Sample records for quantum wave equation

  1. Nonplanar KdV and KP equations for quantum electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Dutta, Debjit

    2015-12-01

    Nonlinear quantum ion-acoustic waves with the effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the standard reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation for ion-acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave are studied analytically. It is found that the dynamics of ion-acoustic solitary waves (IASWs) is governed by a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE). The results could help in a theoretical analysis of astrophysical and laser produced plasmas.

  2. Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B; Stenflo, L

    2012-07-01

    We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.

  3. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation formore » the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.« less

  4. Low-frequency surface waves on semi-bounded magnetized quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir

    2016-08-15

    The propagation of low-frequency electrostatic surface waves on the interface between a vacuum and an electron-ion quantum plasma is studied in the direction perpendicular to an external static magnetic field which is parallel to the interface. A new dispersion equation is derived by employing both the quantum magnetohydrodynamic and Poisson equations. It is shown that the dispersion equations for forward and backward-going surface waves are different from each other.

  5. Trajectory-based understanding of the quantum-classical transition for barrier scattering

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Chun

    2018-06-01

    The quantum-classical transition of wave packet barrier scattering is investigated using a hydrodynamic description in the framework of a nonlinear Schrödinger equation. The nonlinear equation provides a continuous description for the quantum-classical transition of physical systems by introducing a degree of quantumness. Based on the transition equation, the transition trajectory formalism is developed to establish the connection between classical and quantum trajectories. The quantum-classical transition is then analyzed for the scattering of a Gaussian wave packet from an Eckart barrier and the decay of a metastable state. Computational results for the evolution of the wave packet and the transmission probabilities indicate that classical results are recovered when the degree of quantumness tends to zero. Classical trajectories are in excellent agreement with the transition trajectories in the classical limit, except in some regions where transition trajectories cannot cross because of the single-valuedness of the transition wave function. As the computational results demonstrate, the process that the Planck constant tends to zero is equivalent to the gradual removal of quantum effects originating from the quantum potential. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet barrier scattering.

  6. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sourav; Das, Tushar Kanti; Chatterjee, Prasanta

    The influence of exchange-correlation potential, quantum Bohm term, and degenerate pressure on the nature of solitary waves in a quantum semiconductor plasma is investigated. It is found that an amplitude and a width of the solitary waves change with variation of different parameters for different semiconductors. A deformed Korteweg-de Vries equation is obtained for propagation of nonlinear waves in a quantum semiconductor plasma, and the effects of different plasma parameters on the solution of the equation are also presented.

  8. Cylindrical dust acoustic solitary waves with transverse perturbations in quantum dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushtaq, A.

    2007-11-15

    The nonlinear quantum dust acoustic waves with effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the perturbation method, a cylindrical Kadomtsev-Petviashvili equation for dust acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics, and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave, are studied both analytically and numerically.

  9. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular tomore » an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.« less

  10. Complex quantum Hamilton-Jacobi equation with Bohmian trajectories: Application to the photodissociation dynamics of NOCl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2014-03-14

    The complex quantum Hamilton-Jacobi equation-Bohmian trajectories (CQHJE-BT) method is introduced as a synthetic trajectory method for integrating the complex quantum Hamilton-Jacobi equation for the complex action function by propagating an ensemble of real-valued correlated Bohmian trajectories. Substituting the wave function expressed in exponential form in terms of the complex action into the time-dependent Schrödinger equation yields the complex quantum Hamilton-Jacobi equation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation describing the rate of change in the complex action transported along Bohmian trajectories is simultaneouslymore » integrated with the guidance equation for Bohmian trajectories, and the time-dependent wave function is readily synthesized. The spatial derivatives of the complex action required for the integration scheme are obtained by solving one moving least squares matrix equation. In addition, the method is applied to the photodissociation of NOCl. The photodissociation dynamics of NOCl can be accurately described by propagating a small ensemble of trajectories. This study demonstrates that the CQHJE-BT method combines the considerable advantages of both the real and the complex quantum trajectory methods previously developed for wave packet dynamics.« less

  11. Lagrangian geometrical optics of nonadiabatic vector waves and spin particles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-07-29

    Linear vector waves, both quantum and classical, experience polarization-driven bending of ray trajectories and polarization dynamics that can be interpreted as the precession of the "wave spin". Here, both phenomena are governed by an effective gauge Hamiltonian vanishing in leading-order geometrical optics. This gauge Hamiltonian can be recognized as a generalization of the Stern-Gerlach Hamiltonian that is commonly known for spin-1/2 quantum particles. The corresponding reduced Lagrangians for continuous nondissipative waves and their geometrical-optics rays are derived from the fundamental wave Lagrangian. The resulting Euler-Lagrange equations can describe simultaneous interactions of N resonant modes, where N is arbitrary, and leadmore » to equations for the wave spin, which happens to be an (N 2 - 1)-dimensional spin vector. As a special case, classical equations for a Dirac particle (N = 2) are deduced formally, without introducing additional postulates or interpretations, from the Dirac quantum Lagrangian with the Pauli term. The model reproduces the Bargmann-Michel-Telegdi equations with added Stern-Gerlach force.« less

  12. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  13. Solitary waves with weak transverse perturbations in quantum dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ur-Rehman, H.; Masood, W.; Siddiq, M.

    2008-12-15

    Using the quantum hydrodynamic model, quantum dust ion-acoustic solitary waves are investigated in the presence of weak transverse perturbations. The linear dispersion relation is obtained using the Fourier analysis. The two-dimensional (2D) propagation of small amplitude nonlinear waves is studied by deriving the Kadomtsev-Petviashvili (KP) equation. The traveling wave solution of the KP equation is obtained by employing the tanh method. By dint of this solution, the effects of quantum Bohm pressure and the dust concentration on the 2D solitary structure are studied. The effect of quantum Bohm potential on the stability of the KP soliton is also investigated. Themore » results are supported by the numerical analysis and the relevance of the present investigation in dense astrophysical environments is also pointed out.« less

  14. Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from themore » Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru

    We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less

  16. Quantum cybernetics and its test in “late choice” experiments

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    1986-11-01

    A relativistically invariant wave equation for the propagation of wave fronts S = const ( S being the action function) is derived on the basis of a cybernetic model of quantum systems involving “hidden variables”. This equation can be considered both as an expression of Huygens' principle and as a general continuity equation providing a close link between classical and quantum mechanics. Although the theory reproduces ordinary quantum mechanics, there are particular situations providing experimental predictions differing from those existing theories. Such predictions are made for so-called “late choice” experiments, which are modified versions of the familiar “delayed choice” experiments.

  17. Trajectory description of the quantum–classical transition for wave packet interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    2016-08-15

    The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less

  18. WavePacket: A Matlab package for numerical quantum dynamics. I: Closed quantum systems and discrete variable representations

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Lorenz, Ulf

    2017-04-01

    WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.

  19. Approximation method for a spherical bound system in the quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.

    2010-08-15

    A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.

  20. Quantum probe of Hořava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Gurtug, O.; Mangut, M.

    2018-04-01

    Particle probe analysis of the Kehagias-Sfetsos black hole spacetime of Hořava-Lifshitz gravity is extended to wave probe analysis within the framework of quantum mechanics. The time-like naked singularity that develops when ωM2 < 1/2 is probed with quantum fields obeying Klein-Gordon and Chandrasekhar-Dirac equations. The quantum field probe of the naked singularity has revealed that both the spatial part of the wave and the Hamiltonian operators of Klein-Gordon and Chandrasekhar-Dirac equations are essentially self-adjoint, and thus, the naked singularity in the Kehagias-Sfetsos spacetime becomes quantum mechanically non-singular.

  1. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  2. Particles, Waves, and the Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Christoudouleas, N. D.

    1975-01-01

    Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

  3. A rational explanation of wave-particle duality of light

    NASA Astrophysics Data System (ADS)

    Rashkovskiy, S. A.

    2013-10-01

    The wave-particle duality is a fundamental property of the nature. At the same time, it is one of the greatest mysteries of modern physics. This gave rise to a whole direction in quantum physics - the interpretation of quantum mechanics. The Wiener experiments demonstrating the wave-particle duality of light are discussed. It is shown that almost all interpretations of quantum mechanics allow explaining the double-slit experiments, but are powerless to explain the Wiener experiments. The reason of the paradox, associated with the wave-particle duality is analyzed. The quantum theory consists of two independent parts: (i) the dynamic equations describing the behavior of a quantum object (for example, the Schrodinger or Maxwell equations), and (ii) the Born's rule, the relation between the wave function and the probability of finding the particle at a given point. It is shown that precisely the Born's rule results in paradox in explaining the wave-particle duality. In order to eliminate this paradox, we propose a new rational interpretation of the wave-particle duality and associated new rule, connecting the corpuscular and wave properties of quantum objects. It is shown that this new rational interpretation of the wave-particle duality allows using the classic images of particle and wave in explaining the quantum mechanical and optical phenomena, does not result in paradox in explaining the doubleslit experiments and Wiener experiments, and does not contradict to the modern quantum mechanical concepts. It is shown that the Born's rule follows immediately from proposed new rules as an approximation.

  4. Power loss of an oscillating electric dipole in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghaderipoor, L.; Mehramiz, A.

    2012-12-15

    A system of linearized quantum plasma equations (quantum hydrodynamic model) has been used for investigating the dispersion equation for electrostatic waves in the plasma. Furthermore, dispersion relations and their modifications due to quantum effects are used for calculating the power loss of an oscillating electric dipole. Finally, the results are compared in quantum and classical regimes.

  5. Obliquely propagating low frequency electromagnetic shock waves in two dimensional quantum magnetoplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.

    2009-04-15

    Linear and nonlinear propagation characteristics of low frequency magnetoacoustic waves in quantum magnetoplasmas are studied employing the quantum magnetohydrodynamic model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation in the fast and slow magnetoacoustic shock profiles with the quantum Bohm potential via increasing number density, obliqueness angle {theta}, magnetic field, and the resistivity are also investigated. It is observed that themore » aforementioned plasma parameters significantly modify the propagation characteristics of nonlinear magnetoacoustic shock waves in quantum magnetoplasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less

  6. Relativistic laser-plasma interactions in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-04-01

    We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature.

  7. Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas.

    PubMed

    Shukla, P K; Eliasson, B

    2007-08-31

    We consider nonlinear interactions between intense circularly polarized electromagnetic (CPEM) waves and electron plasma oscillations (EPOs) in a dense quantum plasma, taking into account the electron density response in the presence of the relativistic ponderomotive force and mass increase in the CPEM wave fields. The dynamics of the CPEM waves and EPOs is governed by the two coupled nonlinear Schrödinger equations and Poisson's equation. The nonlinear equations admit the modulational instability of an intense CPEM pump wave against EPOs, leading to the formation and trapping of localized CPEM wave pipes in the electron density hole that is associated with a positive potential distribution in our dense plasma. The relevance of our investigation to the next generation intense laser-solid density plasma interaction experiments is discussed.

  8. Complex-valued derivative propagation method with approximate Bohmian trajectories: Application to electronic nonadiabatic dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Chou, Chia-Chun

    2018-05-01

    The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.

  9. The quantum universe

    NASA Astrophysics Data System (ADS)

    Hey, Anthony J. G.; Walters, Patrick

    This book provides a descriptive, popular account of quantum physics. The basic topics addressed include: waves and particles, the Heisenberg uncertainty principle, the Schroedinger equation and matter waves, atoms and nuclei, quantum tunneling, the Pauli exclusion principle and the elements, quantum cooperation and superfluids, Feynman rules, weak photons, quarks, and gluons. The applications of quantum physics to astrophyics, nuclear technology, and modern electronics are addressed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide.more » The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.« less

  11. Ion acoustic solitary wave with weakly transverse perturbations in quantum electron-positron-ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushtaq, A.; Khan, S. A.; Department of Physics, COMSATS Institute of Information Technology, Islamabad

    2007-05-15

    The characteristics and stability of ion acoustic solitary wave with transverse perturbations are examined in ultracold quantum magnetospheric plasma consisting of electrons, positrons, and ions. Using the quantum hydrodynamic model, a dispersion relation in the linear regime, and the Kadomtsev-Petviashvili equation in the nonlinear regime are derived. The quantum corrections are studied through quantum statistics and diffraction effects. It is found that compressive solitary wave can propagate in this system. The quantum effects are also studied graphically for both linear and nonlinear profiles of ion acoustic wave. Using energy consideration method, conditions for existence of stable solitary waves are obtained.more » It is found that stable solitary waves depend on quantum corrections, positron concentration, and direction cosine of the wave vector k along the x axis.« less

  12. Quantum revival for elastic waves in thin plate

    NASA Astrophysics Data System (ADS)

    Dubois, Marc; Lefebvre, Gautier; Sebbah, Patrick

    2017-05-01

    Quantum revival is described as the time-periodic reconstruction of a wave packet initially localized in space and time. This effect is expected in finite-size systems which exhibit commensurable discrete spectrum such as the infinite quantum well. Here, we report on the experimental observation of full and fractional quantum revival for classical waves in a two dimensional cavity. We consider flexural waves propagating in thin plates, as their quadratic dispersion at low frequencies mimics the dispersion relation of quantum systems governed by Schrödinger equation. Time-dependent excitation and measurement are performed at ultrasonic frequencies and reveal a periodic reconstruction of the initial elastic wave packet.

  13. Equivalent Quantum Equations in a System Inspired by Bouncing Droplets Experiments

    NASA Astrophysics Data System (ADS)

    Borghesi, Christian

    2017-07-01

    In this paper we study a classical and theoretical system which consists of an elastic medium carrying transverse waves and one point-like high elastic medium density, called concretion. We compute the equation of motion for the concretion as well as the wave equation of this system. Afterwards we always consider the case where the concretion is not the wave source any longer. Then the concretion obeys a general and covariant guidance formula, which leads in low-velocity approximation to an equivalent de Broglie-Bohm guidance formula. The concretion moves then as if exists an equivalent quantum potential. A strictly equivalent free Schrödinger equation is retrieved, as well as the quantum stationary states in a linear or spherical cavity. We compute the energy (and momentum) of the concretion, naturally defined from the energy (and momentum) density of the vibrating elastic medium. Provided one condition about the amplitude of oscillation is fulfilled, it strikingly appears that the energy and momentum of the concretion not only are written in the same form as in quantum mechanics, but also encapsulate equivalent relativistic formulas.

  14. Energy behaviour of extraordinary waves in magnetized quantum plasmas

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2018-05-01

    We study the storage and flow of energy in a homogeneous magnetized quantum electron plasma that occurs when an elliptically polarized extraordinary electromagnetic wave propagates in the system. Expressions for the stored energy, energy flow, and energy velocity of extraordinary electromagnetic waves are derived by means of the quantum magnetohydrodynamics theory in conjunction with the Maxwell equations. Numerical results show that the energy flow of the high-frequency mode of extraordinary wave is modified only due to the Bohm potential in the short wavelength limit.

  15. Complex Riccati equations as a link between different approaches for the description of dissipative and irreversible systems

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2012-08-01

    Quantum mechanics is essentially described in terms of complex quantities like wave functions. The interesting point is that phase and amplitude of the complex wave function are not independent of each other, but coupled by some kind of conservation law. This coupling exists in time-independent quantum mechanics and has a counterpart in its time-dependent form. It can be traced back to a reformulation of quantum mechanics in terms of nonlinear real Ermakov equations or equivalent complex nonlinear Riccati equations, where the quadratic term in the latter equation explains the origin of the phase-amplitude coupling. Since realistic physical systems are always in contact with some kind of environment this aspect is also taken into account. In this context, different approaches for describing open quantum systems, particularly effective ones, are discussed and compared. Certain kinds of nonlinear modifications of the Schrödinger equation are discussed as well as their interrelations and their relations to linear approaches via non-unitary transformations. The modifications of the aforementioned Ermakov and Riccati equations when environmental effects are included can be determined in the time-dependent case. From formal similarities conclusions can be drawn how the equations of time-independent quantum mechanics can be modified to also incluce the enviromental aspects.

  16. Dissipative tunnelling by means of scaled trajectories

    NASA Astrophysics Data System (ADS)

    Mousavi, S. V.; Miret-Artés, S.

    2018-06-01

    Dissipative quantum tunnelling through an inverted parabolic barrier is considered in the presence of an electric field. A Schrödinger-Langevin or Kostin quantum-classical transition wave equation is used and applied resulting in a scaled differential equation of motion. A Gaussian wave packet solution to the resulting scaled Kostin nonlinear equation is assumed and compared to the same solution for the scaled linear Caldirola-Kanai equation. The resulting scaled trajectories are obtained at different dynamical regimes and friction cases, showing the gradual decoherence process in this open dynamics. Theoretical results show that the transmission probabilities are always higher in the Kostin approach than in the Caldirola-Kanai approach in the presence or not of an external electric field. This discrepancy should be understood due to the presence of an environment since the corresponding open dynamics should be governed by nonlinear quantum equations, whereas the second approach is issued from an effective Hamiltonian within a linear theory.

  17. Connection between the two branches of the quantum two-stream instability across the k space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Haas, F.

    2010-05-15

    The stability of two quantum counterstreaming electron beams is investigated within the quantum plasma fluid equations for arbitrarily oriented wave vectors k. The analysis reveals that the two quantum two-stream unstable branches are indeed connected by a continuum of unstable modes with oblique wave vectors. Using the longitudinal approximation, the stability domain for any k is analytically explained, together with the growth rate.

  18. Beyond the Schr{umlt o}dinger Equation: Quantum Motion with Traversal Time Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolovski, D.

    1997-12-01

    We study a quantum particle, for which the duration {tau} it spends in some region of space is controlled by a meter, e.g., a Larmor clock. The particle is described by a wave function {Psi}(x,t{vert_bar}{tau}) , with {vert_bar}{Psi}(x,t{vert_bar}{tau}){vert_bar}{sup 2} giving the distribution of the meter{close_quote}s readings at location x . The wave function satisfies the {open_quotes}clocked{close_quotes} Schr{umlt o}dinger equation, which we solve numerically for the cases of bound motion and wave packet scattering. The method is shown to be a natural extension of the conventional quantum mechanics. {copyright} {ital 1997} {ital The American Physical Society}

  19. Theories of Matter, Space and Time, Volume 2; Quantum theories

    NASA Astrophysics Data System (ADS)

    Evans, N.; King, S. F.

    2018-06-01

    This book and its prequel Theories of Matter Space and Time: Classical Theories grew out of courses that we have both taught as part of the undergraduate degree program in Physics at Southampton University, UK. Our goal was to guide the full MPhys undergraduate cohort through some of the trickier areas of theoretical physics that we expect our undergraduates to master. Here we teach the student to understand first quantized relativistic quantum theories. We first quickly review the basics of quantum mechanics which should be familiar to the reader from a prior course. Then we will link the Schrödinger equation to the principle of least action introducing Feynman's path integral methods. Next, we present the relativistic wave equations of Klein, Gordon and Dirac. Finally, we convert Maxwell's equations of electromagnetism to a wave equation for photons and make contact with quantum electrodynamics (QED) at a first quantized level. Between the two volumes we hope to move a student's understanding from their prior courses to a place where they are ready, beyond, to embark on graduate level courses on quantum field theory.

  20. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  1. Cylindrical fast magnetosonic solitary waves in quantum degenerate electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Abdikian, A.

    2018-02-01

    The nonlinear properties of fast magnetosonic solitary waves in a quantum degenerate electron-positron (e-p) plasma in the presence of stationary ions for neutralizing the plasma background of bounded cylindrical geometry were studied. By employing the standard reductive perturbation technique and the quantum hydrodynamic model for the e-p fluid, the cylindrical Kadomtsev-Petviashvili (CKP) equation was derived for small, but finite, amplitude waves and was given the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars. By a suitable coordinate transformation, the CKP equation can be solved analytically. An analytical solution for magnetosonic solitons and periodic waves is presented. The numerical results reveal that the Bohm potential has a main effect on the periodic and solitary wave structures. By increasing the values of the plasma parameters, the amplitude of the solitary wave will be increased. The present study may be helpful in the understanding of nonlinear electromagnetic soliton waves propagating in both laboratory and astrophysical plasmas, and can help in providing good agreement between theoretical results and laboratory plasma experiments.

  2. Schrödinger equation revisited

    PubMed Central

    Schleich, Wolfgang P.; Greenberger, Daniel M.; Kobe, Donald H.; Scully, Marlan O.

    2013-01-01

    The time-dependent Schrödinger equation is a cornerstone of quantum physics and governs all phenomena of the microscopic world. However, despite its importance, its origin is still not widely appreciated and properly understood. We obtain the Schrödinger equation from a mathematical identity by a slight generalization of the formulation of classical statistical mechanics based on the Hamilton–Jacobi equation. This approach brings out most clearly the fact that the linearity of quantum mechanics is intimately connected to the strong coupling between the amplitude and phase of a quantum wave. PMID:23509260

  3. Astronomical Constraints on Quantum Cold Dark Matter

    NASA Astrophysics Data System (ADS)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  4. Tales from the prehistory of Quantum Gravity. Léon Rosenfeld's earliest contributions

    NASA Astrophysics Data System (ADS)

    Peruzzi, Giulio; Rocci, Alessio

    2018-05-01

    The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of "general relativistic quantum mechanics" Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called `quantum phenomena', represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld's work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr's correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.

  5. Tales from the prehistory of Quantum Gravity - Léon Rosenfeld's earliest contributions

    NASA Astrophysics Data System (ADS)

    Peruzzi, Giulio; Rocci, Alessio

    2018-04-01

    The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of "general relativistic quantum mechanics" Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called `quantum phenomena', represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld's work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr's correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.

  6. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  7. Mass, Energy, Space And Time Systemic Theory---MEST

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2010-03-01

    Things have their physical system of the mass, energy, space and time of themselves-MEST. The matter have the physical systemic moel like that the mass-energy is center and the space-time is around. The time is from the frequency of wave, the space is from the amplitude of wave. What is the physical effection of the wave. The gravity and inertial force is from the wave. Not only the planets have the mass and the kinetic energy, but also it have the wave and the wave energy. According to the equivalence principle of the general relativity, there is the equation: ma=mg and mv^2 /2= δmc^2. The energy equation of the planets: E=mv^2=mgr (v is velocity) be bring put forward. In quantum mechanics, according to the quantum light theory and the de Broglie's theory , there are the equation of the wave: E=hν, p=h/λ (h is Planck constant, p is momentum, λ is the wavelengh), and there is the equation of the wave: E=mc^2. So the energy equation of the planets: E=mv^2 = mv^2 /2 + δmc^2 (mv^2 /2= δmc^2 ) be bring put forward. The equation: δmc^2 show that the planets have the wave of itself, and the wave give the planets the energy. So it do not fall from the heaven. When the matter go into the heaven, it need get the wave energy (like the potential energy). So we can make a new light-flight with the light-driving force.

  8. Information transport in classical statistical systems

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-02-01

    For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.

  9. An Overview of the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, John G.

    1988-02-01

    The transactional interpretation of quantum mechanics (TI) is summarized and various points concerning the TI and its relation to the Copenhagen interpretation (CI) are considered. Questions concerning mapping the TI onto the CI, of advanced waves as solutions to proper wave equations, of collapse and the QM formalism, and of the relation of quantum mechanical interpretations to experimental tests and results are discussed.

  10. An overview of the transactional interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, J. G.

    We summarize the transactional interpretation (TI) of quantum mechanics (QM) and consider various points concerning the TI and its relation to the Copenhagen interpretation (CI). Questions concerning mapping the TI onto the CI, of advanced waves as solutions to proper wave equations, of collapse and the QM formalism, and of the relation of quantum mechanical interpretations to experimental tests and results are discussed.

  11. Simulation of wave packet tunneling of interacting identical particles

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Filinov, A. V.; Arkhipov, A. S.

    2003-02-01

    We demonstrate a different method of simulation of nonstationary quantum processes, considering the tunneling of two interacting identical particles, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.

  12. Bound states and propagating modes in quantum wires with sharp bends and/or constrictions

    NASA Astrophysics Data System (ADS)

    Razavy, M.

    1997-06-01

    A number of interesting problems of quantum wires with different geometries can be studied with the help of conformal mapping. These include crossed wires, twisting wires, conductors with constrictions, and wires with a bend. Here the Helmholz equation with Dirichlet boundary condition on the surface of the wire is transformed to a Schröautdinger-like equation with an energy-dependent nonseparable potential but with boundary conditions given on two straight lines. By expanding the wave function in terms of the Fourier series of one of the variables one obtains an infinite set of coupled ordinary differential equations. Only the propagating modes plus a few of the localized modes contribute significantly to the total wave function. Once the problem is solved, one can express the results in terms of the original variables using the inverse conformal mapping. As an example, the total wave function, the components of the current density, and the bound-state energy for a Γ-shaped quantum wire is calculated in detail.

  13. Drift ion acoustic shock waves in an inhomogeneous two-dimensional quantum magnetoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Siddiq, M.; Karim, S.

    2009-04-15

    Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous quantum plasma with neutrals in the background employing the quantum hydrodynamics (QHD) model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived for the first time. It is shown that the ion acoustic wave couples with the drift wave if the parallel motion of ions is taken into account. Discrepancies in the earlier works on drift solitons and shocks in inhomogeneous plasmas are also pointed out and a correct theoretical framework is presented to study the one-dimensional as well as the two-dimensional propagation ofmore » shock waves in an inhomogeneous quantum plasma. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation of the shock profile with the quantum Bohm potential, collision frequency, and ratio of drift to shock velocity in the comoving frame, v{sub *}/u, are also investigated. It is found that increasing the number density and collision frequency enhances the strength of the shock. It is also shown that the fast drift shock (i.e., v{sub *}/u>0) increases, whereas the slow drift shock (i.e., v{sub *}/u<0) decreases the strength of the shock. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less

  14. Radiative corrections to the Coulomb law and model of dense quantum plasmas: Dispersion of longitudinal waves in magnetized quantum plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2018-04-01

    Two kinds of quantum electrodynamic radiative corrections to electromagnetic interactions and their influence on the properties of highly dense quantum plasmas are considered. Linear radiative correction to the Coulomb interaction is considered. Its contribution in the spectrum of the Langmuir waves is presented. The second kind of radiative corrections are related to the nonlinearity of the Maxwell equations for the strong electromagnetic field. Their contribution in the spectrum of transverse waves of magnetized plasmas is briefly discussed. At the consideration of the Langmuir wave spectrum, we included the effect of different distributions of the spin-up and spin-down electrons revealing in the Fermi pressure shift.

  15. Approximation solution of Schrodinger equation for Q-deformed Rosen-Morse using supersymmetry quantum mechanics (SUSY QM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemgadmi, Khaled I. K., E-mail: azozkied@yahoo.com; Suparmi; Cari

    2015-09-30

    The approximate analytical solution of Schrodinger equation for Q-Deformed Rosen-Morse potential was investigated using Supersymmetry Quantum Mechanics (SUSY QM) method. The approximate bound state energy is given in the closed form and the corresponding approximate wave function for arbitrary l-state given for ground state wave function. The first excited state obtained using upper operator and ground state wave function. The special case is given for the ground state in various number of q. The existence of Rosen-Morse potential reduce energy spectra of system. The larger value of q, the smaller energy spectra of system.

  16. Non-Markovian quantum Brownian motion in one dimension in electric fields

    NASA Astrophysics Data System (ADS)

    Shen, H. Z.; Su, S. L.; Zhou, Y. H.; Yi, X. X.

    2018-04-01

    Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental model to understand various physical features concerning open systems in chemistry, condensed-matter physics, biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation, we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a current equation including the source from the driving fields, transient current from the system flowing into the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles. The presented formalism might open a way to better understand exactly the non-Markovian quantum network.

  17. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Hans, E-mail: hans@ciencias.unam.mx; Schuch, Dieter; Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx

    2015-09-15

    The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.

  18. Magnetosonic solitons in semiconductor plasmas in the presence of quantum tunneling and exchange correlation effects

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Mahmood, S.

    2018-01-01

    Low frequency magnetosonic wave excitations are investigated in semiconductor hole-electron plasmas. The quantum mechanical effects such as Fermi pressure, quantum tunneling, and exchange-correlation of holes and electrons in the presence of the magnetic field are considered. The two fluid quantum magnetohydrodynamic model is used to study magnetosonic wave dynamics, while electric and magnetic fields are coupled via Maxwell equations. The dispersion relation of the magnetosonic wave in electron-hole semiconductor plasma propagating in the perpendicular direction of the magnetic field is obtained, and its dispersion effects are discussed. The Korteweg-de Vries equation (KdV) for magnetosonic solitons is derived by employing the reductive perturbation method. For numerical analysis, the plasma parameters are taken from the semiconductors such as GaAs, GaSb, GaN, and InP already existing in the literature. It is found that the phase velocity of the magnetosonic wave is increased with the inclusion of exchange-correlation force in the model. The soliton dip structures of the magnetosonic wave in GaN semiconductor plasma are obtained, which satisfy the quantum plasma conditions for electron and hole fluids. The magnetosonic soliton dip structures move with speed less than the magnetosonic wave phase speed in the lab frame. The effects of exchange-correlation force in the model and variations of magnetic field intensity and electron/hole density on the magnetosonic wave dip structures are also investigated numerically for illustration.

  19. Effects of group velocity and multiplasmon resonances on the modulation of Langmuir waves in a degenerate plasma

    NASA Astrophysics Data System (ADS)

    Misra, Amar P.; Chatterjee, Debjani; Brodin, Gert

    2017-11-01

    We study the nonlinear wave modulation of Langmuir waves (LWs) in a fully degenerate plasma. Using the Wigner-Moyal equation coupled to the Poisson equation and the multiple scale expansion technique, a modified nonlocal nonlinear Schrödinger (NLS) equation is derived which governs the evolution of LW envelopes in degenerate plasmas. The nonlocal nonlinearity in the NLS equation appears due to the group velocity and multiplasmon resonances, i.e., resonances induced by the simultaneous particle absorption of multiple wave quanta. We focus on the regime where the resonant velocity of electrons is larger than the Fermi velocity and thereby the linear Landau damping is forbidden. As a result, the nonlinear wave-particle resonances due to the group velocity and multiplasmon processes are the dominant mechanisms for wave-particle interaction. It is found that in contrast to classical or semiclassical plasmas, the group velocity resonance does not necessarily give rise the wave damping in the strong quantum regime where ℏ k ˜m vF with ℏ denoting the reduced Planck's constant, m the electron mass, and vF the Fermi velocity; however, the three-plasmon process plays a dominant role in the nonlinear Landau damping of wave envelopes. In this regime, the decay rate of the wave amplitude is also found to be higher compared to that in the modest quantum regime where the multiplasmon effects are forbidden.

  20. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy.

    PubMed

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  1. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  2. Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient.

    PubMed

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2015-02-09

    Nonlinear Schrödinger equation with simple quadratic potential modulated by a spatially-varying diffraction coefficient is investigated theoretically. Second-order rogue wave breather solutions of the model are constructed by using the similarity transformation. A modal quantum number is introduced, useful for classifying and controlling the solutions. From the solutions obtained, the behavior of second order Kuznetsov-Ma breathers (KMBs), Akhmediev breathers (ABs), and Peregrine solitons is analyzed in particular, by selecting different modulation frequencies and quantum modal parameter. We show how to generate interesting second order breathers and related hybrid rogue waves. The emergence of true rogue waves - single giant waves that are generated in the interaction of KMBs, ABs, and Peregrine solitons - is explicitly displayed in our analytical solutions.

  3. Soliton solutions of the quantum Zakharov-Kuznetsov equation which arises in quantum magneto-plasmas

    NASA Astrophysics Data System (ADS)

    Sindi, Cevat Teymuri; Manafian, Jalil

    2017-02-01

    In this paper, we extended the improved tan(φ/2)-expansion method (ITEM) and the generalized G'/G-expansion method (GGEM) proposed by Manafian and Fazli (Opt. Quantum Electron. 48, 413 (2016)) to construct new types of soliton wave solutions of nonlinear partial differential equations (NPDEs). Moreover, we use of the improvement of the Exp-function method (IEFM) proposed by Jahani and Manafian (Eur. Phys. J. Plus 131, 54 (2016)) for obtaining solutions of NPDEs. The merit of the presented three methods is they can find further solutions to the considered problems, including soliton, periodic, kink, kink-singular wave solutions. This paper studies the quantum Zakharov-Kuznetsov (QZK) equation by the aid of the improved tan(φ/2)-expansion method, the generalized G'/G-expansion method and the improvement of the Exp-function method. Moreover, the 1-soliton solution of the modified QZK equation with power law nonlinearity is obtained by the aid of traveling wave hypothesis with the necessary constraints in place for the existence of the soliton. Comparing our new results with Ebadi et al. results (Astrophys. Space Sci. 341, 507 (2012)), namely, G'/G-expansion method, exp-function method, modified F-expansion method, shows that our results give further solutions. Finally, these solutions might play an important role in engineering, physics and applied mathematics fields.

  4. Quantum spatial propagation of squeezed light in a degenerate parametric amplifier

    NASA Technical Reports Server (NTRS)

    Deutsch, Ivan H.; Garrison, John C.

    1992-01-01

    Differential equations which describe the steady state spatial evolution of nonclassical light are established using standard quantum field theoretic techniques. A Schroedinger equation for the state vector of the optical field is derived using the quantum analog of the slowly varying envelope approximation (SVEA). The steady state solutions are those that satisfy the time independent Schroedinger equation. The resulting eigenvalue problem then leads to the spatial propagation equations. For the degenerate parametric amplifier this method shows that the squeezing parameter obey nonlinear differential equations coupled by the amplifier gain and phase mismatch. The solution to these differential equations is equivalent to one obtained from the classical three wave mixing steady state solution to the parametric amplifier with a nondepleted pump.

  5. WavePacket: A Matlab package for numerical quantum dynamics.II: Open quantum systems, optimal control, and model reduction

    NASA Astrophysics Data System (ADS)

    Schmidt, Burkhard; Hartmann, Carsten

    2018-07-01

    WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.

  6. A novel quantum-mechanical interpretation of the Dirac equation

    NASA Astrophysics Data System (ADS)

    K-H Kiessling, M.; Tahvildar-Zadeh, A. S.

    2016-04-01

    A novel interpretation is given of Dirac’s ‘wave equation for the relativistic electron’ as a quantum-mechanical one-particle equation. In this interpretation the electron and the positron are merely the two different ‘topological spin’ states of a single more fundamental particle, not distinct particles in their own right. The new interpretation is backed up by the existence of such ‘bi-particle’ structures in general relativity, in particular the ring singularity present in any spacelike section of the spacetime singularity of the maximal-analytically extended, topologically non-trivial, electromagnetic Kerr-Newman (KN)spacetime in the zero-gravity limit (here, ‘zero-gravity’ means the limit G\\to 0, where G is Newton’s constant of universal gravitation). This novel interpretation resolves the dilemma that Dirac’s wave equation seems to be capable of describing both the electron and the positron in ‘external’ fields in many relevant situations, while the bi-spinorial wave function has only a single position variable in its argument, not two—as it should if it were a quantum-mechanical two-particle wave equation. A Dirac equation is formulated for such a ring-like bi-particle which interacts with a static point charge located elsewhere in the topologically non-trivial physical space associated with the moving ring particle, the motion being governed by a de Broglie-Bohm type law extracted from the Dirac equation. As an application, the pertinent general-relativistic zero-gravity hydrogen problem is studied in the usual Born-Oppenheimer approximation. Its spectral results suggest that the zero-G KN magnetic moment be identified with the so-called ‘anomalous magnetic moment of the physical electron,’ not with the Bohr magneton, so that the ring radius is only a tiny fraction of the electron’s reduced Compton wavelength.

  7. Analytical bound-state solutions of the Schrödinger equation for the Manning-Rosen plus Hulthén potential within SUSY quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.

    2018-01-01

    In this paper, the bound-state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by using new developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial wave functions are defined for any l≠0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. Thanks to both methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is presented. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.

  8. Nonplanar electrostatic shock waves in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2010-02-15

    Two-dimensional quantum ion acoustic shock waves (QIASWs) are studied in an unmagnetized plasma consisting of electrons and ions. In this regard, a nonplanar quantum Kadomtsev-Petviashvili-Burgers (QKPB) equation is derived using the small amplitude perturbation expansion method. Using the tangent hyperbolic method, an analytical solution of the planar QKPB equation is obtained and subsequently used as the initial profile to numerically solve the nonplanar QKPB equation. It is observed that the increasing number density (and correspondingly the quantum Bohm potential) and kinematic viscosity affect the propagation characteristics of the QIASW. The temporal evolution of the nonplanar QIASW is investigated both inmore » Cartesian and polar planes and the results are discussed from the numerical stand point. The results of the present study may be applicable in the study of propagation of small amplitude localized electrostatic shock structures in dense astrophysical environments.« less

  9. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    NASA Astrophysics Data System (ADS)

    Minakov, D. V.; Levashov, P. R.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-01

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density, particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.

  10. Quantum molecular dynamics simulation of shock-wave experiments in aluminum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minakov, D. V.; Khishchenko, K. V.; Fortov, V. E.

    2014-06-14

    We present quantum molecular dynamics calculations of principal, porous, and double shock Hugoniots, release isentropes, and sound velocity behind the shock front for aluminum. A comprehensive analysis of available shock-wave data is performed; the agreement and discrepancies of simulation results with measurements are discussed. Special attention is paid to the melting region of aluminum along the principal Hugoniot; the boundaries of the melting zone are estimated using the self-diffusion coefficient. Also, we make a comparison with a high-quality multiphase equation of state for aluminum. Independent semiempirical and first-principle models are very close to each other in caloric variables (pressure, density,more » particle velocity, etc.) but the equation of state gives higher temperature on the principal Hugoniot and release isentropes than ab initio calculations. Thus, the quantum molecular dynamics method can be used for calibration of semiempirical equations of state in case of lack of experimental data.« less

  11. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    NASA Astrophysics Data System (ADS)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; Dodin, I. Y.

    2018-05-01

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by the WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. We also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.

  12. Magnetosonic waves interactions in a spin-1/2 degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sheng-Chang, E-mail: lsc1128lsc@126.com; Han, Jiu-Ning

    2014-03-15

    We investigate the magnetosonic waves and their interactions in a spin-1/2 degenerate quantum plasma. With the help of the extended Poincaré-Lighthill-Kuo perturbation method, we derive two Korteweg-de Vries-Burgers equations to describe the magnetosonic waves. The parameter region where exists magnetosonic waves and the phase diagram of the compressive and rarefactive solitary waves with different plasma parameters are shown. We further explore the effects of quantum diffraction, quantum statistics, and electron spin magnetization on the head-on collisions of magnetosonic solitary waves. We obtain the collision-induced phase shifts (trajectory changes) analytically. Both for the compressive and rarefactive solitary waves, it is foundmore » that the collisions only lead to negative phase shifts. Our present study should be useful to understand the collective phenomena related to the magnetosonic wave collisions in degenerate plasmas like those in the outer shell of massive white dwarfs as well as to the potential applications of plasmas.« less

  13. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.

    PubMed

    Amin, M R

    2015-09-01

    Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.

  14. Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method

    NASA Astrophysics Data System (ADS)

    Resita Arum, Sari; A, Suparmi; C, Cari

    2016-01-01

    The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. Project supported by the Higher Education Project (Grant No. 698/UN27.11/PN/2015).

  15. Rogue-wave bullets in a composite (2+1)D nonlinear medium.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Baronio, Fabio; Grelu, Philippe; Mihalache, Dumitru

    2016-07-11

    We show that nonlinear wave packets localized in two dimensions with characteristic rogue wave profiles can propagate in a third dimension with significant stability. This unique behavior makes these waves analogous to light bullets, with the additional feature that they propagate on a finite background. Bulletlike rogue-wave singlet and triplet are derived analytically from a composite (2+1)D nonlinear wave equation. The latter can be interpreted as the combination of two integrable (1+1)D models expressed in different dimensions, namely, the Hirota equation and the complex modified Korteweg-de Vries equation. Numerical simulations confirm that the generation of rogue-wave bullets can be observed in the presence of spontaneous modulation instability activated by quantum noise.

  16. Homogeneous quantum electrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.

  17. Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.

    2017-07-01

    The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.

  18. Explicit mathematical construction of relativistic nonlinear de Broglie waves described by three-dimensional (wave and electromagnetic) solitons ``piloted'' (controlled) by corresponding solutions of associated linear Klein-Gordon and Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Vigier, Jean-Pierre

    1991-02-01

    Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.

  19. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.

  20. Filamentation instability in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.

    2007-08-15

    The growth rate of the filamentation instability triggered when a diluted cold electron beam passes through a cold plasma is evaluated using the quantum hydrodynamic equations. Compared with a cold fluid model, quantum effects reduce both the unstable wave vector domain and the maximum growth rate. Stabilization of large wave vector modes is always achieved, but significant reduction of the maximum growth rate depends on a dimensionless parameter that is provided. Although calculations are extended to the relativistic regime, they are mostly relevant to the nonrelativistic one.

  1. Incompressible limit of the degenerate quantum compressible Navier-Stokes equations with general initial data

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam; Li, Fucai

    2018-03-01

    In this paper we study the incompressible limit of the degenerate quantum compressible Navier-Stokes equations in a periodic domain T3 and the whole space R3 with general initial data. In the periodic case, by applying the refined relative entropy method and carrying out the detailed analysis on the oscillations of velocity, we prove rigorously that the gradient part of the weak solutions (velocity) of the degenerate quantum compressible Navier-Stokes equations converge to the strong solution of the incompressible Navier-Stokes equations. Our results improve considerably the ones obtained by Yang, Ju and Yang [25] where only the well-prepared initial data case is considered. While for the whole space case, thanks to the Strichartz's estimates of linear wave equations, we can obtain the convergence of the weak solutions of the degenerate quantum compressible Navier-Stokes equations to the strong solution of the incompressible Navier-Stokes/Euler equations with a linear damping term. Moreover, the convergence rates are also given.

  2. Quantum effects on compressional Alfven waves in compensated semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, M. R.

    2015-03-15

    Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linearmore » and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.« less

  3. Fundamental Study on Quantum Nanojets

    DTIC Science & Technology

    2004-08-01

    Pergamon Press. Bell , J. S . 1966 On the problem of hidden variables in quantum mechanics. Rev. of Modern Phys., 38, 447. Berndl, K., Daumer, M...fluid dynamics based on two quantum mechanical perspectives; Schrödinger’s wave mechanics and quantum fluid dynamics based on Hamilton-Jacoby...References 8 2). Direct Problems a). Quantum fluid dynamics formalism based on Hamilton-Jacoby equation are adapted for the numerical

  4. Broken degeneracy of low frequency surface waves in semi-bounded quantum plasmas including the quantum recoil effect

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-02-01

    We present a derivation of the dispersion relation for electrostatic waves propagating at the interface of semi-bounded quantum plasma in which degenerate electrons are governed by the Wigner-Poisson system, while non-degenerate ions follow the classical fluid equations. We consider parameters for metallic plasmas in terms of the ratio of plasmon energy to Fermi energy. The dispersion relation is solved numerically and analyzed for various plasmon energies. The result shows that two-mode of waves can be possible: high- and low-mode. We have found that the degeneracy for high-mode wave would be broken when the plasmon energy is larger than the Fermi energy. We also discuss the characteristics of group velocities for high- and low-mode waves.

  5. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less

  6. Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation

    DOE PAGES

    Zhu, Hongxuan; Zhou, Yao; Ruiz, D. E.; ...

    2018-05-29

    Inhomogeneous drift-wave turbulence can be modeled as an effective plasma where drift waves act as quantumlike particles and the zonal-flow velocity serves as a collective field through which they interact. This effective plasma can be described by a Wigner-Moyal equation (WME), which generalizes the quasilinear wave-kinetic equation (WKE) to the full-wave regime, i.e., resolves the wavelength scale. Unlike waves governed by manifestly quantumlike equations, whose WMEs can be borrowed from quantum mechanics and are commonly known, drift waves have Hamiltonians very different from those of conventional quantum particles. This causes unusual phase-space dynamics that is typically not captured by themore » WKE. We demonstrate how to correctly model this dynamics with the WME instead. Specifically, we report full-wave phase-space simulations of the zonal-flow formation (zonostrophic instability), deterioration (tertiary instability), and the so-called predator-prey oscillations. We also show how the WME facilitates analysis of these phenomena, namely, (i) we show that full-wave effects critically affect the zonostrophic instability, particularly its nonlinear stage and saturation; (ii) we derive the tertiary-instability growth rate; and (iii) we demonstrate that, with full-wave effects retained, the predator-prey oscillations do not require zonal-flow collisional damping, contrary to previous studies. In conclusion, we also show how the famous Rayleigh-Kuo criterion, which has been missing in wave-kinetic theories of drift-wave turbulence, emerges from the WME.« less

  7. Dielectric permeability tensor and linear waves in spin-1/2 quantum kinetics with non-trivial equilibrium spin-distribution functions

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.; Kuz'menkov, L. S.

    2017-11-01

    A consideration of waves propagating parallel to the external magnetic field is presented. The dielectric permeability tensor is derived from the quantum kinetic equations with non-trivial equilibrium spin-distribution functions in the linear approximation on the amplitude of wave perturbations. It is possible to consider the equilibrium spin-distribution functions with nonzero z-projection proportional to the difference of the Fermi steps of electrons with the chosen spin direction, while x- and y-projections are equal to zero. It is called the trivial equilibrium spin-distribution functions. In the general case, x- and y-projections of the spin-distribution functions are nonzero which is called the non-trivial regime. A corresponding equilibrium solution is found in Andreev [Phys. Plasmas 23, 062103 (2016)]. The contribution of the nontrivial part of the spin-distribution function appears in the dielectric permeability tensor in the additive form. It is explicitly found here. A corresponding modification in the dispersion equation for the transverse waves is derived. The contribution of the nontrivial part of the spin-distribution function in the spectrum of transverse waves is calculated numerically. It is found that the term caused by the nontrivial part of the spin-distribution function can be comparable with the classic terms for the relatively small wave vectors and frequencies above the cyclotron frequency. In a majority of regimes, the extra spin caused term dominates over the spin term found earlier, except the small frequency regime, where their contributions in the whistler spectrum are comparable. A decrease of the left-hand circularly polarized wave frequency, an increase of the high-frequency right-hand circularly polarized wave frequency, and a decrease of frequency changing by an increase of frequency at the growth of the wave vector for the whistler are found. A considerable decrease of the spin wave frequency is found either. It results in an increase of module of the negative group velocity of the spin wave. The found dispersion equations are used for obtaining of an effective quantum hydrodynamics reproducing these results. This generalization requires the introduction of the corresponding equation of state for the thermal part of the spin current in the spin evolution equation.

  8. Nonclassical acoustics

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1976-01-01

    A statistical approach to sound propagation is considered in situations where, due to the presence of large gradients of properties of the medium, the classical (deterministic) treatment of wave motion is inadequate. Mathematical methods for wave motions not restricted to small wavelengths (analogous to known methods of quantum mechanics) are used to formulate a wave theory of sound in nonuniform flows. Nonlinear transport equations for field probabilities are derived for the limiting case of noninteracting sound waves and it is postulated that such transport equations, appropriately generalized, may be used to predict the statistical behavior of sound in arbitrary flows.

  9. Analytical Solutions of the Schrödinger Equation for the Manning-Rosen plus Hulthén Potential Within SUSY Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.

    2018-02-01

    In this paper, the bound state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by implementing the novel improved scheme to surmount the centrifugal term. The energy eigenvalues and corresponding radial wave functions are defined for any l ≠ 0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSYQM) methods. By using these two different methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is demonstrated. The energy levels are worked out and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.

  10. Use of the Lorentz-operator in relativistic quantum mechanics to guarentee a single-energy root

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, A B

    1998-08-01

    The Lorentz-operator form of relativistic quantum mechanics, with relativistic wave equation i{h_bar}{partial_derivative}{psi}/{partial_derivative}t=(mc{sup 2}{gamma}+e{Phi}){psi}, is implemented to guarantee a single-energy root. The Lorentz factor as modified by Pauli's ansatz is given by {gamma}={radical}1+[{rvec {sigma}}{center_dot}(i{h_bar}{rvec {del}}+(e/c){rvec A})]{sup 2}/m{sup 2}c{sup 2}, such that the theory is appropriate for electrons. Magnetic fine structure in the Lorentz relativistic wave equation emerges on the use of an appropriate operator form of the Lienard-Wiechert four- potential ({Phi},{rvec A}) from electromagnetic theory. Although computationally more intensive the advantage of the theory is the elimination of the negative-root of the energy and an interpretation of the wave function basedmore » on a one-particle, positive definite probability density like that of nonrelativistic quantum mechanics.« less

  11. Parabolic transformation cloaks for unbounded and bounded cloaking of matter waves

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Hsuan; Lin, De-Hone

    2014-01-01

    Parabolic quantum cloaks with unbounded and bounded invisible regions are presented with the method of transformation design. The mass parameters of particles for perfect cloaking are shown to be constant along the parabolic coordinate axes of the cloaking shells. The invisibility performance of the cloaks is inspected from the viewpoints of waves and probability currents. The latter shows the controllable characteristic of a probability current by a quantum cloak. It also provides us with a simpler and more efficient way of exhibiting the performance of a quantum cloak without the solutions of the transformed wave equation. Through quantitative analysis of streamline structures in the cloaking shell, one defines the efficiency of the presented quantum cloak in the situation of oblique incidence. The cloaking models presented here give us more choices for testing and applying quantum cloaking.

  12. Bifurcations of solitary wave solutions for (two and three)-dimensional nonlinear partial differential equation in quantum and magnetized plasma by using two different methods

    NASA Astrophysics Data System (ADS)

    Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen

    2018-06-01

    In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.

  13. Diffeomorphism groups and nonlinear quantum mechanics

    NASA Astrophysics Data System (ADS)

    Goldin, Gerald A.

    2012-02-01

    This talk is dedicated to my friend and collaborator, Prof. Dr. Heinz-Dietrich Doebner, on the occasion of his 80th birthday. I shall review some highlights of the approach we have taken in deriving and interpreting an interesting class of nonlinear time-evolution equations for quantum-mechanical wave functions, with few equations; more detail may be found in the references. Then I shall comment on the corresponding hydrodynamical description.

  14. On the Conformable Fractional Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.

    2018-05-01

    In this paper, a conformable fractional quantum mechanic has been introduced using three postulates. Then in such a formalism, Schr¨odinger equation, probability density, probability flux and continuity equation have been derived. As an application of considered formalism, a fractional-radial harmonic oscillator has been considered. After obtaining its wave function and energy spectrum, effects of the conformable fractional parameter on some quantities have been investigated and plotted for different excited states.

  15. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    NASA Astrophysics Data System (ADS)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  16. Small signal analysis of four-wave mixing in InAs/GaAs quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Ma, Shaozhen; Chen, Zhe; Dutta, Niloy K.

    2009-02-01

    A model to study four-wave mixing (FWM) wavelength conversion in InAs-GaAs quantum-dot semiconductor optical amplifier is proposed. Rate equations involving two QD states are solved to simulate the carrier density modulation in the system, results show that the existence of QD excited state contributes to the ultra fast recover time for single pulse response by serving as a carrier reservoir for the QD ground state, its speed limitations are also studied. Nondegenerate four-wave mixing process with small intensity modulation probe signal injected is simulated using this model, a set of coupled wave equations describing the evolution of all frequency components in the active region of QD-SOA are derived and solved numerically. Results show that better FWM conversion efficiency can be obtained compared with the regular bulk SOA, and the four-wave mixing bandwidth can exceed 1.5 THz when the detuning between pump and probe lights is 0.5 nm.

  17. Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Ming; Poirier, Bill

    2016-03-01

    In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schrödinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature—suggesting a “many interacting worlds” interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive and well-localized everywhere, and its spatial integral is conserved over time—in any inertial frame. Finally, the ensemble-averaged wavepacket motion is along a straight line path through spacetime. In this manner, the pathologies of the wave-based relativistic quantum theory, as applied to wavepacket propagation, are avoided.

  18. Holonomy, quantum mechanics and the signal-tuned Gabor approach to the striate cortex

    NASA Astrophysics Data System (ADS)

    Torreão, José R. A.

    2016-02-01

    It has been suggested that an appeal to holographic and quantum properties will be ultimately required for the understanding of higher brain functions. On the other hand, successful quantum-like approaches to cognitive and behavioral processes bear witness to the usefulness of quantum prescriptions as applied to the analysis of complex non-quantum systems. Here, we show that the signal-tuned Gabor approach for modeling cortical neurons, although not based on quantum assumptions, also admits a quantum-like interpretation. Recently, the equation of motion for the signal-tuned complex cell response has been derived and proven equivalent to the Schrödinger equation for a dissipative quantum system whose solutions come under two guises: as plane-wave and Airy-packet responses. By interpreting the squared magnitude of the plane-wave solution as a probability density, in accordance with the quantum mechanics prescription, we arrive at a Poisson spiking probability — a common model of neuronal response — while spike propagation can be described by the Airy-packet solution. The signal-tuned approach is also proven consistent with holonomic brain theories, as it is based on Gabor functions which provide a holographic representation of the cell’s input, in the sense that any restricted subset of these functions still allows stimulus reconstruction.

  19. Does loop quantum cosmology replace the big rip singularity by a non-singular bounce?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    It is stated that holonomy corrections in loop quantum cosmology introduce a modification in Friedmann's equation which prevent the big rip singularity. Recently in [1] it has been proved that this modified Friedmann equation is obtained in an inconsistent way, what means that the results deduced from it, in particular the big rip singularity avoidance, are not justified. The problem is that holonomy corrections modify the gravitational part of the Hamiltonian of the system leading, after Legendre's transformation, to a non covariant Lagrangian which is in contradiction with one of the main principles of General Relativity. A more consistent waymore » to deal with the big rip singularity avoidance is to disregard modification in the gravitational part of the Hamiltonian, and only consider inverse volume effects [2]. In this case we will see that, not like the big bang singularity, the big rip singularity survives in loop quantum cosmology. Another way to deal with the big rip avoidance is to take into account geometric quantum effects given by the the Wheeler-De Witt equation. In that case, even though the wave packets spread, the expectation values satisfy the same equations as their classical analogues. Then, following the viewpoint adopted in loop quantum cosmology, one can conclude that the big rip singularity survives when one takes into account these quantum effects. However, the spreading of the wave packets prevents the recover of the semiclassical time, and thus, one might conclude that the classical evolution of the universe come to and end before the big rip is reached. This is not conclusive because. as we will see, it always exists other external times that allows us to define the classical and quantum evolution of the universe up to the big rip singularity.« less

  20. Advanced Concepts in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George

    2014-11-01

    Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.

  1. Relativistic kicked rotor.

    PubMed

    Matrasulov, D U; Milibaeva, G M; Salomov, U R; Sundaram, Bala

    2005-07-01

    Transport properties in the relativistic analog of the periodically kicked rotor are contrasted under classically and quantum mechanical dynamics. The quantum rotor is treated by solving the Dirac equation in the presence of the time-periodic delta-function potential resulting in a relativistic quantum mapping describing the evolution of the wave function. The transition from the quantum suppression behavior seen in the nonrelativistic limit to agreement between quantum and classical analyses in the relativistic regime is discussed. The absence of quantum resonances in the relativistic case is also addressed.

  2. Higher-order geodesic deviation for charged particles and resonance induced by gravitational waves

    NASA Astrophysics Data System (ADS)

    Heydari-Fard, M.; Hasani, S. N.

    We generalize the higher-order geodesic deviation for the structure-less test particles to the higher-order geodesic deviation equations of the charged particles [R. Kerner, J. W. van Holten and R. Colistete Jr., Class. Quantum Grav. 18 (2001) 4725]. By solving these equations for charged particles moving in a constant magnetic field in the spacetime of a gravitational wave, we show for both cases when the gravitational wave is parallel and perpendicular to the constant magnetic field, a magnetic resonance appears at wg = Ω. This feature might be useful to detect the gravitational wave with high frequencies.

  3. Generalized continuity equations from two-field Schrödinger Lagrangians

    NASA Astrophysics Data System (ADS)

    Spourdalakis, A. G. B.; Pappas, G.; Morfonios, C. Â. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.

    2016-11-01

    A variational scheme for the derivation of generalized, symmetry-induced continuity equations for Hermitian and non-Hermitian quantum mechanical systems is developed. We introduce a Lagrangian which involves two complex wave fields and whose global invariance under dilation and phase variations leads to a mixed continuity equation for the two fields. In combination with discrete spatial symmetries of the underlying Hamiltonian, the mixed continuity equation is shown to produce bilocal conservation laws for a single field. This leads to generalized conserved charges for vanishing boundary currents and to divergenceless bilocal currents for stationary states. The formalism reproduces the bilocal continuity equation obtained in the special case of P T -symmetric quantum mechanics and paraxial optics.

  4. Surface plasmon oscillations in a semi-bounded semiconductor plasma

    NASA Astrophysics Data System (ADS)

    M, SHAHMANSOURI; A, P. MISRA

    2018-02-01

    We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential. Starting from a quantum hydrodynamic model coupled to the Poisson equation, we derive the general dispersion relation for surface plasma waves. Previous results in this context are recovered. The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma. It is found that the CE effects significantly modify the behaviors of the SP waves. The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.

  5. A Short Biography of Paul A. M. Dirac and Historical Development of Dirac Delta Function

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2013-01-01

    This paper deals with a short biography of Paul Dirac, his first celebrated work on quantum mechanics, his first formal systematic use of the Dirac delta function and his famous work on quantum electrodynamics and quantum statistics. Included are his first discovery of the Dirac relativistic wave equation, existence of positron and the intrinsic…

  6. Quantum nonlocality does not exist

    PubMed Central

    Tipler, Frank J.

    2014-01-01

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell’s inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming “nonlocality” are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in “collapse” versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer. PMID:25015084

  7. Quantum nonlocality does not exist.

    PubMed

    Tipler, Frank J

    2014-08-05

    Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.

  8. Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma

    NASA Astrophysics Data System (ADS)

    Tolba, R. E.; El-Bedwehy, N. A.; Moslem, W. M.; El-Labany, S. K.; Yahia, M. E.

    2016-01-01

    Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.

  9. Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com; Moslem, W. M., E-mail: wmmoslem@hotmail.com

    2016-01-15

    Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.

  10. Generation of Squeezed Light Using Photorefractive Degenerate Two-Wave Mixing

    NASA Technical Reports Server (NTRS)

    Lu, Yajun; Wu, Meijuan; Wu, Ling-An; Tang, Zheng; Li, Shiqun

    1996-01-01

    We present a quantum nonlinear model of two-wave mixing in a lossless photorefractive medium. A set of equations describing the quantum nonlinear coupling for the field operators is obtained. It is found that, to the second power term, the commutation relationship is maintained. The expectation values for the photon number concur with those of the classical electromagnetic theory when the initial intensities of the two beams are strong. We also calculate the quantum fluctuations of the two beams initially in the coherent state. With an appropriate choice of phase, quadrature squeezing or number state squeezing can be produced.

  11. Classical electromagnetic fields from quantum sources in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Holliday, Robert; McCarty, Ryan; Peroutka, Balthazar; Tuchin, Kirill

    2017-01-01

    Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.

  12. Wave theory of turbulence in compressible media

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    An acoustical theory of turbulence was developed to aid in the study of the generation of sound in turbulent flows. The statistical framework adopted is a quantum-like wave dynamical formulation in terms of complex distribution functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. This system of nonlinear equations is closed and complete. The technique of analysis was chosen such that direct applications to practical problems can be obtained with relative ease.

  13. A Concise Introduction to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    2018-02-01

    Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.

  14. Quantum solitonic wave-packet of a meso-scopic system in singularity free gravity

    NASA Astrophysics Data System (ADS)

    Buoninfante, Luca; Lambiase, Gaetano; Mazumdar, Anupam

    2018-06-01

    In this paper we will discuss how to localise a quantum wave-packet due to self-gravitating meso-scopic object by taking into account gravitational self-interaction in the Schrödinger equation beyond General Relativity. In particular, we will study soliton-like solutions in infinite derivative ghost free theories of gravity, which resolves the gravitational 1 / r singularity in the potential. We will show a unique feature that the quantum spread of such a gravitational system is larger than that of the Newtonian gravity, therefore enabling us a window of opportunity to test classical and quantum properties of such theories of gravity in the near future at a table-top experiment.

  15. Nonlinear propagation of light in Dirac matter.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2011-09-01

    The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.

  16. The Universe according to Schroedinger and Milo

    NASA Astrophysics Data System (ADS)

    Wolff, Milo

    2009-10-01

    The puzzling electron is due to the belief that it is a discrete particle. Schroedinger, (1937) eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). Thus he rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff using a Scalar Wave Equation in 3D quantum space to find wave solutions. The resulting Wave Structure of Matter (WSM) contains all the electron's properties including the Schroedinger Equation. Further, Newton's Law F=ma is no longer a puzzle; It originates from Mach's principle of inertia (1883) that depends on the space medium and the WSM. These the origin of all the Natural Laws. Carver Mead (1999) at CalTech used the WSM to design Intel micro-chips and to correct errors of Maxwell's Equations. Applications of the WSM describe matter at molecular dimensions: Industrial alloys, catalysts, biology and medicine, molecular computers and memories. See book ``Schroedinger's Universe'' - at Amazon.com. Pioneers of the WSM are growing rapidly. Some are: SpaceAndMotion.com, QuantumMatter.com, treeincarnation.com/audio/milowolff.htm, daugerresearch.com/orbitals/index.shtml, glafreniere.com/matter.html =A new Universe.

  17. Quantum Theory from Observer's Mathematics Point of View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Dmitriy; Khots, Boris

    2010-05-04

    This work considers the linear (time-dependent) Schrodinger equation, quantum theory of two-slit interference, wave-particle duality for single photons, and the uncertainty principle in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics, see [1]. Certain theoretical results and communications pertaining to these theorems are also provided.

  18. Comment on “Surface electromagnetic wave equations in a warm magnetized quantum plasma” [Phys. Plasmas 21, 072114 (2014)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir

    2016-07-15

    In a recent article [C. Li et al., Phys. Plasmas 21, 072114 (2014)], Li et al. studied the propagation of surface waves on a magnetized quantum plasma half-space in the Voigt configuration (in this case, the magnetic field is parallel to the surface but is perpendicular to the direction of propagation). Here, we present a fresh look at the problem and obtain a new form of dispersion relation of surface waves of the system. We find that our new dispersion relation does not agree with the result obtained by Li et al.

  19. A new method for solving the quantum hydrodynamic equations of motion: application to two-dimensional reactive scattering.

    PubMed

    Pauler, Denise K; Kendrick, Brian K

    2004-01-08

    The de Broglie-Bohm hydrodynamic equations of motion are solved using a meshless method based on a moving least squares approach and an arbitrary Lagrangian-Eulerian frame of reference. A regridding algorithm adds and deletes computational points as needed in order to maintain a uniform interparticle spacing, and unitary time evolution is obtained by propagating the wave packet using averaged fields. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. The methodology is applied to a two-dimensional model collinear reaction with an activation barrier. Reaction probabilities are computed as a function of both time and energy, and are in excellent agreement with those based on the quantum trajectory method. (c) 2004 American Institute of Physics

  20. Advances in Quantum Trajectory Approaches to Dynamics

    NASA Astrophysics Data System (ADS)

    Askar, Attila

    2001-03-01

    The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)

  1. Energy spectra and wave function of trigonometric Rosen-Morse potential as an effective quantum chromodynamics potential in D-dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id; Suparmi,; Cari,

    2014-09-30

    The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectramore » of system.« less

  2. Relations between nonlinear Riccati equations and other equations in fundamental physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-10-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.

  3. An Electron is the God Particle

    NASA Astrophysics Data System (ADS)

    Wolff, Milo

    2001-04-01

    Philosophers, Clifford, Mach, Einstein, Wyle, Dirac & Schroedinger, believed that only a wave structure of particles could satisfy experiment and fulfill reality. A quantum Wave Structure of Matter is described here. It predicts the natural laws more accurately and completely than classic laws. Einstein reasoned that the universe depends on particles which are "spherically, spatially extended in space." and "Hence a discrete material particle has no place as a fundamental concept in a field theory." Thus the discrete point particle was wrong. He deduced the true electron is primal because its force range is infinite. Now, it is found the electron's wave structure contains the laws of Nature that rule the universe. The electron plays the role of creator - the God particle. Electron structure is a pair of spherical outward/inward quantum waves, convergent to a center in 3D space. This wave pair creates a h/4pi quantum spin when the in-wave spherically rotates to become the out-wave. Both waves form a spinor satisfying the Dirac Equation. Thus, the universe is binary like a computer. Reference: http://members.tripod.com/mwolff

  4. Quantum dynamics of the Einstein-Rosen wormhole throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2011-02-15

    We consider the polymer quantization of the Einstein wormhole throat theory for an eternal Schwarzschild black hole. We numerically solve the difference equation describing the quantum evolution of an initially Gaussian, semiclassical wave packet. As expected from previous work on loop quantum cosmology, the wave packet remains semiclassical until it nears the classical singularity at which point it enters a quantum regime in which the fluctuations become large. The expectation value of the radius reaches a minimum as the wave packet is reflected from the origin and emerges to form a near-Gaussian but asymmetrical semiclassical state at late times. Themore » value of the minimum depends in a nontrivial way on the initial mass/energy of the pulse, its width, and the polymerization scale. For wave packets that are sufficiently narrow near the bounce, the semiclassical bounce radius is obtained. Although the numerics become difficult to control in this limit, we argue that for pulses of finite width the bounce persists as the polymerization scale goes to zero, suggesting that in this model the loop quantum gravity effects mimicked by polymer quantization do not play a crucial role in the quantum bounce.« less

  5. Closed form solutions of two time fractional nonlinear wave equations

    NASA Astrophysics Data System (ADS)

    Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan

    2018-06-01

    In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.

  6. Quantum mechanical generalized phase-shift approach to atom-surface scattering: a Feshbach projection approach to dealing with closed channel effects.

    PubMed

    Maji, Kaushik; Kouri, Donald J

    2011-03-28

    We have developed a new method for solving quantum dynamical scattering problems, using the time-independent Schrödinger equation (TISE), based on a novel method to generalize a "one-way" quantum mechanical wave equation, impose correct boundary conditions, and eliminate exponentially growing closed channel solutions. The approach is readily parallelized to achieve approximate N(2) scaling, where N is the number of coupled equations. The full two-way nature of the TISE is included while propagating the wave function in the scattering variable and the full S-matrix is obtained. The new algorithm is based on a "Modified Cayley" operator splitting approach, generalizing earlier work where the method was applied to the time-dependent Schrödinger equation. All scattering variable propagation approaches to solving the TISE involve solving a Helmholtz-type equation, and for more than one degree of freedom, these are notoriously ill-behaved, due to the unavoidable presence of exponentially growing contributions to the numerical solution. Traditionally, the method used to eliminate exponential growth has posed a major obstacle to the full parallelization of such propagation algorithms. We stabilize by using the Feshbach projection operator technique to remove all the nonphysical exponentially growing closed channels, while retaining all of the propagating open channel components, as well as exponentially decaying closed channel components.

  7. Parallel and perpendicular velocity sheared flows driven tripolar vortices in an inhomogeneous electron-ion quantum magnetoplasma

    NASA Astrophysics Data System (ADS)

    Mirza, Arshad M.; Masood, W.

    2011-12-01

    Nonlinear equations governing the dynamics of finite amplitude drift-ion acoustic-waves are derived by taking into account sheared ion flows parallel and perpendicular to the ambient magnetic field in a quantum magnetoplasma comprised of electrons and ions. It is shown that stationary solution of the nonlinear equations can be represented in the form of a tripolar vortex for specific profiles of the equilibrium sheared flows. The tripolar vortices are, however, observed to form on very short scales in dense quantum plasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.

  8. Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nafari, F.; Ghoranneviss, M., E-mail: ghoranneviss@gmail.com

    2016-08-15

    In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperaturemore » for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.« less

  9. Control of propagation of spatially localized polariton wave packets in a Bragg mirror with embedded quantum wells

    NASA Astrophysics Data System (ADS)

    Sedova, I. E.; Chestnov, I. Yu.; Arakelian, S. M.; Kavokin, A. V.; Sedov, E. S.

    2018-01-01

    We considered the nonlinear dynamics of Bragg polaritons in a specially designed stratified semiconductor structure with embedded quantum wells, which possesses a convex dispersion. The model for the ensemble of single periodically arranged quantum wells coupled with the Bragg photon fields has been developed. In particular, the generalized Gross-Pitaevskii equation with the non-parabolic dispersion has been obtained for the Bragg polariton wave function. We revealed a number of dynamical regimes for polariton wave packets resulting from competition of the convex dispersion and the repulsive nonlinearity effects. Among the regimes are spreading, breathing and soliton propagation. When the control parameters including the exciton-photon detuning, the matter-field coupling and the nonlinearity are manipulated, the dynamical regimes switch between themselves.

  10. Quantum propagation in single mode fiber

    NASA Technical Reports Server (NTRS)

    Joneckis, Lance G.; Shapiro, Jeffrey H.

    1994-01-01

    This paper presents a theory for quantum light propagation in a single-mode fiber which includes the effects of the Kerr nonlinearity, group-velocity dispersion, and linear loss. The theory reproduces the results of classical self-phase modulation, quantum four-wave mixing, and classical solution physics, within their respective regions of validity. It demonstrates the crucial role played by the Kerr-effect material time constant, in limiting the quantum phase shifts caused by the broadband zero-point fluctuations that accompany any quantized input field. Operator moment equations - approximated, numerically, via a terminated cumulant expansion - are used to obtain results for homodyne-measurement noise spectra when dispersion is negligible. More complicated forms of these equations can be used to incorporate dispersion into the noise calculations.

  11. Infinite order quantum-gravitational correlations

    NASA Astrophysics Data System (ADS)

    Knorr, Benjamin

    2018-06-01

    A new approximation scheme for nonperturbative renormalisation group equations for quantum gravity is introduced. Correlation functions of arbitrarily high order can be studied by resolving the full dependence of the renormalisation group equations on the fluctuation field (graviton). This is reminiscent of a local potential approximation in O(N)-symmetric field theories. As a first proof of principle, we derive the flow equation for the ‘graviton potential’ induced by a conformal fluctuation and corrections induced by a gravitational wave fluctuation. Indications are found that quantum gravity might be in a non-metric phase in the deep ultraviolet. The present setup significantly improves the quality of previous fluctuation vertex studies by including infinitely many couplings, thereby testing the reliability of schemes to identify different couplings to close the equations, and represents an important step towards the resolution of the Nielsen identity. The setup further allows one, in principle, to address the question of putative gravitational condensates.

  12. The eigenvalue problem in phase space.

    PubMed

    Cohen, Leon

    2018-06-30

    We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Experimental investigation of linear and nonlinear wave systems: A quantum chaos approach

    NASA Astrophysics Data System (ADS)

    Neicu, Toni

    2002-09-01

    An experimental and numerical study of linear and nonlinear wave systems using methods and ideas developed from quantum chaos is presented. We exploit the analogy of the wave equation for the flexural modes of a thin clover-shaped acoustic plate to the stationary solutions of the Schrodinger wave equation for a quantum clover-shaped billiard, a generic system that has regular and chaotic regions in its phase space. We observed periodic orbits in the spectral properties of the acoustic plate, the first such definitive acoustic experiment. We also solved numerically the linear wave equation of the acoustic plate for the first few hundred eigenmodes. The Fourier transform of the eigenvalues show peaks corresponding to the principal periodic orbits of the classical billiard. The signatures of the periodic orbits in the spectra were unambiguously verified by deforming one edge of the plate and observing that only the peaks corresponding to the orbits that hit this edge changed. The statistical measures of the eigenvalues are intermediate between universal forms for completely integrable and chaotic systems. The density distribution of the eigenfunctions agrees with the Porter-Thomas formula of chaotic systems. The viscosity dependence and effects of nonlinearity on the Faraday surface wave patterns in a stadium geometry were also investigated. The ray dynamics inside the stadium, a paradigm of quantum chaos, is completely chaotic. The majority of the observed patterns of the orbits resemble three eigenstates of the stadium: the bouncing ball, longitudinal, and bowtie patterns. We observed many disordered patterns that increase with the viscosity. The experimental results were analyzed using recent theoretical work that explains the suppression of certain modes. The theory also predicts that the perimeter dissipation is too strong for whispering gallery modes, which contradicts our observations of these modes for a fluid with low viscosity. Novel vortex patterns were observed in a strongly nonlinear, dissipative granular system of vertically vibrated rods. Above a critical packing fraction, moving domains of nearly vertical rods were seen to coexist with horizontal rods. The vertical domains coarsen to form several large vortices, which were driven by the anisotropy and inclination of the rods.

  14. Einstein's equivalence principle in quantum mechanics revisited

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2016-11-01

    The gravitational equivalence principle in quantum mechanics is of considerable importance, but it is generally not included in physics textbooks. In this note, we present a precise quantum formulation of this principle and comment on its verification in a neutron diffraction experiment. The solution of the time dependent Schrödinger equation for this problem also gives the wave function for the motion of a charged particle in a homogeneous electric field, which is also usually ignored in textbooks on quantum mechanics.

  15. A single-sided representation for the homogeneous Green's function of a unified scalar wave equation.

    PubMed

    Wapenaar, Kees

    2017-06-01

    A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.

  16. Rigid rotators. [deriving the time-independent energy states associated with rotational motions of the molecule

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.

  17. Observables and dispersion relations in κ-Minkowski spacetime

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Borowiec, Andrzej; Pachoł, Anna

    2017-10-01

    We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of κ-Minkowski spacetime. The corresponding quantum Poincaré-Weyl Lie algebra of in-finitesimal translations, rotations and dilatations is obtained. The d'Alembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.

  18. Effect of magnetic quantization on ion acoustic waves ultra-relativistic dense plasma

    NASA Astrophysics Data System (ADS)

    Javed, Asif; Rasheed, A.; Jamil, M.; Siddique, M.; Tsintsadze, N. L.

    2017-11-01

    In this paper, we have studied the influence of magnetic quantization of orbital motion of the electrons on the profile of linear and nonlinear ion-acoustic waves, which are propagating in the ultra-relativistic dense magneto quantum plasmas. We have employed both Thomas Fermi and Quantum Magneto Hydrodynamic models (along with the Poisson equation) of quantum plasmas. To investigate the large amplitude nonlinear structure of the acoustic wave, Sagdeev-Pseudo-Potential approach has been adopted. The numerical analysis of the linear dispersion relation and the nonlinear acoustic waves has been presented by drawing their graphs that highlight the effects of plasma parameters on these waves in both the linear and the nonlinear regimes. It has been noticed that only supersonic ion acoustic solitary waves can be excited in the above mentioned quantum plasma even when the value of the critical Mach number is less than unity. Both width and depth of Sagdeev potential reduces on increasing the magnetic quantization parameter η. Whereas the amplitude of the ion acoustic soliton reduces on increasing η, its width appears to be directly proportional to η. The present work would be helpful to understand the excitation of nonlinear ion-acoustic waves in the dense astrophysical environments such as magnetars and in intense-laser plasma interactions.

  19. Controlled Quantum Packets

    NASA Technical Reports Server (NTRS)

    DeMartino, Salvatore; DeSiena, Silvio

    1996-01-01

    We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.

  20. Quantum mechanical streamlines. I - Square potential barrier

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  1. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu

    2014-02-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less

  2. Quantum theory of rotational isomerism and Hill equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugulava, A.; Toklikishvili, Z.; Chkhaidze, S.

    2012-06-15

    The process of rotational isomerism of linear triatomic molecules is described by the potential with two different-depth minima and one barrier between them. The corresponding quantum-mechanical equation is represented in the form that is a special case of the Hill equation. It is shown that the Hill-Schroedinger equation has a Klein's quadratic group symmetry which, in its turn, contains three invariant subgroups. The presence of these subgroups makes it possible to create a picture of energy spectrum which depends on a parameter and has many merging and branch points. The parameter-dependent energy spectrum of the Hill-Schroedinger equation, like Mathieu-characteristics, containsmore » branch points from the left and from the right of the demarcation line. However, compared to the Mathieu-characteristics, in the Hill-Schroedinger equation spectrum the 'right' points are moved away even further for some distance that is the bigger, the bigger is the less deep well. The asymptotic wave functions of the Hill-Schroedinger equation for the energy values near the potential minimum contain two isolated sharp peaks indicating a possibility of the presence of two stable isomers. At high energy values near the potential maximum, the height of two peaks decreases, and between them there appear chaotic oscillations. This form of the wave functions corresponds to the process of isomerization.« less

  3. Wave instabilities in the presence of non vanishing background in nonlinear Schrödinger systems

    PubMed Central

    Trillo, S.; Gongora, J. S. Totero; Fratalocchi, A.

    2014-01-01

    We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign. PMID:25468032

  4. Local U(2,2) symmetry in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    1998-12-01

    Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.

  5. Exact solution of a quantum forced time-dependent harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN

    1992-01-01

    The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.

  6. OPTICS. Quantum spin Hall effect of light.

    PubMed

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. Copyright © 2015, American Association for the Advancement of Science.

  7. Effective photon mass and exact translating quantum relativistic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Fernando, E-mail: fernando.haas@ufrgs.br; Manrique, Marcos Antonio Albarracin, E-mail: sagret10@hotmail.com

    2016-04-15

    Using a variation of the celebrated Volkov solution, the Klein-Gordon equation for a charged particle is reduced to a set of ordinary differential equations, exactly solvable in specific cases. The new quantum relativistic structures can reveal a localization in the radial direction perpendicular to the wave packet propagation, thanks to a non-vanishing scalar potential. The external electromagnetic field, the particle current density, and the charge density are determined. The stability analysis of the solutions is performed by means of numerical simulations. The results are useful for the description of a charged quantum test particle in the relativistic regime, provided spinmore » effects are not decisive.« less

  8. Stellar Equilibrium in Semiclassical Gravity.

    PubMed

    Carballo-Rubio, Raúl

    2018-02-09

    The phenomenon of quantum vacuum polarization in the presence of a gravitational field is well understood and is expected to have a physical reality, but studies of its backreaction on the dynamics of spacetime are practically nonexistent outside of the specific context of homogeneous cosmologies. Building on previous results of quantum field theory in curved spacetimes, in this Letter we first derive the semiclassical equations of stellar equilibrium in the s-wave Polyakov approximation. It is highlighted that incorporating the polarization of the quantum vacuum leads to a generalization of the classical Tolman-Oppenheimer-Volkoff equation. Despite the complexity of the resulting field equations, it is possible to find exact solutions. Aside from being the first known exact solutions that describe relativistic stars including the nonperturbative backreaction of semiclassical effects, these are identified as a nontrivial combination of the black star and gravastar proposals.

  9. Internally electrodynamic particle model: Its experimental basis and its predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or

    2010-03-15

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less

  10. Internally electrodynamic particle model: Its experimental basis and its predictions

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2010-03-01

    The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.

  11. Dissipative nonlinear waves in a gravitating quantum fluid

    NASA Astrophysics Data System (ADS)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2018-02-01

    Nonlinear wave propagation is studied in a dissipative, self-gravitating Bose-Einstein condensate, starting from the Gross-Pitaevskii equation. In the absence of an exact analytical result, approximate methods like the linear analysis and perturbative approach are applied. The linear dispersion relation puts a restriction on the permissible range of the dissipation parameter. The waves get damped due to dissipation. The small amplitude analysis using reductive perturbation technique is found to yield a modified form of KdV equation, which is solved both analytically as well as numerically. Interestingly, the analytical and numerical plots match excellently with each other, in the realm of weak dissipation.

  12. Group theoretical derivation of the minimal coupling principle

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2017-04-01

    The group theoretical methods worked out by Bargmann, Mackey and Wigner, which deductively establish the Quantum Theory of a free particle for which Galileian transformations form a symmetry group, are extended to the case of an interacting particle. In doing so, the obstacles caused by loss of symmetry are overcome. In this approach, specific forms of the wave equation of an interacting particle, including the equation derived from the minimal coupling principle, are implied by particular first-order invariance properties that characterize the interaction with respect to specific subgroups of Galileian transformations; moreover, the possibility of yet unknown forms of the wave equation is left open.

  13. Optical turbulence and transverse rogue waves in a cavity with triple-quantum-dot molecules

    NASA Astrophysics Data System (ADS)

    Eslami, M.; Khanmohammadi, M.; Kheradmand, R.; Oppo, G.-L.

    2017-09-01

    We show that optical turbulence extreme events can exist in the transverse dynamics of a cavity containing molecules of triple quantum dots under conditions close to tunneling-induced transparency. These nanostructures, when coupled via tunneling, form a four-level configuration with tunable energy-level separations. We show that such a system exhibits multistability and bistability of Turing structures in instability domains with different critical wave vectors. By numerical simulation of the mean-field equation that describes the transverse dynamics of the system, we show that the simultaneous presence of two transverse solutions with opposite nonlinearities gives rise to a series of turbulent structures with the capability of generating two-dimensional rogue waves.

  14. Modulated heavy nucleus-acoustic waves and associated rogue waves in a degenerate relativistic quantum plasma system

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Islam, S.; Mamun, A. A.; Schlickeiser, R.

    2018-01-01

    A theoretical and numerical investigation has been carried out on amplitude modulated heavy nucleus-acoustic envelope solitons (HNAESs) in a degenerate relativistic quantum plasma (DRQP) system containing relativistically degenerate electrons and light nuclei, and non-degenerate mobile heavy nuclei. The cubic nonlinear Schrödinger equation, describing the nonlinear dynamics of the heavy nucleus-acoustic waves (HNAWs), is derived by employing a multi-scale perturbation technique. The dispersion relation for the HNAWs is derived, and the criteria for the occurrence of modulational instability of the HNAESs are analyzed. The localized structures (viz., envelope solitons and associated rogue waves) are found to be formed in the DRQP system under consideration. The basic features of the amplitude modulated HNAESs and associated rogue waves formed in realistic DRQP systems are briefly discussed.

  15. Square-integrable solutions to a family of nonlinear schrödinger equations from nonlinear quantum theory

    NASA Astrophysics Data System (ADS)

    Teismann, Holger

    2005-10-01

    We consider nonlinear Schrödinger equations which have been proposed as fundamental equations of nonlinear quantum theories. The equations are singular in that the wave function ψ appears in the denominator of rational expressions. To avoid the problem of zeros of ψ it is natural to make the ansatz ψ = e ν. This ansatz, however, conflicts with the—physically motivated—requirement that the solutions ψ be square integrable. We show that this conflict can be resolved by considering an unusual function space whose definition involves the derivative ∇ ν of ν. This function space turns out to be dense subset of L2 and the equations can be solved in the L2-sense (as desired) by first solving an evolutionary system for ∇ ν and then transforming back to ψ.

  16. Wave theory of turbulence in compressible media (acoustic theory of turbulence)

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    The generation and the transmission of sound in turbulent flows are treated as one of the several aspects of wave propagation in turbulence. Fluid fluctuations are decomposed into orthogonal Fourier components, with five interacting modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. Wave interactions, governed by the inhomogeneous and nonlinear terms of the perturbed Navier-Stokes equations, are modeled by random functions which give the rates of change of wave amplitudes equal to the averaged interaction terms. The statistical framework adopted is a quantum-like formulation in terms of complex distribution functions. The spatial probability distributions are given by the squares of the absolute values of the complex characteristic functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation.

  17. Solution of the Wang Chang-Uhlenbeck equation for molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Anikin, Yu. A.

    2017-06-01

    Molecular hydrogen is modeled by numerically solving the Wang Chang-Uhlenbeck equation. The differential scattering cross sections of molecules are calculated using the quantum mechanical scattering theory of rigid rotors. The collision integral is computed by applying a fully conservative projection method. Numerical results for relaxation, heat conduction, and a one-dimensional shock wave are presented.

  18. BCS-BEC crossover and quantum hydrodynamics in p-wave superfluids with a symmetry of the A1 phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, M. Yu., E-mail: kagan@kapitza.ras.ru; Efremov, D. V.

    2010-03-15

    We solve the Leggett equations for the BCS-BEC crossover in a three dimensional resonance p-wave superfluid with the symmetry of the A1 phase. We calculate the sound velocity, the normal density, and the specific heat for the BCS domain ({mu} > 0), for the BEC domain ({mu} < 0), and close to the important point {mu} = 0 in the 100% polarized case. We find the indications of a quantum phase transition close to the point {mu}(T = 0) = 0. Deep in the BCS and BEC domains, the crossover ideas of Leggett, Nozieres, and Schmitt-Rink work quite well. Wemore » discuss the spectrum of orbital waves, the paradox of intrinsic angular momentum and the complicated problem of chiral anomaly in the BCS A1 phase at T = 0. We present two different approaches to the chiral anomaly, based on supersymmetric hydrodynamics and on the formal analogy with the Dirac equation in quantum electrodynamics. We evaluate the damping of nodal fermions due to different decay processes in the superclean case at T = 0 and find that a ballistic regime {omega}{tau} >> 1 occurs. We propose to use aerogel or nonmagnetic impurities to reach the hydrodynamic regime {omega}{tau} << 1 at T = 0. We discuss the concept of the spectral flow and exact cancelations between time derivatives of anomalous and quasiparticle currents in the equation for the total linear momentum conservation. We propose to derive and solve the kinetic equation for the nodal quasiparticles in both the hydrodynamic and ballistic regimes to demonstrate this cancelation explicitly. We briefly discuss the role of the other residual interactions different from damping and invite experimentalists to measure the spectrum and damping of orbital waves in the A phase of {sup 3}He at low temperatures.« less

  19. Unitary evolution of the quantum Universe with a Brown-Kuchař dust

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki

    2015-12-01

    We study the time evolution of a wave function for the spatially flat Friedmann-Lemaître-Robertson-Walker Universe governed by the Wheeler-DeWitt equation in both analytical and numerical methods. We consider a Brown-Kuchař dust as a matter field in order to introduce a ‘clock’ in quantum cosmology and adopt the Laplace-Beltrami operator-ordering. The Hamiltonian operator admits an infinite number of self-adjoint extensions corresponding to a one-parameter family of boundary conditions at the origin in the minisuperspace. For any value of the extension parameter in the boundary condition, the evolution of a wave function is unitary and the classical initial singularity is avoided and replaced by the big bounce in the quantum system. Exact wave functions show that the expectation value of the spatial volume of the Universe obeys the classical-time evolution in the late time but its variance diverges.

  20. What is behind small deviations of quantum mechanics theory from experiments? Observer's mathematics point of view

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2014-12-01

    Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.

  1. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.

    PubMed

    Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas

    2015-07-01

    In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.

  2. Semiconductor Quantum Electron Wave Transport, Diffraction, and Interference: Analysis, Device, and Measurement.

    NASA Astrophysics Data System (ADS)

    Henderson, Gregory Newell

    Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.

  3. Quantum dust magnetosonic waves with spin and exchange correlation effects

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  4. Scalar field quantum cosmology: A Schrödinger picture

    NASA Astrophysics Data System (ADS)

    Vakili, Babak

    2012-11-01

    We study the classical and quantum models of a scalar field Friedmann-Robertson-Walker (FRW) cosmology with an eye to the issue of time problem in quantum cosmology. We introduce a canonical transformation on the scalar field sector of the action such that the momentum conjugate to the new canonical variable appears linearly in the transformed Hamiltonian. Using this canonical transformation, we show that, it may lead to the identification of a time parameter for the corresponding dynamical system. In the cases of flat, closed and open FRW universes the classical cosmological solutions are obtained in terms of the introduced time parameter. Moreover, this formalism gives rise to a Schrödinger-Wheeler-DeWitt equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave functions in order to investigate the possible corrections to the classical cosmologies due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.

  5. Quantum dark soliton: Nonperturbative diffusion of phase and position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziarmaga, J.

    2004-12-01

    The dark soliton solution of the Gross-Pitaevskii equation in one dimension has two parameters that do not change the energy of the solution: the global phase of the condensate wave function and the position of the soliton. These degeneracies appear in the Bogoliubov theory as Bogoliubov modes with zero frequencies and zero norms. These 'zero modes' cannot be quantized as the usual Bogoliubov quasiparticle harmonic oscillators. They must be treated in a nonperturbative way. In this paper I develop a nonperturbative theory of zero modes. This theory provides a nonperturbative description of quantum phase diffusion and quantum diffusion of solitonmore » position. An initially well localized wave packet for soliton position is predicted to disperse beyond the width of the soliton.« less

  6. Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings

    NASA Astrophysics Data System (ADS)

    Azadi, Sam; Kühne, T. D.

    2018-05-01

    The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.

  7. Pseudospin symmetry of the Dirac equation for a Möbius square plus Mie type potential with a Coulomb-like tensor interaction via SUSYQM

    NASA Astrophysics Data System (ADS)

    Akpan, N. Ikot; Zarrinkamar, S.; Eno, J. Ibanga; Maghsoodi, E.; Hassanabadi, H.

    2014-01-01

    We investigate the approximate solution of the Dirac equation for a combination of Möbius square and Mie type potentials under the pseudospin symmetry limit by using supersymmetry quantum mechanics. We obtain the bound-state energy equation and the corresponding spinor wave functions in an approximate analytical manner. We comment on the system via various useful figures and tables.

  8. Photon wave function formalism for analysis of Mach–Zehnder interferometer and sum-frequency generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritboon, Atirach, E-mail: atirach.3.14@gmail.com; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112; Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th

    2016-08-15

    Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.

  9. Robust state preparation in quantum simulations of Dirac dynamics

    NASA Astrophysics Data System (ADS)

    Song, Xue-Ke; Deng, Fu-Guo; Lamata, Lucas; Muga, J. G.

    2017-02-01

    A nonrelativistic system such as an ultracold trapped ion may perform a quantum simulation of a Dirac equation dynamics under specific conditions. The resulting Hamiltonian and dynamics are highly controllable, but the coupling between momentum and internal levels poses some difficulties to manipulate the internal states accurately in wave packets. We use invariants of motion to inverse engineer robust population inversion processes with a homogeneous, time-dependent simulated electric field. This exemplifies the usefulness of inverse-engineering techniques to improve the performance of quantum simulation protocols.

  10. Gravity and the Spin-2 Planar Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Rosseel, Jan; Townsend, Paul K.

    2018-04-01

    A Schrödinger equation proposed for the Girvin-MacDonald-Platzman gapped spin-2 mode of fractional quantum Hall states is found from a novel nonrelativistic limit, applicable only in 2 +1 dimensions, of the massive spin-2 Fierz-Pauli field equations. It is also found from a novel null reduction of the linearized Einstein field equations in 3 +1 dimensions, and in this context a uniform distribution of spin-2 particles implies, via a Brinkmann-wave solution of the nonlinear Einstein equations, a confining harmonic oscillator potential for the individual particles.

  11. Quantum soliton in 1D Heisenberg spin chains with Dzyaloshinsky-Moriya and next-nearest-neighbor interactions.

    PubMed

    Djoufack, Z I; Tala-Tebue, E; Nguenang, J P; Kenfack-Jiotsa, A

    2016-10-01

    We report in this work, an analytical study of quantum soliton in 1D Heisenberg spin chains with Dzyaloshinsky-Moriya Interaction (DMI) and Next-Nearest-Neighbor Interactions (NNNI). By means of the time-dependent Hartree approximation and the semi-discrete multiple-scale method, the equation of motion for the single-boson wave function is reduced to the nonlinear Schrödinger equation. It comes from this present study that the spectrum of the frequencies increases, its periodicity changes, in the presence of NNNI. The antisymmetric feature of the DMI was probed from the dispersion curve while changing the sign of the parameter controlling it. Five regions were identified in the dispersion spectrum, when the NNNI are taken into account instead of three as in the opposite case. In each of these regions, the quantum model can exhibit quantum stationary localized and stable bright or dark soliton solutions. In each region, we could set up quantum localized n-boson Hartree states as well as the analytical expression of their energy level, respectively. The accuracy of the analytical studies is confirmed by the excellent agreement with the numerical calculations, and it certifies the stability of the stationary quantum localized solitons solutions exhibited in each region. In addition, we found that the intensity of the localization of quantum localized n-boson Hartree states increases when the NNNI are considered. We also realized that the intensity of Hartree n-boson states corresponding to quantum discrete soliton states depend on the wave vector.

  12. Classical and quantum cosmology of minimal massive bigravity

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Mousavi, M.

    2016-10-01

    In a Friedmann-Robertson-Walker (FRW) space-time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger-Wheeler-DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle-Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.

  13. The Shannon entropy information for mixed Manning Rosen potential in D-dimensional Schrodinger equation

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Nur Pratiwi, Beta; Arya Nugraha, Dewanta

    2017-01-01

    D dimensional Schrodinger equation for the mixed Manning Rosen potential was investigated using supersymmetric quantum mechanics. We obtained the energy eigenvalues from radial part solution and wavefunctions in radial and angular parts solution. From the lowest radial wavefunctions, we evaluated the Shannon entropy information using Matlab software. Based on the entropy densities demonstrated graphically, we obtained that the wave of position information entropy density moves right when the value of potential parameter q increases, while its wave moves left with the increase of parameter α. The wave of momentum information entropy densities were expressed in graphs. We observe that its amplitude increase with increasing parameter q and α

  14. Scattering of a vortex pair by a single quantum vortex in a Bose–Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, L. A., E-mail: smirnov-lev@allp.sci-nnov.ru; Smirnov, A. I., E-mail: smirnov@appl.sci-nnov.ru; Mironov, V. A.

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose–Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex–antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used tomore » classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross–Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex–antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).« less

  15. Multidimensional fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. M.; Vieira, N.

    2012-11-01

    This work is intended to investigate the multi-dimensional space-time fractional Schrödinger equation of the form (CDt0+αu)(t,x) = iħ/2m(C∇βu)(t,x), with ħ the Planck's constant divided by 2π, m is the mass and u(t,x) is a wave function of the particle. Here (CDt0+α,C∇β are operators of the Caputo fractional derivatives, where α ∈]0,1] and β ∈]1,2]. The wave function is obtained using Laplace and Fourier transforms methods and a symbolic operational form of solutions in terms of the Mittag-Leffler functions is exhibited. It is presented an expression for the wave function and for the quantum mechanical probability density. Using Banach fixed point theorem, the existence and uniqueness of solutions is studied for this kind of fractional differential equations.

  16. Conceptual Foundations of Soliton Versus Particle Dualities Toward a Topological Model for Matter

    NASA Astrophysics Data System (ADS)

    Kouneiher, Joseph

    2016-06-01

    The idea that fermions could be solitons was actually confirmed in theoretical models in 1975 in the case when the space-time is two-dimensional and with the sine-Gordon model. More precisely S. Coleman showed that two different classical models end up describing the same fermions particle, when the quantum theory is constructed. But in one model the fermion is a quantum excitation of the field and in the other model the particle is a soliton. Hence both points of view can be reconciliated.The principal aim in this paper is to exhibit a solutions of topological type for the fermions in the wave zone, where the equations of motion are non-linear field equations, i.e. using a model generalizing sine- Gordon model to four dimensions, and describe the solutions for linear and circular polarized waves. In other words, the paper treat fermions as topological excitations of a bosonic field.

  17. New exact solutions of the Dirac and Klein-Gordon equations of a charged particle propagating in a strong laser field in an underdense plasma

    NASA Astrophysics Data System (ADS)

    Varró, Sándor

    2014-03-01

    Exact solutions are presented of the Dirac and Klein-Gordon equations of a charged particle propagating in a classical monochromatic electromagnetic plane wave in a medium of index of refraction nm<1. In the Dirac case the solutions are expressed in terms of new complex polynomials, and in the Klein-Gordon case the found solutions are expressed in terms of Ince polynomials. In each case they form a doubly infinite set, labeled by two integer quantum numbers. These integer numbers represent quantized momentum components of the charged particle along the polarization vector and along the propagation direction of the electromagnetic radiation. Since this radiation may represent a plasmon wave of arbitrary high amplitude, propagating in an underdense plasma, the solutions obtained may have relevance in describing possible quantum features of novel acceleration mechanisms.

  18. Bohmian Photonics for Independent Control of the Phase and Amplitude of Waves

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-05-01

    The de Broglie-Bohm theory is one of the nonstandard interpretations of quantum phenomena that focuses on reintroducing definite positions of particles, in contrast to the indeterminism of the Copenhagen interpretation. In spite of intense debate on its measurement and nonlocality, the de Broglie-Bohm theory based on the reformulation of the Schrödinger equation allows for the description of quantum phenomena as deterministic trajectories embodied in the modified Hamilton-Jacobi mechanics. Here, we apply the Bohmian reformulation to Maxwell's equations to achieve the independent manipulation of optical phase evolution and energy confinement. After establishing the deterministic design method based on the Bohmian approach, we investigate the condition of optical materials enabling scattering-free light with bounded or random phase evolutions. We also demonstrate a unique form of optical confinement and annihilation that preserves the phase information of incident light. Our separate tailoring of wave information extends the notion and range of artificial materials.

  19. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  20. Thermodynamics properties study of diatomic molecules with q-deformed modified Poschl-Teller plus Manning Rosen non-central potential in D dimensions using SUSYQM approach

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Pratiwi, B. N.

    2016-04-01

    D-dimensional Dirac equation of q-deformed modified Poschl-Teller plus Manning Rosen non-central potential was solved using supersymmetric quantum mechanics (SUSY QM). The relativistic energy spectra were analyzed by using SUSY QM and shape invariant properties from radial part of D dimensional Dirac equation and the angular quantum numbers were obtained from angular part of D dimensional Dirac equation. The SUSY operators was used to generate the D dimensional relativistic wave functions both for radial and angular parts. In the non-relativistic limit, the relativistic energy equation was reduced to the non-relativistic energy. In the classical limit, the partition function of vibrational, the specific heat of vibrational, and the mean energy of vibrational of some diatomic molecules were calculated from the equation of non-relativistic energy with the help of error function and Mat-lab 2011.

  1. The construction of partner potential from the general potential anharmonic in D-dimensional Schrodinger system

    NASA Astrophysics Data System (ADS)

    Suparmi; Cari, C.; Wea, K. N.; Wahyulianti

    2018-03-01

    The Schrodinger equation is the fundamental equation in quantum physics. The characteristic of the particle in physics potential field can be explained by using the Schrodinger equation. In this study, the solution of 4 dimensional Schrodinger equation for the anharmonic potential and the anharmonic partner potential have done. The method that used to solve the Schrodinger equation was the ansatz wave method, while to construction the partner potential was the supersymmetric method. The construction of partner potential used to explain the experiment result that cannot be explained by the original potential. The eigenvalue for anharmonic potential and the anharmonic partner potential have the same characteristic. Every increase of quantum orbital number the eigenvalue getting smaller. This result corresponds to Bohrn’s atomic theory that the eigenvalue is inversely proportional to the atomic shell. But the eigenvalue for the anharmonic partner potential higher than the eigenvalue for the anharmonic original potential.

  2. The Liouville equation for flavour evolution of neutrinos and neutrino wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Rasmus Sloth Lundkvist; Smirnov, Alexei Yu., E-mail: rasmus@mpi-hd.mpg.de, E-mail: smirnov@mpi-hd.mpg.de

    We consider several aspects related to the form, derivation and applications of the Liouville equation (LE) for flavour evolution of neutrinos. To take into account the quantum nature of neutrinos we derive the evolution equation for the matrix of densities using wave packets instead of Wigner functions. The obtained equation differs from the standard LE by an additional term which is proportional to the difference of group velocities. We show that this term describes loss of the propagation coherence in the system. In absence of momentum changing collisions, the LE can be reduced to a single derivative equation over amore » trajectory coordinate. Additional time and spatial dependence may stem from initial (production) conditions. The transition from single neutrino evolution to the evolution of a neutrino gas is considered.« less

  3. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  4. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  5. Quantum trajectory analysis of multimode subsystem-bath dynamics.

    PubMed

    Wyatt, Robert E; Na, Kyungsun

    2002-01-01

    The dynamics of a swarm of quantum trajectories is investigated for systems involving the interaction of an active mode (the subsystem) with an M-mode harmonic reservoir (the bath). Equations of motion for the position, velocity, and action function for elements of the probability fluid are integrated in the Lagrangian (moving with the fluid) picture of quantum hydrodynamics. These fluid elements are coupled through the Bohm quantum potential and as a result evolve as a correlated ensemble. Wave function synthesis along the trajectories permits an exact description of the quantum dynamics for the evolving probability fluid. The approach is fully quantum mechanical and does not involve classical or semiclassical approximations. Computational results are presented for three systems involving the interaction on an active mode with M=1, 10, and 15 bath modes. These results include configuration space trajectory evolution, flux analysis of the evolving ensemble, wave function synthesis along trajectories, and energy partitioning along specific trajectories. These results demonstrate the feasibility of using a small number of quantum trajectories to obtain accurate quantum results on some types of open quantum systems that are not amenable to standard quantum approaches involving basis set expansions or Eulerian space-fixed grids.

  6. Propagation of arbitrary initial wave packets in a quantum parametric oscillator: Instability zones for higher order moments

    NASA Astrophysics Data System (ADS)

    Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.

    2018-05-01

    We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.

  7. Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks

    NASA Astrophysics Data System (ADS)

    Halnon, Theodore; Bojowald, Martin

    2017-01-01

    In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply. Partial funding from the Ronald E. McNair Postbaccalaureate Achievement Program.

  8. Spontaneous generation of singularities in paraxial optical fields.

    PubMed

    Aiello, Andrea

    2016-04-01

    In nonrelativistic quantum mechanics, the spontaneous generation of singularities in smooth and finite wave functions is a well understood phenomenon also occurring for free particles. We use the familiar analogy between the two-dimensional Schrödinger equation and the optical paraxial wave equation to define a new class of square-integrable paraxial optical fields that develop a spatial singularity in the focal point of a weakly focusing thin lens. These fields are characterized by a single real parameter whose value determines the nature of the singularity. This novel field enhancement mechanism may stimulate fruitful research for diverse technological and scientific applications.

  9. Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance.

    PubMed

    Andreev, Pavel A

    2015-03-01

    The quantum hydrodynamic (QHD) model of charged spin-1/2 particles contains physical quantities defined for all particles of a species including particles with spin-up and with spin-down. Different populations of states with different spin directions are included in the spin density (the magnetization). In this paper I derive a QHD model, which separately describes spin-up electrons and spin-down electrons. Hence electrons with different projections of spins on the preferable direction are considered as two different species of particles. It is shown that the numbers of particles with different spin directions do not conserve. Hence the continuity equations contain sources of particles. These sources are caused by the interactions of the spins with the magnetic field. Terms of similar nature arise in the Euler equation. The z projection of the spin density is no longer an independent variable. It is proportional to the difference between the concentrations of the electrons with spin-up and the electrons with spin-down. The propagation of waves in the magnetized plasmas of degenerate electrons is considered. Two regimes for the ion dynamics, the motionless ions and the motion of the degenerate ions as the single species with no account of the spin dynamics, are considered. It is shown that this form of the QHD equations gives all solutions obtained from the traditional form of QHD equations with no distinction of spin-up and spin-down states. But it also reveals a soundlike solution called the spin-electron acoustic wave. Coincidence of most solutions is expected since this derivation was started with the same basic equation: the Pauli equation. Solutions arise due to the different Fermi pressures for the spin-up electrons and the spin-down electrons in the magnetic field. The results are applied to degenerate electron gas of paramagnetic and ferromagnetic metals in the external magnetic field. The dispersion of the spin-electron acoustic waves in the partially spin-polarized degenerate neutron matter are also considered.

  10. Quantum theory of the far-off-resonance continuous-wave Raman laser: Heisenberg-Langevin approach

    NASA Astrophysics Data System (ADS)

    Roos, P. A.; Murphy, S. K.; Meng, L. S.; Carlsten, J. L.; Ralph, T. C.; White, A. G.; Brasseur, J. K.

    2003-07-01

    We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump ↔ pump, Stokes ↔ signal, and Raman coherence ↔ idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.

  11. Effect of boundary treatments on quantum transport current in the Green's function and Wigner distribution methods for a nano-scale DG-MOSFET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Haiyan; Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223-0001; Cai Wei

    2010-06-20

    In this paper, we conduct a study of quantum transport models for a two-dimensional nano-size double gate (DG) MOSFET using two approaches: non-equilibrium Green's function (NEGF) and Wigner distribution. Both methods are implemented in the framework of the mode space methodology where the electron confinements below the gates are pre-calculated to produce subbands along the vertical direction of the device while the transport along the horizontal channel direction is described by either approach. Each approach handles the open quantum system along the transport direction in a different manner. The NEGF treats the open boundaries with boundary self-energy defined by amore » Dirichlet to Neumann mapping, which ensures non-reflection at the device boundaries for electron waves leaving the quantum device active region. On the other hand, the Wigner equation method imposes an inflow boundary treatment for the Wigner distribution, which in contrast ensures non-reflection at the boundaries for free electron waves entering the device active region. In both cases the space-charge effect is accounted for by a self-consistent coupling with a Poisson equation. Our goals are to study how the device boundaries are treated in both transport models affects the current calculations, and to investigate the performance of both approaches in modeling the DG-MOSFET. Numerical results show mostly consistent quantum transport characteristics of the DG-MOSFET using both methods, though with higher transport current for the Wigner equation method, and also provide the current-voltage (I-V) curve dependence on various physical parameters such as the gate voltage and the oxide thickness.« less

  12. Quantum principle of sensing gravitational waves: From the zero-point fluctuations to the cosmological stochastic background of spacetime

    NASA Astrophysics Data System (ADS)

    Quiñones, Diego A.; Oniga, Teodora; Varcoe, Benjamin T. H.; Wang, Charles H.-T.

    2017-08-01

    We carry out a theoretical investigation on the collective dynamics of an ensemble of correlated atoms, subject to both vacuum fluctuations of spacetime and stochastic gravitational waves. A general approach is taken with the derivation of a quantum master equation capable of describing arbitrary confined nonrelativistic matter systems in an open quantum gravitational environment. It enables us to relate the spectral function for gravitational waves and the distribution function for quantum gravitational fluctuations and to indeed introduce a new spectral function for the zero-point fluctuations of spacetime. The formulation is applied to two-level identical bosonic atoms in an off-resonant high-Q cavity that effectively inhibits undesirable electromagnetic delays, leading to a gravitational transition mechanism through certain quadrupole moment operators. The overall relaxation rate before reaching equilibrium is found to generally scale collectively with the number N of atoms. However, we are also able to identify certain states of which the decay and excitation rates with stochastic gravitational waves and vacuum spacetime fluctuations amplify more significantly with a factor of N2. Using such favorable states as a means of measuring both conventional stochastic gravitational waves and novel zero-point spacetime fluctuations, we determine the theoretical lower bounds for the respective spectral functions. Finally, we discuss the implications of our findings on future observations of gravitational waves of a wider spectral window than currently accessible. Especially, the possible sensing of the zero-point fluctuations of spacetime could provide an opportunity to generate initial evidence and further guidance of quantum gravity.

  13. A relativistic toy model for Unruh black holes

    NASA Astrophysics Data System (ADS)

    Carbonaro, P.

    2014-08-01

    We consider the wave propagation in terms of acoustic geometry in a quantum relativistic system. This reduces, in the hydrodynamic limit, to the equations which govern the motion of a relativistic Fermi-degenerate gas in one space dimension. The derivation of an acoustic metric for one-dimensional (1D) systems is in general plagued with the impossibility of defining a conformal factor. Here we show that, although the system is intrinsically one-dimensional, the Unruh procedure continues to work because of the particular structure symmetry of the model. By analyzing the dispersion relation, attention is also paid to the quantum effects on the wave propagation.

  14. Group Theoretical Characterization of Wave Equations

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2017-12-01

    Group theoretical methods, worked out in particular by Mackey and Wigner, allow to attain the explicit Quantum Theory of a free particle through a purely deductive development based on symmetry principles. The extension of these methods to the case of an interacting particle finds a serious obstacle in the loss of the symmetry condition for the transformations of Galilei's group. The known attempts towards such an extension introduce restrictions which lead to theories empirically too limited. In the present article we show how the difficulties raised by the loss of symmetry can be overcome without the restrictions that affect tha past attempts. According to our results, the different specific forms of the wave equation of an interacting particle are implied by particular first order invariance properties that characterize the interaction with respect to specific sub-groups of galileian transformations. Moreover, the possibility of yet unknown forms of the wave equation is left open.

  15. Analog model for quantum gravity effects: phonons in random fluids.

    PubMed

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  16. Jeans self gravitational instability of strongly coupled quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana, E-mail: preranaiitd@rediffmail.com; Chhajlani, R. K.

    2014-07-15

    The Jeans self-gravitational instability is studied for quantum plasma composed of weakly coupled degenerate electron fluid and non-degenerate strongly coupled ion fluid. The formulation for such system is done on the basis of two fluid theory. The dynamics of weakly coupled degenerate electron fluid is governed by inertialess momentum equation. The quantum forces associated with the quantum diffraction effects and the quantum statistical effects act on the degenerate electron fluid. The strong correlation effects of ion are embedded in generalized viscoelastic momentum equation including the viscoelasticity and shear viscosities of ion fluid. The general dispersion relation is obtained using themore » normal mode analysis technique for the two regimes of propagation, i.e., hydrodynamic and kinetic regimes. The Jeans condition of self-gravitational instability is also obtained for both regimes, in the hydrodynamic regime it is observed to be affected by the ion plasma oscillations and quantum parameter while in the kinetic regime in addition to ion plasma oscillations and quantum parameter, it is also affected by the ion velocity which is modified by the viscosity generated compressional effects. The Jeans critical wave number and corresponding critical mass are also obtained for strongly coupled quantum plasma for both regimes.« less

  17. Analytical spectrum for a Hamiltonian of quantum dots with Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Dossa, Anselme F.; Avossevou, Gabriel Y. H.

    2014-12-01

    We determine the analytical solution for a Hamiltonian describing a confined charged particle in a quantum dot, including Rashba spin-orbit coupling and Zeeman splitting terms. The approach followed in this paper is straightforward and uses the symmetrization of the wave function's components. The eigenvalue problem for the Hamiltonian in Bargmann's Hilbert space reduces to a system of coupled first-order differential equations. Then we exploit the symmetry in the system to obtain uncoupled second-order differential equations, which are found to be the Whittaker-Ince limit of the confluent Heun equations. Analytical expressions as well as numerical results are obtained for the spectrum. One of the main features of such models, namely, the level splitting, is present through the spectrum obtained in this paper.

  18. The Schrödinger–Langevin equation with and without thermal fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, R., E-mail: roland.katz@subatech.in2p3.fr; Gossiaux, P.B., E-mail: Pol-Bernard.Gossiaux@subatech.in2p3.fr

    2016-05-15

    The Schrödinger–Langevin equation (SLE) is considered as an effective open quantum system formalism suitable for phenomenological applications involving a quantum subsystem interacting with a thermal bath. We focus on two open issues relative to its solutions: the stationarity of the excited states of the non-interacting subsystem when one considers the dissipation only and the thermal relaxation toward asymptotic distributions with the additional stochastic term. We first show that a proper application of the Madelung/polar transformation of the wave function leads to a non zero damping of the excited states of the quantum subsystem. We then study analytically and numerically themore » SLE ability to bring a quantum subsystem to the thermal equilibrium of statistical mechanics. To do so, concepts about statistical mixed states and quantum noises are discussed and a detailed analysis is carried with two kinds of noise and potential. We show that within our assumptions the use of the SLE as an effective open quantum system formalism is possible and discuss some of its limitations.« less

  19. Classical and quantum cosmology of the little rip abrupt event

    NASA Astrophysics Data System (ADS)

    Albarran, Imanol; Bouhmadi-López, Mariam; Kiefer, Claus; Marto, João; Vargas Moniz, Paulo

    2016-09-01

    We analyze from a classical and quantum point of view the behavior of the Universe close to a little rip, which can be interpreted as a big rip sent towards the infinite future. Like a big rip singularity, a little rip implies the destruction of all bounded structures in the Universe and is thus an event where quantum effects could be important. We present here a new phantom scalar field model for the little rip. The quantum analysis is performed in quantum geometrodynamics, with the Wheeler-DeWitt equation as its central equation. We find that the little rip can be avoided in the sense of the DeWitt criterion, that is, by having a vanishing wave function at the place of the little rip. Therefore our analysis completes the answer to the question: can quantum cosmology smoothen or avoid the divergent behavior genuinely caused by phantom matter? We show that this can indeed happen for the little rip, similar to the avoidance of a big rip and a little sibling of the big rip.

  20. Coupled harmonic oscillators and their quantum entanglement.

    PubMed

    Makarov, Dmitry N

    2018-04-01

    A system of two coupled quantum harmonic oscillators with the Hamiltonian H[over ̂]=1/2(1/m_{1}p[over ̂]_{1}^{2}+1/m_{2}p[over ̂]_{2}^{2}+Ax_{1}^{2}+Bx_{2}^{2}+Cx_{1}x_{2}) can be found in many applications of quantum and nonlinear physics, molecular chemistry, and biophysics. The stationary wave function of such a system is known, but its use for the analysis of quantum entanglement is complicated because of the complexity of computing the Schmidt modes. Moreover, there is no exact analytical solution to the nonstationary Schrodinger equation H[over ̂]Ψ=iℏ∂Ψ/∂t and Schmidt modes for such a dynamic system. In this paper we find a solution to the nonstationary Schrodinger equation; we also find in an analytical form a solution to the Schmidt mode for both stationary and dynamic problems. On the basis of the Schmidt modes, the quantum entanglement of the system under consideration is analyzed. It is shown that for certain parameters of the system, quantum entanglement can be very large.

  1. Coupled harmonic oscillators and their quantum entanglement

    NASA Astrophysics Data System (ADS)

    Makarov, Dmitry N.

    2018-04-01

    A system of two coupled quantum harmonic oscillators with the Hamiltonian H ̂=1/2 (1/m1p̂1 2+1/m2p̂2 2+A x12+B x22+C x1x2) can be found in many applications of quantum and nonlinear physics, molecular chemistry, and biophysics. The stationary wave function of such a system is known, but its use for the analysis of quantum entanglement is complicated because of the complexity of computing the Schmidt modes. Moreover, there is no exact analytical solution to the nonstationary Schrodinger equation H ̂Ψ =i ℏ ∂/Ψ ∂ t and Schmidt modes for such a dynamic system. In this paper we find a solution to the nonstationary Schrodinger equation; we also find in an analytical form a solution to the Schmidt mode for both stationary and dynamic problems. On the basis of the Schmidt modes, the quantum entanglement of the system under consideration is analyzed. It is shown that for certain parameters of the system, quantum entanglement can be very large.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taddese, Biniyam Tesfaye; Antonsen, Thomas M.; Ott, Edward

    Classical analogs of the quantum mechanical concepts of the Loschmidt Echo and quantum fidelity are developed with the goal of detecting small perturbations in a closed wave chaotic region. Sensing techniques that employ a one-recording-channel time-reversal-mirror, which in turn relies on time reversal invariance and spatial reciprocity of the classical wave equation, are introduced. In analogy with quantum fidelity, we employ scattering fidelity techniques which work by comparing response signals of the scattering region, by means of cross correlation and mutual information of signals. The performance of the sensing techniques is compared for various perturbations induced experimentally in an acousticmore » resonant cavity. The acoustic signals are parametrically processed to mitigate the effect of dissipation and to vary the spatial diversity of the sensing schemes. In addition to static boundary condition perturbations at specified locations, perturbations to the medium of wave propagation are shown to be detectable, opening up various real world sensing applications in which a false negative cannot be tolerated.« less

  3. Quantum Black Hole Model and HAWKING’S Radiation

    NASA Astrophysics Data System (ADS)

    Berezin, Victor

    The black hole model with a self-gravitating charged spherical symmetric dust thin shell as a source is considered. The Schroedinger-type equation for such a model is derived. This equation appeared to be a finite differences equation. A theory of such an equation is developed and general solution is found and investigated in details. The discrete spectrum of the bound state energy levels is obtained. All the eigenvalues appeared to be infinitely degenerate. The ground state wave functions are evaluated explicitly. The quantum black hole states are selected and investigated. It is shown that the obtained black hole mass spectrum is compatible with the existence of Hawking’s radiation in the limit of low temperatures both for large and nearly extreme Reissner-Nordstrom black holes. The above mentioned infinite degeneracy of the mass (energy) eigenvalues may appeared helpful in resolving the well known information paradox in the black hole physics.

  4. What is behind small deviations of quantum mechanics theory from experiments? Observer's mathematics point of view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Boris, E-mail: bkhots@cccglobal.com; Khots, Dmitriy, E-mail: dkhots@imathconsulting.com

    2014-12-10

    Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We considermore » the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.« less

  5. Quantum limited performance of optical receivers

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2018-05-01

    While the fundamental performance limit for traditional radio frequency (RF) communications is often set by background noise on the channel, the fundamental limit for optical communications is set by the quantum nature of light. Both types of systems are based on electro-magnetic waves, differing only in carrier frequency. It is, in fact, the frequency that determines which of these limits dominates. We explore this in the first part of this paper. This leads to a difference in methods of analysis of the two different types of systems. While equations predicting the probability of bit error for RF systems are usually based on the signal to background noise ratio, similar equations for optical systems are often based on the physics of the quantum limit and are simply a function of the detected signal energy received per bit. These equations are derived in the second part of this paper for several frequently used modulation schemes: On-off keying (OOK), pulse position modulation (PPM), and binary differential phase shift keying (DPSK). While these equations ignore the effects of background noise and non-quantum internal noise sources in the detector and receiver electronics, they provide a useful bound for obtainable performance of optical communication systems. For example, these equations may be used in initial link budgets to assess the feasibility of system architectures, even before specific receiver designs are considered.

  6. The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system

    NASA Technical Reports Server (NTRS)

    Yeon, Kyu Hwang; Um, Chung IN; George, T. F.

    1994-01-01

    The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.

  7. Entanglement in Self-Supervised Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    A new type of correlation has been developed similar to quantum entanglement in self-supervised dynamics (SSD). SSDs have been introduced as a quantum-classical hybrid based upon the Madelung equation in which the quantum potential is replaced by an information potential. As a result, SSD preserves the quantum topology along with superposition, entanglement, and wave-particle duality. At the same time, it can be implemented in any scale including the Newtonian scale. The main properties of SSD associated with simulating intelligence have been formulated. The attention with this innovation is focused on intelligent agents interaction based upon the new fundamental non-New tonian effect; namely, entanglement.

  8. Integrals of motion from quantum toroidal algebras

    NASA Astrophysics Data System (ADS)

    Feigin, B.; Jimbo, M.; Mukhin, E.

    2017-11-01

    We identify the Taylor coefficients of the transfer matrices corresponding to quantum toroidal algebras with the elliptic local and non-local integrals of motion introduced by Kojima, Shiraishi, Watanabe, and one of the authors. That allows us to prove the Litvinov conjectures on the Intermediate Long Wave model. We also discuss the ({gl_m, {gl_n) duality of XXZ models in quantum toroidal setting and the implications for the quantum KdV model. In particular, we conjecture that the spectrum of non-local integrals of motion of Bazhanov, Lukyanov, and Zamolodchikov is described by Gaudin Bethe ansatz equations associated to affine {sl}2 . Dedicated to the memory of Petr Petrovich Kulish.

  9. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zampeli, Adamantia; Pailas, Theodoros; Terzis, Petros A.

    2016-05-01

    In this paper, the classical and quantum solutions of some axisymmetric cosmologies coupled to a massless scalar field are studied in the context of minisuperspace approximation. In these models, the singular nature of the Lagrangians entails a search for possible conditional symmetries. These have been proven to be the simultaneous conformal symmetries of the supermetric and the superpotential. The quantization is performed by adopting the Dirac proposal for constrained systems, i.e. promoting the first-class constraints to operators annihilating the wave function. To further enrich the approach, we follow [1] and impose the operators related to the classical conditional symmetries onmore » the wave function. These additional equations select particular solutions of the Wheeler-DeWitt equation. In order to gain some physical insight from the quantization of these cosmological systems, we perform a semiclassical analysis following the Bohmian approach to quantum theory. The generic result is that, in all but one model, one can find appropriate ranges of the parameters, so that the emerging semiclassical geometries are non-singular. An attempt for physical interpretation involves the study of the effective energy-momentum tensor which corresponds to an imperfect fluid.« less

  10. Coupled nonlinear drift and ion acoustic waves in dense dissipative electron-positron-ion magnetoplasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Siddiq, M.; Karim, S.

    2009-11-15

    Linear and nonlinear propagation characteristics of drift ion acoustic waves are investigated in an inhomogeneous electron-positron-ion (e-p-i) quantum magnetoplasma with neutrals in the background using the well known quantum hydrodynamic model. In this regard, Korteweg-de Vries-Burgers (KdVB) and Kadomtsev-Petviashvili-Burgers (KPB) equations are obtained. Furthermore, the solutions of KdVB and KPB equations are presented by using the tangent hyperbolic (tanh) method. The variation in the shock profile with the quantum Bohm potential, collision frequency, and the ratio of drift to shock velocity in the comoving frame, v{sub *}/u, is also investigated. It is found that increasing the positron concentration and collisionmore » frequency decreases the strength of the shock. It is also shown that when the localized structure propagates with velocity greater than the diamagnetic drift velocity (i.e., u>v{sub *}), the shock strength decreases. However, the shock strength is observed to increase when the localized structure propagates with velocity less than that of drift velocity (i.e., u

  11. Quantum optical signatures in strong-field laser physics: Infrared photon counting in high-order-harmonic generation.

    PubMed

    Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P

    2016-09-07

    We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.

  12. On dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gyroscopic waves. Problems of stability and quantization

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-03-01

    Based on a mathematical model described in [1], some new aspects of the dynamics of a thin planar plasma ring rotating in the magnetic field of a central body are considered. The dipole field is considered assuming that the dipole has a small eccentricity, and the dipole axis is inclined at a small angle to the central body’s axis of rotation. Emphasis is placed on the problem of stability of the ring’s stationary rotation. Unlike [1], the disturbed motion is considered which has a character of eddy magneto-gyroscopic waves. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. It is demonstrated that some “elite” rings characterized by integral quantum numbers are long-living, while “lethal” or unstable rings (antirings) are associated with half-integer quantum numbers. As a result, an evolutionally rife rotating ring of magnetized plasma turns out to be stratified into a large number of narrow elite rings separated by gaps whose positions correspond to antirings. The regions of possible existence of elite rings in near-central body space are considered. Quantum numbers determining elite eigenvalues of the mean sector velocity (normalized in a certain manner) of a ring coincide with the quantum numbers appearing in the solution to the Schrödinger equation for a hydrogen atom. Perturbations of elite orbits corresponding to these quantum numbers satisfy the de Brogli quantum-mechanical condition. This is one more illustration of the isomorphism of quantization in microcosm and macrocosm.

  13. Dirac Equation in (1 +1 )-Dimensional Curved Spacetime and the Multiphoton Quantum Rabi Model

    NASA Astrophysics Data System (ADS)

    Pedernales, J. S.; Beau, M.; Pittman, S. M.; Egusquiza, I. L.; Lamata, L.; Solano, E.; del Campo, A.

    2018-04-01

    We introduce an exact mapping between the Dirac equation in (1 +1 )-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1 +1 )-dimensional black hole requires a QRM with one- and two-photon terms that can be implemented in a trapped ion for the quantum simulation of Dirac particles in curved spacetime. We illustrate our proposal with a numerical analysis of the free fall of a Dirac particle into a (1 +1 )-dimensional black hole, and find that the Zitterbewegung effect, measurable via the oscillatory trajectory of the Dirac particle, persists in the presence of gravity. From the duality between the squeezing term in the multiphoton QRM and the metric coupling in the DCS, we show that gravity generates squeezing of the Dirac particle wave function.

  14. Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding

    DOE PAGES

    de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.

    2015-02-27

    We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, suchmore » as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.« less

  15. Huygens triviality of the time-independent Schrödinger equation. Applications to atomic and high energy physics

    NASA Astrophysics Data System (ADS)

    Kholodenko, Arkady L.; Kauffman, Louis H.

    2018-03-01

    Huygens triviality - a concept invented by Jacques Hadamard - describes an equivalence class connecting those 2nd order partial differential equations which are transformable into the wave equation. In this work it is demonstrated, that the Schrödinger equation with the time-independent Hamiltonian belongs to such an equivalence class. The wave equation is the equation for which Huygens' principle (HP) holds. The HP was a subject of confusion in both physics and mathematics literature for a long time. Not surprisingly, the role of this principle was obscured from the beginnings of quantum mechanics causing some theoretical and experimental misunderstandings. The purpose of this work is to bring the full clarity into this topic. By doing so, we obtained a large amount of new results related to uses of Lie sphere geometry, of twistors, of Dupin cyclides, of null electromagnetic fields, of AdS-CFT correspondence, of Penrose limits, of geometric algebra, etc. in physical problems ranging from the atomic to high energy physics and cosmology.

  16. Spectral dimension and dynamics for Harper's equation

    NASA Astrophysics Data System (ADS)

    Wilkinson, Michael; Austin, Elizabeth J.

    1994-07-01

    The spectrum of Harper's equation (a model for Bloch electrons in a magnetic field) is a fractal Cantor set if the ratio β of the area of a unit cell to that of a flux quantum is not a rational number. It has been conjectured that the second moment of an initially localized wave packet has a power-law growth of the form ~t2D0, where D0 is the box-counting dimension of the spectrum, and that D0=1/2. We present numerical results on the dimension of the spectrum and the spread of a wave packet indicating that these relationships are at best approximate. We also present heuristic arguments suggesting that there should be no general relationships between the dimension and the spread of a wave packet.

  17. Exact wave functions of two-electron quantum rings.

    PubMed

    Loos, Pierre-François; Gill, Peter M W

    2012-02-24

    We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.

  18. The Kantowski-Sachs Quantum Model with Stiff Matter Fluid

    NASA Astrophysics Data System (ADS)

    Alvarenga, F. G.; Fracalossi, R.; Freitas, R. C.; Gonçalves, S. V. B.

    2018-05-01

    In this paper, we study the quantum cosmological Kantowski-Sachs model and we solve the Wheeler-DeWitt equation in minisuperspace to obtain the wave function of the corresponding universe. The perfect fluid is described by Schutz's canonical formalism, which allows to attribute dynamical degrees of freedom to matter. The time is introduced phenomenologically using the fluid's degrees of freedom. In particular, we adopt a stiff matter fluid. The viability of this model is analyzed and discussed.

  19. Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).

  20. The Nosé–Hoover looped chain thermostat for low temperature thawed Gaussian wave-packet dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughtrie, David J.; Tew, David P.

    2014-05-21

    We have used a generalised coherent state resolution of the identity to map the quantum canonical statistical average for a general system onto a phase-space average over the centre and width parameters of a thawed Gaussian wave packet. We also propose an artificial phase-space density that has the same behaviour as the canonical phase-space density in the low-temperature limit, and have constructed a novel Nosé–Hoover looped chain thermostat that generates this density in conjunction with variational thawed Gaussian wave-packet dynamics. This forms a new platform for evaluating statistical properties of quantum condensed-phase systems that has an explicit connection to themore » time-dependent Schrödinger equation, whilst retaining many of the appealing features of path-integral molecular dynamics.« less

  1. Quantum mechanics of conformally and minimally coupled Friedmann-Robertson-Walker cosmology

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    1992-10-01

    The expansion method by a time-dependent basis of the eigenfunctions for the space-coordinate-dependent sub-Hamiltonian is one of the most natural frameworks for quantum systems, relativistic as well as nonrelativistic. The complete set of wave functions is found in the product integral formulation, whose constants of integration are fixed by Cauchy initial data. The wave functions for the Friedmann-Robertson-Walker (FRW) cosmology conformally and minimally coupled to a scalar field with a power-law potential or a polynomial potential are expanded in terms of the eigenfunctions of the scalar field sub-Hamiltonian part. The resultant gravitational field part which is an ``intrinsic'' timelike variable-dependent matrix-valued differential equation is solved again in the product integral formulation. There are classically allowed regions for the ``intrinsic'' timelike variable depending on the scalar field quantum numbers and these regions increase accordingly as the quantum numbers increase. For a fixed large three-geometry the wave functions corresponding to the low excited (small quantum number) states of the scalar field are exponentially damped or diverging and the wave functions corresponding to the high excited (large quantum number) states are still oscillatory but become eventually exponential as the three-geometry becomes larger. Furthermore, a proposal is advanced that the wave functions exponentially damped for a large three-geometry may be interpreted as ``tunneling out'' wave functions into, and the wave functions exponentially diverging as ``tunneling in'' from, different universes with the same or different topologies, the former being interpreted as the recently proposed Hawking-Page wormhole wave functions. It is observed that there are complex as well as Euclidean actions depending on the quantum numbers of the scalar field part outside the classically allowed region both of the gravitational and scalar fields, suggesting the usefulness of complex geometry and complex trajectories. From the most general wave functions for the FRW cosmology conformally coupled to scalar field, the boundary conditions for the wormhole wave functions are modified so that the modulus of wave functions, instead of the wave functions themselves, should be exponentially damped for a large three-geometry and be regular up to some negative power of the three-geometry as the three-geometry collapses. The wave functions for the FRW cosmology minimally coupled to an inhomogeneous scalar field are similarly found in the product integral formulation. The role of a large number of the inhomogeneous modes of the scalar field is not only to increase the classically allowed regions for the gravitational part but also to provide a mechanism of the decoherence of quantum interferences between the different sizes of the universe.

  2. A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives

    NASA Astrophysics Data System (ADS)

    Macías-Díaz, J. E.; Hendy, A. S.; De Staelen, R. H.

    2018-03-01

    In this work, we investigate a general nonlinear wave equation with Riesz space-fractional derivatives that generalizes various classical hyperbolic models, including the sine-Gordon and the Klein-Gordon equations from relativistic quantum mechanics. A finite-difference discretization of the model is provided using fractional centered differences. The method is a technique that is capable of preserving an energy-like quantity at each iteration. Some computational comparisons against solutions available in the literature are performed in order to assess the capability of the method to preserve the invariant. Our experiments confirm that the technique yields good approximations to the solutions considered. As an application of our scheme, we provide simulations that confirm, for the first time in the literature, the presence of the phenomenon of nonlinear supratransmission in Riesz space-fractional Klein-Gordon equations driven by a harmonic perturbation at the boundary.

  3. Absorbers in the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Boisvert, Jean-Sébastien; Marchildon, Louis

    2013-03-01

    The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types of interaction-free measurements have been proposed as threatening the original version of the transactional interpretation. These proposals will be analyzed by examining in each case the configuration of absorbers and, in the special case of the so-called quantum liar experiment, by carefully following the development of retarded and advanced waves through the Mach-Zehnder interferometer. We will show that there is no need to resort to the hierarchy of transactions that some have proposed, and will argue that the transactional interpretation is consistent with the block-universe picture of time.

  4. Adiabatic and nonadiabatic perturbation theory for coherence vector description of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Hollenberg, Sebastian; Päs, Heinrich

    2012-01-01

    The standard wave function approach for the treatment of neutrino oscillations fails in situations where quantum ensembles at a finite temperature with or without an interacting background plasma are encountered. As a first step to treat such phenomena in a novel way, we propose a unified approach to both adiabatic and nonadiabatic two-flavor oscillations in neutrino ensembles with finite temperature and generic (e.g., matter) potentials. Neglecting effects of ensemble decoherence for now, we study the evolution of a neutrino ensemble governed by the associated quantum kinetic equations, which apply to systems with finite temperature. The quantum kinetic equations are solved formally using the Magnus expansion and it is shown that a convenient choice of the quantum mechanical picture (e.g., the interaction picture) reveals suitable parameters to characterize the physics of the underlying system (e.g., an effective oscillation length). It is understood that this method also provides a promising starting point for the treatment of the more general case in which decoherence is taken into account.

  5. Nonlinear Dynamics and Quantum Transport in Small Systems

    DTIC Science & Technology

    2012-02-22

    2.3 Nonlinear wave and chaos in optical metamaterials 2.3.1 Transient chaos in optical metamaterials We investigated the dynamics of light rays in two...equations can be modeled by a set of ordinary differential equations for light rays . We found that transient chaotic dynamics, hyperbolic or nonhyperbolic...are common in optical metamaterial systems. Due to the analogy between light- ray dynamics in metamaterials and the motion of light and matter as

  6. Extended phase matching of second-harmonic generation in periodically poled KTiOPO4 with zero group-velocity mismatch

    NASA Astrophysics Data System (ADS)

    König, Friedrich; Wong, Franco N. C.

    2004-03-01

    Under extended phase-matching conditions, the first frequency derivative of the wave-vector mismatch is zero and the phase-matching bandwidth is greatly increased. We present extensive three-wave mixing measurements of the wave-vector mismatch and obtain improved Sellmeier equations for KTiOPO4. We observed a type-II extended phase-matching bandwidth of 100 nm for second-harmonic generation in periodically poled KTiOPO4, centered at the fundamental wavelength of 1584 nm. Applications in quantum entanglement and frequency metrology are discussed.

  7. Electron-acoustic solitary waves in dense quantum electron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, A. P.; Shukla, P. K.; Bhowmik, C.

    2007-08-15

    A quantum hydrodynamic (QHD) model is used to investigate the propagation characteristics of nonlinear electron-acoustic solitary waves (EASWs) in a dense quantum plasma whose constituents are two groups of electrons: one inertial cold electrons and other inertialess hot electrons, and the stationary ions which form the neutralizing background. By using the standard reductive perturbation technique, a Kadomtsev-Petviashvili (KP) equation, which governs the dynamics of EASWs, is derived in both spherical and cylindrical geometry. The effects of cold electrons and the density correlations due to quantum fluctuations on the profiles of the amplitudes and widths of the solitary structures are examinedmore » numerically. The nondimensional parameter {delta}=n{sub c0}/n{sub h0}, which is the equilibrium density ratio of the cold to hot electron component, is shown to play a vital role in the formation of both bright and dark solitons. It is also found that the angular dependence of the physical quantities and the presence of cold electrons in a quantum plasma lead to the coexistence of some new interesting novel solitary structures quite distinctive from the classical ones.« less

  8. Analogy between electromagnetic potentials and wave-like dynamic variables with connections to quantum theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen

    2018-05-01

    The transitions from classical theories to quantum theories have attracted many interests. This paper demonstrates the analogy between the electromagnetic potentials and wave-like dynamic variables with their connections to quantum theory for audiences at advanced undergraduate level and above. In the first part, the counterpart relations in the classical electrodynamics (e.g. gauge transform and Lorenz condition) and classical mechanics (e.g. Legendre transform and free particle condition) are presented. These relations lead to similar governing equations of the field variables and dynamic variables. The Lorenz gauge, scalar potential and vector potential manifest a one-to-one similarity to the action, Hamiltonian and momentum, respectively. In the second part, the connections between the classical pictures of electromagnetic field and particle to quantum picture are presented. By characterising the states of electromagnetic field and particle via their (corresponding) variables, their evolution pictures manifest the same algebraic structure (isomorphic). Subsequently, pictures of the electromagnetic field and particle are compared to the quantum picture and their interconnections are given. A brief summary of the obtained results are presented at the end of the paper.

  9. A quantum anharmonic oscillator model for the stock market

    NASA Astrophysics Data System (ADS)

    Gao, Tingting; Chen, Yu

    2017-02-01

    A financially interpretable quantum model is proposed to study the probability distributions of the stock price return. The dynamics of a quantum particle is considered an analog of the motion of stock price. Then the probability distributions of price return can be computed from the wave functions that evolve according to Schrodinger equation. Instead of a harmonic oscillator in previous studies, a quantum anharmonic oscillator is applied to the stock in liquid market. The leptokurtic distributions of price return can be reproduced by our quantum model with the introduction of mixed-state and multi-potential. The trend following dominant market, in which the price return follows a bimodal distribution, is discussed as a specific case of the illiquid market.

  10. Optimization of edge state velocity in the integer quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Sahasrabudhe, H.; Novakovic, B.; Nakamura, J.; Fallahi, S.; Povolotskyi, M.; Klimeck, G.; Rahman, R.; Manfra, M. J.

    2018-02-01

    Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here we present a new simulation method for designing heterostructures with high edge state velocity by realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. Using this simulation method, we also predict the filling factor at the center of QPCs and their conductance at different gate voltages. The 3D Schrödinger equation is split into 1D and 2D parts. Quasi-1D Schrödinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile, and quantum transport is used to solve for the edge state wave functions. The velocity of edge states is found to be /B , where is the expectation value of the electric field for the edge state. Anisotropically etched trench gated heterostructures with double-sided delta doping have the highest edge state velocity among the structures considered.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisio, Alessandro; D’Ariano, Giacomo Mauro; Tosini, Alessandro, E-mail: alessandro.tosini@unipv.it

    We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance. The comparison between the automaton and the Dirac evolutions is rigorously set as a discrimination problem between unitary channels. We derive an exact lower bound for the probability of error in the discrimination as an explicit function of the mass, the number and the momentum of the particles, and the duration of the evolution. Computing this bound withmore » experimentally achievable values, we see that in that regime the QCA model cannot be discriminated from the usual Dirac evolution. Finally, we show that the evolution of one-particle states with narrow-band in momentum can be efficiently simulated by a dispersive differential equation for any regime. This analysis allows for a comparison with the dynamics of wave-packets as it is described by the usual Dirac equation. This paper is a first step in exploring the idea that quantum field theory could be grounded on a more fundamental quantum cellular automaton model and that physical dynamics could emerge from quantum information processing. In this framework, the discretization is a central ingredient and not only a tool for performing non-perturbative calculation as in lattice gauge theory. The automaton model, endowed with a precise notion of local observables and a full probabilistic interpretation, could lead to a coherent unification of a hypothetical discrete Planck scale with the usual Fermi scale of high-energy physics. - Highlights: • The free Dirac field in one space dimension as a quantum cellular automaton. • Large scale limit of the automaton and the emergence of the Dirac equation. • Dispersive differential equation for the evolution of smooth states on the automaton. • Optimal discrimination between the automaton evolution and the Dirac equation.« less

  12. Massive graviton geons

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Maeda, Kei-ichi; Misonoh, Yosuke; Okawa, Hirotada

    2018-02-01

    We find vacuum solutions such that massive gravitons are confined in a local spacetime region by their gravitational energy in asymptotically flat spacetimes in the context of the bigravity theory. We call such self-gravitating objects massive graviton geons. The basic equations can be reduced to the Schrödinger-Poisson equations with the tensor "wave function" in the Newtonian limit. We obtain a nonspherically symmetric solution with j =2 , ℓ=0 as well as a spherically symmetric solution with j =0 , ℓ=2 in this system where j is the total angular momentum quantum number and ℓ is the orbital angular momentum quantum number, respectively. The energy eigenvalue of the Schrödinger equation in the nonspherical solution is smaller than that in the spherical solution. We then study the perturbative stability of the spherical solution and find that there is an unstable mode in the quadrupole mode perturbations which may be interpreted as the transition mode to the nonspherical solution. The results suggest that the nonspherically symmetric solution is the ground state of the massive graviton geon. The massive graviton geons may decay in time due to emissions of gravitational waves but this timescale can be quite long when the massive gravitons are nonrelativistic and then the geons can be long-lived. We also argue possible prospects of the massive graviton geons: applications to the ultralight dark matter scenario, nonlinear (in)stability of the Minkowski spacetime, and a quantum transition of the spacetime.

  13. Is the Wheeler-DeWitt equation more fundamental than the Schrödinger equation?

    NASA Astrophysics Data System (ADS)

    Shestakova, Tatyana P.

    The Wheeler-DeWitt equation was proposed 50 years ago and until now it is the cornerstone of most approaches to quantization of gravity. One can find in the literature, the opinion that the Wheeler-DeWitt equation is even more fundamental than the basic equation of quantum theory, the Schrödinger equation. We still should remember that we are in the situation when no observational data can confirm or reject the fundamental status of the Wheeler-DeWitt equation, so we can give just indirect arguments in favor of or against it, grounded on mathematical consistency and physical relevance. I shall present the analysis of the situation and comparison of the standard Wheeler-DeWitt approach with the extended phase space approach to quantization of gravity. In my analysis, I suppose, first, that a future quantum theory of gravity must be applicable to all phenomena from the early universe to quantum effects in strong gravitational fields, in the latter case, the state of the observer (the choice of a reference frame) may appear to be significant. Second, I suppose that the equation for the wave function of the universe must not be postulated but derived by means of a mathematically consistent procedure, which exists in path integral quantization. When applying this procedure to any gravitating system, one should take into account features of gravity, namely, nontrivial spacetime topology and possible absence of asymptotic states. The Schrödinger equation has been derived early for cosmological models with a finite number of degrees of freedom, and just recently it has been found for the spherically symmetric model which is a simplest model with an infinite number of degrees of freedom. The structure of the Schrödinger equation and its general solution appears to be very similar in these cases. The obtained results give grounds to say that the Schrödinger equation retains its fundamental meaning in constructing quantum theory of gravity.

  14. Wave chaos in the elastic disk.

    PubMed

    Sondergaard, Niels; Tanner, Gregor

    2002-12-01

    The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave mixing between the shear and pressure component of the wave field at the boundary leads to an effective stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier transforming the spectral density.

  15. Solving the Schroedinger Equation of Atoms and Molecules without Analytical Integration Based on the Free Iterative-Complement-Interaction Wave Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakatsuji, H.; Nakashima, H.; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510

    2007-12-14

    A local Schroedinger equation (LSE) method is proposed for solving the Schroedinger equation (SE) of general atoms and molecules without doing analytic integrations over the complement functions of the free ICI (iterative-complement-interaction) wave functions. Since the free ICI wave function is potentially exact, we can assume a flatness of its local energy. The variational principle is not applicable because the analytic integrations over the free ICI complement functions are very difficult for general atoms and molecules. The LSE method is applied to several 2 to 5 electron atoms and molecules, giving an accuracy of 10{sup -5} Hartree in total energy.more » The potential energy curves of H{sub 2} and LiH molecules are calculated precisely with the free ICI LSE method. The results show the high potentiality of the free ICI LSE method for developing accurate predictive quantum chemistry with the solutions of the SE.« less

  16. Entanglement Entropy of the Six-Dimensional Horowitz-Strominger Black Hole

    NASA Astrophysics Data System (ADS)

    Li, Huai-Fan; Zhang, Sheng-Li; Wu, Yue-Qin; Ren, Zhao

    By using the entanglement entropy method, the statistical entropy of the Bose and Fermi fields in a thin film is calculated and the Bekenstein-Hawking entropy of six-dimensional Horowitz-Strominger black hole is obtained. Here, the Bose and Fermi fields are entangled with the quantum states in six-dimensional Horowitz-Strominger black hole and the fields are outside of the horizon. The divergence of brick-wall model is avoided without any cutoff by the new equation of state density obtained with the generalized uncertainty principle. The calculation implies that the high density quantum states near the event horizon are strongly correlated with the quantum states in black hole. The black hole entropy is a quantum effect. It is an intrinsic characteristic of space-time. The ultraviolet cutoff in the brick-wall model is unreasonable. The generalized uncertainty principle should be considered in the high energy quantum field near the event horizon. Using the quantum statistical method, we directly calculate the partition function of the Bose and Fermi fields under the background of the six-dimensional black hole. The difficulty in solving the wave equations of various particles is overcome.

  17. Quantum hydrodynamics: capturing a reactive scattering resonance.

    PubMed

    Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K

    2005-08-01

    The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system.

  18. Non-singular cloaks allow mimesis

    NASA Astrophysics Data System (ADS)

    Diatta, André; Guenneau, Sébastien

    2011-02-01

    We design non-singular cloaks enabling objects to scatter waves like objects with smaller size and very different shapes. We consider the Schrödinger equation, which is valid, for example, in the contexts of geometrical and quantum optics. More precisely, we introduce a generalized non-singular transformation for star domains, and numerically demonstrate that an object of nearly any given shape surrounded by a given cloak scatters waves in exactly the same way as a smaller object of another shape. When a source is located inside the cloak, it scatters waves as if it were located some distance away from a small object. Moreover, the invisibility region actually hosts almost trapped eigenstates. Mimetism is numerically shown to break down for the quantified energies associated with confined modes. If we further allow for non-isomorphic transformations, our approach leads to the design of quantum super-scatterers: a small size object surrounded by a quantum cloak described by a negative anisotropic heterogeneous effective mass and a negative spatially varying potential scatters matter waves like a larger nano-object of different shape. Potential applications might be, for instance, in quantum dots probing. The results in this paper, as well as the corresponding derived constitutive tensors, are valid for cloaks with any arbitrary star-shaped boundary cross sections, although for numerical simulations we use examples with piecewise linear or elliptic boundaries.

  19. Quantum electron levels in the field of a charged black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dokuchaev, V. I.; Eroshenko, Yu. N., E-mail: eroshenko@ms2.inr.ac.ru

    2015-12-15

    Stationary solutions of the Dirac equation in the metric of the charged Reissner–Nordstrom black hole are found. In the case of an extremal black hole, the normalization integral of the wave functions is finite, and the regular stationary solution is physically self-consistent. The presence of quantum electron levels under the Cauchy horizon can have an impact on the final stage of the Hawking evaporation of the black hole, as well as on the particle scattering in the field of the black hole.

  20. Dynamic optimization and its relation to classical and quantum constrained systems

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo

    2017-08-01

    We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.

  1. Collapsing shells and black holes: a quantum analysis

    NASA Astrophysics Data System (ADS)

    Leal, P.; Bernardini, A. E.; Bertolami, O.

    2018-06-01

    The quantization of a spherically symmetric null shells is performed and extended to the framework of phase-space noncommutative (NC) quantum mechanics. This shell is considered to be inside a black hole event horizon. The encountered properties are investigated making use of the Israel junction conditions on the shell, considering that it is the boundary between two spherically symmetric spacetimes. Using this method, and considering two different Kantowski–Sachs spacetimes as a representation for the Schwarzschild spacetime, the relevant quantities on the shell are computed, such as its stress-energy tensor and the action for the whole spacetime. From the obtained action, the Wheeler–deWitt equation is deduced in order to provide the quantum framework for the system. Solutions for the wave function of the system are found on both the commutative and NC scenarios. It is shown that, on the commutative version, the wave function has a purely oscillatory behavior in the interior of the shell. In the NC setting, it is shown that the wave function vanishes at the singularity, as well as, at the event horizon of the black hole.

  2. Discrete spacetime, quantum walks, and relativistic wave equations

    NASA Astrophysics Data System (ADS)

    Mlodinow, Leonard; Brun, Todd A.

    2018-04-01

    It has been observed that quantum walks on regular lattices can give rise to wave equations for relativistic particles in the continuum limit. In this paper, we define the three-dimensional discrete-time walk as a product of three coined one-dimensional walks. The factor corresponding to each one-dimensional walk involves two projection operators that act on an internal coin space; each projector is associated with either the "forward" or "backward" direction in that physical dimension. We show that the simple requirement that there is no preferred axis or direction along an axis—that is, that the walk be symmetric under parity transformations and steps along different axes of the cubic lattice be uncorrelated—leads, in the case of the simplest solution, to the requirement that the continuum limit of the walk is fully Lorentz-invariant. We show further that, in the case of a massive particle, this symmetry requirement necessitates the use of a four-dimensional internal space (as in the Dirac equation). The "coin flip" operation is generated by the parity transformation on the internal coin space, while the differences of the projection operators associated with each dimension must all anticommute. Finally, we discuss the leading correction to the continuum limit, and the possibility of distinguishing through experiment between the discrete random walk and the continuum-based Dirac equation as a description of fermion dynamics.

  3. Two-wave model of the muscle contraction.

    PubMed

    Molski, Marcin

    2009-05-01

    The Matsuno model of the muscle contraction is considered in the framework of the two-wave Corben's theory of composite objects built up of both time- and space-like components. It has been proved that during muscle contraction the locally coherent aggregates distributed along the actin filament interact by means of space-like fields, which are solutions of the relativistic Feinberg equation. The existence of such interactions and lack of decoherence are conditions sine qua non for appearance of the quantum entanglement between actin monomers in an ATP-activated filament. A possible role of a quantum potential in the muscle contraction is discussed and the mass of the carrier of space-like interactions is estimated m0' = 7.3 x 10(-32) g (46 eV).

  4. Kinetic energy partition method applied to ground state helium-like atoms.

    PubMed

    Chen, Yu-Hsin; Chao, Sheng D

    2017-03-28

    We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.

  5. Detecting Moving Targets by Use of Soliton Resonances

    NASA Technical Reports Server (NTRS)

    Zak, Michael; Kulikov, Igor

    2003-01-01

    A proposed method of detecting moving targets in scenes that include cluttered or noisy backgrounds is based on a soliton-resonance mathematical model. The model is derived from asymptotic solutions of the cubic Schroedinger equation for a one-dimensional system excited by a position-and-time-dependent externally applied potential. The cubic Schroedinger equation has general significance for time-dependent dispersive waves. It has been used to approximate several phenomena in classical as well as quantum physics, including modulated beams in nonlinear optics, and superfluids (in particular, Bose-Einstein condensates). In the proposed method, one would take advantage of resonant interactions between (1) a soliton excited by the position-and-time-dependent potential associated with a moving target and (2) eigen-solitons, which represent dispersive waves and are solutions of the cubic Schroedinger equation for a time-independent potential.

  6. Quantum cosmology of a Bianchi III LRS geometry coupled to a source free electromagnetic field

    NASA Astrophysics Data System (ADS)

    Karagiorgos, A.; Pailas, T.; Dimakis, N.; Terzis, Petros A.; Christodoulakis, T.

    2018-03-01

    We consider a Bianchi type III axisymmetric geometry in the presence of an electromagnetic field. A first result at the classical level is that the symmetry of the geometry need not be applied on the electromagnetic tensor Fμν the algebraic restrictions, implied by the Einstein field equations to the stress energy tensor Tμν, suffice to reduce the general Fμν to the appropriate form. The classical solution thus found contains a time dependent electric and a constant magnetic charge. The solution is also reachable from the corresponding mini-superspace action, which is strikingly similar to the Reissner-Nordstr{öm one. This points to a connection between the black hole geometry and the cosmological solution here found, which is the analog of the known correlation between the Schwarzschild and the Kantowski-Sachs metrics. The configuration space is drastically modified by the presence of the magnetic charge from a 3D flat to a 3D pp wave geometry. We map the emerging linear and quadratic classical integrals of motion, to quantum observables. Along with the Wheeler-DeWitt equation these observables provide unique, up to constants, wave functions. The employment of a Bohmian interpretation of these quantum states results in deterministic (semi-classical) geometries most of which are singularity free.

  7. Spin eigen-states of Dirac equation for quasi-two-dimensional electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua

    Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shownmore » that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.« less

  8. On the geometrization of quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavernelli, Ivano, E-mail: ita@zurich.ibm.com

    Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave–particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie–Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is inducedmore » by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space–time, as it is the case for gravitation in the general relativity.« less

  9. Time dependent Schrödinger equation for black hole evaporation: No information loss

    NASA Astrophysics Data System (ADS)

    Corda, Christian

    2015-02-01

    In 1976 S. Hawking claimed that "Because part of the information about the state of the system is lost down the hole, the final situation is represented by a density matrix rather than a pure quantum state".1 In a series of papers, together with collaborators, we naturally interpreted BH quasi-normal modes (QNMs) in terms of quantum levels discussing a model of excited BH somewhat similar to the historical semi-classical Bohr model of the structure of a hydrogen atom. Here we explicitly write down, for the same model, a time dependent Schrödinger equation for the system composed by Hawking radiation and BH QNMs. The physical state and the correspondent wave function are written in terms of a unitary evolution matrix instead of a density matrix. Thus, the final state results to be a pure quantum state instead of a mixed one. Hence, Hawking's claim is falsified because BHs result to be well defined quantum mechanical systems, having ordered, discrete quantum spectra, which respect 't Hooft's assumption that Schrödinger equations can be used universally for all dynamics in the universe. As a consequence, information comes out in BH evaporation in terms of pure states in a unitary time dependent evolution. In Section 4 of this paper we show that the present approach permits also to solve the entanglement problem connected with the information paradox.

  10. Physical approach to quantum networks with massive particles

    NASA Astrophysics Data System (ADS)

    Andersen, Molte Emil Strange; Zinner, Nikolaj Thomas

    2018-04-01

    Assembling large-scale quantum networks is a key goal of modern physics research with applications in quantum information and computation. Quantum wires and waveguides in which massive particles propagate in tailored confinement is one promising platform for realizing a quantum network. In the literature, such networks are often treated as quantum graphs, that is, the wave functions are taken to live on graphs of one-dimensional edges meeting in vertices. Hitherto, it has been unclear what boundary conditions on the vertices produce the physical states one finds in nature. This paper treats a quantum network from a physical approach, explicitly finds the physical eigenstates and compares them to the quantum-graph description. The basic building block of a quantum network is an X-shaped potential well made by crossing two quantum wires, and we consider a massive particle in such an X well. The system is analyzed using a variational method based on an expansion into modes with fast convergence and it provides a very clear intuition for the physics of the problem. The particle is found to have a ground state that is exponentially localized to the center of the X well, and the other symmetric solutions are formed so to be orthogonal to the ground state. This is in contrast to the predictions of the conventionally used so-called Kirchoff boundary conditions in quantum graph theory that predict a different sequence of symmetric solutions that cannot be physically realized. Numerical methods have previously been the only source of information on the ground-state wave function and our results provide a different perspective with strong analytical insights. The ground-state wave function has a spatial profile that looks very similar to the shape of a solitonic solution to a nonlinear Schrödinger equation, enabling an analytical prediction of the wave number. When combining multiple X wells into a network or grid, each site supports a solitonlike localized state. These localized solutions only couple to each other and are able to jump from one site to another as if they were trapped in a discrete lattice.

  11. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  12. Embedding the photon with its relativistic mass as a particle into the electromagnetic wave.

    PubMed

    Altmann, Konrad

    2018-01-22

    The particle picture presented by the author in the paper "A particle picture of the optical resonator" [K. Altmann, ASSL 2014 Conference Paper ATu2A.29], which shows that the probability density of a photon propagating with a Gaussian wave can be computed by the use of a Schrödinger equation, is generalized to the case of a wave with arbitrary shape of the phase front. Based on a consideration of the changing propagation direction of the relativistic mass density propagating with the electromagnetic wave, a transverse force acting on the photon is derived. The expression obtained for this force makes it possible to show that the photon moves within a transverse potential that in combination with a Schrödinger equation allows to describe the transverse quantum mechanical motion of the photon by the use of matter wave theory, even though the photon has no rest mass. The obtained results are verified for the plane, the spherical, and the Gaussian wave. Additional verification could be provided also by the fact that the mathematical equation describing the Guoy phase shift could be derived from this particle picture in full agreement with wave optics. One more verification could be obtained by the fact that within the range of the validity of paraxial wave optics, Snell's law could also be derived from this particle picture. Numerical validation of the obtained results for the case of the general wave is under development.

  13. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  14. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  15. Data-driven discovery of partial differential equations.

    PubMed

    Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2017-04-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

  16. Quantum supersymmetric Bianchi IX cosmology

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Spindel, Philippe

    2014-11-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.

  17. The interaction of Dirac particles with a Hawking charged radiating black hole

    NASA Astrophysics Data System (ADS)

    Kubik, Erik

    2007-08-01

    The interaction of spin 1/2 fields with a charged, evaporating black hole (EBH) is investigated. Using the Vaidya metric to model the Hawking evaporating black hole, the wave equation for a massless spinor field is obtained. The resulting field equation is solved utilizing techniques developed by Brill and Wheeler. Unlike previous efforts, a charged, evaporating black hole has never been used as a background to investigate spin 1/2 quantum field propagation, e.g., Brill and Wheeler considered massless spin 1/2 interactions in a static, Schwarzschild background. Using the WKB approximation, the wave equation is solved for the case of an EBH with constant luminosity. Analysis of the effective potential at different stages of evaporation is made including the dependence on the parameters of the system such as the total angular momentum, energy of the incident field, and luminosity of the evaporating black hole. Utilizing techniques of Mukhopad-hey, the transmission and reflection coefficients for the massless spinors are computed and compared to Schwarzschild result for both the high energy and hard scattering cases. The effect of the time dependence of the space-time metric has an important effect on the behavior of quantum fields over the lifetime of the evaporating black hole and may provide a signature for the detection of such objects.

  18. Conquering the Physics GRE

    NASA Astrophysics Data System (ADS)

    Kahn, Yoni; Anderson, Adam

    2018-03-01

    Preface; How to use this book; Resources; 1. Classical mechanics; 2. Electricity and magnetism; 3. Optics and waves; 4. Thermodynamics and statistical mechanics; 5. Quantum mechanics and atomic physics; 6. Special relativity; 7. Laboratory methods; 8. Specialized topics; 9. Special tips and tricks for the Physics GRE; Sample exams and solutions; References; Equation index; Subject index; Problems index.

  19. Exact solution for a non-Markovian dissipative quantum dynamics.

    PubMed

    Ferialdi, Luca; Bassi, Angelo

    2012-04-27

    We provide the exact analytic solution of the stochastic Schrödinger equation describing a harmonic oscillator interacting with a non-Markovian and dissipative environment. This result represents an arrival point in the study of non-Markovian dynamics via stochastic differential equations. It is also one of the few exactly solvable models for infinite-dimensional systems. We compute the Green's function; in the case of a free particle and with an exponentially correlated noise, we discuss the evolution of Gaussian wave functions.

  20. Classical and quantum dynamics of a kicked relativistic particle in a box

    NASA Astrophysics Data System (ADS)

    Yusupov, J. R.; Otajanov, D. M.; Eshniyazov, V. E.; Matrasulov, D. U.

    2018-03-01

    We study classical and quantum dynamics of a kicked relativistic particle confined in a one dimensional box. It is found that in classical case for chaotic motion the average kinetic energy grows in time, while for mixed regime the growth is suppressed. However, in case of regular motion energy fluctuates around certain value. Quantum dynamics is treated by solving the time-dependent Dirac equation with delta-kicking potential, whose exact solution is obtained for single kicking period. In quantum case, depending on the values of the kicking parameters, the average kinetic energy can be quasi periodic, or fluctuating around some value. Particle transport is studied by considering spatio-temporal evolution of the Gaussian wave packet and by analyzing the trembling motion.

  1. Application of the N-quantum approximation to the proton radius problem

    NASA Astrophysics Data System (ADS)

    Cowen, Steven

    This thesis is organized into three parts: 1. Introduction and bound state calculations of electronic and muonic hydrogen, 2. Bound states in motion, and 3.Treatment of soft photons. In the first part, we apply the N-Quantum Approximation (NQA) to electronic and muonic hydrogen and search for any new corrections to energy levels that could account for the 0.31 meV discrepancy of the proton radius problem. We derive a bound state equation and compare our numerical solutions and wave functions to those of the Dirac equation. We find NQA Lamb shift diagrams and calculate the associated energy shift contributions. We do not find any new corrections large enough to account for the discrepancy. In part 2, we discuss the effects of motion on bound states using the NQA. We find classical Lorentz contraction of the lowest order NQA wave function. Finally, in part 3, we develop a clothing transformation for interacting fields in order to produce the correct asymptotic limits. We find the clothing eliminates a trilinear interacting Hamiltonian term and produces a quadrilinear soft photon interaction term.

  2. Some Surprises and Paradoxes Revealed by Inverse Problem Approach and Notion about Qualitative Solutions of SCHRÖDINGER Equations “IN MIND”

    NASA Astrophysics Data System (ADS)

    Zakhariev, B. N.; Chabanov, V. M.

    It was an important examination to give a review talk at the previous Conference on Inverse Quantum Scattering (1996, Lake Balaton) about computer visualization of this science in front of its fathers — creators, B. M. Levitan and V. A. Marchenko. We have achieved a new understanding that the discovered main rules of transformations of a single wave function bump, e.g., for the ground bound states of one dimensional quantum systems are applicable to any state of any potential with arbitrary number of bumps from finite to unlimited ones as scattering states and bound states embedded into continuum. It appeared that we need only to repeat the rule mentally the necessary number of times. That uttermost simplification and unification of physical notion of spectral, scattering and decay control for any potential have got an obligatory praise from B. M. Levitan at the conference and was a mighty stimulus for our further research After that we have written both Russian (2002) and improved English editions of “Submissive Quantum Mechanics. New Status of the Theory in Inverse Problem Approach”1 (appeared at the very end of 2007). This book was written for correction of the present defect in quantum education throughout the world. Recently the quantum IP intuition helped us to discover a new concept of permanent wave resonance with potential spatial oscillations.2 This means the constant wave swinging frequency on the whole energy intervals of spectral forbidden zones destroying physical solutions and deepening the theory of waves in periodic potentials. It also shows the other side of strengthening the fundamentally important magic structures. A ‘new language’ of wave bending will be presented to enrich our quantum intuition, e.g., the paradoxical effective attraction of barriers and repulsion of wells in multichannel systems, etc.

  3. Quantum formalism for classical statistics

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  4. Population transfer and rapid passage effects in a low pressure gas using a continuous wave quantum cascade laser.

    PubMed

    McCormack, E A; Lowth, H S; Bell, M T; Weidmann, D; Ritchie, G A D

    2012-07-21

    A continuous wave quantum cascade laser (cw-QCL) operating at 10 μm has been used to record absorption spectra of low pressure samples of OCS in an astigmatic Herriott cell. As a result of the frequency chirp of the laser, the spectra show clearly the effects of rapid passage on the absorption line shape. At the low chirp rates that can be obtained with the cw-QCL, population transfer between rovibrational quantum states is predicted to be much more efficient than in typical pulsed QCL experiments. This optical pumping is investigated by solving the Maxwell Bloch equations to simulate the propagation of the laser radiation through an inhomogeneously broadened two-level system. The calculated absorption profiles show good quantitative agreement with those measured experimentally over a range of chirp rates and optical thicknesses. It is predicted that at a low chirp rate of 0.13 MHz ns(-1), the population transfer between rovibrational quantum states is 12%, considerably more than that obtained at the higher chirp rates utilised in pulsed QCL experiments.

  5. Bounds on quantum collapse models from matter-wave interferometry: calculational details

    NASA Astrophysics Data System (ADS)

    Toroš, Marko; Bassi, Angelo

    2018-03-01

    We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.

  6. Schroedinger's Wave Structure of Matter (WSM)

    NASA Astrophysics Data System (ADS)

    Wolff, Milo; Haselhurst, Geoff

    2009-10-01

    The puzzling electron is due to the belief that it is a discrete particle. Einstein deduced this structure was impossible since Nature does not allow the discrete particle. Clifford (1876) rejected discrete matter and suggested structures in `space'. Schroedinger, (1937) also eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). He rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff and Geoff Haselhurst (SpaceAndMotion.com) using the Scalar Wave Equation to find spherical wave solutions in a 3D quantum space. This WSM, the origin of all the Natural Laws, contains all the electron's properties including the Schroedinger Equation. The origin of Newton's Law F=ma is no longer a puzzle; It originates from Mach's principle of inertia (1883) that depends on the space medium and the WSM. Carver Mead (1999) at CalTech used the WSM to design Intel micro-chips correcting errors of Maxwell's magnetic Equations. Applications of the WSM also describe matter at molecular dimensions: alloys, catalysts, biology and medicine, molecular computers and memories. See ``Schroedinger's Universe'' - at Amazon.com

  7. Schroedinger's Wave Structure of Matter (WSM)

    NASA Astrophysics Data System (ADS)

    Wolff, Milo

    2009-05-01

    The puzzling electron is due to the belief that it is a discrete particle. Einstein deduced this structure impossible since Nature does not match the discrete particle. Clifford (1876) rejected discrete matter and suggested structures in `space'. Schroedinger, (1937) also eliminated discrete particles writing: What we observe as material bodies and forces are nothing but shapes and variations in the structure of space. Particles are just schaumkommen (appearances). He rejected wave-particle duality. Schroedinger's concept was developed by Milo Wolff and Geoff Haselhurst (http://www.SpaceAndMotion.com) using the Scalar Wave Equation to find spherical wave solutions in a 3D quantum space. This WSM is the origin of all the Natural Laws; thus it contains all the electron's properties including the Schroedinger Equation. The origin of Newton's Law F=ma is no longer a puzzle; it is shown to originate from Mach's principle of inertia (1883) that depends on the space medium. Carver Mead (1999) applied the WSM to design Intel micro-chips correcting errors of Maxwell's magnetic Equations. Applications of the WSM describe matter at molecular dimensions: alloys, catalysts, the mechanisms of biology and medicine, molecular computers and memories. See http://www.amazon.com/Schro at Amazon.com.

  8. New Perspectives: Wave Mechanical Interpretations of Dark Matter, Baryon and Dark Energy

    NASA Astrophysics Data System (ADS)

    Russell, Esra

    We model the cosmic components: dark matter, dark energy and baryon distributions in the Cosmic Web by means of highly nonlinear Schrodinger type and reaction diffusion type wave mechanical descriptions. The construction of these wave mechanical models of the structure formation is achieved by introducing the Fisher information measure and its comparison with highly nonlinear term which has dynamical analogy to infamous quantum potential in the wave equations. Strikingly, the comparison of this nonlinear term and the Fisher information measure provides a dynamical distinction between lack of self-organization and self-organization in the dynamical evolution of the cosmic components. Mathematically equivalent to the standard cosmic fluid equations, these approaches make it possible to follow the evolution of the matter distribution even into the highly nonlinear regime by circumventing singularities. Also, numerical realizations of the emerging web-like patterns are presented from the nonlinear dynamics of the baryon component while dark energy component shows Gaussian type dynamics corresponding to soliton-like solutions.

  9. Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids

    NASA Astrophysics Data System (ADS)

    Krotscheck, E.

    1985-04-01

    We develop a general variational theory for inhomogeneous Fermi systems such as the electron gas in a metal surface, the surface of liquid 3He, or simple models of heavy nuclei. The ground-state wave function is expressed in terms of two-body correlations, a one-body attenuation factor, and a model-system Slater determinant. Massive partial summations of cluster expansions are performed by means of Born-Green-Yvon and hypernetted-chain techniques. An optimal single-particle basis is generated by a generalized Hartree-Fock equation in which the two-body correlations screen the bare interparticle interaction. The optimization of the pair correlations leads to a state-averaged random-phase-approximation equation and a strictly microscopic determination of the particle-hole interaction.

  10. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: from vibrating plates to laser cavities.

    PubMed

    Tuan, P H; Wen, C P; Yu, Y T; Liang, H C; Huang, K F; Chen, Y F

    2014-02-01

    Experimentally resonant modes are commonly presumed to correspond to eigenmodes in the same bounded domain. However, the one-to-one correspondence between theoretical eigenmodes and experimental observations is never reached. Theoretically, eigenmodes in numerous classical and quantum systems are the solutions of the homogeneous Helmholtz equation, whereas resonant modes should be solved from the inhomogeneous Helmholtz equation. In the present paper we employ the eigenmode expansion method to derive the wave functions for manifesting the distinction between eigenmodes and resonant modes. The derived wave functions are successfully used to reconstruct a variety of experimental results including Chladni figures generated from the vibrating plate, resonant patterns excited from microwave cavities, and lasing modes emitted from the vertical cavity.

  11. Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements

    NASA Astrophysics Data System (ADS)

    Zander, C.; Plastino, A. R.; Díaz-Alonso, J.

    2015-11-01

    We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.

  12. Topics in electromagnetic, acoustic, and potential scattering theory

    NASA Astrophysics Data System (ADS)

    Nuntaplook, Umaporn

    With recent renewed interest in the classical topics of both acoustic and electromagnetic aspects for nano-technology, transformation optics, fiber optics, metamaterials with negative refractive indices, cloaking and invisibility, the topic of time-independent scattering theory in quantum mechanics is becoming a useful field to re-examine in the above contexts. One of the key areas of electromagnetic theory scattering of plane electromagnetic waves --- is based on the properties of the refractive indices in the various media. It transpires that the refractive index of a medium and the potential in quantum scattering theory are intimately related. In many cases, understanding such scattering in radially symmetric media is sufficient to gain insight into scattering in more complex media. Meeting the challenge of variable refractive indices and possibly complicated boundary conditions therefore requires accurate and efficient numerical methods, and where possible, analytic solutions to the radial equations from the governing scalar and vector wave equations (in acoustics and electromagnetic theory, respectively). Until relatively recently, researchers assumed a constant refractive index throughout the medium of interest. However, the most interesting and increasingly useful cases are those with non-constant refractive index profiles. In the majority of this dissertation the focus is on media with piecewise constant refractive indices in radially symmetric media. The method discussed is based on the solution of Maxwell's equations for scattering of plane electromagnetic waves from a dielectric (or "transparent") sphere in terms of the related Helmholtz equation. The main body of the dissertation (Chapters 2 and 3) is concerned with scattering from (i) a uniform spherical inhomogeneity embedded in an external medium with different properties, and (ii) a piecewise-uniform central inhomogeneity in the external medium. The latter results contain a natural generalization of the former (previously known) results. The link with time-independent quantum mechanical scattering, via morphology-dependent resonances (MDRs), is discussed in Chapter 2. This requires a generalization of the classical problem for scattering of a plane wave from a uniform spherically-symmetric inhomogeneity (in which the velocity of propagation is a function only of the radial coordinate r. i.e.. c = c(r)) to a piecewise-uniform inhomogeneity. In Chapter 3 the Jost-function formulation of potential scattering theory is used to solve the radial differential equation for scattering which can be converted into an integral equation corresponding via the Jost boundary conditions. The first two iterations for the zero angular momentum case l = 0 are provided for both two-layer and three-layer models. It is found that the iterative technique is most useful for long wavelengths and sufficiently small ratios of interior and exterior wavenumbers. Exact solutions are also provided for these cases. In Chapter 4 the time-independent quantum mechanical 'connection' is exploited further by generalizing previous work on a spherical well potential to the case where a delta 'function' potential is appended to the exterior of the well (for l ≠ 0). This corresponds to an idealization of the former approach to the case of a 'coated sphere'. The poles of the associated 'S-matrix' are important in this regard, since they correspond directly with the morphology-dependent resonances discussed in Chapter 2. These poles (for the l = 0 case, to compare with Nussenzveig's analysis) are tracked in the complex wavenumber plane as the strength of the delta function potential changes. Finally, a set of 4 Appendices is provided to clarify some of the connections between (i) the scattering of acoustic/electromagnetic waves from a penetrable/dielectric sphere and (ii) time-independent potential scattering theory in quantum mechanics. This, it is hoped, will be the subject of future work.

  13. Semiclassical dynamics of spin density waves

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei; Barros, Kipton; Wang, Zhentao; Suwa, Hidemaro; Batista, Cristian D.

    2018-01-01

    We present a theoretical framework for equilibrium and nonequilibrium dynamical simulation of quantum states with spin-density-wave (SDW) order. Within a semiclassical adiabatic approximation that retains electron degrees of freedom, we demonstrate that the SDW order parameter obeys a generalized Landau-Lifshitz equation. With the aid of an enhanced kernel polynomial method, our linear-scaling quantum Landau-Lifshitz dynamics (QLLD) method enables dynamical SDW simulations with N ≃105 lattice sites. Our real-space formulation can be used to compute dynamical responses, such as the dynamical structure factor, of complex and even inhomogeneous SDW configurations at zero or finite temperatures. Applying the QLLD to study the relaxation of a noncoplanar topological SDW under the excitation of a short pulse, we further demonstrate the crucial role of spatial correlations and fluctuations in the SDW dynamics.

  14. Optimum performance of electron beam pumped GaAs and GaN

    NASA Astrophysics Data System (ADS)

    Afify, M. S.; Moslem, W. M.; Hassouba, M. A.; Abu-El Hassan, A.

    2018-05-01

    This paper introduces a physical solution in order to overcome the damage to semiconductors, due to increasing temperature during the pumping process. For this purpose, we use quantum hydrodynamic fluid equations, including different quantum effects. This study concludes that nonlinear acoustic waves, in the form of soliton and shock-like (double layer) pulses, can propagate depending on the electron beam temperature and the streaming speed. Therefore, one can precisely tune the beam parameters in order to avoid such unfavorable noises that may lead to defects in semiconductors.

  15. Elementary derivation of the quantum propagator for the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Shao, Jiushu

    2016-10-01

    Operator algebra techniques are employed to derive the quantum evolution operator for the harmonic oscillator. The derivation begins with the construction of the annihilation and creation operators and the determination of the wave function for the coherent state as well as its time-dependent evolution, and ends with the transformation of the propagator in a mixed position-coherent-state representation to the desired one in configuration space. Throughout the entire procedure, besides elementary operator manipulations, it is only necessary to solve linear differential equations and to calculate Gaussian integrals.

  16. Quantum lattice representations for vector solitons in external potentials

    NASA Astrophysics Data System (ADS)

    Vahala, George; Vahala, Linda; Yepez, Jeffrey

    2006-03-01

    A quantum lattice algorithm is developed to examine the effect of an external potential well on exactly integrable vector Manakov solitons. It is found that the exact solutions to the coupled nonlinear Schrodinger equations act like quasi-solitons in weak potentials, leading to mode-locking, trapping and untrapping. Stronger potential wells will lead to the emission of radiation modes from the quasi-soliton initial conditions. If the external potential is applied to that particular mode polarization, then the radiation will be trapped within the potential well. The algorithm developed leads to a finite difference scheme that is unconditionally stable. The Manakov system in an external potential is very closely related to the Gross-Pitaevskii equation for the ground state wave functions of a coupled BEC state at T=0 K.

  17. A Maxwell-Schrödinger solver for quantum optical few-level systems

    NASA Astrophysics Data System (ADS)

    Fleischhaker, Robert; Evers, Jörg

    2011-03-01

    The msprop program presented in this work is capable of solving the Maxwell-Schrödinger equations for one or several laser fields propagating through a medium of quantum optical few-level systems in one spatial dimension and in time. In particular, it allows to numerically treat systems in which a laser field interacts with the medium with both its electric and magnetic component at the same time. The internal dynamics of the few-level system is modeled by a quantum optical master equation which includes coherent processes due to optical transitions driven by the laser fields as well as incoherent processes due to decay and dephasing. The propagation dynamics of the laser fields is treated in slowly varying envelope approximation resulting in a first order wave equation for each laser field envelope function. The program employs an Adams predictor formula second order in time to integrate the quantum optical master equation and a Lax-Wendroff scheme second order in space and time to evolve the wave equations for the fields. The source function in the Lax-Wendroff scheme is specifically adapted to allow taking into account the simultaneous coupling of a laser field to the polarization and the magnetization of the medium. To reduce execution time, a customized data structure is implemented and explained. In three examples the features of the program are demonstrated and the treatment of a system with a phase-dependent cross coupling of the electric and magnetic field component of a laser field is shown. Program summaryProgram title: msprop Catalogue identifier: AEHR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 507 625 No. of bytes in distributed program, including test data, etc.: 10 698 552 Distribution format: tar.gz Programming language: C (C99 standard), Mathematica, bash script, gnuplot script Computer: Tested on x86 architecture Operating system: Unix/Linux environment RAM: Less than 30 MB Classification: 2.5 External routines: Standard C math library, accompanying bash script uses gnuplot, bc (basic calculator), and convert (ImageMagick) Nature of problem: We consider a system of quantum optical few-level atoms exposed to several near-resonant continuous-wave or pulsed laser fields. The complexity of the problem arises from the combination of the coherent and incoherent time evolution of the atoms and its dependence on the spatially varying fields. In systems with a coupling to the electric and magnetic field component the simultaneous treatment of both field components poses an additional challenge. Studying the system dynamics requires solving the quantum optical master equation coupled to the wave equations governing the spatio-temporal dynamics of the fields [1,2]. Solution method: We numerically integrate the equations of motion using a second order Adams predictor method for the time evolution of the atomic density matrix and a second order Lax-Wendroff scheme for iterating the fields in space [3]. For the Lax-Wendroff scheme, the source function is adapted such that a simultaneous coupling to the polarization and the magnetization of the medium can be taken into account. Restrictions: The evolution of the fields is treated in slowly varying envelope approximation [2] such that variations of the fields in space and time must be on a scale larger than the wavelength and the optical cycle. Propagation is restricted to the forward direction and to one dimension. Concerning the description of the atomic system, only a finite number of basis states can be treated and the laser-driven transitions have to be near-resonant such that the rotating-wave approximation can be applied [2]. Unusual features: The program allows the dipole interaction of both the electric and the magnetic component of a laser field to be taken into account at the same time. Thus, a system with a phase-dependent cross coupling of electric and magnetic field component can be treated (see Section 4.2 and [4]). Concerning the implementation of the data structure, it has been optimized for faster memory access. Compared to using standard memory allocation methods, shorter run times are achieved (see Section 3.2). Additional comments: Three examples are given. They each include a readme file, a Mathematica notebook to generate the C-code form of the quantum optical master equation, a parameter file, a bash script which runs the program and converts the numerical data into a movie, two gnuplot scripts, and all files that are produced by running the bash script. Running time: For the first two examples the running time is less than a minute, the third example takes about 12 minutes. On a Pentium 4 (3 GHz) system, a rough estimate can be made with a value of 1 second per million grid points and per field variable.

  18. Fractional Klein-Gordon equation composed of Jumarie fractional derivative and its interpretation by a smoothness parameter

    NASA Astrophysics Data System (ADS)

    Ghosh, Uttam; Banerjee, Joydip; Sarkar, Susmita; Das, Shantanu

    2018-06-01

    Klein-Gordon equation is one of the basic steps towards relativistic quantum mechanics. In this paper, we have formulated fractional Klein-Gordon equation via Jumarie fractional derivative and found two types of solutions. Zero-mass solution satisfies photon criteria and non-zero mass satisfies general theory of relativity. Further, we have developed rest mass condition which leads us to the concept of hidden wave. Classical Klein-Gordon equation fails to explain a chargeless system as well as a single-particle system. Using the fractional Klein-Gordon equation, we can overcome the problem. The fractional Klein-Gordon equation also leads to the smoothness parameter which is the measurement of the bumpiness of space. Here, by using this smoothness parameter, we have defined and interpreted the various cases.

  19. A novel approach to gravitation from fluid theory: Titius-Bode structures, flat rotation rate of galaxies, and other predictions

    NASA Astrophysics Data System (ADS)

    Munera, Hector A.

    Following the discovery of quantum phenomena at laboratory scale (Couder & Fort 2006), de Broglie pilot wave theory (De Broglie 1962) has been revived under a hydrodynamic guise (Bush 2015). Theoretically, it boils down to solving the transport equations for the energy and linear momentum densities of a postulated fundamental fluid in terms of classical wave equations, which inherently are Lorentz-invariant and scale-invariant. Instead of the conventional harmonic solutions, for astronomical and gravitational problems the novel solutions for the homogeneous wave equation in spherical coordinates are more suitable (Munera et al. 1995, Munera & Guzman 1997, and Munera 2000). Two groups of solutions are particularly relevant: (a) The inherently-quantized helicoidal solutions that may be applicable to describe spiral galaxies, and (b) The non-harmonic solutions with time (t) and distance (r) entangled in the single variable q = Ct/r (C is the two-way local electromagnetic speed). When these functions are plotted against 1/q they manifestly depict quantum effects in the near field, and Newtonian-like gravity in the far-field. The near-field predicts quantized effects similar to ring structures and to Titius-Bode structures, both in our own solar system and in exoplanets, the correlation between predicted and observed structures being typically larger than 99 per cent. In the far-field, some non-harmonic functions have a rate of decrement with distance slower than inverse-square thus explaining the flat rotation rate of galaxies. Additional implications for Trojan orbits, and quantized effects in photon deflection were also noted.

  20. Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. III: nonspherical Schwarzschild waves and singularities at null infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg; Hennig, Jörg

    2018-03-01

    We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.

  1. Interferometers as probes of Planckian quantum geometry

    NASA Astrophysics Data System (ADS)

    Hogan, Craig J.

    2012-03-01

    A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, tP. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wave functions in two dimensions displays a new kind of directionally coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wave functions on a 2D space-like surface with the entropy density of a black hole event horizon of the same area. In a region of size L, the effect resembles spatially and directionally coherent random transverse shear deformations on time scale ≈L/c with typical amplitude ≈ctPL. This quantum-geometrical “holographic noise” in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson interferometer the effect appears as noise that resembles a random Planckian walk of the beam splitter for durations up to the light-crossing time. Signal spectra and correlation functions in interferometers are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly colocated Michelson interferometers of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.

  2. The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballesteros, Miguel; Weder, Ricardo

    The Aharonov-Bohm effect is a fundamental issue in physics. It describes the physically important electromagnetic quantities in quantum mechanics. Its experimental verification constitutes a test of the theory of quantum mechanics itself. The remarkable experiments of Tonomura et al. ['Observation of Aharonov-Bohm effect by electron holography', Phys. Rev. Lett 48, 1443 (1982) and 'Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave', Phys. Rev. Lett 56, 792 (1986)] are widely considered as the only experimental evidence of the physical existence of the Aharonov-Bohm effect. Here we give the first rigorous proof that the classical ansatz of Aharonovmore » and Bohm of 1959 ['Significance of electromagnetic potentials in the quantum theory', Phys. Rev. 115, 485 (1959)], that was tested by Tonomura et al., is a good approximation to the exact solution to the Schroedinger equation. This also proves that the electron, that is, represented by the exact solution, is not accelerated, in agreement with the recent experiment of Caprez et al. in 2007 ['Macroscopic test of the Aharonov-Bohm effect', Phys. Rev. Lett. 99, 210401 (2007)], that shows that the results of the Tonomura et al. experiments can not be explained by the action of a force. Under the assumption that the incoming free electron is a Gaussian wave packet, we estimate the exact solution to the Schroedinger equation for all times. We provide a rigorous, quantitative error bound for the difference in norm between the exact solution and the Aharonov-Bohm Ansatz. Our bound is uniform in time. We also prove that on the Gaussian asymptotic state the scattering operator is given by a constant phase shift, up to a quantitative error bound that we provide. Our results show that for intermediate size electron wave packets, smaller than the ones used in the Tonomura et al. experiments, quantum mechanics predicts the results observed by Tonomura et al. with an error bound smaller than 10{sup -99}. It would be quite interesting to perform experiments with electron wave packets of intermediate size. Furthermore, we provide a physical interpretation of our error bound.« less

  3. Twistor theory at fifty: from contour integrals to twistor strings

    NASA Astrophysics Data System (ADS)

    Atiyah, Michael; Dunajski, Maciej; Mason, Lionel J.

    2017-10-01

    We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space-time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold-the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics-anti-self-duality equations on Yang-Mills or conformal curvature-can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang-Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang-Mills equations, and Einstein-Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose's proposal for a role of gravity in quantum collapse of a wave function.

  4. Twistor theory at fifty: from contour integrals to twistor strings.

    PubMed

    Atiyah, Michael; Dunajski, Maciej; Mason, Lionel J

    2017-10-01

    We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space-time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold-the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics-anti-self-duality equations on Yang-Mills or conformal curvature-can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang-Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang-Mills equations, and Einstein-Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose's proposal for a role of gravity in quantum collapse of a wave function.

  5. Twistor theory at fifty: from contour integrals to twistor strings

    PubMed Central

    Atiyah, Michael; Mason, Lionel J.

    2017-01-01

    We review aspects of twistor theory, its aims and achievements spanning the last five decades. In the twistor approach, space–time is secondary with events being derived objects that correspond to compact holomorphic curves in a complex threefold—the twistor space. After giving an elementary construction of this space, we demonstrate how solutions to linear and nonlinear equations of mathematical physics—anti-self-duality equations on Yang–Mills or conformal curvature—can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang–Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang–Mills equations, and Einstein–Weyl dispersionless systems are reductions of ASD conformal equations. We then review the holomorphic string theories in twistor and ambitwistor spaces, and explain how these theories give rise to remarkable new formulae for the computation of quantum scattering amplitudes. Finally, we discuss the Newtonian limit of twistor theory and its possible role in Penrose’s proposal for a role of gravity in quantum collapse of a wave function. PMID:29118667

  6. Principles of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Landé, Alfred

    2013-10-01

    Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.

  7. Data-driven discovery of partial differential equations

    PubMed Central

    Rudy, Samuel H.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan

    2017-01-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable. PMID:28508044

  8. Aspects of perturbation theory in quantum mechanics: The BenderWuMATHEMATICA® package

    NASA Astrophysics Data System (ADS)

    Sulejmanpasic, Tin; Ünsal, Mithat

    2018-07-01

    We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu,and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use MATHEMATICA® package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 s, and 250 orders in 1-2 h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the package may be used as a teaching tool, providing an effective bridge between perturbation theory and non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion relation acquires a geometric character, and has a structure which allows parallelization to computer clusters.

  9. Simulations of relativistic quantum plasmas using real-time lattice scalar QED

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.

  10. Mapping superintegrable quantum mechanics to resonant spacetimes

    NASA Astrophysics Data System (ADS)

    Evnin, Oleg; Demirchian, Hovhannes; Nersessian, Armen

    2018-01-01

    We describe a procedure naturally associating relativistic Klein-Gordon equations in static curved spacetimes to nonrelativistic quantum motion on curved spaces in the presence of a potential. Our procedure is particularly attractive in application to (typically, superintegrable) problems whose energy spectrum is given by a quadratic function of the energy level number, since for such systems the spacetimes one obtains possess evenly spaced, resonant spectra of frequencies for scalar fields of a certain mass. This construction emerges as a generalization of the previously studied correspondence between the Higgs oscillator and anti-de Sitter spacetime, which has been useful for both understanding weakly nonlinear dynamics in anti-de Sitter spacetime and algebras of conserved quantities of the Higgs oscillator. Our conversion procedure ("Klein-Gordonization") reduces to a nonlinear elliptic equation closely reminiscent of the one emerging in relation to the celebrated Yamabe problem of differential geometry. As an illustration, we explicitly demonstrate how to apply this procedure to superintegrable Rosochatius systems, resulting in a large family of spacetimes with resonant spectra for massless wave equations.

  11. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  12. Semiclassical approximations in the coherent-state representation

    NASA Technical Reports Server (NTRS)

    Kurchan, J.; Leboeuf, P.; Saraceno, M.

    1989-01-01

    The semiclassical limit of the stationary Schroedinger equation in the coherent-state representation is analyzed simultaneously for the groups W1, SU(2), and SU(1,1). A simple expression for the first two orders for the wave function and the associated semiclassical quantization rule is obtained if a definite choice for the classical Hamiltonian and expansion parameter is made. The behavior of the modulus of the wave function, which is a distribution function in a curved phase space, is studied for the three groups. The results are applied to the quantum triaxial rotor.

  13. Rogue waves lead to the instability in GaN semiconductors

    PubMed Central

    Yahia, M. E.; Tolba, R. E.; El-Bedwehy, N. A.; El-Labany, S. K.; Moslem, W. M.

    2015-01-01

    A new approach to understand the electron/hole interfaced plasma in GaN high electron mobility transistors (HEMTs). A quantum hydrodynamic model is constructed to include electrons/holes degenerate pressure, Bohm potential, and the exchange/correlation effect and then reduced to the nonlinear Schrödinger equation (NLSE). Numerical analysis of the latter predicts the rough (in)stability domains, which allow for the rogue waves to occur. Our results might give physical solution rather than the engineering one to the intrinsic problems in these high frequency/power transistors. PMID:26206731

  14. Possibilities of the free-complement methodology for solving the Schrödinger equation of atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nakatsuji, Hiroshi

    Chemistry is a science of complex subjects that occupy this universe and biological world and that are composed of atoms and molecules. Its essence is diversity. However, surprisingly, whole of this science is governed by simple quantum principles like the Schrödinger and the Dirac equations. Therefore, if we can find a useful general method of solving these quantum principles under the fermionic and/or bosonic constraints accurately in a reasonable speed, we can replace somewhat empirical methodologies of this science with purely quantum theoretical and computational logics. This is the purpose of our series of studies - called ``exact theory'' in our laboratory. Some of our documents are cited below. The key idea was expressed as the free complement (FC) theory (originally called ICI theory) that was introduced to solve the Schrödinger and Dirac equations analytically. For extending this methodology to larger systems, order N methodologies are essential, but actually the antisymmetry constraints for electronic wave functions become big constraints. Recently, we have shown that the antisymmetry rule or `dogma' can be very much relaxed when our subjects are large molecular systems. In this talk, I want to present our recent progress in our FC methodology. The purpose is to construct ``predictive quantum chemistry'' that is useful in chemical and physical researches and developments in institutes and industries

  15. An Application of Gröbner Basis in Differential Equations of Physics

    NASA Astrophysics Data System (ADS)

    Chaharbashloo, Mohammad Saleh; Basiri, Abdolali; Rahmany, Sajjad; Zarrinkamar, Saber

    2013-11-01

    We apply the Gröbner basis to the ansatz method in quantum mechanics to obtain the energy eigenvalues and the wave functions in a very simple manner. There are important physical potentials such as the Cornell interaction which play significant roles in particle physics and can be treated via this technique. As a typical example, the algorithm is applied to the semi-relativistic spinless Salpeter equation under the Cornell interaction. Many other applications of the idea in a wide range of physical fields are listed as well.

  16. Light scattering from an atomic gas under conditions of quantum degeneracy

    NASA Astrophysics Data System (ADS)

    Porozova, V. M.; Gerasimov, L. V.; Havey, M. D.; Kupriyanov, D. V.

    2018-05-01

    Elastic light scattering from a macroscopic atomic sample existing in the Bose-Einstein condensate phase reveals a unique physical configuration of interacting light and matter waves. However, the joint coherent dynamics of the optical excitation induced by an incident photon is influenced by the presence of incoherent scattering channels. For a sample of sufficient length the excitation transports as a polariton wave and the propagation Green's function obeys the scattering equation which we derive. The polariton dynamics could be tracked in the outgoing channel of the scattered photon as we show via numerical solution of the scattering equation for one-dimensional geometry. The results are analyzed and compared with predictions of the conventional macroscopic Maxwell theory for light scattering from a nondegenerate atomic sample of the same density and size.

  17. Quantum turbulence in cold multicomponent matter

    NASA Astrophysics Data System (ADS)

    Pshenichnyuk, Ivan A.

    2018-02-01

    Quantum vortices are pivotal for understanding of phenomena in quantum hydrodynamics. Vortices were observed in different physical systems like trapped dilute Bose-Einstein condensates, liquid helium, exciton-polariton condensates and other types of systems. Foreign particles attached to the vortices often serve for a visualization of the vortex shape and kinematics in superfluid experiments. Fascinating discoveries were made in the field of cold quantum mixtures, where vortices created in one component may interact with the other component. This works raise the fundamental question of the interaction between quantum vortices and matter. The generalized nonlinear Schrodinger equation based formalism is applied here to model three different processes involving the interaction of quantum vortices with foreign particles: propagation of a fast classical particle in a superfluid under the influence of sound waves, scattering of a single fermion by a quantized vortex line and dynamics of vortex pairs doped with heavy bosonic matter. The obtained results allow to to clarify the details of recent experiments and acquire a better understanding of the multicomponent quantum turbulence.

  18. Phase transition and field effect topological quantum transistor made of monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.

    2018-06-01

    We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.

  19. Trajectories and traversal times in quantum tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhi Hong.

    1989-01-01

    The classical concepts of trajectories and traversal times applied to quantum tunneling are discussed. By using the Wentzel-Kramers-Brillouin approximation, it is found that in a forbidden region of a multidimensional space the wave function can be described by two sets of trajectories, or equivalently by two sets of wave fronts. The trajectories belonging to different sets are mutually orthogonal. An extended Huygens construction is proposed to determine these wave fronts and trajectories. In contrast to the classical results in the allowed region, these trajectories couple to each other. However, if the incident wave is normal to the turning surface, themore » trajectories are found to be independent and can be determined by Newton's equations of motion with inverted potential and energy. The multidimensional tunneling theory is then applied to the scanning tunneling microscope to calculate the current density distribution and to derive the expressions for the lateral resolution and the surface corrugation amplitude. The traversal time in quantum tunneling, i.e. tunneling time, is found to depend on model calculations and simulations. Computer simulation of a wave packet tunneling through a square barrier is performed. Several approaches, including the phase method, Larmor clock, and time-dependent barrier model, are investigated. For a square barrier, two characteristic times are found: One is equal to the barrier width divided by the magnitude of the imaginary velocity; the other is equal to the decay length divided by the incident velocity. It is believed that the tunneling time can only be defined operationally.« less

  20. Computation of the asymptotic states of modulated open quantum systems with a numerically exact realization of the quantum trajectory method

    NASA Astrophysics Data System (ADS)

    Volokitin, V.; Liniov, A.; Meyerov, I.; Hartmann, M.; Ivanchenko, M.; Hänggi, P.; Denisov, S.

    2017-11-01

    Quantum systems out of equilibrium are presently a subject of active research, both in theoretical and experimental domains. In this work, we consider time-periodically modulated quantum systems that are in contact with a stationary environment. Within the framework of a quantum master equation, the asymptotic states of such systems are described by time-periodic density operators. Resolution of these operators constitutes a nontrivial computational task. Approaches based on spectral and iterative methods are restricted to systems with the dimension of the hosting Hilbert space dim H =N ≲300 , while the direct long-time numerical integration of the master equation becomes increasingly problematic for N ≳400 , especially when the coupling to the environment is weak. To go beyond this limit, we use the quantum trajectory method, which unravels the master equation for the density operator into a set of stochastic processes for wave functions. The asymptotic density matrix is calculated by performing a statistical sampling over the ensemble of quantum trajectories, preceded by a long transient propagation. We follow the ideology of event-driven programming and construct a new algorithmic realization of the method. The algorithm is computationally efficient, allowing for long "leaps" forward in time. It is also numerically exact, in the sense that, being given the list of uniformly distributed (on the unit interval) random numbers, {η1,η2,...,ηn} , one could propagate a quantum trajectory (with ηi's as norm thresholds) in a numerically exact way. By using a scalable N -particle quantum model, we demonstrate that the algorithm allows us to resolve the asymptotic density operator of the model system with N =2000 states on a regular-size computer cluster, thus reaching the scale on which numerical studies of modulated Hamiltonian systems are currently performed.

  1. Computation of the asymptotic states of modulated open quantum systems with a numerically exact realization of the quantum trajectory method.

    PubMed

    Volokitin, V; Liniov, A; Meyerov, I; Hartmann, M; Ivanchenko, M; Hänggi, P; Denisov, S

    2017-11-01

    Quantum systems out of equilibrium are presently a subject of active research, both in theoretical and experimental domains. In this work, we consider time-periodically modulated quantum systems that are in contact with a stationary environment. Within the framework of a quantum master equation, the asymptotic states of such systems are described by time-periodic density operators. Resolution of these operators constitutes a nontrivial computational task. Approaches based on spectral and iterative methods are restricted to systems with the dimension of the hosting Hilbert space dimH=N≲300, while the direct long-time numerical integration of the master equation becomes increasingly problematic for N≳400, especially when the coupling to the environment is weak. To go beyond this limit, we use the quantum trajectory method, which unravels the master equation for the density operator into a set of stochastic processes for wave functions. The asymptotic density matrix is calculated by performing a statistical sampling over the ensemble of quantum trajectories, preceded by a long transient propagation. We follow the ideology of event-driven programming and construct a new algorithmic realization of the method. The algorithm is computationally efficient, allowing for long "leaps" forward in time. It is also numerically exact, in the sense that, being given the list of uniformly distributed (on the unit interval) random numbers, {η_{1},η_{2},...,η_{n}}, one could propagate a quantum trajectory (with η_{i}'s as norm thresholds) in a numerically exact way. By using a scalable N-particle quantum model, we demonstrate that the algorithm allows us to resolve the asymptotic density operator of the model system with N=2000 states on a regular-size computer cluster, thus reaching the scale on which numerical studies of modulated Hamiltonian systems are currently performed.

  2. A new approach to detecting gravitational waves via the coupling of gravity to the zero-point energy of the phonon modes of a superconductor

    NASA Astrophysics Data System (ADS)

    Inan, Nader A.

    The response of a superconductor to a gravitational wave is shown to obey a London-like constituent equation. The Cooper pairs are described by the Ginzburg-Landau free energy density embedded in curved spacetime. The lattice ions are modeled by quantum harmonic oscillators characterized by quasi-energy eigenvalues. This formulation is shown to predict a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is modulated by the gravitational wave. It is also shown that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a “charge separation effect” which can be used to detect the passage of a gravitational wave.

  3. Discrete sudden perturbation theory for inelastic scattering. I. Quantum and semiclassical treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cross, R.J.

    1985-12-01

    A double perturbation theory is constructed to treat rotationally and vibrationally inelastic scattering. It uses both the elastic scattering from the spherically averaged potential and the infinite-order sudden (IOS) approximation as the unperturbed solutions. First, a standard perturbation expansion is done to express the radial wave functions in terms of the elastic wave functions. The resulting coupled equations are transformed to the discrete-variable representation where the IOS equations are diagonal. Then, the IOS solutions are removed from the equations which are solved by an exponential perturbation approximation. The results for Ar+N/sub 2/ are very much more accurate than the IOSmore » and somewhat more accurate than a straight first-order exponential perturbation theory. The theory is then converted into a semiclassical, time-dependent form by using the WKB approximation. The result is an integral of the potential times a slowly oscillating factor over the classical trajectory. A method of interpolating the result is given so that the calculation is done at the average velocity for a given transition. With this procedure, the semiclassical version of the theory is more accurate than the quantum version and very much faster. Calculations on Ar+N/sub 2/ show the theory to be much more accurate than the infinite-order sudden (IOS) approximation and the exponential time-dependent perturbation theory.« less

  4. Geometrization of quantum physics

    NASA Astrophysics Data System (ADS)

    Ol'Khov, O. A.

    2009-12-01

    It is shown that the Dirac equation for free particle can be considered as a description of specific distortion of the space euclidean geometry (space topological defect). This approach is based on possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such concept explains all so called “strange” properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There is no any particles a priori, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device.

  5. Quasi-soliton scattering in quantum spin chains

    NASA Astrophysics Data System (ADS)

    Vlijm, R.; Ganahl, M.; Fioretto, D.; Brockmann, M.; Haque, M.; Evertz, H. G.; Caux, J.-S.

    2015-12-01

    The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown to display features similar to the scattering of solitons in classical exactly solvable models. Localized colliding Gaussian wave packets of bound magnons are constructed from string solutions of the Bethe equations and subsequently evolved in time, relying on an algebraic Bethe ansatz based framework for the computation of local expectation values in real space-time. The local magnetization profile shows the trajectories of colliding wave packets of bound magnons, which obtain a spatial displacement upon scattering. Analytic predictions on the displacements for various values of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase shifts, matching time-evolution fits on the displacements. The time-evolved block decimation algorithm allows for the study of scattering displacements from spin-block states, showing similar scattering displacement features.

  6. Quasi-soliton scattering in quantum spin chains

    NASA Astrophysics Data System (ADS)

    Fioretto, Davide; Vljim, Rogier; Ganahl, Martin; Brockmann, Michael; Haque, Masud; Evertz, Hans-Gerd; Caux, Jean-Sébastien

    The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown to display features similar to the scattering of solitons in classical exactly solvable models. Localized colliding Gaussian wave packets of bound magnons are constructed from string solutions of the Bethe equations and subsequently evolved in time, relying on an algebraic Bethe ansatz based framework for the computation of local expectation values in real space-time. The local magnetization profile shows the trajectories of colliding wave packets of bound magnons, which obtain a spatial displacement upon scattering. Analytic predictions on the displacements for various values of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase shifts, matching time evolution fits on the displacements. The TEBD algorithm allows for the study of scattering displacements from spin-block states, showing similar displacement scattering features.

  7. Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Garbaczewski, Piotr; Klauder, John R.; Olkiewicz, Robert

    1995-05-01

    The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for the temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schrödinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feynman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard ``free'' case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schrödinger problem, the ``free noise'' can also be extended to any infinitely divisible probability law, as covered by the Lévy-Khintchine formula. Since the relativistic Hamiltonians ||∇|| and √-Δ+m2 -m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert) and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes exist and are spatial jump processes. In general, in the presence of external potentials, they do not share the Markov property, except for stationary situations. A concrete example of the pseudodifferential Cauchy-Schrödinger evolution is analyzed in detail. The relativistic covariance of related wave equations is exploited to demonstrate how the associated stochastic jump processes comply with the principles of special relativity.

  8. Redshift of the light emission from highly strained In0.3Ga0.7As/GaAs quantum wells by dipole δ doping

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Wang, S.-M.; Wang, X.-D.; Larsson, A.

    2005-08-01

    We have studied theoretically the energy band structures and optical properties of highly strained dipole δ-doped In0.3Ga0.7As/GaAs single quantum wells. Including dopant diffusion effect, strain in the quantum well, spin-orbital interactions, and many-body effects, the self-consistent calculations of the eight-band k •p model and the Poisson equation show that the dipole δ doping induces an electric field across the In0.3Ga0.7As quantum well by the Stark effect so that both the interband transition energy and the wave-function overlap between the ground-state electrons and holes are reduced. Applying an external bias across the quantum well partially cancels the built-in electric field and reduces the wavelength redshift. The calculated material gain peak is close to the experimental lasing wavelength.

  9. Fractional corresponding operator in quantum mechanics and applications: A uniform fractional Schrödinger equation in form and fractional quantization methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Science and Technology on Electronic Information Control Laboratory, 610036, Chengdu, Sichuan; Wei, Chaozhen

    2014-11-15

    In this paper we use Dirac function to construct a fractional operator called fractional corresponding operator, which is the general form of momentum corresponding operator. Then we give a judging theorem for this operator and with this judging theorem we prove that R–L, G–L, Caputo, Riesz fractional derivative operator and fractional derivative operator based on generalized functions, which are the most popular ones, coincide with the fractional corresponding operator. As a typical application, we use the fractional corresponding operator to construct a new fractional quantization scheme and then derive a uniform fractional Schrödinger equation in form. Additionally, we find thatmore » the five forms of fractional Schrödinger equation belong to the particular cases. As another main result of this paper, we use fractional corresponding operator to generalize fractional quantization scheme by using Lévy path integral and use it to derive the corresponding general form of fractional Schrödinger equation, which consequently proves that these two quantization schemes are equivalent. Meanwhile, relations between the theory in fractional quantum mechanics and that in classic quantum mechanics are also discussed. As a physical example, we consider a particle in an infinite potential well. We give its wave functions and energy spectrums in two ways and find that both results are the same.« less

  10. On the fly quantum dynamics of electronic and nuclear wave packets

    NASA Astrophysics Data System (ADS)

    Komarova, Ksenia G.; Remacle, F.; Levine, R. D.

    2018-05-01

    Multielectronic states quantum dynamics on a grid is described in a manner motivated by on the fly classical trajectory computations. Non stationary electronic states are prepared by a few cycle laser pulse. The nuclei respond and begin moving. We solve the time dependent Schrödinger equation for the electronic and nuclear dynamics for excitation from the ground electronic state. A satisfactory accuracy is possible using a localized description on a discrete grid. This enables computing on the fly for both the nuclear and electronic dynamics including non-adiabatic couplings. Attosecond dynamics in LiH is used as an example.

  11. Stable long-time semiclassical description of zero-point energy in high-dimensional molecular systems.

    PubMed

    Garashchuk, Sophya; Rassolov, Vitaly A

    2008-07-14

    Semiclassical implementation of the quantum trajectory formalism [J. Chem. Phys. 120, 1181 (2004)] is further developed to give a stable long-time description of zero-point energy in anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized quantum force approach; stabilizing terms compensating for the linearization errors are added into the time-evolution equations for the classical and nonclassical components of the momentum operator. The wave function normalization and energy are rigorously conserved. Numerical tests are performed for model systems of up to 40 degrees of freedom.

  12. Continuous time quantum random walks in free space

    NASA Astrophysics Data System (ADS)

    Eichelkraut, Toni; Vetter, Christian; Perez-Leija, Armando; Christodoulides, Demetrios; Szameit, Alexander

    2014-05-01

    We show theoretically and experimentally that two-dimensional continuous time coherent random walks are possible in free space, that is, in the absence of any external potential, by properly tailoring the associated initial wave function. These effects are experimentally demonstrated using classical paraxial light. Evidently, the usage of classical beams to explore the dynamics of point-like quantum particles is possible since both phenomena are mathematically equivalent. This in turn makes our approach suitable for the realization of random walks using different quantum particles, including electrons and photons. To study the spatial evolution of a wavefunction theoretically, we consider the one-dimensional paraxial wave equation (i∂z +1/2 ∂x2) Ψ = 0 . Starting with the initially localized wavefunction Ψ (x , 0) = exp [ -x2 / 2σ2 ] J0 (αx) , one can show that the evolution of such Gaussian-apodized Bessel envelopes within a region of validity resembles the probability pattern of a quantum walker traversing a uniform lattice. In order to generate the desired input-field in our experimental setting we shape the amplitude and phase of a collimated light beam originating from a classical HeNe-Laser (633 nm) utilizing a spatial light modulator.

  13. Quantum dot properties in the multiband envelope-function approximation using boundary conditions based upon first-principles quantum calculations

    NASA Astrophysics Data System (ADS)

    Flory, Curt A.; Musgrave, Charles B.; Zhang, Zhiyong

    2008-05-01

    A number of physical processes involving quantum dots depend critically upon the “evanescent” electron eigenstate wave function that extends outside of the material surface into the surrounding region. These processes include electron tunneling through quantum dots, as well as interactions between multiple quantum dot structures. In order to unambiguously determine these evanescent fields, appropriate boundary conditions have been developed to connect the electronic solutions interior to the semiconductor quantum dot to exterior vacuum solutions. In standard envelope function theory, the interior wave function consists of products of band edge and envelope functions, and both must be considered when matching to the external solution. While the envelope functions satisfy tractable equations, the band edge functions are generally not known. In this work, symmetry arguments in the spherically symmetric approximation are used in conjunction with the known qualitative behavior of bonding and antibonding orbitals to catalog the behavior of the band edge functions at the unit cell boundary. This physical approximation allows consolidation of the influence of the band edge functions to two simple surface parameters that are incorporated into the boundary conditions and are straightforwardly computed by using numerical first-principles quantum techniques. These new boundary conditions are employed to analyze an isolated spherically symmetric semiconductor quantum dot in vacuum within the analytical model of Sercel and Vahala [Phys. Rev. Lett. 65, 239 (1990); Phys. Rev. B 42, 3690 (1990)]. Results are obtained for quantum dots made of GaAs and InP, which are compared with ab initio calculations that have appeared in the literature.

  14. New Quantum Diffusion Monte Carlo Method for strong field time dependent problems

    NASA Astrophysics Data System (ADS)

    Kalinski, Matt

    2017-04-01

    We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.

  15. Perspectives in quantum physics: Epistemological, ontological and pedagogical An investigation into student and expert perspectives on the physical interpretation of quantum mechanics, with implications for modern physics instruction

    NASA Astrophysics Data System (ADS)

    Baily, Charles Raymond

    A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively realist perspectives of introductory students, and a lack of ontological flexibility in their conceptions of light and matter. We have developed a framework for understanding and characterizing student perspectives on the physical interpretation of quantum mechanics, and demonstrate the differential impact on student thinking of the myriad ways instructors approach interpretive themes in their introductory courses. Like expert physicists, students interpret quantum phenomena differently, and these interpretations are significantly influenced by their overall stances on questions central to the so-called measurement problem: Is the wave function physically real, or simply a mathematical tool? Is the collapse of the wave function an ad hoc rule, or a physical transition not described by any equation? Does an electron, being a form of matter, exist as a localized particle at all times? These questions, which are of personal and academic interest to our students, are largely only superficially addressed in our introductory courses, often for fear of opening a Pandora's Box of student questions, none of which have easy answers. We show how a transformed modern physics curriculum (recently implemented at the University of Colorado) may positively impact student perspectives on indeterminacy and wave-particle duality, by making questions of classical and quantum reality a central theme of our course, but also by making the beliefs of our students, and not just those of scientists, an explicit topic of discussion.

  16. EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization

    NASA Astrophysics Data System (ADS)

    Payandeh, Farrin

    2015-07-01

    Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space-time) states, the original version of EPR paradox can be discussed and the correct answer can be verified based on the strong rooted complex quantum Hamilton-Jacobi theory [2-27] and as another example we can use the negative energy states, to remove the Klein's paradox without the need of any further explanations or justifications like backwardly moving electrons. Finally, comparing the two approaches, we can point out to the existence of a connection between quantum Hamiltonian dynamics, standard quantum field theory, and Krein space quantization [28-43].

  17. Newtonian self-gravitation in the neutral meson system

    NASA Astrophysics Data System (ADS)

    Großardt, André; Hiesmayr, Beatrix C.

    2015-03-01

    We derive the effect of the Schrödinger-Newton equation, which can be considered as a nonrelativistic limit of classical gravity, for a composite quantum system in the regime of high energies. Such meson-antimeson systems exhibit very unique properties, e.g., distinct masses due to strong and electroweak interactions. This raises an immediate question: what does one mean by mass in gravity for a state that is a superposition of mass eigenstates due to strong and electroweak interactions? We find conceptually different physical scenarios due to lacking of a clear physical guiding principle to explain which mass is the relevant one and due to the fact that it is not clear how the flavor wave function relates to the spatial wave function. There seems to be no principal contradiction. However, a nonlinear extension of the Schrödinger equation in this manner strongly depends on the relation between the flavor wave function and spatial wave function and its particular shape. In opposition to the continuous spontaneous localization collapse models we find a change in the oscillating behavior and not in the damping of the flavor oscillation.

  18. Description of waves in inhomogeneous domains using Heun's equation

    NASA Astrophysics Data System (ADS)

    Bednarik, M.; Cervenka, M.

    2018-04-01

    There are a number of model equations describing electromagnetic, acoustic or quantum waves in inhomogeneous domains and some of them are of the same type from the mathematical point of view. This isomorphism enables us to use a unified approach to solving the corresponding equations. In this paper, the inhomogeneity is represented by a trigonometric spatial distribution of a parameter determining the properties of an inhomogeneous domain. From the point of view of modeling, this trigonometric parameter function can be smoothly connected to neighboring constant-parameter regions. For this type of distribution, exact local solutions of the model equations are represented by the local Heun functions. As the interval for which the solution is sought includes two regular singular points. For this reason, a method is proposed which resolves this problem only based on the local Heun functions. Further, the transfer matrix for the considered inhomogeneous domain is determined by means of the proposed method. As an example of the applicability of the presented solutions the transmission coefficient is calculated for the locally periodic structure which is given by an array of asymmetric barriers.

  19. Soliton Gases and Generalized Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin; Yoshimura, Takato; Caux, Jean-Sébastien

    2018-01-01

    We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.

  20. Thermal and magnetic properties of electron gas in toroidal quantum dot

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. A.; Hayrapetyan, D. B.; Kazaryan, E. M.; Sarkisyan, H. A.

    2018-07-01

    One-electron states in a toroidal quantum dot in the presence of an external magnetic field have been considered. The magnetic field operator and the Schrodinger equation have been written in toroidal coordinates. The dependence of one-electron energy spectrum and wave function on the geometrical parameters of a toroidal quantum dot and magnetic field strength have been studied. The energy levels are employed to calculate the canonical partition function, which in its turn is used to obtain mean energy, heat capacity, entropy, magnetization, and susceptibility of noninteracting electron gas. The possibility to control the thermodynamic and magnetic properties of the noninteracting electron gas via changing the geometric parameters of the QD, magnetic field, and temperature, was demonstrated.

  1. Gravitational self-interactions of a degenerate quantum scalar field

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Sankha S.; Enomoto, Seishi; Han, Yaqi; Sikivie, Pierre; Todarello, Elisa M.

    2018-02-01

    We develop a formalism to help calculate in quantum field theory the departures from the description of a system by classical field equations. We apply the formalism to a homogeneous condensate with attractive contact interactions and to a homogeneous self-gravitating condensate in critical expansion. In their classical descriptions, such condensates persist forever. We show that in their quantum description, parametric resonance causes quanta to jump in pairs out of the condensate into all modes with wave vector less than some critical value. We calculate, in each case, the time scale over which the homogeneous condensate is depleted and after which a classical description is invalid. We argue that the duration of classicality of inhomogeneous condensates is shorter than that of homogeneous condensates.

  2. Quantum Dynamics of Multi Harmonic Oscillators Described by Time Variant Conic Hamiltonian and their Use in Contemporary Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demiralp, Metin

    This work focuses on the dynamics of a system of quantum multi harmonic oscillators whose Hamiltonian is conic in positions and momenta with time variant coefficients. While it is simple, this system is useful for modeling the dynamics of a number of systems in contemporary sciences where the equations governing spatial or temporal changes are described by sets of ODEs. The dynamical causal models used readily in neuroscience can be indirectly described by these systems. In this work, we want to show that it is possible to describe these systems using quantum wave function type entities and expectations if themore » dynamic of the system is related to a set of ODEs.« less

  3. Comment on "Peres experiment using photons: No test for hypercomplex (quaternionic) quantum theories"

    NASA Astrophysics Data System (ADS)

    Procopio, Lorenzo M.; Rozema, Lee A.; Dakić, Borivoje; Walther, Philip

    2017-09-01

    In his recent article [Phys. Rev. A 95, 060101(R) (2017), 10.1103/PhysRevA.95.060101], Adler questions the usefulness of the bound found in our experimental search for genuine effects of hypercomplex quantum mechanics [Nat. Commun. 8, 15044 (2017), 10.1038/ncomms15044]. Our experiment was performed using a black-box (instrumentalist) approach to generalized probabilistic theories; therefore, it does not assume a priori any particular underlying mechanism. From that point of view our experimental results do indeed place meaningful bounds on the possible effects of "postquantum theories," including quaternionic quantum mechanics. In his article, Adler compares our experiment to nonrelativistic and Möller formal scattering theories within quaternionic quantum mechanics. With a particular set of assumptions, he finds that quaternionic effects would likely not manifest themselves in general. Although these assumptions are justified in the nonrelativistic case, a proper calculation for relativistic particles is still missing. Here, we provide a concrete relativistic example of Klein-Gordon scattering wherein the quaternionic effects persist. We note that when the Klein-Gordon equation is formulated using a Hamiltonian formalism it displays a so-called "indefinite metric," a characteristic feature of relativistic quantum wave equations. In Adler's example this is directly forbidden by his assumptions, and therefore our present example is not in contradiction to his work. In complex quantum mechanics this problem of an indefinite metric is solved in a second quantization. Unfortunately, there is no known algorithm for canonical field quantization in quaternionic quantum mechanics.

  4. Time dependent Schrödinger equation for black hole evaporation: No information loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corda, Christian, E-mail: cordac.galilei@gmail.com

    2015-02-15

    In 1976 S. Hawking claimed that “Because part of the information about the state of the system is lost down the hole, the final situation is represented by a density matrix rather than a pure quantum state”. This was the starting point of the popular “black hole (BH) information paradox”. In a series of papers, together with collaborators, we naturally interpreted BH quasi-normal modes (QNMs) in terms of quantum levels discussing a model of excited BH somewhat similar to the historical semi-classical Bohr model of the structure of a hydrogen atom. Here we explicitly write down, for the same model,more » a time dependent Schrödinger equation for the system composed by Hawking radiation and BH QNMs. The physical state and the correspondent wave function are written in terms of a unitary evolution matrix instead of a density matrix. Thus, the final state results to be a pure quantum state instead of a mixed one. Hence, Hawking’s claim is falsified because BHs result to be well defined quantum mechanical systems, having ordered, discrete quantum spectra, which respect ’t Hooft’s assumption that Schrödinger equations can be used universally for all dynamics in the universe. As a consequence, information comes out in BH evaporation in terms of pure states in a unitary time dependent evolution. In Section 4 of this paper we show that the present approach permits also to solve the entanglement problem connected with the information paradox.« less

  5. Capsize of polarization in dilute photonic crystals.

    PubMed

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  6. A quantum model of option pricing: When Black-Scholes meets Schrödinger and its semi-classical limit

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo; Ruiz, Aaron

    2010-12-01

    The Black-Scholes equation can be interpreted from the point of view of quantum mechanics, as the imaginary time Schrödinger equation of a free particle. When deviations of this state of equilibrium are considered, as a product of some market imperfection, such as: Transaction cost, asymmetric information issues, short-term volatility, extreme discontinuities, or serial correlations; the classical non-arbitrage assumption of the Black-Scholes model is violated, implying a non-risk-free portfolio. From Haven (2002) [1] we know that an arbitrage environment is a necessary condition to embedding the Black-Scholes option pricing model in a more general quantum physics setting. The aim of this paper is to propose a new Black-Scholes-Schrödinger model based on the endogenous arbitrage option pricing formulation introduced by Contreras et al. (2010) [2]. Hence, we derive a more general quantum model of option pricing, that incorporates arbitrage as an external time dependent force, which has an associated potential related to the random dynamic of the underlying asset price. This new resultant model can be interpreted as a Schrödinger equation in imaginary time for a particle of mass 1/σ2 with a wave function in an external field force generated by the arbitrage potential. As pointed out above, this new model can be seen as a more general formulation, where the perfect market equilibrium state postulated by the Black-Scholes model represent a particular case. Finally, since the Schrödinger equation is in place, we can apply semiclassical methods, of common use in theoretical physics, to find an approximate analytical solution of the Black-Scholes equation in the presence of market imperfections, as it is the case of an arbitrage bubble. Here, as a numerical illustration of the potential of this Schrödinger equation analogy, the semiclassical approximation is performed for different arbitrage bubble forms (step, linear and parabolic) and compare with the exact solution of our general quantum model of option pricing.

  7. The effects of dissipation on topological mechanical systems

    NASA Astrophysics Data System (ADS)

    Xiong, Ye; Wang, Tianxiang; Tong, Peiqing

    2016-09-01

    We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law.

  8. Nonequilibrium Precondensation of Classical Waves in Two Dimensions Propagating through Atomic Vapors

    NASA Astrophysics Data System (ADS)

    Šantić, Neven; Fusaro, Adrien; Salem, Sabeur; Garnier, Josselin; Picozzi, Antonio; Kaiser, Robin

    2018-02-01

    The nonlinear Schrödinger equation, used to describe the dynamics of quantum fluids, is known to be valid not only for massive particles but also for the propagation of light in a nonlinear medium, predicting condensation of classical waves. Here we report on the initial evolution of random waves with Gaussian statistics using atomic vapors as an efficient two dimensional nonlinear medium. Experimental and theoretical analysis of near field images reveal a phenomenon of nonequilibrium precondensation, characterized by a fast relaxation towards a precondensate fraction of up to 75%. Such precondensation is in contrast to complete thermalization to the Rayleigh-Jeans equilibrium distribution, requiring prohibitive long interaction lengths.

  9. Coherent distributions for the rigid rotator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigorescu, Marius

    2016-06-15

    Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödingermore » equation.« less

  10. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu, E-mail: okazaki@apchem.nagoya-u.ac.jp

    2014-08-28

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfermore » process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps{sup −1}, which is about 2.5 times faster than that in vacuum, 0.27 ps{sup −1}. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.« less

  11. Stability and Metastability of Trapless Bose-Einstein Condensates and Quantum Liquids

    NASA Astrophysics Data System (ADS)

    Zloshchastiev, Konstantin G.

    2017-07-01

    Various kinds of Bose-Einstein condensates are considered, which evolve without any geometric constraints or external trap potentials including gravitational. For studies of their collective oscillations and stability, including the metastability and macroscopic tunneling phenomena, both the variational approach and the Vakhitov-Kolokolov (VK) criterion are employed; calculations are done for condensates of an arbitrary spatial dimension. It is determined that that the trapless condensate described by the logarithmic wave equation is essentially stable, regardless of its dimensionality, while the trapless condensates described by wave equations of a polynomial type with respect to the wavefunction, such as the Gross-Pitaevskii (cubic), cubic-quintic, and so on, are at best metastable. This means that trapless "polynomial" condensates are unstable against spontaneous delocalization caused by fluctuations of their width, density and energy, leading to a finite lifetime.

  12. Probing spontaneous wave-function collapse with entangled levitating nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Tiancai; Li, Jie

    2017-01-01

    Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.

  13. Pump and probe spectroscopy with continuous wave quantum cascade lasers.

    PubMed

    Kirkbride, James M R; Causier, Sarah K; Dalton, Andrew R; Weidmann, Damien; Ritchie, Grant A D

    2014-02-07

    This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 μm. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ← v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorption profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 μs at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.

  14. Perfectly invisible PT -symmetric zero-gap systems, conformal field theoretical kinks, and exotic nonlinear supersymmetry

    NASA Astrophysics Data System (ADS)

    Guilarte, Juan Mateos; Plyushchay, Mikhail S.

    2017-12-01

    We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.

  15. Wave-vortex interactions in the nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Guo, Yuan; Bühler, Oliver

    2014-02-01

    This is a theoretical study of wave-vortex interaction effects in the two-dimensional nonlinear Schrödinger equation, which is a useful conceptual model for the limiting dynamics of superfluid quantum condensates at zero temperature. The particular wave-vortex interaction effects are associated with the scattering and refraction of small-scale linear waves by the straining flows induced by quantized point vortices and, crucially, with the concomitant nonlinear back-reaction, the remote recoil, that these scattered waves exert on the vortices. Our detailed model is a narrow, slowly varying wavetrain of small-amplitude waves refracted by one or two vortices. Weak interactions are studied using a suitable perturbation method in which the nonlinear recoil force on the vortex then arises at second order in wave amplitude, and is computed in terms of a Magnus-type force expression for both finite and infinite wavetrains. In the case of an infinite wavetrain, an explicit asymptotic formula for the scattering angle is also derived and cross-checked against numerical ray tracing. Finally, under suitable conditions a wavetrain can be so strongly refracted that it collapses all the way onto a zero-size point vortex. This is a strong wave-vortex interaction by definition. The conditions for such a collapse are derived and the validity of ray tracing theory during the singular collapse is investigated.

  16. Reviews Equipment: LabQuest 2 Equipment: Rubens' Tube Equipment: Ripple Strobe Tank Book: God and the Atom Book: Magnificent Principia, Exploring Isaac Newton's Masterpiece Book: Talking Science: Language, Learning, and Values Classroom Video: Maxwell's Equations Book: Exploring Quantum Physics Through Hands-on Projects Web Watch

    NASA Astrophysics Data System (ADS)

    2013-11-01

    WE RECOMMEND LabQuest 2 New logger now includes mobile data sharing Rubens' Tube Sturdy Rubens' tube ramps up the beat Ripple Strobe Tank Portable ripple tank makes waves in and out of the lab God and the Atom Expertly told story of the influence of atomism Maxwell's Equations Video stands the test of time Exploring Quantum Physics Through Hands-on Projects Mixture of theory and experiment hits the spot WORTH A LOOK Magnificent Principia, Exploring Isaac Newton's Masterpiece The tricky task of summarizing Newton's iconic work Talking Science: Language, Learning, and Values Interesting book tackles communication in the classroom WEB WATCH Interactive website plans a trip to Mars ... documentary peers into telescopes ... films consider the density of water

  17. Pulsation of black holes

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  18. The Coulomb problem on a 3-sphere and Heun polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellucci, Stefano; Yeghikyan, Vahagn; Yerevan State University, Alex-Manoogian st. 1, 00025 Yerevan

    2013-08-15

    The paper studies the quantum mechanical Coulomb problem on a 3-sphere. We present a special parametrization of the ellipto-spheroidal coordinate system suitable for the separation of variables. After quantization we get the explicit form of the spectrum and present an algebraic equation for the eigenvalues of the Runge-Lentz vector. We also present the wave functions expressed via Heun polynomials.

  19. Correlational latent heat by nonlocal quantum kinetic theory

    NASA Astrophysics Data System (ADS)

    Morawetz, K.

    2018-05-01

    A kinetic equation of nonlocal and noninstantaneous character unifies the achievements of transport in dense quantum gases with the Landau theory of quasiclassical transport in Fermi systems. Large cancellations in the off-shell motion appear, which are usually hidden in non-Markovian behaviors. The remaining corrections are expressed in terms of shifts in space and time that characterize the nonlocality of the scattering process. In this way, it is possible to recast quantum transport into a quasiclassical picture. In addition to the quasiparticle, the balance equations for density, momentum, energy, and entropy also include correlated two-particle contributions beyond the Landau theory. The medium effects on binary collisions are shown to mediate the latent heat, i.e., an energy conversion between correlation and thermal energy. For Maxwellian particles with time-dependent s -wave scattering, the correlated parts of the observables are calculated and a sign change of the latent heat is reported at a universal ratio of scattering length to the thermal de Broglie wavelength. This is interpreted as a change from correlational heating to cooling.

  20. Scattering General Analysis; ANALISIS GENERAL DE LA DISPERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tixaire, A.G.

    1962-01-01

    A definition of scattering states is given. It is shown that such states must belong to the absolutely continuous part of the spectrum of the total hamiltonian whenever scattering systems are considered. Such embedding may be proper unless the quantum system is physically admissible. The Moller wave operators are analyzed using Abel- and Cesaro-limit theoretical arguments. Von Neumann s ergodic theorem is partially generalized. A rigorous derivation of the Gell-Mann and Goldberger and Lippmann and Schwinger equations is obtained by making use of results on spectral theory, wave function, and eigendifferential concepts contained. (auth)

  1. Nonlocal response in plasmonic waveguiding with extreme light confinement

    NASA Astrophysics Data System (ADS)

    Toscano, Giuseppe; Raza, Søren; Yan, Wei; Jeppesen, Claus; Xiao, Sanshui; Wubs, Martijn; Jauho, Antti-Pekka; Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2013-07-01

    We present a novel wave equation for linearized plasmonic response, obtained by combining the coupled real-space differential equations for the electric field and current density. Nonlocal dynamics are fully accounted for, and the formulation is very well suited for numerical implementation, allowing us to study waveguides with subnanometer cross-sections exhibiting extreme light confinement. We show that groove and wedge waveguides have a fundamental lower limit in their mode confinement, only captured by the nonlocal theory. The limitation translates into an upper limit for the corresponding Purcell factors, and thus has important implications for quantum plasmonics.

  2. Nonlinear propagation of vector extremely short pulses in a medium of symmetric and asymmetric molecules

    NASA Astrophysics Data System (ADS)

    Sazonov, S. V.; Ustinov, N. V.

    2017-02-01

    The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky-Vakhnenko equation. Different types of solutions of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.

  3. On the transition from the quantum to the classical regime for massive scalar particles: A spatiotemporal approach

    NASA Astrophysics Data System (ADS)

    Lusanna, Luca; Pauri, Massimo

    2014-08-01

    If the classical structure of space-time is assumed to define an a priori scenario for the formulation of quantum theory (QT), the coordinate representation of the solutions of the Schroedinger equation of a quantum system containing one ( N) massive scalar particle has a preferred status. Let us consider all of the solutions admitting a multipolar expansion of the probability density function (and more generally of the Wigner function) around a space-time trajectory to be properly selected. For every normalized solution there is a privileged trajectory implying the vanishing of the dipole moment of the multipolar expansion: it is given by the expectation value of the position operator . Then, the special subset of solutions which satisfy Ehrenfest's Theorem (named thereby Ehrenfest monopole wave functions (EMWF)), have the important property that this privileged classical trajectory is determined by a closed Newtonian equation of motion where the effective force is the Newtonian force plus non-Newtonian terms (of order ħ 2 or higher) depending on the higher multipoles of the probability distribution ρ. Note that the superposition of two EMWFs is not an EMWF, a result to be strongly hoped for, given the possible unwanted implications concerning classical spatial perception. These results can be extended to N-particle systems in such a way that, when N classical trajectories with all the dipole moments vanishing and satisfying Ehrenfest theorem are associated with the normalized wave functions of the N-body system, we get a natural transition from the 3 N-dimensional configuration space to the space-time. Moreover, these results can be extended to relativistic quantum mechanics. Consequently, in suitable states of N quantum particle which are EMWF, we get the "emergence" of corresponding "classical particles" following Newton-like trajectories in space-time. Note that all this holds true in the standard framework of quantum mechanics, i.e. assuming, in particular, the validity of Born's rule and the individual system interpretation of the wave function (no ensemble interpretation). These results are valid without any approximation (like ħ → 0, big quantum numbers, etc.). Moreover, we do not commit ourselves to any specific ontological interpretation of quantum theory (such as, e.g., the Bohmian one). We will argue that, in substantial agreement with Bohr's viewpoint, the macroscopic description of the preparation, certain intermediate steps and the detection of the final outcome of experiments involving massive particles are dominated by these classical "effective" trajectories. This approach can be applied to the point of view of de-coherence in the case of a diagonal reduced density matrix ρ red (an improper mixture) depending on the position variables of a massive particle and of a pointer. When both the particle and the pointer wave functions appearing in ρ red are EMWF, the expectation value of the particle and pointer position variables becomes a statistical average on a classical ensemble. In these cases an improper quantum mixture becomes a classical statistical one, thus providing a particular answer to an open problem of de-coherence about the emergence of classicality.

  4. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    PubMed

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  5. Finally making sense of the double-slit experiment.

    PubMed

    Aharonov, Yakir; Cohen, Eliahu; Colombo, Fabrizio; Landsberger, Tomer; Sabadini, Irene; Struppa, Daniele C; Tollaksen, Jeff

    2017-06-20

    Feynman stated that the double-slit experiment "…has in it the heart of quantum mechanics. In reality, it contains the only mystery" and that "nobody can give you a deeper explanation of this phenomenon than I have given; that is, a description of it" [Feynman R, Leighton R, Sands M (1965) The Feynman Lectures on Physics ]. We rise to the challenge with an alternative to the wave function-centered interpretations: instead of a quantum wave passing through both slits, we have a localized particle with nonlocal interactions with the other slit. Key to this explanation is dynamical nonlocality, which naturally appears in the Heisenberg picture as nonlocal equations of motion. This insight led us to develop an approach to quantum mechanics which relies on pre- and postselection, weak measurements, deterministic, and modular variables. We consider those properties of a single particle that are deterministic to be primal. The Heisenberg picture allows us to specify the most complete enumeration of such deterministic properties in contrast to the Schrödinger wave function, which remains an ensemble property. We exercise this approach by analyzing a version of the double-slit experiment augmented with postselection, showing that only it and not the wave function approach can be accommodated within a time-symmetric interpretation, where interference appears even when the particle is localized. Although the Heisenberg and Schrödinger pictures are equivalent formulations, nevertheless, the framework presented here has led to insights, intuitions, and experiments that were missed from the old perspective.

  6. Quantum Mechanics, Pattern Recognition, and the Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Chapline, George

    2008-10-01

    Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.

  7. Coin state properties in quantum walks

    PubMed Central

    Andrade, R. F. S.

    2013-01-01

    Recent experimental advances have measured individual coin components in discrete time quantum walks, which have not received the due attention in most theoretical studies on the theme. Here is presented a detailed investigation of the properties of M, the difference between square modulus of coin states of discrete quantum walks on a linear chain. Local expectation values are obtained in terms of real and imaginary parts of the Fourier transformed wave function. A simple expression is found for the average difference between coin states in terms of an angle θ gauging the coin operator and its initial state. These results are corroborated by numerical integration of dynamical equations in real space. The local dependence is characterized both by large and short period modulations. The richness of revealed patterns suggests that the amount of information stored and retrieved from quantum walks is significantly enhanced if M is taken into account. PMID:23756358

  8. Quantum scar and breakdown of universality in graphene: A theoretical insight

    NASA Astrophysics Data System (ADS)

    Iyakutti, Kombiah; Rajeswarapalanichamy, Ratnavelu; Surya, Velappa Jayaraman; Kawazoe, Yoshiyuki

    2017-12-01

    Graphene has brought forward a lot of new physics. One of them is the emergence of massless Dirac fermions in addition to the electrons and these features are new to physics. In this theoretical study, the signatures for quantum scar and the breakdown of universality in graphene are investigated with reference to the presence of these two types of fermions. Taking the graphene quantum dot (QD) potential as the confining potential, the radial part of Dirac equations are solved numerically. Concentrations of the two component eigen-wavefunctions about classical periodic orbits emerge as the signatures for the quantum scar. The sudden variations, in the ratio of the radial wave-functions (large and small components), R(g/f), with mass ratio κ are the signatures for breakdown of universality in graphene. The breakdown of universality occurs for the states k = -1 and k = 1, and the state k = -1 is more susceptible to the breakdown of universality.

  9. Individual electron and hole localization in submonolayer InN quantum sheets embedded in GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feix, F., E-mail: feix@pdi-berlin.de; Flissikowski, T.; Chèze, C.

    2016-07-25

    We investigate sub-monolayer InN quantum sheets embedded in GaN(0001) by temperature-dependent photoluminescence spectroscopy under both continuous-wave and pulsed excitation. Both the peak energy and the linewidth of the emission band associated with the quantum sheets exhibit an anomalous dependence on temperature indicative of carrier localization. Photoluminescence transients reveal a power law decay at low temperatures reflecting that the recombining electrons and holes occupy spatially separate, individual potential minima reminiscent of conventional (In,Ga)N(0001) quantum wells exhibiting the characteristic disorder of a random alloy. At elevated temperatures, carrier delocalization sets in and is accompanied by a thermally activated quenching of the emission.more » We ascribe the strong nonradiative recombination to extended states in the GaN barriers and confirm our assumption by a simple rate-equation model.« less

  10. Four-wave mixing in an asymmetric double quantum dot molecule

    NASA Astrophysics Data System (ADS)

    Kosionis, Spyridon G.

    2018-06-01

    The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.

  11. On the self-interference in electron scattering: Copenhagen, Bohmian and geometrical interpretations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano

    2018-06-01

    Self-interference embodies the essence of the particle-wave formulation of quantum mechanics (QM). According to the Copenhagen interpretation of QM, self-interference by a double-slit requires a large transverse coherence of the incident wavepacket such that it covers the separation between the slits. Bohmian dynamics provides a first step in the separation of the particle-wave character of matter by introducing deterministic trajectories guided by a pilot wave that follows the time-dependent Schrödinger equation. In this work, I present a new description of the phenomenon of self-interference using the geometrical formulation of QM introduced in Tavernelli (2016). In particular, this formalism removes the need for the concept of wavefunction collapse in the interpretation of the act of measurement i.e., the emergence of the classical world. The three QM formulations (Schrödinger, Bohmian, and geometrical) are applied to the description of the scattering of a free electron by a hydrogen atom and a double-slit. The corresponding interpretations of self-interference are compared and discussed.

  12. Formation of plasmon pulses in the cooperative decay of excitons of quantum dots near a metal surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shesterikov, A. B.; Gubin, M. Yu.; Gladush, M. G.

    The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.

  13. Terahertz Optical Gain Based on Intersubband Transitions in Optically-Pumped Semiconductor Quantum Wells: Coherent Pumped-Probe Interactions

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.

  14. Stable spin domains in a nondegenerate ultracold gas

    NASA Astrophysics Data System (ADS)

    Graham, S. D.; Niroomand, D.; Ragan, R. J.; McGuirk, J. M.

    2018-05-01

    We study the stability of two-domain spin structures in an ultracold gas of magnetically trapped 87Rb atoms above quantum degeneracy. Adding a small effective magnetic field gradient stabilizes the domains via coherent collective spin rotation effects, despite negligibly perturbing the potential energy relative to the thermal energy. We demonstrate that domain stabilization is accomplished through decoupling the dynamics of longitudinal magnetization, which remains in time-independent domains, from transverse magnetization, which undergoes a purely transverse spin wave trapped within the domain wall. We explore the effect of temperature and density on the steady-state domains, and compare our results to a hydrodynamic solution to a quantum Boltzmann equation.

  15. Determination of the absolute internal quantum efficiency of photoluminescence in GaN co-doped with Si and Zn

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Foussekis, M.; McNamara, J. D.; Behrends, A.; Bakin, A.; Waag, A.

    2012-04-01

    The optical properties of high-quality GaN co-doped with silicon and zinc are investigated by using temperature-dependent continuous-wave and time-resolved photoluminescence measurements. The blue luminescence band is related to the ZnGa acceptor in GaN:Si,Zn, which exhibits an exceptionally high absolute internal quantum efficiency (IQE). An IQE above 90% was calculated for several samples having different concentrations of Zn. Accurate and reliable values of the IQE were obtained by using several approaches based on rate equations. The concentrations of the ZnGa acceptors and free electrons were also estimated from the photoluminescence measurements.

  16. C++QEDv2 Milestone 10: A C++/Python application-programming framework for simulating open quantum dynamics

    NASA Astrophysics Data System (ADS)

    Sandner, Raimar; Vukics, András

    2014-09-01

    The v2 Milestone 10 release of C++QED is primarily a feature release, which also corrects some problems of the previous release, especially as regards the build system. The adoption of C++11 features has led to many simplifications in the codebase. A full doxygen-based API manual [1] is now provided together with updated user guides. A largely automated, versatile new testsuite directed both towards computational and physics features allows for quickly spotting arising errors. The states of trajectories are now savable and recoverable with full binary precision, allowing for trajectory continuation regardless of evolution method (single/ensemble Monte Carlo wave-function or Master equation trajectory). As the main new feature, the framework now presents Python bindings to the highest-level programming interface, so that actual simulations for given composite quantum systems can now be performed from Python. Catalogue identifier: AELU_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELU_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 492422 No. of bytes in distributed program, including test data, etc.: 8070987 Distribution format: tar.gz Programming language: C++/Python. Computer: i386-i686, x86 64. Operating system: In principle cross-platform, as yet tested only on UNIX-like systems (including Mac OS X). RAM: The framework itself takes about 60MB, which is fully shared. The additional memory taken by the program which defines the actual physical system (script) is typically less than 1MB. The memory storing the actual data scales with the system dimension for state-vector manipulations, and the square of the dimension for density-operator manipulations. This might easily be GBs, and often the memory of the machine limits the size of the simulated system. Classification: 4.3, 4.13, 6.2. External routines: Boost C++ libraries, GNU Scientific Library, Blitz++, FLENS, NumPy, SciPy Catalogue identifier of previous version: AELU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1381 Does the new version supersede the previous version?: Yes Nature of problem: Definition of (open) composite quantum systems out of elementary building blocks [2,3]. Manipulation of such systems, with emphasis on dynamical simulations such as Master-equation evolution [4] and Monte Carlo wave-function simulation [5]. Solution method: Master equation, Monte Carlo wave-function method Reasons for new version: The new version is mainly a feature release, but it does correct some problems of the previous version, especially as regards the build system. Summary of revisions: We give an example for a typical Python script implementing the ring-cavity system presented in Sec. 3.3 of Ref. [2]: Restrictions: Total dimensionality of the system. Master equation-few thousands. Monte Carlo wave-function trajectory-several millions. Unusual features: Because of the heavy use of compile-time algorithms, compilation of programs written in the framework may take a long time and much memory (up to several GBs). Additional comments: The framework is not a program, but provides and implements an application-programming interface for developing simulations in the indicated problem domain. We use several C++11 features which limits the range of supported compilers (g++ 4.7, clang++ 3.1) Documentation, http://cppqed.sourceforge.net/ Running time: Depending on the magnitude of the problem, can vary from a few seconds to weeks. References: [1] Entry point: http://cppqed.sf.net [2] A. Vukics, C++QEDv2: The multi-array concept and compile-time algorithms in the definition of composite quantum systems, Comp. Phys. Comm. 183(2012)1381. [3] A. Vukics, H. Ritsch, C++QED: an object-oriented framework for wave-function simulations of cavity QED systems, Eur. Phys. J. D 44 (2007) 585. [4] H. J. Carmichael, An Open Systems Approach to Quantum Optics, Springer, 1993. [5] J. Dalibard, Y. Castin, K. Molmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68 (1992) 580.

  17. New experiments call for a continuous absorption alternative to the photon model

    NASA Astrophysics Data System (ADS)

    Reiter, Eric S.

    2015-09-01

    A famous beam-split coincidence test of the photon model is described herein using gamma-rays instead of the usual visible light. A similar a new test was performed using alpha-rays. In both tests, coincidence rates greatly exceed chance, leading to an unquantum effect. In contradiction to quantum theory and the photon model, these new results are strong evidence of the long abandoned accumulation hypothesis, also known as the loading theory. Attention is drawn to assumptions applied to past key-experiments that led to quantum mechanics. The history of the loading theory is outlined, and a few equations for famous experiments are derived, now free of wave-particle duality. Quantum theory usually works because there is a subtle difference between quantized and thresholded absorption.

  18. High-performance dynamic quantum clustering on graphics processors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittek, Peter, E-mail: peterwittek@acm.org

    2013-01-15

    Clustering methods in machine learning may benefit from borrowing metaphors from physics. Dynamic quantum clustering associates a Gaussian wave packet with the multidimensional data points and regards them as eigenfunctions of the Schroedinger equation. The clustering structure emerges by letting the system evolve and the visual nature of the algorithm has been shown to be useful in a range of applications. Furthermore, the method only uses matrix operations, which readily lend themselves to parallelization. In this paper, we develop an implementation on graphics hardware and investigate how this approach can accelerate the computations. We achieve a speedup of up tomore » two magnitudes over a multicore CPU implementation, which proves that quantum-like methods and acceleration by graphics processing units have a great relevance to machine learning.« less

  19. Effective equations for the quantum pendulum from momentous quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Hector H.; Chacon-Acosta, Guillermo; Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  20. Theory and modelling of light-matter interactions in photonic crystal cavity systems coupled to quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Cartar, William K.

    Photonic crystal microcavity quantum dot lasers show promise as high quality-factor, low threshold lasers, that can be integrated on-chip, with tunable room temperature opera- tions. However, such semiconductor microcavity lasers are notoriously difficult to model in a self-consistent way and are primarily modelled by simplified rate equation approxima- tions, typically fit to experimental data, which limits investigations of their optimization and fundamental light-matter interaction processes. Moreover, simple cavity mode optical theory and rate equations have recently been shown to fail in explaining lasing threshold trends in triangular lattice photonic crystal cavities as a function of cavity size, and the potential impact of fabrication disorder is not well understood. In this thesis, we develop a simple but powerful numerical scheme for modelling the quantum dot active layer used for lasing in these photonic crystal cavity structures, as an ensemble of randomly posi- tioned artificial two-level atoms. Each two-level atom is defined by optical Bloch equations solved by a quantum master equation that includes phenomenological pure dephasing and an incoherent pump rate that effectively models a multi-level gain system. Light-matter in- teractions of both passive and lasing structures are analyzed using simulation defined tools and post-simulation Green function techniques. We implement an active layer ensemble of up to 24,000 statistically unique quantum dots in photonic crystal cavity simulations, using a self-consistent finite-difference time-domain method. This method has the distinct advantage of capturing effects such as dipole-dipole coupling and radiative decay, without the need for any phenomenological terms, since the time-domain solution self-consistently captures these effects. Our analysis demonstrates a powerful ability to connect with recent experimental trends, while remaining completely general in its set-up; for example, we do not invoke common approximations such as the rotating-wave or slowly-varying envelope approximations, and solve dynamics with zero a priori knowledge.

  1. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach.

    PubMed

    Plehn, Thomas; May, Volkhard

    2017-01-21

    The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.

  2. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach

    NASA Astrophysics Data System (ADS)

    Plehn, Thomas; May, Volkhard

    2017-01-01

    The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.

  3. QuTiP: An open-source Python framework for the dynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Johansson, J. R.; Nation, P. D.; Nori, Franco

    2012-08-01

    We present an object-oriented open-source framework for solving the dynamics of open quantum systems written in Python. Arbitrary Hamiltonians, including time-dependent systems, may be built up from operators and states defined by a quantum object class, and then passed on to a choice of master equation or Monte Carlo solvers. We give an overview of the basic structure for the framework before detailing the numerical simulation of open system dynamics. Several examples are given to illustrate the build up to a complete calculation. Finally, we measure the performance of our library against that of current implementations. The framework described here is particularly well suited to the fields of quantum optics, superconducting circuit devices, nanomechanics, and trapped ions, while also being ideal for use in classroom instruction. Catalogue identifier: AEMB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 16 482 No. of bytes in distributed program, including test data, etc.: 213 438 Distribution format: tar.gz Programming language: Python Computer: i386, x86-64 Operating system: Linux, Mac OSX, Windows RAM: 2+ Gigabytes Classification: 7 External routines: NumPy (http://numpy.scipy.org/), SciPy (http://www.scipy.org/), Matplotlib (http://matplotlib.sourceforge.net/) Nature of problem: Dynamics of open quantum systems. Solution method: Numerical solutions to Lindblad master equation or Monte Carlo wave function method. Restrictions: Problems must meet the criteria for using the master equation in Lindblad form. Running time: A few seconds up to several tens of minutes, depending on size of underlying Hilbert space.

  4. Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems

    DTIC Science & Technology

    2014-10-13

    function and wide band Fast multipole methods for Hankel waves. (2) a new linear scaling discontinuous Galerkin density functional theory, which provide a...inflow boundary condition for Wigner quantum transport equations. Also, a book titled "Computational Methods for Electromagnetic Phenomena...equationsin layered media with FMM for Bessel functions , Science China Mathematics, (12 2013): 2561. doi: TOTAL: 6 Number of Papers published in peer

  5. The effects of dissipation on topological mechanical systems

    PubMed Central

    Xiong, Ye; Wang, Tianxiang; Tong, Peiqing

    2016-01-01

    We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law. PMID:27605247

  6. Quantum Bio-Informatics IV

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Freudenberg, Wolfgang; Ohya, Masanori

    2011-01-01

    The QP-DYN algorithms / L. Accardi, M. Regoli and M. Ohya -- Study of transcriptional regulatory network based on Cis module database / S. Akasaka ... [et al.] -- On Lie group-Lie algebra correspondences of unitary groups in finite von Neumann algebras / H. Ando, I. Ojima and Y. Matsuzawa -- On a general form of time operators of a Hamiltonian with purely discrete spectrum / A. Arai -- Quantum uncertainty and decision-making in game theory / M. Asano ... [et al.] -- New types of quantum entropies and additive information capacities / V. P. Belavkin -- Non-Markovian dynamics of quantum systems / D. Chruscinski and A. Kossakowski -- Self-collapses of quantum systems and brain activities / K.-H. Fichtner ... [et al.] -- Statistical analysis of random number generators / L. Accardi and M. Gabler -- Entangled effects of two consecutive pairs in residues and its use in alignment / T. Ham, K. Sato and M. Ohya -- The passage from digital to analogue in white noise analysis and applications / T. Hida -- Remarks on the degree of entanglement / D. Chruscinski ... [et al.] -- A completely discrete particle model derived from a stochastic partial differential equation by point systems / K.-H. Fichtner, K. Inoue and M. Ohya -- On quantum algorithm for exptime problem / S. Iriyama and M. Ohya -- On sufficient algebraic conditions for identification of quantum states / A. Jamiolkowski -- Concurrence and its estimations by entanglement witnesses / J. Jurkowski -- Classical wave model of quantum-like processing in brain / A. Khrennikov -- Entanglement mapping vs. quantum conditional probability operator / D. Chruscinski ... [et al.] -- Constructing multipartite entanglement witnesses / M. Michalski -- On Kadison-Schwarz property of quantum quadratic operators on M[symbol](C) / F. Mukhamedov and A. Abduganiev -- On phase transitions in quantum Markov chains on Cayley Tree / L. Accardi, F. Mukhamedov and M. Saburov -- Space(-time) emergence as symmetry breaking effect / I. Ojima.Use of cryptographic ideas to interpret biological phenomena (and vice versa) / M. Regoli -- Discrete approximation to operators in white noise analysis / Si Si -- Bogoliubov type equations via infinite-dimensional equations for measures / V. V. Kozlov and O. G. Smolyanov -- Analysis of several categorical data using measure of proportional reduction in variation / K. Yamamoto ... [et al.] -- The electron reservoir hypothesis for two-dimensional electron systems / K. Yamada ... [et al.] -- On the correspondence between Newtonian and functional mechanics / E. V. Piskovskiy and I. V. Volovich -- Quantile-quantile plots: An approach for the inter-species comparison of promoter architecture in eukaryotes / K. Feldmeier ... [et al.] -- Entropy type complexities in quantum dynamical processes / N. Watanabe -- A fair sampling test for Ekert protocol / G. Adenier, A. Yu. Khrennikov and N. Watanabe -- Brownian dynamics simulation of macromolecule diffusion in a protocell / T. Ando and J. Skolnick -- Signaling network of environmental sensing and adaptation in plants: Key roles of calcium ion / K. Kuchitsu and T. Kurusu -- NetzCope: A tool for displaying and analyzing complex networks / M. J. Barber, L. Streit and O. Strogan -- Study of HIV-1 evolution by coding theory and entropic chaos degree / K. Sato -- The prediction of botulinum toxin structure based on in silico and in vitro analysis / T. Suzuki and S. Miyazaki -- On the mechanism of D-wave high T[symbol] superconductivity by the interplay of Jahn-Teller physics and Mott physics / H. Ushio, S. Matsuno and H. Kamimura.

  7. On the motion of a quantum particle in the spinning cosmic string space–time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassanabadi, H., E-mail: h.hasanabadi@shahroodut.ac.ir; Afshardoost, A.; Zarrinkamar, S.

    2015-05-15

    We analyze the energy spectrum and the wave function of a particle subjected to magnetic field in the spinning cosmic string space–time and investigate the influence of the spinning reference frame and topological defect on the system. To do this we solve Schrödinger equation in the spinning cosmic string background. In our work, instead of using an approximation in the calculations, we use the quasi-exact ansatz approach which gives the exact solutions for some primary levels. - Highlights: • Solving the Schrödinger equation in the spinning cosmic string space time. • Proposing a quasi-exact analytical solution to the general formmore » of the corresponding equation. • Generalizing the previous works.« less

  8. A non-conventional discontinuous Lagrangian for viscous flow

    PubMed Central

    Marner, F.

    2017-01-01

    Drawing an analogy with quantum mechanics, a new Lagrangian is proposed for a variational formulation of the Navier–Stokes equations which to-date has remained elusive. A key feature is that the resulting Lagrangian is discontinuous in nature, posing additional challenges apropos the mathematical treatment of the related variational problem, all of which are resolvable. In addition to extending Lagrange's formalism to problems involving discontinuous behaviour, it is demonstrated that the associated equations of motion can self-consistently be interpreted within the framework of thermodynamics beyond local equilibrium, with the limiting case recovering the classical Navier–Stokes equations. Perspectives for applying the new formalism to discontinuous physical phenomena such as phase and grain boundaries, shock waves and flame fronts are provided. PMID:28386415

  9. A non-conventional discontinuous Lagrangian for viscous flow.

    PubMed

    Scholle, M; Marner, F

    2017-02-01

    Drawing an analogy with quantum mechanics, a new Lagrangian is proposed for a variational formulation of the Navier-Stokes equations which to-date has remained elusive. A key feature is that the resulting Lagrangian is discontinuous in nature, posing additional challenges apropos the mathematical treatment of the related variational problem, all of which are resolvable. In addition to extending Lagrange's formalism to problems involving discontinuous behaviour, it is demonstrated that the associated equations of motion can self-consistently be interpreted within the framework of thermodynamics beyond local equilibrium, with the limiting case recovering the classical Navier-Stokes equations. Perspectives for applying the new formalism to discontinuous physical phenomena such as phase and grain boundaries, shock waves and flame fronts are provided.

  10. Analytical Wave Functions for Ultracold Collisions.

    NASA Astrophysics Data System (ADS)

    Cavagnero, M. J.

    1998-05-01

    Secular perturbation theory of long-range interactions(M. J. Cavagnero, PRA 50) 2841, (1994). has been generalized to yield accurate wave functions for near threshold processes, including low-energy scattering processes of interest at ultracold temperatures. In particular, solutions of Schrödinger's equation have been obtained for motion in the combined r-6, r-8, and r-10 potentials appropriate for describing an utlracold collision of two neutral ground state atoms. Scattering lengths and effective ranges appropriate to such potentials are readily calculated at distances comparable to the LeRoy radius, where exchange forces can be neglected, thereby eliminating the need to integrate Schrödinger's equation to large internuclear distances. Our method yields accurate base pair solutions well beyond the energy range of effective range theories, making possible the application of multichannel quantum defect theory [MQDT] and R-matrix methods to the study of ultracold collisions.

  11. Quantum walks: The first detected passage time problem

    NASA Astrophysics Data System (ADS)

    Friedman, H.; Kessler, D. A.; Barkai, E.

    2017-03-01

    Even after decades of research, the problem of first passage time statistics for quantum dynamics remains a challenging topic of fundamental and practical importance. Using a projective measurement approach, with a sampling time τ , we obtain the statistics of first detection events for quantum dynamics on a lattice, with the detector located at the origin. A quantum renewal equation for a first detection wave function, in terms of which the first detection probability can be calculated, is derived. This formula gives the relation between first detection statistics and the solution of the corresponding Schrödinger equation in the absence of measurement. We illustrate our results with tight-binding quantum walk models. We examine a closed system, i.e., a ring, and reveal the intricate influence of the sampling time τ on the statistics of detection, discussing the quantum Zeno effect, half dark states, revivals, and optimal detection. The initial condition modifies the statistics of a quantum walk on a finite ring in surprising ways. In some cases, the average detection time is independent of the sampling time while in others the average exhibits multiple divergences as the sampling time is modified. For an unbounded one-dimensional quantum walk, the probability of first detection decays like (time)(-3 ) with superimposed oscillations, with exceptional behavior when the sampling period τ times the tunneling rate γ is a multiple of π /2 . The amplitude of the power-law decay is suppressed as τ →0 due to the Zeno effect. Our work, an extended version of our previously published paper, predicts rich physical behaviors compared with classical Brownian motion, for which the first passage probability density decays monotonically like (time)-3 /2, as elucidated by Schrödinger in 1915.

  12. Nonlinear propagation of vector extremely short pulses in a medium of symmetric and asymmetric molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sazonov, S. V., E-mail: sazonov.sergey@gmail.com; Ustinov, N. V., E-mail: n-ustinov@mail.ru

    The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky–Vakhnenko equation. Different types of solutionsmore » of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.« less

  13. Unified field theory from the classical wave equation: Preliminary application to atomic and nuclear structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Múnera, Héctor A., E-mail: hmunera@hotmail.com; Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America

    2016-07-07

    It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding amore » unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.« less

  14. Schroedinger's immortal cat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peres, A.

    1988-01-01

    The purpose of this paper is to review and clarify the quantum measurement problem. The latter originates in the ambivalent nature of the observer: Although the observer is not described by the Schroedinger equation, it should nevertheless be possible to quantize him and include him in the wave function if quantum theory is universally valid. The problem is to prove that no contradiction may arise in these two conflicting descriptions. The proof invokes the notion of irreversibility. The validity of the latter is questionable, because the standard rationale for classical irreversibility, namely mixing and coarse graining, does not apply tomore » quantum theory. There is no chaos in a closed, finite quantum system. However, when a system is large enough, it cannot be perfectly isolated from it environment, namely from external (or even internal) degrees of freedom which are not fully accounted for in the Hamiltonian of that system. As a consequence, the long-range evolution of such a quantum system is essentially unpredictable. It follows that the notion of irreversibility is a valid one in quantum theory and the measurement problem can be brought to a satisfactory solution.« less

  15. Quantum collapse of dust shells in 2 + 1 gravity

    NASA Astrophysics Data System (ADS)

    Ortíz, L.; Ryan, M. P.

    2007-08-01

    This paper considers the quantum collapse of infinitesimally thin dust shells in 2 + 1 gravity. In 2 + 1 gravity a shell is no longer a sphere, but a ring of matter. The classical equation of motion of such shells in terms of variables defined on the shell has been considered by Peleg and Steif (Phys Rev D 51:3992, 1995), using the 2 + 1 version of the original formulation of Israel (Nuovo Cimento B 44:1, 1966), and Crisóstomo and Olea (Phys Rev D 69:104023, 2004), using canonical methods. The minisuperspace quantum problem can be reduced to that of a harmonic oscillator in terms of the curvature radius of the shell, which allows us to use well-known methods to find the motion of coherent wave packets that give the quantum collapse of the shell. Classically, as the radius of the shell falls below a certain point, a horizon forms. In the quantum problem one can define various quantities that give “indications” of horizon formation. Without a proper definition of a “horizon” in quantum gravity, these can be nothing but indications.

  16. Quantum primary rainbows in transmission of positrons through very short carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ćosić, M.; Petrović, S.; Nešković, N.

    2016-04-01

    This paper is devoted to a quantum mechanical consideration of the transmission of positrons of a kinetic energy of 1 MeV through very short (11, 9) single-wall chiral carbon nanotubes. The nanotube lengths are between 50 and 320 nm. The transmission process is determined by the rainbow effects. The interaction potential of a positron and the nanotube is deduced from the Molire's interaction potential of the positron and a nanotube atom using the continuum approximation. We solve numerically the time-dependent Schrödinger equation, and calculate the spatial and angular distributions of transmitted positrons. The initial positron beam is assumed to be an ensemble of non-interacting Gaussian wave packets. We generate the spatial and angular distributions using the computer simulation method. The examination is focused on the spatial and angular primary rainbows. It begins with an analysis of the corresponding classical rainbows, and continues with a detailed investigation of the amplitudes and phases of the wave functions of transmitted positrons. These analyses enable one to identify the principal and supernumerary primary rainbows appearing in the spatial and angular distributions. They also result in a detailed explanation of the way of their generation, which includes the effects of wrinkling of each wave packet during its deflection from the nanotube wall, and of its concentration just before a virtual barrier lying close to the corresponding classical rainbow. The wrinkling of the wave packets occurs due to their internal focusing. In addition, the wave packets wrinkle in a mutually coordinated way. This explanation may induce new theoretical and experimental investigations of quantum rainbows occurring in various atomic collision processes.

  17. Light-front holographic QCD and emerging confinement

    DOE PAGES

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; ...

    2015-05-21

    In this study we explore the remarkable connections between light-front dynamics, its holographic mapping to gravity in a higher-dimensional anti-de Sitter (AdS) space, and conformal quantum mechanics. This approach provides new insights into the origin of a fundamental mass scale and the physics underlying confinement dynamics in QCD in the limit of massless quarks. The result is a relativistic light-front wave equation for arbitrary spin with an effective confinement potential derived from a conformal action and its embedding in AdS space. This equation allows for the computation of essential features of hadron spectra in terms of a single scale. Themore » light-front holographic methods described here give a precise interpretation of holographic variables and quantities in AdS space in terms of light-front variables and quantum numbers. This leads to a relation between the AdS wave functions and the boost-invariant light-front wave functions describing the internal structure of hadronic bound-states in physical spacetime. The pion is massless in the chiral limit and the excitation spectra of relativistic light-quark meson and baryon bound states lie on linear Regge trajectories with identical slopes in the radial and orbital quantum numbers. In the light-front holographic approach described here currents are expressed as an infinite sum of poles, and form factors as a product of poles. At large q 2 the form factor incorporates the correct power-law fall-off for hard scattering independent of the specific dynamics and is dictated by the twist. At low q 2 the form factor leads to vector dominance. The approach is also extended to include small quark masses. We briefly review in this report other holographic approaches to QCD, in particular top-down and bottom-up models based on chiral symmetry breaking. We also include a discussion of open problems and future applications.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Kai; Song, Linze; Shi, Qiang, E-mail: qshi@iccas.ac.cn

    Based on the path integral approach, we derive a new realization of the exact non-Markovian stochastic Schrödinger equation (SSE). The main difference from the previous non-Markovian quantum state diffusion (NMQSD) method is that the complex Gaussian stochastic process used for the forward propagation of the wave function is correlated, which may be used to reduce the amplitude of the non-Markovian memory term at high temperatures. The new SSE is then written into the recently developed hierarchy of pure states scheme, in a form that is more closely related to the hierarchical equation of motion approach. Numerical simulations are then performedmore » to demonstrate the efficiency of the new method.« less

  19. Quantum mechanics problems in observer's mathematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Boris; Khots, Dmitriy; iMath Consulting LLC, Omaha, Nebraska

    2012-11-06

    This work considers the ontology, guiding equation, Schrodinger's equation, relation to the Born Rule, the conditional wave function of a subsystem in a setting of arithmetic, algebra and topology provided by Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. Certain results and communications pertaining to solutions of these problems are provided. In particular, we prove the following theorems: Theorem I (Two-slit interference). Let {Psi}{sub 1} be a wave from slit 1, {Psi}{sub 2} - from slit 2, andmore » {Psi} = {Psi}{sub 1}+{Psi}{sub 2}. Then the probability of {Psi} being a wave equals to 0.5. Theorem II (k-bodies solution). For W{sub n} from m-observer point of view with m>log{sub 10}((2 Multiplication-Sign 10{sup 2n}-1){sup 2k}+1), the probability of standard expression of Hamiltonian variation is less than 1 and depends on n,m,k.« less

  20. Duality Quantum Simulation of the Yang-Baxter Equation

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Wei, Shijie

    2018-04-01

    The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.

  1. Duality Quantum Simulation of the Yang-Baxter Equation

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Wei, Shijie

    2018-07-01

    The Yang-Baxter equation has become a significant theoretical tool in a variety of areas of physics. It is desirable to investigate the quantum simulation of the Yang-Baxter equation itself, exploring the connections between quantum integrability and quantum information processing, in which the unity of both the Yang-Baxter equation system and its quantum entanglement should be kept as a whole. In this work, we propose a duality quantum simulation algorithm of the Yang-Baxter equation, which contains the Yang-Baxter system and an ancillary qubit. Contrasting to conventional methods in which the two hand sides of the equation are simulated separately, they are simulated simultaneously in this proposal. Consequently, it opens up a way to further investigate entanglements in a Yang-Baxter equation.

  2. Self consistent solution of Schrödinger Poisson equations and some electronic properties of ZnMgO/ZnO hetero structures

    NASA Astrophysics Data System (ADS)

    Uslu, Salih; Yarar, Zeki

    2017-02-01

    The epitaxial growth of quantum wells composed of high quality allows the production and application to their device of new structures in low dimensions. The potential profile at the junction is determined by free carriers and by the level of doping. Therefore, the shape of potential is obtained by the electron density. Energy level determines the number of electrons that can be occupied at every level. Energy levels and electron density values of each level must be calculated self consistently. Starting with V(z) test potential, wave functions and electron densities for each energy levels can be calculated to solve Schrödinger equation. If Poisson's equation is solved with the calculated electron density, the electrostatic potential can be obtained. The new V(z) potential can be calculated with using electrostatic potential found beforehand. Thus, the obtained values are calculated self consistently to a certain error criterion. In this study, the energy levels formed in the interfacial potential, electron density in each level and the wave function dependence of material parameters were investigated self consistently.

  3. Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction

    DTIC Science & Technology

    2016-02-25

    Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  4. Solving Set Cover with Pairs Problem using Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Cao, Yudong; Jiang, Shuxian; Perouli, Debbie; Kais, Sabre

    2016-09-01

    Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard combinatorial optimization problem that plays an important role in networking, computational biology, and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation in order to test the performance of quantum annealing for random instances and compare with that of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding on the Chimera graph preserves the structure of the original SCP instance and in particular, the embedding for general complete bipartite graphs and logical disjunctions may be of broader use than that the specific problem we deal with.

  5. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    PubMed

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  6. Theoretical analysis of terahertz generation from a compact optical parametric oscillator based on adhesive-free-bonded periodically inverted KTiOPO4 plates

    NASA Astrophysics Data System (ADS)

    Li, Zhongyang; Wang, Silei; Wang, Mengtao; Yuan, Bin; Wang, Weishu

    2017-10-01

    Terahertz (THz) generation by difference frequency generation (DFG) processes with dual signal waves is theoretically analyzed. The dual signal waves are generated by an optical parametric oscillator (OPO) with periodically inverted KTiOPO4 (KTP) plates based on adhesive-free-bonded (AFB) technology. The phase-matching conditions in a same AFB KTP composite for the OPO generating signals and idlers and for the DFG generating THz wave can be simultaneously satisfied by selecting the thickness of each KTP plate. Moreover, 4-order cascaded DFG processes can be realized in the same AFB KTP composite. The cascaded Stokes interaction processes generating THz photons and the cascaded anti-Stokes interaction processes consuming THz photons are investigated from coupled wave equations. Take an example of 3.106 THz which locates in the vicinity of polariton resonances, THz intensities and quantum conversion efficiencies are calculated. Compared with non-cascaded DFG processes, THz intensities of 3.106 THz in 4-order cascaded DFG processes increase to 5.56 times. When the pump intensity equals 20 MW mm-2, the quantum conversion efficiency of 259% in 4-order cascaded DFG processes can be realized, which exceeds the Manley-Rowe limit.

  7. Macroscopic Quantum Phase-Locking Model for the Quantum Hall = Effect

    NASA Astrophysics Data System (ADS)

    Wang, Te-Chun; Gou, Yih-Shun

    1997-08-01

    A macroscopic model of nonlinear dissipative phase-locking between a Josephson-like frequency and a macroscopic electron wave frequency is proposed to explain the Quantum Hall Effect. It is well known that a r.f-biased Josephson junction displays a collective phase-locking behavior which can be described by a non-autonomous second order equation or an equivalent 2+1-dimensional dynamical system. Making a direct analogy between the QHE and the Josephson system, this report proposes a computer-solving nonlinear dynamical model for the quantization of the Hall resistance. In this model, the Hall voltage is assumed to be proportional to a Josephson-like frequency and the Hall current is assumed related to a coherent electron wave frequency. The Hall resistance is shown to be quantized in units of the fine structure constant as the ratio of these two frequencies are locked into a rational winding number. To explain the sample-width dependence of the critical current, the 2DEG under large applied current is further assumed to develop a Josephson-like junction array in which all Josephson-like frequencies are synchronized. Other remarkable features of the QHE such as the resistance fluctuation and the even-denominator states are also discussed within this picture.

  8. General Relativity and Gravitation

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  9. Quantum neural network-based EEG filtering for a brain-computer interface.

    PubMed

    Gandhi, Vaibhav; Prasad, Girijesh; Coyle, Damien; Behera, Laxmidhar; McGinnity, Thomas Martin

    2014-02-01

    A novel neural information processing architecture inspired by quantum mechanics and incorporating the well-known Schrodinger wave equation is proposed in this paper. The proposed architecture referred to as recurrent quantum neural network (RQNN) can characterize a nonstationary stochastic signal as time-varying wave packets. A robust unsupervised learning algorithm enables the RQNN to effectively capture the statistical behavior of the input signal and facilitates the estimation of signal embedded in noise with unknown characteristics. The results from a number of benchmark tests show that simple signals such as dc, staircase dc, and sinusoidal signals embedded within high noise can be accurately filtered and particle swarm optimization can be employed to select model parameters. The RQNN filtering procedure is applied in a two-class motor imagery-based brain-computer interface where the objective was to filter electroencephalogram (EEG) signals before feature extraction and classification to increase signal separability. A two-step inner-outer fivefold cross-validation approach is utilized to select the algorithm parameters subject-specifically for nine subjects. It is shown that the subject-specific RQNN EEG filtering significantly improves brain-computer interface performance compared to using only the raw EEG or Savitzky-Golay filtered EEG across multiple sessions.

  10. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.

    PubMed

    Nakatsuji, Hiroshi

    2012-09-18

    Just as Newtonian law governs classical physics, the Schrödinger equation (SE) and the relativistic Dirac equation (DE) rule the world of chemistry. So, if we can solve these equations accurately, we can use computation to predict chemistry precisely. However, for approximately 80 years after the discovery of these equations, chemists believed that they could not solve SE and DE for atoms and molecules that included many electrons. This Account reviews ideas developed over the past decade to further the goal of predictive quantum chemistry. Between 2000 and 2005, I discovered a general method of solving the SE and DE accurately. As a first inspiration, I formulated the structure of the exact wave function of the SE in a compact mathematical form. The explicit inclusion of the exact wave function's structure within the variational space allows for the calculation of the exact wave function as a solution of the variational method. Although this process sounds almost impossible, it is indeed possible, and I have published several formulations and applied them to solve the full configuration interaction (CI) with a very small number of variables. However, when I examined analytical solutions for atoms and molecules, the Hamiltonian integrals in their secular equations diverged. This singularity problem occurred in all atoms and molecules because it originates from the singularity of the Coulomb potential in their Hamiltonians. To overcome this problem, I first introduced the inverse SE and then the scaled SE. The latter simpler idea led to immediate and surprisingly accurate solution for the SEs of the hydrogen atom, helium atom, and hydrogen molecule. The free complement (FC) method, also called the free iterative CI (free ICI) method, was efficient for solving the SEs. In the FC method, the basis functions that span the exact wave function are produced by the Hamiltonian of the system and the zeroth-order wave function. These basis functions are called complement functions because they are the elements of the complete functions for the system under consideration. We extended this idea to solve the relativistic DE and applied it to the hydrogen and helium atoms, without observing any problems such as variational collapse. Thereafter, we obtained very accurate solutions of the SE for the ground and excited states of the Born-Oppenheimer (BO) and non-BO states of very small systems like He, H(2)(+), H(2), and their analogues. For larger systems, however, the overlap and Hamiltonian integrals over the complement functions are not always known mathematically (integration difficulty); therefore we formulated the local SE (LSE) method as an integral-free method. Without any integration, the LSE method gave fairly accurate energies and wave functions for small atoms and molecules. We also calculated continuous potential curves of the ground and excited states of small diatomic molecules by introducing the transferable local sampling method. Although the FC-LSE method is simple, the achievement of chemical accuracy in the absolute energy of larger systems remains time-consuming. The development of more efficient methods for the calculations of ordinary molecules would allow researchers to make these calculations more easily.

  11. Quantum descriptions of singularities leading to pair creation. [of gravitons

    NASA Technical Reports Server (NTRS)

    Misner, C. W.

    1974-01-01

    A class of cosmological models is analyzed which provide a mathematically convenient (but idealized) description of a cosmological singularity that develops into a pair creation epoch and terminates in an adiabatic expansion with redshifting particle energies. This class of models was obtained by Gowdy (1971, 1974) as a set of exact solutions of the classical empty space Einstein equations describing inhomogeneous universes populated only by gravitational waves. It is shown that these models can be used to exhibit simplified models of quantized gravitational fields, and that a quantum description can be given arbitrarily near a cosmological singularity. Graviton pair creation occurs, and can be seen to convert anisotropic expansion rates into the energy of graviton pairs.

  12. An exact solution for the Hawking effect in a dispersive fluid

    NASA Astrophysics Data System (ADS)

    Philbin, T. G.

    2016-09-01

    We consider the wave equation for sound in a moving fluid with a fourth-order anomalous dispersion relation. The velocity of the fluid is a linear function of position, giving two points in the flow where the fluid velocity matches the group velocity of low-frequency waves. We find the exact solution for wave propagation in the flow. The scattering shows amplification of classical waves, leading to spontaneous emission when the waves are quantized. In the dispersionless limit the system corresponds to a 1 +1 -dimensional black-hole or white-hole binary and there is a thermal spectrum of Hawking radiation from each horizon. Dispersion changes the scattering coefficients so that the quantum emission is no longer thermal. The scattering coefficients were previously obtained by Busch and Parentani in a study of dispersive fields in de Sitter space [Phys. Rev. D 86, 104033 (2012)]. Our results give further details of the wave propagation in this exactly solvable case, where our focus is on laboratory systems.

  13. Schrödinger-Poisson-Vlasov-Poisson correspondence

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Lancaster, Lachlan; Fialkov, Anastasia; Becerra, Fernando; Chavanis, Pierre-Henri

    2018-04-01

    The Schrödinger-Poisson equations describe the behavior of a superfluid Bose-Einstein condensate under self-gravity with a 3D wave function. As ℏ/m →0 , m being the boson mass, the equations have been postulated to approximate the collisionless Vlasov-Poisson equations also known as the collisionless Boltzmann-Poisson equations. The latter describe collisionless matter with a 6D classical distribution function. We investigate the nature of this correspondence with a suite of numerical test problems in 1D, 2D, and 3D along with analytic treatments when possible. We demonstrate that, while the density field of the superfluid always shows order unity oscillations as ℏ/m →0 due to interference and the uncertainty principle, the potential field converges to the classical answer as (ℏ/m )2. Thus, any dynamics coupled to the superfluid potential is expected to recover the classical collisionless limit as ℏ/m →0 . The quantum superfluid is able to capture rich phenomena such as multiple phase-sheets, shell-crossings, and warm distributions. Additionally, the quantum pressure tensor acts as a regularizer of caustics and singularities in classical solutions. This suggests the exciting prospect of using the Schrödinger-Poisson equations as a low-memory method for approximating the high-dimensional evolution of the Vlasov-Poisson equations. As a particular example we consider dark matter composed of ultralight axions, which in the classical limit (ℏ/m →0 ) is expected to manifest itself as collisionless cold dark matter.

  14. Modeling of THz Lasers Based on Intersubband Transitions in Semiconductor Quantum Wells

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Woo, Alex C. (Technical Monitor)

    1999-01-01

    In semiconductor quantum well structures, the intersubband energy separation can be adjusted to the terahertz (THz) frequency range by changing the well width and material combinations. The electronic and optical properties of these nanostructures can also be controlled by an applied dc electric field. These unique features lead to a large frequency tunability of the quantum well devices. In the on-going project of modeling of the THz lasers, we investigate the possibility of using optical pumping to generate THz radiation based on intersubband transitions in semiconductor quantum wells. We choose the optical pumping because in the electric current injection it is difficult to realize population inversion in the THz frequency range due to the small intersubband separation (4-40 meV). We considered both small conduction band offset (GaAs/AlGaAs) and large band offset (InGaAs/AlAsSb) quantum well structures. For GaAs/AlGaAs quantum wells, mid-infrared C02 lasers are used as pumping sources. For InGaAs/AlAsSb quantum wells, the resonant intersubband transitions can be excited by the near-infrared diode lasers. For three- and four-subband quantum wells, we solve the pumpfield-induced nonequilibrium distribution function for each subband of the quantum well system from a set of rate equations that include both intrasubband and intersubband relaxation processes. Taking into account the coherent interactions between pump and THz (signal) waves, we calculate the optical gain for the THz field. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. A graph shows the calculated THz gain spectra for three-subband GaAs/AlGaAs quantum wells. We see that the coherent pump and signal wave interactions contribute significantly to the gain. The pump intensity dependence of the THz gain is also studied. The calculated results are shown. Because of the optical Stark effect and pump-induced population redistribution, the maximum THz gain saturates at larger pump intensities.

  15. Stationary waves on nonlinear quantum graphs. II. Application of canonical perturbation theory in basic graph structures.

    PubMed

    Gnutzmann, Sven; Waltner, Daniel

    2016-12-01

    We consider exact and asymptotic solutions of the stationary cubic nonlinear Schrödinger equation on metric graphs. We focus on some basic example graphs. The asymptotic solutions are obtained using the canonical perturbation formalism developed in our earlier paper [S. Gnutzmann and D. Waltner, Phys. Rev. E 93, 032204 (2016)2470-004510.1103/PhysRevE.93.032204]. For closed example graphs (interval, ring, star graph, tadpole graph), we calculate spectral curves and show how the description of spectra reduces to known characteristic functions of linear quantum graphs in the low-intensity limit. Analogously for open examples, we show how nonlinear scattering of stationary waves arises and how it reduces to known linear scattering amplitudes at low intensities. In the short-wavelength asymptotics we discuss how genuine nonlinear effects may be described using the leading order of canonical perturbation theory: bifurcation of spectral curves (and the corresponding solutions) in closed graphs and multistability in open graphs.

  16. Equilibration in one-dimensional quantum hydrodynamic systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Spyros

    2017-10-01

    We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady state is inherently connected to the presence of ballistically moving localised excitations. When such excitations are present, the system retains memory of initial correlations up to infinite times, thus evading decoherence. We demonstrate this connection in the context of the Luttinger model, the simplest quantum hydrodynamic model, and in the quantum KdV equation. In the standard Luttinger model, memory of all initial correlations is preserved throughout the time evolution up to infinitely large times, as a result of the purely ballistic dynamics. However nonlinear dispersion or interactions, when separately present, lead to spreading and delocalisation that suppress the above effect by eliminating the memory of non-Gaussian correlations. We show that, for any initial state that satisfies sufficient clustering of correlations, the steady state is Gaussian in terms of the bosonised or fermionised fields in the dispersive or interacting case respectively. On the other hand, when dispersion and interaction are simultaneously present, a semiclassical approximation suggests that localisation is restored as the two effects compensate each other and solitary waves are formed. Solitary waves, or simply solitons, are experimentally observed in quantum gases and theoretically predicted based on semiclassical approaches, but the question of their stability at the quantum level remains to a large extent an open problem. We give a general overview on the subject and discuss the relevance of our findings to general out of equilibrium problems. Dedicated to John Cardy on the occasion of his 70th birthday.

  17. Functional differentiability in time-dependent quantum mechanics.

    PubMed

    Penz, Markus; Ruggenthaler, Michael

    2015-03-28

    In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.

  18. Quantum trajectories for time-dependent adiabatic master equations

    NASA Astrophysics Data System (ADS)

    Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.

    2018-02-01

    We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.

  19. Physical processes in the strong magnetic fields of accreting neutron stars

    NASA Technical Reports Server (NTRS)

    Meszaros, P.

    1984-01-01

    Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.

  20. Quantum approach of mesoscopic magnet dynamics with spin transfer torque

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Sham, L. J.

    2013-05-01

    We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.

  1. Matrix algorithms for solving (in)homogeneous bound state equations

    PubMed Central

    Blank, M.; Krassnigg, A.

    2011-01-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640

  2. Analyzing the equilibrium states of a quasi-neutral spatially inhomogeneous system of charges above a liquid dielectric film based on the first principles of quantum statistics

    NASA Astrophysics Data System (ADS)

    Lytvynenko, D. M.; Slyusarenko, Yu V.

    2017-08-01

    A theory of quasi-neutral equilibrium states of charges above a liquid dielectric surface is developed. This theory is based on the first principles of quantum statistics for systems comprising many identical particles. The proposed approach involves applying the variational principle, modified for the considered systems, and the Thomas-Fermi model. In the terms of the developed theory self-consistency equations are obtained. These equations provide the relation between the main parameters describing the system: the potential of the static electric field, the distribution function of charges and the surface profile of the liquid dielectric. The equations are used to study the phase transition in the system to a spatially periodic state. The proposed method can be applied in analyzing the properties of the phase transition in the system in relation to the spatially periodic states of wave type. Using the analytical and numerical methods, we perform a detailed study of the dependence of the critical parameters of such a phase transition on the thickness of the liquid dielectric film. Some stability criteria for the new asymmetric phase of the studied system are discussed.

  3. A study of polaritonic transparency in couplers made from excitonic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mahi R.; Racknor, Chris

    2015-03-14

    We have studied light matter interaction in quantum dot and exciton-polaritonic coupler hybrid systems. The coupler is made by embedding two slabs of an excitonic material (CdS) into a host excitonic material (ZnO). An ensemble of non-interacting quantum dots is doped in the coupler. The bound exciton polariton states are calculated in the coupler using the transfer matrix method in the presence of the coupling between the external light (photons) and excitons. These bound exciton-polaritons interact with the excitons present in the quantum dots and the coupler is acting as a reservoir. The Schrödinger equation method has been used tomore » calculate the absorption coefficient in quantum dots. It is found that when the distance between two slabs (CdS) is greater than decay length of evanescent waves the absorption spectrum has two peaks and one minimum. The minimum corresponds to a transparent state in the system. However, when the distance between the slabs is smaller than the decay length of evanescent waves, the absorption spectra has three peaks and two transparent states. In other words, one transparent state can be switched to two transparent states when the distance between the two layers is modified. This could be achieved by applying stress and strain fields. It is also found that transparent states can be switched on and off by applying an external control laser field.« less

  4. An Early Quantum Computing Proposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Stephen Russell; Alexander, Francis Joseph; Barros, Kipton Marcos

    The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems,more » it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for specific applications. These are all fundamental challenges that must be overcome for the D-Wave, or similar, quantum computing technology to be broadly applicable.« less

  5. Creation of quantum steering by interaction with a common bath

    NASA Astrophysics Data System (ADS)

    Sun, Zhe; Xu, Xiao-Qiang; Liu, Bo

    2018-05-01

    By applying the hierarchy equation method, we computationally study the creation of quantum steering in a two-qubit system interacting with a common bosonic bath. The calculation does not adopt conventional approximate approaches, such as the Born, Markov, rotating-wave, and other perturbative approximations. Three kinds of quantum steering, i.e., Einstein-Podolsky-Rosen steering (EPRS), temporal steering (TS), and spatiotemporal steering (STS), are considered. Since the initial state of the two qubits is chosen as a product state, there does not exist EPRS at the beginning. During the evolution, we find that STS as well as EPRS are generated at the same time. An inversion relationship between STS and TS is revealed. By varying the system-bath coupling strength from weak to ultrastrong regimes, we find the nonmonotonic dependence of STS, TS, and EPRS on the coupling strength. It is interesting to study the dynamics of the three kinds of quantum steering by using an exactly numerical method, which is not considered in previous researches.

  6. Dichromatic Langmuir waves in degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Kitayev, I. N.

    2015-06-15

    Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.

  7. Quantum mechanics of a constrained particle

    NASA Astrophysics Data System (ADS)

    da Costa, R. C. T.

    1981-04-01

    The motion of a particle rigidly bounded to a surface is discussed, considering the Schrödinger equation of a free particle constrained to move, by the action of an external potential, in an infinitely thin sheet of the ordinary three-dimensional space. Contrary to what seems to be the general belief expressed in the literature, this limiting process gives a perfectly well-defined result, provided that we take some simple precautions in the definition of the potentials and wave functions. It can then be shown that the wave function splits into two parts: the normal part, which contains the infinite energies required by the uncertainty principle, and a tangent part which contains "surface potentials" depending both on the Gaussian and mean curvatures. An immediate consequence of these results is the existence of different quantum mechanical properties for two isometric surfaces, as can be seen from the bound state which appears along the edge of a folded (but not stretched) plane. The fact that this surface potential is not a bending invariant (cannot be expressed as a function of the components of the metric tensor and their derivatives) is also interesting from the more general point of view of the quantum mechanics in curved spaces, since it can never be obtained from the classical Lagrangian of an a priori constrained particle without substantial modifications in the usual quantization procedures. Similar calculations are also presented for the case of a particle bounded to a curve. The properties of the constraining spatial potential, necessary to a meaningful limiting process, are discussed in some detail, and, as expected, the resulting Schrödinger equation contains a "linear potential" which is a function of the curvature.

  8. Photon mirror acceleration in the quantum regime

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Fedele, R.

    2014-12-01

    Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.

  9. Unique Properties and Prospects: Quantum Theory of the Orbital Angular Momentum of Ince-Gauss Beams

    NASA Astrophysics Data System (ADS)

    Plick, William; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton

    2012-02-01

    The Ince-Gauss modes represent a new addition to the standard solutions to the paraxial wave equation. Parametrized by the ellipticity of the beam, they span the solution space between the Hermite-Gauss and the Laguerre-Gauss modes. These beams may be decomposed in either basis, and single photons in the Ince-Gauss modes exist naturally as superpositions of either Laguerre-Gauss or Hermite-Gauss modes. We present the fully quantum theory of the orbital angular momentum of these beams. Interesting features that arise are: stable beams with fractional orbital angular momentum, non-monotonic behavior of the OAM with respect to ellipticity, and the possibility of orthogonal modes possessing the same OAM. We believe that these modes may open up a fully new parameter space for quantum informatics and communication, and thus are worthy of thorough study.

  10. John Wheeler, 1952 - 1976: Black Holes and Geometrodynamics

    NASA Astrophysics Data System (ADS)

    Thorne, Kip S.

    2009-05-01

    In 1952 John Wheeler turned his attention from nuclear physics and national defense to a backwater of physics: general relativity. Over the next 25 years, with students and postdocs he led a ``revolution'' that made relativity a major subfield of fundamental physics and a tool for astrophysics. Wheeler viewed curved spacetime as a nonlinear dynamical entity, to be studied via tools of geometrodynamics (by analogy with electrodynamics) -- including numerical relativity, for which his students laid the earliest foundations. With Joseph Weber (his postdoc), he did theoretical work on gravitational waves that helped launch Weber on a career of laying foundations for modern gravitational-wave detectors. Wheeler and his students showed compellingly that massive stars must form black holes; and he gave black holes their name, formulated the theory of their pulsations and stability (with Tullio Regge), and mentored several generations of students in seminal black-hole research (including Jacob Bekenstein's black-hole entropy). Before the discovery of pulsars, Wheeler identified magnetized, spinning neutron stars as the likely power sources for supernova remnants including the Crab nebula. He identified the Planck length and time as the characteristic scales for the laws of quantum gravity, and formulated the concept of quantum fluctuations of spacetime geometry and quantum foam. With Bryce DeWitt, he defined a quantum wave function on the space of 3-geometries and derived the Wheeler-DeWitt equation that governs it, and its a sum-over-histories action principle. Wheeler was a great inspiration to his colleagues and students, pointing the directions toward fruitful research problems and making intuitive-leap speculations about what lies beyond the frontiers of knowledge. Many of his ideas that sounded crazy at the time were ``just crazy enough to be right''.

  11. Stochastic mechanics of reciprocal diffusions

    NASA Astrophysics Data System (ADS)

    Levy, Bernard C.; Krener, Arthur J.

    1996-02-01

    The dynamics and kinematics of reciprocal diffusions were examined in a previous paper [J. Math. Phys. 34, 1846 (1993)], where it was shown that reciprocal diffusions admit a chain of conservation laws, which close after the first two laws for two disjoint subclasses of reciprocal diffusions, the Markov and quantum diffusions. For the case of quantum diffusions, the conservation laws are equivalent to Schrödinger's equation. The Markov diffusions were employed by Schrödinger [Sitzungsber. Preuss. Akad. Wiss. Phys. Math Kl. 144 (1931); Ann. Inst. H. Poincaré 2, 269 (1932)], Nelson [Dynamical Theories of Brownian Motion (Princeton University, Princeton, NJ, 1967); Quantum Fluctuations (Princeton University, Princeton, NJ, 1985)], and other researchers to develop stochastic formulations of quantum mechanics, called stochastic mechanics. We propose here an alternative version of stochastic mechanics based on quantum diffusions. A procedure is presented for constructing the quantum diffusion associated to a given wave function. It is shown that quantum diffusions satisfy the uncertainty principle, and have a locality property, whereby given two dynamically uncoupled but statistically correlated particles, the marginal statistics of each particle depend only on the local fields to which the particle is subjected. However, like Wigner's joint probability distribution for the position and momentum of a particle, the finite joint probability densities of quantum diffusions may take negative values.

  12. Twisted Quantum Lax Equations

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter

    We show the construction of twisted quantum Lax equations associated with quantum groups, and solve these equations using factorization properties of the corresponding quantum groups. Our construction generalizes in many respects the AKS construction for Lie groups and the construction of M. A. Semenov-Tian-Shansky for the Lie-Poisson case.

  13. Black Hole Information Problem and Wave Bursts

    NASA Astrophysics Data System (ADS)

    Gogberashvili, Merab; Pantskhava, Lasha

    2018-06-01

    By reexamination of the boundary conditions of wave equation on a black hole horizon it is found not harmonic, but real-valued exponentially time-dependent solutions. This means that quantum particles probably do not cross the Schwarzschild horizon, but are absorbed and some are reflected by it, what potentially can solve the famous black hole information paradox. To study this strong gravitational lensing we are introducing an effective negative cosmological constant between the Schwarzschild and photon spheres. It is shown that the reflected particles can obtain their additional energy in this effective AdS space and could explain properties of some unusually strong signals, like LIGO events, gamma ray and fast radio bursts.

  14. On the physical interpretation of the nuclear molecular orbital energy.

    PubMed

    Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés

    2017-06-07

    Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.

  15. Nonlinear Riccati equations as a unifying link between linear quantum mechanics and other fields of physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-04-01

    Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.

  16. Nonlinear dissipative and dispersive electrostatic structures in unmagnetized relativistic electron-ion plasma with warm ions and trapped electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Hamid, Naira; Ilyas, Iffat; Siddiq, M.

    2017-06-01

    In this paper, we have investigated electrostatic solitary and shock waves in an unmagnetized relativistic electron-ion (ei) plasma in the presence of warm ions and trapped electrons. In this regard, we have derived the trapped Korteweg-de Vries Burgers (TKdVB) equation using the small amplitude approximation method, which to the best of our knowledge has not been investigated in plasmas. Since the TKdVB equation involves fractional nonlinearity on account of trapped electrons, we have employed a smartly crafted extension of the tangent hyperbolic method and presented the solution of the TKdVB equation in this paper. The limiting cases of the TKdVB equation yield trapped Burgers (TB) and trapped Korteweg-de Vries (TKdV) equations. We have also presented the solutions of TB and TKdV equations. We have also explored how the plasma parameters affect the propagation characteristics of the nonlinear structures obtained for these modified nonlinear partial differential equations. We hope that the present work will open new vistas of research in the nonlinear plasma theory both in classical and quantum plasmas.

  17. About Essence of the Wave Function on Atomic Level and in Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikulov, A. V.

    The wave function was proposed for description of quantum phenomena on the atomic level. But now it is well known that quantum phenomena are observed not only on atomic level and the wave function is used for description of macroscopic quantum phenomena, such as superconductivity. The essence of the wave function on level elementary particles was and is the subject of heated argument among founders of quantum mechanics and other physicists. This essence seems more clear in superconductor. But impossibility of probabilistic interpretation of wave function in this case results to obvious contradiction of quantum principles with some fundamental principlesmore » of physics.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Célérier, Marie-Noëlle; Nottale, Laurent, E-mail: marie-noelle.celerier@obspm.fr, E-mail: laurent.nottale@obspm.fr

    Owing to the non-differentiable nature of the theory of Scale Relativity, the emergence of complex wave functions, then of spinors and bi-spinors occurs naturally in its framework. The wave function is here a manifestation of the velocity field of geodesics of a continuous and non-differentiable (therefore fractal) space-time. In a first paper (Paper I), we have presented the general argument which leads to this result using an elaborate and more detailed derivation than previously displayed. We have therefore been able to show how the complex wave function emerges naturally from the doubling of the velocity field and to revisit themore » derivation of the non-relativistic Schrödinger equation of motion. In the present paper (Paper II), we deal with relativistic motion and detail the natural emergence of the bi-spinors from such first principles of the theory. Moreover, while Lorentz invariance has been up to now inferred from mathematical results obtained in stochastic mechanics, we display here a new and detailed derivation of the way one can obtain a Lorentz invariant expression for the expectation value of the product of two independent fractal fluctuation fields in the sole framework of the theory of Scale Relativity. These new results allow us to enhance the robustness of our derivation of the two main equations of motion of relativistic quantum mechanics (the Klein-Gordon and Dirac equations) which we revisit here at length.« less

  19. Quantum confined Stark effects of single dopant in polarized hemispherical quantum dot: Two-dimensional finite difference approach and Ritz-Hassé variation method

    NASA Astrophysics Data System (ADS)

    El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi

    2018-05-01

    Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.

  20. Schrödinger's immortal cat

    NASA Astrophysics Data System (ADS)

    Peres, Asher

    1988-01-01

    The purpose of this paper is to review and clarify the quantum “measurement problem.” The latter originates in the ambivalent nature of the “observer”: Although the observer is not described by the Schrödinger equation, it should nevertheless be possible to “quantize” him and include him in the wave function if quantum theory is universally valid. The problem is to prove that no contradiction may arise in these two conflicting descriptions. The proof invokes the notion of irreversibility. The validity of the latter is questionable, because the standard rationale for classical irreversibility, namely mixing and coarse graining, does not apply to quantum theory. There is no chaos in a closed, finite quantum system. However, when a system is large enough, it cannot be perfectly isolated from its “environment,” namely from external (or even internal) degrees of freedom which are not fully accounted for in the Hamiltonian of that system. As a consequence, the long-range evolution of such a quantum system is essentially unpredictable. It follows that the notion of irreversibility is a valid one in quantum theory and the “measurement problem” can be brought to a satisfactory solution.

  1. High-order boundary integral equation solution of high frequency wave scattering from obstacles in an unbounded linearly stratified medium

    NASA Astrophysics Data System (ADS)

    Barnett, Alex H.; Nelson, Bradley J.; Mahoney, J. Matthew

    2015-09-01

    We apply boundary integral equations for the first time to the two-dimensional scattering of time-harmonic waves from a smooth obstacle embedded in a continuously-graded unbounded medium. In the case we solve, the square of the wavenumber (refractive index) varies linearly in one coordinate, i.e. (Δ + E +x2) u (x1 ,x2) = 0 where E is a constant; this models quantum particles of fixed energy in a uniform gravitational field, and has broader applications to stratified media in acoustics, optics and seismology. We evaluate the fundamental solution efficiently with exponential accuracy via numerical saddle-point integration, using the truncated trapezoid rule with typically 102 nodes, with an effort that is independent of the frequency parameter E. By combining with a high-order Nyström quadrature, we are able to solve the scattering from obstacles 50 wavelengths across to 11 digits of accuracy in under a minute on a desktop or laptop.

  2. On the global "two-sided" characteristic Cauchy problem for linear wave equations on manifolds

    NASA Astrophysics Data System (ADS)

    Lupo, Umberto

    2018-04-01

    The global characteristic Cauchy problem for linear wave equations on globally hyperbolic Lorentzian manifolds is examined, for a class of smooth initial value hypersurfaces satisfying favourable global properties. First it is shown that, if geometrically well-motivated restrictions are placed on the supports of the (smooth) initial datum and of the (smooth) inhomogeneous term, then there exists a continuous global solution which is smooth "on each side" of the initial value hypersurface. A uniqueness result in Sobolev regularity H^{1/2+ɛ }_{loc} is proved among solutions supported in the union of the causal past and future of the initial value hypersurface, and whose product with the indicator function of the causal future (resp. past) of the hypersurface is past compact (resp. future compact). An explicit representation formula for solutions is obtained, which prominently features an invariantly defined, densitised version of the null expansion of the hypersurface. Finally, applications to quantum field theory on curved spacetimes are briefly discussed.

  3. Branching and resonant characteristics of surface plasma waves in a semi-bounded quantum plasma including spin-current effects

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Gwanyong; Jung, Young-Dae

    2018-05-01

    The dispersion relation for the waves propagating on the surface of a bounded quantum plasma with consideration of electron spin-current and ion-stream is derived and numerically investigated. We have found that one of the real parts of the wave frequency has the branching behavior beyond the instability domains. In such a region where the frequency branching occurs, the waves exhibit purely propagating mode. The resonant instability has also been investigated. We have found that when the phase velocity of the wave is close to the velocity of ion-stream the wave becomes unstable. However, the resonant growth rate is remarkably reduced by the effect of electron spin-current. The growth rate is also decreased by either the reduction of ion-stream velocity or the increase in quantum wavelength. Thus, the quantum effect in terms of the quantum wave number is found to suppress the resonant instability. It is also found that the increase in Fermi energy can reduce the growth rate of the resonant wave in the quantum plasma.

  4. Gravitation: Foundations and Frontiers

    NASA Astrophysics Data System (ADS)

    Padmanabhan, T.

    2010-01-01

    1. Special relativity; 2. Scalar and electromagnetic fields in special relativity; 3. Gravity and spacetime geometry: the inescapable connection; 4. Metric tensor, geodesics and covariant derivative; 5. Curvature of spacetime; 6. Einstein's field equations and gravitational dynamics; 7. Spherically symmetric geometry; 8. Black holes; 9. Gravitational waves; 10. Relativistic cosmology; 11. Differential forms and exterior calculus; 12. Hamiltonian structure of general relativity; 13. Evolution of cosmological perturbations; 14. Quantum field theory in curved spacetime; 15. Gravity in higher and lower dimensions; 16. Gravity as an emergent phenomenon; Notes; Index.

  5. Quantum Theory of an Atom Near Partially Reflecting Walls

    DTIC Science & Technology

    1987-06-15

    rotating - wave approximations . Jaynes and Cummings5 but they are damped by the factor e -Y, where y is the , showed that the same sort of "Rabi...equation describing renewed interest in the Jaynes - Cummings model by the coupling of the atoms of the (dielectric) mirror to the describing certain... Jaynes - Cummings model in which one begins a priori way. DISTR1UTION ffATDi0I A 35 5081 @1987 The American Physical Society Approvd for pubWi MIM D19bi

  6. One-dimensional Coulomb problem in Dirac materials

    NASA Astrophysics Data System (ADS)

    Downing, C. A.; Portnoi, M. E.

    2014-11-01

    We investigate the one-dimensional Coulomb potential with application to a class of quasirelativistic systems, so-called Dirac-Weyl materials, described by matrix Hamiltonians. We obtain the exact solution of the shifted and truncated Coulomb problems, with the wave functions expressed in terms of special functions (namely, Whittaker functions), while the energy spectrum must be determined via solutions to transcendental equations. Most notably, there are critical band gaps below which certain low-lying quantum states are missing in a manifestation of atomic collapse.

  7. Gaussian and Airy wave packets of massive particles with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Karlovets, Dmitry V.

    2015-01-01

    While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate, by employing a null-plane- (light-cone-) variable formalism, that there is a family of such solutions that are exact. A scalar Gaussian wave packet in the transverse plane is generalized so that it acquires a well-defined z component of the orbital angular momentum (OAM), while it may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel states, may have an azimuthal-angle-dependent probability density and finite uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave packet, which can be interpreted as a one-particle state for a relativistic massive boson, show that its center moves along the same quasiclassical straight path, and, which is more important, spreads with time and distance exactly as a Gaussian wave packet does, in accordance with the uncertainty principle. It is explained that this fact does not contradict the well-known "nonspreading" feature of the Airy beams. While the effective OAM for such states is zero, its uncertainty (or the beam's OAM bandwidth) is found to be finite, and it depends on the packet's parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-variable formalism and the approximate ones in the usual approach is indicated; generalizations of these states for a boson in the external field of a plane electromagnetic wave are also presented.

  8. Boundary transfer matrices and boundary quantum KZ equations

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2015-07-01

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  9. Simultaneous parametric generation and up-conversion of entangled optical images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saygin, M. Yu., E-mail: mihasyu@gmail.com; Chirkin, A. S., E-mail: aschirkin@rambler.r

    A quantum theory of parametric amplification and frequency conversion of an optical image in coupled nonlinear optical processes that include one parametric amplification process at high-frequency pumping and two up-conversion processes in the same pump field is developed. The field momentum operator that takes into account the diffraction and group velocities of the waves is used to derive the quantum equations related to the spatial dynamics of the images during the interaction. An optical scheme for the amplification and conversion of a close image is considered. The mean photon number density and signal-to-noise ratio are calculated in the fixed-pump-field approximationmore » for images at various frequencies. It has been established that the signal-to-noise ratio decreases with increasing interaction length in the amplified image and increases in the images at the generated frequencies, tending to asymptotic values for all interacting waves. The variance of the difference of the numbers of photons is calculated for various pairs of frequencies. The quantum entanglement of the optical images formed in a high-frequency pump field is shown to be converted to higher frequencies during the generation of sum frequencies. Thus, two pairs of entangled optical images are produced in the process considered.« less

  10. Emergence of a turbulent cascade in a quantum gas

    NASA Astrophysics Data System (ADS)

    Navon, Nir; Gaunt, Alexander L.; Smith, Robert P.; Hadzibabic, Zoran

    2016-11-01

    A central concept in the modern understanding of turbulence is the existence of cascades of excitations from large to small length scales, or vice versa. This concept was introduced in 1941 by Kolmogorov and Obukhov, and such cascades have since been observed in various systems, including interplanetary plasmas, supernovae, ocean waves and financial markets. Despite much progress, a quantitative understanding of turbulence remains a challenge, owing to the interplay between many length scales that makes theoretical simulations of realistic experimental conditions difficult. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas—a quantum fluid that can be theoretically described on all relevant length scales. We prepare a Bose-Einstein condensate in an optical box, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear response to the periodic drive, and observe a gradual development of a cascade characterized by an isotropic power-law distribution in momentum space. We numerically model our experiments using the Gross-Pitaevskii equation and find excellent agreement with the measurements. Our experiments establish the uniform Bose gas as a promising new medium for investigating many aspects of turbulence, including the interplay between vortex and wave turbulence, and the relative importance of quantum and classical effects.

  11. On Schrödinger's equation, Hertz's mechanics and Van Vleck's determinant

    NASA Astrophysics Data System (ADS)

    Lopes Coelho, R.; Stachel, John

    2013-07-01

    There has been much research on Schrödinger's route to what we now call Schrödinger's equation. Various authors disagree as to the exact nature of the influence of each of the physicists he cites—and of some that he does not. This paper, intended for graduate students of and researchers in quantum theory, clarifies Schrödinger's original aims in formulating a wave equation for matter, discusses how far he fulfilled his original aspirations and in what respects he fell short of his goal. An analysis of Schrödinger's foundational paper enables us to distinguish between a formal and an epistemological part, and consider the input of the physicists cited on the basis of the part in which each reference occurs. It turns out, for instance, that Hamilton's optical-mechanical analogy belongs entirely to the epistemological part. Indeed, no element of this analogy plays any role in the formal part of Schrödinger's argument. Instead of basing his theory on this analogy, as is often done nowadays in the physics literature and even in the history of science, we maintain that the aim of Schrödinger's project was to represent wave phenomena by a ‘wave’ in configuration- or q-space, paralleling Hertz's treatment in his Mechanics (1894). The influence of this book on Schrödinger's foundational paper is demonstrated by an analysis of his unpublished paper: Hertz's Mechanics and Einstein's Theory of Gravitation. This approach enables us to dispense with the optical-mechanical analogy in tracing the route to Schrödinger's equation. We also discuss the curious role of the Van Vleck determinant as the ‘missing link’ in taking the classical limit of Schrödinger's wavefunction. A concluding section discusses the relation of some of Schrödinger's earlier and later work to the development of quantum field theory.

  12. Conservative Diffusions: a Constructive Approach to Nelson's Stochastic Mechanics.

    NASA Astrophysics Data System (ADS)

    Carlen, Eric Anders

    In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions; this thesis is a study of that description. We emphasize that we are concerned here with the possibility of describing, as opposed to explaining, quantum phenomena in terms of diffusions. In this direction, the following questions arise: "Do the diffusions of stochastic mechanics--which are formally given by stochastic differential equations with extremely singular coefficients--really exist?" Given that they exist, one can ask, "Do these diffusions have physically reasonable sample path behavior, and can we use information about sample paths to study the behavior of physical systems?" These are the questions we treat in this thesis. In Chapter I we review stochastic mechanics and diffusion theory, using the Guerra-Morato variational principle to establish the connection with the Schroedinger equation. This chapter is largely expository; however, there are some novel features and proofs. In Chapter II we settle the first of the questions raised above. Using PDE methods, we construct the diffusions of stochastic mechanics. Our result is sufficiently general to be of independent mathematical interest. In Chapter III we treat potential scattering in stochastic mechanics and discuss direct probabilistic methods of studying quantum scattering problems. Our results provide a solid "Yes" in answer to the second question raised above.

  13. Controlled formation and reflection of a bright solitary matter-wave

    PubMed Central

    Marchant, A. L.; Billam, T. P.; Wiles, T. P.; Yu, M. M. H.; Gardiner, S. A.; Cornish, S. L.

    2013-01-01

    Bright solitons are non-dispersive wave solutions, arising in a diverse range of nonlinear, one-dimensional systems, including atomic Bose–Einstein condensates with attractive interactions. In reality, cold-atom experiments can only approach the idealized one-dimensional limit necessary for the realization of true solitons. Nevertheless, it remains possible to create bright solitary waves, the three-dimensional analogue of solitons, which maintain many of the key properties of their one-dimensional counterparts. Such solitary waves offer many potential applications and provide a rich testing ground for theoretical treatments of many-body quantum systems. Here we report the controlled formation of a bright solitary matter-wave from a Bose–Einstein condensate of 85Rb, which is observed to propagate over a distance of ∼1.1 mm in 150 ms with no observable dispersion. We demonstrate the reflection of a solitary wave from a repulsive Gaussian barrier and contrast this to the case of a repulsive condensate, in both cases finding excellent agreement with theoretical simulations using the three-dimensional Gross–Pitaevskii equation. PMID:23673650

  14. The GUP and quantum Raychaudhuri equation

    NASA Astrophysics Data System (ADS)

    Vagenas, Elias C.; Alasfar, Lina; Alsaleh, Salwa M.; Ali, Ahmed Farag

    2018-06-01

    In this paper, we compare the quantum corrections to the Schwarzschild black hole temperature due to quadratic and linear-quadratic generalised uncertainty principle, with the corrections from the quantum Raychaudhuri equation. The reason for this comparison is to connect the deformation parameters β0 and α0 with η which is the parameter that characterises the quantum Raychaudhuri equation. The derived relation between the parameters appears to depend on the relative scale of the system (black hole), which could be read as a beta function equation for the quadratic deformation parameter β0. This study shows a correspondence between the two phenomenological approaches and indicates that quantum Raychaudhuri equation implies the existence of a crystal-like structure of spacetime.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590

    The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less

  16. Semiclassical regularization of Vlasov equations and wavepackets for nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Athanassoulis, Agissilaos

    2018-03-01

    We consider the semiclassical limit of nonlinear Schrödinger equations with initial data that are well localized in both position and momentum (non-parametric wavepackets). We recover the Wigner measure (WM) of the problem, a macroscopic phase-space density which controls the propagation of the physical observables such as mass, energy and momentum. WMs have been used to create effective models for wave propagation in: random media, quantum molecular dynamics, mean field limits, and the propagation of electrons in graphene. In nonlinear settings, the Vlasov-type equations obtained for the WM are often ill-posed on the physically interesting spaces of initial data. In this paper we are able to select the measure-valued solution of the 1  +  1 dimensional Vlasov-Poisson equation which correctly captures the semiclassical limit, thus finally resolving the non-uniqueness in the seminal result of Zhang et al (2012 Comm. Pure Appl. Math. 55 582-632). The same approach is also applied to the Vlasov-Dirac-Benney equation with small wavepacket initial data, extending several known results.

  17. Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids

    NASA Astrophysics Data System (ADS)

    Boué, Laurent; Dasgupta, Ratul; Laurie, Jason; L'Vov, Victor; Nazarenko, Sergey; Procaccia, Itamar

    2011-08-01

    We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quantized vortices in superfluids and address the controversy concerning the energy spectrum that is associated with these excitations. Finding the correct energy spectrum is important because Kelvin waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temperatures. In this paper, we show analytically that the solution proposed by [L’vov and Nazarenko, JETP Lett.JTPLA20021-364010.1134/S002136401008014X 91, 428 (2010)] enjoys existence, uniqueness, and regularity of the prefactor. Furthermore, we present numerical results of the dynamical equation that describes to leading order the nonlocal regime of the Kelvin-wave dynamics. We compare our findings with the analytical results from the proposed local and nonlocal theories for Kelvin-wave dynamics and show an agreement with the nonlocal predictions. Accordingly, the spectrum proposed by L’vov and Nazarenko should be used in future theories of quantum turbulence. Finally, for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuating dissipative scale, which we interpreted as a finite-size effect characteristic of mesoscopic wave turbulence.

  18. A Theory of Gravity and General Relativity based on Quantum Electromagnetism

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J. X.

    2018-02-01

    Based on first principles solutions in a unified framework of quantum mechanics and electromagnetism we predict the presence of a universal attractive depolarisation radiation (DR) Lorentz force (F) between quantum entities, each being either an IED matter particle or light quantum, in a polarisable dielectric vacuum. Given two quantum entities i = 1, 2 of either kind, of characteristic frequencies ν _i^0, masses m_i0 = hν _i^0/{c^2} and separated at a distance r 0, the solution for F is F = - G}m_1^0m_2^0/{≤ft( {{r^2}} \\right)^2}, where G} = χ _0^2{e^4}/12{π ^2} \\in _0^2{ρ _λ };{χ _0} is the susceptibility and π λ is the reduced linear mass density of the vacuum. This force F resembles in all respects Newton’s gravity and is accurate at the weak F limit; hence ℊ equals the gravitational constant G. The DR wave fields and hence the gravity are each propagated in the dielectric vacuum at the speed of light c; these can not be shielded by matter. A test particle µ of mass m 0 therefore interacts gravitationally with all of the building particles of a given large mass M at r 0 apart, by a total gravitational force F = -GMm 0/(r 0)2 and potential V = -∂F/∂r 0. For a finite V and hence a total Hamiltonian H = m 0 c 2 + V, solution for the eigenvalue equation of µ presents a red-shift in the eigen frequency ν = ν 0(1 - GM/r 0 c 2) and hence in other wave variables. The quantum solutions combined with the wave nature of the gravity further lead to dilated gravito optical distance r = r 0/(1 - GM/r 0 c 2) and time t = t 0/(1 - GM/r 0 c 2), and modified Newton’s gravity and Einstein’s mass energy relation. Applications of these give predictions of the general relativistic effects manifested in the four classical test experiments of Einstein’s general relativity (GR), in direct agreement with the experiments and the predictions given based on GR.

  19. Quantum spectral curve for ( q, t)-matrix model

    NASA Astrophysics Data System (ADS)

    Zenkevich, Yegor

    2018-02-01

    We derive quantum spectral curve equation for ( q, t)-matrix model, which turns out to be a certain difference equation. We show that in Nekrasov-Shatashvili limit this equation reproduces the Baxter TQ equation for the quantum XXZ spin chain. This chain is spectral dual to the Seiberg-Witten integrable system associated with the AGT dual gauge theory.

  20. Study of diffusion of wave packets in a square lattice under external fields along the discrete nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    de Brito, P. E.; Nazareno, H. N.

    2012-09-01

    The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.

  1. Dynamics of a broad-band quantum cascade laser: from chaos to coherent dynamics and mode-locking

    NASA Astrophysics Data System (ADS)

    Columbo, L. L.; Barbieri, S.; Sirtori, C.; Brambilla, M.

    2018-02-01

    The dynamics of a multimode Quantum Cascade Laser, is studied in a model based on effective semiconductor Maxwell-Bloch equations, encompassing key features for the radiationmedium interaction such as an asymmetric, frequency dependent, gain and refractive index as well as the phase-amplitude coupling provided by the Henry factor. By considering the role of the free spectral range and Henry factor, we develop criteria suitable to identify the conditions which allow to destabilize, close to threshold, the traveling wave emitted by the laser and lead to chaotic or regular multimode dynamics. In the latter case our simulations show that the field oscillations are associated to self-confined structures which travel along the laser cavity, bridging mode-locking and solitary wave propagation. In addition, we show how a RF modulation of the bias current leads to active mode-locking yielding high-contrast, picosecond pulses. Our results compare well with recent experiments on broad-band THz-QCLs and may help understanding the conditions for the generation of ultrashort pulses and comb operation in Mid-IR and THz spectral regions

  2. Radiative decay rate of excitons in square quantum wells: Microscopic modeling and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khramtsov, E. S.; Grigoryev, P. S.; Ignatiev, I. V.

    The binding energy and the corresponding wave function of excitons in GaAs-based finite square quantum wells (QWs) are calculated by the direct numerical solution of the three-dimensional Schrödinger equation. The precise results for the lowest exciton state are obtained by the Hamiltonian discretization using the high-order finite-difference scheme. The microscopic calculations are compared with the results obtained by the standard variational approach. The exciton binding energies found by two methods coincide within 0.1 meV for the wide range of QW widths. The radiative decay rate is calculated for QWs of various widths using the exciton wave functions obtained by direct andmore » variational methods. The radiative decay rates are confronted with the experimental data measured for high-quality GaAs/AlGaAs and InGaAs/GaAs QW heterostructures grown by molecular beam epitaxy. The calculated and measured values are in good agreement, though slight differences with earlier calculations of the radiative decay rate are observed.« less

  3. Exchange interaction effects on waves in magnetized quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trukhanova, Mariya Iv., E-mail: mar-tiv@yandex.ru; Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    2015-02-15

    We have applied the many-particle quantum hydrodynamics that includes the Coulomb exchange interaction to magnetized quantum plasmas. We considered a number of wave phenomena that are affected by the Coulomb exchange interaction. Since the Coulomb exchange interaction affects the longitudinal and transverse-longitudinal waves, we focused our attention on the Langmuir waves, the Trivelpiece-Gould waves, the ion-acoustic waves in non-isothermal magnetized plasmas, the dispersion of the longitudinal low-frequency ion-acoustic waves, and low-frequency electromagnetic waves at T{sub e} ≫ T{sub i}. We have studied the dispersion of these waves and present the numeric simulation of their dispersion properties.

  4. Processing in (linear) systems with stochastic input

    NASA Astrophysics Data System (ADS)

    Nutu, Catalin Silviu; Axinte, Tiberiu

    2016-12-01

    The paper is providing a different approach to real-world systems, such as micro and macro systems of our real life, where the man has little or no influence on the system, either not knowing the rules of the respective system or not knowing the input of the system, being thus mainly only spectator of the system's output. In such a system, the input of the system and the laws ruling the system could be only "guessed", based on intuition or previous knowledge of the analyzer of the respective system. But, as we will see in the paper, it exists also another, more theoretical and hence scientific way to approach the matter of the real-world systems, and this approach is mostly based on the theory related to Schrödinger's equation and the wave function associated with it and quantum mechanics as well. The main results of the paper are regarding the utilization of the Schrödinger's equation and related theory but also of the Quantum mechanics, in modeling real-life and real-world systems.

  5. Algebraic calculations for spectrum of superintegrable system from exceptional orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong

    2018-04-01

    We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.

  6. Obliquely propagating ion acoustic solitary structures in the presence of quantized magnetic field

    NASA Astrophysics Data System (ADS)

    Iqbal Shaukat, Muzzamal

    2017-10-01

    The effect of linear and nonlinear propagation of electrostatic waves have been studied in degenerate magnetoplasma taking into account the effect of electron trapping and finite temperature with quantizing magnetic field. The formation of solitary structures has been investigated by employing the small amplitude approximation both for fully and partially degenerate quantum plasma. It is observed that the inclusion of quantizing magnetic field significantly affects the propagation characteristics of the solitary wave. Importantly, the Zakharov-Kuznetsov equation under consideration has been found to allow the formation of compressive solitary structures only. The present investigation may be beneficial to understand the propagation of nonlinear electrostatic structures in dense astrophysical environments such as those found in white dwarfs.

  7. An analysis of Isgur-Wise function of heavy-light mesons within a higher dimensional potential model approach

    NASA Astrophysics Data System (ADS)

    Roy, Sabyasachi; Choudhury, D. K.

    2014-03-01

    Nambu-Goto action for bosonic string predicts the quark-antiquark potential to be V(r) = -γ/r + σr + μ0. The coefficient γ = π(d - 2)/24 is the Lüscher coefficient of the Lüscher term 7/r, which depends upon the space-time dimension 'd'. Very recently, we have developed meson wave functions in higher dimension with this potential from higher dimensional Schrodinger equation by applying quantum mechanical perturbation technique with both Lüscher term as parent and as perturbation. In this letter, we analyze Isgur-Wise function for heavy-light mesons using these wave functions in higher dimension and make a comparative study on the status of the perturbation technique in both the cases.

  8. Irreversibility in physics stemming from unpredictable symbol-handling agents

    NASA Astrophysics Data System (ADS)

    Myers, John M.; Madjid, F. Hadi

    2016-05-01

    The basic equations of physics involve a time variable t and are invariant under the transformation t --> -t. This invariance at first sight appears to impose time reversibility as a principle of physics, in conflict with thermodynamics. But equations written on the blackboard are not the whole story in physics. In prior work we sharpened a distinction obscured in today's theoretical physics, the distinction between obtaining evidence from experiments on the laboratory bench and explaining that evidence in mathematical symbols on the blackboard. The sharp distinction rests on a proof within the mathematics of quantum theory that no amount of evidence, represented in quantum theory in terms of probabilities, can uniquely determine its explanation in terms of wave functions and linear operators. Building on the proof we show here a role in physics for unpredictable symbol-handling agents acting both at the blackboard and at the workbench, communicating back and forth by means of transmitted symbols. Because of their unpredictability, symbol-handling agents introduce a heretofore overlooked source of irreversibility into physics, even when the equations they write on the blackboard are invariant under t --> -t. Widening the scope of descriptions admissible to physics to include the agents and the symbols that link theory to experiments opens up a new source of time-irreversibility in physics.

  9. Quantum model of a hysteresis in a single-domain magnetically soft ferromagnetic

    NASA Astrophysics Data System (ADS)

    Ignatiev, V. K.; Lebedev, N. G.; Orlov, A. A.

    2018-01-01

    A quantum model of a single-domain magnetically soft ferromagnetic is proposed. The α-Fe crystal in a state of the saturation magnetization and a variable magnetic field is considered as a sample. The method of an effective Hamiltonian, including the operators of the Zeeman energy, the spin-orbit interaction and the interaction with the crystal field, is used in the model. An expansion of trial single-electron wave function in a series in small parameter of the spin-orbit interaction is suggested to account for the magnetic anisotropy. Within the framework of the Heisenberg representation, the nonlinear equations of motion for the magnetization and the orbital moment of single domain are obtained. Parameters of the modelling Hamiltonian are found from a comparison with experimental data on the magnetic anisotropy of iron. A phenomenological term of the magnetic friction is introduced into equation of the magnetization motion. Nonlinear equations are solved numerically by the Runge-Kutta method. A dependence of the single domain magnetization on magnetic field intensity has a characteristic form of a hysteresis loop which parameters are quantitatively coordinated with experimental data of researches of magnetic properties of nanoparticles of iron and iron oxide. The method is extended for modelling the magnetization dynamics of multi-domain ferromagnetic in the approximation of a strong crystal field.

  10. Classical electromagnetic radiation of the Dirac electron

    NASA Technical Reports Server (NTRS)

    Lanyi, G.

    1973-01-01

    A wave-function-dependent four-vector potential is added to the Dirac equation in order to achieve conservation of energy and momentum for a Dirac electron and its emitted electromagnetic field. The resultant equation contains solutions which describe transitions between different energy states of the electron. As a consequence it is possible to follow the space-time evolution of such a process. This evolution is shown in the case of the spontaneous emission of an electromagnetic field by an electron bound in a hydrogen-like atom. The intensity of the radiation and the spectral distribution are calculated for transitions between two eigenstates. The theory gives a self-consistent deterministic description of some simple radiation processes without using quantum electrodynamics or the correspondence principle.

  11. Multiscale real-space quantum-mechanical tight-binding calculations of electronic structure in crystals with defects using perfectly matched layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourmatin, Hossein, E-mail: mpourmat@andrew.cmu.edu; Dayal, Kaushik, E-mail: kaushik@cmu.edu

    2016-10-15

    Graphical abstract: - Abstract: We consider the scattering of incident plane-wave electrons from a defect in a crystal modeled by the time-harmonic Schrödinger equation. While the defect potential is localized, the far-field potential is periodic, unlike standard free-space scattering problems. Previous work on the Schrödinger equation has been almost entirely in free-space conditions; a few works on crystals have been in one-dimension. We construct absorbing boundary conditions for this problem using perfectly matched layers in a tight-binding formulation. Using the example of a point defect in graphene, we examine the efficiency and convergence of the proposed absorbing boundary condition.

  12. Principle of Maximum Fisher Information from Hardy’s Axioms Applied to Statistical Systems

    PubMed Central

    Frieden, B. Roy; Gatenby, Robert A.

    2014-01-01

    Consider a finite-sized, multidimensional system in a parameter state a. The system is in either a state of equilibrium or general non-equilibrium, and may obey either classical or quantum physics. L. Hardy’s mathematical axioms provide a basis for the physics obeyed by any such system. One axiom is that the number N of distinguishable states a in the system obeys N = max. This assumes that N is known as deterministic prior knowledge. However, most observed systems suffer statistical fluctuations, for which N is therefore only known approximately. Then what happens if the scope of the axiom N = max is extended to include such observed systems? It is found that the state a of the system must obey a principle of maximum Fisher information, I = Imax. This is important because many physical laws have been derived, assuming as a working hypothesis that I = Imax. These derivations include uses of the principle of Extreme physical information (EPI). Examples of such derivations were of the De Broglie wave hypothesis, quantum wave equations, Maxwell’s equations, new laws of biology (e.g. of Coulomb force-directed cell development, and of in situ cancer growth), and new laws of economic fluctuation and investment. That the principle I = Imax itself derives, from suitably extended Hardy axioms, thereby eliminates its need to be assumed in these derivations. Thus, uses of I = Imax and EPI express physics at its most fundamental level – its axiomatic basis in math. PMID:24229152

  13. Principle of maximum Fisher information from Hardy's axioms applied to statistical systems.

    PubMed

    Frieden, B Roy; Gatenby, Robert A

    2013-10-01

    Consider a finite-sized, multidimensional system in parameter state a. The system is either at statistical equilibrium or general nonequilibrium, and may obey either classical or quantum physics. L. Hardy's mathematical axioms provide a basis for the physics obeyed by any such system. One axiom is that the number N of distinguishable states a in the system obeys N=max. This assumes that N is known as deterministic prior knowledge. However, most observed systems suffer statistical fluctuations, for which N is therefore only known approximately. Then what happens if the scope of the axiom N=max is extended to include such observed systems? It is found that the state a of the system must obey a principle of maximum Fisher information, I=I(max). This is important because many physical laws have been derived, assuming as a working hypothesis that I=I(max). These derivations include uses of the principle of extreme physical information (EPI). Examples of such derivations were of the De Broglie wave hypothesis, quantum wave equations, Maxwell's equations, new laws of biology (e.g., of Coulomb force-directed cell development and of in situ cancer growth), and new laws of economic fluctuation and investment. That the principle I=I(max) itself derives from suitably extended Hardy axioms thereby eliminates its need to be assumed in these derivations. Thus, uses of I=I(max) and EPI express physics at its most fundamental level, its axiomatic basis in math.

  14. Alfvén wave interactions in the solar wind

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Hu, Q.; le Roux, J. A.; Zank, G. P.

    2012-11-01

    Alfvén wave mixing (interaction) equations used in locally incompressible turbulence transport equations in the solar wind are analyzed from the perspective of linear wave theory. The connection between the wave mixing equations and non-WKB Alfven wave driven wind theories are delineated. We discuss the physical wave energy equation and the canonical wave energy equation for non-WKB Alfven waves and the WKB limit. Variational principles and conservation laws for the linear wave mixing equations for the Heinemann and Olbert non-WKB wind model are obtained. The connection with wave mixing equations used in locally incompressible turbulence transport in the solar wind are discussed.

  15. Optimization of one-way wave equations.

    USGS Publications Warehouse

    Lee, M.W.; Suh, S.Y.

    1985-01-01

    The theory of wave extrapolation is based on the square-root equation or one-way equation. The full wave equation represents waves which propagate in both directions. On the contrary, the square-root equation represents waves propagating in one direction only. A new optimization method presented here improves the dispersion relation of the one-way wave equation. -from Authors

  16. Interpretation of Quantum Mechanics. A view of our universe

    NASA Astrophysics Data System (ADS)

    Lindgren, Ingvar

    2009-10-01

    The interpretation of quantum mechanics has been disputed ever since the advent of the theory in the 1920's. Famous are the discussions over long time between Einstein and Bohr. Einstein refused to accept the so-called Copenhagen interpretation, where the wave function collapses at a measurement and where the outcome of the measurement is essentially accidental (``God does not play dice''). Alternative interpretations have appeared, but the Copenhagen school has dominated the thoughts throughout the decades. One interesting interpretation was formulated in 1957 by Hugh Everett at Princeton, a student of John Wheeler, which abandons the wave-function collapse. In this model the universe is governed entirely by the Schrödinger equation, which does not allow for any collapse. In Everett's model after a measurement the wave function is separated into different branches that do not interact. This model was left unnoticed for long time until Bryce DeWitt took it up in 1970 and termed it ``Many-Worlds Interpretation'', a term that in some sense is misleading. Everett's model is incomplete, and it was later supplemented by the theory of decoherence, which explains how the different branches decouple as a result of the interaction with the environment. This extended model has in recent years gained increased respect, and some believe that it is the only model made available so far that is fully consistent with quantum mechanics. This interpretation can also shed some light on the development of the universe and, in particular, on the so-called Anthropic principle, which puts human beings at the center of the development.

  17. Variational mixed quantum/semiclassical simulation of dihalogen guest and rare-gas solid host dynamics

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaolu; Cina, Jeffrey A.

    2014-07-01

    A variational mixed quantum-semiclassical theory for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium is developed, tested, and used to simulate the temporal evolution of nonstationary states of the internal molecular and surrounding medium degrees of freedom. In this theory, termed the Fixed Vibrational Basis/Gaussian Bath (FVB/GB) method, the system is treated fully quantum mechanically while Gaussian wave packets are used for the bath degrees of freedom. An approximate time-dependent wave function of the entire model is obtained instead of just a reduced system density matrix, so the theory enables the analysis of the entangled system and bath dynamics that ensues following initial displacement of the internal-molecular (system) coordinate from its equilibrium position. The norm- and energy-conserving properties of the propagation of our trial wave function are natural consequences of the Dirac-Frenkel-McLachlan variational principle. The variational approach also stabilizes the time evolution in comparison to the same ansatz propagated under a previously employed locally quadratic approximation to the bath potential and system-bath interaction terms in the bath-parameter equations of motion. Dynamics calculations are carried out for molecular iodine in a 2D krypton lattice that reveal both the time-course of vibrational decoherence and the details of host-atom motion accompanying energy dissipation and dephasing. This work sets the stage for the comprehensive simulation of ultrafast time-resolved optical experiments on small molecules in low-temperature solids.

  18. Analytic computation of energy derivatives - Relationships among partial derivatives of a variationally determined function

    NASA Technical Reports Server (NTRS)

    King, H. F.; Komornicki, A.

    1986-01-01

    Formulas are presented relating Taylor series expansion coefficients of three functions of several variables, the energy of the trial wave function (W), the energy computed using the optimized variational wave function (E), and the response function (lambda), under certain conditions. Partial derivatives of lambda are obtained through solution of a recursive system of linear equations, and solution through order n yields derivatives of E through order 2n + 1, extending Puley's application of Wigner's 2n + 1 rule to partial derivatives in couple perturbation theory. An examination of numerical accuracy shows that the usual two-term second derivative formula is less stable than an alternative four-term formula, and that previous claims that energy derivatives are stationary properties of the wave function are fallacious. The results have application to quantum theoretical methods for the computation of derivative properties such as infrared frequencies and intensities.

  19. Gravity induced wave function collapse

    NASA Astrophysics Data System (ADS)

    Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.

    2017-11-01

    Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.

  20. Quantum dynamics of a plane pendulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leibscher, Monika; Schmidt, Burkhard

    A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution ofmore » the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.« less

  1. Calculating Potential Energy Curves with Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Powell, Andrew D.; Dawes, Richard

    2014-06-01

    Quantum Monte Carlo (QMC) is a computational technique that can be applied to the electronic Schrödinger equation for molecules. QMC methods such as Variational Monte Carlo (VMC) and Diffusion Monte Carlo (DMC) have demonstrated the capability of capturing large fractions of the correlation energy, thus suggesting their possible use for high-accuracy quantum chemistry calculations. QMC methods scale particularly well with respect to parallelization making them an attractive consideration in anticipation of next-generation computing architectures which will involve massive parallelization with millions of cores. Due to the statistical nature of the approach, in contrast to standard quantum chemistry methods, uncertainties (error-bars) are associated with each calculated energy. This study focuses on the cost, feasibility and practical application of calculating potential energy curves for small molecules with QMC methods. Trial wave functions were constructed with the multi-configurational self-consistent field (MCSCF) method from GAMESS-US.[1] The CASINO Monte Carlo quantum chemistry package [2] was used for all of the DMC calculations. An overview of our progress in this direction will be given. References: M. W. Schmidt et al. J. Comput. Chem. 14, 1347 (1993). R. J. Needs et al. J. Phys.: Condensed Matter 22, 023201 (2010).

  2. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.

    PubMed

    Banik, Suman Kumar; Bag, Bidhan Chandra; Ray, Deb Shankar

    2002-05-01

    Traditionally, quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of quasiprobability distribution functions, e.g., Wigner functions. These often become singular or negative in the full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion using true probability distribution functions is presented. Based on an initial coherent state representation of the bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their coordinates and momenta, we derive a generalized quantum Langevin equation in c numbers and show that the latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The corresponding Fokker-Planck, diffusion, and Smoluchowski equations are the exact quantum analogs of their classical counterparts. The present work is independent of path integral techniques. The theory as developed here is a natural extension of its classical version and is valid for arbitrary temperature and friction (the Smoluchowski equation being considered in the overdamped limit).

  3. C++QEDv2: The multi-array concept and compile-time algorithms in the definition of composite quantum systems

    NASA Astrophysics Data System (ADS)

    Vukics, András

    2012-06-01

    C++QED is a versatile framework for simulating open quantum dynamics. It allows to build arbitrarily complex quantum systems from elementary free subsystems and interactions, and simulate their time evolution with the available time-evolution drivers. Through this framework, we introduce a design which should be generic for high-level representations of composite quantum systems. It relies heavily on the object-oriented and generic programming paradigms on one hand, and on the other hand, compile-time algorithms, in particular C++ template-metaprogramming techniques. The core of the design is the data structure which represents the state vectors of composite quantum systems. This data structure models the multi-array concept. The use of template metaprogramming is not only crucial to the design, but with its use all computations pertaining to the layout of the simulated system can be shifted to compile time, hence cutting on runtime. Program summaryProgram title: C++QED Catalogue identifier: AELU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:http://cpc.cs.qub.ac.uk/licence/aelu_v1_0.html. The C++QED package contains other software packages, Blitz, Boost and FLENS, all of which may be distributed freely but have individual license requirements. Please see individual packages for license conditions. No. of lines in distributed program, including test data, etc.: 597 974 No. of bytes in distributed program, including test data, etc.: 4 874 839 Distribution format: tar.gz Programming language: C++ Computer: i386-i686, x86_64 Operating system: In principle cross-platform, as yet tested only on UNIX-like systems (including Mac OS X). RAM: The framework itself takes about 60 MB, which is fully shared. The additional memory taken by the program which defines the actual physical system (script) is typically less than 1 MB. The memory storing the actual data scales with the system dimension for state-vector manipulations, and the square of the dimension for density-operator manipulations. This might easily be GBs, and often the memory of the machine limits the size of the simulated system. Classification: 4.3, 4.13, 6.2, 20 External routines: Boost C++ libraries (http://www.boost.org/), GNU Scientific Library (http://www.gnu.org/software/gsl/), Blitz++ (http://www.oonumerics.org/blitz/), Linear Algebra Package - Flexible Library for Efficient Numerical Solutions (http://flens.sourceforge.net/). Nature of problem: Definition of (open) composite quantum systems out of elementary building blocks [1]. Manipulation of such systems, with emphasis on dynamical simulations such as Master-equation evolution [2] and Monte Carlo wave-function simulation [3]. Solution method: Master equation, Monte Carlo wave-function method. Restrictions: Total dimensionality of the system. Master equation - few thousands. Monte Carlo wave-function trajectory - several millions. Unusual features: Because of the heavy use of compile-time algorithms, compilation of programs written in the framework may take a long time and much memory (up to several GBs). Additional comments: The framework is not a program, but provides and implements an application-programming interface for developing simulations in the indicated problem domain. Supplementary information: http://cppqed.sourceforge.net/. Running time: Depending on the magnitude of the problem, can vary from a few seconds to weeks.

  4. Absorbing Boundary Conditions in Quantum Relativistic Mechanics for Spinless Particles Subject to a Classical Electromagnetic Field

    NASA Astrophysics Data System (ADS)

    Sater, Julien

    The theory of Artificial Boundary Conditions described by Antoine et al. [2,4-6] for the Schrodinger equation is applied to the Klein-Gordon (KG) in two-dimensions (2-D) for spinless particles subject to electromagnetic fields. We begin by providing definitions for a basic understanding of the theory of operators, differential geometry and wave front sets needed to discuss the factorization theorem thanks to Nirenberg and Hormander [14, 16]. The laser-free Klein-Gordon equation in 1-D is then discussed, followed by the case including electrodynamics potentials, concluding with the KG equation in 2-D space with electrodynamics potentials. We then consider numerical simulations of the laser-particle KG equation, which includes a brief analysis of a finite difference scheme. The conclusion integrates a discussion of the numerical results, the successful completion of the objective set forth, a declaration of the unanswered encountered questions and a suggestion of subjects for further research.

  5. Second-order dissipative hydrodynamics for plasma with chiral asymmetry and vorticity

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Rybalka, D. O.; Shovkovy, I. A.

    2017-05-01

    By making use of the chiral kinetic theory in the relaxation-time approximation, we derive an Israel-Stewart type formulation of the hydrodynamic equations for a chiral relativistic plasma made of neutral particles (e.g., neutrinos). The effects of chiral asymmetry are captured by including an additional continuity equation for the axial charge, as well as the leading-order quantum corrections due to the spin of particles. In a formulation of the chiral kinetic theory used, we introduce a symmetric form of the energy-momentum tensor that is suitable for the description of a weakly nonuniform chiral plasma. By construction, the energy and momentum are conserved to the same leading order in the Planck constant as the kinetic equation itself. By making use of such a chiral kinetic theory and the Chapman-Enskog approach, we obtain a set of second-order dissipative hydrodynamic equations. The effects of the fluid vorticity and velocity fluctuations on the dispersion relations of chiral vortical waves are analyzed.

  6. Simulation of quantum dynamics based on the quantum stochastic differential equation.

    PubMed

    Li, Ming

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.

  7. GENERAL: The Analytic Solution of Schrödinger Equation with Potential Function Superposed by Six Terms with Positive-power and Inverse-power Potentials

    NASA Astrophysics Data System (ADS)

    Hu, Xian-Quan; Luo, Guang; Cui, Li-Peng; Li, Fang-Yu; Niu, Lian-Bin

    2009-03-01

    The analytic solution of the radial Schrödinger equation is studied by using the tight coupling condition of several positive-power and inverse-power potential functions in this article. Furthermore, the precisely analytic solutions and the conditions that decide the existence of analytic solution have been searched when the potential of the radial Schrödinger equation is V(r) = α1r8 + α2r3 + α3r2 + β3r-1 + β2r-3 + β1r-4. Generally speaking, there is only an approximate solution, but not analytic solution for Schrödinger equation with several potentials' superposition. However, the conditions that decide the existence of analytic solution have been found and the analytic solution and its energy level structure are obtained for the Schrödinger equation with the potential which is motioned above in this paper. According to the single-value, finite and continuous standard of wave function in a quantum system, the authors firstly solve the asymptotic solution through the radial coordinate r → and r → 0; secondly, they make the asymptotic solutions combining with the series solutions nearby the neighborhood of irregular singularities; and then they compare the power series coefficients, deduce a series of analytic solutions of the stationary state wave function and corresponding energy level structure by tight coupling among the coefficients of potential functions for the radial Schrödinger equation; and lastly, they discuss the solutions and make conclusions.

  8. On the motion of classical three-body system with consideration of quantum fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorkyan, A. S., E-mail: g-ashot@sci.am

    2017-03-15

    We obtained the systemof stochastic differential equations which describes the classicalmotion of the three-body system under influence of quantum fluctuations. Using SDEs, for the joint probability distribution of the total momentum of bodies system were obtained the partial differential equation of the second order. It is shown, that the equation for the probability distribution is solved jointly by classical equations, which in turn are responsible for the topological peculiarities of tubes of quantum currents, transitions between asymptotic channels and, respectively for arising of quantum chaos.

  9. Circuit quantum acoustodynamics with surface acoustic waves.

    PubMed

    Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J

    2017-10-17

    The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.

  10. Subsonic and Supersonic Effects in Bose-Einstein Condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    A paper presents a theoretical investigation of subsonic and supersonic effects in a Bose-Einstein condensate (BEC). The BEC is represented by a time-dependent, nonlinear Schroedinger equation that includes terms for an external confining potential term and a weak interatomic repulsive potential proportional to the number density of atoms. From this model are derived Madelung equations, which relate the quantum phase with the number density, and which are used to represent excitations propagating through the BEC. These equations are shown to be analogous to the classical equations of flow of an inviscid, compressible fluid characterized by a speed of sound (g/Po)1/2, where g is the coefficient of the repulsive potential and Po is the unperturbed mass density of the BEC. The equations are used to study the effects of a region of perturbation moving through the BEC. The excitations created by a perturbation moving at subsonic speed are found to be described by a Laplace equation and to propagate at infinite speed. For a supersonically moving perturbation, the excitations are found to be described by a wave equation and to propagate at finite speed inside a Mach cone.

  11. High-order rogue waves of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Liu, Wei

    2017-10-01

    High-order rogue wave solutions of the Benjamin-Ono equation and the nonlocal nonlinear Schrödinger equation are derived by employing the bilinear method, which are expressed by simple polynomials. Typical dynamics of these high-order rogue waves are studied by analytical and graphical ways. For the Benjamin-Ono equation, there are two types of rogue waves, namely, bright rogue waves and dark rogue waves. In particular, the fundamental rogue wave pattern is different from the usual fundamental rogue wave patterns in other soliton equations. For the nonlocal nonlinear Schrödinger equation, the exact explicit rogue wave solutions up to the second order are presented. Typical rogue wave patterns such as Peregrine-type, triple and fundamental rogue waves are put forward. These high-order rogue wave patterns have not been shown before in the nonlocal Schrödinger equation.

  12. The Strange (Hi)story of Particles and Waves

    NASA Astrophysics Data System (ADS)

    Zeh, H. Dieter

    2016-03-01

    This is an attempt of a non-technical but conceptually consistent presentation of quantum theory in a historical context. While the first part is written for a general readership, Section 5 may appear a bit provocative to some quantum physicists. I argue that the single-particle wave functions of quantum mechanics have to be correctly interpreted as field modes that are "occupied once" (i.e. first excited states of the corresponding quantum oscillators in the case of boson fields). Multiple excitations lead to apparent many-particle wave functions, while the quantum states proper are defined by wave function(al)s on the "configuration" space of fundamental fields, or on another, as yet elusive, fundamental local basis.

  13. Longitudinal wave function control in single quantum dots with an applied magnetic field

    PubMed Central

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  14. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    PubMed

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  15. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    ERIC Educational Resources Information Center

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  16. Stationary phase method and delay times for relativistic and non-relativistic tunneling particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardini, A.E.

    2009-06-15

    The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for somemore » specifical colliding configurations, we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for the occurrence of accelerated and, eventually, superluminal tunneling transmission probabilities are all quantified and the problematic superluminal interpretation based on the non-relativistic tunneling dynamics is revisited. Lessons concerning the dynamics of relativistic tunneling and the mathematical structure of its solutions suggest revealing insights into mathematically analogous condensed-matter experiments using electrostatic barriers in single- and bi-layer graphene, for which the accelerated tunneling effect deserves a more careful investigation.« less

  17. Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires

    NASA Astrophysics Data System (ADS)

    Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey

    2005-06-01

    In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.

  18. Localized end states in density modulated quantum wires and rings.

    PubMed

    Gangadharaiah, Suhas; Trifunovic, Luka; Loss, Daniel

    2012-03-30

    We study finite quantum wires and rings in the presence of a charge-density wave gap induced by a periodic modulation of the chemical potential. We show that the Tamm-Shockley bound states emerging at the ends of the wire are stable against weak disorder and interactions, for discrete open chains and for continuum systems. The low-energy physics can be mapped onto the Jackiw-Rebbi equations describing massive Dirac fermions and bound end states. We treat interactions via the continuum model and show that they increase the charge gap and further localize the end states. The electrons placed in the two localized states on the opposite ends of the wire can interact via exchange interactions and this setup can be used as a double quantum dot hosting spin qubits. The existence of these states could be experimentally detected through the presence of an unusual 4π Aharonov-Bohm periodicity in the spectrum and persistent current as a function of the external flux.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubetsky, Boris; Libby, Stephen; Berman, Paul

    The influence of an external test mass on the phase of the signal of an atom interferometer is studied theoretically. Using traditional techniques in atom optics based on the density matrix equations in the Wigner representation, we are able to extract the various contributions to the phase of the signal associated with the classical motion of the atoms, the quantum correction to this motion resulting from atomic recoil that is produced when the atoms interact with Raman field pulses and quantum corrections to the atomic motion that occur in the time between the Raman field pulses. Thus, by increasing themore » effective wave vector associated with the Raman field pulses using modified field parameters, we can increase the sensitivity of the signal to the point where such quantum corrections can be measured. Furthermore, the expressions that are derived can be evaluated numerically to isolate the contribution to the signal from an external test mass. The regions of validity of the exact and approximate expressions are determined.« less

  20. Atom Interferometry in the Presence of an External Test Mass

    DOE PAGES

    Dubetsky, Boris; Libby, Stephen; Berman, Paul

    2016-04-21

    The influence of an external test mass on the phase of the signal of an atom interferometer is studied theoretically. Using traditional techniques in atom optics based on the density matrix equations in the Wigner representation, we are able to extract the various contributions to the phase of the signal associated with the classical motion of the atoms, the quantum correction to this motion resulting from atomic recoil that is produced when the atoms interact with Raman field pulses and quantum corrections to the atomic motion that occur in the time between the Raman field pulses. Thus, by increasing themore » effective wave vector associated with the Raman field pulses using modified field parameters, we can increase the sensitivity of the signal to the point where such quantum corrections can be measured. Furthermore, the expressions that are derived can be evaluated numerically to isolate the contribution to the signal from an external test mass. The regions of validity of the exact and approximate expressions are determined.« less

  1. The problems in quantum foundations in the light of gauge theories

    NASA Astrophysics Data System (ADS)

    Ne'Eman, Yuval

    1986-04-01

    We review the issues of nonseparability and seemingly acausal propagation of information in EPR, as displayed by experiments and the failure of Bell's inequalities. We show that global effects are in the very nature of the geometric structure of modern physical theories, occurring even at the classical level. The Aharonov-Bohm effect, magnetic monopoles, instantons, etc. result from the topology and homotopy features of the fiber bundle manifolds of gauge theories. The conservation of probabilities, a supposedly highly quantum effect, is also achieved through global geometry equations. The EPR observables all fit in such geometries, and space-time is a truncated representation and is not the correct arena for their understanding. Relativistic quantum field theory represents the global action of the measurement operators as the zero-momentum (and therefore spatially infinitely spread) limit of their wave functions (form factors). We also analyze the collapse of the state vector as a case of spontaneous symmetry breakdown in the apparatus-observed state interaction.

  2. Evolution of basic equations for nearshore wave field

    PubMed Central

    ISOBE, Masahiko

    2013-01-01

    In this paper, a systematic, overall view of theories for periodic waves of permanent form, such as Stokes and cnoidal waves, is described first with their validity ranges. To deal with random waves, a method for estimating directional spectra is given. Then, various wave equations are introduced according to the assumptions included in their derivations. The mild-slope equation is derived for combined refraction and diffraction of linear periodic waves. Various parabolic approximations and time-dependent forms are proposed to include randomness and nonlinearity of waves as well as to simplify numerical calculation. Boussinesq equations are the equations developed for calculating nonlinear wave transformations in shallow water. Nonlinear mild-slope equations are derived as a set of wave equations to predict transformation of nonlinear random waves in the nearshore region. Finally, wave equations are classified systematically for a clear theoretical understanding and appropriate selection for specific applications. PMID:23318680

  3. Quantum erasure in the near-field

    NASA Astrophysics Data System (ADS)

    Walborn, S. P.

    2018-05-01

    The phenomenon of quantum erasure has shed light on the nature of wave-particle duality and quantum complementarity. A number of quantum erasers have been realized using the far-field diffraction of photons from a Young double-slit apparatus. By marking the path of a photon using an additional degree of freedom, the usual Young interference pattern is destroyed. An appropriate measurement of the system marking the photon’s path allows one to recover the interference pattern. Here quantum erasure is considered in the context of near-field diffraction. To observe interference in the near-field requires the use of two periodic wave functions, so that the usual ‘which way’ marker then becomes a ‘which-wave function’ marker. We determine the propagation distances for which quantum erasure, or more generally the observation of interference between the two periodic wave functions, can be observed. The meaning of wave and particle-like properties in this scenario is discussed. These results could lead to quantum eraser experiments with material particles, for which interference effects are more readily observed in the near-field rather than the far-field.

  4. Pseudospin symmetry for modified Rosen-Morse potential including a Pekeris-type approximation to the pseudo-centrifugal term

    NASA Astrophysics Data System (ADS)

    Wei, Gao-Feng; Dong, Shi-Hai

    2010-11-01

    By applying a Pekeris-type approximation to the pseudo-centrifugal term, we study the pseudospin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse (MRM) potentials. A complicated quartic energy equation and spinor wave functions with arbitrary spin-orbit coupling quantum number k are presented. The pseudospin degeneracy is checked numerically. Pseudospin symmetry is discussed theoretically and numerically in the limit case α rightarrow 0 . It is found that the relativistic MRM potential cannot trap a Dirac nucleon in this limit.

  5. Spin eigenmodes of magnetic skyrmions and the problem of the effective skyrmion mass

    NASA Astrophysics Data System (ADS)

    Kravchuk, Volodymyr P.; Sheka, Denis D.; Rößler, Ulrich K.; van den Brink, Jeroen; Gaididei, Yuri

    2018-02-01

    The properties of magnon modes localized on a ferromagnetic skyrmion are studied. Mode eigenfrequencies display three types of asymptotic behavior for large skyrmion radius Rs, namely, ω0∝Rs-2 for the breathing mode and ω-|μ |∝Rs-1 and ω|μ |∝Rs-3 for modes with negative and positive azimuthal quantum numbers, respectively. A number of properties of the magnon eigenfunctions are determined. This enables us to demonstrate that the skyrmion dynamics for a traveling-wave ansatz obeys the massless Thiele equation.

  6. On beam models and their paraxial approximation

    NASA Astrophysics Data System (ADS)

    Waters, W. J.; King, B.

    2018-01-01

    We derive focused laser pulse solutions to the electromagnetic wave equation in vacuum. After reproducing beam and pulse expressions for the well-known paraxial Gaussian and axicon cases, we apply the method to analyse a laser beam with Lorentzian transverse momentum distribution. Whilst a paraxial approach has some success close to the focal axis and within a Rayleigh range of the focal spot, we find that it incorrectly predicts the transverse fall-off typical of a Lorentzian. Our vector-potential approach is particularly relevant to calculation of quantum electrodynamical processes in weak laser pulse backgrounds.

  7. Modeling the Gross-Pitaevskii Equation Using the Quantum Lattice Gas Method

    NASA Astrophysics Data System (ADS)

    Oganesov, Armen

    We present an improved Quantum Lattice Gas (QLG) algorithm as a mesoscopic unitary perturbative representation of the mean field Gross Pitaevskii (GP) equation for Bose-Einstein Condensates (BECs). The method employs an interleaved sequence of unitary collide and stream operators. QLG is applicable to many different scalar potentials in the weak interaction regime and has been used to model the Korteweg-de Vries (KdV), Burgers and GP equations. It can be implemented on both quantum and classical computers and is extremely scalable. We present results for 1D soliton solutions with positive and negative internal interactions, as well as vector solitons with inelastic scattering. In higher dimensions we look at the behavior of vortex ring reconnection. A further improvement is considered with a proper operator splitting technique via a Fourier transformation. This is great for quantum computers since the quantum FFT is exponentially faster than its classical counterpart which involves non-local data on the entire lattice (Quantum FFT is the backbone of the Shor algorithm for quantum factorization). We also present an imaginary time method in which we transform the Schrodinger equation into a diffusion equation for recovering ground state initial conditions of a quantum system suitable for the QLG algorithm.

  8. Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.

    2018-06-01

    On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.

  9. Zonal-flow dynamics from a phase-space perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less

  10. Zonal-flow dynamics from a phase-space perspective

    DOE PAGES

    Ruiz, D. E.; Parker, J. B.; Shi, E. L.; ...

    2016-12-16

    The wave kinetic equation (WKE) describing drift-wave (DW) turbulence is widely used in the studies of zonal flows (ZFs) emerging from DW turbulence. But, this formulation neglects the exchange of enstrophy between DWs and ZFs and also ignores effects beyond the geometrical-optics limit. Furthermore, we derive a modified theory that takes both of these effects into account, while still treating DW quanta (“driftons”) as particles in phase space. The drifton dynamics is described by an equation of the Wigner–Moyal type, which is commonly known in the phase-space formulation of quantum mechanics. In the geometrical-optics limit, this formulation features additional termsmore » missing in the traditional WKE that ensure exact conservation of the total enstrophy of the system, in addition to the total energy, which is the only conserved invariant in previous theories based on the WKE. We present numerical simulations to illustrate the importance of these additional terms. The proposed formulation can be considered as a phase-space representation of the second-order cumulant expansion, or CE2.« less

  11. Pilot-Wave Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bush, John W. M.

    2015-01-01

    Yves Couder, Emmanuel Fort, and coworkers recently discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. This article reviews experimental evidence indicating that the walking droplets exhibit certain features previously thought to be exclusive to the microscopic, quantum realm. It then reviews theoretical descriptions of this hydrodynamic pilot-wave system that yield insight into the origins of its quantum-like behavior. Quantization arises from the dynamic constraint imposed on the droplet by its pilot-wave field, and multimodal statistics appear to be a feature of chaotic pilot-wave dynamics. I attempt to assess the potential and limitations of this hydrodynamic system as a quantum analog. This fluid system is compared to quantum pilot-wave theories, shown to be markedly different from Bohmian mechanics and more closely related to de Broglie's original conception of quantum dynamics, his double-solution theory, and its relatively recent extensions through researchers in stochastic electrodynamics.

  12. Highly retrievable spin-wave-photon entanglement source.

    PubMed

    Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-05-29

    Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.

  13. Dispersive shock waves in Bose-Einstein condensates and nonlinear nano-oscillators in ferromagnetic thin films

    NASA Astrophysics Data System (ADS)

    Hoefer, Mark A.

    This thesis examines nonlinear wave phenomena, in two physical systems: a Bose-Einstein condensate (BEC) and thin film ferromagnets where the magnetization dynamics are excited by the spin momentum transfer (SMT) effect. In the first system, shock waves generated by steep gradients in the BEC wavefunction are shown to be of the disperse type. Asymptotic and averaging methods are used to determine shock speeds and structure in one spatial dimension. These results are compared with multidimensional numerical simulations and experiment showing good, qualitative agreement. In the second system, a model of magnetization dynamics due to SMT is presented. Using this model, nonlinear oscillating modes---nano-oscillators---are found numerically and analytically using perturbative methods. These results compare well with experiment. A Bose-Einstein condensate (BEC) is a quantum fluid that gives rise to interesting shock wave nonlinear dynamics. Experiments depict a BEC that exhibits behavior similar to that of a shock wave in a compressible gas, e.g. traveling fronts with steep gradients. However, the governing Gross-Pitaevskii (GP) equation that describes the mean field of a BEC admits no dissipation hence classical dissipative shock solutions do not explain the phenomena. Instead, wave dynamics with small dispersion is considered and it is shown that this provides a mechanism for the generation of a dispersive shock wave (DSW). Computations with the GP equation are compared to experiment with excellent agreement. A comparison between a canonical 1D dissipative and dispersive shock problem shows significant differences in shock structure and shock front speed. Numerical results associated with laboratory experiments show that three and two-dimensional approximations are in excellent agreement and one dimensional approximations are in qualitative agreement. The interaction of two DSWs is investigated analytically and numerically. Using one dimensional DSW theory it is argued that the experimentally observed blast waves may be viewed as dispersive shock waves. A nonlinear mathematical model of spin-wave excitation using a point contact in a thin ferromagnetic film is introduced. This work incorporates a recently proposed spin-torque contribution to classical magnetodynamic theory with a variable coefficient terra in the magnetic torque equation. Large-amplitude magnetic solitary waves are computed, which help explain recent spin-torque experiments. Numerical simulations of the full nonlinear model predict excitation frequencies in excess of 0.2 THz for contact diameters smaller than 6 nm. Simulations also predict a saturation and red shift of the frequency at currents large enough to invert the magnetization tinder the point contact. In the weak nonlinear limit, the theory is approximated by a cubic complex Ginzburg-Landau type equation. The mode's nonlinear frequency shift is found by use of perturbation techniques, whose results agree with those of direct numerical simulations.

  14. Millimeter-wave interconnects for microwave-frequency quantum machines

    NASA Astrophysics Data System (ADS)

    Pechal, Marek; Safavi-Naeini, Amir H.

    2017-10-01

    Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.

  15. Controlled rephasing of single spin-waves in a quantum memory based on cold atoms

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team

    2015-05-01

    Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.

  16. Equivalence of quantum Boltzmann equation and Kubo formula for dc conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Z.B.; Chen, L.Y.

    1990-02-01

    This paper presents a derivation of the quantum Boltzmann equation for linear dc transport with a correction term to Mahan-Hansch's equations and derive a formal solution to it. Based on this formal solution, the authors find the electric conductivity can be expressed as the retarded current-current correlation. Therefore, the authors explicitly demonstrate the equivalence of the two most important theoretical methods: quantum Boltzmann equation and Kubo formula.

  17. Production of a sterile species: Quantum kinetics

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; Ho, C. M.

    2007-10-01

    Production of a sterile species is studied within an effective model of active-sterile neutrino mixing in a medium in thermal equilibrium. The quantum kinetic equations for the distribution functions and coherences are obtained from two independent methods: the effective action and the quantum master equation. The decoherence time scale for active-sterile oscillations is τdec=2/Γaa, but the evolution of the distribution functions is determined by the two different time scales associated with the damping rates of the quasiparticle modes in the medium: Γ1=Γaacos⁡2θm; Γ2=Γaasin⁡2θm where Γaa is the interaction rate of the active species in the absence of mixing and θm the mixing angle in the medium. These two time scales are widely different away from Mikheyev-Smirnov-Wolfenstein resonances and preclude the kinetic description of active-sterile production in terms of a simple rate equation. We give the complete set of quantum kinetic equations for the active and sterile populations and coherences and discuss in detail the various approximations. A generalization of the active-sterile transition probability in a medium is provided via the quantum master equation. We derive explicitly the usual quantum kinetic equations in terms of the “polarization vector” and show their equivalence to those obtained from the quantum master equation and effective action.

  18. Quantum supergroups and solutions of the Yang-Baxter equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracken, A.J.; Gould, M.D.; Zhang, R.B.

    1990-05-10

    A method is developed for systematically constructing trigonometric and rational solutions of the Yang-Baxter equation using the representation theory of quantum supergroups. New quantum R-matrices are obtained by applying the method to the vector representations of quantum osp(1/2) and gl(m/n).

  19. Towards Quantum Cybernetics:. Optimal Feedback Control in Quantum Bio Informatics

    NASA Astrophysics Data System (ADS)

    Belavkin, V. P.

    2009-02-01

    A brief account of the quantum information dynamics and dynamical programming methods for the purpose of optimal control in quantum cybernetics with convex constraints and cońcave cost and bequest functions of the quantum state is given. Consideration is given to both open loop and feedback control schemes corresponding respectively to deterministic and stochastic semi-Markov dynamics of stable or unstable systems. For the quantum feedback control scheme with continuous observations we exploit the separation theorem of filtering and control aspects for quantum stochastic micro-dynamics of the total system. This allows to start with the Belavkin quantum filtering equation and derive the generalized Hamilton-Jacobi-Bellman equation using standard arguments of classical control theory. This is equivalent to a Hamilton-Jacobi equation with an extra linear dissipative term if the control is restricted to only Hamiltonian terms in the filtering equation. A controlled qubit is considered as an example throughout the development of the formalism. Finally, we discuss optimum observation strategies to obtain a pure quantum qubit state from a mixed one.

  20. A Bit of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Oss, Stefano; Rosi, Tommaso

    2015-04-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.

Top