex refining schemes. This paper summarizes this experience and illustrates some of the benefits which these catalysts offer over competitive hydrocracking processes, e.g., lower capital investment, higher desired product yields, better cold flow properties and better control of polynuclear aromatic formation.

  2. Quantum recurrences: probe to study quantum chaos

    PubMed

    Saif

    2000-11-01

    We study the phase space of periodically modulated gravitational cavity by means of quantum recurrence phenomena. We report that the quantum recurrences serve as a tool to connect phase space of the driven system with a spectrum in the quantum domain. With the help of quantum recurrences we investigate the quasienergy spectrum of the system for a certain fixed modulation strength. In addition, we study transition of spectrum from discrete to continuum as a function of modulation strength. PMID:11101963

  3. Quantum teleportation of optical quantum gates.

    PubMed

    Bartlett, Stephen D; Munro, William J

    2003-03-21

    We show that a universal set of gates for quantum computation with optics can be quantum teleported through the use of EPR entangled states, homodyne detection, and linear optics and squeezing operations conditioned on measurement outcomes. This scheme may be used for fault-tolerant quantum computation in any optical scheme (qubit or continuous-variable). The teleportation of nondeterministic nonlinear gates employed in linear optics quantum computation is discussed.

  4. Dynamical effects and ergodicity in the dipolar glass phase: evidence from time-domain EPR and phase memory time studies of AsO(4)(4-) in Rb(1-x)(NH(4))(x)H(2)PO(4) (x = 0,0.5,1).

    PubMed

    Sastry, M D; Gustafsson, H; Danilczuk, M; Lund, A

    2006-05-01

    Three-pulse electron spin echo envelope modulation (ESEEM), hyperfine sublevel correlation spectroscopy (HYSCORE) investigations and two-pulse electron spin echo (ESE) measurements of phase memory time T(M), were carried out, in the 20-200 K temperature range, on an AsO(4)(4-) paramagnetic probe stabilized in RbH(2)PO(4) (RDP), NH(4)H(2)PO(4) (ADP), and dipolar glass Rb(0.5)(NH(4))(0.5)H(2)PO(4) (RADP). The results obtained on ADP revealed hyperfine interaction of the probe ion with the (14)N of the ammonium ion, the coupling constant satisfying the condition of 'cancellation' at a field of 480 mT. The ammonium ion was found to be in two different sites in ADP, which became indistinguishable on the formation of dipolar glass RADP. These results were confirmed by HYSCORE spectral measurements. The fast Fourier transform (FFT) spectra of three-pulse ESEEM decays have clearly revealed the interaction with protons in the [Formula: see text] bond both in ADP and RDP; and in RADP with an averaged coupling constant. The phase memory times in RADP exhibited strong temperature dependence and were found to be dependent on the nuclear spin quantum number m(I) of (75)As. The temperature dependence of T(M) exhibited a well-defined maximum around 90 K, coinciding with the temperature of onset of 'freezing' in Rb(0.5)(NH(4))(0.5)H(2)PO(4). This is symptomatic of dynamic fluctuations in the dipolar glass phase, with onset around 150 K, going through a maximum around 90 K and slowing down on further cooling. These results suggest that in RADP, a dynamical mechanism with progressive slowing down below 90 K is operative in the glass formation. This implies that the RADP system, with x = 0.5, exists in an ergodic relaxor (R)-state in the 20-200 K temperature range wherein every fluctuating monodomain can be viewed as statistically representative of the whole sample.

  5. Quantum Steganography and Quantum Error-Correction

    ERIC Educational Resources Information Center

    Shaw, Bilal A.

    2010-01-01

    Quantum error-correcting codes have been the cornerstone of research in quantum information science (QIS) for more than a decade. Without their conception, quantum computers would be a footnote in the history of science. When researchers embraced the idea that we live in a world where the effects of a noisy environment cannot completely be…

  6. Quantum Hall effect in quantum electrodynamics

    SciTech Connect

    Penin, Alexander A.

    2009-03-15

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted.

  7. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and

  8. LDRD final report on quantum computing using interacting semiconductor quantum wires.

    SciTech Connect

    Lyo, Sungkwun Kenneth; Dunn, Roberto G.; Lilly, Michael Patrick; Tibbetts, Denise R. ); Stephenson, Larry L.; Seamons, John Andrew; Reno, John Louis; Bielejec, Edward Salvador; Simmons, Jerry Alvon

    2006-01-01

    For several years now quantum computing has been viewed as a new paradigm for certain computing applications. Of particular importance to this burgeoning field is the development of an algorithm for factoring large numbers which obviously has deep implications for cryptography and national security. Implementation of these theoretical ideas faces extraordinary challenges in preparing and manipulating quantum states. The quantum transport group at Sandia has demonstrated world-leading, unique double quantum wires devices where we have unprecedented control over the coupling strength, number of 1 D channels, overlap and interaction strength in this nanoelectronic system. In this project, we study 1D-1D tunneling with the ultimate aim of preparing and detecting quantum states of the coupled wires. In a region of strong tunneling, electrons can coherently oscillate from one wire to the other. By controlling the velocity of the electrons, length of the coupling region and tunneling strength we will attempt to observe tunneling oscillations. This first step is critical for further development double quantum wires into the basic building block for a quantum computer, and indeed for other coupled nanoelectronic devices that will rely on coherent transport. If successful, this project will have important implications for nanoelectronics, quantum computing and information technology.

  9. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  10. Therapeutic cancer vaccines: Using unique antigens

    PubMed Central

    Lewis, Jonathan J.

    2004-01-01

    A decade ago, it seemed rational that our rapidly increasing knowledge of the molecular identities of tumor antigens and a deeper understanding of basic immunology would point the way to an effective therapeutic cancer vaccine. Significant progress has been made, but we do not yet have a cancer vaccine that can reliably and consistently induce tumor destruction or improve patient survival. Random mutations in cancer cells generate unique antigens in each individual, and this may be important in terms of generating a therapeutic immune response. Autologous heat shock protein–peptide complexes produced from each patient's tumor is a logical personalized approach that may obviate the need to identify the unique antigens contained in the individual vaccine. Heat shock proteins elicit adaptive and innate immune responses and have been tested in a variety of animal models and different human cancers. Activity has been seen in several animal studies. Early-phase human studies have also suggested some activity in certain cancers. Large, randomized phase 3 studies are ongoing, and these will effectively answer the question of efficacy regarding this approach to therapeutic vaccination. There are sufficient data to support the notion that cancer vaccines can induce anti-tumor immune responses in humans with cancer. How best to translate this increase in immune responsiveness to consistently and reproducibly induce objective cancer regression or increased survival remains unclear at this time. PMID:15297620

  11. Beryllium - A Unique Material in Nuclear Applications

    SciTech Connect

    T., A. Tomberlin

    2004-11-01

    Beryllium, due to its unique combination of structural, chemical, atomic number, and neutron absorption cross section characteristics, has been used successfully as a neutron reflector for three generations of nuclear test reactors at the Idaho National Engineering and Environmental Laboratory (INEEL). The Advanced Test Reactor (ATR), the largest test reactor in the world, has utilized five successive beryllium neutron reflectors and is scheduled for continued operation with a sixth beryllium reflector. A high radiation environment in a test reactor produces radiation damage and other changes in beryllium. These changes necessitate safety analysis of the beryllium, methods to predict performance, and appropriate surveillances. Other nuclear applications also utilize beryllium. Beryllium, given its unique atomic, physical, and chemical characteristics, is widely used as a “window” for x-rays and gamma rays. Beryllium, intimately mixed with high-energy alpha radiation emitters has been successfully used to produce neutron sources. This paper addresses operational experience and methodologies associated with the use of beryllium in nuclear test reactors and in “windows” for x-rays and gamma rays. Other nuclear applications utilizing beryllium are also discussed.

  12. Astronomy Outreach for Large and Unique Audiences

    NASA Astrophysics Data System (ADS)

    Lubowich, D.; Sparks, R. T.; Pompea, S. M.; Kendall, J. S.; Dugan, C.

    2013-04-01

    In this session, we discuss different approaches to reaching large audiences. In addition to star parties and astronomy events, the audiences for some of the events include music concerts or festivals, sick children and their families, minority communities, American Indian reservations, and tourist sites such as the National Mall. The goal is to bring science directly to the public—to people who attend astronomy events and to people who do not come to star parties, science museums, or science festivals. These programs allow the entire community to participate in astronomy activities to enhance the public appreciation of science. These programs attract large enthusiastic crowds often with young children participating in these family learning experiences. The public will become more informed, educated, and inspired about astronomy and will also be provided with information that will allow them to continue to learn after this outreach activity. Large and unique audiences often have common problems, and their solutions and the lessons learned will be presented. Interaction with the participants in this session will provide important community feedback used to improve astronomy outreach for large and unique audiences. New ways to expand astronomy outreach to new large audiences will be discussed.

  13. Event Segmentation Ability Uniquely Predicts Event Memory

    PubMed Central

    Sargent, Jesse Q.; Zacks, Jeffrey M.; Hambrick, David Z.; Zacks, Rose T.; Kurby, Christopher A.; Bailey, Heather R.; Eisenberg, Michelle L.; Beck, Taylor M.

    2013-01-01

    Memory for everyday events plays a central role in tasks of daily living, autobiographical memory, and planning. Event memory depends in part on segmenting ongoing activity into meaningful units. This study examined the relationship between event segmentation and memory in a lifespan sample to answer the following question: Is the ability to segment activity into meaningful events a unique predictor of subsequent memory, or is the relationship between event perception and memory accounted for by general cognitive abilities? Two hundred and eight adults ranging from 20 to 79 years old segmented movies of everyday events and attempted to remember the events afterwards. They also completed psychometric ability tests and tests measuring script knowledge for everyday events. Event segmentation and script knowledge both explained unique variance in event memory above and beyond the psychometric measures, and did so as strongly in older as in younger adults. These results suggest that event segmentation is a basic cognitive mechanism, important for memory across the lifespan. PMID:23942350

  14. Young children's preference for unique owned objects.

    PubMed

    Gelman, Susan A; Davidson, Natalie S

    2016-10-01

    An important aspect of human thought is the value we place on unique individuals. Adults place higher value on authentic works of art than exact replicas, and young children at times value their original possessions over exact duplicates. What is the scope of this preference in early childhood, and when do children understand its subjective nature? On a series of trials, we asked three-year-olds (N=36) to choose between two toys for either themselves or the researcher: an old (visibly used) toy vs. a new (more attractive) toy matched in type and appearance (e.g., old vs. brand-new blanket). Focal pairs contrasted the child's own toy with a matched new object; Control pairs contrasted toys the child had never seen before. Children preferred the old toys for Focal pairs only, and treated their own preferences as not shared by the researcher. By 3years of age, young children place special value on unique individuals, and understand the subjective nature of that value. PMID:27395441

  15. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction

  16. Quantum key distribution with an entangled light emitting diode

    SciTech Connect

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2015-12-28

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  17. The quantum physics of photosynthesis.

    PubMed

    Ritz, Thorsten; Damjanović, Ana; Schulten, Klaus

    2002-03-12

    Biological cells contain nanoscale machineries that exhibit a unique combination of high efficiency, high adaptability to changing environmental conditions, and high reliability. Recent progress in obtaining atomically resolved structures provide an opportunity for an atomic-level explanation of the biological function of cellular machineries and the underlying physical mechanisms. A prime example in this regard is the apparatus with which purple bacteria harvest the light of the sun. Its highly symmetrical architecture and close interplay of biological functionality with quantum physical processes allow an illuminating demonstration of the fact that properties of living beings ultimately rely on and are determined by the laws of physics.

  18. Kinetic Approach for Quantum Hydrodynamic Equations

    NASA Astrophysics Data System (ADS)

    Tessarotto, M.; Ellero, M.; Nicolini, P.

    2008-12-01

    A striking feature of standard quantum mechanics (SQM) is its analogy with classical fluid dynamics. In particular it is well known the Schrödinger equation can be viewed as describing a classical compressible and non-viscous fluid, described by two (quantum) fluid fields {ρ,V}, to be identified with the quantum probability density and velocity field. This feature has suggested the construction of a phase-space hidden-variable description based on a suitable inverse kinetic theory (IKT; Tessarotto et al., 2007). The discovery of this approach has potentially important consequences since it permits to identify the classical dynamical system which advances in time the quantum fluid fields. This type of approach, however requires the identification of additional fluid fields. These can be generally identified with suitable directional fluid temperatures TQM,i (for i = 1,2,3), to be related to the expectation values of momentum fluctuations appearing in the Heisenberg inequalities. Nevertheless the definition given previously for them (Tessarotto et al., 2007) is non-unique. In this paper we intend to propose a criterion, based on the validity of a constant H-theorem, which provides an unique definition for the quantum temperatures.

  19. Quantum algorithms for quantum field theories.

    PubMed

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm. PMID:22654052

  20. Quantum algorithms for quantum field theories.

    PubMed

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  1. Quantum transport in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  2. Quantum Matching Pennies Game

    NASA Astrophysics Data System (ADS)

    Iqbal, Azhar; Abbott, Derek

    2009-01-01

    A quantum version of the matching pennies (MP) game is proposed that is played using an Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) setting. We construct the quantum game without using state vectors, while considering only the quantum mechanical joint probabilities relevant to the EPR-Bohm setting. We embed the classical game within the quantum game such that the classical MP game results when the quantum mechanical joint probabilities become factorizable. We report new Nash equilibria in the quantum MP game that emerge when the quantum mechanical joint probabilities maximally violate the Clauser-Horne-Shimony-Holt form of Bell’s inequality.

  3. The unique ethics of sports medicine.

    PubMed

    Johnson, Rob

    2004-04-01

    The ethical code by which physicians traditionally conduct themselves is based on the relationship between the physician and the patient: both work toward the goal of improving or maintaining health. Constraints on this relationship may be behaviors of patient choice (tobacco use, excessive alcohol use, sedentary behavior, and so on). The athlete-physician relationship is ethically different. Influences such as the physician's employer, the athlete's desire to play with pain and injury, and the economic consequences of playing or not complicate medical decisions. This perspective suggests something different and even unique about the ethics of the sports medicine practitioner. This article explores the differences fostering the ethical tight ropes that sports physicians walk in their sports medicine practices.

  4. Unique Crystallization of Fullerenes: Fullerene Flowers.

    PubMed

    Kim, Jungah; Park, Chibeom; Song, Intek; Lee, Minkyung; Kim, Hyungki; Choi, Hee Cheul

    2016-01-01

    Solution-phase crystallization of fullerene molecules strongly depends on the types of solvent and their ratios because solvent molecules are easily included in the crystal lattice and distort its structure. The C70 (solute)-mesitylene (solvent) system yields crystals with various morphologies and structures, such as cubes, tubes, and imperfect rods. Herein, using C60 and C70 dissolved in mesitylene, we present a novel way to grow unique flower-shaped crystals with six symmetric petals. The different solubility of C60 and C70 in mesitylene promotes nucleation of C70 with sixfold symmetry in the early stage, which is followed by co-crystallization of both C60 and C70 molecules, leading to lateral petal growth. Based on the growth mechanism, we obtained more complex fullerene crystals, such as multi-deck flowers and tube-flower complexes, by changing the sequence and parameters of crystallization. PMID:27561446

  5. Unique Crystallization of Fullerenes: Fullerene Flowers.

    PubMed

    Kim, Jungah; Park, Chibeom; Song, Intek; Lee, Minkyung; Kim, Hyungki; Choi, Hee Cheul

    2016-08-26

    Solution-phase crystallization of fullerene molecules strongly depends on the types of solvent and their ratios because solvent molecules are easily included in the crystal lattice and distort its structure. The C70 (solute)-mesitylene (solvent) system yields crystals with various morphologies and structures, such as cubes, tubes, and imperfect rods. Herein, using C60 and C70 dissolved in mesitylene, we present a novel way to grow unique flower-shaped crystals with six symmetric petals. The different solubility of C60 and C70 in mesitylene promotes nucleation of C70 with sixfold symmetry in the early stage, which is followed by co-crystallization of both C60 and C70 molecules, leading to lateral petal growth. Based on the growth mechanism, we obtained more complex fullerene crystals, such as multi-deck flowers and tube-flower complexes, by changing the sequence and parameters of crystallization.

  6. Unique biology of gliomas: challenges and opportunities

    PubMed Central

    Watkins, Stacey; Sontheimer, Harald

    2013-01-01

    Gliomas are terrifying primary brain tumors for which patient outlook remains bleak. Recent research provides novel insights into the unique biology of gliomas. For example, these tumors exhibit an unexpected pluripotency that enables them to grow their own vasculature. They have an unusual ability to navigate tortuous extracellular pathways as they invade, and they use neurotransmitters to inflict damage and create room for growth. Here, we review studies that illustrate the importance of considering interactions of gliomas with their native brain environment. Such studies suggest that gliomas constitute a neurodegenerative disease caused by the malignant growth of brain support cells. The chosen examples illustrate how targeted research into the biology of gliomas is yielding new and much needed therapeutic approaches to this challenging nervous system disease. PMID:22683220

  7. Unique metabolites protect earthworms against plant polyphenols

    PubMed Central

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A. John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J.; McPhail, David; Takáts, Zoltán; Bundy, Jacob G.

    2015-01-01

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term ‘drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide. PMID:26241769

  8. Flight testing of unique aircraft configurations

    NASA Technical Reports Server (NTRS)

    Painter, W. D.

    1983-01-01

    Some historical developments of flight testing of unique aircraft configurations by NASA and the military sector are documented. Several test aircraft are outlined including the M2-F1 (which was the first Space Shuttle concept ever demonstrated, and contributed to the present design), the X-15, the Flying Wing, the Lunar Landing Research Vehicle, the Oblique Wing Research Aircraft, and the Space Shuttle Enterprise. Future test aircraft such as the forward swept wing X-29A Advanced Technology Demonstrator Aircraft, and the X-Wing vehicle are also mentioned. It is noted that the logical preliminary to flight testing is flight simulation, and that flight testing itself is the vital final component of the development, and seems to be the most direct approach to aircraft evaluations.

  9. Organizing the spatially and temporally unique hydrosphere

    NASA Astrophysics Data System (ADS)

    Berghuijs, Wouter

    2016-04-01

    Growing anthropogenic activity is quickly changing the hydrosphere. Panta Rhei calls for improved understanding of changing hydrosphere dynamics in their connection with human systems. I argue that progress within the Panta Rhei initiative is strongly limited by the absence of hydrological principles that help to organise our spatially and temporally unique hydrosphere; without guiding principles (e.g. classification systems) hydrology will continue to be a case study dominated science that will have a hard time to efficiently improve understanding, estimation and prediction of human affected systems. Exposing such organising principles should not be considered as a step backwards into the recent PUB decade. Instead, it should be regarded as an exciting scientific challenge that is becoming increasingly relevant now the hydrosphere is quickly changing.

  10. Unique Crystallization of Fullerenes: Fullerene Flowers

    NASA Astrophysics Data System (ADS)

    Kim, Jungah; Park, Chibeom; Song, Intek; Lee, Minkyung; Kim, Hyungki; Choi, Hee Cheul

    2016-08-01

    Solution-phase crystallization of fullerene molecules strongly depends on the types of solvent and their ratios because solvent molecules are easily included in the crystal lattice and distort its structure. The C70 (solute)–mesitylene (solvent) system yields crystals with various morphologies and structures, such as cubes, tubes, and imperfect rods. Herein, using C60 and C70 dissolved in mesitylene, we present a novel way to grow unique flower-shaped crystals with six symmetric petals. The different solubility of C60 and C70 in mesitylene promotes nucleation of C70 with sixfold symmetry in the early stage, which is followed by co-crystallization of both C60 and C70 molecules, leading to lateral petal growth. Based on the growth mechanism, we obtained more complex fullerene crystals, such as multi-deck flowers and tube-flower complexes, by changing the sequence and parameters of crystallization.

  11. The Unique American Vision of Childhood

    NASA Astrophysics Data System (ADS)

    Ozturk, Mehmet Ali; Debelak, Charles

    2008-01-01

    The present article scrutinizes "the unique American vision of childhood" (UAVC) as a phenomenon undermining high academic expectations and good work ethics, and in turn, contributing to the generally low academic achievement of U.S. students compared to their counterparts in other advanced countries. It starts with a definition of UAVC, followed by a discussion of how influential it has been. The article goes on to state three reasons why UAVC is troublesome and misleading, especially in an era of global competition. Excuses devised by the proponents for UAVC's adverse effects are also revealed. The article ends with recommendations for future research and a conclusion elaborating on the consequences of UAVC and the likelihood that other countries might adopt a similar mentality.

  12. A unique case of unilateral synophthalmia.

    PubMed

    Proia, Alan D

    2011-01-01

    Developmental anomalies resulting in a single eye (cyclopia) or fusion of the eyes (synophthalmia) are rare. Examples of unilateral synophthalmia-in which there are 1 normal and 2 fused eyes from 3 anlagen in 2 orbits, 1 lateral proboscis, and 3 optic nerves-are even more rare. Herein, I report a unique fetus with unilateral synophthalmia that was not associated with a lateral proboscis but instead had an extra cerebral hemisphere. I postulate that the unilateral synophthalmia, accessory cerebral hemisphere, and minor structural abnormalities in the skull base were the result of failure in separating a monozygous twin, a situation similar to that postulated as the cause of fetus in fetu. PMID:20528261

  13. Mushrooms—Biologically Distinct and Nutritionally Unique

    PubMed Central

    Feeney, Mary Jo; Miller, Amy Myrdal; Roupas, Peter

    2014-01-01

    Mushrooms are fungi, biologically distinct from plant- and animal-derived foods (fruits, vegetables, grains, dairy, protein [meat, fish, poultry, legumes, nuts, and seeds]) that comprise the US Department of Agriculture food patterns operationalized by consumer-focused MyPlate messages. Although mushrooms provide nutrients found in these food groups, they also have a unique nutrient profile. Classified into food grouping systems by their use as a vegetable, mushrooms’ increasing use in main entrées in plant-based diets is growing, supporting consumers’ efforts to follow dietary guidance recommendations. Mushrooms’ nutrient and culinary characteristics suggest it may be time to reevaluate food groupings and health benefits in the context of 3 separate food kingdoms: plants/botany, animals/zoology, and fungi/mycology. PMID:25435595

  14. ARAC: A unique command and control resource

    SciTech Connect

    Bradley, M.M.; Baskett, R.L.; Ellis, J.S.

    1996-04-01

    The Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) is a centralized federal facility designed to provide real-time, world-wide support to military and civilian command and control centers by predicting the impacts of inadvertent or intentional releases of nuclear, biological, or chemical materials into the atmosphere. ARAC is a complete response system consisting of highly trained and experienced personnel, continually updated computer models, redundant data collection systems, and centralized and remote computer systems. With over 20 years of experience responding to domestic and international incidents, strong linkages with the Department of Defense, and the ability to conduct classified operations, ARAC is a unique command and control resource.

  15. A unique element resembling a processed pseudogene.

    PubMed

    Robins, A J; Wang, S W; Smith, T F; Wells, J R

    1986-01-01

    We describe a unique DNA element with structural features of a processed pseudogene but with important differences. It is located within an 8.4-kilobase pair region of chicken DNA containing five histone genes, but it is not related to these genes. The presence of terminal repeats, an open reading frame (and stop codon), polyadenylation/processing signal, and a poly(A) rich region about 20 bases 3' to this, together with a lack of 5' promoter motifs all suggest a processed pseudogene. However, no parent gene can be detected in the genome by Southern blotting experiments and, in addition, codon boundary values and mid-base correlations are not consistent with a protein coding region of a eukaryotic gene. The element was detected in DNA from different chickens and in peafowl, but not in quail, pheasant, or turkey.

  16. Non-Uniqueness of Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.; McIntosh, Scott W.

    1999-12-01

    We focus on the deceptively simple question: how can we use the emitted photons to extract meaningful information on the transition region and corona? Using examples, we conclude that the only safe way to proceed is through forward models. In this way, inherent non-uniqueness is handled by adding information through explicit physical assumptions and restrictions made in the modeling procedure. The alternative, `inverse' approaches, including (as a restricted subset) many standard '`spectral diagnostic techniques', rely on more subjective choices that have, as yet, no clear theoretical support. Emphasis is on the solar transition region, but necessarily discussing the corona, and with implications for more general problems concerning the use of photons to diagnose plasma conditions.

  17. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-01-01

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide. PMID:26241769

  18. Hue discrimination, unique hues and naming.

    PubMed

    Bachy, Romain; Dias, Jérôme; Alleysson, David; Bonnardel, Valérie

    2012-02-01

    The hue discrimination curve (HDC) that characterizes performances over the entire hue circle was determined by using sinusoidally modulated spectral power distributions of 1.5 c/300 nm with fixed amplitude and twelve reference phases. To investigate relationship between hue discrimination and appearance, observers further performed a free color naming and unique hue tasks. The HDC consistently displayed two minima and two maxima; discrimination is optimal at the yellow/orange and blue/magenta boundaries and pessimal in green and in the extra-spectral magenta colors. A linear model based on Müller zone theory correctly predicts a periodical profile but with a phase-opponency (minima/maxima at 180° apart) which is inconsistent with the empirical HDC's profile.

  19. Unique metabolites protect earthworms against plant polyphenols.

    PubMed

    Liebeke, Manuel; Strittmatter, Nicole; Fearn, Sarah; Morgan, A John; Kille, Peter; Fuchser, Jens; Wallis, David; Palchykov, Vitalii; Robertson, Jeremy; Lahive, Elma; Spurgeon, David J; McPhail, David; Takáts, Zoltán; Bundy, Jacob G

    2015-08-04

    All higher plants produce polyphenols, for defence against above-ground herbivory. These polyphenols also influence the soil micro- and macro-fauna that break down plant leaf litter. Polyphenols therefore indirectly affect the fluxes of soil nutrients and, ultimately, carbon turnover and ecosystem functioning in soils. It is unknown how earthworms, the major component of animal biomass in many soils, cope with high-polyphenol diets. Here, we show that earthworms possess a class of unique surface-active metabolites in their gut, which we term 'drilodefensins'. These compounds counteract the inhibitory effects of polyphenols on earthworm gut enzymes, and high-polyphenol diets increase drilodefensin concentrations in both laboratory and field populations. This shows that drilodefensins protect earthworms from the harmful effects of ingested polyphenols. We have identified the key mechanism for adaptation to a dietary challenge in an animal group that has a major role in organic matter recycling in soils worldwide.

  20. A unique element resembling a processed pseudogene.

    PubMed

    Robins, A J; Wang, S W; Smith, T F; Wells, J R

    1986-01-01

    We describe a unique DNA element with structural features of a processed pseudogene but with important differences. It is located within an 8.4-kilobase pair region of chicken DNA containing five histone genes, but it is not related to these genes. The presence of terminal repeats, an open reading frame (and stop codon), polyadenylation/processing signal, and a poly(A) rich region about 20 bases 3' to this, together with a lack of 5' promoter motifs all suggest a processed pseudogene. However, no parent gene can be detected in the genome by Southern blotting experiments and, in addition, codon boundary values and mid-base correlations are not consistent with a protein coding region of a eukaryotic gene. The element was detected in DNA from different chickens and in peafowl, but not in quail, pheasant, or turkey. PMID:3941070

  1. Unique Crystallization of Fullerenes: Fullerene Flowers

    PubMed Central

    Kim, Jungah; Park, Chibeom; Song, Intek; Lee, Minkyung; Kim, Hyungki; Choi, Hee Cheul

    2016-01-01

    Solution-phase crystallization of fullerene molecules strongly depends on the types of solvent and their ratios because solvent molecules are easily included in the crystal lattice and distort its structure. The C70 (solute)–mesitylene (solvent) system yields crystals with various morphologies and structures, such as cubes, tubes, and imperfect rods. Herein, using C60 and C70 dissolved in mesitylene, we present a novel way to grow unique flower-shaped crystals with six symmetric petals. The different solubility of C60 and C70 in mesitylene promotes nucleation of C70 with sixfold symmetry in the early stage, which is followed by co-crystallization of both C60 and C70 molecules, leading to lateral petal growth. Based on the growth mechanism, we obtained more complex fullerene crystals, such as multi-deck flowers and tube-flower complexes, by changing the sequence and parameters of crystallization. PMID:27561446

  2. Estetrol: a unique steroid in human pregnancy.

    PubMed

    Holinka, Christian F; Diczfalusy, Egon; Coelingh Bennink, Herjan J T

    2008-05-01

    Estetrol (E(4)) is an estrogenic steroid molecule synthesized exclusively by the fetal liver during human pregnancy and reaching the maternal circulation through the placenta. Its function is presently unknown. After its discovery in the mid-1960s, E(4) research revealed rather unique properties of this steroid and spawned a large body of state-of-the art publications. Nevertheless, 20 years later experimental work was virtually abandoned. In recent years based on new data, E(4) has experienced a vita nova, a revival of preclinical and clinical research activities with the goal to elucidate its physiological function and explore its potential for therapeutic use in humans. This review is intended to offer an historical account of the discovery of E(4) and the preclinical studies conducted during the heyday of E(4) research that ended in the mid-1980s. PMID:18462934

  3. Universal quantum computation by discontinuous quantum walk

    SciTech Connect

    Underwood, Michael S.; Feder, David L.

    2010-10-15

    Quantum walks are the quantum-mechanical analog of random walks, in which a quantum ''walker'' evolves between initial and final states by traversing the edges of a graph, either in discrete steps from node to node or via continuous evolution under the Hamiltonian furnished by the adjacency matrix of the graph. We present a hybrid scheme for universal quantum computation in which a quantum walker takes discrete steps of continuous evolution. This ''discontinuous'' quantum walk employs perfect quantum-state transfer between two nodes of specific subgraphs chosen to implement a universal gate set, thereby ensuring unitary evolution without requiring the introduction of an ancillary coin space. The run time is linear in the number of simulated qubits and gates. The scheme allows multiple runs of the algorithm to be executed almost simultaneously by starting walkers one time step apart.

  4. Secure quantum signatures using insecure quantum channels

    NASA Astrophysics Data System (ADS)

    Amiri, Ryan; Wallden, Petros; Kent, Adrian; Andersson, Erika

    2016-03-01

    Digital signatures are widely used in modern communication to guarantee authenticity and transferability of messages. The security of currently used classical schemes relies on computational assumptions. We present a quantum signature scheme that does not require trusted quantum channels. We prove that it is unconditionally secure against the most general coherent attacks, and show that it requires the transmission of significantly fewer quantum states than previous schemes. We also show that the quantum channel noise threshold for our scheme is less strict than for distilling a secure key using quantum key distribution. This shows that "direct" quantum signature schemes can be preferable to signature schemes relying on secret shared keys generated using quantum key distribution.

  5. Potential clinical applications of quantum dots

    PubMed Central

    Medintz, Igor L; Mattoussi, Hedi; Clapp, Aaron R

    2008-01-01

    The use of luminescent colloidal quantum dots in biological investigations has increased dramatically over the past several years due to their unique size-dependent optical properties and recent advances in biofunctionalization. In this review, we describe the methods for generating high-quality nanocrystals and report on current and potential uses of these versatile materials. Numerous examples are provided in several key areas including cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. We also explore toxicity issues surrounding these materials and speculate about the future uses of quantum dots in a clinical setting. PMID:18686776

  6. Randomness: Quantum versus classical

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2016-05-01

    Recent tremendous development of quantum information theory has led to a number of quantum technological projects, e.g. quantum random generators. This development had stimulated a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is the elaboration of a consistent and commonly accepted interpretation of a quantum state. Closely related problem is the clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review, we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. We also discuss briefly “digital philosophy”, its role in physics (classical and quantum) and its coupling to the information interpretation of quantum mechanics (QM).

  7. quantum mechanics

    PubMed Central

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S. P.

    2013-01-01

    -symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on -symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a -symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the phase transition can now be understood intuitively without resorting to sophisticated mathe- matics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter–antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of -synthetic materials are being developed, and the phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of -symmetric quantum mechanics. PMID:23509390

  8. Émission de photons uniques par un atome unique piégé

    NASA Astrophysics Data System (ADS)

    Darquié, B.; Beugnon, J.; Jones, M. P. A.; Dingjan, J.; Sortais, Y.; Browaeys, A.; Messin, G.; Grangier, P.

    2006-10-01

    En illuminant un atome unique piégé dans une pince optique de taille micrométrique à l'aide d'impulsions lumineuses résonantes d'une durée de 4 ns, nous avons réalisé une source efficace de photons uniques déclenchés, de polarisation bien définie. Nous avons mesuré la fonction d'autocorrélation temporelle en intensité qui met en évidence un dégroupement de photons presque parfait. Une telle source de photons uniques de haut flux possède des applications potentielles pour le traitement de l'information quantique.

  9. Quantum computing classical physics.

    PubMed

    Meyer, David A

    2002-03-15

    In the past decade, quantum algorithms have been found which outperform the best classical solutions known for certain classical problems as well as the best classical methods known for simulation of certain quantum systems. This suggests that they may also speed up the simulation of some classical systems. I describe one class of discrete quantum algorithms which do so--quantum lattice-gas automata--and show how to implement them efficiently on standard quantum computers.

  10. What are Quantum Jumps?

    NASA Astrophysics Data System (ADS)

    Cook, Richard J.

    1988-01-01

    This paper answers the title question by giving an operational definition of quantum jumps based on measurement theory. This definition forms the basis of a theory of quantum jumps which leads to a number of testable predictions. Experiments are proposed to test the theory. The suggested experiments also test the quantum Zeno paradox, i.e., they test the proposition that frequent observation of a quantum system inhibits quantum jumps in that system.

  11. Diagrammatic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.; Lomonaco, Samuel J.

    2015-05-01

    This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.

  12. Probabilistic Cloning and Quantum Computation

    NASA Astrophysics Data System (ADS)

    Gao, Ting; Yan, Feng-Li; Wang, Zhi-Xi

    2004-06-01

    We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which the cloning offers an advantage which cannot be matched by any approach that does not resort to quantum cloning. In these quantum computations, we need to distribute quantum information contained in the states about which we have some partial information. To perform quantum computations, we use a state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.

  13. 14 CFR 221.203 - Unique rule numbers required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Unique rule numbers required. 221.203... PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Electronically Filed Tariffs § 221.203 Unique rule numbers required... bear a unique rule number. (b) The unique rule numbers for the fares specified in this section shall...

  14. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

    PubMed

    Vasseur, Romain; Moore, Joel E

    2014-04-11

    The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

  15. Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Bojowald, Martin

    The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996

  16. Quantum optics, cavity QED, and quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2013-05-01

    Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.

  17. Alpbach Summer School - a unique learning experience

    NASA Astrophysics Data System (ADS)

    Kern, K.; Aulinas, J.; Clifford, D.; Krejci, D.; Topham, R.

    2011-12-01

    The Alpbach Summer School is a ten-day program that provides a unique opportunity for young european science and engineering students, both undergraduate and graduate, to learn how to approach the entire design process of a space mission. The theme of the 2010 Summer School was "New Space Missions to Understand Climate Change", a current, challenging, very broad and complex topic. The program was established more than 35 years ago and is organised in two interrelated parts: a series of lectures held by renowned experts in the field (in the case of this specific year, climate change and space engineering experts) that provides a technical and scientific background for the workshops that follow, the core of the Summer School. For the workshops the students are split into four international, interdisciplinary teams of about 15 students. In 2010 every team had to complete a number of tasks, four in total: (1) identify climate change research gaps and design a space mission that has not yet been flown or proposed, (2) define the science objectives and requirements of the mission, (3) design a spacecraft that meets the mission requirements, which includes spacecraft design and construction, payload definition, orbit calculations, but also the satellite launch, operation and mission costs and (4) write up a short mission proposal and present the results to an expert review panel. Achieving these tasks in only a few days in a multicultural, interdisciplinary team represents a major challenge for all participants and provides an excellent practical learning experience. Over the course of the program, students do not just learn facts about climate change and space engineering, but scientists also learn from engineers and engineers from scientists. The participants have to deepen their knowledge in an often unfamiliar field, develop organisational and team-work skills and work under pressure. Moreover, teams are supported by team and roving tutors and get the opportunity to

  18. Might "Unique" Factors Be "Common"? On the Possibility of Indeterminate Common-Unique Covariances

    ERIC Educational Resources Information Center

    Grayson, Dave

    2006-01-01

    The present paper shows that the usual factor analytic structured data dispersion matrix lambda psi lambda' + delta can readily arise from a set of scores y = lambda eta + epsilon, shere the "common" (eta) and "unique" (epsilon) factors have nonzero covariance: gamma = Cov epsilon,eta) is not equal to 0. Implications of this finding are discussed…

  19. Uniqueness Of docosahexaenoic acid: A master Of DNA and A Quantum gate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fossil record displays the sudden appearance of intracellular detail and the 32 phyla in what is known as the “Cambrian Explosion” at about 600 million years ago. The intracellular structures were made with membrane lipids which provided for organisation and specialisation. Oxidative metabolism...

  20. Uniqueness of two-loop master contours

    NASA Astrophysics Data System (ADS)

    Caron-Huot, Simon; Larsen, Kasper J.

    2012-10-01

    Generalized-unitarity calculations of two-loop amplitudes are performed by expanding the amplitude in a basis of master integrals and then determining the coefficients by taking a number of generalized cuts. In this paper, we present a complete classification of the solutions to the maximal cut of integrals with the double-box topology. The ideas presented here are expected to be relevant for all two-loop topologies as well. We find that these maximal-cut solutions are naturally associated with Riemann surfaces whose topology is determined by the number of states at the vertices of the double-box graph. In the case of four massless external momenta we find that, once the geometry of these Riemann surfaces is properly understood, there are uniquely defined master contours producing the coefficients of the double-box integrals in the basis decomposition of the two-loop amplitude. This is in perfect analogy with the situation in one-loop generalized unitarity. In addition, we point out that the chiral integrals recently introduced by Arkani-Hamed et al. can be used as master integrals for the double-box contributions to the two-loop amplitudes in any gauge theory. The infrared finiteness of these integrals allow for their coefficients as well as their integrated expressions to be evaluated in strictly four dimensions, providing significant technical simplification. We evaluate these integrals at four points and obtain remarkably compact results.

  1. Biomechanics of the unique pterosaur pteroid

    PubMed Central

    Palmer, Colin; Dyke, Gareth J.

    2010-01-01

    Pterosaurs, flying reptiles from the Mesozoic, had wing membranes that were supported by their arm bones and a super-elongate fourth finger. Associated with the wing, pterosaurs also possessed a unique wrist bone—the pteroid—that functioned to support the forward part of the membrane in front of the leading edge, the propatagium. Pteroid shape varies across pterosaurs and reconstructions of its orientation vary (projecting anteriorly to the wing leading edge or medially, lying alongside it) and imply differences in the way that pterosaurs controlled their wings. Here we show, using biomechanical analysis and considerations of aerodynamic efficiency of a representative ornithocheirid pterosaur, that an anteriorly orientated pteroid is highly unlikely. Unless these pterosaurs only flew steadily and had very low body masses, their pteroids would have been likely to break if orientated anteriorly; the degree of movement required for a forward orientation would have introduced extreme membrane strains and required impractical tensioning in the propatagium membrane. This result can be generalized for other pterodactyloid pterosaurs because the resultant geometry of an anteriorly orientated pteroid would have reduced the aerodynamic performance of all wings and required the same impractical properties in the propatagium membrane. We demonstrate quantitatively that the more traditional reconstruction of a medially orientated pteroid was much more stable both structurally and aerodynamically, reflecting likely life position. PMID:20007183

  2. Unique animal prenyltransferase with monoterpene synthase activity

    NASA Astrophysics Data System (ADS)

    Gilg, Anna B.; Tittiger, Claus; Blomquist, Gary J.

    2009-06-01

    Monoterpenes are structurally diverse natural compounds that play an essential role in the chemical ecology of a wide array of organisms. A key enzyme in monoterpene biosynthesis is geranyl diphosphate synthase (GPPS). GPPS is an isoprenyl diphosphate synthase that catalyzes a single electrophilic condensation reaction between dimethylallyl diphosphate (C5) and isopentenyl diphosphate (C5) to produce geranyl diphosphate (GDP; C10). GDP is the universal precursor to all monoterpenes. Subsequently, monoterpene synthases are responsible for the transformation of GDP to a variety of acyclic, monocyclic, and bicyclic monoterpene products. In pheromone-producing male Ips pini bark beetles (Coleoptera: Scolytidae), the acyclic monoterpene myrcene is required for the production of the major aggregation pheromone component, ipsdienol. Here, we report monoterpene synthase activity associated with GPPS of I. pini. Enzyme assays were performed on recombinant GPPS to determine the presence of monoterpene synthase activity, and the reaction products were analyzed by coupled gas chromatography-mass spectrometry. The functionally expressed recombinant enzyme produced both GDP and myrcene, making GPPS of I. pini a bifunctional enzyme. This unique insect isoprenyl diphosphate synthase possesses the functional plasticity that is characteristic of terpene biosynthetic enzymes of plants, contributing toward the current understanding of product specificity of the isoprenoid pathway.

  3. Repeated learning makes cultural evolution unique

    PubMed Central

    Strimling, Pontus; Enquist, Magnus; Eriksson, Kimmo

    2009-01-01

    Although genetic information is acquired only once, cultural information can be both abandoned and reacquired during an individual's lifetime. Therefore, cultural evolution will be determined not only by cultural traits' ability to spread but also by how good they are at sticking with an individual; however, the evolutionary consequences of this aspect of culture have not previously been explored. Here we show that repeated learning and multiple characteristics of cultural traits make cultural evolution unique, allowing dynamical phenomena we can recognize as specifically cultural, such as traits that both spread quickly and disappear quickly. Importantly, the analysis of our model also yields a theoretical objection to the popular suggestion that biological and cultural evolution can be understood in similar terms. We find that the possibility to predict long-term cultural evolution by some success index, analogous to biological fitness, depends on whether individuals have few or many opportunities to learn. If learning opportunities are few, we find that the existence of a success index may be logically impossible, rendering notions of “cultural fitness” meaningless. On the other hand, if individuals can learn many times, we find a success index that works, regardless of whether the transmission pattern is vertical, oblique, or horizontal. PMID:19666615

  4. Biomechanics of the unique pterosaur pteroid.

    PubMed

    Palmer, Colin; Dyke, Gareth J

    2010-04-01

    Pterosaurs, flying reptiles from the Mesozoic, had wing membranes that were supported by their arm bones and a super-elongate fourth finger. Associated with the wing, pterosaurs also possessed a unique wrist bone--the pteroid--that functioned to support the forward part of the membrane in front of the leading edge, the propatagium. Pteroid shape varies across pterosaurs and reconstructions of its orientation vary (projecting anteriorly to the wing leading edge or medially, lying alongside it) and imply differences in the way that pterosaurs controlled their wings. Here we show, using biomechanical analysis and considerations of aerodynamic efficiency of a representative ornithocheirid pterosaur, that an anteriorly orientated pteroid is highly unlikely. Unless these pterosaurs only flew steadily and had very low body masses, their pteroids would have been likely to break if orientated anteriorly; the degree of movement required for a forward orientation would have introduced extreme membrane strains and required impractical tensioning in the propatagium membrane. This result can be generalized for other pterodactyloid pterosaurs because the resultant geometry of an anteriorly orientated pteroid would have reduced the aerodynamic performance of all wings and required the same impractical properties in the propatagium membrane. We demonstrate quantitatively that the more traditional reconstruction of a medially orientated pteroid was much more stable both structurally and aerodynamically, reflecting likely life position.

  5. Arachnoiditis ossificans and syringomyelia: A unique presentation

    PubMed Central

    Opalak, Charles F.; Opalak, Michael E.

    2015-01-01

    Background: Arachnoiditis ossificans (AO) is a rare disorder that was differentiated from leptomeningeal calcification by Kaufman and Dunsmore in 1971. It generally presents with progressive lower extremity myelopathy. Though the underlying etiology has yet to be fully described, it has been associated with various predisposing factors including vascular malformations, previous intradural surgery, myelograms, and adhesive arachnoiditis. Associated conditions include syringomyelia and arachnoid cyst. The preferred diagnostic method is noncontrast computed tomography (CT). Surgical intervention is still controversial and can include decompression and duroplasty or durotomy. Case Description: The authors report the case of a 62-year-old male with a history of paraplegia who presented with a urinary tract infection and dysautonomia. His past surgical history was notable for a C4–C6 anterior fusion and an intrathecal phenol injection for spasticity. A magnetic resonance image (MR) also demonstrated a T6-conus syringx. At surgery, there was significant ossification of the arachnoid/dura, which was removed. After a drain was placed in the syrinx, there was a significant neurologic improvement. Conclusion: This case demonstrates a unique presentation of AO and highlights the need for CT imaging when a noncommunicating syringx is identified. In addition, surgical decompression can achieve good results when AO is associated with concurrent compressive lesions. PMID:26693389

  6. Unique features in the ARIES glovebox line

    SciTech Connect

    Martinez, H.E.; Brown, W.G.; Flamm, B.; James, C.A.; Laskie, R.; Nelson, T.O.; Wedman, D.E.

    1998-12-31

    A series of unique features have been incorporated into the Advanced Recovery and Integrated Extraction System (ARIES) at the Los Alamos National Laboratory, TA-55 Plutonium Facility. The features enhance the material handling in the process of the dismantlement of nuclear weapon primaries in the glovebox line. Incorporated into these features are the various plutonium process module`s different ventilation zone requirements that the material handling systems must meet. These features include a conveyor system that consists of a remotely controlled cart that transverses the length of the conveyor glovebox, can be operated from a remote location and can deliver process components to the entrance of any selected module glovebox. Within the modules there exists linear motion material handling systems with lifting hoist, which are controlled via an Allen Bradley control panel or local control panels. To remove the packaged products from the hot process line, the package is processed through an air lock/electrolytic decontamination process that removes the radioactive contamination from the outside of the package container and allows the package to be removed from the process line.

  7. Efficient Nonnegative Tucker Decompositions: Algorithms and Uniqueness.

    PubMed

    Zhou, Guoxu; Cichocki, Andrzej; Zhao, Qibin; Xie, Shengli

    2015-12-01

    Nonnegative Tucker decomposition (NTD) is a powerful tool for the extraction of nonnegative parts-based and physically meaningful latent components from high-dimensional tensor data while preserving the natural multilinear structure of data. However, as the data tensor often has multiple modes and is large scale, the existing NTD algorithms suffer from a very high computational complexity in terms of both storage and computation time, which has been one major obstacle for practical applications of NTD. To overcome these disadvantages, we show how low (multilinear) rank approximation (LRA) of tensors is able to significantly simplify the computation of the gradients of the cost function, upon which a family of efficient first-order NTD algorithms are developed. Besides dramatically reducing the storage complexity and running time, the new algorithms are quite flexible and robust to noise, because any well-established LRA approaches can be applied. We also show how nonnegativity incorporating sparsity substantially improves the uniqueness property and partially alleviates the curse of dimensionality of the Tucker decompositions. Simulation results on synthetic and real-world data justify the validity and high efficiency of the proposed NTD algorithms.

  8. The Placenta Harbors a Unique Microbiome

    PubMed Central

    Aagaard, Kjersti; Ma, Jun; Antony, Kathleen M.; Ganu, Radhika; Petrosino, Joseph; Versalovic, James

    2016-01-01

    Humans and their microbiomes have coevolved as a physiologic community composed of distinct body site niches with metabolic and antigenic diversity. The placental microbiome has not been robustly interrogated, despite recent demonstrations of intracellular bacteria with diverse metabolic and immune regulatory functions. A population-based cohort of placental specimens collected under sterile conditions from 320 subjects with extensive clinical data was established for comparative 16S ribosomal DNA–based and whole-genome shotgun (WGS) metagenomic studies. Identified taxa and their gene carriage patterns were compared to other human body site niches, including the oral, skin, airway (nasal), vaginal, and gut microbiomes from nonpregnant controls. We characterized a unique placental microbiome niche, composed of nonpathogenic commensal microbiota from the Firmicutes, Tenericutes, Proteobacteria, Bacteroidetes, and Fusobacteria phyla. In aggregate, the placental microbiome profiles were most akin (Bray-Curtis dissimilarity <0.3) to the human oral microbiome. 16S-based operational taxonomic unit analyses revealed associations of the placental microbiome with a remote history of antenatal infection (permutational multivariate analysis of variance, P = 0.006), such as urinary tract infection in the first trimester, as well as with preterm birth <37 weeks (P = 0.001). PMID:24848255

  9. Clinical EPR: Unique Opportunities and Some Challenges

    PubMed Central

    Swartz, Harold M.; Williams, Benjamin B.; Zaki, Bassem I.; Hartford, Alan C.; Jarvis, Lesley A.; Chen, Eunice; Comi, Richard J.; Ernstoff, Marc S.; Hou, Huagang; Khan, Nadeem; Swarts, Steven G.; Flood, Ann B.; Kuppusamy, Periannan

    2014-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been well established as a viable technique for measurement of free radicals and oxygen in biological systems, from in vitro cellular systems to in vivo small animal models of disease. However, the use of EPR in human subjects in the clinical setting, although attractive for a variety of important applications such as oxygen measurement, is challenged with several factors including the need for instrumentation customized for human subjects, probe and regulatory constraints. This paper describes the rationale and development of the first clinical EPR systems for two important clinical applications, namely, measurement of tissue oxygen (oximetry), and radiation dose (dosimetry) in humans. The clinical spectrometers operate at 1.2 GHz frequency and use surface loop resonators capable of providing topical measurements up to 1 cm depth in tissues. Tissue pO2 measurements can be carried out noninvasively and repeatedly after placement of an oxygen-sensitive paramagnetic material (currently India ink) at the site of interest. Our EPR dosimetry system is capable of measuring radiation-induced free radicals in the tooth of irradiated human subjects to determine the exposure dose. These developments offer potential opportunities for clinical dosimetry and oximetry, which include guiding therapy for individual patients with tumors or vascular disease, by monitoring of tissue oxygenation. Further work is in progress to translate this unique technology to routine clinical practice. PMID:24439333

  10. Lunar granites with unique ternary feldspars

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Marvin, U. B.; Bower, J. F.

    1975-01-01

    An unusually high concentration of granitic fragments, with textures ranging from holocrystalline to glassy, occurs throughout Boulder 1, a complex breccia of highland rocks from Apollo 17, Station 2. Among the minerals included in the granites are enigmatic K-Ca-rich feldspars that fall in the forbidden region of the ternary diagram. The great variability in chemistry and texture is probably the result of impact degradation and melting of a granitic source-rock. Studies of the breccia matrix suggest that this original granitic source-rock may have contained more pyroxenes and phosphates than most of the present clasts contain. Petrographic observations on Apollo 15 KREEP basalts indicate that granitic liquids may be produced by differentiation without immiscibility, and the association of the granites with KREEP-rich fragments in the boulder suggests that the granites represent a residual liquid from the plutonic fractional crystallization of a KREEP-rich magma. Boulder 1 is unique among Apollo 17 samples in its silica-KREEP-rich composition. We conclude that the boulder represents a source-rock unlike the bedrock of South Massif.

  11. Unique Ganglioside Recognition Strategies for Clostridial Neurotoxins

    SciTech Connect

    Benson, Marc A.; Fu, Zhuji; Kim, Jung-Ja P.; Baldwin, Michael R.

    2012-03-15

    Botulinum neurotoxins (BoNTs) and tetanus neurotoxin are the causative agents of the paralytic diseases botulism and tetanus, respectively. The potency of the clostridial neurotoxins (CNTs) relies primarily on their highly specific binding to nerve terminals and cleavage of SNARE proteins. Although individual CNTs utilize distinct proteins for entry, they share common ganglioside co-receptors. Here, we report the crystal structure of the BoNT/F receptor-binding domain in complex with the sugar moiety of ganglioside GD1a. GD1a binds in a shallow groove formed by the conserved peptide motif E ... H ... SXWY ... G, with additional stabilizing interactions provided by two arginine residues. Comparative analysis of BoNT/F with other CNTs revealed several differences in the interactions of each toxin with ganglioside. Notably, exchange of BoNT/F His-1241 with the corresponding lysine residue of BoNT/E resulted in increased affinity for GD1a and conferred the ability to bind ganglioside GM1a. Conversely, BoNT/E was not able to bind GM1a, demonstrating a discrete mechanism of ganglioside recognition. These findings provide a structural basis for ganglioside binding among the CNTs and show that individual toxins utilize unique ganglioside recognition strategies.

  12. TDRSS S-shuttle unique receiver equipment

    NASA Technical Reports Server (NTRS)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  13. The Forbidden Quantum Adder

    NASA Astrophysics Data System (ADS)

    Alvarez-Rodriguez, U.; Sanz, M.; Lamata, L.; Solano, E.

    2015-07-01

    Quantum information provides fundamentally different computational resources than classical information. We prove that there is no unitary protocol able to add unknown quantum states belonging to different Hilbert spaces. This is an inherent restriction of quantum physics that is related to the impossibility of copying an arbitrary quantum state, i.e., the no-cloning theorem. Moreover, we demonstrate that a quantum adder, in absence of an ancillary system, is also forbidden for a known orthonormal basis. This allows us to propose an approximate quantum adder that could be implemented in the lab. Finally, we discuss the distinct character of the forbidden quantum adder for quantum states and the allowed quantum adder for density matrices.

  14. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  15. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  16. Expected number of quantum channels in quantum networks

    PubMed Central

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  17. Reliable quantum communication over a quantum relay channel

    SciTech Connect

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  18. Smooth horizons and quantum ripples

    NASA Astrophysics Data System (ADS)

    Golovnev, Alexey

    2015-05-01

    Black holes are unique objects which allow for meaningful theoretical studies of strong gravity and even quantum gravity effects. An infalling and a distant observer would have very different views on the structure of the world. However, a careful analysis has shown that it entails no genuine contradictions for physics, and the paradigm of observer complementarity has been coined. Recently this picture was put into doubt. In particular, it was argued that in old black holes a firewall must form in order to protect the basic principles of quantum mechanics. This AMPS paradox has already been discussed in a vast number of papers with different attitudes and conclusions. Here we want to argue that a possible source of confusion is the neglect of quantum gravity effects. Contrary to widespread perception, it does not necessarily mean that effective field theory is inapplicable in rather smooth neighbourhoods of large black hole horizons. The real offender might be an attempt to consistently use it over the huge distances from the near-horizon zone of old black holes to the early radiation. We give simple estimates to support this viewpoint and show how the Page time and (somewhat more speculative) scrambling time do appear.

  19. Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states

    NASA Technical Reports Server (NTRS)

    Aragone, C.; Mundarain, D.

    1993-01-01

    We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.

  20. Minimal evolution time and quantum speed limit of non-Markovian open systems.

    PubMed

    Meng, Xiangyi; Wu, Chengjun; Guo, Hong

    2015-01-01

    We derive a sharp bound as the quantum speed limit (QSL) for the minimal evolution time of quantum open systems in the non-Markovian strong-coupling regime with initial mixed states by considering the effects of both renormalized Hamiltonian and dissipator. For a non-Markovian quantum open system, the possible evolution time between two arbitrary states is not unique, among the set of which we find that the minimal one and its QSL can decrease more steeply by adjusting the coupling strength of the dissipator, which thus provides potential improvements of efficiency in many quantum physics and quantum information areas.

  1. The photosensitivity of carbon quantum dots/CuAlO2 films composites

    NASA Astrophysics Data System (ADS)

    Pan, Jiaqi; Sheng, Yingzhuo; Zhang, Jingxiang; Wei, Jumeng; Huang, Peng; Zhang, Xin; Feng, Boxue

    2015-07-01

    Carbon quantum dots/CuAlO2 films were prepared by a simple route through which CuAlO2 films prepared by sol-gel on crystal quartz substrates were composited with carbon quantum dots on their surface. The characterization results indicated that CuAlO2 films were well combined with carbon quantum dots. The photoconductivity of carbon quantum dots/CuAlO2 films was investigated under illumination and darkness switching, and was demonstrated to be significantly enhanced compared with CuAlO2 films. Through analysis, this enhancement of photoconductivity was attributed to the carbon quantum dots with unique up-converted photoluminescence behavior.

  2. Quantum thermodynamics of general quantum processes.

    PubMed

    Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-03-01

    Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics. PMID:25871066

  3. Quantum Dimension and Quantum Projective Spaces

    NASA Astrophysics Data System (ADS)

    Matassa, Marco

    2014-09-01

    We show that the family of spectral triples for quantum projective spaces introduced by D'Andrea and Dąbrowski, which have spectral dimension equal to zero, can be reconsidered as modular spectral triples by taking into account the action of the element K_{2rho} or its inverse. The spectral dimension computed in this sense coincides with the dimension of the classical projective spaces. The connection with the well known notion of quantum dimension of quantum group theory is pointed out.

  4. Counterfactual quantum cryptography.

    PubMed

    Noh, Tae-Gon

    2009-12-01

    Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. In this Letter, we show that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle.

  5. Quantum chimera states

    NASA Astrophysics Data System (ADS)

    Viennot, David; Aubourg, Lucile

    2016-02-01

    We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems.

  6. Counterfactual quantum cryptography.

    PubMed

    Noh, Tae-Gon

    2009-12-01

    Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. In this Letter, we show that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle. PMID:20366133

  7. Quantum information causality.

    PubMed

    Pitalúa-García, Damián

    2013-05-24

    How much information can a transmitted physical system fundamentally communicate? We introduce the principle of quantum information causality, which states the maximum amount of quantum information that a quantum system can communicate as a function of its dimension, independently of any previously shared quantum physical resources. We present a new quantum information task, whose success probability is upper bounded by the new principle, and show that an optimal strategy to perform it combines the quantum teleportation and superdense coding protocols with a task that has classical inputs. PMID:23745844

  8. Multiscale quantum optical networks

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    2007-04-01

    Quantum experiments are described in terms of time-dependent networks of quantum bits, each qubit representing an elementary information gateway. The emphasis is on the signal properties of apparatus rather than on systems under observation (SUOs), with the quantum states of the theory (the labstates) representing the observer's information about the state of their apparatus, rather than of any SUO. The formalism gives an efficient quantum register description related to the formalism of quantum computation. Experiments conventionally described by the PVM and POVM formalisms are treated in identical terms, the formalism providing an efficient modular approach to quantum optics experiments of arbitrary complexity.

  9. A multiplexed quantum memory.

    PubMed

    Lan, S-Y; Radnaev, A G; Collins, O A; Matsukevich, D N; Kennedy, T A; Kuzmich, A

    2009-08-01

    A quantum repeater is a system for long-distance quantum communication that employs quantum memory elements to mitigate optical fiber transmission losses. The multiplexed quantum memory (O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007)) has been shown theoretically to reduce quantum memory time requirements. We present an initial implementation of a multiplexed quantum memory element in a cold rubidium gas. We show that it is possible to create atomic excitations in arbitrary memory element pairs and demonstrate the violation of Bell's inequality for light fields generated during the write and read processes.

  10. Lourdes: A uniquely Catholic approach to medicine

    PubMed Central

    Dichoso, Travis Jon

    2015-01-01

    As an American medical student, I spent the summer break between my first and second year in Lourdes, France, the site where the Immaculate Conception appeared eighteen times to St. Bernadette in 1858 as proclaimed approved by the Catholic Church and whose water is associated with over seven thousand unexplained cures. During this time I volunteered with St. Joseph's Service and Poste Secour, followed several medical teams taking care of large pilgrim groups, and shadowed Dr. Alessandro de Franciscis the president of Le Bureau des Constations Médicales, the office in Lourdes charged with investigating claims of miracles. Through my experiences, I found the mission of medicine in Lourdes to be twofold: to provide the critical care needed to give sick persons the chance to transform their experience of disease through their faith; and secondly, through the efforts of the Medical Bureau, to be an instrument by which we can comprehend the wonders of the work of God. I conclude that this twofold mission should inform the work of every Catholic in health care or research, and Lourdes provides the venue par excellence to cultivate this mission. Lay Summary: Lourdes is a pilgrimage site in southern France that has been associated with medical miracles for the past 150 years. The site is unique in that throughout its history, physicians, of any or no faith, have been invited to participate in the proceedings of the investigations of each claimed cure. The investigations have formalized into a process handled by the Lourdes Medical Bureau and the Lourdes International Medical Association. Travis Dichoso, an American medical student, writes about his experiences as part of this process. PMID:25698838

  11. Mara Field, a unique giant in Venezuela

    SciTech Connect

    Young, G.A. )

    1993-02-01

    The Mara field is located in Venzuela, 45 km northwest of Maracaibo, on the Mara-La Paz anticlinal trend. Discovered in 1945 by the Caribbean Petroleum Co. (Shell group), the field has produced 407 MMB as of 1991 and has remaining proven reserves of 60 MMB, and probable and possible reserves of 58 MMB, for an ultimate potential recovery of 525 MMB. In addition to being a giant field, Mara is also unique in that it produces from fractures igneous basement rocks as well as from fractured Cretaceous limestones, which are the source rocks of the region, and Paleocene/Eocene sandstone and carbonate reservoirs. The sedimentary stratigraphic section comprises beds ranging from early Cretaceous to middle Eocene, which suffered considerable erosion, and overlying Plio-Pleistocene sediments, all of which were involved in the latest strong deformation. The structure of the field is complex; a main thrust zone (consisting of numerous individual faults) borders the northwest flank of the elongated anticline and an opposing minor thrust zone cuts the southeast flank, forming a thrusted horst. Oblique transverse faults also cut the structure. By studying the patterns of cumulative production and lost circulation, it was possible to derive relationships between the accumulations of oil and the faulting and conceptual patterns of related fracturing in the different types of reservoir rocks. The study indicates that one can prognosticate the more prospective drilling locations on this or similar structures involving basement and limestone. It is felt that this information may be applicable to other plays in other regions.

  12. Some unique superconductive Properties of Cuprates

    NASA Astrophysics Data System (ADS)

    Müller, K. A.

    2013-04-01

    Copper oxides are the only materials that show transition temperatures, Tc, above the boiling point of liquid nitrogen, with a maximum Tmc of 162 K under pressure. Their structure is layered, with one to several CuO2 planes, and upon hole doping, their transition temperature follows a dome-shaped curve with a maximum at Tmc. In the underdoped regime, i.e., below Tmc, a pseudogap T* is found, with T* always being larger than Tc, a property unique to the copper oxides [1]. In the superconducting state, Cooper pairs (two holes with antiparallel spins) are formed that exhibit coherence lengths on the order of a lattice distance in the CuO2 plane and one order of magnitude less perpendicular to it. Their macroscopic wave function is parallel to the CuO2 plane near 100% d at their surface, but only 75% d and 25 % s in the bulk, and near 100% s perpendicular to the plane in YBCO. There are two gaps with the same Tc [2]. As function of doping, the oxygen isotope effect is novel and can be quantitatively accounted for by a two-band vibronic theory [3] near Tmc, and underdoped below it till Tc = 0 with by a formula valid for (bi)polarons [4]. These cuprates are intrinsically heterogeneous in a dynamic way. In terms of quasiparticles, Jahn-Teller bipolarons are present at low doping, and aggregate upon cooling [1], so that probably ramified clusters and/or stripes are formed, leading over to a more Fermi-liquid-type behavior at large carrier concentrations above Tmc.

  13. Evolution of a Unique Systems Engineering Capability

    SciTech Connect

    Robert M. Caliva; James A. Murphy; Kyle B. Oswald

    2011-06-01

    The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INL’s Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INL’s Systems Engineering Department has chosen to focus on customer intimacy where the customer’s needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

  14. Quantum capacity of quantum black holes

    NASA Astrophysics Data System (ADS)

    Adami, Chris; Bradler, Kamil

    2014-03-01

    The fate of quantum entanglement interacting with a black hole has been an enduring mystery, not the least because standard curved space field theory does not address the interaction of black holes with matter. We discuss an effective Hamiltonian of matter interacting with a black hole that has a precise analogue in quantum optics and correctly reproduces both spontaneous and stimulated Hawking radiation with grey-body factors. We calculate the quantum capacity of this channel in the limit of perfect absorption, as well as in the limit of a perfectly reflecting black hole (a white hole). We find that the white hole is an optimal quantum cloner, and is isomorphic to the Unruh channel with positive quantum capacity. The complementary channel (across the horizon) is entanglement-breaking with zero capacity, avoiding a violation of the quantum no-cloning theorem. The black hole channel on the contrary has vanishing capacity, while its complement has positive capacity instead. Thus, quantum states can be reconstructed faithfully behind the black hole horizon, but not outside. This work sheds new light on black hole complementarity because it shows that black holes can both reflect and absorb quantum states without violating the no-cloning theorem, and makes quantum firewalls obsolete.

  15. Quantum optics. Gravity meets quantum physics

    SciTech Connect

    Adams, Bernhard W.

    2015-02-27

    Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.

  16. Work and quantum phase transitions: quantum latency.

    PubMed

    Mascarenhas, E; Bragança, H; Dorner, R; França Santos, M; Vedral, V; Modi, K; Goold, J

    2014-06-01

    We study the physics of quantum phase transitions from the perspective of nonequilibrium thermodynamics. For first-order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models.

  17. Quantum Darwinism in Quantum Brownian Motion

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2008-12-01

    Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.

  18. Quantum Darwinism in quantum Brownian motion.

    PubMed

    Blume-Kohout, Robin; Zurek, Wojciech H

    2008-12-12

    Quantum Darwinism--the redundant encoding of information about a decohering system in its environment--was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state--a macroscopic superposition--the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.

  19. Quantum Kolmogorov complexity and bounded quantum memory

    SciTech Connect

    Miyadera, Takayuki

    2011-04-15

    The effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob, by using a bounded quantum memory and an unbounded classical memory, estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty principle in the presence of quantum memory has been obtained.

  20. Converting Coherence to Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Ma, Jiajun; Yadin, Benjamin; Girolami, Davide; Vedral, Vlatko; Gu, Mile

    2016-04-01

    Recent results in quantum information theory characterize quantum coherence in the context of resource theories. Here, we study the relation between quantum coherence and quantum discord, a kind of quantum correlation which appears even in nonentangled states. We prove that the creation of quantum discord with multipartite incoherent operations is bounded by the amount of quantum coherence consumed in its subsystems during the process. We show how the interplay between quantum coherence consumption and creation of quantum discord works in the preparation of multipartite quantum correlated states and in the model of deterministic quantum computation with one qubit.

  1. Converting Coherence to Quantum Correlations.

    PubMed

    Ma, Jiajun; Yadin, Benjamin; Girolami, Davide; Vedral, Vlatko; Gu, Mile

    2016-04-22

    Recent results in quantum information theory characterize quantum coherence in the context of resource theories. Here, we study the relation between quantum coherence and quantum discord, a kind of quantum correlation which appears even in nonentangled states. We prove that the creation of quantum discord with multipartite incoherent operations is bounded by the amount of quantum coherence consumed in its subsystems during the process. We show how the interplay between quantum coherence consumption and creation of quantum discord works in the preparation of multipartite quantum correlated states and in the model of deterministic quantum computation with one qubit.

  2. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  3. Typical pure nonequilibrium steady states and irreversibility for quantum transport.

    PubMed

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  4. Typical pure nonequilibrium steady states and irreversibility for quantum transport

    NASA Astrophysics Data System (ADS)

    Monnai, Takaaki; Yuasa, Kazuya

    2016-07-01

    It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's.

  5. Unique geologic insights from "non-unique" gravity and magnetic interpretation

    USGS Publications Warehouse

    Saltus, R.W.; Blakely, R.J.

    2011-01-01

    Interpretation of gravity and magnetic anomalies is mathematically non-unique because multiple theoretical solutions are always possible. The rigorous mathematical label of "nonuniqueness" can lead to the erroneous impression that no single interpretation is better in a geologic sense than any other. The purpose of this article is to present a practical perspective on the theoretical non-uniqueness of potential-field interpretation in geology. There are multiple ways to approach and constrain potential-field studies to produce significant, robust, and definitive results. The "non-uniqueness" of potential-field studies is closely related to the more general topic of scientific uncertainty in the Earth sciences and beyond. Nearly all results in the Earth sciences are subject to significant uncertainty because problems are generally addressed with incomplete and imprecise data. The increasing need to combine results from multiple disciplines into integrated solutions in order to address complex global issues requires special attention to the appreciation and communication of uncertainty in geologic interpretation.

  6. Onions: a source of unique dietary flavonoids.

    PubMed

    Slimestad, Rune; Fossen, Torgils; Vågen, Ingunn Molund

    2007-12-12

    Onion bulbs (Allium cepa L.) are among the richest sources of dietary flavonoids and contribute to a large extent to the overall intake of flavonoids. This review includes a compilation of the existing qualitative and quantitative information about flavonoids reported to occur in onion bulbs, including NMR spectroscopic evidence used for structural characterization. In addition, a summary is given to index onion cultivars according to their content of flavonoids measured as quercetin. Only compounds belonging to the flavonols, the anthocyanins, and the dihydroflavonols have been reported to occur in onion bulbs. Yellow onions contain 270-1187 mg of flavonols per kilogram of fresh weight (FW), whereas red onions contain 415-1917 mg of flavonols per kilogram of FW. Flavonols are the predominant pigments of onions. At least 25 different flavonols have been characterized, and quercetin derivatives are the most important ones in all onion cultivars. Their glycosyl moieties are almost exclusively glucose, which is mainly attached to the 4', 3, and/or 7-positions of the aglycones. Quercetin 4'-glucoside and quercetin 3,4'-diglucoside are in most cases reported as the main flavonols in recent literature. Analogous derivatives of kaempferol and isorhamnetin have been identified as minor pigments. Recent reports indicate that the outer dry layers of onion bulbs contain oligomeric structures of quercetin in addition to condensation products of quercetin and protocatechuic acid. The anthocyanins of red onions are mainly cyanidin glucosides acylated with malonic acid or nonacylated. Some of these pigments facilitate unique structural features like 4'-glycosylation and unusual substitution patterns of sugar moieties. Altogether at least 25 different anthocyanins have been reported from red onions, including two novel 5-carboxypyranocyanidin-derivatives. The quantitative content of anthocyanins in some red onion cultivars has been reported to be approximately 10% of the total

  7. Unique Challenges Testing SDRs for Space

    NASA Technical Reports Server (NTRS)

    Johnson, Sandra; Chelmins, David; Downey, Joseph; Nappier, Jennifer

    2013-01-01

    This paper describes the approach used by the Space Communication and Navigation (SCaN) Testbed team to qualify three Software Defined Radios (SDR) for operation in space and the characterization of the platform to enable upgrades on-orbit. The three SDRs represent a significant portion of the new technologies being studied on board the SCAN Testbed, which is operating on an external truss on the International Space Station (ISS). The SCaN Testbed provides experimenters an opportunity to develop and demonstrate experimental waveforms and applications for communication, networking, and navigation concepts and advance the understanding of developing and operating SDRs in space. Qualifying a Software Defined Radio for the space environment requires additional consideration versus a hardware radio. Tests that incorporate characterization of the platform to provide information necessary for future waveforms, which might exercise extended capabilities of the hardware, are needed. The development life cycle for the radio follows the software development life cycle, where changes can be incorporated at various stages of development and test. It also enables flexibility to be added with minor additional effort. Although this provides tremendous advantages, managing the complexity inherent in a software implementation requires a testing beyond the traditional hardware radio test plan. Due to schedule and resource limitations and parallel development activities, the subsystem testing of the SDRs at the vendor sites was primarily limited to typical fixed transceiver type of testing. NASA's Glenn Research Center (GRC) was responsible for the integration and testing of the SDRs into the SCaN Testbed system and conducting the investigation of the SDR to advance the technology to be accepted by missions. This paper will describe the unique tests that were conducted at both the subsystem and system level, including environmental testing, and present results. For example, test

  8. Unique Challenges Testing SDRs for Space

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Downey, Joseph A.; Johnson, Sandra K.; Nappier, Jennifer M.

    2013-01-01

    This paper describes the approach used by the Space Communication and Navigation (SCaN) Testbed team to qualify three Software Defined Radios (SDR) for operation in space and the characterization of the platform to enable upgrades on-orbit. The three SDRs represent a significant portion of the new technologies being studied on board the SCAN Testbed, which is operating on an external truss on the International Space Station (ISS). The SCaN Testbed provides experimenters an opportunity to develop and demonstrate experimental waveforms and applications for communication, networking, and navigation concepts and advance the understanding of developing and operating SDRs in space. Qualifying a Software Defined Radio for the space environment requires additional consideration versus a hardware radio. Tests that incorporate characterization of the platform to provide information necessary for future waveforms, which might exercise extended capabilities of the hardware, are needed. The development life cycle for the radio follows the software development life cycle, where changes can be incorporated at various stages of development and test. It also enables flexibility to be added with minor additional effort. Although this provides tremendous advantages, managing the complexity inherent in a software implementation requires a testing beyond the traditional hardware radio test plan. Due to schedule and resource limitations and parallel development activities, the subsystem testing of the SDRs at the vendor sites was primarily limited to typical fixed transceiver type of testing. NASA s Glenn Research Center (GRC) was responsible for the integration and testing of the SDRs into the SCaN Testbed system and conducting the investigation of the SDR to advance the technology to be accepted by missions. This paper will describe the unique tests that were conducted at both the subsystem and system level, including environmental testing, and present results. For example, test

  9. Nanoscale and Single-Dot Patterning of Colloidal Quantum Dots.

    PubMed

    Xie, Weiqiang; Gomes, Raquel; Aubert, Tangi; Bisschop, Suzanne; Zhu, Yunpeng; Hens, Zeger; Brainis, Edouard; Van Thourhout, Dries

    2015-11-11

    Using an optimized lift-off process we develop a technique for both nanoscale and single-dot patterning of colloidal quantum dot films, demonstrating feature sizes down to ~30 nm for uniform films and a yield of 40% for single-dot positioning, which is in good agreement with a newly developed theoretical model. While first of all presenting a unique tool for studying physics of single quantum dots, the process also provides a pathway toward practical quantum dot-based optoelectronic devices.

  10. Employing trapped cold ions to verify the quantum Jarzynski equality.

    PubMed

    Huber, Gerhard; Schmidt-Kaler, Ferdinand; Deffner, Sebastian; Lutz, Eric

    2008-08-15

    We propose a scheme to investigate the nonequilibrium work distribution of a quantum particle under well controlled transformations of the external potential, exploiting the versatility of a single ion in a segmented linear Paul trap. We describe in detail how the motional quantum state of a single ion can be prepared, manipulated, and finally readout to fully determine the free energy difference in both harmonic and anharmonic potentials. Uniquely to our system, we show how an ion may be immersed in an engineered laser-field reservoir. Trapped ions therefore represent an ideal tool for investigating the Jarzynski equality in open and closed quantum systems.

  11. Optically active quantum dots in monolayer WSe2.

    PubMed

    Srivastava, Ajit; Sidler, Meinrad; Allain, Adrien V; Lembke, Dominik S; Kis, Andras; Imamoğlu, A

    2015-06-01

    Semiconductor quantum dots have emerged as promising candidates for the implementation of quantum information processing, because they allow for a quantum interface between stationary spin qubits and propagating single photons. In the meantime, transition-metal dichalcogenide monolayers have moved to the forefront of solid-state research due to their unique band structure featuring a large bandgap with degenerate valleys and non-zero Berry curvature. Here, we report the observation of zero-dimensional anharmonic quantum emitters, which we refer to as quantum dots, in monolayer tungsten diselenide, with an energy that is 20-100 meV lower than that of two-dimensional excitons. Photon antibunching in second-order photon correlations unequivocally demonstrates the zero-dimensional anharmonic nature of these quantum emitters. The strong anisotropic magnetic response of the spatially localized emission peaks strongly indicates that radiative recombination stems from localized excitons that inherit their electronic properties from the host transition-metal dichalcogenide. The large ∼1 meV zero-field splitting shows that the quantum dots have singlet ground states and an anisotropic confinement that is most probably induced by impurities or defects. The possibility of achieving electrical control in van der Waals heterostructures and to exploit the spin-valley degree of freedom renders transition-metal-dichalcogenide quantum dots interesting for quantum information processing.

  12. Gate-controlled electromechanical backaction induced by a quantum dot

    PubMed Central

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-01-01

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter. PMID:27063939

  13. A Novel Particle Detector: Quantum Dot Doped Liquid Scintillator

    NASA Astrophysics Data System (ADS)

    Winslow, Lindley; Conrad, Janet; Jerry, Ruel

    2010-02-01

    Quantum dots are semiconducting nanocrystals. When excited by light shorter then their characteristic wavelength, they re-emit in a narrow band around this wavelength. The size of the quantum is proportional to the characteristic wavelength so they can be tuned for many applications. CdS quantum dots are made in wavelengths from 360nm to 460nm, a perfect range for the sensitivity of photo-multiplier tubes. The synthesis of quantum dots automatically leaves them in toluene, a good organic scintillator and Cd is a particularly interesting material as it has one of the highest thermal neutron cross sections and has several neutrinoless double beta decay and double electron capture isotopes. The performance of quantum dot loaded scintillator compared to standard scintillators is measured and some unique properties presented. )

  14. Quantum teleportation using a light-emitting diode

    NASA Astrophysics Data System (ADS)

    Nilsson, J.; Stevenson, R. M.; Chan, K. H. A.; Skiba-Szymanska, J.; Lucamarini, M.; Ward, M. B.; Bennett, A. J.; Salter, C. L.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2013-04-01

    Teleportation of optical qubits can enable reliable logic operations in massively parallel quantum computers, as well as the formation of secure quantum networks. Photon teleportation has previously used laser-generated entangled photons created in random quantities. However, the practical complexities of the generating scheme coupled with errors caused by multipair emission have complicated its deployment in useful quantum information technology. Here, we demonstrate teleportation of single photonic qubits, mediated by individual pairs of entangled photons generated by an electrically driven entangled light source realized by embedding a single semiconductor quantum dot within a light-emitting diode. Teleportation is achieved with six general input states, with asymmetrically distributed fidelities, and an average fidelity above the limit possible with classical light. A theoretical framework is created that reproduces our experiments with close agreement. The unique sub-Poissonian nature of our photonic teleporter together with its electrical operation will help lift the complexity restriction of future quantum information applications.

  15. Gate-controlled electromechanical backaction induced by a quantum dot.

    PubMed

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-04-11

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.

  16. κ-deformed covariant quantum phase spaces as Hopf algebroids

    NASA Astrophysics Data System (ADS)

    Lukierski, Jerzy; Škoda, Zoran; Woronowicz, Mariusz

    2015-11-01

    We consider the general D = 4 (10 + 10)-dimensional κ-deformed quantum phase space as given by Heisenberg double H of D = 4κ-deformed Poincaré-Hopf algebra H. The standard (4 + 4)-dimensional κ-deformed covariant quantum phase space spanned by κ-deformed Minkowski coordinates and commuting momenta generators (xˆμ ,pˆμ) is obtained as the subalgebra of H. We study further the property that Heisenberg double defines particular quantum spaces with Hopf algebroid structure. We calculate by using purely algebraic methods the explicit Hopf algebroid structure of standard κ-deformed quantum covariant phase space in Majid-Ruegg bicrossproduct basis. The coproducts for Hopf algebroids are not unique, determined modulo the coproduct gauge freedom. Finally we consider the interpretation of the algebraic description of quantum phase spaces as Hopf algebroids.

  17. Germanium based electrostatic quantum dots: design and characterization.

    NASA Astrophysics Data System (ADS)

    Mazzeo, Giovanni; Yablonovitch, Eli; Jiang, Hong-Wen

    2010-03-01

    While the less mature Germanium technology requires an extra effort for the realization of single electron quantum dots, unique properties of Germanium rich heterostructures together with spin coherence times comparable to Silicon, can justify the development of such new technology. We report our progresses on the formation of electrostatic quantum dots in Germanium. We employ an MOS-like structure with no modulation doping already successfully proven in Silicon devices. A two level gate stack is used: the top gate is positively biased to attract electrons while the lowers gates are negatively biased to form the quantum dot and attract holes in a transistor channel, used to detect the electrons in the adjacent quantum dot. Finite Element Method simulations are used to prove the concept of this hybrid holes-transistor/electron-QD device and estimate the sensitivity of the charge detection. Preliminary characterizations of quantum dot devices built with this structure are reported.

  18. Efficient Quantum Pseudorandomness

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.; Horodecki, Michał

    2016-04-01

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

  19. Pulsed Quantum Optomechanics

    NASA Astrophysics Data System (ADS)

    Vanner, Michael R.; Pikovski, Igor; Cole, Garrett D.; Kim, Myungshik; Brukner, Caslav; Hammerer, Klemens; Milburn, Gerard J.; Aspelmeyer, Markus

    2011-03-01

    By combining quantum optics with mechanical resonators an avenue is opened to extend investigations of quantum behavior into unprecendented mass regimes. The field resulting from this combination - ``cavity quantum optomechanics'' -- is receiving a surge of interest for its potential to contribute to quantum measurement and control, studies of decoherence and non-classical state preparation of macroscopic objects. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators is currently a significant challenge. We are pursuing a scheme that employs short optical pulses to realize quantum state tomography, squeezing via measurement and state purifcation of a mechanical resonator. The pulsed scheme has considerable resilience to initial thermal occupation, provides a promising means to explore the quantum nature of massive oscillators and can be applied to other systems such as trapped ions. Our theoretical proposal and experimental results will be discussed.

  20. Quantum Stochastic Processes

    SciTech Connect

    Spring, William Joseph

    2009-04-13

    We consider quantum analogues of n-parameter stochastic processes, associated integrals and martingale properties extending classical results obtained in [1, 2, 3], and quantum results in [4, 5, 6, 7, 8, 9, 10].