Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2016-08-18
Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.
About Essence of the Wave Function on Atomic Level and in Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulov, A. V.
The wave function was proposed for description of quantum phenomena on the atomic level. But now it is well known that quantum phenomena are observed not only on atomic level and the wave function is used for description of macroscopic quantum phenomena, such as superconductivity. The essence of the wave function on level elementary particles was and is the subject of heated argument among founders of quantum mechanics and other physicists. This essence seems more clear in superconductor. But impossibility of probabilistic interpretation of wave function in this case results to obvious contradiction of quantum principles with some fundamental principlesmore » of physics.« less
Longitudinal wave function control in single quantum dots with an applied magnetic field
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018
Longitudinal wave function control in single quantum dots with an applied magnetic field.
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-27
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
The Strange (Hi)story of Particles and Waves
NASA Astrophysics Data System (ADS)
Zeh, H. Dieter
2016-03-01
This is an attempt of a non-technical but conceptually consistent presentation of quantum theory in a historical context. While the first part is written for a general readership, Section 5 may appear a bit provocative to some quantum physicists. I argue that the single-particle wave functions of quantum mechanics have to be correctly interpreted as field modes that are "occupied once" (i.e. first excited states of the corresponding quantum oscillators in the case of boson fields). Multiple excitations lead to apparent many-particle wave functions, while the quantum states proper are defined by wave function(al)s on the "configuration" space of fundamental fields, or on another, as yet elusive, fundamental local basis.
Steering of quantum waves: Demonstration of Y-junction transistors using InAs quantum wires
NASA Astrophysics Data System (ADS)
Jones, Gregory M.; Qin, Jie; Yang, Chia-Hung; Yang, Ming-Jey
2005-06-01
In this paper we demonstrate using an InAs quantum wire Y-branch switch that the electron wave can be switched to exit from the two drains by a lateral gate bias. The gating modifies the electron wave functions as well as their interference pattern, causing the anti-correlated, oscillatory transconductances. Our result suggests a new transistor function in a multiple-lead ballistic quantum wire system.
Inhibition of quantum transport due to 'scars' of unstable periodic orbits
NASA Technical Reports Server (NTRS)
Jensen, R. V.; Sanders, M. M.; Saraceno, M.; Sundaram, B.
1989-01-01
A new quantum mechanism for the suppression of chaotic ionization of highly excited hydrogen atoms explains the appearance of anomalously stable states in the microwave ionization experiments of Koch et al. A novel phase-space representation of the perturbed wave functions reveals that the inhibition of quantum transport is due to the selective excitation of wave functions that are highly localized near unstable periodic orbits in the chaotic classical phase space. The 'scarred' wave functions provide a new basis for the quantum description of a variety of classically chaotic systems.
Quantum mechanics of conformally and minimally coupled Friedmann-Robertson-Walker cosmology
NASA Astrophysics Data System (ADS)
Kim, Sang Pyo
1992-10-01
The expansion method by a time-dependent basis of the eigenfunctions for the space-coordinate-dependent sub-Hamiltonian is one of the most natural frameworks for quantum systems, relativistic as well as nonrelativistic. The complete set of wave functions is found in the product integral formulation, whose constants of integration are fixed by Cauchy initial data. The wave functions for the Friedmann-Robertson-Walker (FRW) cosmology conformally and minimally coupled to a scalar field with a power-law potential or a polynomial potential are expanded in terms of the eigenfunctions of the scalar field sub-Hamiltonian part. The resultant gravitational field part which is an ``intrinsic'' timelike variable-dependent matrix-valued differential equation is solved again in the product integral formulation. There are classically allowed regions for the ``intrinsic'' timelike variable depending on the scalar field quantum numbers and these regions increase accordingly as the quantum numbers increase. For a fixed large three-geometry the wave functions corresponding to the low excited (small quantum number) states of the scalar field are exponentially damped or diverging and the wave functions corresponding to the high excited (large quantum number) states are still oscillatory but become eventually exponential as the three-geometry becomes larger. Furthermore, a proposal is advanced that the wave functions exponentially damped for a large three-geometry may be interpreted as ``tunneling out'' wave functions into, and the wave functions exponentially diverging as ``tunneling in'' from, different universes with the same or different topologies, the former being interpreted as the recently proposed Hawking-Page wormhole wave functions. It is observed that there are complex as well as Euclidean actions depending on the quantum numbers of the scalar field part outside the classically allowed region both of the gravitational and scalar fields, suggesting the usefulness of complex geometry and complex trajectories. From the most general wave functions for the FRW cosmology conformally coupled to scalar field, the boundary conditions for the wormhole wave functions are modified so that the modulus of wave functions, instead of the wave functions themselves, should be exponentially damped for a large three-geometry and be regular up to some negative power of the three-geometry as the three-geometry collapses. The wave functions for the FRW cosmology minimally coupled to an inhomogeneous scalar field are similarly found in the product integral formulation. The role of a large number of the inhomogeneous modes of the scalar field is not only to increase the classically allowed regions for the gravitational part but also to provide a mechanism of the decoherence of quantum interferences between the different sizes of the universe.
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Ishii, Noriyoshi; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi
2013-07-01
We derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than two particles in quantum field theories. To deal with n particles in the center-of-mass frame coherently, we introduce the Jacobi coordinates of n particles and then combine their 3(n-1) coordinates into the one spherical coordinate in D=3(n-1) dimensions. We parametrize the on-shell T matrix for n scalar particles at low energy using the unitarity constraint of the S matrix. We then express asymptotic behaviors of the NBS wave function for n particles at low energy in terms of parameters of the T matrix and show that the NBS wave function carries information of the T matrix such as phase shifts and mixing angles of the n-particle system in its own asymptotic behavior, so that the NBS wave function can be considered as the scattering wave of n particles in quantum mechanics. This property is one of the essential ingredients of the HAL QCD scheme to define “potential” from the NBS wave function in quantum field theories such as QCD. Our results, together with an extension to systems with spin 1/2 particles, justify the HAL QCD’s definition of potentials for three or more nucleons (or baryons) in terms of the NBS wave functions.
What Density Functional Theory could do for Quantum Information
NASA Astrophysics Data System (ADS)
Mattsson, Ann
2015-03-01
The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Probability and Quantum Paradigms: the Interplay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kracklauer, A. F.
Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a fewmore » details, this variant is appealing in its reliance on well tested concepts and technology.« less
Probability and Quantum Paradigms: the Interplay
NASA Astrophysics Data System (ADS)
Kracklauer, A. F.
2007-12-01
Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a few details, this variant is appealing in its reliance on well tested concepts and technology.
Savel'ev, Sergey E; Zagoskin, Alexandre M
2018-06-25
A popular interpretation of the "collapse" of the wave function is as being the result of a local interaction ("measurement") of the quantum system with a macroscopic system ("detector"), with the ensuing loss of phase coherence between macroscopically distinct components of its quantum state vector. Nevetheless as early as in 1953 Renninger suggested a Gedankenexperiment, in which the collapse is triggered by non-observation of one of two mutually exclusive outcomes of the measurement, i.e., in the absence of interaction of the quantum system with the detector. This provided a powerful argument in favour of "physical reality" of (nonlocal) quantum state vector. In this paper we consider a possible version of Renninger's experiment using the light propagation through a birefringent quantum metamaterial. Its realization would provide a clear visualization of a wave function collapse produced by a "non-measurement", and make the concept of a physically real quantum state vector more acceptable.
Quantum erasure in the near-field
NASA Astrophysics Data System (ADS)
Walborn, S. P.
2018-05-01
The phenomenon of quantum erasure has shed light on the nature of wave-particle duality and quantum complementarity. A number of quantum erasers have been realized using the far-field diffraction of photons from a Young double-slit apparatus. By marking the path of a photon using an additional degree of freedom, the usual Young interference pattern is destroyed. An appropriate measurement of the system marking the photon’s path allows one to recover the interference pattern. Here quantum erasure is considered in the context of near-field diffraction. To observe interference in the near-field requires the use of two periodic wave functions, so that the usual ‘which way’ marker then becomes a ‘which-wave function’ marker. We determine the propagation distances for which quantum erasure, or more generally the observation of interference between the two periodic wave functions, can be observed. The meaning of wave and particle-like properties in this scenario is discussed. These results could lead to quantum eraser experiments with material particles, for which interference effects are more readily observed in the near-field rather than the far-field.
An Early Quantum Computing Proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Stephen Russell; Alexander, Francis Joseph; Barros, Kipton Marcos
The D-Wave 2X is the third generation of quantum processing created by D-Wave. NASA (with Google and USRA) and Lockheed Martin (with USC), both own D-Wave systems. Los Alamos National Laboratory (LANL) purchased a D-Wave 2X in November 2015. The D-Wave 2X processor contains (nominally) 1152 quantum bits (or qubits) and is designed to specifically perform quantum annealing, which is a well-known method for finding a global minimum of an optimization problem. This methodology is based on direct execution of a quantum evolution in experimental quantum hardware. While this can be a powerful method for solving particular kinds of problems,more » it also means that the D-Wave 2X processor is not a general computing processor and cannot be programmed to perform a wide variety of tasks. It is a highly specialized processor, well beyond what NNSA currently thinks of as an “advanced architecture.”A D-Wave is best described as a quantum optimizer. That is, it uses quantum superposition to find the lowest energy state of a system by repeated doses of power and settling stages. The D-Wave produces multiple solutions to any suitably formulated problem, one of which is the lowest energy state solution (global minimum). Mapping problems onto the D-Wave requires defining an objective function to be minimized and then encoding that function in the Hamiltonian of the D-Wave system. The quantum annealing method is then used to find the lowest energy configuration of the Hamiltonian using the current D-Wave Two, two-level, quantum processor. This is not always an easy thing to do, and the D-Wave Two has significant limitations that restrict problem sizes that can be run and algorithmic choices that can be made. Furthermore, as more people are exploring this technology, it has become clear that it is very difficult to come up with general approaches to optimization that can both utilize the D-Wave and that can do better than highly developed algorithms on conventional computers for specific applications. These are all fundamental challenges that must be overcome for the D-Wave, or similar, quantum computing technology to be broadly applicable.« less
Quantum mechanical reality according to Copenhagen 2.0
NASA Astrophysics Data System (ADS)
Din, Allan M.
2016-05-01
The long-standing conceptual controversies concerning the interpretation of nonrelativistic quantum mechanics are argued, on one hand, to be due to its incompleteness, as affirmed by Einstein. But on the other hand, it appears to be possible to complete it at least partially, as Bohr might have appreciated it, in the framework of its standard mathematical formalism with observables as appropriately defined self-adjoint operators. This completion of quantum mechanics is based on the requirement on laboratory physics to be effectively confined to a bounded space region and on the application of the von Neumann deficiency theorem to properly define a set of self-adjoint extensions of standard observables, e.g. the momenta and the Hamiltonian, in terms of certain isometries on the region boundary. This is formalized mathematically in the setting of a boundary ontology for the so-called Qbox in which the wave function acquires a supplementary dependence on a set of Additional Boundary Variables (ABV). It is argued that a certain geometric subset of the ABV parametrizing Quasi-Periodic Translational Isometries (QPTI) has a particular physical importance by allowing for the definition of an ontic wave function, which has the property of epitomizing the spatial wave function “collapse.” Concomitantly the standard wave function in an unbounded geometry is interpreted as an epistemic wave function, which together with the ontic QPTI wave function gives rise to the notion of two-wave duality, replacing the standard concept of wave-particle duality. More generally, this approach to quantum physics in a bounded geometry provides a novel analytical basis for a better understanding of several conceptual notions of quantum mechanics, including reality, nonlocality, entanglement and Heisenberg’s uncertainty relation. The scope of this analysis may be seen as a foundational update of the multiple versions 1.x of the Copenhagen interpretation of quantum mechanics, which is sufficiently incremental so as to be appropriately characterized as Copenhagen 2.0.
NASA Astrophysics Data System (ADS)
Angraini, Lily Maysari; Suparmi, Variani, Viska Inda
2010-12-01
SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.
Direct counterfactual communication via quantum Zeno effect
NASA Astrophysics Data System (ADS)
Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei
2017-05-01
Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics—wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.
Direct counterfactual communication via quantum Zeno effect.
Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei
2017-05-09
Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics-wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.
Direct counterfactual communication via quantum Zeno effect
Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei
2017-01-01
Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics—wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect. PMID:28442568
Anatomy of quantum critical wave functions in dissipative impurity problems
NASA Astrophysics Data System (ADS)
Blunden-Codd, Zach; Bera, Soumya; Bruognolo, Benedikt; Linden, Nils-Oliver; Chin, Alex W.; von Delft, Jan; Nazir, Ahsan; Florens, Serge
2017-02-01
Quantum phase transitions reflect singular changes taking place in a many-body ground state; however, computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the wave function by a linear combination of classically displaced configurations. We find that the distribution of low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics of critical many-body states in quantum impurity models.
Strong Measurements Give a Better Direct Measurement of the Quantum Wave Function.
Vallone, Giuseppe; Dequal, Daniele
2016-01-29
Weak measurements have thus far been considered instrumental in the so-called direct measurement of the quantum wave function [4J. S. Lundeen, Nature (London) 474, 188 (2011).]. Here we show that a direct measurement of the wave function can be obtained by using measurements of arbitrary strength. In particular, in the case of strong measurements, i.e., those in which the coupling between the system and the measuring apparatus is maximum, we compared the precision and the accuracy of the two methods, by showing that strong measurements outperform weak measurements in both for arbitrary quantum states in most cases. We also give the exact expression of the difference between the original and reconstructed wave function obtained by the weak measurement approach; this will allow one to define the range of applicability of such a method.
Spacetime Singularities in Quantum Gravity
NASA Astrophysics Data System (ADS)
Minassian, Eric A.
2000-04-01
Recent advances in 2+1 dimensional quantum gravity have provided tools to study the effects of quantization of spacetime on black hole and big bang/big crunch type singularities. I investigate effects of quantization of spacetime on singularities of the 2+1 dimensional BTZ black hole and the 2+1 dimensional torus universe. Hosoya has considered the BTZ black hole, and using a "quantum generalized affine parameter" (QGAP), has shown that, for some specific paths, quantum effects "smear" the singularities. Using gaussian wave functions as generic wave functions, I found that, for both BTZ black hole and the torus universe, there are families of paths that still reach the singularities with a finite QGAP, suggesting that singularities persist in quantum gravity. More realistic calculations, using modular invariant wave functions of Carlip and Nelson for the torus universe, offer further support for this conclusion. Currently work is in progress to study more realistic quantum gravity effects for BTZ black holes and other spacetime models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deta, U. A., E-mail: utamaalan@yahoo.co.id; Suparmi,; Cari,
2014-09-30
The Energy Spectra and Wave Function of Schrodinger equation in D-Dimensions for trigonometric Rosen-Morse potential were investigated analytically using Nikiforov-Uvarov method. This potential captures the essential traits of the quark-gluon dynamics of Quantum Chromodynamics. The approximate energy spectra are given in the close form and the corresponding approximate wave function for arbitrary l-state (l ≠ 0) in D-dimensions are formulated in the form of differential polynomials. The wave function of this potential unnormalizable for general case. The wave function of this potential unnormalizable for general case. The existence of extra dimensions (centrifugal factor) and this potential increase the energy spectramore » of system.« less
Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment.
Terraneo, M; Georgeot, B; Shepelyansky, D L
2005-06-01
We study the efficiency of quantum algorithms which aim at obtaining phase-space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification, and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters: namely, the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function and is larger with the help of amplitude amplification and wavelet transforms. We discuss the generalization of these results to the simulation of other quantum systems. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows one to lower dramatically the number of measurements needed, but at the cost of a large loss of information.
Chemical accuracy from quantum Monte Carlo for the benzene dimer.
Azadi, Sam; Cohen, R E
2015-09-14
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.
Information transport in classical statistical systems
NASA Astrophysics Data System (ADS)
Wetterich, C.
2018-02-01
For "static memory materials" the bulk properties depend on boundary conditions. Such materials can be realized by classical statistical systems which admit no unique equilibrium state. We describe the propagation of information from the boundary to the bulk by classical wave functions. The dependence of wave functions on the location of hypersurfaces in the bulk is governed by a linear evolution equation that can be viewed as a generalized Schrödinger equation. Classical wave functions obey the superposition principle, with local probabilities realized as bilinears of wave functions. For static memory materials the evolution within a subsector is unitary, as characteristic for the time evolution in quantum mechanics. The space-dependence in static memory materials can be used as an analogue representation of the time evolution in quantum mechanics - such materials are "quantum simulators". For example, an asymmetric Ising model on a Euclidean two-dimensional lattice represents the time evolution of free relativistic fermions in two-dimensional Minkowski space.
Simulated quantum computation of molecular energies.
Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin
2005-09-09
The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.
Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector
2017-04-18
facet continuous wave emission at 15◦C. Apart from the general performance benets, this enables sensing techiques which rely on continuous wave...record achieved with strained material at this wavelength. Keywords quantum cascade laser, quantum cascade detector, lab- on -a-chip, monolithic integrated...materials, which makes their integration on Si particularly dicult. Heterogeneous integration using transfer techniques allows both single device and wafer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.
We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimalmore » VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.« less
NASA Astrophysics Data System (ADS)
Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik
2018-03-01
A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.
Hall viscosity of hierarchical quantum Hall states
NASA Astrophysics Data System (ADS)
Fremling, M.; Hansson, T. H.; Suorsa, J.
2014-03-01
Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.
Trajectory description of the quantum–classical transition for wave packet interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2016-08-15
The quantum–classical transition for wave packet interference is investigated using a hydrodynamic description. A nonlinear quantum–classical transition equation is obtained by introducing a degree of quantumness ranging from zero to one into the classical time-dependent Schrödinger equation. This equation provides a continuous description for the transition process of physical systems from purely quantum to purely classical regimes. In this study, the transition trajectory formalism is developed to provide a hydrodynamic description for the quantum–classical transition. The flow momentum of transition trajectories is defined by the gradient of the action function in the transition wave function and these trajectories follow themore » main features of the evolving probability density. Then, the transition trajectory formalism is employed to analyze the quantum–classical transition of wave packet interference. For the collision-like wave packet interference where the propagation velocity is faster than the spreading speed of the wave packet, the interference process remains collision-like for all the degree of quantumness. However, the interference features demonstrated by transition trajectories gradually disappear when the degree of quantumness approaches zero. For the diffraction-like wave packet interference, the interference process changes continuously from a diffraction-like to collision-like case when the degree of quantumness gradually decreases. This study provides an insightful trajectory interpretation for the quantum–classical transition of wave packet interference.« less
NASA Astrophysics Data System (ADS)
Quiñones, Diego A.; Oniga, Teodora; Varcoe, Benjamin T. H.; Wang, Charles H.-T.
2017-08-01
We carry out a theoretical investigation on the collective dynamics of an ensemble of correlated atoms, subject to both vacuum fluctuations of spacetime and stochastic gravitational waves. A general approach is taken with the derivation of a quantum master equation capable of describing arbitrary confined nonrelativistic matter systems in an open quantum gravitational environment. It enables us to relate the spectral function for gravitational waves and the distribution function for quantum gravitational fluctuations and to indeed introduce a new spectral function for the zero-point fluctuations of spacetime. The formulation is applied to two-level identical bosonic atoms in an off-resonant high-Q cavity that effectively inhibits undesirable electromagnetic delays, leading to a gravitational transition mechanism through certain quadrupole moment operators. The overall relaxation rate before reaching equilibrium is found to generally scale collectively with the number N of atoms. However, we are also able to identify certain states of which the decay and excitation rates with stochastic gravitational waves and vacuum spacetime fluctuations amplify more significantly with a factor of N2. Using such favorable states as a means of measuring both conventional stochastic gravitational waves and novel zero-point spacetime fluctuations, we determine the theoretical lower bounds for the respective spectral functions. Finally, we discuss the implications of our findings on future observations of gravitational waves of a wider spectral window than currently accessible. Especially, the possible sensing of the zero-point fluctuations of spacetime could provide an opportunity to generate initial evidence and further guidance of quantum gravity.
Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet
NASA Astrophysics Data System (ADS)
Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu
1989-12-01
A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.
Auxiliary-field-based trial wave functions in quantum Monte Carlo calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chia -Chen; Rubenstein, Brenda M.; Morales, Miguel A.
2016-12-19
Quantum Monte Carlo (QMC) algorithms have long relied on Jastrow factors to incorporate dynamic correlation into trial wave functions. While Jastrow-type wave functions have been widely employed in real-space algorithms, they have seen limited use in second-quantized QMC methods, particularly in projection methods that involve a stochastic evolution of the wave function in imaginary time. Here we propose a scheme for generating Jastrow-type correlated trial wave functions for auxiliary-field QMC methods. The method is based on decoupling the two-body Jastrow into one-body projectors coupled to auxiliary fields, which then operate on a single determinant to produce a multideterminant trial wavemore » function. We demonstrate that intelligent sampling of the most significant determinants in this expansion can produce compact trial wave functions that reduce errors in the calculated energies. Lastly, our technique may be readily generalized to accommodate a wide range of two-body Jastrow factors and applied to a variety of model and chemical systems.« less
Physics of Electronic Materials
NASA Astrophysics Data System (ADS)
Rammer, Jørgen
2017-03-01
1. Quantum mechanics; 2. Quantum tunneling; 3. Standard metal model; 4. Standard conductor model; 5. Electric circuit theory; 6. Quantum wells; 7. Particle in a periodic potential; 8. Bloch currents; 9. Crystalline solids; 10. Semiconductor doping; 11. Transistors; 12. Heterostructures; 13. Mesoscopic physics; 14. Arithmetic, logic and machines; Appendix A. Principles of quantum mechanics; Appendix B. Dirac's delta function; Appendix C. Fourier analysis; Appendix D. Classical mechanics; Appendix E. Wave function properties; Appendix F. Transfer matrix properties; Appendix G. Momentum; Appendix H. Confined particles; Appendix I. Spin and quantum statistics; Appendix J. Statistical mechanics; Appendix K. The Fermi-Dirac distribution; Appendix L. Thermal current fluctuations; Appendix M. Gaussian wave packets; Appendix N. Wave packet dynamics; Appendix O. Screening by symmetry method; Appendix P. Commutation and common eigenfunctions; Appendix Q. Interband coupling; Appendix R. Common crystal structures; Appendix S. Effective mass approximation; Appendix T. Integral doubling formula; Bibliography; Index.
Trajectory-based understanding of the quantum-classical transition for barrier scattering
NASA Astrophysics Data System (ADS)
Chou, Chia-Chun
2018-06-01
The quantum-classical transition of wave packet barrier scattering is investigated using a hydrodynamic description in the framework of a nonlinear Schrödinger equation. The nonlinear equation provides a continuous description for the quantum-classical transition of physical systems by introducing a degree of quantumness. Based on the transition equation, the transition trajectory formalism is developed to establish the connection between classical and quantum trajectories. The quantum-classical transition is then analyzed for the scattering of a Gaussian wave packet from an Eckart barrier and the decay of a metastable state. Computational results for the evolution of the wave packet and the transmission probabilities indicate that classical results are recovered when the degree of quantumness tends to zero. Classical trajectories are in excellent agreement with the transition trajectories in the classical limit, except in some regions where transition trajectories cannot cross because of the single-valuedness of the transition wave function. As the computational results demonstrate, the process that the Planck constant tends to zero is equivalent to the gradual removal of quantum effects originating from the quantum potential. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet barrier scattering.
Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.
Dragoman, Daniela; Dragoman, Mircea
2015-12-04
We present an implementation of a one-qubit and two-qubit modified Deutsch-Jozsa quantum algorithm based on graphene ballistic devices working at room temperature. The modified Deutsch-Jozsa algorithm decides whether a function, equivalent to the effect of an energy potential distribution on the wave function of ballistic charge carriers, is constant or not, without measuring the output wave function. The function need not be Boolean. Simulations confirm that the algorithm works properly, opening the way toward quantum computing at room temperature based on the same clean-room technologies as those used for fabrication of very-large-scale integrated circuits.
Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming
2016-01-01
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634
Haghighi Mood, Kaveh; Lüchow, Arne
2017-08-17
Diffusion quantum Monte Carlo calculations with partial and full optimization of the guide function are carried out for the dissociation of the FeS molecule. For the first time, quantum Monte Carlo orbital optimization for transition metal compounds is performed. It is demonstrated that energy optimization of the orbitals of a complete active space wave function in the presence of a Jastrow correlation function is required to obtain agreement with the experimental dissociation energy. Furthermore, it is shown that orbital optimization leads to a 5 Δ ground state, in agreement with experiments but in disagreement with other high-level ab initio wave function calculations which all predict a 5 Σ + ground state. The role of the Jastrow factor in DMC calculations with pseudopotentials is investigated. The results suggest that a large Jastrow factor may improve the DMC accuracy substantially at small additional cost.
A rational explanation of wave-particle duality of light
NASA Astrophysics Data System (ADS)
Rashkovskiy, S. A.
2013-10-01
The wave-particle duality is a fundamental property of the nature. At the same time, it is one of the greatest mysteries of modern physics. This gave rise to a whole direction in quantum physics - the interpretation of quantum mechanics. The Wiener experiments demonstrating the wave-particle duality of light are discussed. It is shown that almost all interpretations of quantum mechanics allow explaining the double-slit experiments, but are powerless to explain the Wiener experiments. The reason of the paradox, associated with the wave-particle duality is analyzed. The quantum theory consists of two independent parts: (i) the dynamic equations describing the behavior of a quantum object (for example, the Schrodinger or Maxwell equations), and (ii) the Born's rule, the relation between the wave function and the probability of finding the particle at a given point. It is shown that precisely the Born's rule results in paradox in explaining the wave-particle duality. In order to eliminate this paradox, we propose a new rational interpretation of the wave-particle duality and associated new rule, connecting the corpuscular and wave properties of quantum objects. It is shown that this new rational interpretation of the wave-particle duality allows using the classic images of particle and wave in explaining the quantum mechanical and optical phenomena, does not result in paradox in explaining the doubleslit experiments and Wiener experiments, and does not contradict to the modern quantum mechanical concepts. It is shown that the Born's rule follows immediately from proposed new rules as an approximation.
Quantum phase space with a basis of Wannier functions
NASA Astrophysics Data System (ADS)
Fang, Yuan; Wu, Fan; Wu, Biao
2018-02-01
A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.
Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment
NASA Astrophysics Data System (ADS)
Long, GuiLu; Qin, Wei; Yang, Zhe; Li, Jun-Lin
2018-03-01
In this paper, a realistic interpretation (REIN) of the wave function in quantum mechanics is briefly presented. We demonstrate that in the REIN, the wave function of a microscopic object is its real existence rather than a mere mathematical description. Specifically, the quantum object can exist in disjointed regions of space just as the wave function is distributed, travels at a finite speed, and collapses instantly upon a measurement. Furthermore, we analyze the single-photon interference in a Mach-Zehnder interferometer (MZI) using the REIN. Based on this, we propose and experimentally implement a generalized delayed-choice experiment, called the encounter-delayed-choice experiment, where the second beam splitter is decided whether or not to insert at the encounter of two sub-waves along the arms of the MZI. In such an experiment, the parts of the sub-waves, which do not travel through the beam splitter, show a particle nature, whereas the remaining parts interfere and thus show a wave nature. The predicted phenomenon is clearly demonstrated in the experiment, thus supporting the REIN idea.
Tales from the prehistory of Quantum Gravity. Léon Rosenfeld's earliest contributions
NASA Astrophysics Data System (ADS)
Peruzzi, Giulio; Rocci, Alessio
2018-05-01
The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of "general relativistic quantum mechanics" Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called `quantum phenomena', represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld's work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr's correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.
Tales from the prehistory of Quantum Gravity - Léon Rosenfeld's earliest contributions
NASA Astrophysics Data System (ADS)
Peruzzi, Giulio; Rocci, Alessio
2018-04-01
The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of "general relativistic quantum mechanics" Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called `quantum phenomena', represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld's work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr's correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.
Niels Bohr on the wave function and the classical/quantum divide
NASA Astrophysics Data System (ADS)
Zinkernagel, Henrik
2016-02-01
It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr's interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr's view on the classical/quantum divide, arguing that the relation between the two theories is that of mutual dependence. An important element in this clarification consists in distinguishing Bohr's idea of the wave function as symbolic from both a purely epistemic and an ontological interpretation. Together with new evidence concerning Bohr's conception of the wave function collapse, this sets his interpretation apart from both standard versions of the Copenhagen interpretation, and from some of the reconstructions of his view found in the literature. I conclude with a few remarks on how Bohr's ideas make much sense also when modern developments in quantum gravity and early universe cosmology are taken into account.
Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang
2016-12-07
Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.
Quantum-shutter approach to tunneling time scales with wave packets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Norifumi; Garcia-Calderon, Gaston; Villavicencio, Jorge
2005-07-15
The quantum-shutter approach to tunneling time scales [G. Garcia-Calderon and A. Rubio, Phys. Rev. A 55, 3361 (1997)], which uses a cutoff plane wave as the initial condition, is extended to consider certain type of wave packet initial conditions. An analytical expression for the time-evolved wave function is derived. The time-domain resonance, the peaked structure of the probability density (as the function of time) at the exit of the barrier, originally found with the cutoff plane wave initial condition, is studied with the wave packet initial conditions. It is found that the time-domain resonance is not very sensitive to themore » width of the packet when the transmission process occurs in the tunneling regime.« less
The transactional interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Cramer, John G.
2001-06-01
The transactional interpretation of quantum mechanics [1] was originally published in 1986 and is now about 14 years old. It is an explicitly nonlocal and Lorentz invariant alternative to the Copenhagen interpretation. It interprets the formalism for a quantum interaction as describing a "handshake" between retarded waves (ψ) and advanced waves (ψ*) for each quantum event or "transaction" in which energy, momentum, angular momentum, and other conserved quantities are transferred. The transactional interpretation offers the advantages that (1) it is actually "visible" in the formalism of quantum mechanics, (2) it is economical, involving fewer independent assumptions than its rivals, (3) it is paradox-free, resolving all of the paradoxes of standard quantum theory including nonlocality and wave function collapse, (4) it does not give a privileged role to observers or measurements, and (5) it permits the visualization of quantum events. We will review the transactional interpretation and some of its applications to "quantum paradoxes."
NASA Astrophysics Data System (ADS)
Tellander, Felix; Berggren, Karl-Fredrik
2017-04-01
In this paper we use numerical simulations to study a two-dimensional (2D) quantum dot (cavity) with two leads for passing currents (electrons, photons, etc.) through the system. By introducing an imaginary potential in each lead the system is made symmetric under parity-time inversion (PT symmetric). This system is experimentally realizable in the form of, e.g., quantum dots in low-dimensional semiconductors, optical and electromagnetic cavities, and other classical wave analogs. The computational model introduced here for studying spectra, exceptional points (EPs), wave-function symmetries and morphology, and current flow includes thousands of interacting states. This supplements previous analytic studies of few interacting states by providing more detail and higher resolution. The Hamiltonian describing the system is non-Hermitian; thus, the eigenvalues are, in general, complex. The structure of the wave functions and probability current densities are studied in detail at and in between EPs. The statistics for EPs is evaluated, and reasons for a gradual dynamical crossover are identified.
NASA Astrophysics Data System (ADS)
Kanada-En'yo, Yoshiko
2014-10-01
We analyze the α-cluster wave functions in cluster states of ^8Be and ^{20}Ne by comparing the exact relative wave function obtained by the generator coordinate method (GCM) with various types of trial functions. For the trial functions, we adopt the fixed range shifted Gaussian of the Brink-Bloch (BB) wave function, the spherical Gaussian with the adjustable range parameter of the spherical Tohsaki-Horiuchi-Schuck-Röpke (sTHSR), the deformed Gaussian of the deformed THSR (dTHSR), and a function with the Yukawa tail (YT). The quality of the description of the exact wave function with a trial function is judged by the squared overlap between the trial function and the GCM wave function. A better result is obtained with the sTHSR wave function than the BB wave function, and further improvement can be made with the dTHSR wave function because these wave functions can describe the outer tail better. The YT wave function gives almost an equal quality to or even better quality than the dTHSR wave function, indicating that the outer tail of α-cluster states is characterized by the Yukawa-like tail rather than the Gaussian tail. In weakly bound α-cluster states with small α separation energy and the low centrifugal and Coulomb barriers, the outer tail part is the slowly damping function described well by the quantum penetration through the effective barrier. This outer tail characterizes the almost zero-energy free α gas behavior, i.e., the delocalization of the cluster.
Beyond the Schr{umlt o}dinger Equation: Quantum Motion with Traversal Time Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolovski, D.
1997-12-01
We study a quantum particle, for which the duration {tau} it spends in some region of space is controlled by a meter, e.g., a Larmor clock. The particle is described by a wave function {Psi}(x,t{vert_bar}{tau}) , with {vert_bar}{Psi}(x,t{vert_bar}{tau}){vert_bar}{sup 2} giving the distribution of the meter{close_quote}s readings at location x . The wave function satisfies the {open_quotes}clocked{close_quotes} Schr{umlt o}dinger equation, which we solve numerically for the cases of bound motion and wave packet scattering. The method is shown to be a natural extension of the conventional quantum mechanics. {copyright} {ital 1997} {ital The American Physical Society}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alemgadmi, Khaled I. K., E-mail: azozkied@yahoo.com; Suparmi; Cari
2015-09-30
The approximate analytical solution of Schrodinger equation for Q-Deformed Rosen-Morse potential was investigated using Supersymmetry Quantum Mechanics (SUSY QM) method. The approximate bound state energy is given in the closed form and the corresponding approximate wave function for arbitrary l-state given for ground state wave function. The first excited state obtained using upper operator and ground state wave function. The special case is given for the ground state in various number of q. The existence of Rosen-Morse potential reduce energy spectra of system. The larger value of q, the smaller energy spectra of system.
Quantum trajectory analysis of multimode subsystem-bath dynamics.
Wyatt, Robert E; Na, Kyungsun
2002-01-01
The dynamics of a swarm of quantum trajectories is investigated for systems involving the interaction of an active mode (the subsystem) with an M-mode harmonic reservoir (the bath). Equations of motion for the position, velocity, and action function for elements of the probability fluid are integrated in the Lagrangian (moving with the fluid) picture of quantum hydrodynamics. These fluid elements are coupled through the Bohm quantum potential and as a result evolve as a correlated ensemble. Wave function synthesis along the trajectories permits an exact description of the quantum dynamics for the evolving probability fluid. The approach is fully quantum mechanical and does not involve classical or semiclassical approximations. Computational results are presented for three systems involving the interaction on an active mode with M=1, 10, and 15 bath modes. These results include configuration space trajectory evolution, flux analysis of the evolving ensemble, wave function synthesis along trajectories, and energy partitioning along specific trajectories. These results demonstrate the feasibility of using a small number of quantum trajectories to obtain accurate quantum results on some types of open quantum systems that are not amenable to standard quantum approaches involving basis set expansions or Eulerian space-fixed grids.
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory
NASA Astrophysics Data System (ADS)
Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory.
Tzemos, Athanasios C; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
Controlling matter waves in momentum space
NASA Astrophysics Data System (ADS)
Lin, De-Hone
2014-07-01
The transformation design method of momentum for matter waves in a harmonic trap is proposed. As applications, we design (1) a momentum invisibility cloak to control the distribution of a wave function in momentum space, (2) a quantum localization cloak that localizes a matter wave around zero momentum, and (3) the unusual quantum states of momentum space. Comprehension of these momentum cloaks in position space through the Fourier transformation is presented. In contrast to the construct of quantum cloaks in position space, the momentum cloaks presented here can only be reached by controlling the spring parameter of the trap and offering a potential there, without needing to control the effective mass of quantum particles themselves. The presented discussions also provide a possible inspiration to help localize and maintain a quantum state in momentum space by way of controlling the shape of a trap and a supplied potential.
Controlled rephasing of single spin-waves in a quantum memory based on cold atoms
NASA Astrophysics Data System (ADS)
Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team
2015-05-01
Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.
Intense laser field effects on a Woods-Saxon potential quantum well
NASA Astrophysics Data System (ADS)
Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.
2015-11-01
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.
Electrically tunable g factors in quantum dot molecular spin states.
Doty, M F; Scheibner, M; Ponomarev, I V; Stinaff, E A; Bracker, A S; Korenev, V L; Reinecke, T L; Gammon, D
2006-11-10
We present a magnetophotoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g factors of different spin states that have molecular wave functions distributed over both quantum dots. We propose a phenomenological model for the change in g factor based on resonant changes in the amplitude of the wave function in the barrier due to the formation of bonding and antibonding orbitals.
Electrically Tunable g Factors in Quantum Dot Molecular Spin States
NASA Astrophysics Data System (ADS)
Doty, M. F.; Scheibner, M.; Ponomarev, I. V.; Stinaff, E. A.; Bracker, A. S.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2006-11-01
We present a magnetophotoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g factors of different spin states that have molecular wave functions distributed over both quantum dots. We propose a phenomenological model for the change in g factor based on resonant changes in the amplitude of the wave function in the barrier due to the formation of bonding and antibonding orbitals.
Power loss of a single electron charge distribution confined in a quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehramiz, A.; Department of Physics, Faculty of Science, I. K. Int'l University, Qazvin 34149-16818; Mahmoodi, J.
2011-05-15
The dielectric tensor for a quantum plasma is derived by using a linearized quantum hydrodynamic theory. The wave functions for a nanostructure bound system have been investigated. Finally, the power loss for an oscillating charge distribution of a mixed state will be calculated, using the dielectric function formalism.
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation formore » the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.« less
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
NASA Astrophysics Data System (ADS)
Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.
2018-01-01
In this paper, the bound-state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by using new developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial wave functions are defined for any l≠0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. Thanks to both methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is presented. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.
Unitary evolution of the quantum Universe with a Brown-Kuchař dust
NASA Astrophysics Data System (ADS)
Maeda, Hideki
2015-12-01
We study the time evolution of a wave function for the spatially flat Friedmann-Lemaître-Robertson-Walker Universe governed by the Wheeler-DeWitt equation in both analytical and numerical methods. We consider a Brown-Kuchař dust as a matter field in order to introduce a ‘clock’ in quantum cosmology and adopt the Laplace-Beltrami operator-ordering. The Hamiltonian operator admits an infinite number of self-adjoint extensions corresponding to a one-parameter family of boundary conditions at the origin in the minisuperspace. For any value of the extension parameter in the boundary condition, the evolution of a wave function is unitary and the classical initial singularity is avoided and replaced by the big bounce in the quantum system. Exact wave functions show that the expectation value of the spatial volume of the Universe obeys the classical-time evolution in the late time but its variance diverges.
NASA Astrophysics Data System (ADS)
Flory, Curt A.; Musgrave, Charles B.; Zhang, Zhiyong
2008-05-01
A number of physical processes involving quantum dots depend critically upon the “evanescent” electron eigenstate wave function that extends outside of the material surface into the surrounding region. These processes include electron tunneling through quantum dots, as well as interactions between multiple quantum dot structures. In order to unambiguously determine these evanescent fields, appropriate boundary conditions have been developed to connect the electronic solutions interior to the semiconductor quantum dot to exterior vacuum solutions. In standard envelope function theory, the interior wave function consists of products of band edge and envelope functions, and both must be considered when matching to the external solution. While the envelope functions satisfy tractable equations, the band edge functions are generally not known. In this work, symmetry arguments in the spherically symmetric approximation are used in conjunction with the known qualitative behavior of bonding and antibonding orbitals to catalog the behavior of the band edge functions at the unit cell boundary. This physical approximation allows consolidation of the influence of the band edge functions to two simple surface parameters that are incorporated into the boundary conditions and are straightforwardly computed by using numerical first-principles quantum techniques. These new boundary conditions are employed to analyze an isolated spherically symmetric semiconductor quantum dot in vacuum within the analytical model of Sercel and Vahala [Phys. Rev. Lett. 65, 239 (1990); Phys. Rev. B 42, 3690 (1990)]. Results are obtained for quantum dots made of GaAs and InP, which are compared with ab initio calculations that have appeared in the literature.
Matrasulov, D U; Milibaeva, G M; Salomov, U R; Sundaram, Bala
2005-07-01
Transport properties in the relativistic analog of the periodically kicked rotor are contrasted under classically and quantum mechanical dynamics. The quantum rotor is treated by solving the Dirac equation in the presence of the time-periodic delta-function potential resulting in a relativistic quantum mapping describing the evolution of the wave function. The transition from the quantum suppression behavior seen in the nonrelativistic limit to agreement between quantum and classical analyses in the relativistic regime is discussed. The absence of quantum resonances in the relativistic case is also addressed.
Properties of resonance wave functions.
NASA Technical Reports Server (NTRS)
More, R. M.; Gerjuoy, E.
1973-01-01
Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.
Resolution of quantum singularities
NASA Astrophysics Data System (ADS)
Konkowski, Deborah; Helliwell, Thomas
2017-01-01
A review of quantum singularities in static and conformally static spacetimes is given. A spacetime is said to be quantum mechanically non-singular if a quantum wave packet does not feel, in some sense, the presence of a singularity; mathematically, this means that the wave operator is essentially self-adjoint on the space of square integrable functions. Spacetimes with classical mild singularities (quasiregular ones) to spacetimes with classical strong curvature singularities have been tested. Here we discuss the similarities and differences between classical singularities that are healed quantum mechanically and those that are not. Possible extensions of the mathematical technique to more physically realistic spacetimes are discussed.
Quantum Entanglement and the Topological Order of Fractional Hall States
NASA Astrophysics Data System (ADS)
Rezayi, Edward
2015-03-01
Fractional quantum Hall states or, more generally, topological phases of matter defy Landau classification based on order parameter and broken symmetry. Instead they have been characterized by their topological order. Quantum information concepts, such as quantum entanglement, appear to provide the most efficient method of detecting topological order solely from the knowledge of the ground state wave function. This talk will focus on real-space bi-partitioning of quantum Hall states and will present both exact diagonalization and quantum Monte Carlo studies of topological entanglement entropy in various geometries. Results on the torus for non-contractible cuts are quite rich and, through the use of minimum entropy states, yield the modular S-matrix and hence uniquely determine the topological order, as shown in recent literature. Concrete examples of minimum entropy states from known quantum Hall wave functions and their corresponding quantum numbers, used in exact diagonalizations, will be given. In collaboration with Clare Abreu and Raul Herrera. Supported by DOE Grant DE-SC0002140.
Peptides and proteins in matter wave interferometry: Challenges and prospects
NASA Astrophysics Data System (ADS)
Sezer, Ugur; Geyer, Philipp; Mairhofer, Lukas; Brand, Christian; Doerre, Nadine; Rodewald, Jonas; Schaetti, Jonas; Koehler, Valentin; Mayor, Marcel; Arndt, Markus
2016-05-01
Recent developments in matter wave physics suggest that quantum interferometry with biologically relevant nanomaterials is becoming feasible for amino acids, peptides, proteins and RNA/DNA strands. Quantum interference of biomolecules is interesting as it can mimic Schrödinger's cat states with molecules of high mass, elevated temperature and biological functionality. Additionally, the high internal complexity can give rise to a rich variety of couplings to the environment and new handles for quantitative tests of quantum decoherence. Finally, matter wave interferometers are highly sensitive force sensors and pave the way for quantum-assisted measurements of biomolecular properties in interaction with tailored or biomimetic environments. Recent interferometer concepts such as the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI) or the Optical Time-domain Matter Wave interferometer (OTIMA) have already proven their potential for quantum optics in the mass range beyond 10000 amu and for metrology. Here we show our advances in quantum interferometry with vitamins and peptides and discuss methods of realizing cold, intense and sufficiently slow beams of synthetically tailored or hydrated polypeptides with promising properties for a new generation of quantum optics.
NASA Astrophysics Data System (ADS)
Dorband, J. E.; Tilak, N.; Radov, A.
2016-12-01
In this paper, a classical computer implementation of RBM is compared to a quantum annealing based RBM running on a D-Wave 2X (an adiabatic quantum computer). The codes for both are essentially identical. Only a flag is set to change the activation function from a classically computed logistic function to the D-Wave. To obtain greater understanding of the behavior of the D-Wave, a study of the stochastic properties of a virtual qubit (a 12 qubit chain) and a cell of qubits (an 8 qubit cell) was performed. We will present the results of comparing the D-Wave implementation with a theoretically errorless adiabatic quantum computer. The main purpose of this study is to develop a generic RBM regression tool in order to infer CO2 fluxes from the NASA satellite OCO-2 observed CO2 concentrations and predicted atmospheric states using regression models. The carbon fluxes will then be assimilated into a land surface model to predict the Net Ecosystem Exchange at globally distributed regional sites.
Transformation Theory, Accelerating Frames, and Two Simple Problems
ERIC Educational Resources Information Center
Schmid, G. Bruno
1977-01-01
Presents an operator which transforms quantum functions to solve problems of the stationary state wave functions for a particle and the motion and spreading of a Gaussian wave packet in uniform gravitational fields. (SL)
Neural-Network Quantum States, String-Bond States, and Chiral Topological States
NASA Astrophysics Data System (ADS)
Glasser, Ivan; Pancotti, Nicola; August, Moritz; Rodriguez, Ivan D.; Cirac, J. Ignacio
2018-01-01
Neural-network quantum states have recently been introduced as an Ansatz for describing the wave function of quantum many-body systems. We show that there are strong connections between neural-network quantum states in the form of restricted Boltzmann machines and some classes of tensor-network states in arbitrary dimensions. In particular, we demonstrate that short-range restricted Boltzmann machines are entangled plaquette states, while fully connected restricted Boltzmann machines are string-bond states with a nonlocal geometry and low bond dimension. These results shed light on the underlying architecture of restricted Boltzmann machines and their efficiency at representing many-body quantum states. String-bond states also provide a generic way of enhancing the power of neural-network quantum states and a natural generalization to systems with larger local Hilbert space. We compare the advantages and drawbacks of these different classes of states and present a method to combine them together. This allows us to benefit from both the entanglement structure of tensor networks and the efficiency of neural-network quantum states into a single Ansatz capable of targeting the wave function of strongly correlated systems. While it remains a challenge to describe states with chiral topological order using traditional tensor networks, we show that, because of their nonlocal geometry, neural-network quantum states and their string-bond-state extension can describe a lattice fractional quantum Hall state exactly. In addition, we provide numerical evidence that neural-network quantum states can approximate a chiral spin liquid with better accuracy than entangled plaquette states and local string-bond states. Our results demonstrate the efficiency of neural networks to describe complex quantum wave functions and pave the way towards the use of string-bond states as a tool in more traditional machine-learning applications.
Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well
NASA Astrophysics Data System (ADS)
Yépez, V. S.; Sagar, R. P.; Laguna, H. G.
2017-12-01
The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.
Solving the quantum many-body problem with artificial neural networks
NASA Astrophysics Data System (ADS)
Carleo, Giuseppe; Troyer, Matthias
2017-02-01
The challenge posed by the many-body problem in quantum physics originates from the difficulty of describing the nontrivial correlations encoded in the exponential complexity of the many-body wave function. Here we demonstrate that systematic machine learning of the wave function can reduce this complexity to a tractable computational form for some notable cases of physical interest. We introduce a variational representation of quantum states based on artificial neural networks with a variable number of hidden neurons. A reinforcement-learning scheme we demonstrate is capable of both finding the ground state and describing the unitary time evolution of complex interacting quantum systems. Our approach achieves high accuracy in describing prototypical interacting spins models in one and two dimensions.
Quantum Metric of Classic Physics
NASA Astrophysics Data System (ADS)
Machusky, Eugene
2017-09-01
By methods of differential geometry and number theory the following has been established: All fundamental physical constants are the medians of quasi-harmonic functions of relative space and relative time. Basic quantum units are, in fact, the gradients of normal distribution of standing waves between the points of pulsating spherical spiral, which are determined only by functional bonds of transcendental numbers PI and E. Analytically obtained values of rotational speed, translational velocity, vibrational speed, background temperature and molar mass give the possibility to evaluate all basic quantum units with practically unlimited accuracy. Metric of quantum physics really is two-dimensional image of motion of waves in three-dimensional space. Standard physical model is correct, but SI metric system is insufficiently exact at submillimeter distances.
Quantum-classical correspondence for the inverted oscillator
NASA Astrophysics Data System (ADS)
Maamache, Mustapha; Ryeol Choi, Jeong
2017-11-01
While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)
Karlovets, Dmitry V; Serbo, Valeriy G
2017-10-27
Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.
Origins and demonstrations of electrons with orbital angular momentum
Agrawal, Amit; Ercius, Peter A.; Grillo, Vincenzo; Herzing, Andrew A.; Harvey, Tyler R.; Linck, Martin; Pierce, Jordan S.
2017-01-01
The surprising message of Allen et al. (Allen et al. 1992 Phys. Rev. A 45, 8185 (doi:10.1103/PhysRevA.45.8185)) was that photons could possess orbital angular momentum in free space, which subsequently launched advancements in optical manipulation, microscopy, quantum optics, communications, many more fields. It has recently been shown that this result also applies to quantum mechanical wave functions describing massive particles (matter waves). This article discusses how electron wave functions can be imprinted with quantized phase vortices in analogous ways to twisted light, demonstrating that charged particles with non-zero rest mass can possess orbital angular momentum in free space. With Allen et al. as a bridge, connections are made between this recent work in electron vortex wave functions and much earlier works, extending a 175 year old tradition in matter wave vortices. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritboon, Atirach, E-mail: atirach.3.14@gmail.com; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112; Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th
2016-08-15
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
Imaging electron wave functions inside open quantum rings.
Martins, F; Hackens, B; Pala, M G; Ouisse, T; Sellier, H; Wallart, X; Bollaert, S; Cappy, A; Chevrier, J; Bayot, V; Huant, S
2007-09-28
Combining scanning gate microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of the electron probability density |Psi|(2)(x,y) in embedded mesoscopic quantum rings. The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wave function interferences. Simulations of both |Psi|(2)(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to |Psi|(2)(x,y).
USSR and Eastern Europe Scientific Abstracts- Physics - Number 45
1978-10-02
compound, a function of the angle between the electrical vector of the ’ light wave and the optical c-axis of the crystal. Heterodiodes have first...of naturally radioactive U, Th and K in a 1-liter sample. USSR A VECTOR MESON IN A QUANTUM ELECTROMAGNETIC FIELD Moscow TEORETICHESKAYA I...arbitrary spin in a classical plane electromagnetic field are used to find the exact wave function of a vector meson in the quantum field of a linearly
Old Wine in New Bottles: Quantum Theory in Historical Perspective.
ERIC Educational Resources Information Center
Bent, Henry A.
1984-01-01
Discusses similarities between chemistry and three central concepts of quantum physics: (1) stationary states; (2) wave functions; and (3) complementarity. Based on these and other similarities, it is indicated that quantum physics is a chemical physics. (JN)
Completeness of the Coulomb Wave Functions in Quantum Mechanics
ERIC Educational Resources Information Center
Mukunda, N.
1978-01-01
Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)
Quantization of Chirikov Map and Quantum KAM Theorem.
NASA Astrophysics Data System (ADS)
Shi, Kang-Jie
KAM theorem is one of the most important theorems in classical nonlinear dynamics and chaos. To extend KAM theorem to the regime of quantum mechanics, we first study the quantum Chirikov map, whose classical counterpart provides a good example of KAM theorem. Under resonance condition 2pihbar = 1/N, we obtain the eigenstates of the evolution operator of this system. We find that the wave functions in the coherent state representation (CSR) are very similar to the classical trajectories. In particular, some of these wave functions have wall-like structure at the locations of classical KAM curves. We also find that a local average is necessary for a Wigner function to approach its classical limit in the phase space. We then study the general problem theoretically. Under similar conditions for establishing the classical KAM theorem, we obtain a quantum extension of KAM theorem. By constructing successive unitary transformations, we can greatly reduce the perturbation part of a near-integrable Hamiltonian system in a region associated with a Diophantine number {rm W}_{o}. This reduction is restricted only by the magnitude of hbar.. We can summarize our results as follows: In the CSR of a nearly integrable quantum system, associated with a Diophantine number {rm W}_ {o}, there is a band near the corresponding KAM torus of the classical limit of the system. In this band, a Gaussian wave packet moves quasi-periodically (and remain close to the KAM torus) for a long time, with possible diffusion in both the size and the shape of its wave packet. The upper bound of the tunnelling rate out of this band for the wave packet can be made much smaller than any given power of hbar, if the original perturbation is sufficiently small (but independent of hbar). When hbarto 0, we reproduce the classical KAM theorem. For most near-integrable systems the eigenstate wave function in the above band can either have a wall -like structure or have a vanishing amplitude. These conclusions agree with the numerical results of the quantum Chirikov map.
Wave Function and Emergent SU(2) Symmetry in the νT=1 Quantum Hall Bilayer
NASA Astrophysics Data System (ADS)
Lian, Biao; Zhang, Shou-Cheng
2018-02-01
We propose a trial wave function for the quantum Hall bilayer system of total filling factor νT=1 at a layer distance d to magnetic length ℓ ratio d /ℓ=κc 1≈1.1 , where the lowest charged excitation is known to have a level crossing. The wave function has two-particle correlations, which fit well with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free excitons formed by composite bosons and anticomposite bosons in different layers. We show the free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at d /ℓ=κc 1, which leads to the level crossing in low-lying charged excitations. We further show the overlap between the trial wave function, and the ground state of a small size exact diagonalization is peaked near d /ℓ=κc 1, which supports our theory.
Diffraction and quantum control of wave functions in nonresonant two-photon absorption
NASA Astrophysics Data System (ADS)
Li, Baihong; Pang, Huafeng; Wang, Doudou; Zhang, Tao; Dong, Ruifang; Li, Yongfang
2018-03-01
In this study, the nonresonant two-photon absorption process in a two-level atom, induced by a weak chirped pulse, is theoretically investigated in the frequency domain. An analytical expression of the wave function expressed by Fresnel functions is obtained, and the two-photon transition probability (TPTP) versus the integral bandwidth, spectral width, and chirp parameter is analyzed. The results indicate that the oscillation evolution of the TPTP result from quantum diffraction of the wave function, which can be explained by analogy with Fresnel diffraction from a wide slit in the spatial domain. Moreover, the ratio between the real and imaginary parts of the excited state wave function and, hence, the atomic polarization, can be controlled by the initial phase of the excitation pulse. In some special initial phase of the excitation pulse, the wave functions with purely real or imaginary parts can be obtained by measuring the population probability. This work provides a novel perspective for understanding the physical details of the interactions between atoms and chirped light pulses in the multiphoton process.
Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.
Saller, Maximilian A C; Habershon, Scott
2017-07-11
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
Karpman-Washimi magnetization with electron-exchange effects in quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jamil, M.; Rasheed, A.
2015-07-15
The influence of quantum electron-exchange on the Karpman-Washimi ponderomotive magnetization is investigated in quantum plasmas. The ponderomotive magnetization and the total radiation power due to the non-stationary Karpman-Washimi interaction related to the time-varying field intensity are obtained as functions of the de Broglie wave length, Debye length, and electron-exchange parameter. The result shows that the electron-exchange effect enhances the cyclotron frequency due to the ponderomotive interactions in quantum plasmas. It is also shown that the electron-exchange effect on the Karpman-Washimi magnetization increases with increasing wave number. In addition, the Karpman-Washimi magnetization and the total radiation power increase with an increasemore » in the ratio of the Debye length to the de Broglie wave length. In streaming quantum plasmas, it is shown that the electron-exchange effect enhances the ponderomotive magnetization below the resonant wave number and, however, suppresses the ponderomotive magnetization above the resonant wave number. The variation of the Karpman-Washimi magnetization and the radiation power due to the variation of the electron-exchange effect and plasma parameters is also discussed.« less
A Delayed Choice Quantum Eraser Explained by the Transactional Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Fearn, H.
2016-01-01
This paper explains the delayed choice quantum eraser of Kim et al. (A delayed choice quantum eraser, 1999) in terms of the transactional interpretation (TI) of quantum mechanics by Cramer (Rev Mod Phys 58:647, 1986, The quantum handshake, entanglement, nonlocality and transactions, 1986). It is kept deliberately mathematically simple to help explain the transactional technique. The emphasis is on a clear understanding of how the instantaneous "collapse" of the wave function due to a measurement at a specific time and place may be reinterpreted as a relativistically well-defined collapse over the entire path of the photon and over the entire transit time from slit to detector. This is made possible by the use of a retarded offer wave, which is thought to travel from the slits (or rather the small region within the parametric crystal where down-conversion takes place) to the detector and an advanced counter wave traveling backward in time from the detector to the slits. The point here is to make clear how simple the transactional picture is and how much more intuitive the collapse of the wave function becomes if viewed in this way. Also, any confusion about possible retro-causal signaling is put to rest. A delayed choice quantum eraser does not require any sort of backward in time communication. This paper makes the point that it is preferable to use the TI over the usual Copenhagen interpretation for a more intuitive understanding of the quantum eraser delayed choice experiment. Both methods give exactly the same end results and can be used interchangeably.
A Short Biography of Paul A. M. Dirac and Historical Development of Dirac Delta Function
ERIC Educational Resources Information Center
Debnath, Lokenath
2013-01-01
This paper deals with a short biography of Paul Dirac, his first celebrated work on quantum mechanics, his first formal systematic use of the Dirac delta function and his famous work on quantum electrodynamics and quantum statistics. Included are his first discovery of the Dirac relativistic wave equation, existence of positron and the intrinsic…
NASA Astrophysics Data System (ADS)
Tawfik, Sherif A.; El-Sheikh, S. M.; Salem, N. M.
2016-09-01
Recently we have become aware that the description of the quantum wave functions in Sec. 2.1 is incorrect. In the published version of the paper, we have stated that the states are expanded in terms of plane waves. However, the correct description of the quantum states in the context of the real space implementation (using the Octopus code) is that states are represented by discrete points in a real space grid.
Physical approach to quantum networks with massive particles
NASA Astrophysics Data System (ADS)
Andersen, Molte Emil Strange; Zinner, Nikolaj Thomas
2018-04-01
Assembling large-scale quantum networks is a key goal of modern physics research with applications in quantum information and computation. Quantum wires and waveguides in which massive particles propagate in tailored confinement is one promising platform for realizing a quantum network. In the literature, such networks are often treated as quantum graphs, that is, the wave functions are taken to live on graphs of one-dimensional edges meeting in vertices. Hitherto, it has been unclear what boundary conditions on the vertices produce the physical states one finds in nature. This paper treats a quantum network from a physical approach, explicitly finds the physical eigenstates and compares them to the quantum-graph description. The basic building block of a quantum network is an X-shaped potential well made by crossing two quantum wires, and we consider a massive particle in such an X well. The system is analyzed using a variational method based on an expansion into modes with fast convergence and it provides a very clear intuition for the physics of the problem. The particle is found to have a ground state that is exponentially localized to the center of the X well, and the other symmetric solutions are formed so to be orthogonal to the ground state. This is in contrast to the predictions of the conventionally used so-called Kirchoff boundary conditions in quantum graph theory that predict a different sequence of symmetric solutions that cannot be physically realized. Numerical methods have previously been the only source of information on the ground-state wave function and our results provide a different perspective with strong analytical insights. The ground-state wave function has a spatial profile that looks very similar to the shape of a solitonic solution to a nonlinear Schrödinger equation, enabling an analytical prediction of the wave number. When combining multiple X wells into a network or grid, each site supports a solitonlike localized state. These localized solutions only couple to each other and are able to jump from one site to another as if they were trapped in a discrete lattice.
Holonomy, quantum mechanics and the signal-tuned Gabor approach to the striate cortex
NASA Astrophysics Data System (ADS)
Torreão, José R. A.
2016-02-01
It has been suggested that an appeal to holographic and quantum properties will be ultimately required for the understanding of higher brain functions. On the other hand, successful quantum-like approaches to cognitive and behavioral processes bear witness to the usefulness of quantum prescriptions as applied to the analysis of complex non-quantum systems. Here, we show that the signal-tuned Gabor approach for modeling cortical neurons, although not based on quantum assumptions, also admits a quantum-like interpretation. Recently, the equation of motion for the signal-tuned complex cell response has been derived and proven equivalent to the Schrödinger equation for a dissipative quantum system whose solutions come under two guises: as plane-wave and Airy-packet responses. By interpreting the squared magnitude of the plane-wave solution as a probability density, in accordance with the quantum mechanics prescription, we arrive at a Poisson spiking probability — a common model of neuronal response — while spike propagation can be described by the Airy-packet solution. The signal-tuned approach is also proven consistent with holonomic brain theories, as it is based on Gabor functions which provide a holographic representation of the cell’s input, in the sense that any restricted subset of these functions still allows stimulus reconstruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
2014-03-14
The complex quantum Hamilton-Jacobi equation-Bohmian trajectories (CQHJE-BT) method is introduced as a synthetic trajectory method for integrating the complex quantum Hamilton-Jacobi equation for the complex action function by propagating an ensemble of real-valued correlated Bohmian trajectories. Substituting the wave function expressed in exponential form in terms of the complex action into the time-dependent Schrödinger equation yields the complex quantum Hamilton-Jacobi equation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation describing the rate of change in the complex action transported along Bohmian trajectories is simultaneouslymore » integrated with the guidance equation for Bohmian trajectories, and the time-dependent wave function is readily synthesized. The spatial derivatives of the complex action required for the integration scheme are obtained by solving one moving least squares matrix equation. In addition, the method is applied to the photodissociation of NOCl. The photodissociation dynamics of NOCl can be accurately described by propagating a small ensemble of trajectories. This study demonstrates that the CQHJE-BT method combines the considerable advantages of both the real and the complex quantum trajectory methods previously developed for wave packet dynamics.« less
Quantum mechanics and the psyche
NASA Astrophysics Data System (ADS)
Galli Carminati, G.; Martin, F.
2008-07-01
In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.
Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors
NASA Astrophysics Data System (ADS)
Bitter, M.; Milner, V.
2016-09-01
The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum—the hallmark of dynamical localization—is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.
Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors.
Bitter, M; Milner, V
2016-09-30
The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum-the hallmark of dynamical localization-is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.
Anisotropy-driven transition from the Moore-Read state to quantum Hall stripes
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Sodemann, Inti; Sheng, D. N.; Fu, Liang
2017-05-01
We investigate the nature of the quantum Hall liquid in a half-filled second Landau level (n =1 ) as a function of band mass anisotropy using numerical exact diagonalization and density matrix renormalization group methods. We find increasing the mass anisotropy induces a quantum phase transition from the Moore-Read state to a charge density wave state. By analyzing the energy spectrum, guiding center structure factors, and by adding weak pinning potentials, we show that this charge density wave is a unidirectional quantum Hall stripe, which has a periodicity of a few magnetic lengths and survives in the thermodynamic limit. We find smooth profiles for the guiding center occupation function that reveal the strong coupling nature of the array of chiral Luttinger liquids residing at the stripe edges.
Advanced capabilities for materials modelling with Quantum ESPRESSO
NASA Astrophysics Data System (ADS)
Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.
2017-11-01
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Advanced capabilities for materials modelling with Quantum ESPRESSO.
Giannozzi, P; Andreussi, O; Brumme, T; Bunau, O; Buongiorno Nardelli, M; Calandra, M; Car, R; Cavazzoni, C; Ceresoli, D; Cococcioni, M; Colonna, N; Carnimeo, I; Dal Corso, A; de Gironcoli, S; Delugas, P; DiStasio, R A; Ferretti, A; Floris, A; Fratesi, G; Fugallo, G; Gebauer, R; Gerstmann, U; Giustino, F; Gorni, T; Jia, J; Kawamura, M; Ko, H-Y; Kokalj, A; Küçükbenli, E; Lazzeri, M; Marsili, M; Marzari, N; Mauri, F; Nguyen, N L; Nguyen, H-V; Otero-de-la-Roza, A; Paulatto, L; Poncé, S; Rocca, D; Sabatini, R; Santra, B; Schlipf, M; Seitsonen, A P; Smogunov, A; Timrov, I; Thonhauser, T; Umari, P; Vast, N; Wu, X; Baroni, S
2017-10-24
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Advanced capabilities for materials modelling with Quantum ESPRESSO.
Andreussi, Oliviero; Brumme, Thomas; Bunau, Oana; Buongiorno Nardelli, Marco; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Cococcioni, Matteo; Colonna, Nicola; Carnimeo, Ivan; Dal Corso, Andrea; de Gironcoli, Stefano; Delugas, Pietro; DiStasio, Robert; Ferretti, Andrea; Floris, Andrea; Fratesi, Guido; Fugallo, Giorgia; Gebauer, Ralph; Gerstmann, Uwe; Giustino, Feliciano; Gorni, Tommaso; Jia, Junteng; Kawamura, Mitsuaki; Ko, Hsin-Yu; Kokalj, Anton; Küçükbenli, Emine; Lazzeri, Michele; Marsili, Margherita; Marzari, Nicola; Mauri, Francesco; Nguyen, Ngoc Linh; Nguyen, Huy-Viet; Otero-de-la-Roza, Alberto; Paulatto, Lorenzo; Poncé, Samuel; Giannozzi, Paolo; Rocca, Dario; Sabatini, Riccardo; Santra, Biswajit; Schlipf, Martin; Seitsonen, Ari Paavo; Smogunov, Alexander; Timrov, Iurii; Thonhauser, Timo; Umari, Paolo; Vast, Nathalie; Wu, Xifan; Baroni, Stefano
2017-09-27
Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software. © 2017 IOP Publishing Ltd.
Kreisbeck, C; Kramer, T; Molina, R A
2017-04-20
We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin-Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meek, Garrett A.; Levine, Benjamin G., E-mail: levine@chemistry.msu.edu
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplingsmore » at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.« less
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections
NASA Astrophysics Data System (ADS)
Meek, Garrett A.; Levine, Benjamin G.
2016-05-01
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Wave function continuity and the diagonal Born-Oppenheimer correction at conical intersections.
Meek, Garrett A; Levine, Benjamin G
2016-05-14
We demonstrate that though exact in principle, the expansion of the total molecular wave function as a sum over adiabatic Born-Oppenheimer (BO) vibronic states makes inclusion of the second-derivative nonadiabatic energy term near conical intersections practically problematic. In order to construct a well-behaved molecular wave function that has density at a conical intersection, the individual BO vibronic states in the summation must be discontinuous. When the second-derivative nonadiabatic terms are added to the Hamiltonian, singularities in the diagonal BO corrections (DBOCs) of the individual BO states arise from these discontinuities. In contrast to the well-known singularities in the first-derivative couplings at conical intersections, these singularities are non-integrable, resulting in undefined DBOC matrix elements. Though these singularities suggest that the exact molecular wave function may not have density at the conical intersection point, there is no physical basis for this constraint. Instead, the singularities are artifacts of the chosen basis of discontinuous functions. We also demonstrate that continuity of the total molecular wave function does not require continuity of the individual adiabatic nuclear wave functions. We classify nonadiabatic molecular dynamics methods according to the constraints placed on wave function continuity and analyze their formal properties. Based on our analysis, it is recommended that the DBOC be neglected when employing mixed quantum-classical methods and certain approximate quantum dynamical methods in the adiabatic representation.
Bound states and propagating modes in quantum wires with sharp bends and/or constrictions
NASA Astrophysics Data System (ADS)
Razavy, M.
1997-06-01
A number of interesting problems of quantum wires with different geometries can be studied with the help of conformal mapping. These include crossed wires, twisting wires, conductors with constrictions, and wires with a bend. Here the Helmholz equation with Dirichlet boundary condition on the surface of the wire is transformed to a Schröautdinger-like equation with an energy-dependent nonseparable potential but with boundary conditions given on two straight lines. By expanding the wave function in terms of the Fourier series of one of the variables one obtains an infinite set of coupled ordinary differential equations. Only the propagating modes plus a few of the localized modes contribute significantly to the total wave function. Once the problem is solved, one can express the results in terms of the original variables using the inverse conformal mapping. As an example, the total wave function, the components of the current density, and the bound-state energy for a Γ-shaped quantum wire is calculated in detail.
NASA Astrophysics Data System (ADS)
Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.
2018-02-01
In this paper, the bound state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by implementing the novel improved scheme to surmount the centrifugal term. The energy eigenvalues and corresponding radial wave functions are defined for any l ≠ 0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSYQM) methods. By using these two different methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is demonstrated. The energy levels are worked out and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.
Protective Measurement and Quantum Reality
NASA Astrophysics Data System (ADS)
Gao, Shan
2015-01-01
1. Protective measurements: an introduction Shan Gao; Part I. Fundamentals and Applications: 2. Protective measurements of the wave function of a single system Lev Vaidman; 3. Protective measurement, postselection and the Heisenberg representation Yakir Aharonov and Eliahu Cohen; 4. Protective and state measurement: a review Gennaro Auletta; 5. Determination of the stationary basis from protective measurement on a single system Lajos Diósi; 6. Weak measurements, the energy-momentum tensor and the Bohm approach Robert Flack and Basil J. Hiley; Part II. Meanings and Implications: 7. Measurement and metaphysics Peter J. Lewis; 8. Protective measurements and the explanatory gambit Michael Dickson; 9. Realism and instrumentalism about the wave function: how should we choose? Mauro Dorato and Frederico Laudisa; 10. Protective measurements and the PBR theorem Guy Hetzroni and Daniel Rohrlich; 11. The roads not taken: empty waves, waveform collapse and protective measurement in quantum theory Peter Holland; 12. Implications of protective measurements on de Broglie-Bohm trajectories Aurelien Drezet; 13. Entanglement, scaling, and the meaning of the wave function in protective measurement Maximilian Schlosshauer and Tangereen V. B. Claringbold; 14. Protective measurements and the nature of the wave function within the primitive ontology approach Vincent Lam; 15. Reality and meaning of the wave function Shan Gao; Index.
NASA Astrophysics Data System (ADS)
Yannouleas, Constantine; Landman, Uzi
2017-10-01
A constructive theoretical platform for the description of quantum space-time crystals uncovers for N interacting and ring-confined rotating particles the existence of low-lying states with proper space-time crystal behavior. The construction of the corresponding many-body trial wave functions proceeds first via symmetry breaking at the mean-field level followed by symmetry restoration using projection techniques. The ensuing correlated many-body wave functions are stationary states and preserve the rotational symmetries, and at the same time they reflect the point-group symmetries of the mean-field crystals. This behavior results in the emergence of sequences of select magic angular momenta Lm. For angular-momenta away from the magic values, the trial functions vanish. Symmetry breaking beyond the mean-field level can be induced by superpositions of such good-Lm many-body stationary states. We show that superposing a pair of adjacent magic angular momenta states leads to formation of special broken-symmetry states exhibiting quantum space-time-crystal behavior. In particular, the corresponding particle densities rotate around the ring, showing undamped and nondispersed periodic crystalline evolution in both space and time. The experimental synthesis of such quantum space-time-crystal wave packets is predicted to be favored in the vicinity of ground-state energy crossings of the Aharonov-Bohm-type spectra accessed via an externally applied, natural or synthetic, magnetic field. These results are illustrated here for Coulomb-repelling fermionic ions and for a lump of contact-interaction attracting bosons.
Scalar field quantum cosmology: A Schrödinger picture
NASA Astrophysics Data System (ADS)
Vakili, Babak
2012-11-01
We study the classical and quantum models of a scalar field Friedmann-Robertson-Walker (FRW) cosmology with an eye to the issue of time problem in quantum cosmology. We introduce a canonical transformation on the scalar field sector of the action such that the momentum conjugate to the new canonical variable appears linearly in the transformed Hamiltonian. Using this canonical transformation, we show that, it may lead to the identification of a time parameter for the corresponding dynamical system. In the cases of flat, closed and open FRW universes the classical cosmological solutions are obtained in terms of the introduced time parameter. Moreover, this formalism gives rise to a Schrödinger-Wheeler-DeWitt equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave functions in order to investigate the possible corrections to the classical cosmologies due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.
Quantum and classical dissipation of charged particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less
Negative values of quasidistributions and quantum wave and number statistics
NASA Astrophysics Data System (ADS)
Peřina, J.; Křepelka, J.
2018-04-01
We consider nonclassical wave and number quantum statistics, and perform a decomposition of quasidistributions for nonlinear optical down-conversion processes using Bessel functions. We show that negative values of the quasidistribution do not directly represent probabilities; however, they directly influence measurable number statistics. Negative terms in the decomposition related to the nonclassical behavior with negative amplitudes of probability can be interpreted as positive amplitudes of probability in the negative orthogonal Bessel basis, whereas positive amplitudes of probability in the positive basis describe classical cases. However, probabilities are positive in all cases, including negative values of quasidistributions. Negative and positive contributions of decompositions to quasidistributions are estimated. The approach can be adapted to quantum coherence functions.
Particle detection and non-detection in a quantum time of arrival measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sombillo, Denny Lane B., E-mail: dsombillo@nip.upd.edu.ph; Galapon, Eric A.
2016-01-15
The standard time-of-arrival distribution cannot reproduce both the temporal and the spatial profile of the modulus squared of the time-evolved wave function for an arbitrary initial state. In particular, the time-of-arrival distribution gives a non-vanishing probability even if the wave function is zero at a given point for all values of time. This poses a problem in the standard formulation of quantum mechanics where one quantizes a classical observable and uses its spectral resolution to calculate the corresponding distribution. In this work, we show that the modulus squared of the time-evolved wave function is in fact contained in one ofmore » the degenerate eigenfunctions of the quantized time-of-arrival operator. This generalizes our understanding of quantum arrival phenomenon where particle detection is not a necessary requirement, thereby providing a direct link between time-of-arrival quantization and the outcomes of the two-slit experiment. -- Highlights: •The time-evolved position density is contained in the standard TOA distribution. •Particle may quantum mechanically arrive at a given point without being detected. •The eigenstates of the standard TOA operator are linked to the two-slit experiment.« less
Kinetic energy partition method applied to ground state helium-like atoms.
Chen, Yu-Hsin; Chao, Sheng D
2017-03-28
We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.
Material Phase Causality or a Dynamics-Statistical Interpretation of Quantum Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koprinkov, I. G.
2010-11-25
The internal phase dynamics of a quantum system interacting with an electromagnetic field is revealed in details. Theoretical and experimental evidences of a causal relation of the phase of the wave function to the dynamics of the quantum system are presented sistematically for the first time. A dynamics-statistical interpretation of the quantum mechanics is introduced.
Classical and quantum cosmology with two perfect fluids: stiff matter and radiation
NASA Astrophysics Data System (ADS)
Alvarenga, F. G.; Fracalossi, R.; Freitas, R. C.; Gonçalves, S. V. B.
2017-11-01
In this work the homogeneous and isotropic Universe of Friedmann-Robertson-Walker is studied in the presence of two fluids: stiff matter and radiation described by the Schutz's formalism. We obtain to the classic case the behaviour of the scale factor of the universe. For the quantum case the wave packets are constructed and the wave function of the universe is found.
Wave Function and Emergent SU(2) Symmetry in the ν_{T}=1 Quantum Hall Bilayer.
Lian, Biao; Zhang, Shou-Cheng
2018-02-16
We propose a trial wave function for the quantum Hall bilayer system of total filling factor ν_{T}=1 at a layer distance d to magnetic length ℓ ratio d/ℓ=κ_{c1}≈1.1, where the lowest charged excitation is known to have a level crossing. The wave function has two-particle correlations, which fit well with those in previous numerical studies, and can be viewed as a Bose-Einstein condensate of free excitons formed by composite bosons and anticomposite bosons in different layers. We show the free nature of these excitons indicating an emergent SU(2) symmetry for the composite bosons at d/ℓ=κ_{c1}, which leads to the level crossing in low-lying charged excitations. We further show the overlap between the trial wave function, and the ground state of a small size exact diagonalization is peaked near d/ℓ=κ_{c1}, which supports our theory.
Schrödinger propagation of initial discontinuities leads to divergence of moments
NASA Astrophysics Data System (ADS)
Marchewka, A.; Schuss, Z.
2009-09-01
We show that the large phase expansion of the Schrödinger propagation of an initially discontinuous wave function leads to the divergence of average energy, momentum, and displacement, rendering them unphysical states. If initially discontinuous wave functions are considered to be approximations to continuous ones, the determinant of the spreading rate of these averages is the maximal gradient of the initial wave function. Therefore a dilemma arises between the inclusion of discontinuous wave functions in quantum mechanics and the requirement of finite moments.
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.; Kuz'menkov, L. S.
2017-11-01
A consideration of waves propagating parallel to the external magnetic field is presented. The dielectric permeability tensor is derived from the quantum kinetic equations with non-trivial equilibrium spin-distribution functions in the linear approximation on the amplitude of wave perturbations. It is possible to consider the equilibrium spin-distribution functions with nonzero z-projection proportional to the difference of the Fermi steps of electrons with the chosen spin direction, while x- and y-projections are equal to zero. It is called the trivial equilibrium spin-distribution functions. In the general case, x- and y-projections of the spin-distribution functions are nonzero which is called the non-trivial regime. A corresponding equilibrium solution is found in Andreev [Phys. Plasmas 23, 062103 (2016)]. The contribution of the nontrivial part of the spin-distribution function appears in the dielectric permeability tensor in the additive form. It is explicitly found here. A corresponding modification in the dispersion equation for the transverse waves is derived. The contribution of the nontrivial part of the spin-distribution function in the spectrum of transverse waves is calculated numerically. It is found that the term caused by the nontrivial part of the spin-distribution function can be comparable with the classic terms for the relatively small wave vectors and frequencies above the cyclotron frequency. In a majority of regimes, the extra spin caused term dominates over the spin term found earlier, except the small frequency regime, where their contributions in the whistler spectrum are comparable. A decrease of the left-hand circularly polarized wave frequency, an increase of the high-frequency right-hand circularly polarized wave frequency, and a decrease of frequency changing by an increase of frequency at the growth of the wave vector for the whistler are found. A considerable decrease of the spin wave frequency is found either. It results in an increase of module of the negative group velocity of the spin wave. The found dispersion equations are used for obtaining of an effective quantum hydrodynamics reproducing these results. This generalization requires the introduction of the corresponding equation of state for the thermal part of the spin current in the spin evolution equation.
Quantum tomography of a molecular bond in ice.
Goldschleger, I U; Golschleger, I U; van Staveren, M N; Apkarian, V Ara
2013-07-21
We present the moving picture of a molecular bond, in phase-space, in real-time, at resolution limited by quantum uncertainty. The images are tomographically reconstructed Wigner distribution functions (WDF) obtained from four-wave mixing measurements on Br2-doped ice. The WDF completely characterizes the dissipative quantum evolution of the system, which despite coupling to the environment retains quantum coherence, as evidenced by its persistent negative Wigner hole. The spectral decomposition of the WDF allows a direct visualization of wavefunctions and spatiotemporal coherences of the system and the system-bath interaction. The measurements vividly illustrate nonclassical wave mechanics in a many-body system, in ordinary condensed matter.
Quantum cybernetics and its test in “late choice” experiments
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
1986-11-01
A relativistically invariant wave equation for the propagation of wave fronts S = const ( S being the action function) is derived on the basis of a cybernetic model of quantum systems involving “hidden variables”. This equation can be considered both as an expression of Huygens' principle and as a general continuity equation providing a close link between classical and quantum mechanics. Although the theory reproduces ordinary quantum mechanics, there are particular situations providing experimental predictions differing from those existing theories. Such predictions are made for so-called “late choice” experiments, which are modified versions of the familiar “delayed choice” experiments.
Astronomical Constraints on Quantum Cold Dark Matter
NASA Astrophysics Data System (ADS)
Spivey, Shane; Musielak, Z.; Fry, J.
2012-01-01
A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.
Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces
NASA Astrophysics Data System (ADS)
Neukart, Florian; Von Dollen, David; Seidel, Christian; Compostella, Gabriele
2017-12-01
Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed n sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.
Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings
NASA Astrophysics Data System (ADS)
Azadi, Sam; Kühne, T. D.
2018-05-01
The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.
Autonomous quantum to classical transitions and the generalized imaging theorem
NASA Astrophysics Data System (ADS)
Briggs, John S.; Feagin, James M.
2016-03-01
The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.
Localization in quantum field theory
NASA Astrophysics Data System (ADS)
Balachandran, A. P.
In non-relativistic quantum mechanics, Born’s principle of localization is as follows: For a single particle, if a wave function ψK vanishes outside a spatial region K, it is said to be localized in K. In particular, if a spatial region K‧ is disjoint from K, a wave function ψK‧ localized in K‧ is orthogonal to ψK. Such a principle of localization does not exist compatibly with relativity and causality in quantum field theory (QFT) (Newton and Wigner) or interacting point particles (Currie, Jordan and Sudarshan). It is replaced by symplectic localization of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localization gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with “continuous” spin. This review outlines the basic principles underlying symplectic localization and shows or mentions its deep implications. In particular, it has the potential to affect relativistic quantum information theory and black hole physics.
Wave-function description of conductance mapping for a quantum Hall electron interferometer
NASA Astrophysics Data System (ADS)
Kolasiński, K.; Szafran, B.
2014-04-01
Scanning gate microscopy of quantum point contacts (QPC) in the integer quantum Hall regime is considered in terms of the scattering wave functions with a finite-difference implementation of the quantum transmitting boundary approach. Conductance (G) maps for a clean QPC as well as for a system including an antidot within the QPC constriction are evaluated. The steplike locally flat G maps for clean QPCs turn into circular resonances that are reentrant in an external magnetic field when the antidot is introduced to the constriction. The current circulation around the antidot and the spacing of the resonances at the magnetic field scale react to the probe approaching the QPC. The calculated G maps with a rigid but soft antidot potential reproduce the features detected recently in the electron interferometer [F. Martins et al., Sci. Rep. 3, 1416 (2013), 10.1038/srep01416].
Momentum-Space Entanglement and Loschmidt Echo in Luttinger Liquids after a Quantum Quench.
Dóra, Balázs; Lundgren, Rex; Selover, Mark; Pollmann, Frank
2016-07-01
Luttinger liquids (LLs) arise by coupling left- and right-moving particles through interactions in one dimension. This most natural partitioning of LLs is investigated by the momentum-space entanglement after a quantum quench using analytical and numerical methods. We show that the momentum-space entanglement spectrum of a LL possesses many universal features both in equilibrium and after a quantum quench. The largest entanglement eigenvalue is identical to the Loschmidt echo, i.e., the overlap of the disentangled and final wave functions of the system. The second largest eigenvalue is the overlap of the first excited state of the disentangled system with zero total momentum and the final wave function. The entanglement gap is universal both in equilibrium and after a quantum quench. The momentum-space entanglement entropy is always extensive and saturates fast to a time independent value after the quench, in sharp contrast to a spatial bipartitioning.
NASA Astrophysics Data System (ADS)
Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.
2018-01-01
Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.
Imaging the dynamics of free-electron Landau states
Schattschneider, P.; Schachinger, Th.; Stöger-Pollach, M.; Löffler, S.; Steiger-Thirsfeld, A.; Bliokh, K. Y.; Nori, Franco
2014-01-01
Landau levels and states of electrons in a magnetic field are fundamental quantum entities underlying the quantum Hall and related effects in condensed matter physics. However, the real-space properties and observation of Landau wave functions remain elusive. Here we report the real-space observation of Landau states and the internal rotational dynamics of free electrons. States with different quantum numbers are produced using nanometre-sized electron vortex beams, with a radius chosen to match the waist of the Landau states, in a quasi-uniform magnetic field. Scanning the beams along the propagation direction, we reconstruct the rotational dynamics of the Landau wave functions with angular frequency ~100 GHz. We observe that Landau modes with different azimuthal quantum numbers belong to three classes, which are characterized by rotations with zero, Larmor and cyclotron frequencies, respectively. This is in sharp contrast to the uniform cyclotron rotation of classical electrons, and in perfect agreement with recent theoretical predictions. PMID:25105563
Collapsing shells and black holes: a quantum analysis
NASA Astrophysics Data System (ADS)
Leal, P.; Bernardini, A. E.; Bertolami, O.
2018-06-01
The quantization of a spherically symmetric null shells is performed and extended to the framework of phase-space noncommutative (NC) quantum mechanics. This shell is considered to be inside a black hole event horizon. The encountered properties are investigated making use of the Israel junction conditions on the shell, considering that it is the boundary between two spherically symmetric spacetimes. Using this method, and considering two different Kantowski–Sachs spacetimes as a representation for the Schwarzschild spacetime, the relevant quantities on the shell are computed, such as its stress-energy tensor and the action for the whole spacetime. From the obtained action, the Wheeler–deWitt equation is deduced in order to provide the quantum framework for the system. Solutions for the wave function of the system are found on both the commutative and NC scenarios. It is shown that, on the commutative version, the wave function has a purely oscillatory behavior in the interior of the shell. In the NC setting, it is shown that the wave function vanishes at the singularity, as well as, at the event horizon of the black hole.
Quantum dynamics modeled by interacting trajectories
NASA Astrophysics Data System (ADS)
Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.
2018-03-01
We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.
NASA Astrophysics Data System (ADS)
Ahmedov, Anvarjon; Materneh, Ehab; Zainuddin, Hishamuddin
2017-09-01
The relevance of waves in quantum mechanics naturally implies that the decomposition of arbitrary wave packets in terms of monochromatic waves plays an important role in applications of the theory. When eigenfunction expansions does not converge, then the expansions of the functions with certain smoothness should be considered. Such functions gained prominence primarily through their application in quantum mechanics. In this work we study the almost everywhere convergence of the eigenfunction expansions from Liouville classes L_p^α ({T^N}), related to the self-adjoint extension of the Laplace operator in torus TN . The sufficient conditions for summability is obtained using the modified Poisson formula. Isomorphism properties of the elliptic differential operators is applied in order to obtain estimation for the Fourier series of the functions from the classes of Liouville L_p^α .
NASA Astrophysics Data System (ADS)
Dupuy, Nicolas; Casula, Michele
2018-04-01
By means of the Jastrow correlated antisymmetrized geminal power (JAGP) wave function and quantum Monte Carlo (QMC) methods, we study the ground state properties of the oligoacene series, up to the nonacene. The JAGP is the accurate variational realization of the resonating-valence-bond (RVB) ansatz proposed by Pauling and Wheland to describe aromatic compounds. We show that the long-ranged RVB correlations built in the acenes' ground state are detrimental for the occurrence of open-shell diradical or polyradical instabilities, previously found by lower-level theories. We substantiate our outcome by a direct comparison with another wave function, tailored to be an open-shell singlet (OSS) for long-enough acenes. By comparing on the same footing the RVB and OSS wave functions, both optimized at a variational QMC level and further projected by the lattice regularized diffusion Monte Carlo method, we prove that the RVB wave function has always a lower variational energy and better nodes than the OSS, for all molecular species considered in this work. The entangled multi-reference RVB state acts against the electron edge localization implied by the OSS wave function and weakens the diradical tendency for higher oligoacenes. These properties are reflected by several descriptors, including wave function parameters, bond length alternation, aromatic indices, and spin-spin correlation functions. In this context, we propose a new aromatic index estimator suitable for geminal wave functions. For the largest acenes taken into account, the long-range decay of the charge-charge correlation functions is compatible with a quasi-metallic behavior.
Computer network defense through radial wave functions
NASA Astrophysics Data System (ADS)
Malloy, Ian J.
The purpose of this research is to synthesize basic and fundamental findings in quantum computing, as applied to the attack and defense of conventional computer networks. The concept focuses on uses of radio waves as a shield for, and attack against traditional computers. A logic bomb is analogous to a landmine in a computer network, and if one was to implement it as non-trivial mitigation, it will aid computer network defense. As has been seen in kinetic warfare, the use of landmines has been devastating to geopolitical regions in that they are severely difficult for a civilian to avoid triggering given the unknown position of a landmine. Thus, the importance of understanding a logic bomb is relevant and has corollaries to quantum mechanics as well. The research synthesizes quantum logic phase shifts in certain respects using the Dynamic Data Exchange protocol in software written for this work, as well as a C-NOT gate applied to a virtual quantum circuit environment by implementing a Quantum Fourier Transform. The research focus applies the principles of coherence and entanglement from quantum physics, the concept of expert systems in artificial intelligence, principles of prime number based cryptography with trapdoor functions, and modeling radio wave propagation against an event from unknown parameters. This comes as a program relying on the artificial intelligence concept of an expert system in conjunction with trigger events for a trapdoor function relying on infinite recursion, as well as system mechanics for elliptic curve cryptography along orbital angular momenta. Here trapdoor both denotes the form of cipher, as well as the implied relationship to logic bombs.
Wigner molecules in carbon-nanotube quantum dots
NASA Astrophysics Data System (ADS)
Secchi, Andrea; Rontani, Massimo
2010-07-01
We demonstrate that electrons in quantum dots defined by electrostatic gates in semiconductor nanotubes freeze orderly in space realizing a “Wigner molecule.” Our exact diagonalization calculations uncover the features of the electron molecule, which may be accessed by tunneling spectroscopy—indeed some of them have already been observed by Deshpande and Bockrath [Nat. Phys. 4, 314 (2008)]10.1038/nphys895. We show that numerical results are satisfactorily reproduced by a simple ansatz vibrational wave function: electrons have localized wave functions, like nuclei in an ordinary molecule, whereas low-energy excitations are collective vibrations of electrons around their equilibrium positions.
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Hartmann, Carsten
2018-07-01
WavePacket is an open-source program package for numeric simulations in quantum dynamics. It can solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows, e.g., to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semi-classical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. Being highly versatile and offering visualization of quantum dynamics 'on the fly', WavePacket is well suited for teaching or research projects in atomic, molecular and optical physics as well as in physical or theoretical chemistry. Building on the previous Part I [Comp. Phys. Comm. 213, 223-234 (2017)] which dealt with closed quantum systems and discrete variable representations, the present Part II focuses on the dynamics of open quantum systems, with Lindblad operators modeling dissipation and dephasing. This part also describes the WavePacket function for optimal control of quantum dynamics, building on rapid monotonically convergent iteration methods. Furthermore, two different approaches to dimension reduction implemented in WavePacket are documented here. In the first one, a balancing transformation based on the concepts of controllability and observability Gramians is used to identify states that are neither well controllable nor well observable. Those states are either truncated or averaged out. In the other approach, the H2-error for a given reduced dimensionality is minimized by H2 optimal model reduction techniques, utilizing a bilinear iterative rational Krylov algorithm. The present work describes the MATLAB version of WavePacket 5.3.0 which is hosted and further developed at the Sourceforge platform, where also extensive Wiki-documentation as well as numerous worked-out demonstration examples with animated graphics can be found.
Greene, Samuel M; Batista, Victor S
2017-09-12
We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.
Interferometers as probes of Planckian quantum geometry
NASA Astrophysics Data System (ADS)
Hogan, Craig J.
2012-03-01
A theory of position of massive bodies is proposed that results in an observable quantum behavior of geometry at the Planck scale, tP. Departures from classical world lines in flat spacetime are described by Planckian noncommuting operators for position in different directions, as defined by interactions with null waves. The resulting evolution of position wave functions in two dimensions displays a new kind of directionally coherent quantum noise of transverse position. The amplitude of the effect in physical units is predicted with no parameters, by equating the number of degrees of freedom of position wave functions on a 2D space-like surface with the entropy density of a black hole event horizon of the same area. In a region of size L, the effect resembles spatially and directionally coherent random transverse shear deformations on time scale ≈L/c with typical amplitude ≈ctPL. This quantum-geometrical “holographic noise” in position is not describable as fluctuations of a quantized metric, or as any kind of fluctuation, dispersion or propagation effect in quantum fields. In a Michelson interferometer the effect appears as noise that resembles a random Planckian walk of the beam splitter for durations up to the light-crossing time. Signal spectra and correlation functions in interferometers are derived, and predicted to be comparable with the sensitivities of current and planned experiments. It is proposed that nearly colocated Michelson interferometers of laboratory scale, cross-correlated at high frequency, can test the Planckian noise prediction with current technology.
Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts.
Knizia, Gerald
2013-11-12
Modern quantum chemistry can make quantitative predictions on an immense array of chemical systems. However, the interpretation of those predictions is often complicated by the complex wave function expansions used. Here we show that an exceptionally simple algebraic construction allows for defining atomic core and valence orbitals, polarized by the molecular environment, which can exactly represent self-consistent field wave functions. This construction provides an unbiased and direct connection between quantum chemistry and empirical chemical concepts, and can be used, for example, to calculate the nature of bonding in molecules, in chemical terms, from first principles. In particular, we find consistency with electronegativities (χ), C 1s core-level shifts, resonance substituent parameters (σR), Lewis structures, and oxidation states of transition-metal complexes.
Richings, Gareth W; Habershon, Scott
2017-09-12
We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.
Quantum Zeno Effect in the Measurement Problem
NASA Technical Reports Server (NTRS)
Namiki, Mikio; Pasaczio, Saverio
1996-01-01
Critically analyzing the so-called quantum Zeno effect in the measurement problem, we show that observation of this effect does not necessarily mean experimental evidence for the naive notion of wave-function collapse by measurement (the simple projection rule). We also examine what kind of limitation the uncertainty relation and others impose on the observation of the quantum Zeno effect.
NASA Astrophysics Data System (ADS)
Wang, Yu; Chou, Chia-Chun
2018-05-01
The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.
Entanglement entropy of critical spin liquids.
Zhang, Yi; Grover, Tarun; Vishwanath, Ashvin
2011-08-05
Quantum spin liquids are phases of matter whose internal structure is not captured by a local order parameter. Particularly intriguing are critical spin liquids, where strongly interacting excitations control low energy properties. Here we calculate their bipartite entanglement entropy that characterizes their quantum structure. In particular we calculate the Renyi entropy S(2) on model wave functions obtained by Gutzwiller projection of a Fermi sea. Although the wave functions are not sign positive, S(2) can be calculated on relatively large systems (>324 spins) using the variational Monte Carlo technique. On the triangular lattice we find that entanglement entropy of the projected Fermi sea state violates the boundary law, with S(2) enhanced by a logarithmic factor. This is an unusual result for a bosonic wave function reflecting the presence of emergent fermions. These techniques can be extended to study a wide class of other phases.
Homogeneous quantum electrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-10-01
The quantum recoil and oscillation effects on the entanglement fidelity and the electron-exchange function for the electron-ion collision are investigated in a semiconductor plasma by using the partial wave analysis and effective interaction potential in strong quantum recoil regime. The magnitude of the electron-exchange function is found to increase as the collision energy increases, but it decreases with an increase in the exchange parameter. It is also found that the collisional entanglement fidelity in strong quantum recoil plasmas is enhanced by the quantum-mechanical and shielding effects. The collisional entanglement fidelity in a semiconductor plasma is also enhanced by the collective plasmon oscillation and electron-exchange effect. However, the electron-exchange effect on the fidelity ratio function is reduced as the plasmon energy increases. Moreover, the electron-exchange influence on the fidelity ratio function is found to increase as the Fermi energy in the semiconductor plasma increases.
NASA Astrophysics Data System (ADS)
Sedova, I. E.; Chestnov, I. Yu.; Arakelian, S. M.; Kavokin, A. V.; Sedov, E. S.
2018-01-01
We considered the nonlinear dynamics of Bragg polaritons in a specially designed stratified semiconductor structure with embedded quantum wells, which possesses a convex dispersion. The model for the ensemble of single periodically arranged quantum wells coupled with the Bragg photon fields has been developed. In particular, the generalized Gross-Pitaevskii equation with the non-parabolic dispersion has been obtained for the Bragg polariton wave function. We revealed a number of dynamical regimes for polariton wave packets resulting from competition of the convex dispersion and the repulsive nonlinearity effects. Among the regimes are spreading, breathing and soliton propagation. When the control parameters including the exciton-photon detuning, the matter-field coupling and the nonlinearity are manipulated, the dynamical regimes switch between themselves.
Triangular Quantum Loop Topography for Machine Learning
NASA Astrophysics Data System (ADS)
Zhang, Yi; Kim, Eun-Ah
Despite rapidly growing interest in harnessing machine learning in the study of quantum many-body systems there has been little success in training neural networks to identify topological phases. The key challenge is in efficiently extracting essential information from the many-body Hamiltonian or wave function and turning the information into an image that can be fed into a neural network. When targeting topological phases, this task becomes particularly challenging as topological phases are defined in terms of non-local properties. Here we introduce triangular quantum loop (TQL) topography: a procedure of constructing a multi-dimensional image from the ''sample'' Hamiltonian or wave function using two-point functions that form triangles. Feeding the TQL topography to a fully-connected neural network with a single hidden layer, we demonstrate that the architecture can be effectively trained to distinguish Chern insulator and fractional Chern insulator from trivial insulators with high fidelity. Given the versatility of the TQL topography procedure that can handle different lattice geometries, disorder, interaction and even degeneracy our work paves the route towards powerful applications of machine learning in the study of topological quantum matters.
Quantum-mechanical analysis of low-gain free-electron laser oscillators
NASA Astrophysics Data System (ADS)
Fares, H.; Yamada, M.; Chiadroni, E.; Ferrario, M.
2018-05-01
In the previous classical theory of the low-gain free-electron laser (FEL) oscillators, the electron is described as a point-like particle, a delta function in the spatial space. On the other hand, in the previous quantum treatments, the electron is described as a plane wave with a single momentum state, a delta function in the momentum space. In reality, an electron must have statistical uncertainties in the position and momentum domains. Then, the electron is neither a point-like charge nor a plane wave of a single momentum. In this paper, we rephrase the theory of the low-gain FEL where the interacting electron is represented quantum mechanically by a plane wave with a finite spreading length (i.e., a wave packet). Using the concepts of the transformation of reference frames and the statistical quantum mechanics, an expression for the single-pass radiation gain is derived. The spectral broadening of the radiation is expressed in terms of the spreading length of an electron, the relaxation time characterizing the energy spread of electrons, and the interaction time. We introduce a comparison between our results and those obtained in the already known classical analyses where a good agreement between both results is shown. While the correspondence between our results and the classical results are shown, novel insights into the electron dynamics and the interaction mechanism are presented.
Simulation of wave packet tunneling of interacting identical particles
NASA Astrophysics Data System (ADS)
Lozovik, Yu. E.; Filinov, A. V.; Arkhipov, A. S.
2003-02-01
We demonstrate a different method of simulation of nonstationary quantum processes, considering the tunneling of two interacting identical particles, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.
-X Mixing in T- and V-Shaped Quantum Wires
NASA Astrophysics Data System (ADS)
di Carlo, A.; Pescetelli, S.; Kavokin, A.; Vladimirova, M.; Lugli, P.
1997-11-01
We have applied both tight-binding (TB) and multivalley envelope function (MEF) techniques to calculate the electronic states in T- and V-shaped realistic quantum wires taking into account -X mixing in the conduction band. Strong reduction of the electron quantization energy due to the off-resonant -X mixing has been found in all types of quantum wires. This effect appears to be tied to the localization of the electron wave function and to its overlap with atomic layers next to interfaces.
Protective measurement of the wave function of a single squeezed harmonic-oscillator state
NASA Astrophysics Data System (ADS)
Alter, Orly; Yamamoto, Yoshihisa
1996-05-01
A scheme for the "protective measurement"
Analyses of Third Order Bose-Einstein Correlation by Means of Coulomb Wave Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyajima, Minoru; Mizoguchi, Takuya; Suzuki, Naomichi
2006-04-11
In order to include a correction by the Coulomb interaction in Bose-Einstein correlation (BEC), the wave function for the Coulomb scattering were introduced in the quantum optical approach to BEC in the previous work. If we formulate the amplitude written by Coulomb wave functions according to the diagram for BEC in the plane wave formulation, the formula for 3{pi} -BEC becomes simpler than that of our previous work. We re-analyze the raw data of 3{pi} -BEC by NA44 and STAR Collaborations by this formula. Results are compared with the previous ones.
Soliton solutions of the quantum Zakharov-Kuznetsov equation which arises in quantum magneto-plasmas
NASA Astrophysics Data System (ADS)
Sindi, Cevat Teymuri; Manafian, Jalil
2017-02-01
In this paper, we extended the improved tan(φ/2)-expansion method (ITEM) and the generalized G'/G-expansion method (GGEM) proposed by Manafian and Fazli (Opt. Quantum Electron. 48, 413 (2016)) to construct new types of soliton wave solutions of nonlinear partial differential equations (NPDEs). Moreover, we use of the improvement of the Exp-function method (IEFM) proposed by Jahani and Manafian (Eur. Phys. J. Plus 131, 54 (2016)) for obtaining solutions of NPDEs. The merit of the presented three methods is they can find further solutions to the considered problems, including soliton, periodic, kink, kink-singular wave solutions. This paper studies the quantum Zakharov-Kuznetsov (QZK) equation by the aid of the improved tan(φ/2)-expansion method, the generalized G'/G-expansion method and the improvement of the Exp-function method. Moreover, the 1-soliton solution of the modified QZK equation with power law nonlinearity is obtained by the aid of traveling wave hypothesis with the necessary constraints in place for the existence of the soliton. Comparing our new results with Ebadi et al. results (Astrophys. Space Sci. 341, 507 (2012)), namely, G'/G-expansion method, exp-function method, modified F-expansion method, shows that our results give further solutions. Finally, these solutions might play an important role in engineering, physics and applied mathematics fields.
Aspects of perturbation theory in quantum mechanics: The BenderWuMATHEMATICA® package
NASA Astrophysics Data System (ADS)
Sulejmanpasic, Tin; Ünsal, Mithat
2018-07-01
We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu,and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use MATHEMATICA® package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 s, and 250 orders in 1-2 h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the package may be used as a teaching tool, providing an effective bridge between perturbation theory and non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion relation acquires a geometric character, and has a structure which allows parallelization to computer clusters.
Advances in Quantum Trajectory Approaches to Dynamics
NASA Astrophysics Data System (ADS)
Askar, Attila
2001-03-01
The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)
Quantum nonlocality does not exist
Tipler, Frank J.
2014-01-01
Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell’s inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming “nonlocality” are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in “collapse” versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer. PMID:25015084
Quantum nonlocality does not exist.
Tipler, Frank J
2014-08-05
Quantum nonlocality is shown to be an artifact of the Copenhagen interpretation, in which each observed quantity has exactly one value at any instant. In reality, all physical systems obey quantum mechanics, which obeys no such rule. Locality is restored if observed and observer are both assumed to obey quantum mechanics, as in the many-worlds interpretation (MWI). Using the MWI, I show that the quantum side of Bell's inequality, generally believed nonlocal, is really due to a series of three measurements (not two as in the standard, oversimplified analysis), all three of which have only local effects. Thus, experiments confirming "nonlocality" are actually confirming the MWI. The mistaken interpretation of nonlocality experiments depends crucially on a question-begging version of the Born interpretation, which makes sense only in "collapse" versions of quantum theory, about the meaning of the modulus of the wave function, so I use the interpretation based on the MWI, namely that the wave function is a world density amplitude, not a probability amplitude. This view allows the Born interpretation to be derived directly from the Schrödinger equation, by applying the Schrödinger equation to both the observed and the observer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
The Schrödinger–Langevin equation with linear dissipation is integrated by propagating an ensemble of Bohmian trajectories for the ground state of quantum systems. Substituting the wave function expressed in terms of the complex action into the Schrödinger–Langevin equation yields the complex quantum Hamilton–Jacobi equation with linear dissipation. We transform this equation into the arbitrary Lagrangian–Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation is simultaneously integrated with the trajectory guidance equation. Then, the computational method is applied to the harmonic oscillator, the double well potential, and the ground vibrational state of methyl iodide.more » The excellent agreement between the computational and the exact results for the ground state energies and wave functions shows that this study provides a synthetic trajectory approach to the ground state of quantum systems.« less
NASA Astrophysics Data System (ADS)
Schemmer, M.; Johnson, A.; Photopoulos, R.; Bouchoule, I.
2017-04-01
The effect of atom losses on a homogeneous one-dimensional Bose gas lying within the quasicondensate regime is investigated using a Monte Carlo wave-function approach. The evolution of the system is calculated, conditioned by the loss sequence, namely, the times of individual losses and the position of the removed atoms. We describe the gas within the linearized Bogoliubov approach. For each mode, we find that, for a given quantum trajectory, the state of the system converges towards a coherent state, i.e., the ground state, displaced in phase space. We show that, provided losses are recorded with a temporal and spatially resolved detector, quantum feedback can be implemented and cooling to the ground state of one or several modes can be realized.
Hyeon-Deuk, Kim; Ando, Koji
2014-05-07
Liquid para-hydrogen (p-H2) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H2. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H2 liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.
Gonoskov, I A; Tsatrafyllis, N; Kominis, I K; Tzallas, P
2016-09-07
We analytically describe the strong-field light-electron interaction using a quantized coherent laser state with arbitrary photon number. We obtain a light-electron wave function which is a closed-form solution of the time-dependent Schrödinger equation (TDSE). This wave function provides information about the quantum optical features of the interaction not accessible by semi-classical theories. With this approach we can reveal the quantum optical properties of high harmonic generation (HHG) process in gases by measuring the photon statistics of the transmitted infrared (IR) laser radiation. This work can lead to novel experiments in high-resolution spectroscopy in extreme-ultraviolet (XUV) and attosecond science without the need to measure the XUV light, while it can pave the way for the development of intense non-classical light sources.
Conformal field theory construction for non-Abelian hierarchy wave functions
NASA Astrophysics Data System (ADS)
Tournois, Yoran; Hermanns, Maria
2017-12-01
The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.
Speculation on quantum mechanics and the operation of life giving catalysts.
Haydon, Nathan; McGlynn, Shawn E; Robus, Olin
2011-02-01
The origin of life necessitated the formation of catalytic functionalities in order to realize a number of those capable of supporting reactions that led to the proliferation of biologically accessible molecules and the formation of a proto-metabolic network. Here, the discussion of the significance of quantum behavior on biological systems is extended from recent hypotheses exploring brain function and DNA mutation to include origins of life considerations in light of the concept of quantum decoherence and the transition from the quantum to the classical. Current understandings of quantum systems indicate that in the context of catalysis, substrate-catalyst interaction may be considered as a quantum measurement problem. Exploration of catalytic functionality necessary for life's emergence may have been accommodated by quantum searches within metal sulfide compartments, where catalyst and substrate wave function interaction may allow for quantum based searches of catalytic phase space. Considering the degree of entanglement experienced by catalytic and non catalytic outcomes of superimposed states, quantum contributions are postulated to have played an important role in the operation of efficient catalysts that would provide for the kinetic basis for the emergence of life.
NASA Astrophysics Data System (ADS)
Yang, Xu-Chen; Wang, Xin
The manipulation of coupled quantum dot devices is crucial to scalable, fault-tolerant quantum computation. We present a theoretical study of a four-electron four-quantum-dot system based on molecular orbital methods, which depicts a pair of singlet-triplet (S-T) qubits. We find that while the two S-T qubits are coupled by the capacitive interaction when they are sufficiently far away, the admixture of wave functions undergoes a substantial change as the two S-T qubits get closer. We find that in certain parameter regime the exchange interaction may only be defined in the sense of an effective one when the computational basis states no longer dominate the eigenstates. We further discuss the gate crosstalk as a consequence of this wave function mixing. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (No. CityU 21300116) and the National Natural Science Foundation of China (No. 11604277).
Autonomous quantum to classical transitions and the generalized imaging theorem
Briggs, John S.; Feagin, James M.
2016-03-16
The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. We prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Now, the quantummore » to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.« less
NASA Astrophysics Data System (ADS)
Annaby, M. H.; Asharabi, R. M.
2018-01-01
In a remarkable note of Chadan [Il Nuovo Cimento 39, 697-703 (1965)], the author expanded both the regular wave function and the Jost function of the quantum scattering problem using an interpolation theorem of Valiron [Bull. Sci. Math. 49, 181-192 (1925)]. These expansions have a very slow rate of convergence, and applying them to compute the zeros of the Jost function, which lead to the important bound states, gives poor convergence rates. It is our objective in this paper to introduce several efficient interpolation techniques to compute the regular wave solution as well as the Jost function and its zeros approximately. This work continues and improves the results of Chadan and other related studies remarkably. Several worked examples are given with illustrations and comparisons with existing methods.
Classical Wave Model of Quantum-Like Processing in Brain
NASA Astrophysics Data System (ADS)
Khrennikov, A.
2011-01-01
We discuss the conjecture on quantum-like (QL) processing of information in the brain. It is not based on the physical quantum brain (e.g., Penrose) - quantum physical carriers of information. In our approach the brain created the QL representation (QLR) of information in Hilbert space. It uses quantum information rules in decision making. The existence of such QLR was (at least preliminary) confirmed by experimental data from cognitive psychology. The violation of the law of total probability in these experiments is an important sign of nonclassicality of data. In so called "constructive wave function approach" such data can be represented by complex amplitudes. We presented 1,2 the QL model of decision making. In this paper we speculate on a possible physical realization of QLR in the brain: a classical wave model producing QLR . It is based on variety of time scales in the brain. Each pair of scales (fine - the background fluctuations of electromagnetic field and rough - the cognitive image scale) induces the QL representation. The background field plays the crucial role in creation of "superstrong QL correlations" in the brain.
Haas, Fernando; Mahmood, Shahzad
2015-11-01
Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.
Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy
NASA Astrophysics Data System (ADS)
Haas, Fernando; Mahmood, Shahzad
2015-11-01
Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.
Cylindrical dust acoustic solitary waves with transverse perturbations in quantum dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mushtaq, A.
2007-11-15
The nonlinear quantum dust acoustic waves with effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the perturbation method, a cylindrical Kadomtsev-Petviashvili equation for dust acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics, and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave, are studied both analytically and numerically.
Using Local Perturbations To Manipulate and Control Pointer States in Quantum Dot Systems
NASA Astrophysics Data System (ADS)
Akis, Richard; Speyer, Gil; Ferry, David; Brunner, Roland
2012-02-01
Recently, scanning gate microscopy (SGM) was used to image scarred wave functions in an open InAs quantum dot[1]. The SGM tip provides a local potential perturbation and imaging is performed by measuring changes in conductance. Scarred wave functions, long associated with quantum chaos, have been shown in open dots to correspond to pointer states[2], eigenstates that survive the decoherence process that occurs via coupling to the environment. Pointer states modulate the conductance, yielding periodic fluctuations and the scars, normally thought unstable, are stabilized by quantum Darwinism [3]. We shall show that, beyond probing, pointer states can be manipulated by local perturbations. Particularly interesting effects occur in coupled quantum dot arrays, where a pointer state localized in one dot can be shifted over into another with a perturbation in a completely different part of the system. These nonlocal effects may perhaps be exploited to give such systems an exotic functionality. [1] A. M. Burke, R. Akis, T. E. Day, Gil Speyer, D. K. Ferry, and B. R. Bennett, Phys. Rev. Lett. 104, 176801 (2010). [2] D. K. Ferry, R. Akis, and J. P. Bird, Phys. Rev. Lett. 104, 176801 (2004). [3] R. Brunner, R. Akis,D. K. Ferry, F. Kuchar,and R. Meisels, Phys. Rev. Lett. 101, 024102 (2008).
NASA Astrophysics Data System (ADS)
Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico
2016-11-01
Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux Φ as a single integral of a known function of the system's parameters. Our approach provides exact results at zero temperature, which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent current through p -wave and s -wave superconducting-normal hybrid rings, deriving full plots of the current as a function of the applied flux at various system's scales. Doing so, we recover at once a number of effects such as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological phase transition in the p -wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of physical interest.
The Fermionic Projector, entanglement and the collapse of the wave function
NASA Astrophysics Data System (ADS)
Finster, Felix
2011-07-01
After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.
Three-Dimensional Visualization of Wave Functions for Rotating Molecule: Plot of Spherical Harmonics
ERIC Educational Resources Information Center
Nagaoka, Shin-ichi; Teramae, Hiroyuki; Nagashima, Umpei
2013-01-01
At an early stage of learning quantum chemistry, undergraduate students usually encounter the concepts of the particle in a box, the harmonic oscillator, and then the particle on a sphere. Rotational levels of a diatomic molecule can be well approximated by the energy levels of the particle on a sphere. Wave functions for the particle in a…
Quantum formalism for classical statistics
NASA Astrophysics Data System (ADS)
Wetterich, C.
2018-06-01
In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.
Fine Splitting of Electron States in Silicon Nanocrystal with a Hydrogen-like Shallow Donor
2007-01-01
Electron structure of a silicon quantum dot doped with a shallow hydrogen-like donor has been calculated for the electron states above the optical gap. Within the framework of the envelope-function approach we have calculated the fine splitting of the ground sixfold degenerate electron state as a function of the donor position inside the quantum dot. Also, dependence of the wave functions and energies on the dot size was obtained.
A new look at the position operator in quantum theory
NASA Astrophysics Data System (ADS)
Lev, F. M.
2015-01-01
The postulate that coordinate and momentum representations are related to each other by the Fourier transform has been accepted from the beginning of quantum theory by analogy with classical electrodynamics. As a consequence, an inevitable effect in standard theory is the wave packet spreading (WPS) of the photon coordinate wave function in directions perpendicular to the photon momentum. This leads to the following paradoxes: if the major part of photons emitted by stars are in wave packet states (what is the most probable scenario) then we should see not separate stars but only an almost continuous background from all stars; no anisotropy of the CMB radiation should be observable; data on gamma-ray bursts, signals from directional radio antennas (in particular, in experiments on Shapiro delay) and signals from pulsars show no signs of WPS. In addition, a problem arises why there are no signs of WPS for protons in the LHC ring. We argue that the above postulate is based neither on strong theoretical arguments nor on experimental data and propose a new consistent definition of the position operator. Then WPS in directions perpendicular to the particle momentum is absent and the paradoxes are resolved. Different components of the new position operator do not commute with each other and, as a consequence, there is no wave function in coordinate representation. Implications of the results for entanglement, quantum locality and the problem of time in quantum theory are discussed.
Contextuality as a Resource for Models of Quantum Computation with Qubits
NASA Astrophysics Data System (ADS)
Bermejo-Vega, Juan; Delfosse, Nicolas; Browne, Dan E.; Okay, Cihan; Raussendorf, Robert
2017-09-01
A central question in quantum computation is to identify the resources that are responsible for quantum speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states for odd-prime dimensional qudits and two-dimensional systems with real wave functions. The phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of magic states as a necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a concrete scheme related to measurement-based quantum computation.
Quantum Dynamics and a Semiclassical Description of the Photon.
ERIC Educational Resources Information Center
Henderson, Giles
1980-01-01
Uses computer graphics and nonstationary, superposition wave functions to reveal the dynamic quantum trajectories of several molecular and electronic transitions. These methods are then coupled with classical electromagnetic theory to provide a conceptually clear picture of the emission process and emitted radiation localized in time and space.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luis, Alfredo
The use of Renyi entropy as an uncertainty measure alternative to variance leads to the study of states with quantum fluctuations below the levels established by Gaussian states, which are the position-momentum minimum uncertainty states according to variance. We examine the quantum properties of states with exponential wave functions, which combine reduced fluctuations with practical feasibility.
Violation of Bell's inequalities in quantum optics
NASA Technical Reports Server (NTRS)
Reid, M. D.; Walls, D. F.
1984-01-01
An optical field produced by intracavity four-wave mixing is shown to exhibit the following nonclassical features: photon antibunching, squeezing, and violation of Cauchy-Schwarz and Bell's inequalities. These intrinsic quantum mechanical effects are shown to be associated with the nonexistence of a positive normalizable Glauber-Sudarshan P function.
NASA Astrophysics Data System (ADS)
Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.
2008-01-01
We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.
Implementation of quantum and classical discrete fractional Fourier transforms.
Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander
2016-03-23
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.
Implementation of quantum and classical discrete fractional Fourier transforms
Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander
2016-01-01
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089
NASA Astrophysics Data System (ADS)
Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.
2017-09-01
The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyeon-Deuk, Kim, E-mail: kim@kuchem.kyoto-u.ac.jp; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012; Ando, Koji
2014-05-07
Liquid para-hydrogen (p-H{sub 2}) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H{sub 2}. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computationalmore » cost, by which basic experimental properties of p-H{sub 2} liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.« less
NASA Astrophysics Data System (ADS)
Barnea, A. Ronny; Cheshnovsky, Ori; Even, Uzi
2018-02-01
Interference experiments have been paramount in our understanding of quantum mechanics and are frequently the basis of testing the superposition principle in the framework of quantum theory. In recent years, several studies have challenged the nature of wave-function interference from the perspective of Born's rule—namely, the manifestation of so-called high-order interference terms in a superposition generated by diffraction of the wave functions. Here we present an experimental test of multipath interference in the diffraction of metastable helium atoms, with large-number counting statistics, comparable to photon-based experiments. We use a variation of the original triple-slit experiment and accurate single-event counting techniques to provide a new experimental bound of 2.9 ×10-5 on the statistical deviation from the commonly approximated null third-order interference term in Born's rule for matter waves. Our value is on the order of the maximal contribution predicted for multipath trajectories by Feynman path integrals.
Six Impossible Things: Fractional Charge From Laughlin's Wave Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Keshav N.
2010-12-23
The Laughlin's wave function is found to be the zero-energy ground state of a {delta}-function Hamiltonian. The finite negative value of the ground state energy which is 91 per cent of Wigner value, can be obtained only when Coulomb correlations are introduced. The Laughlin's wave function is of short range and it overlaps with that of the exact wave functions of small (number of electrons 2 or 5) systems. (i) It is impossible to obtain fractional charge from Laughlin's wave function. (ii) It is impossible to prove that the Laughlin's wave function gives the ground state of the Coulomb Hamiltonian.more » (iii) It is impossible to have particle-hole symmetry in the Laughlin's wave function. (iv) It is impossible to derive the value of m in the Laughlin's wave function. The value of m in {psi}{sub m} can not be proved to be 3 or 5. (v) It is impossible to prove that the Laughlin's state is incompressible because the compressible states are also likely. (vi) It is impossible for the Laughlin's wave function to have spin. This effort is directed to explain the experimental data of quantum Hall effect in GaAs/AlGaAs.« less
Nonlinear Network Description for Many-Body Quantum Systems in Continuous Space
NASA Astrophysics Data System (ADS)
Ruggeri, Michele; Moroni, Saverio; Holzmann, Markus
2018-05-01
We show that the recently introduced iterative backflow wave function can be interpreted as a general neural network in continuum space with nonlinear functions in the hidden units. Using this wave function in variational Monte Carlo simulations of liquid 4He in two and three dimensions, we typically find a tenfold increase in accuracy over currently used wave functions. Furthermore, subsequent stages of the iteration procedure define a set of increasingly good wave functions, each with its own variational energy and variance of the local energy: extrapolation to zero variance gives energies in close agreement with the exact values. For two dimensional 4He, we also show that the iterative backflow wave function can describe both the liquid and the solid phase with the same functional form—a feature shared with the shadow wave function, but now joined by much higher accuracy. We also achieve significant progress for liquid 3He in three dimensions, improving previous variational and fixed-node energies.
NASA Astrophysics Data System (ADS)
Shul'ga, N. F.; Syshchenko, V. V.; Tarnovsky, A. I.; Solovyev, I. I.; Isupov, A. Yu.
2018-01-01
The motion of fast electrons through the crystal during axial channeling could be regular and chaotic. The dynamical chaos in quantum systems manifests itself in both statistical properties of energy spectra and morphology of wave functions of the individual stationary states. In this report, we investigate the axial channeling of high and low energy electrons and positrons near [100] direction of a silicon crystal. This case is particularly interesting because of the fact that the chaotic motion domain occupies only a small part of the phase space for the channeling electrons whereas the motion of the channeling positrons is substantially chaotic for the almost all initial conditions. The energy levels of transverse motion, as well as the wave functions of the stationary states, have been computed numerically. The group theory methods had been used for classification of the computed eigenfunctions and identification of the non-degenerate and doubly degenerate energy levels. The channeling radiation spectrum for the low energy electrons has been also computed.
Quantum dust magnetosonic waves with spin and exchange correlation effects
NASA Astrophysics Data System (ADS)
Maroof, R.; Mushtaq, A.; Qamar, A.
2016-01-01
Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mushtaq, A.; Khan, S. A.; Department of Physics, COMSATS Institute of Information Technology, Islamabad
2007-05-15
The characteristics and stability of ion acoustic solitary wave with transverse perturbations are examined in ultracold quantum magnetospheric plasma consisting of electrons, positrons, and ions. Using the quantum hydrodynamic model, a dispersion relation in the linear regime, and the Kadomtsev-Petviashvili equation in the nonlinear regime are derived. The quantum corrections are studied through quantum statistics and diffraction effects. It is found that compressive solitary wave can propagate in this system. The quantum effects are also studied graphically for both linear and nonlinear profiles of ion acoustic wave. Using energy consideration method, conditions for existence of stable solitary waves are obtained.more » It is found that stable solitary waves depend on quantum corrections, positron concentration, and direction cosine of the wave vector k along the x axis.« less
Einstein's equivalence principle in quantum mechanics revisited
NASA Astrophysics Data System (ADS)
Nauenberg, Michael
2016-11-01
The gravitational equivalence principle in quantum mechanics is of considerable importance, but it is generally not included in physics textbooks. In this note, we present a precise quantum formulation of this principle and comment on its verification in a neutron diffraction experiment. The solution of the time dependent Schrödinger equation for this problem also gives the wave function for the motion of a charged particle in a homogeneous electric field, which is also usually ignored in textbooks on quantum mechanics.
[Carl Friedrich von Weizsäcker and the interpretations of quantum theory].
Stöckler, Manfred
2014-01-01
What are 'interpretations' of quantum theory? What are the differences between Carl Friedrich von Weizsäkcker's approach and contemporary views? The various interpretations of quantum mechanics give diverse answers to questions concerning the relation between measuring process and standard time development, the embedding of quantum objects in space ('wave-particle-dualism'), and the reference of state vectors. Does the wave function describe states in the real world or does it refer to our knowledge about nature? First, some relevant conceptions in Weizsäcker's book The Structure of Physics (Der Aufbau der Physik, 1985) are introduced. In a second step I point out why his approach is not any longer present in contemporary debates. One reason is that Weizsäcker is mainly affected by classical philosophy (Platon, Aristoteles, Kant). He could not esteem the philosophy of science that was developed in the spirit of logical empiricism. So he lost interest in disputes with Anglo-Saxon philosophy of quantum mechanics. Especially his interpretation of probability and his analysis of the collapse of the state function as change in knowledge differ from contemporary standard views. In recent years, however, epistemic interpretations of quantum mechanics are proposed that share some of Weizsäcker's intuitions.
Forrest, Stephen R.
2008-08-19
A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.
Finally making sense of the double-slit experiment.
Aharonov, Yakir; Cohen, Eliahu; Colombo, Fabrizio; Landsberger, Tomer; Sabadini, Irene; Struppa, Daniele C; Tollaksen, Jeff
2017-06-20
Feynman stated that the double-slit experiment "…has in it the heart of quantum mechanics. In reality, it contains the only mystery" and that "nobody can give you a deeper explanation of this phenomenon than I have given; that is, a description of it" [Feynman R, Leighton R, Sands M (1965) The Feynman Lectures on Physics ]. We rise to the challenge with an alternative to the wave function-centered interpretations: instead of a quantum wave passing through both slits, we have a localized particle with nonlocal interactions with the other slit. Key to this explanation is dynamical nonlocality, which naturally appears in the Heisenberg picture as nonlocal equations of motion. This insight led us to develop an approach to quantum mechanics which relies on pre- and postselection, weak measurements, deterministic, and modular variables. We consider those properties of a single particle that are deterministic to be primal. The Heisenberg picture allows us to specify the most complete enumeration of such deterministic properties in contrast to the Schrödinger wave function, which remains an ensemble property. We exercise this approach by analyzing a version of the double-slit experiment augmented with postselection, showing that only it and not the wave function approach can be accommodated within a time-symmetric interpretation, where interference appears even when the particle is localized. Although the Heisenberg and Schrödinger pictures are equivalent formulations, nevertheless, the framework presented here has led to insights, intuitions, and experiments that were missed from the old perspective.
Hou, Aiqiang; Zhou, Xiaojun; Wang, Ting; Wang, Fan
2018-05-15
Achieving both bond dissociation energies (BDEs) and their trends for the R-X bonds with R = Me, Et, i-Pr, and t-Bu reliably is nontrivial. Density functional theory (DFT) methods with traditional exchange-correlation functionals usually have large error on both the BDEs and their trends. The M06-2X functional gives rise to reliable BDEs, but the relative BDEs are determined not as accurately. More demanding approaches such as some double-hybrid functionals, for example, G4 and CCSD(T), are generally required to achieve the BDEs and their trends reliably. The fixed-node diffusion quantum Monte Carlo method (FN-DMC) is employed to calculated BDEs of these R-X bonds with X = H, CH 3 , OCH 3 , OH, and F in this work. The single Slater-Jastrow wave function is adopted as trial wave function, and pseudopotentials (PPs) developed for quantum Monte Carlo calculations are chosen. Error of these PPs is modest in wave function methods, while it is more pronounced in DFT calculations. Our results show that accuracy of BDEs with FN-DMC is similar to that of M06-2X and G4, and trends in BDEs are calculated more reliably than M06-2X. Both BDEs and trends in BDEs of these bonds are reproduced reasonably with FN-DMC. FN-DMC using PPs can thus be applied to BDEs and their trends of similar chemical bonds in larger molecules reliably and provide valuable information on properties of these molecules.
Primordial gravitational waves in a quantum model of big bounce
NASA Astrophysics Data System (ADS)
Bergeron, Hervé; Gazeau, Jean Pierre; Małkiewicz, Przemysław
2018-05-01
We quantise and solve the dynamics of gravitational waves in a quantum Friedmann-Lemaitre-Robertson-Walker spacetime filled with perfect fluid. The classical model is formulated canonically. The Hamiltonian constraint is de-parametrised by setting a fluid variable as the internal clock. The obtained reduced (i.e. physical) phase space is then quantised. Our quantisation procedure is implemented in accordance with two different phase space symmetries, namely, the Weyl-Heisenberg symmetry for the perturbation variables, and the affine symmetry for the background variables. As an appealing outcome, the initial singularity is removed and replaced with a quantum bounce. The quantum model depends on a free parameter that is naturally induced from quantisation and determines the scale of the bounce. We study the dynamics of the quantised gravitational waves across the bounce through three different methods ("thin-horizon", analytical and numerical) which give consistent results and we determine the primordial power spectrum for the case of radiation-dominated universe. Next, we use the instantaneous radiation-matter transition transfer function to make approximate predictions for late universe and constrain our model with LIGO and Planck data. We also give an estimate of the quantum uncertainties in the present-day universe.
ERIC Educational Resources Information Center
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
NASA Astrophysics Data System (ADS)
Lusanna, Luca; Pauri, Massimo
2014-08-01
If the classical structure of space-time is assumed to define an a priori scenario for the formulation of quantum theory (QT), the coordinate representation of the solutions of the Schroedinger equation of a quantum system containing one ( N) massive scalar particle has a preferred status. Let us consider all of the solutions admitting a multipolar expansion of the probability density function (and more generally of the Wigner function) around a space-time trajectory to be properly selected. For every normalized solution there is a privileged trajectory implying the vanishing of the dipole moment of the multipolar expansion: it is given by the expectation value of the position operator . Then, the special subset of solutions which satisfy Ehrenfest's Theorem (named thereby Ehrenfest monopole wave functions (EMWF)), have the important property that this privileged classical trajectory is determined by a closed Newtonian equation of motion where the effective force is the Newtonian force plus non-Newtonian terms (of order ħ 2 or higher) depending on the higher multipoles of the probability distribution ρ. Note that the superposition of two EMWFs is not an EMWF, a result to be strongly hoped for, given the possible unwanted implications concerning classical spatial perception. These results can be extended to N-particle systems in such a way that, when N classical trajectories with all the dipole moments vanishing and satisfying Ehrenfest theorem are associated with the normalized wave functions of the N-body system, we get a natural transition from the 3 N-dimensional configuration space to the space-time. Moreover, these results can be extended to relativistic quantum mechanics. Consequently, in suitable states of N quantum particle which are EMWF, we get the "emergence" of corresponding "classical particles" following Newton-like trajectories in space-time. Note that all this holds true in the standard framework of quantum mechanics, i.e. assuming, in particular, the validity of Born's rule and the individual system interpretation of the wave function (no ensemble interpretation). These results are valid without any approximation (like ħ → 0, big quantum numbers, etc.). Moreover, we do not commit ourselves to any specific ontological interpretation of quantum theory (such as, e.g., the Bohmian one). We will argue that, in substantial agreement with Bohr's viewpoint, the macroscopic description of the preparation, certain intermediate steps and the detection of the final outcome of experiments involving massive particles are dominated by these classical "effective" trajectories. This approach can be applied to the point of view of de-coherence in the case of a diagonal reduced density matrix ρ red (an improper mixture) depending on the position variables of a massive particle and of a pointer. When both the particle and the pointer wave functions appearing in ρ red are EMWF, the expectation value of the particle and pointer position variables becomes a statistical average on a classical ensemble. In these cases an improper quantum mixture becomes a classical statistical one, thus providing a particular answer to an open problem of de-coherence about the emergence of classicality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Gyeong Won; Jung, Young-Dae; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590
2013-06-15
The influence of the electron-exchange and quantum screening on the Thomson scattering process is investigated in degenerate quantum Fermi plasmas. The Thomson scattering cross section in quantum plasmas is obtained by the plasma dielectric function and fluctuation-dissipation theorem as a function of the electron-exchange parameter, Fermi energy, plasmon energy, and wave number. It is shown that the electron-exchange effect enhances the Thomson scattering cross section in quantum plasmas. It is also shown that the differential Thomson scattering cross section has a minimum at the scattering angle Θ=π/2. It is also found that the Thomson scattering cross section increases with anmore » increase of the Fermi energy. In addition, the Thomson scattering cross section is found to be decreased with increasing plasmon energy.« less
Quantum dark soliton: Nonperturbative diffusion of phase and position
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dziarmaga, J.
2004-12-01
The dark soliton solution of the Gross-Pitaevskii equation in one dimension has two parameters that do not change the energy of the solution: the global phase of the condensate wave function and the position of the soliton. These degeneracies appear in the Bogoliubov theory as Bogoliubov modes with zero frequencies and zero norms. These 'zero modes' cannot be quantized as the usual Bogoliubov quasiparticle harmonic oscillators. They must be treated in a nonperturbative way. In this paper I develop a nonperturbative theory of zero modes. This theory provides a nonperturbative description of quantum phase diffusion and quantum diffusion of solitonmore » position. An initially well localized wave packet for soliton position is predicted to disperse beyond the width of the soliton.« less
Chiral topological phases from artificial neural networks
NASA Astrophysics Data System (ADS)
Kaubruegger, Raphael; Pastori, Lorenzo; Budich, Jan Carl
2018-05-01
Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by explicit construction how n -body correlations can be kept at an exact level with ANN wave functions exhibiting polynomial scaling with power n in system size. Using this construction, we analytically represent the paradigmatic Laughlin wave function as an ANN state.
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1991-01-01
A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.
Wave functions of symmetry-protected topological phases from conformal field theories
NASA Astrophysics Data System (ADS)
Scaffidi, Thomas; Ringel, Zohar
2016-03-01
We propose a method for analyzing two-dimensional symmetry-protected topological (SPT) wave functions using a correspondence with conformal field theories (CFTs) and integrable lattice models. This method generalizes the CFT approach for the fractional quantum Hall effect wherein the wave-function amplitude is written as a many-operator correlator in the CFT. Adopting a bottom-up approach, we start from various known microscopic wave functions of SPTs with discrete symmetries and show how the CFT description emerges at large scale, thereby revealing a deep connection between group cocycles and critical, sometimes integrable, models. We show that the CFT describing the bulk wave function is often also the one describing the entanglement spectrum, but not always. Using a plasma analogy, we also prove the existence of hidden quasi-long-range order for a large class of SPTs. Finally, we show how response to symmetry fluxes is easily described in terms of the CFT.
NASA Astrophysics Data System (ADS)
Schleich, Wolfgang P.
2001-04-01
Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.
NASA Astrophysics Data System (ADS)
Baily, Charles Raymond
A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively realist perspectives of introductory students, and a lack of ontological flexibility in their conceptions of light and matter. We have developed a framework for understanding and characterizing student perspectives on the physical interpretation of quantum mechanics, and demonstrate the differential impact on student thinking of the myriad ways instructors approach interpretive themes in their introductory courses. Like expert physicists, students interpret quantum phenomena differently, and these interpretations are significantly influenced by their overall stances on questions central to the so-called measurement problem: Is the wave function physically real, or simply a mathematical tool? Is the collapse of the wave function an ad hoc rule, or a physical transition not described by any equation? Does an electron, being a form of matter, exist as a localized particle at all times? These questions, which are of personal and academic interest to our students, are largely only superficially addressed in our introductory courses, often for fear of opening a Pandora's Box of student questions, none of which have easy answers. We show how a transformed modern physics curriculum (recently implemented at the University of Colorado) may positively impact student perspectives on indeterminacy and wave-particle duality, by making questions of classical and quantum reality a central theme of our course, but also by making the beliefs of our students, and not just those of scientists, an explicit topic of discussion.
Optical signatures of coupled quantum dots.
Stinaff, E A; Scheibner, M; Bracker, A S; Ponomarev, I V; Korenev, V L; Ware, M E; Doty, M F; Reinecke, T L; Gammon, D
2006-02-03
An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.
Optical Signatures of Coupled Quantum Dots
NASA Astrophysics Data System (ADS)
Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.
2006-02-01
An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.
Theory of quantum metal to superconductor transitions in highly conducting systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spivak, B.
2010-04-06
We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure whichmore » is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.« less
Wigner flow reveals topological order in quantum phase space dynamics.
Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg
2013-01-18
The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.
Wave theory of turbulence in compressible media (acoustic theory of turbulence)
NASA Technical Reports Server (NTRS)
Kentzer, C. P.
1975-01-01
The generation and the transmission of sound in turbulent flows are treated as one of the several aspects of wave propagation in turbulence. Fluid fluctuations are decomposed into orthogonal Fourier components, with five interacting modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. Wave interactions, governed by the inhomogeneous and nonlinear terms of the perturbed Navier-Stokes equations, are modeled by random functions which give the rates of change of wave amplitudes equal to the averaged interaction terms. The statistical framework adopted is a quantum-like formulation in terms of complex distribution functions. The spatial probability distributions are given by the squares of the absolute values of the complex characteristic functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation.
Coherent molecular transistor: control through variation of the gate wave function.
Ernzerhof, Matthias
2014-03-21
In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.
Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil.
Melrose, D B; Mushtaq, A
2010-11-01
The longitudinal response function for a thermal electron gas is calculated including two quantum effects exactly, degeneracy, and the quantum recoil. The Fermi-Dirac distribution is expanded in powers of a parameter that is small in the nondegenerate limit and the response function is evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum is performed in terms of polylogarithms in the long-wavelength and quasistatic limits, giving results that apply for arbitrary degeneracy. The results are applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the nondegenerate and completely degenerate limits, and generalizing them to arbitrary degeneracy.
The eigenvalue problem in phase space.
Cohen, Leon
2018-06-30
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ferenczy, György G
2013-04-05
Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.
Quantum supersymmetric Bianchi IX cosmology
NASA Astrophysics Data System (ADS)
Damour, Thibault; Spindel, Philippe
2014-11-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.
NASA Astrophysics Data System (ADS)
Durán-Flórez, F.; Caicedo, L. C.; Gonzalez, J. E.
2018-04-01
In quantum mechanics it is very difficult to obtain exact solutions, therefore, it is necessary to resort to tools and methods that facilitate the calculations of the solutions of these systems, one of these methods is the variational method that consists in proposing a wave function that depend on several parameters that are adjusted to get close to the exact solution. Authors in the past have performed calculations applying this method using exponential and Gaussian orbital functions with linear and quadratic correlation factors. In this paper, a Gaussian function with a linear correlation factor is proposed, for the calculation of the binding energy of an impurity D ‑ centered on a quantum dot of radius r, the Gaussian function is dependent on the radius of the quantum dot.
Quantum oscillations in the mixed state of d -wave superconductors
NASA Astrophysics Data System (ADS)
Melikyan, Ashot; Vafek, Oskar
2008-07-01
We show that the low-energy density of quasiparticle states in the mixed state of ultraclean dx2-y2 -wave superconductors exhibits quantum oscillations even in the regime where the cyclotron frequency ℏωc≪Δ0 , the d -wave pairing gap. Such oscillations as a function of magnetic field B are argued to be due to the internodal scattering of the nodal quasiparticles near wave vectors (±kD,±kD) by the vortex lattice as well as their Zeeman coupling. While the nominal periodicity of the oscillations is set by the condition kD[hc/(eB)]1/2≡kD'[hc/(eB')]1/2(mod2π) , we find that there is additional structure within each period that grows in complexity as the Dirac node anisotropy increases.
Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies
NASA Technical Reports Server (NTRS)
Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)
1998-01-01
The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).
Runge-Lenz wave packet in multichannel Stark photoionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Texier, F.
2005-01-01
In a previous slow photoionization experiment, modulations of ionization rings were manifested for Xe in a constant electric field. The present quantum calculation reveals that the modulation is an effect of the multichannel core scattering and of tunneling waves through the Coulomb-Stark potential barrier: the barrier reduces the number of oscillations that is observed relatively to the number of oscillations of the short range wave functions, and the nonhydrogenic core phase shifts modify the position of the ionization rings. We find a hidden difference, in the ionization process, for two close values of the energy depending on the resonance withmore » the barrier. The ionization intensity is interpreted as a Runge-Lenz wave packet; thus, we can relate the quantum modulation to the classical Coulomb-Stark trajectories. The Runge-Lenz wave packet differs from a usual temporal wave packet because its components are eigenstates of the Runge-Lenz vector z projection and its evolution is not temporal but spatial.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taufour, Valentin; Kaluarachchi, Udhara S.; Khasanov, Rustem
2016-07-13
Here, the temperature-pressure phase diagram of the ferromagnet LaCrGe 3 is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFMQ. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q=0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGemore » 3 is a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets.« less
Normal incidence infrared modulator based on single quantum well intersubband transitions
NASA Astrophysics Data System (ADS)
Vandermeiren, W.; Stiens, J.; Shkerdin, G.; De Tandt, C.; Vounckx, R.
2014-01-01
An infrared modulator of which the working principle is based on evanescent wave generation and intersubband transitions in a single AlGaAs/GaAs quantum well is presented here. CO2 laser light at normal incidence is coupled to an evanescent wave by means of a sub-wavelength diffraction grating. Modulation of the zeroth order reflective mode is achieved by applying an electric field across the quantum well. The model for deriving the complex refractive index of the quantum well region is presented and used for numerical diffraction efficiency simulations as a function of the groove height and period. Two specimens with different groove heights were fabricated. Experiments are conducted at a wavelength of 10.6 µm. At this wavelength a relatively strong absolute modulation depth of about 20% could be observed. The experimental results are in good agreement with our model and diffraction efficiency calculations.
RSV-free formulation of quantum mondemolition theory
NASA Astrophysics Data System (ADS)
Lynch, Robert
1982-10-01
The entire validity of the “quantum nondemolition” (QND) concept has been called into question because of its deep reliance on “reduction of the state vector” (RSV) in the detailed development of the theory. In this letter QND theory is reformulated without use of RSV, except as found in the overall interpretation of the wave function.
Local U(2,2) symmetry in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Finster, Felix
1998-12-01
Local gauge freedom in relativistic quantum mechanics is derived from a measurement principle for space and time. For the Dirac equation, one obtains local U(2,2) gauge transformations acting on the spinor index of the wave functions. This local U(2,2) symmetry allows a unified description of electrodynamics and general relativity as a classical gauge theory.
NASA Astrophysics Data System (ADS)
van Dommelen, Paphavee; Daengngam, Chalongrat; Kalasuwan, Pruet
2018-04-01
In this paper, we explore THz range optical intersubband transition energies in a donor doped quantum well of a GaAs/AlGaAs system as a function of the insertion position of an AlAs monolayer in the GaAs quantum well. In simulated models, the optical transition energies between electron subband levels 1 and 2 were higher in the doped structure than in the undoped structure. This may be because the envelope wave function of the second electron subband strongly overlapped the envelope wave function of the first electron subband and influenced the optical intersubband transition between the two levels in the THz range. At different levels of bias voltage at the Schottky barrier on the donor doped structure, the electric field in the growth direction of the structure linearly increased the further away the AlAs monolayer was placed from the reference position. We also simulated the optical transition energies between acceptor energy levels of the acceptor doped structure as a function of the insertion position of the AlAs monolayer. The acceptor doped structure induced THz range emission whereas the undoped structure induced mid-IR emission.
Nonplanar KdV and KP equations for quantum electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Dutta, Debjit
2015-12-01
Nonlinear quantum ion-acoustic waves with the effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the standard reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation for ion-acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave are studied analytically. It is found that the dynamics of ion-acoustic solitary waves (IASWs) is governed by a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE). The results could help in a theoretical analysis of astrophysical and laser produced plasmas.
Surface acoustic wave regulated single photon emission from a coupled quantum dot–nanocavity system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiß, M.; Kapfinger, S.; Wixforth, A.
2016-07-18
A coupled quantum dot–nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a f{sub SAW} ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g{sup (2)}. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g{sup (2)}, demonstrating high fidelity regulation of the stream of single photonsmore » emitted by the system.« less
Expanding the Bethe/Gauge dictionary
NASA Astrophysics Data System (ADS)
Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz
2017-11-01
We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.
Determination of structure parameters in strong-field tunneling ionization theory of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Songfeng; Jin Cheng; College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070
2010-03-15
In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wave function of the molecular orbital from which the electron is removed. The orbital wave functions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory. We show that the asymptotic wave function can be improved with an iteration method and after one iteration accurate asymptotic wave functions and structure parameters are determined. Withmore » the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.« less
A device adaptive inflow boundary condition for Wigner equations of quantum transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu
2014-02-01
In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less
Huyghens Engines--a new concept and its embodiment for nano-micro interlevel information processing.
Santoli, Salvatore
2009-02-01
Current criteria in Bionanotechnology based on software and sensor/actuator hardware of Artificial Intelligence for bioinspired nanostructured systems lack the nanophysical background and key mathematics to describe and mimick the biological hierarchies of nano-to-micro-integrated informational/energetic levels. It is argued that bionanoscale hardware/software undividable solidarity can be mimicked by artificial nanostructured systems featuring intra/interlevel information processing through the emerging organization principle of quantum holography, described by the Heisenberg group G and by harmonic analysis on G. From a property of G as a Lie group, quantum holography is shown to merge the quantum/classical dynamic-symbolic ongoings into the structure-function unity of biological sensing-information processing-actuating, while by Ch. Huyghens' principles about wave motion and coupled oscillators synchronization it applies to environmental waves of any kind, so embodying a universal information processing engine, dubbed Huyghens Engine, that mimicks the holistic nanobiological structure-function solidarity and the kinetics/thermodynamics of nano/micro interface information transfer.
Quantum carpets in a one-dimensional tilted optical lattices
NASA Astrophysics Data System (ADS)
Parra Murillo, Carlos Alberto; Muã+/-Oz Arias, Manuel Humberto; Madroã+/-Ero, Javier
A unit filling Bose-Hubbard Hamiltonian embedded in a strong Stark field is studied in the off-resonant regime inhibiting single- and many-particle first-order tunneling resonances. We investigate the occurrence of coherent dipole wavelike propagation along an optical lattice by means of an effective Hamiltonian accounting for second-order tunneling processes. It is shown that dipole wave function evolution in the short-time limit is ballistic and that finite-size effects induce dynamical self-interference patterns known as quantum carpets. We also present the effects of the border right after the first reflection, showing that the wave function diffuses normally with the variance changing linearly in time. This work extends the rich physical phenomenology of tilted one-dimensional lattice systems in a scenario of many interacting quantum particles, the so-called many-body Wannier-Stark system. The authors acknownledge the finantial support of the Universidad del Valle (project CI 7996). C. A. Parra-Murillo greatfully acknowledges the financial support of COLCIENCIAS (Grant 656).
Polarization effects on quantum levels in InN/GaN quantum wells.
Lin, Wei; Li, Shuping; Kang, Junyong
2009-12-02
Polarization effects on quantum states in InN/GaN quantum wells have been investigated by means of ab initio calculation and spectroscopic ellipsometry. Through the position-dependent partial densities of states, our results show that the polarization modified by the strain with different well thickness leads to an asymmetry band bending of the quantum well. The quantum levels are identified via the band structures and their square wave function distributions are analyzed by the partial charge densities. Further theoretical and experimental comparison of the imaginary part of the dielectric function show that the overall transition probability increases under larger polarization fields, which can be attributable to the fact that the excited quantum states of 2h have a greater overlap with 1e states and enhance other hole quantum states in the well by a hybridization. These results would provide a new approach to improve the transition probability and light emission by enhancing the polarization fields in a proper way.
Diffractive ρ and ϕ production at HERA using a holographic AdS/QCD light-front meson wave function
NASA Astrophysics Data System (ADS)
Ahmady, Mohammad; Sandapen, Ruben; Sharma, Neetika
2016-10-01
We use an anti-de Sitter/quantum chromodynamics holographic light-front wave function for the ρ and ϕ mesons, in conjunction with the color glass condensate dipole cross section whose parameters are fitted to the most recent 2015 high precision HERA data on inclusive deep inelastic scattering, in order to predict the cross sections for diffractive ρ and ϕ electroproduction. Our results suggest that the holographic meson light-front wave function is able to give a simultaneous description of ρ and ϕ production data provided we use a set of light quark masses with mu ,d
Embedding beyond electrostatics-The role of wave function confinement.
Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob
2016-09-14
We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.
NASA Astrophysics Data System (ADS)
Schuch, Dieter
2012-08-01
Quantum mechanics is essentially described in terms of complex quantities like wave functions. The interesting point is that phase and amplitude of the complex wave function are not independent of each other, but coupled by some kind of conservation law. This coupling exists in time-independent quantum mechanics and has a counterpart in its time-dependent form. It can be traced back to a reformulation of quantum mechanics in terms of nonlinear real Ermakov equations or equivalent complex nonlinear Riccati equations, where the quadratic term in the latter equation explains the origin of the phase-amplitude coupling. Since realistic physical systems are always in contact with some kind of environment this aspect is also taken into account. In this context, different approaches for describing open quantum systems, particularly effective ones, are discussed and compared. Certain kinds of nonlinear modifications of the Schrödinger equation are discussed as well as their interrelations and their relations to linear approaches via non-unitary transformations. The modifications of the aforementioned Ermakov and Riccati equations when environmental effects are included can be determined in the time-dependent case. From formal similarities conclusions can be drawn how the equations of time-independent quantum mechanics can be modified to also incluce the enviromental aspects.
Dichromatic Langmuir waves in degenerate quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Kitayev, I. N.
2015-06-15
Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.
Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD
NASA Astrophysics Data System (ADS)
Aoki, S.
We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.
Quantum gas-liquid condensation in an attractive Bose gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Shun-ichiro
Gas-liquid condensation (GLC) in an attractive Bose gas is studied on the basis of statistical mechanics. Using some results in combinatorial mathematics, the following are derived. (1) With decreasing temperature, the Bose-statistical coherence grows in the many-body wave function, which gives rise to the divergence of the grand partition function prior to Bose-Einstein condensation. It is a quantum-mechanical analogue to the GLC in a classical gas (quantum GLC). (2) This GLC is triggered by the bosons with zero momentum. Compared with the classical GLC, an incomparably weaker attractive force creates it. For the system showing the quantum GLC, we discussmore » a cold helium 4 gas at sufficiently low pressure.« less
Wapenaar, Kees
2017-06-01
A unified scalar wave equation is formulated, which covers three-dimensional (3D) acoustic waves, 2D horizontally-polarised shear waves, 2D transverse-electric EM waves, 2D transverse-magnetic EM waves, 3D quantum-mechanical waves and 2D flexural waves. The homogeneous Green's function of this wave equation is a combination of the causal Green's function and its time-reversal, such that their singularities at the source position cancel each other. A classical representation expresses this homogeneous Green's function as a closed boundary integral. This representation finds applications in holographic imaging, time-reversed wave propagation and Green's function retrieval by cross correlation. The main drawback of the classical representation in those applications is that it requires access to a closed boundary around the medium of interest, whereas in many practical situations the medium can be accessed from one side only. Therefore, a single-sided representation is derived for the homogeneous Green's function of the unified scalar wave equation. Like the classical representation, this single-sided representation fully accounts for multiple scattering. The single-sided representation has the same applications as the classical representation, but unlike the classical representation it is applicable in situations where the medium of interest is accessible from one side only.
Husimi function and phase-space analysis of bilayer quantum Hall systems at ν = 2/λ
NASA Astrophysics Data System (ADS)
Calixto, M.; Peón-Nieto, C.
2018-05-01
We propose localization measures in phase space of the ground state of bilayer quantum Hall systems at fractional filling factors , to characterize the three quantum phases (shortly denoted by spin, canted and ppin) for arbitrary -isospin λ. We use a coherent state (Bargmann) representation of quantum states, as holomorphic functions in the 8-dimensional Grassmannian phase-space (a higher-dimensional generalization of the Haldane’s 2-dimensional sphere ). We quantify the localization (inverse volume) of the ground state wave function in phase-space throughout the phase diagram (i.e. as a function of Zeeman, tunneling, layer distance, etc, control parameters) with the Husimi function second moment, a kind of inverse participation ratio that behaves as an order parameter. Then we visualize the different ground state structure in phase space of the three quantum phases, the canted phase displaying a much higher delocalization (a Schrödinger cat structure) than the spin and ppin phases, where the ground state is highly coherent. We find a good agreement between analytic (variational) and numeric diagonalization results.
Stimulated scattering of electromagnetic waves carrying orbital angular momentum in quantum plasmas.
Shukla, P K; Eliasson, B; Stenflo, L
2012-07-01
We investigate stimulated scattering instabilities of coherent circularly polarized electromagnetic (CPEM) waves carrying orbital angular momentum (OAM) in dense quantum plasmas with degenerate electrons and nondegenerate ions. For this purpose, we employ the coupled equations for the CPEM wave vector potential and the driven (by the ponderomotive force of the CPEM waves) equations for the electron and ion plasma oscillations. The electrons are significantly affected by the quantum forces (viz., the quantum statistical pressure, the quantum Bohm potential, as well as the electron exchange and electron correlations due to electron spin), which are included in the framework of the quantum hydrodynamical description of the electrons. Furthermore, our investigation of the stimulated Brillouin instability of coherent CPEM waves uses the generalized ion momentum equation that includes strong ion coupling effects. The nonlinear equations for the coupled CPEM and quantum plasma waves are then analyzed to obtain nonlinear dispersion relations which exhibit stimulated Raman, stimulated Brillouin, and modulational instabilities of CPEM waves carrying OAM. The present results are useful for understanding the origin of scattered light off low-frequency density fluctuations in high-energy density plasmas where quantum effects are eminent.
Quantum revival for elastic waves in thin plate
NASA Astrophysics Data System (ADS)
Dubois, Marc; Lefebvre, Gautier; Sebbah, Patrick
2017-05-01
Quantum revival is described as the time-periodic reconstruction of a wave packet initially localized in space and time. This effect is expected in finite-size systems which exhibit commensurable discrete spectrum such as the infinite quantum well. Here, we report on the experimental observation of full and fractional quantum revival for classical waves in a two dimensional cavity. We consider flexural waves propagating in thin plates, as their quadratic dispersion at low frequencies mimics the dispersion relation of quantum systems governed by Schrödinger equation. Time-dependent excitation and measurement are performed at ultrasonic frequencies and reveal a periodic reconstruction of the initial elastic wave packet.
Use of the Lorentz-operator in relativistic quantum mechanics to guarentee a single-energy root
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, A B
1998-08-01
The Lorentz-operator form of relativistic quantum mechanics, with relativistic wave equation i{h_bar}{partial_derivative}{psi}/{partial_derivative}t=(mc{sup 2}{gamma}+e{Phi}){psi}, is implemented to guarantee a single-energy root. The Lorentz factor as modified by Pauli's ansatz is given by {gamma}={radical}1+[{rvec {sigma}}{center_dot}(i{h_bar}{rvec {del}}+(e/c){rvec A})]{sup 2}/m{sup 2}c{sup 2}, such that the theory is appropriate for electrons. Magnetic fine structure in the Lorentz relativistic wave equation emerges on the use of an appropriate operator form of the Lienard-Wiechert four- potential ({Phi},{rvec A}) from electromagnetic theory. Although computationally more intensive the advantage of the theory is the elimination of the negative-root of the energy and an interpretation of the wave function basedmore » on a one-particle, positive definite probability density like that of nonrelativistic quantum mechanics.« less
Quantum Critical Point revisited by the Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei
Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.
NASA Astrophysics Data System (ADS)
Park, Seoung-Hwan; Ahn, Doyeol
2018-05-01
Ultraviolet light emission characteristics of lattice-matched BxAlyGa1-x-y N/AlN quantum well (QW) structures with double AlGaN delta layers were investigated theoretically. In contrast to conventional single dip-shaped QW structure where the reduction effect of the spatial separation between electron and hole wave functions is negligible, proposed double dip-shaped QW shows significant enhancement of the ultraviolet light emission intensity from a BAlGaN/AlN QW structure due to the reduced spatial separation between electron and hole wave functions. The emission peak of the double dip-shaped QW structure is expected to be about three times larger than that of the conventional rectangular AlGaN/AlN QW structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, R. K.; Das, S.; Panda, A. K.
We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/Al{sub x}Ga{sub 1-x}As barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip inmore » mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.« less
Quantum transitions through cosmological singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bramberger, Sebastian F.; Lehners, Jean-Luc; Hertog, Thomas
2017-07-01
In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddlemore » points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.« less
Quantum transitions through cosmological singularities
NASA Astrophysics Data System (ADS)
Bramberger, Sebastian F.; Hertog, Thomas; Lehners, Jean-Luc; Vreys, Yannick
2017-07-01
In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.
A Concise Introduction to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Swanson, Mark S.
2018-02-01
Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.
Ratchet effect in the quantum kicked rotor and its destruction by dynamical localization
NASA Astrophysics Data System (ADS)
Hainaut, Clément; Rançon, Adam; Clément, Jean-François; Garreau, Jean Claude; Szriftgiser, Pascal; Chicireanu, Radu; Delande, Dominique
2018-06-01
We study experimentally a quantum kicked rotor with broken parity symmetry, supporting a ratchet effect due to the presence of a classical accelerator mode. We show that the short-time dynamics is very well described by the classical dynamics, characterized by a strongly asymmetric momentum distribution with directed motion on one side, and an anomalous diffusion on the other. At longer times, quantum effects lead to dynamical localization, causing an asymptotic resymmetrization of the wave function.
Functional differentiability in time-dependent quantum mechanics.
Penz, Markus; Ruggenthaler, Michael
2015-03-28
In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Gwanyong; Jung, Young-Dae
2018-05-01
The dispersion relation for the waves propagating on the surface of a bounded quantum plasma with consideration of electron spin-current and ion-stream is derived and numerically investigated. We have found that one of the real parts of the wave frequency has the branching behavior beyond the instability domains. In such a region where the frequency branching occurs, the waves exhibit purely propagating mode. The resonant instability has also been investigated. We have found that when the phase velocity of the wave is close to the velocity of ion-stream the wave becomes unstable. However, the resonant growth rate is remarkably reduced by the effect of electron spin-current. The growth rate is also decreased by either the reduction of ion-stream velocity or the increase in quantum wavelength. Thus, the quantum effect in terms of the quantum wave number is found to suppress the resonant instability. It is also found that the increase in Fermi energy can reduce the growth rate of the resonant wave in the quantum plasma.
Phase transition and field effect topological quantum transistor made of monolayer MoS2
NASA Astrophysics Data System (ADS)
Simchi, H.; Simchi, M.; Fardmanesh, M.; Peeters, F. M.
2018-06-01
We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2 diagonal term is added (deleted) to (from) the spin-valley Dirac mass equation. We calculate the quantum conductance of zigzag MoS2 nanoribbons by using the nonequilibrium Green function method and show how this device works as a field effect topological quantum transistor.
Nonlocality of the original Einstein-Podolsky-Rosen state
NASA Astrophysics Data System (ADS)
Cohen, O.
1997-11-01
We examine the properties and behavior of the original Einstein-Podolsky-Rosen (EPR) wave function [Phys. Rev. 47, 777 (1935)] and related Gaussian-correlated wave functions. We assess the degree of entanglement of these wave functions and consider an argument of Bell [Ann. (N.Y.) Acad. Sci. 480, 263 (1986)] based on the Wigner phase-space distribution [Phys. Rev. 40, 749 (1932)], which implies that the original EPR correlations can accommodate a local hidden-variable description. We extend Bell's analysis to the related Gaussian wave functions. We then show that it is possible to identify definite nonlocal aspects for the original EPR state and related states. We describe possible experiments that would demonstrate these nonlocal features through violations of Bell inequalities. The implications of our results, and in particular their relevance for the causal interpretation of quantum mechanics, are considered.
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.; Dolai, B.
2017-08-01
The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.
Semiclassical approximations in the coherent-state representation
NASA Technical Reports Server (NTRS)
Kurchan, J.; Leboeuf, P.; Saraceno, M.
1989-01-01
The semiclassical limit of the stationary Schroedinger equation in the coherent-state representation is analyzed simultaneously for the groups W1, SU(2), and SU(1,1). A simple expression for the first two orders for the wave function and the associated semiclassical quantization rule is obtained if a definite choice for the classical Hamiltonian and expansion parameter is made. The behavior of the modulus of the wave function, which is a distribution function in a curved phase space, is studied for the three groups. The results are applied to the quantum triaxial rotor.
NASA Astrophysics Data System (ADS)
Zakhariev, B. N.; Chabanov, V. M.
It was an important examination to give a review talk at the previous Conference on Inverse Quantum Scattering (1996, Lake Balaton) about computer visualization of this science in front of its fathers — creators, B. M. Levitan and V. A. Marchenko. We have achieved a new understanding that the discovered main rules of transformations of a single wave function bump, e.g., for the ground bound states of one dimensional quantum systems are applicable to any state of any potential with arbitrary number of bumps from finite to unlimited ones as scattering states and bound states embedded into continuum. It appeared that we need only to repeat the rule mentally the necessary number of times. That uttermost simplification and unification of physical notion of spectral, scattering and decay control for any potential have got an obligatory praise from B. M. Levitan at the conference and was a mighty stimulus for our further research After that we have written both Russian (2002) and improved English editions of “Submissive Quantum Mechanics. New Status of the Theory in Inverse Problem Approach”1 (appeared at the very end of 2007). This book was written for correction of the present defect in quantum education throughout the world. Recently the quantum IP intuition helped us to discover a new concept of permanent wave resonance with potential spatial oscillations.2 This means the constant wave swinging frequency on the whole energy intervals of spectral forbidden zones destroying physical solutions and deepening the theory of waves in periodic potentials. It also shows the other side of strengthening the fundamentally important magic structures. A ‘new language’ of wave bending will be presented to enrich our quantum intuition, e.g., the paradoxical effective attraction of barriers and repulsion of wells in multichannel systems, etc.
Electron number probability distributions for correlated wave functions.
Francisco, E; Martín Pendás, A; Blanco, M A
2007-03-07
Efficient formulas for computing the probability of finding exactly an integer number of electrons in an arbitrarily chosen volume are only known for single-determinant wave functions [E. Cances et al., Theor. Chem. Acc. 111, 373 (2004)]. In this article, an algebraic method is presented that extends these formulas to the case of multideterminant wave functions and any number of disjoint volumes. The derived expressions are applied to compute the probabilities within the atomic domains derived from the space partitioning based on the quantum theory of atoms in molecules. Results for a series of test molecules are presented, paying particular attention to the effects of electron correlation and of some numerical approximations on the computed probabilities.
NASA Astrophysics Data System (ADS)
Alfianto, E.; Rusydi, F.; Aisyah, N. D.; Fadilla, R. N.; Dipojono, H. K.; Martoprawiro, M. A.
2017-05-01
This study implemented DFT method into the C++ programming language with object-oriented programming rules (expressive software). The use of expressive software results in getting a simple programming structure, which is similar to mathematical formula. This will facilitate the scientific community to develop the software. We validate our software by calculating the energy band structure of Silica, Carbon, and Germanium with FCC structure using the Projector Augmented Wave (PAW) method then compare the results to Quantum Espresso calculation’s results. This study shows that the accuracy of the software is 85% compared to Quantum Espresso.
Anomalous diffusion in a dynamical optical lattice
NASA Astrophysics Data System (ADS)
Zheng, Wei; Cooper, Nigel R.
2018-02-01
Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.
Transparent lattices and their solitary waves.
Sadurní, E
2014-09-01
We provide a family of transparent tight-binding models with nontrivial potentials and site-dependent hopping parameters. Their feasibility is discussed in electromagnetic resonators, dielectric slabs, and quantum-mechanical traps. In the second part of the paper, the arrays are obtained through a generalization of supersymmetric quantum mechanics in discrete variables. The formalism includes a finite-difference Darboux transformation applied to the scattering matrix of a periodic array. A procedure for constructing a hierarchy of discrete Hamiltonians is indicated and a particular biparametric family is given. The corresponding potentials and hopping functions are identified as solitary waves, pointing to a discrete spinorial generalization of the Korteweg-deVries family.
Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.
Ardelt, P-L; Gawarecki, K; Müller, K; Waeber, A M; Bechtold, A; Oberhofer, K; Daniels, J M; Klotz, F; Bichler, M; Kuhn, T; Krenner, H J; Machnikowski, P; Finley, J J
2016-02-19
We report Coulomb mediated hybridization of excitonic states in optically active InGaAs quantum dot molecules. By probing the optical response of an individual quantum dot molecule as a function of the static electric field applied along the molecular axis, we observe unexpected avoided level crossings that do not arise from the dominant single-particle tunnel coupling. We identify a new few-particle coupling mechanism stemming from Coulomb interactions between different neutral exciton states. Such Coulomb resonances hybridize the exciton wave function over four different electron and hole single-particle orbitals. Comparisons of experimental observations with microscopic eight-band k·p calculations taking into account a realistic quantum dot geometry show good agreement and reveal that the Coulomb resonances arise from broken symmetry in the artificial semiconductor molecule.
Variational model for one-dimensional quantum magnets
NASA Astrophysics Data System (ADS)
Kudasov, Yu. B.; Kozabaranov, R. V.
2018-04-01
A new variational technique for investigation of the ground state and correlation functions in 1D quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the Jordan-Wigner transformation. The ground state is described by a new non-local trial wave function, and the total energy is calculated in an analytic form as a function of two variational parameters. This approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic field. Generalizations and applications of the variational technique for low-dimensional magnetic systems are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590
The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less
Quantum Entanglement Molecular Absorption Spectrum Simulator
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet; Kojima, Jun
2006-01-01
Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.
Quantum Monte Carlo for electronic structure: Recent developments and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriquez, Maria Milagos Soto
Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined bymore » the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C 2H and C 2H 2. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included.« less
Weinberg's nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox
NASA Technical Reports Server (NTRS)
Polchinski, Joseph
1991-01-01
The constraints imposed on observables by the requirement that transmission not occur in the Einstein-Podolsky-Rosen (EPR) experiment are determined, leading to a different treatment of separated systems from that originally proposed by Weinberg (1989). It is found that forbidding EPR communication in nonlinear quantum mechanics necessarily leads to another sort of unusual communication: that between different branches of the wave function.
Ten reasons why a thermalized system cannot be described by a many-particle wave function
NASA Astrophysics Data System (ADS)
Drossel, Barbara
2017-05-01
It is widely believed that the underlying reality behind statistical mechanics is a deterministic and unitary time evolution of a many-particle wave function, even though this is in conflict with the irreversible, stochastic nature of statistical mechanics. The usual attempts to resolve this conflict for instance by appealing to decoherence or eigenstate thermalization are riddled with problems. This paper considers theoretical physics of thermalized systems as it is done in practice and shows that all approaches to thermalized systems presuppose in some form limits to linear superposition and deterministic time evolution. These considerations include, among others, the classical limit, extensivity, the concepts of entropy and equilibrium, and symmetry breaking in phase transitions and quantum measurement. As a conclusion, the paper suggests that the irreversibility and stochasticity of statistical mechanics should be taken as a real property of nature. It follows that a gas of a macroscopic number N of atoms in thermal equilibrium is best represented by a collection of N wave packets of a size of the order of the thermal de Broglie wave length, which behave quantum mechanically below this scale but classically sufficiently far beyond this scale. In particular, these wave packets must localize again after scattering events, which requires stochasticity and indicates a connection to the measurement process.
QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.
Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M
2009-09-30
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation
NASA Astrophysics Data System (ADS)
Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.
2017-07-01
The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.
Area law from loop quantum gravity
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Hung, Ling-Yan; Marcianò, Antonino; Zhang, Mingyi
2018-03-01
We explore the constraints following from requiring the area law in the entanglement entropy in the context of loop quantum gravity. We find a unique solution to the single-link wave function in the large j limit, believed to be appropriate in the semiclassical limit. We then generalize our considerations to multilink coherent states, and find that the area law is preserved very generically using our single-link wave function as a building block. Finally, we develop the framework that generates families of multilink states that preserve the area law while avoiding macroscopic entanglement, the space-time analogue of "Schrödinger's cat." We note that these states, defined on a given set of graphs, are the ground states of some local Hamiltonian that can be constructed explicitly. This can potentially shed light on the construction of the appropriate Hamiltonian constraints in the LQG framework.
Quantum critical point revisited by dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-01
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.
Quantum critical point revisited by dynamical mean-field theory
Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.
2017-03-31
Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less
Energy and Information Transfer Via Coherent Exciton Wave Packets
NASA Astrophysics Data System (ADS)
Zang, Xiaoning
Electronic excitons are bound electron-hole states that are generated when light interacts with matter. Such excitations typically entangle with phonons and rapidly decohere; the resulting electronic state dynamics become diffusive as a result. However, if the exciton-phonon coupling can be reduced, it may be possible to construct excitonic wave packets that offer a means of efficiently transmitting information and energy. This thesis is a combined theory/computation investigation to design condensed matter systems which support the requisite coherent transport. Under the idealizing assumption that exciton-phonon entanglement could be completely suppressed, the majority of this thesis focuses on the creation and manipulation of exciton wave packets in quasi-one-dimensional systems. While each site could be a silicon quantum dot, the actual implementation focused on organic molecular assemblies for the sake of computational simplicity, ease of experimental implementation, potential for coherent transport, and promise because of reduced structural uncertainty. A laser design was derived to create exciton wave packets with tunable shape and speed. Quantum interference was then exploited to manipulate these packets to block, pass, and even dissociate excitons based on their energies. These developments allow exciton packets to be considered within the arena of quantum information science. The concept of controllable excitonic wave packets was subsequently extended to consider molecular designs that allow photons with orbital angular momentum to be absorbed to create excitons with a quasi-angular momentum of their own. It was shown that a well-defined measure of topological charge is conserved in such light-matter interactions. Significantly, it was also discovered that such molecules allow photon angular momenta to be combined and later emitted. This amounts to a new way of up/down converting photonic angular momentum without relying on nonlinear optical materials. The associated excitations were dubbed twisted excitons. Twisted exciton packets can be manipulated as they travel down molecular chains, and this has applications in quantum information science as well. In each setting considered, exciton dynamics were initially studied using a simple tight-binding formalism. This misses the actual many-body interactions and multiple energy levels associated real systems. To remedy this, I adapted an existing time-domain Density Functional Theory code and applied it to study the dynamics of exciton wave packets on quasi-one-dimensional systems. This required the use of high-performance computing and the construction of a number of key auxiliary codes. Establishing the requisite methodology constituted a substantial part of the entire thesis. Surprisingly, this effort uncovered a computational issue associated with Rabi oscillations that had been incorrectly characterized in the literature. My research elucidated the actual problem and a solution was found. This new methodology was an integral part of the overall computational analysis. The thesis then takes up the a detailed consideration of the prospect for creating systems that support a strong measure of transport coherence. While physical implementations include molecular assemblies, solid-state superlattices, and even optical lattices, I decided to focus on assemblies of nanometer-sized silicon quantum dots. First principles computational analysis was used to quantify reorganization within individual dots and excitonic coupling between dots. Quantum dot functionalizations were identified that make it plausible to maintain a measure of excitonic coherence even at room temperatures. Attention was then turned to the use of covalently bonded bridge material to join quantum dots in a way that facilitates efficient exciton transfer. Both carbon and silicon structures were considered by considering the way in which subunits might be best brought together. This resulted in a set of design criteria which were then evaluated using first-principles, excited state analyses. It was found that efficient exciton transfer is indeed possible. When coupled to the previous quantum dot functionalizations, the notion that quantum dot materials could support partially coherent exciton wave packets was determined to be quite reasonable.
Quantization of the Szekeres system
NASA Astrophysics Data System (ADS)
Paliathanasis, A.; Zampeli, Adamantia; Christodoulakis, T.; Mustafa, M. T.
2018-06-01
We study the quantum corrections on the Szekeres system in the context of canonical quantization in the presence of symmetries. We start from an effective point-like Lagrangian with two integrals of motion, one corresponding to the Hamiltonian and the other to a second rank killing tensor. Imposing their quantum version on the wave function results to a solution which is then interpreted in the context of Bohmian mechanics. In this semiclassical approach, it is shown that there is no quantum corrections, thus the classical trajectories of the Szekeres system are not affected at this level. Finally, we define a probability function which shows that a stationary surface of the probability corresponds to a classical exact solution.
Negative inductance SQUID qubit operating in a quantum regime
NASA Astrophysics Data System (ADS)
Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.
2018-04-01
Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.
1985-01-01
a number of problems chosen so that the risk of SHM break-down wa.s minimized. A beautiful example is the absorption coefficient of a...the aporo~ cimation We consider here the case of one normalized Gaussian, to isolate the effects of LilA from those of the neglect of the *Interaction
Katsuki, Hiroyuki; Ohmori, Kenji
2016-09-28
We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H 2 ) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H 2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.
Transition operators in electromagnetic-wave diffraction theory - General theory
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Theoretical derivation of laser-dressed atomic states by using a fractal space
NASA Astrophysics Data System (ADS)
Duchateau, Guillaume
2018-05-01
The derivation of approximate wave functions for an electron submitted to both a Coulomb and a time-dependent laser electric fields, the so-called Coulomb-Volkov (CV) state, is addressed. Despite its derivation for continuum states does not exhibit any particular problem within the framework of the standard theory of quantum mechanics (QM), difficulties arise when considering an initially bound atomic state. Indeed the natural way of translating the unperturbed momentum by the laser vector potential is no longer possible since a bound state does not exhibit a plane wave form explicitly including a momentum. The use of a fractal space permits to naturally define a momentum for a bound wave function. Within this framework, it is shown how the derivation of laser-dressed bound states can be performed. Based on a generalized eikonal approach, a new expression for the laser-dressed states is also derived, fully symmetric relative to the continuum or bound nature of the initial unperturbed wave function. It includes an additional crossed term in the Volkov phase which was not obtained within the standard theory of quantum mechanics. The derivations within this fractal framework have highlighted other possible ways to derive approximate laser-dressed states in QM. After comparing the various obtained wave functions, an application to the prediction of the ionization probability of hydrogen targets by attosecond XUV pulses within the sudden approximation is provided. This approach allows to make predictions in various regimes depending on the laser intensity, going from the non-resonant multiphoton absorption to tunneling and barrier-suppression ionization.
Exchange interaction effects on waves in magnetized quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trukhanova, Mariya Iv., E-mail: mar-tiv@yandex.ru; Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru
2015-02-15
We have applied the many-particle quantum hydrodynamics that includes the Coulomb exchange interaction to magnetized quantum plasmas. We considered a number of wave phenomena that are affected by the Coulomb exchange interaction. Since the Coulomb exchange interaction affects the longitudinal and transverse-longitudinal waves, we focused our attention on the Langmuir waves, the Trivelpiece-Gould waves, the ion-acoustic waves in non-isothermal magnetized plasmas, the dispersion of the longitudinal low-frequency ion-acoustic waves, and low-frequency electromagnetic waves at T{sub e} ≫ T{sub i}. We have studied the dispersion of these waves and present the numeric simulation of their dispersion properties.
Polymeric quantum mechanics and the zeros of the Riemann zeta function
NASA Astrophysics Data System (ADS)
Berra-Montiel, Jasel; Molgado, Alberto
We analyze the Berry-Keating model and the Sierra and Rodríguez-Laguna Hamiltonian within the polymeric quantization formalism. By using the polymer representation, we obtain for both models, the associated polymeric quantum Hamiltonians and the corresponding stationary wave functions. The self-adjointness condition provides a proper domain for the Hamiltonian operator and the energy spectrum, which turned out to be dependent on an introduced scale parameter. By performing a counting of semiclassical states, we prove that the polymer representation reproduces the smooth part of the Riemann-von Mangoldt formula, and also introduces a correction depending on the energy and the scale parameter. This may shed some light on the understanding of the fluctuation behavior of the zeros of the Riemann function from a purely quantum point of view.
1−1=Counterfactual: on the potency and significance of quantum non-events
Cohen, E.
2016-01-01
We study the unique role played in quantum mechanics by non-events or ‘counterfactuals’. Our earlier analysis of ‘quantum oblivion’ has revealed some subtle stages in the measurement process, which may end up in self-cancellation. To these findings, we now add two insights derived by two time-symmetric interpretations of quantum mechanics. (i) Like all quantum interactions, the non-event is formed by the conjunction of forward-plus-backward-evolving wave functions. (ii) Then, it is another feature of such dual evolutions, namely the involvement of negative masses and energies, that enables Nature to make some events ‘unhappen’ while leaving causal traces. PMID:27091159
1-1=Counterfactual: on the potency and significance of quantum non-events.
Elitzur, A C; Cohen, E
2016-05-28
We study the unique role played in quantum mechanics by non-events or 'counterfactuals'. Our earlier analysis of 'quantum oblivion' has revealed some subtle stages in the measurement process, which may end up in self-cancellation. To these findings, we now add two insights derived by two time-symmetric interpretations of quantum mechanics. (i) Like all quantum interactions, the non-event is formed by the conjunction of forward-plus-backward-evolving wave functions. (ii) Then, it is another feature of such dual evolutions, namely the involvement of negative masses and energies, that enables Nature to make some events 'unhappen' while leaving causal traces. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Pala, M. G.; Esseni, D.
2018-03-01
This paper presents the theory, implementation, and application of a quantum transport modeling approach based on the nonequilibrium Green's function formalism and a full-band empirical pseudopotential Hamiltonian. We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling between the device and the leads. After discussing the theory and the implementation of the new simulation methodology, we report results for complete, self-consistent simulations of different electron devices, including a silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.
Bohmian mechanics without wave function ontology
NASA Astrophysics Data System (ADS)
Solé, Albert
2013-11-01
In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics is better formulated as quasi-Newtonian, via the postulation of forces proportional to acceleration; advocates of the guidance approach defend the notion that the theory is essentially first-order and incorporates some concepts akin to those of Aristotelian physics. Here I analyze whether the desideratum of an interpretation of Bohmian mechanics that is both explanatorily adequate and not committed to configuration space realism favors one of these two approaches to the theory over the other. Contrary to some recent claims in the literature, I argue that the quasi-Newtonian approach based on the idea of a quantum potential does not come out the winner.
Emergent symmetries in the canonical tensor model
NASA Astrophysics Data System (ADS)
Obster, Dennis; Sasakura, Naoki
2018-04-01
The canonical tensor model (CTM) is a tensor model proposing a classically and quantum mechanically consistent description of gravity, formulated as a first-class constraint system with structural similarities to the ADM formalism of general relativity. The classical CTM produces a general relativistic system in a formal continuum limit, the emergence of which should be explained by the quantum CTM. In this paper we study the symmetry properties of a wave function that exactly solves the quantum constraints of the CTM. We have found that it has strong peaks at configurations invariant under some Lie groups, as predicted by a mechanism described in our previous paper. A surprising result is the preference for configurations invariant not only under Lie groups with positive definite signature, but also with Lorentzian signature. Such symmetries could characterize the global structures of spacetimes, and our results are encouraging towards showing spacetime emergence in the CTM. To verify the asymptotic convergence of the wave function we have also analyzed the asymptotic behavior, which for the most part seems to be well under control.
Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopar, Víctor A.
Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studiedmore » phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.« less
Quantum entanglement of identical particles by standard information-theoretic notions
Lo Franco, Rosario; Compagno, Giuseppe
2016-01-01
Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates. PMID:26857475
On a q-extension of the linear harmonic oscillator with the continuous orthogonality property on ℝ
NASA Astrophysics Data System (ADS)
Alvarez-Nodarse, R.; Atakishiyeva, M. K.; Atakishiyev, N. M.
2005-11-01
We discuss a q-analogue of the linear harmonic oscillator in quantum mechanics based on a q-extension of the classical Hermite polynomials H n ( x) recently introduced by us in R. Alvarez-Nodarse et al.: Boletin de la Sociedad Matematica Mexicana (3) 8 (2002) 127. The wave functions in this q-model of the quantum harmonic oscillator possess the continuous orthogonality property on the whole real line ℝ with respect to a positive weight function. A detailed description of the corresponding q-system is carried out.
Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems
NASA Astrophysics Data System (ADS)
Shi, Junren; Vignale, G.; Xiao, Di; Niu, Qian
2007-11-01
Based on standard perturbation theory, we present a full quantum derivation of the formula for the orbital magnetization in periodic systems. The derivation is generally valid for insulators with or without a Chern number, for metals at zero or finite temperatures, and at weak as well as strong magnetic fields. The formula is shown to be valid in the presence of electron-electron interaction, provided the one-electron energies and wave functions are calculated self-consistently within the framework of the exact current and spin-density functional theory.
Multilevel quantum Otto heat engines with identical particles
NASA Astrophysics Data System (ADS)
Huang, X. L.; Guo, D. Y.; Wu, S. L.; Yi, X. X.
2018-02-01
A quantum Otto heat engine is studied with multilevel identical particles trapped in one-dimensional box potential as working substance. The symmetrical wave function for Bosons and the anti-symmetrical wave function for Fermions are considered. In two-particle case, we focus on the ratios of W^i (i=B,F) to W_s, where W^B and W^F are the work done by two Bosons and Fermions, respectively, and W_s is the work output of a single particle under the same conditions. Due to the symmetrical of the wave functions, the ratios are not equal to 2. Three different regimes, low-temperature regime, high-temperature regime, and intermediate-temperature regime, are analyzed, and the effects of energy level number and the differences between the two baths are calculated. In the multiparticle case, we calculate the ratios of W^i_M/M to W_s, where W^i_M/M can be seen as the average work done by a single particle in multiparticle heat engine. For other working substances whose energy spectrum has the form of E_n˜ n^2, the results are similar. For the case E_n˜ n, two different conclusions are obtained.
Thermal Equilibrium of a Macroscopic Quantum System in a Pure State.
Goldstein, Sheldon; Huse, David A; Lebowitz, Joel L; Tumulka, Roderich
2015-09-04
We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.
A universal quantum information processor for scalable quantum communication and networks
Yang, Xihua; Xue, Bolin; Zhang, Junxiang; Zhu, Shiyao
2014-01-01
Entanglement provides an essential resource for quantum computation, quantum communication, and quantum networks. How to conveniently and efficiently realize the generation, distribution, storage, retrieval, and control of multipartite entanglement is the basic requirement for realistic quantum information processing. Here, we present a theoretical proposal to efficiently and conveniently achieve a universal quantum information processor (QIP) via atomic coherence in an atomic ensemble. The atomic coherence, produced through electromagnetically induced transparency (EIT) in the Λ-type configuration, acts as the QIP and has full functions of quantum beam splitter, quantum frequency converter, quantum entangler, and quantum repeater. By employing EIT-based nondegenerate four-wave mixing processes, the generation, exchange, distribution, and manipulation of light-light, atom-light, and atom-atom multipartite entanglement can be efficiently and flexibly achieved in a deterministic way with only coherent light fields. This method greatly facilitates the operations in quantum information processing, and holds promising applications in realistic scalable quantum communication and quantum networks. PMID:25316514
Ware, M E; Stinaff, E A; Gammon, D; Doty, M F; Bracker, A S; Gershoni, D; Korenev, V L; Bădescu, S C; Lyanda-Geller, Y; Reinecke, T L
2005-10-21
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
Analog model for quantum gravity effects: phonons in random fluids.
Krein, G; Menezes, G; Svaiter, N F
2010-09-24
We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.
The case of escape probability as linear in short time
NASA Astrophysics Data System (ADS)
Marchewka, A.; Schuss, Z.
2018-02-01
We derive rigorously the short-time escape probability of a quantum particle from its compactly supported initial state, which has a discontinuous derivative at the boundary of the support. We show that this probability is linear in time, which seems to be a new result. The novelty of our calculation is the inclusion of the boundary layer of the propagated wave function formed outside the initial support. This result has applications to the decay law of the particle, to the Zeno behaviour, quantum absorption, time of arrival, quantum measurements, and more.
NASA Technical Reports Server (NTRS)
1976-01-01
The two-particle, steady-state Schroedinger equation is transformed to center of mass and internuclear distance vector coordinates, leading to the free particle wave equation for the kinetic energy motion of the molecule and a decoupled wave equation for a single particle of reduced mass moving in a spherical potential field. The latter describes the vibrational and rotational energy modes of the diatomic molecule. For fixed internuclear distance, this becomes the equation of rigid rotator motion. The classical partition function for the rotator is derived and compared with the quantum expression. Molecular symmetry effects are developed from the generalized Pauli principle that the steady-state wave function of any system of fundamental particles must be antisymmetric. Nuclear spin and spin quantum functions are introduced and ortho- and para-states of rotators, along with their degeneracies, are defined. Effects of nuclear spin on entropy are deduced. Next, rigid polyatomic rotators are considered and the partition function for this case is derived. The patterns of rotational energy levels for nonlinear molecules are discussed for the spherical symmetric top, for the prolate symmetric top, for the oblate symmetric top, and for the asymmetric top. Finally, the equilibrium energy and specific heat of rigid rotators are derived.
NASA Astrophysics Data System (ADS)
Bouazra, A.; Nasrallah, S. Abdi-Ben; Said, M.
2016-01-01
In this work, we propose an efficient method to investigate optical properties as well as their dependence on geometrical parameters in InAs/InAlAs quantum wires. The used method is based on the coordinate transformation and the finite difference method. It provides sufficient accuracy, stability and flexibility with respect to the size and shape of the quantum wire. The electron and hole energy levels as well as their corresponding wave functions are investigated for different shape of quantum wires. The optical transition energies, the emission wavelengths and the oscillator strengths are also studied.
Quantum mechanics and hidden superconformal symmetry
NASA Astrophysics Data System (ADS)
Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A.
2017-12-01
Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp (1 |2 ) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp (1 |2 ) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Vasiliev-Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wave function parity. These models—both oscillator and particlelike—realize all possible unitary irreducible representations of osp (1 |2 ).
Diffeomorphism groups and nonlinear quantum mechanics
NASA Astrophysics Data System (ADS)
Goldin, Gerald A.
2012-02-01
This talk is dedicated to my friend and collaborator, Prof. Dr. Heinz-Dietrich Doebner, on the occasion of his 80th birthday. I shall review some highlights of the approach we have taken in deriving and interpreting an interesting class of nonlinear time-evolution equations for quantum-mechanical wave functions, with few equations; more detail may be found in the references. Then I shall comment on the corresponding hydrodynamical description.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com
2014-09-30
Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.
On the Conformable Fractional Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mozaffari, F. S.; Hassanabadi, H.; Sobhani, H.; Chung, W. S.
2018-05-01
In this paper, a conformable fractional quantum mechanic has been introduced using three postulates. Then in such a formalism, Schr¨odinger equation, probability density, probability flux and continuity equation have been derived. As an application of considered formalism, a fractional-radial harmonic oscillator has been considered. After obtaining its wave function and energy spectrum, effects of the conformable fractional parameter on some quantities have been investigated and plotted for different excited states.
Dielectric response of periodic systems from quantum Monte Carlo calculations.
Umari, P; Willamson, A J; Galli, Giulia; Marzari, Nicola
2005-11-11
We present a novel approach that allows us to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric-enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wave function, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence, sampled via forward walking. This approach has been validated for the case of an isolated hydrogen atom and then applied to a periodic system, to calculate the dielectric susceptibility of molecular-hydrogen chains. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.
Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope
NASA Astrophysics Data System (ADS)
Hodgman, S. S.; Khakimov, R. I.; Lewis-Swan, R. J.; Truscott, A. G.; Kheruntsyan, K. V.
2017-06-01
In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s -wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system—the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.
Vetoshkin, Evgeny; Babikov, Dmitri
2007-09-28
For the first time Feshbach-type resonances important in recombination reactions are characterized using the semiclassical wave packet method. This approximation allows us to determine the energies, lifetimes, and wave functions of the resonances and also to observe a very interesting correlation between them. Most important is that this approach permits description of a quantum delta-zero-point energy effect in recombination reactions and reproduces the anomalous rates of ozone formation.
Zen, Andrea; Luo, Ye; Sorella, Sandro; Guidoni, Leonardo
2014-01-01
Quantum Monte Carlo methods are accurate and promising many body techniques for electronic structure calculations which, in the last years, are encountering a growing interest thanks to their favorable scaling with the system size and their efficient parallelization, particularly suited for the modern high performance computing facilities. The ansatz of the wave function and its variational flexibility are crucial points for both the accurate description of molecular properties and the capabilities of the method to tackle large systems. In this paper, we extensively analyze, using different variational ansatzes, several properties of the water molecule, namely, the total energy, the dipole and quadrupole momenta, the ionization and atomization energies, the equilibrium configuration, and the harmonic and fundamental frequencies of vibration. The investigation mainly focuses on variational Monte Carlo calculations, although several lattice regularized diffusion Monte Carlo calculations are also reported. Through a systematic study, we provide a useful guide to the choice of the wave function, the pseudopotential, and the basis set for QMC calculations. We also introduce a new method for the computation of forces with finite variance on open systems and a new strategy for the definition of the atomic orbitals involved in the Jastrow-Antisymmetrised Geminal power wave function, in order to drastically reduce the number of variational parameters. This scheme significantly improves the efficiency of QMC energy minimization in case of large basis sets. PMID:24526929
Circuit quantum acoustodynamics with surface acoustic waves.
Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J
2017-10-17
The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.
Two-photon excitation cross-section in light and intermediate atoms
NASA Technical Reports Server (NTRS)
Omidvar, K.
1980-01-01
The method of explicit summation over the intermediate states is used along with LS coupling to derive an expression for two-photon absorption cross section in light and intermediate atoms in terms of integrals over radial wave functions. Two selection rules, one exact and one approximate, are also derived. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum defect method are used. A relationship between the cross section and the oscillator strengths is derived. Cross sections due to selected transitions in nitrogen, oxygen, and chlorine are given. The expression for the cross section is useful in calculating the two-photon absorption in light and intermediate atoms.
NASA Technical Reports Server (NTRS)
Omidvar, K.
1980-01-01
Using the method of explicit summation over the intermediate states two-photon absorption cross sections in light and intermediate atoms based on the simplistic frozen-core approximation and LS coupling have been formulated. Formulas for the cross section in terms of integrals over radial wave functions are given. Two selection rules, one exact and one approximate, valid within the stated approximations are derived. The formulas are applied to two-photon absorptions in nitrogen, oxygen, and chlorine. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum-defect method have been used. A relationship between the cross section and the oscillator strengths is derived.
Molecular controlled of quantum nano systems
NASA Astrophysics Data System (ADS)
Paltiel, Yossi
2014-03-01
A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.
Consistent resolution of some relativistic quantum paradoxes
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2002-12-01
A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics.
A Process Algebra Approach to Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Sulis, William
2017-12-01
The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.
Classical electromagnetic fields from quantum sources in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Holliday, Robert; McCarty, Ryan; Peroutka, Balthazar; Tuchin, Kirill
2017-01-01
Electromagnetic fields are generated in high energy nuclear collisions by spectator valence protons. These fields are traditionally computed by integrating the Maxwell equations with point sources. One might expect that such an approach is valid at distances much larger than the proton size and thus such a classical approach should work well for almost the entire interaction region in the case of heavy nuclei. We argue that, in fact, the contrary is true: due to the quantum diffusion of the proton wave function, the classical approximation breaks down at distances of the order of the system size. We compute the electromagnetic field created by a charged particle described initially as a Gaussian wave packet of width 1 fm and evolving in vacuum according to the Klein-Gordon equation. We completely neglect the medium effects. We show that the dynamics, magnitude and even sign of the electromagnetic field created by classical and quantum sources are different.
Quantum dynamics study of H+NH3-->H2+NH2 reaction.
Zhang, Xu Qiang; Cui, Qian; Zhang, John Z H; Han, Ke Li
2007-06-21
We report in this paper a quantum dynamics study for the reaction H+NH3-->NH2+H2 on the potential energy surface of Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The quantum dynamics calculation employs the semirigid vibrating rotor target model [J. Z. H. Zhang, J. Chem. Phys. 111, 3929 (1999)] and time-dependent wave packet method to propagate the wave function. Initial state-specific reaction probabilities are obtained, and an energy correction scheme is employed to account for zero point energy changes for the neglected degrees of freedom in the dynamics treatment. Tunneling effect is observed in the energy dependency of reaction probability, similar to those found in H+CH4 reaction. The influence of rovibrational excitation on reaction probability and stereodynamical effect are investigated. Reaction rate constants from the initial ground state are calculated and are compared to those from the transition state theory and experimental measurement.
Weak phase stiffness and nature of the quantum critical point in underdoped cuprates
Yildirim, Yucel; Ku, Wei
2015-11-02
We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal” pseudogap phase without any free parameter. In the prototypical (La 1–xSr x) 2CuO 4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δ c ~ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Lastly, a striking mass divergencemore » is predicted at δ c that dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.« less
ERIC Educational Resources Information Center
Rojas, R.; Robles, P.
2011-01-01
We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…
Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma.
Amin, M R
2015-09-01
Amplitude modulation of a compressional electromagnetic wave in a strongly magnetized electron-positron pair plasma is considered in the quantum magnetohydrodynamic regime. The important ingredients of this study are the inclusion of the external strong magnetic field, Fermi quantum degeneracy pressure, particle exchange potential, quantum diffraction effects via the Bohm potential, and dissipative effect due to collision of the charged carriers. A modified-nonlinear Schödinger equation is developed for the compressional magnetic field of the electromagnetic wave by employing the standard reductive perturbation technique. The linear and nonlinear dispersions of the electromagnetic wave are discussed in detail. For some parameter ranges, relevant to dense astrophysical objects such as the outer layers of white dwarfs, neutron stars, and magnetars, etc., it is found that the compressional electromagnetic wave is modulationally unstable and propagates as a dissipated electromagnetic wave. It is also found that the quantum effects due to the particle exchange potential and the Bohm potential are negligibly small in comparison to the effects of the Fermi quantum degeneracy pressure. The numerical results on the growth rate of the modulation instability is also presented.
NASA Astrophysics Data System (ADS)
Wei, Tzu-Chieh; Huang, Ching-Yu
2017-09-01
Recent progress in the characterization of gapped quantum phases has also triggered the search for a universal resource for quantum computation in symmetric gapped phases. Prior works in one dimension suggest that it is a feature more common than previously thought, in that nontrivial one-dimensional symmetry-protected topological (SPT) phases provide quantum computational power characterized by the algebraic structure defining these phases. Progress in two and higher dimensions so far has been limited to special fixed points. Here we provide two families of two-dimensional Z2 symmetric wave functions such that there exists a finite region of the parameter in the SPT phases that supports universal quantum computation. The quantum computational power appears to lose its universality at the boundary between the SPT and the symmetry-breaking phases.
Quark Model in the Quantum Mechanics Curriculum.
ERIC Educational Resources Information Center
Hussar, P. E.; And Others
1980-01-01
This article discusses in detail the totally symmetric three-quark karyonic wave functions. The two-body mesonic states are also discussed. A brief review of the experimental efforts to identify the quark model multiplets is given. (Author/SK)
Central charge from adiabatic transport of cusp singularities in the quantum Hall effect
NASA Astrophysics Data System (ADS)
Can, Tankut
2017-04-01
We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.
NASA Astrophysics Data System (ADS)
Snyder
1998-04-01
It has been shown by Einstein, Podolsky, and Rosen that in quantum mechanics two different wave functions can simultaneously characterize the same physical existent. This result means that one can make predictions regarding simultaneous, mutually exclusive features of a physical existent. It is important to ask whether people have the capacity to make observations of mutually exclusive phenomena simultaneously? Our everyday experience informs us that a human observer is capable of observing only one set of physical circumstances at a time. Evidence from psychology, though, indicates that people indeed have the capacity to make observations of mutually exclusive phenomena simultaneously, even though this capacity is not generally recognized. Working independently, Sigmund Freud and William James provided some of this evidence. How the nature of the quantum mechanical wave function is associated with the problem posed by Einstein, Podolsky, and Rosen, is addressed at the end of the paper.
Probing spontaneous wave-function collapse with entangled levitating nanospheres
NASA Astrophysics Data System (ADS)
Zhang, Jing; Zhang, Tiancai; Li, Jie
2017-01-01
Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.
Ferenczy, György G
2013-04-05
The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
King, H. F.; Komornicki, A.
1986-01-01
Formulas are presented relating Taylor series expansion coefficients of three functions of several variables, the energy of the trial wave function (W), the energy computed using the optimized variational wave function (E), and the response function (lambda), under certain conditions. Partial derivatives of lambda are obtained through solution of a recursive system of linear equations, and solution through order n yields derivatives of E through order 2n + 1, extending Puley's application of Wigner's 2n + 1 rule to partial derivatives in couple perturbation theory. An examination of numerical accuracy shows that the usual two-term second derivative formula is less stable than an alternative four-term formula, and that previous claims that energy derivatives are stationary properties of the wave function are fallacious. The results have application to quantum theoretical methods for the computation of derivative properties such as infrared frequencies and intensities.
Thermal and magnetic properties of electron gas in toroidal quantum dot
NASA Astrophysics Data System (ADS)
Baghdasaryan, D. A.; Hayrapetyan, D. B.; Kazaryan, E. M.; Sarkisyan, H. A.
2018-07-01
One-electron states in a toroidal quantum dot in the presence of an external magnetic field have been considered. The magnetic field operator and the Schrodinger equation have been written in toroidal coordinates. The dependence of one-electron energy spectrum and wave function on the geometrical parameters of a toroidal quantum dot and magnetic field strength have been studied. The energy levels are employed to calculate the canonical partition function, which in its turn is used to obtain mean energy, heat capacity, entropy, magnetization, and susceptibility of noninteracting electron gas. The possibility to control the thermodynamic and magnetic properties of the noninteracting electron gas via changing the geometric parameters of the QD, magnetic field, and temperature, was demonstrated.
NASA Astrophysics Data System (ADS)
Roy, M.; Maksym, P. A.; Bruls, D.; Offermans, P.; Koenraad, P. M.
2010-11-01
An effective-mass theory of subsurface scanning tunneling microscopy (STM) is developed. Subsurface structures such as quantum dots embedded into a semiconductor slab are considered. States localized around subsurface structures match on to a tail that decays into the vacuum above the surface. It is shown that the lateral variation in this tail may be found from a surface envelope function provided that the effects of the slab surfaces and the subsurface structure decouple approximately. The surface envelope function is given by a weighted integral of a bulk envelope function that satisfies boundary conditions appropriate to the slab. The weight function decays into the slab inversely with distance and this slow decay explains the subsurface sensitivity of STM. These results enable STM images to be computed simply and economically from the bulk envelope function. The method is used to compute wave-function images of cleaved quantum dots and the computed images agree very well with experiment.
A quantum anharmonic oscillator model for the stock market
NASA Astrophysics Data System (ADS)
Gao, Tingting; Chen, Yu
2017-02-01
A financially interpretable quantum model is proposed to study the probability distributions of the stock price return. The dynamics of a quantum particle is considered an analog of the motion of stock price. Then the probability distributions of price return can be computed from the wave functions that evolve according to Schrodinger equation. Instead of a harmonic oscillator in previous studies, a quantum anharmonic oscillator is applied to the stock in liquid market. The leptokurtic distributions of price return can be reproduced by our quantum model with the introduction of mixed-state and multi-potential. The trend following dominant market, in which the price return follows a bimodal distribution, is discussed as a specific case of the illiquid market.
Effect of quantum correction on nonlinear thermal wave of electrons driven by laser heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nafari, F.; Ghoranneviss, M., E-mail: ghoranneviss@gmail.com
2016-08-15
In thermal interaction of laser pulse with a deuterium-tritium (DT) plane, the thermal waves of electrons are generated instantly. Since the thermal conductivity of electron is a nonlinear function of temperature, a nonlinear heat conduction equation is used to investigate the propagation of waves in solid DT. This paper presents a self-similar analytic solution for the nonlinear heat conduction equation in a planar geometry. The thickness of the target material is finite in numerical computation, and it is assumed that the laser energy is deposited at a finite initial thickness at the initial time which results in a finite temperaturemore » for electrons at initial time. Since the required temperature range for solid DT ignition is higher than the critical temperature which equals 35.9 eV, the effects of quantum correction in thermal conductivity should be considered. This letter investigates the effects of quantum correction on characteristic features of nonlinear thermal wave, including temperature, penetration depth, velocity, heat flux, and heating and cooling domains. Although this effect increases electron temperature and thermal flux, penetration depth and propagation velocity are smaller. This effect is also applied to re-evaluate the side-on laser ignition of uncompressed DT.« less
Bounds on quantum collapse models from matter-wave interferometry: calculational details
NASA Astrophysics Data System (ADS)
Toroš, Marko; Bassi, Angelo
2018-03-01
We present a simple derivation of the interference pattern in matter-wave interferometry predicted by a class of quantum master equations. We apply the obtained formulae to the following collapse models: the Ghirardi-Rimini-Weber (GRW) model, the continuous spontaneous localization (CSL) model together with its dissipative (dCSL) and non-Markovian generalizations (cCSL), the quantum mechanics with universal position localization (QMUPL), and the Diósi-Penrose (DP) model. We discuss the separability of the dynamics of the collapse models along the three spatial directions, the validity of the paraxial approximation, and the amplification mechanism. We obtain analytical expressions both in the far field and near field limits. These results agree with those already derived in the Wigner function formalism. We compare the theoretical predictions with the experimental data from two recent matter-wave experiments: the 2012 far-field experiment of Juffmann T et al (2012 Nat. Nanotechnol. 7 297-300) and the 2013 Kapitza-Dirac-Talbot-Lau (KDTL) near-field experiment of Eibenberger et al (2013 Phys. Chem. Chem. Phys. 15 14696-700). We show the region of the parameter space for each collapse model that is excluded by these experiments. We show that matter-wave experiments provide model-insensitive bounds that are valid for a wide family of dissipative and non-Markovian generalizations.
NASA Astrophysics Data System (ADS)
Resita Arum, Sari; A, Suparmi; C, Cari
2016-01-01
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function. Project supported by the Higher Education Project (Grant No. 698/UN27.11/PN/2015).
NASA Astrophysics Data System (ADS)
Bush, John W. M.
2015-01-01
Yves Couder, Emmanuel Fort, and coworkers recently discovered that a millimetric droplet sustained on the surface of a vibrating fluid bath may self-propel through a resonant interaction with its own wave field. This article reviews experimental evidence indicating that the walking droplets exhibit certain features previously thought to be exclusive to the microscopic, quantum realm. It then reviews theoretical descriptions of this hydrodynamic pilot-wave system that yield insight into the origins of its quantum-like behavior. Quantization arises from the dynamic constraint imposed on the droplet by its pilot-wave field, and multimodal statistics appear to be a feature of chaotic pilot-wave dynamics. I attempt to assess the potential and limitations of this hydrodynamic system as a quantum analog. This fluid system is compared to quantum pilot-wave theories, shown to be markedly different from Bohmian mechanics and more closely related to de Broglie's original conception of quantum dynamics, his double-solution theory, and its relatively recent extensions through researchers in stochastic electrodynamics.
General Theory of Carrier-Envelope Phase Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roudnev, V.; Esry, B. D.
2007-11-30
We present a general framework for understanding carrier-envelope phase (CEP) effects in a quantum system interacting with an intense, short laser pulse. We establish a simple connection between the CEP and the wave function that can be exploited to obtain the full CEP dependence of an observable given the wave function at a single CEP. Within this framework, all CEP effects are interpreted as interference between different photon amplitudes which, in turn, can be used to put limits on the pulse lengths and intensities required to see significant CEP effects.
Highly retrievable spin-wave-photon entanglement source.
Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei
2015-05-29
Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.
Interpretation of Quantum Mechanics. A view of our universe
NASA Astrophysics Data System (ADS)
Lindgren, Ingvar
2009-10-01
The interpretation of quantum mechanics has been disputed ever since the advent of the theory in the 1920's. Famous are the discussions over long time between Einstein and Bohr. Einstein refused to accept the so-called Copenhagen interpretation, where the wave function collapses at a measurement and where the outcome of the measurement is essentially accidental (``God does not play dice''). Alternative interpretations have appeared, but the Copenhagen school has dominated the thoughts throughout the decades. One interesting interpretation was formulated in 1957 by Hugh Everett at Princeton, a student of John Wheeler, which abandons the wave-function collapse. In this model the universe is governed entirely by the Schrödinger equation, which does not allow for any collapse. In Everett's model after a measurement the wave function is separated into different branches that do not interact. This model was left unnoticed for long time until Bryce DeWitt took it up in 1970 and termed it ``Many-Worlds Interpretation'', a term that in some sense is misleading. Everett's model is incomplete, and it was later supplemented by the theory of decoherence, which explains how the different branches decouple as a result of the interaction with the environment. This extended model has in recent years gained increased respect, and some believe that it is the only model made available so far that is fully consistent with quantum mechanics. This interpretation can also shed some light on the development of the universe and, in particular, on the so-called Anthropic principle, which puts human beings at the center of the development.
Millimeter-wave interconnects for microwave-frequency quantum machines
NASA Astrophysics Data System (ADS)
Pechal, Marek; Safavi-Naeini, Amir H.
2017-10-01
Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.
Chwiej, T; Szafran, B
2013-04-17
We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.
Free-space entangled quantum carpets
NASA Astrophysics Data System (ADS)
Barros, Mariana R.; Ketterer, Andreas; Farías, Osvaldo Jiménez; Walborn, Stephen P.
2017-04-01
The Talbot effect in quantum physics is known to produce intricate patterns in the probability distribution of a particle, known as "quantum carpets," corresponding to the revival and replication of the initial wave function. Recently, it was shown that one can encode a D -level qudit in such a way that the Talbot effect can be used to process the D -dimensional quantum information [Farías et al., Phys. Rev. A 91, 062328 (2015), 10.1103/PhysRevA.91.062328]. Here we introduce a scheme to produce free-propagating "entangled quantum carpets" with pairs of photons produced by spontaneous parametric down-conversion. First we introduce an optical device that can be used to synthesize arbitrary superposition states of Talbot qudits. Sending spatially entangled photon pairs through a pair of these devices produces an entangled pair of qudits. As an application, we show how the Talbot effect can be used to test a D -dimensional Bell inequality. Numerical simulations show that violation of the Bell inequality depends strongly on the amount of spatial correlation in the initial two-photon state. We briefly discuss how our optical scheme might be adapted to matter wave experiments.
Nodal portraits of quantum billiards: Domains, lines, and statistics
NASA Astrophysics Data System (ADS)
Jain, Sudhir Ranjan; Samajdar, Rhine
2017-10-01
This is a comprehensive review of the nodal domains and lines of quantum billiards, emphasizing a quantitative comparison of theoretical findings to experiments. The nodal statistics are shown to distinguish not only between regular and chaotic classical dynamics but also between different geometric shapes of the billiard system itself. How a random superposition of plane waves can model chaotic eigenfunctions is discussed and the connections of the complex morphology of the nodal lines thereof to percolation theory and Schramm-Loewner evolution are highlighted. Various approaches to counting the nodal domains—using trace formulas, graph theory, and difference equations—are also illustrated with examples. The nodal patterns addressed pertain to waves on vibrating plates and membranes, acoustic and electromagnetic modes, wave functions of a "particle in a box" as well as to percolating clusters, and domains in ferromagnets, thus underlining the diversity and far-reaching implications of the problem.
NASA Astrophysics Data System (ADS)
Schamel, Hans; Eliasson, Bengt
2016-05-01
Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a ϕ ( x ) 1 / 2 rather than a ϕ ( x ) expansion, where ϕ ( x ) is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of ϕ ( x ) and the nonlinear dispersion relation, which describes their phase velocity.
NASA Astrophysics Data System (ADS)
Hey, Anthony J. G.; Walters, Patrick
This book provides a descriptive, popular account of quantum physics. The basic topics addressed include: waves and particles, the Heisenberg uncertainty principle, the Schroedinger equation and matter waves, atoms and nuclei, quantum tunneling, the Pauli exclusion principle and the elements, quantum cooperation and superfluids, Feynman rules, weak photons, quarks, and gluons. The applications of quantum physics to astrophyics, nuclear technology, and modern electronics are addressed.
Multidimensional fractional Schrödinger equation
NASA Astrophysics Data System (ADS)
Rodrigues, M. M.; Vieira, N.
2012-11-01
This work is intended to investigate the multi-dimensional space-time fractional Schrödinger equation of the form (CDt0+αu)(t,x) = iħ/2m(C∇βu)(t,x), with ħ the Planck's constant divided by 2π, m is the mass and u(t,x) is a wave function of the particle. Here (CDt0+α,C∇β are operators of the Caputo fractional derivatives, where α ∈]0,1] and β ∈]1,2]. The wave function is obtained using Laplace and Fourier transforms methods and a symbolic operational form of solutions in terms of the Mittag-Leffler functions is exhibited. It is presented an expression for the wave function and for the quantum mechanical probability density. Using Banach fixed point theorem, the existence and uniqueness of solutions is studied for this kind of fractional differential equations.
Hoffman, Donald D.; Prakash, Chetan
2014-01-01
Current models of visual perception typically assume that human vision estimates true properties of physical objects, properties that exist even if unperceived. However, recent studies of perceptual evolution, using evolutionary games and genetic algorithms, reveal that natural selection often drives true perceptions to extinction when they compete with perceptions tuned to fitness rather than truth: Perception guides adaptive behavior; it does not estimate a preexisting physical truth. Moreover, shifting from evolutionary biology to quantum physics, there is reason to disbelieve in preexisting physical truths: Certain interpretations of quantum theory deny that dynamical properties of physical objects have definite values when unobserved. In some of these interpretations the observer is fundamental, and wave functions are compendia of subjective probabilities, not preexisting elements of physical reality. These two considerations, from evolutionary biology and quantum physics, suggest that current models of object perception require fundamental reformulation. Here we begin such a reformulation, starting with a formal model of consciousness that we call a “conscious agent.” We develop the dynamics of interacting conscious agents, and study how the perception of objects and space-time can emerge from such dynamics. We show that one particular object, the quantum free particle, has a wave function that is identical in form to the harmonic functions that characterize the asymptotic dynamics of conscious agents; particles are vibrations not of strings but of interacting conscious agents. This allows us to reinterpret physical properties such as position, momentum, and energy as properties of interacting conscious agents, rather than as preexisting physical truths. We sketch how this approach might extend to the perception of relativistic quantum objects, and to classical objects of macroscopic scale. PMID:24987382
Quantum dynamics of a plane pendulum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibscher, Monika; Schmidt, Burkhard
A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution ofmore » the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.« less
Determination and Correction of Persistent Biases in Quantum Annealers
2016-08-25
programmable parameters and their user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one at NASA Ames...The quantum annealers used for this study are of the second generation of D-Wave devices, also called D-Wave Two2: one located at NASA Ames Research...Center in Moffett Field, California, (“ NASA device”), and another located at D-Wave Systems in Burnaby, Canada (“Burnaby device”). These consist of 64
Recent Progress in Treating Protein-Ligand Interactions with Quantum-Mechanical Methods.
Yilmazer, Nusret Duygu; Korth, Martin
2016-05-16
We review the first successes and failures of a "new wave" of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of "enhanced", dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects.
Approximating quantum many-body wave functions using artificial neural networks
NASA Astrophysics Data System (ADS)
Cai, Zi; Liu, Jinguo
2018-01-01
In this paper, we demonstrate the expressibility of artificial neural networks (ANNs) in quantum many-body physics by showing that a feed-forward neural network with a small number of hidden layers can be trained to approximate with high precision the ground states of some notable quantum many-body systems. We consider the one-dimensional free bosons and fermions, spinless fermions on a square lattice away from half-filling, as well as frustrated quantum magnetism with a rapidly oscillating ground-state characteristic function. In the latter case, an ANN with a standard architecture fails, while that with a slightly modified one successfully learns the frustration-induced complex sign rule in the ground state and approximates the ground states with high precisions. As an example of practical use of our method, we also perform the variational method to explore the ground state of an antiferromagnetic J1-J2 Heisenberg model.
A signed particle formulation of non-relativistic quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg
2015-09-15
A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussedmore » and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.« less
Magnetosonic waves interactions in a spin-1/2 degenerate quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sheng-Chang, E-mail: lsc1128lsc@126.com; Han, Jiu-Ning
2014-03-15
We investigate the magnetosonic waves and their interactions in a spin-1/2 degenerate quantum plasma. With the help of the extended Poincaré-Lighthill-Kuo perturbation method, we derive two Korteweg-de Vries-Burgers equations to describe the magnetosonic waves. The parameter region where exists magnetosonic waves and the phase diagram of the compressive and rarefactive solitary waves with different plasma parameters are shown. We further explore the effects of quantum diffraction, quantum statistics, and electron spin magnetization on the head-on collisions of magnetosonic solitary waves. We obtain the collision-induced phase shifts (trajectory changes) analytically. Both for the compressive and rarefactive solitary waves, it is foundmore » that the collisions only lead to negative phase shifts. Our present study should be useful to understand the collective phenomena related to the magnetosonic wave collisions in degenerate plasmas like those in the outer shell of massive white dwarfs as well as to the potential applications of plasmas.« less
NASA Astrophysics Data System (ADS)
Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.
2005-10-01
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
NASA Astrophysics Data System (ADS)
Hayata, K.; Tsuji, Y.; Koshiba, M.
1992-10-01
A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.
Performance of quantum annealing on random Ising problems implemented using the D-Wave Two
NASA Astrophysics Data System (ADS)
Wang, Zhihui; Job, Joshua; Rønnow, Troels F.; Troyer, Matthias; Lidar, Daniel A.; USC Collaboration; ETH Collaboration
2014-03-01
Detecting a possible speedup of quantum annealing compared to classical algorithms is a pressing task in experimental adiabatic quantum computing. In this talk, we discuss the performance of the D-Wave Two quantum annealing device on Ising spin glass problems. The expected time to solution for the device to solve random instances with up to 503 spins and with specified coupling ranges is evaluated while carefully addressing the issue of statistical errors. We perform a systematic comparison of the expected time to solution between the D-Wave Two and classical stochastic solvers, specifically simulated annealing, and simulated quantum annealing based on quantum Monte Carlo, and discuss the question of speedup.
Performance of Quantum Annealers on Hard Scheduling Problems
NASA Astrophysics Data System (ADS)
Pokharel, Bibek; Venturelli, Davide; Rieffel, Eleanor
Quantum annealers have been employed to attack a variety of optimization problems. We compared the performance of the current D-Wave 2X quantum annealer to that of the previous generation D-Wave Two quantum annealer on scheduling-type planning problems. Further, we compared the effect of different anneal times, embeddings of the logical problem, and different settings of the ferromagnetic coupling JF across the logical vertex-model on the performance of the D-Wave 2X quantum annealer. Our results show that at the best settings, the scaling of expected anneal time to solution for D-WAVE 2X is better than that of the DWave Two, but still inferior to that of state of the art classical solvers on these problems. We discuss the implication of our results for the design and programming of future quantum annealers. Supported by NASA Ames Research Center.
Sebastianelli, Francesco; Xu, Minzhong; Kanan, Dalal K; Bacić, Zlatko
2007-07-19
We have performed a rigorous theoretical study of the quantum translation-rotation (T-R) dynamics of one and two H2 and D2 molecules confined inside the large hexakaidecahedral (5(12)6(4)) cage of the sII clathrate hydrate. For a single encapsulated H2 and D2 molecule, accurate quantum five-dimensional calculations of the T-R energy levels and wave functions are performed that include explicitly, as fully coupled, all three translational and the two rotational degrees of freedom of the hydrogen molecule, while the cage is taken to be rigid. In addition, the ground-state properties, energetics, and spatial distribution of one and two p-H2 and o-D2 molecules in the large cage are calculated rigorously using the diffusion Monte Carlo method. These calculations reveal that the low-energy T-R dynamics of hydrogen molecules in the large cage are qualitatively different from that inside the small cage, studied by us recently. This is caused by the following: (i) The large cage has a cavity whose diameter is about twice that of the small cage for the hydrogen molecule. (ii) In the small cage, the potential energy surface (PES) for H2 is essentially flat in the central region, while in the large cage the PES has a prominent maximum at the cage center, whose height exceeds the T-R zero-point energy of H2/D2. As a result, the guest molecule is excluded from the central part of the large cage, its wave function localized around the off-center global minimum. Peculiar quantum dynamics of the hydrogen molecule squeezed between the central maximum and the cage wall manifests in the excited T-R states whose energies and wave functions differ greatly from those for the small cage. Moreover, they are sensitive to the variations in the hydrogen-bonding topology, which modulate the corrugation of the cage wall.
Quantum Measurement Theory in Gravitational-Wave Detectors.
Danilishin, Stefan L; Khalili, Farid Ya
2012-01-01
The fast progress in improving the sensitivity of the gravitational-wave detectors, we all have witnessed in the recent years, has propelled the scientific community to the point at which quantum behavior of such immense measurement devices as kilometer-long interferometers starts to matter. The time when their sensitivity will be mainly limited by the quantum noise of light is around the corner, and finding ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of the Standard Quantum Limit and the methods of its surmounting.
Solitary waves with weak transverse perturbations in quantum dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ur-Rehman, H.; Masood, W.; Siddiq, M.
2008-12-15
Using the quantum hydrodynamic model, quantum dust ion-acoustic solitary waves are investigated in the presence of weak transverse perturbations. The linear dispersion relation is obtained using the Fourier analysis. The two-dimensional (2D) propagation of small amplitude nonlinear waves is studied by deriving the Kadomtsev-Petviashvili (KP) equation. The traveling wave solution of the KP equation is obtained by employing the tanh method. By dint of this solution, the effects of quantum Bohm pressure and the dust concentration on the 2D solitary structure are studied. The effect of quantum Bohm potential on the stability of the KP soliton is also investigated. Themore » results are supported by the numerical analysis and the relevance of the present investigation in dense astrophysical environments is also pointed out.« less
Rossi, Luca; Torsello, Andrea; Hancock, Edwin R
2015-02-01
In this paper we propose a quantum algorithm to measure the similarity between a pair of unattributed graphs. We design an experiment where the two graphs are merged by establishing a complete set of connections between their nodes and the resulting structure is probed through the evolution of continuous-time quantum walks. In order to analyze the behavior of the walks without causing wave function collapse, we base our analysis on the recently introduced quantum Jensen-Shannon divergence. In particular, we show that the divergence between the evolution of two suitably initialized quantum walks over this structure is maximum when the original pair of graphs is isomorphic. We also prove that under special conditions the divergence is minimum when the sets of eigenvalues of the Hamiltonians associated with the two original graphs have an empty intersection.
A new way of visualising quantum fields
NASA Astrophysics Data System (ADS)
Linde, Helmut
2018-05-01
Quantum field theory (QFT) is the basis of some of the most fundamental theories in modern physics, but it is not an easy subject to learn. In the present article we intend to pave the way from quantum mechanics to QFT for students at early graduate or advanced undergraduate level. More specifically, we propose a new way of visualising the wave function Ψ of a linear chain of interacting quantum harmonic oscillators, which can be seen as a model for a simple one-dimensional bosonic quantum field. The main idea is to draw randomly chosen classical states of the chain superimposed upon each other and use a grey scale to represent the value of Ψ at the corresponding coordinates of the quantised system. Our goal is to establish a better intuitive understanding of the mathematical objects underlying quantum field theories and solid state physics.
Energy behaviour of extraordinary waves in magnetized quantum plasmas
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-05-01
We study the storage and flow of energy in a homogeneous magnetized quantum electron plasma that occurs when an elliptically polarized extraordinary electromagnetic wave propagates in the system. Expressions for the stored energy, energy flow, and energy velocity of extraordinary electromagnetic waves are derived by means of the quantum magnetohydrodynamics theory in conjunction with the Maxwell equations. Numerical results show that the energy flow of the high-frequency mode of extraordinary wave is modified only due to the Bohm potential in the short wavelength limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zampeli, Adamantia; Pailas, Theodoros; Terzis, Petros A.
2016-05-01
In this paper, the classical and quantum solutions of some axisymmetric cosmologies coupled to a massless scalar field are studied in the context of minisuperspace approximation. In these models, the singular nature of the Lagrangians entails a search for possible conditional symmetries. These have been proven to be the simultaneous conformal symmetries of the supermetric and the superpotential. The quantization is performed by adopting the Dirac proposal for constrained systems, i.e. promoting the first-class constraints to operators annihilating the wave function. To further enrich the approach, we follow [1] and impose the operators related to the classical conditional symmetries onmore » the wave function. These additional equations select particular solutions of the Wheeler-DeWitt equation. In order to gain some physical insight from the quantization of these cosmological systems, we perform a semiclassical analysis following the Bohmian approach to quantum theory. The generic result is that, in all but one model, one can find appropriate ranges of the parameters, so that the emerging semiclassical geometries are non-singular. An attempt for physical interpretation involves the study of the effective energy-momentum tensor which corresponds to an imperfect fluid.« less
Correlation in photon pairs generated using four-wave mixing in a cold atomic ensemble
NASA Astrophysics Data System (ADS)
Ferdinand, Andrew Richard; Manjavacas, Alejandro; Becerra, Francisco Elohim
2017-04-01
Spontaneous four-wave mixing (FWM) in atomic ensembles can be used to generate narrowband entangled photon pairs at or near atomic resonances. While extensive research has been done to investigate the quantum correlations in the time and polarization of such photon pairs, the study and control of high dimensional quantum correlations contained in their spatial degrees of freedom has not been fully explored. In our work we experimentally investigate the generation of correlated light from FWM in a cold ensemble of cesium atoms as a function of the frequencies of the pump fields in the FWM process. In addition, we theoretically study the spatial correlations of the photon pairs generated in the FWM process, specifically the joint distribution of their orbital angular momentum (OAM). We investigate the width of the distribution of the OAM modes, known as the spiral bandwidth, and the purity of OAM correlations as a function of the properties of the pump fields, collected photons, and the atomic ensemble. These studies will guide experiments involving high dimensional entanglement of photons generated from this FWM process and OAM-based quantum communication with atomic ensembles. This work is supported by AFORS Grant FA9550-14-1-0300.
NASA Astrophysics Data System (ADS)
Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé
2010-11-01
The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.
Extended quantum jump description of vibronic two-dimensional spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Julian; Falge, Mirjam; Keß, Martin
2015-06-07
We calculate two-dimensional (2D) vibronic spectra for a model system involving two electronic molecular states. The influence of a bath is simulated using a quantum-jump approach. We use a method introduced by Makarov and Metiu [J. Chem. Phys. 111, 10126 (1999)] which includes an explicit treatment of dephasing. In this way it is possible to characterize the influence of dissipation and dephasing on the 2D-spectra, using a wave function based method. The latter scales with the number of stochastic runs and the number of system eigenstates included in the expansion of the wave-packets to be propagated with the stochastic methodmore » and provides an efficient method for the calculation of the 2D-spectra.« less
Minimal analytical model for undular tidal bore profile; quantum and Hawking effect analogies
NASA Astrophysics Data System (ADS)
Berry, M. V.
2018-05-01
Waves travelling up-river, driven by high tides, often consist of a smooth front followed by a series of undulations. A simple approximate theory gives the rigidly travelling profile of such ‘undular hydraulic jumps’, up to scaling, as the integral of the Airy function; applying self-consistency fixes the scaling. The theory combines the standard hydraulic jump with ideas borrowed from quantum physics: Hamiltonian operators and zero-energy eigenfunctions. There is an analogy between undular bores and the Hawking effect in relativity: both concern waves associated with horizons. ‘Physics is not just Concerning the Nature of Things, but Concerning the Interconnectedness of all the Natures of Things’(Sir Charles Frank, retirement speech 1976).
NASA Astrophysics Data System (ADS)
Berggren, Karl-Fredrik; Tellander, Felix; Yakimenko, Irina
2018-05-01
Non-Hermitian quantum mechanics with parity-time (PT) symmetry is presently gaining great interest, especially within the fields of photonics and optics. Here, we give a brief overview of low-dimensional semiconductor nanodevices using the example of a quantum dot with input and output leads, which are mimicked by imaginary potentials for gain and loss, and how wave functions, particle flow, coalescence of levels and associated breaking of PT symmetry may be analysed within such a framework. Special attention is given to the presence of exceptional points and symmetry breaking. Related features for musical string instruments and ‘wolf-notes’ are outlined briefly with suggestions for further experiments.
Wave theory of turbulence in compressible media
NASA Technical Reports Server (NTRS)
Kentzer, C. P.
1975-01-01
An acoustical theory of turbulence was developed to aid in the study of the generation of sound in turbulent flows. The statistical framework adopted is a quantum-like wave dynamical formulation in terms of complex distribution functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. This system of nonlinear equations is closed and complete. The technique of analysis was chosen such that direct applications to practical problems can be obtained with relative ease.
Relativistic corrections to heavy quark fragmentation to S-wave heavy mesons
NASA Astrophysics Data System (ADS)
Sang, Wen-Long; Yang, Lan-Fei; Chen, Yu-Qi
2009-07-01
The relativistic corrections of order v2 to the fragmentation functions for the heavy quark to S-wave heavy quarkonia are calculated in the framework of the nonrelativistic quantum chromodynamics factorization formula. We derive the fragmentation functions by using the Collins-Soper definition in both the Feynman gauge and the axial gauge. We also extract them through the process Z0→Hq qmacr in the limit MZ/m→∞. We find that all results obtained by these two different methods and in different gauges are the same. We estimate the relative size of the relativistic corrections to the fragmentation functions.
Relativistic corrections to heavy quark fragmentation to S-wave heavy mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang Wenlong; Yang Lanfei; Chen Yuqi
The relativistic corrections of order v{sup 2} to the fragmentation functions for the heavy quark to S-wave heavy quarkonia are calculated in the framework of the nonrelativistic quantum chromodynamics factorization formula. We derive the fragmentation functions by using the Collins-Soper definition in both the Feynman gauge and the axial gauge. We also extract them through the process Z{sup 0}{yields}Hqq in the limit M{sub Z}/m{yields}{infinity}. We find that all results obtained by these two different methods and in different gauges are the same. We estimate the relative size of the relativistic corrections to the fragmentation functions.
Exciton binding energy in a pyramidal quantum dot
NASA Astrophysics Data System (ADS)
Anitha, A.; Arulmozhi, M.
2018-05-01
The effects of spatially dependent effective mass, non-parabolicity of the conduction band and dielectric screening function on exciton binding energy in a pyramid-shaped quantum dot of GaAs have been investigated by variational method as a function of base width of the pyramid. We have assumed that the pyramid has a square base with area a× a and height of the pyramid H=a/2. The trial wave function of the exciton has been chosen according to the even mirror boundary condition, i.e. the wave function of the exciton at the boundary could be non-zero. The results show that (i) the non-parabolicity of the conduction band affects the light hole (lh) and heavy hole (hh) excitons to be more bound than that with parabolicity of the conduction band, (ii) the dielectric screening function (DSF) affects the lh and hh excitons to be more bound than that without the DSF and (iii) the spatially dependent effective mass (SDEM) affects the lh and hh excitons to be less bound than that without the SDEM. The combined effects of DSF and SDEM on exciton binding energy have also been calculated. The results are compared with those available in the literature.
Properties of atomic pairs produced in the collision of Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Ziń, Paweł; Wasak, Tomasz
2018-04-01
During a collision of Bose-Einstein condensates correlated pairs of atoms are emitted. The scattered massive particles, in analogy to photon pairs in quantum optics, might be used in the violation of Bell's inequalities, demonstration of Einstein-Podolsky-Rosen correlations, or sub-shot-noise atomic interferometry. Usually, a theoretical description of the collision relies either on stochastic numerical methods or on analytical treatments involving various approximations. Here, we investigate elastic scattering of atoms from colliding elongated Bose-Einstein condensates within the Bogoliubov method, carefully controlling performed approximations at every stage of the analysis. We derive expressions for the one- and two-particle correlation functions. The obtained formulas, which relate the correlation functions to the condensate wave function, are convenient for numerical calculations. We employ the variational approach for condensate wave functions to obtain analytical expressions for the correlation functions, whose properties we analyze in detail. We also present a useful semiclassical model of the process and compare its results with the quantum one. The results are relevant for recent experiments with excited helium atoms, as well as for planned experiments aimed at investigating the nonclassicality of the system.
NASA Astrophysics Data System (ADS)
Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V.
2010-02-01
The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to the recently discovered gravitationally bound quantum states of neutrons . These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state. Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects.
A spatially homogeneous and isotropic Einstein-Dirac cosmology
NASA Astrophysics Data System (ADS)
Finster, Felix; Hainzl, Christian
2011-04-01
We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.
Umari, P; Marzari, Nicola
2009-09-07
We calculate the linear and nonlinear susceptibilities of periodic longitudinal chains of hydrogen dimers with different bond-length alternations using a diffusion quantum Monte Carlo approach. These quantities are derived from the changes in electronic polarization as a function of applied finite electric field--an approach we recently introduced and made possible by the use of a Berry-phase, many-body electric-enthalpy functional. Calculated susceptibilities and hypersusceptibilities are found to be in excellent agreement with the best estimates available from quantum chemistry--usually extrapolations to the infinite-chain limit of calculations for chains of finite length. It is found that while exchange effects dominate the proper description of the susceptibilities, second hypersusceptibilities are greatly affected by electronic correlations. We also assess how different approximations to the nodal surface of the many-body wave function affect the accuracy of the calculated susceptibilities.
Exact wave functions of two-electron quantum rings.
Loos, Pierre-François; Gill, Peter M W
2012-02-24
We demonstrate that the Schrödinger equation for two electrons on a ring, which is the usual paradigm to model quantum rings, is solvable in closed form for particular values of the radius. We show that both polynomial and irrational solutions can be found for any value of the angular momentum and that the singlet and triplet manifolds, which are degenerate, have distinct geometric phases. We also study the nodal structure associated with these two-electron states.
A Viable Paradigm for Quantum Reality
NASA Astrophysics Data System (ADS)
Srivastava, Jagdish
2010-10-01
After a brief discussion of the EPR paradox, Bell's inequality, and Aspect's experiment, arguments will be presented in favor of the following statements: ``As it stands, Quantum mechanics is incomplete. There is further hidden structure, which would involve variables. No influence can move faster than light. The wave function is one whole thing and any change in its structure instantly influences its outcomes. Bell's theorem has not been applied correctly. There is a better paradigm.'' The said paradigm will be presented.
The Kantowski-Sachs Quantum Model with Stiff Matter Fluid
NASA Astrophysics Data System (ADS)
Alvarenga, F. G.; Fracalossi, R.; Freitas, R. C.; Gonçalves, S. V. B.
2018-05-01
In this paper, we study the quantum cosmological Kantowski-Sachs model and we solve the Wheeler-DeWitt equation in minisuperspace to obtain the wave function of the corresponding universe. The perfect fluid is described by Schutz's canonical formalism, which allows to attribute dynamical degrees of freedom to matter. The time is introduced phenomenologically using the fluid's degrees of freedom. In particular, we adopt a stiff matter fluid. The viability of this model is analyzed and discussed.
Spin structure of electron subbands in (110)-grown quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestoklon, M. O.; Tarasenko, S. A.; Jancu, J.-M.
We present the theory of fine structure of electron states in symmetric and asymmetric zinc-blende-type quantum wells with the (110) crystallographic orientation. By combining the symmetry analysis, sp{sup 3}d{sup 5}s* tight-binding method, and envelope-function approach we obtain quantitative description of in-plane wave vector, well width and applied electric field dependencies of the zero-magnetic-field spin splitting of electron subbands and extract spin-orbit-coupling parameters.
Impact of Alloy Fluctuations on Radiative and Auger Recombination in InGaN Quantum Wells
NASA Astrophysics Data System (ADS)
Jones, Christina; Teng, Chu-Hsiang; Yan, Qimin; Ku, Pei-Cheng; Kioupakis, Emmanouil
Light-emitting diodes (LEDs) based on indium gallium nitride (InGaN) are important for efficient solid-state lighting (2014 Nobel Prize in Physics). Despite its many successes, InGaN suffers from issues that reduce the efficiency of devices at high power, such as the green gap and efficiency droop. The origin of the droop has been attributed to Auger recombination, mediated by carrier scattering due to phonons and alloy disorder. Additionally, InGaN exhibits atomic-scale composition fluctuations that localize carriers and may affect the efficiency. In this work, we study the effect of local composition fluctuations on the radiative recombination rate, Auger recombination rate, and efficiency of InGaN/GaN quantum wells. We apply k.p calculations to simulate band edges and wave functions of quantum wells with fluctuating alloy distributions based on atom probe tomography data, and we evaluate double and triple overlaps of electron and hole wave functions. We compare results for quantum wells with fluctuating alloy distributions to those with uniform alloy compositions and to published work. Our results demonstrate that alloy-composition fluctuations aggravate the efficiency-droop and green-gap problems and further reduce LED efficiency at high power. We acknowledge the NSF CAREER award DMR-1254314, the NSF Graduate Research Fellowship Program DGE-1256260, and the DOE NERSC facility (DE-AC02-05CH11231).
Carl Hempel's Philosophy of Science: How to Avoid Epistemic Discontinuity and Pedagogical Pitfalls
ERIC Educational Resources Information Center
Vemulapalli, G. Krishna; Byerly, Henry C.
2004-01-01
Mathematical theories are essential for explanations in physics, chemistry and engineering. These theories often incorporate functions that are defined by the irrelation to other variables in the theory but not with reference to experimental observations. The wave function in quantum mechanics is perhaps one of the best known example of such…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru
We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less
Trajectories and traversal times in quantum tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhi Hong.
1989-01-01
The classical concepts of trajectories and traversal times applied to quantum tunneling are discussed. By using the Wentzel-Kramers-Brillouin approximation, it is found that in a forbidden region of a multidimensional space the wave function can be described by two sets of trajectories, or equivalently by two sets of wave fronts. The trajectories belonging to different sets are mutually orthogonal. An extended Huygens construction is proposed to determine these wave fronts and trajectories. In contrast to the classical results in the allowed region, these trajectories couple to each other. However, if the incident wave is normal to the turning surface, themore » trajectories are found to be independent and can be determined by Newton's equations of motion with inverted potential and energy. The multidimensional tunneling theory is then applied to the scanning tunneling microscope to calculate the current density distribution and to derive the expressions for the lateral resolution and the surface corrugation amplitude. The traversal time in quantum tunneling, i.e. tunneling time, is found to depend on model calculations and simulations. Computer simulation of a wave packet tunneling through a square barrier is performed. Several approaches, including the phase method, Larmor clock, and time-dependent barrier model, are investigated. For a square barrier, two characteristic times are found: One is equal to the barrier width divided by the magnitude of the imaginary velocity; the other is equal to the decay length divided by the incident velocity. It is believed that the tunneling time can only be defined operationally.« less
Influence of scattering processes on electron quantum states in nanowires
Galenchik, Vadim; Borzdov, Andrei; Borzdov, Vladimir; Komarov, Fadei
2007-01-01
In the framework of quantum perturbation theory the self-consistent method of calculation of electron scattering rates in nanowires with the one-dimensional electron gas in the quantum limit is worked out. The developed method allows both the collisional broadening and the quantum correlations between scattering events to be taken into account. It is an alternativeper seto the Fock approximation for the self-energy approach based on Green’s function formalism. However this approach is free of mathematical difficulties typical to the Fock approximation. Moreover, the developed method is simpler than the Fock approximation from the computational point of view. Using the approximation of stable one-particle quantum states it is proved that the electron scattering processes determine the dependence of electron energy versus its wave vector.
Li, Bo; Li, Sheng-Hao; Zhou, Huan-Qiang
2009-06-01
A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin-1/2 antiferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground-state wave functions.
Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot
NASA Astrophysics Data System (ADS)
Reigue, Antoine; Lemaître, Aristide; Gomez Carbonell, Carmen; Ulysse, Christian; Merghem, Kamel; Guilet, Stéphane; Hostein, Richard; Voliotis, Valia
2018-02-01
We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase in the coherence time though not reaching the radiative limit. These charge controlled quantum dots can act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon.
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2017-08-01
Starting with the quantum-like paradigm on application of quantum information and probability outside of physics we proceed to the social laser model describing Stimulated Amplification of Social Actions (SASA). The basic components of social laser are the quantum information field carrying information excitations and the human gain medium. The aim of this note is to analyze constraints on these components making possible SASA. The soical laser model can be used to explain the recent wave of color revolutions as well as such “unpredictable events” as Brexit and election of Donald Trump as the president of the United States of America. The presented quantum-like model is not only descriptive. We shall list explicitly conditions for creation of social laser.
Klipstein, P C
2018-07-11
For 2D topological insulators with strong electron-hole hybridization, such as HgTe/CdTe quantum wells, the widely used 4 × 4 k · p Hamiltonian based on the first electron and heavy hole sub-bands yields an equal number of physical and spurious solutions, for both the bulk states and the edge states. For symmetric bands and zero wave vector parallel to the sample edge, the mid-gap bulk solutions are identical to the edge solutions. In all cases, the physical edge solution is exponentially localized to the boundary and has been shown previously to satisfy standard boundary conditions for the wave function and its derivative, even in the limit of an infinite wall potential. The same treatment is now extended to the case of narrow sample widths, where for each spin direction, a gap appears in the edge state dispersions. For widths greater than 200 nm, this gap is less than half of the value reported for open boundary conditions, which are called into question because they include a spurious wave function component. The gap in the edge state dispersions is also calculated for weakly hybridized quantum wells such as InAs/GaSb/AlSb. In contrast to the strongly hybridized case, the edge states at the zone center only have pure exponential character when the bands are symmetric and when the sample has certain characteristic width values.
Spin-wave utilization in a quantum computer
NASA Astrophysics Data System (ADS)
Khitun, A.; Ostroumov, R.; Wang, K. L.
2001-12-01
We propose a quantum computer scheme using spin waves for quantum-information exchange. We demonstrate that spin waves in the antiferromagnetic layer grown on silicon may be used to perform single-qubit unitary transformations together with two-qubit operations during the cycle of computation. The most attractive feature of the proposed scheme is the possibility of random access to any qubit and, consequently, the ability to recognize two qubit gates between any two distant qubits. Also, spin waves allow us to eliminate the use of a strong external magnetic field and microwave pulses. By estimate, the proposed scheme has as high as 104 ratio between quantum system coherence time and the time of a single computational step.
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2018-04-01
Two kinds of quantum electrodynamic radiative corrections to electromagnetic interactions and their influence on the properties of highly dense quantum plasmas are considered. Linear radiative correction to the Coulomb interaction is considered. Its contribution in the spectrum of the Langmuir waves is presented. The second kind of radiative corrections are related to the nonlinearity of the Maxwell equations for the strong electromagnetic field. Their contribution in the spectrum of transverse waves of magnetized plasmas is briefly discussed. At the consideration of the Langmuir wave spectrum, we included the effect of different distributions of the spin-up and spin-down electrons revealing in the Fermi pressure shift.
NASA Astrophysics Data System (ADS)
Entin, M. V.; Magarill, L. I.
2010-02-01
The stationary current induced by a strong running potential wave in one-dimensional system is studied. Such a wave can result from illumination of a straight quantum wire with special grating or spiral quantum wire by circular-polarized light. The wave drags electrons in the direction correlated with the direction of the system symmetry and polarization of light. In a pure system the wave induces minibands in the accompanied system of reference. We study the effect in the presence of impurity scattering. The current is an interplay between the wave drag and impurity braking. It was found that the drag current is quantized when the Fermi level gets into energy gaps.
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard; Lorenz, Ulf
2017-04-01
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrödinger and Liouville-von Neumann-equations in one or more dimensions. Also coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry. The graphical capabilities allow visualization of quantum dynamics 'on the fly', including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry. The present Part I deals with the description of closed quantum systems in terms of Schrödinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization. The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics. The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
NASA Astrophysics Data System (ADS)
Yang, Li; Pu, Han
2016-09-01
We show that the wave function in one spatial sector x1
Blunt, Nick S.; Neuscamman, Eric
2017-11-16
We present a simple and efficient wave function ansatz for the treatment of excited charge-transfer states in real-space quantum Monte Carlo methods. Using the recently-introduced variation-after-response method, this ansatz allows a crucial orbital optimization step to be performed beyond a configuration interaction singles expansion, while only requiring calculation of two Slater determinant objects. As a result, we demonstrate this ansatz for the illustrative example of the stretched LiF molecule, for a range of excited states of formaldehyde, and finally for the more challenging ethylene-tetrafluoroethylene molecule.
Solid State Spin-Wave Quantum Memory for Time-Bin Qubits.
Gündoğan, Mustafa; Ledingham, Patrick M; Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2015-06-12
We demonstrate the first solid-state spin-wave optical quantum memory with on-demand read-out. Using the full atomic frequency comb scheme in a Pr(3+):Y2SiO5 crystal, we store weak coherent pulses at the single-photon level with a signal-to-noise ratio >10. Narrow-band spectral filtering based on spectral hole burning in a second Pr(3+):Y2SiO5 crystal is used to filter out the excess noise created by control pulses to reach an unconditional noise level of (2.0±0.3)×10(-3) photons per pulse. We also report spin-wave storage of photonic time-bin qubits with conditional fidelities higher than achievable by a measure and prepare strategy, demonstrating that the spin-wave memory operates in the quantum regime. This makes our device the first demonstration of a quantum memory for time-bin qubits, with on-demand read-out of the stored quantum information. These results represent an important step for the use of solid-state quantum memories in scalable quantum networks.
Speakable and Unspeakable in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bell, J. S.; Aspect, Introduction by Alain
2004-06-01
List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.
Gibbons, Brittney R; Xu, Minzhong; Bacić, Zlatko
2009-04-23
We report rigorous quantum three-dimensional calculations of highly excited intermolecular vibrational states of the van der Waals (vdW) complex phthalocyanine.He (Pc.He). The Pc molecule was treated as rigid and the intermolecular potential energy surface (IPES) was represented as a sum of atom-atom Lennard-Jones pair potentials. The IPES has four equivalent global minima on the diagonals of the square-shaped Pc, inside its five-membered rings, and four slightly shallower local minima between them, creating a distinctive corrugation pattern of the molecular nanosurface. The vdW vibrational states analyzed in this work extend to about two-thirds of the well depth of the IPES. For the assignment of the in-plane (xy) vdW vibrational excitations it was necessary to resort to two sets of quantum numbers, the Cartesian quantum numbers [nu(x), nu(y)] and the quantum numbers (v, l) of the 2D isotropic oscillator, depending on the nodal structure and the symmetry of the wave functions. The delocalization of the He atom parallel to the molecular surface is large already in the ground vdW state. It increases rapidly with the number of quanta in the in-plane vdW vibrations, with the maximum root-mean-square amplitudes Deltax and Deltay of about 7 au at the excitation energies around 40 cm(-1). The wave functions of the highly excited states tend to be delocalized over the entire nanosurface and often have a square shape, reflecting that of the substrate.
Spin-waves in thin films with Dzyaloshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Diep, H. T.; El Hog, Sahbi; Puszkarski, Henryk
2018-05-01
Using the Green's function method, we calculate the spin-wave (SW) spectrum in a thin film with quantum Heisenberg spins interacting with each other via an exchange interaction J and a Dzyaloshinskii-Moriya interaction of magnitude D. Due to the competition between J and D, the ground state is non collinear. We show that for large D, the first mode in the SW spectrum is proportional to the in plane wave-vector k at the limit k tending to zero. For small D, it is proportional to k2. We show that the surface modes may occur depending on the surface exchange interaction. We calculate the layer magnetizations at temperature T and the transition temperature as a function of the film thickness.
Quantum correlation measurements in interferometric gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Martynov, D. V.; Frolov, V. V.; Kandhasamy, S.; Izumi, K.; Miao, H.; Mavalvala, N.; Hall, E. D.; Lanza, R.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fritschel, P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lormand, M.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Mason, K.; Massinger, T. J.; Matichard, F.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors
2017-04-01
Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational-wave detectors, such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity curve. We also make projections on the observatory sensitivity during the next science runs. In the second part of the paper we discuss the correlation technique that reveals the quantum radiation pressure noise from the background of classical noises and shot noise. We apply this technique to the Advanced LIGO data, collected during the first science run, and experimentally estimate the quantum correlations and quantum radiation pressure noise in the interferometer.
Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation
NASA Astrophysics Data System (ADS)
Wiseman, H. M.
2002-03-01
Weak values as introduced by Aharonov, Albert, and Vaidman (AAV) are ensemble-average values for the results of weak measurements. They are interesting when the ensemble is preselected on a particular initial state and postselected on a particular final measurement result. It is shown that weak values arise naturally in quantum optics, as weak measurements occur whenever an open system is monitored (as by a photodetector). The quantum-trajectory theory is used to derive a generalization of AAV's formula to include (a) mixed initial conditions, (b) nonunitary evolution, (c) a generalized (nonprojective) final measurement, and (d) a non-back-action-evading weak measurement. This theory is applied to the recent cavity-QED experiment demonstrating wave particle duality [G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, Phys. Rev. Lett. 85, 3149 (2000)]. It is shown that the ``fractional-order'' correlation function measured in that experiment can be recast as a weak value in a form as simple as that introduced by AAV.
Criticality in the quantum kicked rotor with a smooth potential.
Dutta, Rina; Shukla, Pragya
2008-09-01
We investigate the possibility of an Anderson-type transition in the quantum kicked rotor with a smooth potential due to dynamical localization of the wave functions. Our results show the typical characteristics of a critical behavior, i.e., multifractal eigenfunctions and a scale-invariant level statistics at a critical kicking strength which classically corresponds to a mixed regime. This indicates the existence of a localization to delocalization transition in the quantum kicked rotor. Our study also reveals the possibility of other types of transition in the quantum kicked rotor, with a kicking strength well within the strongly chaotic regime. These transitions, driven by the breaking of exact symmetries, e.g., time reversal and parity, are similar to weak-localization transitions in disordered metals.
Electric dipole moment of magnetoexciton in concentric quantum rings
NASA Astrophysics Data System (ADS)
García, L. F.; Mikhailov, I. D.; Revinova, S. Yu
2017-12-01
We study properties of exciton in a weakly coupled concentric quantum rings, penetrated by an axially directed magnetic flux and subjected to an electric field in the ring’s plane. To this end, we adopt a simple model of quasi-one-dimensional rotator, for which the wave functions and the corresponding energies we found by using the double Fourier series expansion method. Revealed multiple intersections of the energy levels provide conditions for abrupt changes of the radial and the angular quantum numbers, making possible the tunnelling of carriers between rings and allowing the formation of a permanent large dipole moment. We show that the electric and magnetic polarizability of concentric quantum rings with a trapped exciton are very sensible to external electric and magnetic fields.
On the theory of quantum measurement
NASA Technical Reports Server (NTRS)
Haus, Hermann A.; Kaertner, Franz X.
1994-01-01
Many so called paradoxes of quantum mechanics are clarified when the measurement equipment is treated as a quantized system. Every measurement involves nonlinear processes. Self consistent formulations of nonlinear quantum optics are relatively simple. Hence optical measurements, such as the quantum nondemolition (QND) measurement of photon number, are particularly well suited for such a treatment. It shows that the so called 'collapse of the wave function' is not needed for the interpretation of the measurement process. Coherence of the density matrix of the signal is progressively reduced with increasing accuracy of the photon number determination. If the QND measurement is incorporated into the double slit experiment, the contrast ratio of the fringes is found to decrease with increasing information on the photon number in one of the two paths.
Fritz London and the scale of quantum mechanisms
NASA Astrophysics Data System (ADS)
Monaldi, Daniela
2017-11-01
Fritz London's seminal idea of ;quantum mechanisms of macroscopic scale;, first articulated in 1946, was the unanticipated result of two decades of research, during which London pursued quantum-mechanical explanations of various kinds of systems of particles at different scales. He started at the microphysical scale with the hydrogen molecule, generalized his approach to chemical bonds and intermolecular forces, then turned to macrophysical systems like superconductors and superfluid helium. Along this path, he formulated a set of concepts-the quantum mechanism of exchange, the rigidity of the wave function, the role of quantum statistics in multi-particle systems, the possibility of order in momentum space-that eventually coalesced into a new conception of systems of equal particles. In particular, it was London's clarification of Bose-Einstein condensation that enabled him to formulate the notion of superfluids, and led him to the recognition that quantum mechanics was not, as it was commonly assumed, relevant exclusively as a micromechanics.
Budiyono, Agung; Rohrlich, Daniel
2017-11-03
Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.
Response to defects in multipartite and bipartite entanglement of isotropic quantum spin networks
NASA Astrophysics Data System (ADS)
Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2018-05-01
Quantum networks are an integral component in performing efficient computation and communication tasks that are not accessible using classical systems. A key aspect in designing an effective and scalable quantum network is generating entanglement between its nodes, which is robust against defects in the network. We consider an isotropic quantum network of spin-1/2 particles with a finite fraction of defects, where the corresponding wave function of the network is rotationally invariant under the action of local unitaries. By using quantum information-theoretic concepts like strong subadditivity of von Neumann entropy and approximate quantum telecloning, we prove analytically that in the presence of defects, caused by loss of a finite fraction of spins, the network, composed of a fixed numbers of lattice sites, sustains genuine multisite entanglement and at the same time may exhibit finite moderate-range bipartite entanglement, in contrast to the network with no defects.
Intermediate-band photosensitive device with quantum dots embedded in energy fence barrier
Forrest, Stephen R.; Wei, Guodan
2010-07-06
A plurality of layers of a first semiconductor material and a plurality of dots-in-a-fence barriers disposed in a stack between a first electrode and a second electrode. Each dots-in-a-fence barrier consists essentially of a plurality of quantum dots of a second semiconductor material embedded between and in direct contact with two layers of a third semiconductor material. Wave functions of the quantum dots overlap as at least one intermediate band. The layers of the third semiconductor material are arranged as tunneling barriers to require a first electron and/or a first hole in a layer of the first material to perform quantum mechanical tunneling to reach the second material within a respective quantum dot, and to require a second electron and/or a second hole in a layer of the first semiconductor material to perform quantum mechanical tunneling to reach another layer of the first semiconductor material.
Quantum crystallography: A perspective.
Massa, Lou; Matta, Chérif F
2018-06-30
Extraction of the complete quantum mechanics from X-ray scattering data is the ultimate goal of quantum crystallography. This article delivers a perspective for that possibility. It is desirable to have a method for the conversion of X-ray diffraction data into an electron density that reflects the antisymmetry of an N-electron wave function. A formalism for this was developed early on for the determination of a constrained idempotent one-body density matrix. The formalism ensures pure-state N-representability in the single determinant sense. Applications to crystals show that quantum mechanical density matrices of large molecules can be extracted from X-ray scattering data by implementing a fragmentation method termed the kernel energy method (KEM). It is shown how KEM can be used within the context of quantum crystallography to derive quantum mechanical properties of biological molecules (with low data-to-parameters ratio). © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Marston, Philip L; Zhang, Likun
2017-05-01
When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.
Importance of parametrizing constraints in quantum-mechanical variational calculations
NASA Technical Reports Server (NTRS)
Chung, Kwong T.; Bhatia, A. K.
1992-01-01
In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.
Quantum electron levels in the field of a charged black hole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dokuchaev, V. I.; Eroshenko, Yu. N., E-mail: eroshenko@ms2.inr.ac.ru
2015-12-15
Stationary solutions of the Dirac equation in the metric of the charged Reissner–Nordstrom black hole are found. In the case of an extremal black hole, the normalization integral of the wave functions is finite, and the regular stationary solution is physically self-consistent. The presence of quantum electron levels under the Cauchy horizon can have an impact on the final stage of the Hawking evaporation of the black hole, as well as on the particle scattering in the field of the black hole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veklenko, B. A., E-mail: veklenkoba@yandex.ru
It is shown theoretically that the electromagnetic background of longitudinal zero oscillations of a temperature-degenerate electron–ion plasma in a thermodynamic equilibrium state resonantly distorts the wave functions of its electrons. This gives rise to a characteristic quantum frequency that nonanalytically depends on Planck’s constant ℏ. Vacuum phenomena in plasma attributed to zero oscillations turn out to be anomalously large. Quantum corrections to the transverse dielectric permittivity of a degenerate electron–ion plasma, which are nonanalytic with respect to ℏ and are attributed to the zero-point oscillations of the plasma, are determined.
Gauge invariance of fractionally charged quasiparticles and hidden topological Zn symmetry
NASA Astrophysics Data System (ADS)
Wu, Yong-Shi; Hatsugai, Yasuhiro; Kohmoto, Mahito
1991-02-01
Using the braid-group formalism we study the consequences of gauge invariance for fractionally charged anyonic quasiparticles in a two-dimensional multiply connected system. It is shown that gauge invariance requires multicomponent wave functions, and leads to the emergence of a hidden topological Zn symmetry with associated quantum number and unavoidable occurrence of level crossings for many-body eigenstates. In certain situations, it relates the fractional charge to anyon statistics. The implications for the fractional quantum Hall effect are also discussed.
Group velocity of discrete-time quantum walks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempf, A.; Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1; Portugal, R.
2009-05-15
We show that certain types of quantum walks can be modeled as waves that propagate in a medium with phase and group velocities that are explicitly calculable. Since the group and phase velocities indicate how fast wave packets can propagate causally, we propose the use of these wave velocities in our definition for the hitting time of quantum walks. Our definition of hitting time has the advantage that it requires neither the specification of a walker's initial condition nor of an arrival probability threshold. We give full details for the case of quantum walks on the Cayley graphs of Abelianmore » groups. This includes the special cases of quantum walks on the line and on hypercubes.« less
Continuous-time quantum random walks require discrete space
NASA Astrophysics Data System (ADS)
Manouchehri, K.; Wang, J. B.
2007-11-01
Quantum random walks are shown to have non-intuitive dynamics which makes them an attractive area of study for devising quantum algorithms for long-standing open problems as well as those arising in the field of quantum computing. In the case of continuous-time quantum random walks, such peculiar dynamics can arise from simple evolution operators closely resembling the quantum free-wave propagator. We investigate the divergence of quantum walk dynamics from the free-wave evolution and show that, in order for continuous-time quantum walks to display their characteristic propagation, the state space must be discrete. This behavior rules out many continuous quantum systems as possible candidates for implementing continuous-time quantum random walks.
Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems
2014-10-13
function and wide band Fast multipole methods for Hankel waves. (2) a new linear scaling discontinuous Galerkin density functional theory, which provide a...inflow boundary condition for Wigner quantum transport equations. Also, a book titled "Computational Methods for Electromagnetic Phenomena...equationsin layered media with FMM for Bessel functions , Science China Mathematics, (12 2013): 2561. doi: TOTAL: 6 Number of Papers published in peer
The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system
NASA Technical Reports Server (NTRS)
Yeon, Kyu Hwang; Um, Chung IN; George, T. F.
1994-01-01
The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.
Mitri, F G
2015-09-01
The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantum turbulence and correlations in Bose-Einstein condensate collisions
NASA Astrophysics Data System (ADS)
Norrie, A. A.; Ballagh, R. J.; Gardiner, C. W.
2006-04-01
We investigate numerically simulated collisions between experimentally realistic Bose-Einstein condensate wave packets, within a regime where highly populated scattering haloes are formed. The theoretical basis for this work is the truncated Wigner method, for which we present a detailed derivation, paying particular attention to its validity regime for colliding condensates. This paper is an extension of our previous Letter [A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005)], and we investigate both single-trajectory solutions, which reveal the presence of quantum turbulence in the scattering halo, and ensembles of trajectories, which we use to calculate quantum-mechanical correlation functions of the field.
Phase-space foundations of electron holography
NASA Astrophysics Data System (ADS)
Lubk, A.; Röder, F.
2015-09-01
We present a unified formalism for describing various forms of electron holography in quantum mechanical phase space including their extensions to quantum-state reconstructions. The phase-space perspective allows for taking into account partial coherence as well as the quantum mechanical detection process typically hampering the unique reconstruction of a wave function. We elaborate on the limitations imposed by the electron optical elements of the transmission electron microscope as well as the scattering at the target. The results provide the basis for vastly extending the scope of electron holographic techniques towards analyzing partially coherent signals such as inelastically scattered electrons or electron pulses used in ultrafast transmission electron microscopy.
General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED
NASA Astrophysics Data System (ADS)
Bultink, C. C.; Tarasinski, B.; Haandbæk, N.; Poletto, S.; Haider, N.; Michalak, D. J.; Bruno, A.; DiCarlo, L.
2018-02-01
We present and demonstrate a general three-step method for extracting the quantum efficiency of dispersive qubit readout in circuit QED. We use active depletion of post-measurement photons and optimal integration weight functions on two quadratures to maximize the signal-to-noise ratio of the non-steady-state homodyne measurement. We derive analytically and demonstrate experimentally that the method robustly extracts the quantum efficiency for arbitrary readout conditions in the linear regime. We use the proven method to optimally bias a Josephson traveling-wave parametric amplifier and to quantify different noise contributions in the readout amplification chain.
Low-frequency surface waves on semi-bounded magnetized quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir
2016-08-15
The propagation of low-frequency electrostatic surface waves on the interface between a vacuum and an electron-ion quantum plasma is studied in the direction perpendicular to an external static magnetic field which is parallel to the interface. A new dispersion equation is derived by employing both the quantum magnetohydrodynamic and Poisson equations. It is shown that the dispersion equations for forward and backward-going surface waves are different from each other.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sourav; Das, Tushar Kanti; Chatterjee, Prasanta
The influence of exchange-correlation potential, quantum Bohm term, and degenerate pressure on the nature of solitary waves in a quantum semiconductor plasma is investigated. It is found that an amplitude and a width of the solitary waves change with variation of different parameters for different semiconductors. A deformed Korteweg-de Vries equation is obtained for propagation of nonlinear waves in a quantum semiconductor plasma, and the effects of different plasma parameters on the solution of the equation are also presented.
Time reversal of arbitrary photonic temporal modes via nonlinear optical frequency conversion
NASA Astrophysics Data System (ADS)
Raymer, Michael G.; Reddy, Dileep V.; van Enk, Steven J.; McKinstrie, Colin J.
2018-05-01
Single-photon wave packets can carry quantum information between nodes of a quantum network. An important general operation in photon-based quantum information systems is ‘blind’ reversal of a photon’s temporal wave packet envelope, that is, the ability to reverse an envelope without knowing the temporal state of the photon. We present an all-optical means for doing so, using nonlinear-optical frequency conversion driven by a short pump pulse. The process used may be sum-frequency generation or four-wave Bragg scattering. This scheme allows for quantum operations such as a temporal-mode parity sorter. We also verify that the scheme works for arbitrary states (not only single-photon ones) of an unknown wave packet.
Semiconductor superlattice photodetectors
NASA Technical Reports Server (NTRS)
Chuang, S. L.; Hess, K.; Coleman, J. J.; Leburton, J. P.
1986-01-01
Superlattice photodetectors were investigated. A few major physical processes in the quantum-well heterostructures related to the photon detection and electron conduction mechanisms, the field effect on the wave functions and the energy levels of the electrons, and the optical absorption with and without the photon assistance were studied.
Determinant quantum Monte Carlo study of the two-dimensional single-band Hubbard-Holstein model
Johnston, S.; Nowadnick, E. A.; Kung, Y. F.; ...
2013-06-24
Here, we performed numerical studies of the Hubbard-Holstein model in two dimensions using determinant quantum Monte Carlo (DQMC). We also present details of the method, emphasizing the treatment of the lattice degrees of freedom, and then study the filling and behavior of the fermion sign as a function of model parameters. We find a region of parameter space with large Holstein coupling where the fermion sign recovers despite large values of the Hubbard interaction. This indicates that studies of correlated polarons at finite carrier concentrations are likely accessible to DQMC simulations. We then restrict ourselves to the half-filled model andmore » examine the evolution of the antiferromagnetic structure factor, other metrics for antiferromagnetic and charge-density-wave order, and energetics of the electronic and lattice degrees of freedom as a function of electron-phonon coupling. From this we find further evidence for a competition between charge-density-wave and antiferromagnetic order at half- filling.« less
Efficient Calculation of Exact Exchange Within the Quantum Espresso Software Package
NASA Astrophysics Data System (ADS)
Barnes, Taylor; Kurth, Thorsten; Carrier, Pierre; Wichmann, Nathan; Prendergast, David; Kent, Paul; Deslippe, Jack
Accurate simulation of condensed matter at the nanoscale requires careful treatment of the exchange interaction between electrons. In the context of plane-wave DFT, these interactions are typically represented through the use of approximate functionals. Greater accuracy can often be obtained through the use of functionals that incorporate some fraction of exact exchange; however, evaluation of the exact exchange potential is often prohibitively expensive. We present an improved algorithm for the parallel computation of exact exchange in Quantum Espresso, an open-source software package for plane-wave DFT simulation. Through the use of aggressive load balancing and on-the-fly transformation of internal data structures, our code exhibits speedups of approximately an order of magnitude for practical calculations. Additional optimizations are presented targeting the many-core Intel Xeon-Phi ``Knights Landing'' architecture, which largely powers NERSC's new Cori system. We demonstrate the successful application of the code to difficult problems, including simulation of water at a platinum interface and computation of the X-ray absorption spectra of transition metal oxides.
The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots.
Kim, Sunghoon; Park, Jaehyun; Kim, Sungwoo; Jung, Won; Sung, Jaeyoung; Kim, Sang-Wook
2010-06-15
New type-II structures of CdSe/InP and InP/CdSe core-shell nanocrystals which have staggered bandgap alignment were fabricated. Using a simple model for the wave function for electrons and holes in InP/CdSe and CdSe/InP core/shell nanocrystals showed the wave function of the electron and hole spread into the shell, respectively. The probability density of the InP/CdSe and CdSe/InP core/shell QDs also showed a similar tendency. As a result, the structure exhibits increased delocalization of electrons and holes, leading to a red-shift in absorption and emission. Quantum yield increased in the InP/CdSe, however decreased in the CdSe/InP. The reason may be due to the surface trap and high activation barrier for de-trapping in the InP shell. 2010 Elsevier Inc. All rights reserved.
Quantum Linguistics: To Catch the Passing Wave.
ERIC Educational Resources Information Center
Gannon, William
1988-01-01
Asserts there is a need for new metaphors to illuminate reciprocal relationship between language and consciousness. Argues that consciousness, experienced in language, is quantum effect which acts on wave-like qualities to create particles, observed bodies of finite mass. Proposes and explains position of quantum linguistics to describe…
Quantum Interference: How to Measure the Wavelength of a Particle
ERIC Educational Resources Information Center
Brom, Joseph M.
2017-01-01
The concept of wave-particle duality in quantum theory is difficult to grasp because it attributes particle-like properties to classical waves and wave-like properties to classical particles. There seems to be an inconsistency involved with the notion that particle-like or wave-like attributes depend on how you look at an entity. The concept comes…
A Wave Chaotic Study of Quantum Graphs with Microwave Networks
NASA Astrophysics Data System (ADS)
Fu, Ziyuan
Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems show universal wave chaotic properties. I study the quantum graphs with a wave chaotic approach. Here, an experimental setup consisting of a microwave coaxial cable network is used to simulate quantum graphs. Some basic features and the distributions of impedance statistics are analyzed from experimental data on an ensemble of tetrahedral networks. The random coupling model (RCM) is applied in an attempt to uncover the universal statistical properties of the system. Deviations from RCM predictions have been observed in that the statistics of diagonal and off-diagonal impedance elements are different. Waves trapped due to multiple reflections on bonds between nodes in the graph most likely cause the deviations from universal behavior in the finite-size realization of a quantum graph. In addition, I have done some investigations on the Random Coupling Model, which are useful for further research.
NASA Astrophysics Data System (ADS)
Hong, Woo-Pyo; Jung, Young-Dae
2018-03-01
The effects of quantum statistical degeneracy pressure on the propagation of the quantum space charge wave are investigated in a cylindrically bounded plasma waveguide filled with relativistically degenerate quantum Fermi-Dirac plasmas and the relativistic ion wake field. The results show that the domain of the degenerate parameter for the resonant beam instability significantly increases with an increase of the scaled beam velocity. It is found that the instability domain of the wave number increases with an increase of the degenerate parameter. It is also found that the growth rate for the resonant beam instability decreases with an increase of the degenerate parameter. In addition, it is shown that the lowest harmonic mode provides the maximum value of the growth rates. Moreover, it is shown that the instability domain of the wave number decreases with an increase of the beam velocity.
Quantum scattering beyond the plane-wave approximation
NASA Astrophysics Data System (ADS)
Karlovets, Dmitry
2017-12-01
While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.
Classical-to-Quantum Transition with Broadband Four-Wave Mixing
NASA Astrophysics Data System (ADS)
Vered, Rafi Z.; Shaked, Yaakov; Ben-Or, Yelena; Rosenbluh, Michael; Pe'er, Avi
2015-02-01
A key question of quantum optics is how nonclassical biphoton correlations at low power evolve into classical coherence at high power. Direct observation of the crossover from quantum to classical behavior is desirable, but difficult due to the lack of adequate experimental techniques that cover the ultrawide dynamic range in photon flux from the single photon regime to the classical level. We investigate biphoton correlations within the spectrum of light generated by broadband four-wave mixing over a large dynamic range of ˜80 dB in photon flux across the classical-to-quantum transition using a two-photon interference effect that distinguishes between classical and quantum behavior. We explore the quantum-classical nature of the light by observing the interference contrast dependence on internal loss and demonstrate quantum collapse and revival of the interference when the four-wave mixing gain in the fiber becomes imaginary.
NASA Astrophysics Data System (ADS)
Roy, Sabyasachi; Choudhury, D. K.
2014-03-01
Nambu-Goto action for bosonic string predicts the quark-antiquark potential to be V(r) = -γ/r + σr + μ0. The coefficient γ = π(d - 2)/24 is the Lüscher coefficient of the Lüscher term 7/r, which depends upon the space-time dimension 'd'. Very recently, we have developed meson wave functions in higher dimension with this potential from higher dimensional Schrodinger equation by applying quantum mechanical perturbation technique with both Lüscher term as parent and as perturbation. In this letter, we analyze Isgur-Wise function for heavy-light mesons using these wave functions in higher dimension and make a comparative study on the status of the perturbation technique in both the cases.
Anomalous time delays and quantum weak measurements in optical micro-resonators
Asano, M.; Bliokh, K. Y.; Bliokh, Y. P.; Kofman, A. G.; Ikuta, R.; Yamamoto, T.; Kivshar, Y. S.; Yang, L.; Imoto, N.; Özdemir, Ş.K.; Nori, F.
2016-01-01
Quantum weak measurements, wavepacket shifts and optical vortices are universal wave phenomena, which originate from fine interference of multiple plane waves. These effects have attracted considerable attention in both classical and quantum wave systems. Here we report on a phenomenon that brings together all the above topics in a simple one-dimensional scalar wave system. We consider inelastic scattering of Gaussian wave packets with parameters close to a zero of the complex scattering coefficient. We demonstrate that the scattered wave packets experience anomalously large time and frequency shifts in such near-zero scattering. These shifts reveal close analogies with the Goos–Hänchen beam shifts and quantum weak measurements of the momentum in a vortex wavefunction. We verify our general theory by an optical experiment using the near-zero transmission (near-critical coupling) of Gaussian pulses propagating through a nano-fibre with a side-coupled toroidal micro-resonator. Measurements demonstrate the amplification of the time delays from the typical inverse-resonator-linewidth scale to the pulse-duration scale. PMID:27841269
On the quantum mechanics of consciousness, with application to anomalous phenomena
NASA Astrophysics Data System (ADS)
Jahn, Robert G.; Dunne, Brenda J.
1986-08-01
Theoretical explication of a growing body of empirical data on consciousness-related anomalous phenomena is unlikely to be achieved in terms of known physical processes. Rather, it will first be necessary to formulate the basic role of consciousness in the definition of reality before such anomalous experience can adequately be represented. This paper takes the position that reality is constituted only in the interaction of consciousness with its environment, and therefore that any scheme of conceptual organization developed to represent that reality must reflect the processes of consciousness as well as those of its environment. In this spirit, the concepts and formalisms of elementary quantum mechanics, as originally proposed to explain anomalous atomic-scale physical phenomena, are appropriated via metaphor to represent the general characteristics of consciousness interacting with any environment. More specifically, if consciousness is represented by a quantum mechanical wave function, and its environment by an appropriate potential profile, Schrödinger wave mechanics defines eigenfunctions and eigenvalues that can be associated with the cognitive and emotional experiences of that consciousness in that environment. To articulate this metaphor it is necessary to associate certain aspects of the formalism, such as the coordinate system, the quantum numbers, and even the metric itself, with various impressionistic descriptors of consciousness, such as its intensity, perspective, approach/avoidance attitude, balance between cognitive and emotional activity, and receptive/assertive disposition. With these established, a number of the generic features of quantum mechanics, such as the wave/particle duality, and the uncertainty, indistinguishability, and exclusion principles, display metaphoric relevance to familiar individual and collective experiences. Similarly, such traditional quantum theoretic exercises as the central force field and atomic structure, covalent molecular bonds, barrier penetration, and quantum statistical collective behavior become useful analogies for representation of a variety of consciousness experiences, both normal and anomalous, and for the design of experiments to study these systematically.
Quantum noise limits to matter-wave interferometry
NASA Technical Reports Server (NTRS)
Scully, Marlan O.; Dowling, Jonathan P.
1994-01-01
We derive the quantum limits for an atomic interferometer in which the atoms obey either Bose-Einstein or Fermi-Dirac statistics. It is found that the limiting quantum noise is due to the uncertainty associated with the particle sorting between the two branches of the interferometer. As an example, the quantum-limited sensitivity of a matter-wave gyroscope is calculated and compared with that of laser gyroscopes.
Djoufack, Z I; Tala-Tebue, E; Nguenang, J P; Kenfack-Jiotsa, A
2016-10-01
We report in this work, an analytical study of quantum soliton in 1D Heisenberg spin chains with Dzyaloshinsky-Moriya Interaction (DMI) and Next-Nearest-Neighbor Interactions (NNNI). By means of the time-dependent Hartree approximation and the semi-discrete multiple-scale method, the equation of motion for the single-boson wave function is reduced to the nonlinear Schrödinger equation. It comes from this present study that the spectrum of the frequencies increases, its periodicity changes, in the presence of NNNI. The antisymmetric feature of the DMI was probed from the dispersion curve while changing the sign of the parameter controlling it. Five regions were identified in the dispersion spectrum, when the NNNI are taken into account instead of three as in the opposite case. In each of these regions, the quantum model can exhibit quantum stationary localized and stable bright or dark soliton solutions. In each region, we could set up quantum localized n-boson Hartree states as well as the analytical expression of their energy level, respectively. The accuracy of the analytical studies is confirmed by the excellent agreement with the numerical calculations, and it certifies the stability of the stationary quantum localized solitons solutions exhibited in each region. In addition, we found that the intensity of the localization of quantum localized n-boson Hartree states increases when the NNNI are considered. We also realized that the intensity of Hartree n-boson states corresponding to quantum discrete soliton states depend on the wave vector.
NASA Astrophysics Data System (ADS)
Matsuura, Masahiro; Mano, Takaaki; Noda, Takeshi; Shibata, Naokazu; Hotta, Masahiro; Yusa, Go
2018-02-01
Quantum energy teleportation (QET) is a proposed protocol related to quantum vacuum. The edge channels in a quantum Hall system are well suited for the experimental verification of QET. For this purpose, we examine a charge-density wave packet excited and detected by capacitively coupled front gate electrodes. We observe the waveform of the charge packet, which is proportional to the time derivative of the applied square voltage wave. Further, we study the transmission and reflection behaviors of the charge-density wave packet by applying a voltage to another front gate electrode to control the path of the edge state. We show that the threshold voltages where the dominant direction is switched in either transmission or reflection for dense and sparse wave packets are different from the threshold voltage where the current stops flowing in an equilibrium state.
Wong, Kin-Yiu; Gao, Jiali
2008-09-09
In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property of the KP theory is further examined in comparison with results from the traditional Rayleigh-Ritz variational approach and Rayleigh-Schrödinger perturbation theory in wave mechanics. The present method can be used for thermodynamic and quantum dynamic calculations, including to systematically determine the exact value of zero-point energy and to study kinetic isotope effects for chemical reactions in solution and in enzymes.
Quantum Foundations of Quantum Information
NASA Astrophysics Data System (ADS)
Griffiths, Robert
2009-03-01
The main foundational issue for quantum information is: What is quantum information about? What does it refer to? Classical information typically refers to physical properties, and since classical is a subset of quantum information (assuming the world is quantum mechanical), quantum information should--and, it will be argued, does--refer to quantum physical properties represented by projectors on appropriate subspaces of a quantum Hilbert space. All sorts of microscopic and macroscopic properties, not just measurement outcomes, can be represented in this way, and are thus a proper subject of quantum information. The Stern-Gerlach experiment illustrates this. When properties are compatible, which is to say their projectors commute, Shannon's classical information theory based on statistical correlations extends without difficulty or change to the quantum case. When projectors do not commute, giving rise to characteristic quantum effects, a foundation for the subject can still be constructed by replacing the ``measurement and wave-function collapse'' found in textbooks--an efficient calculational tool, but one giving rise to numerous conceptual difficulties--with a fully consistent and paradox free stochastic formulation of standard quantum mechanics. This formulation is particularly helpful in that it contains no nonlocal superluminal influences; the reason the latter carry no information is that they do not exist.
Time operators in stroboscopic wave-packet basis and the time scales in tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokes, P.
2011-03-15
We demonstrate that the time operator that measures the time of arrival of a quantum particle into a chosen state can be defined as a self-adjoint quantum-mechanical operator using periodic boundary conditions and applied to wave functions in energy representation. The time becomes quantized into discrete eigenvalues; and the eigenstates of the time operator, i.e., the stroboscopic wave packets introduced recently [Phys. Rev. Lett. 101, 046402 (2008)], form an orthogonal system of states. The formalism provides simple physical interpretation of the time-measurement process and direct construction of normalized, positive definite probability distribution for the quantized values of the arrival time.more » The average value of the time is equal to the phase time but in general depends on the choice of zero time eigenstate, whereas the uncertainty of the average is related to the traversal time and is independent of this choice. The general formalism is applied to a particle tunneling through a resonant tunneling barrier in one dimension.« less
2016 Summer Series - Mark Kasevich: Quantum Mechanics at Macroscopic Scales
2016-06-09
The underpinning of the universe is quantum mechanics. It can be used to explain the observed particle and wave nature of atoms. Atom interferometry uses the wave characteristics of atoms to investigate fundamental physics and advance our understanding of the macroscopic world. NASA is working with Dr. Mark Kasevich to apply this technology to advance astrophysics and improve navigation. In his seminar, Kasevich will delve into the world of atom interferometry, gravitational waves and quantum sensors.
Gravitational wave detection using laser interferometry beyond the standard quantum limit
NASA Astrophysics Data System (ADS)
Heurs, M.
2018-05-01
Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.
Gravitational wave detection using laser interferometry beyond the standard quantum limit.
Heurs, M
2018-05-28
Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).
About the Nature of a Coherence of Light Waves
NASA Astrophysics Data System (ADS)
Demyaneko, P. O.; Zinkovskiy, Y. F.; Savenko, Y. V.
The confrontation of corpuscular and wave hypotheses was not partly stacked in frameworks of the uniform theory. Fundamental works of Fresnel and Fraunhofer on a diffraction of light have erected a wave theory in a rank of dominant true. The wave theory did not so effectively explain developments of corpuscular properties of a light. Its feeble place was also necessity for concept "coherence", introduced for explanation of a light interference. The wave coherence is properly understood as waves ability to interfere. The problem of a light coherence continues to be interesting for investigators [L], but clear understanding of its nature is not yet appeared. Because, it is unconvincing to consider an attribution to the act of separate atom radiation of electromagnetic waves "zug" of a few meters length as explanation of the coherence nature, when it has become possible to generate light pulses by duration ˜ 10 -15 s. Let's note there is the spatial separation of a primary luminous flux on two secondary ones in a basis of all ways of deriving of coherent luminous fluxes. And these fluxes are able to interfere when are brought together. Their coherence was explained that at partitioning each "zug" was bisected, and at joining again met mutual coherent "its halves". There was not disputed the question, how happens " separation of each waves "zug" in halves". M. Plank postulated (1900) heated bodies radiate electromagnetic waves not continuously, but by separate portions he called "quantums" of energy. Its have a quantity is proportional to frequency of electromagnetic waves. A. Einstein has entered (1905) a hypothesis of light quantums -- light is indeed generated as quantums, and in further it exists as a flux of quantums and interacts with matter also, as a flux of separate quantums. The term "photon" was entered by G.N. Lewis (1929) properly for emphasising of light quantums and that one underlined corpuscularity of a light. At investigation of an atom structure there was set (E. Rutherford, N. Bohr, 1911) quantums are generated in atoms at transitions of excited electrons from higher energy levels onto lowest levels. At that, there are radiated quantums-waves of electromagnetic energy into environmental space. In different light sources "working body" has the "own" structure of energy levels defining spectral characteristics of these sources. So, the development of representations about the nature of a light returns to a corpuscular hypothesis. It has become clear, that the light organically combines in itself both property of waves and the properties of particles. It depends on requirements of experiment which one from developments will be prevalent. Inseparable unity of corpuscular and wave properties is proper for all microparticles (a hypothesis De Brogle, 1924) and has received a title of "wave-corpuscle dualism". Let's make a common view about "sizes" of a photon. As was mentioned, the light pulses can have duration ˜ 10 -15 s. Spatial length of such pulses in direction of motion ˜ 10 -6 m, that comparable with a light wavelength λ . It is possible to suspect that it will be a size of a photon in direction of its propagation. An estimate of "cross" of the sizes of a photon we shall obtain by analyzing of light diffraction on a narrow slot. The angular size of central diffraction peak at decreasing of width of a slot b is increased, and it reaches 180 at b = λ . Then the light intensity promptly impinges behind it. From this it is possible to assume, that the cross sectional dimensions of photon also is comparable with λ . It is necessary to clear understand, that photon, as the wave formation, does not have sharp borders. It is possible to speak only about the sizes of area containing a dominant share of photon energy. So, photon is a spatial localized electromagnetic perturbation, that allows to allot it with properties of a particle. Essential properties of a photon are indivisibility and existence only in a motion. So, the light is a photons flux: both light wave and light electromagnetic field consist of final number of photons. At that, it is important to remember that in any light source along with spontaneous mechanism it also operates a mechanism of induced radiation, generating identical (coherent) quantums. Due to it, there is radiated a partially coherent flux, consisting of large or small groups of quantums ("quantum packets"), from any light source. In limits of a separate packet its component quantums are coherent, because all of them are originated by one quantum which has appeared spontaneously, which induced occurrence of other quantums of this packet, passing by other excited atoms. The representation about quantum packets gives clear physical explanation to concept of "light waves zugs". Quantum packet is that "zug of waves". "Quality" of a light source (in sense of its coherence) is determined by sizes of quantum packets -- the larger they the more qualitative source, radiating them. There are understandable a better coherence of a gas light sources: the atoms in gas are arranged on large distances and do not hinder for spontaneously generated light quantum to overcome without absorption or dispersion that large distance, challenging on it an induced radiation of other excited atoms. The low coherence of glow-discharge tubes is stipulated by that the radiation in them goes only from surface layer of atoms and the requirements for development of the mechanism of induced radiation are unfavorable. It is also obvious the high coherence of a laser radiation due to a positive optical back coupling. The coherent quantums of one quantum packet exist a long time inside the resonator; they are reproducing there during all this time. Due to this the lasers are capable to generate multi-km quantum packets ("zugs"). By the way, it could not to explain "by emissive opportunities" of one atom. It is understandable a division of quantum packets on semi transparent mirrors: the part of quantums of each packet simply transits through a semi transparent mirrors, and remaining ones are simply reflected from it. The model of quantum packets gives clear explanation of coherence parameters of light flux. A length of coherence is a spatial extent of a quantum packet in direction of its propagation. A coherence time is a time of flight of quantum packet by a fixed spectator. A coherence radius (size) is a spatial extent of a quantum packet in direction, perpendicular to direction of its propagation. A volume of coherence is simply a volume of quantum packet. Separately it is necessary to tell about the fact of increasing of coherence radius of a light flux, propagating in space. Iterated, including by us, assertion: "at induced transitions there are generated the same quantums as ones induced them". It is not necessary to understand it too literally. What perfect was a light source, the spectral line of its radiation always has final width. That means, there is a certain frequency dispersion of quantums, generated by source, or modules of their wave vectors. Apparently, it is necessary to expect as well certain dispersion of particular straggling of wave vectors directions inside separate quantum packets. Beginning with experimentally obtained radius of sunlight coherence on surface of the Earth, it was determined a value of angular divergence of quantum packets. With the help of the obtained thus value, there were calculated values of coherence radiuses of light, coming on the Earth from more remote stars. Obtained calculated values are well compared with experimentally obtained values of light coherence radiuses for these stars. Starting from proposed concept of quantum packets, we have given explanation to such development of wave properties of the light as interference, in particular, its variety, when superimposed coherent fluxes interfere. It is not less important from a point of view of the coordination of their explanations with our representations about luminous flux structure, there is an analysis also such developments of wave properties of light, as its interference on thin films, "Newton's ringes", etc. For explanation of this variety of interference there is no need for concept coherence, as in such interference is watched always and for a light from any sources. There is a special interest to phenomenas bound with diffraction of light, from a point of view of quantum packets model. The prime task here is to give a corresponding explanation to the content both senses of Huygens' and Huygens-Fresnel principles. These problems will be considered in following our works. [L] Mandel L., Wolf E. Optical Coherence and Quantum Optics / Cambrige, 1995
Quantum superposition at the half-metre scale.
Kovachy, T; Asenbaum, P; Overstreet, C; Donnelly, C A; Dickerson, S M; Sugarbaker, A; Hogan, J M; Kasevich, M A
2015-12-24
The quantum superposition principle allows massive particles to be delocalized over distant positions. Though quantum mechanics has proved adept at describing the microscopic world, quantum superposition runs counter to intuitive conceptions of reality and locality when extended to the macroscopic scale, as exemplified by the thought experiment of Schrödinger's cat. Matter-wave interferometers, which split and recombine wave packets in order to observe interference, provide a way to probe the superposition principle on macroscopic scales and explore the transition to classical physics. In such experiments, large wave-packet separation is impeded by the need for long interaction times and large momentum beam splitters, which cause susceptibility to dephasing and decoherence. Here we use light-pulse atom interferometry to realize quantum interference with wave packets separated by up to 54 centimetres on a timescale of 1 second. These results push quantum superposition into a new macroscopic regime, demonstrating that quantum superposition remains possible at the distances and timescales of everyday life. The sub-nanokelvin temperatures of the atoms and a compensation of transverse optical forces enable a large separation while maintaining an interference contrast of 28 per cent. In addition to testing the superposition principle in a new regime, large quantum superposition states are vital to exploring gravity with atom interferometers in greater detail. We anticipate that these states could be used to increase sensitivity in tests of the equivalence principle, measure the gravitational Aharonov-Bohm effect, and eventually detect gravitational waves and phase shifts associated with general relativity.
Continuous time quantum random walks in free space
NASA Astrophysics Data System (ADS)
Eichelkraut, Toni; Vetter, Christian; Perez-Leija, Armando; Christodoulides, Demetrios; Szameit, Alexander
2014-05-01
We show theoretically and experimentally that two-dimensional continuous time coherent random walks are possible in free space, that is, in the absence of any external potential, by properly tailoring the associated initial wave function. These effects are experimentally demonstrated using classical paraxial light. Evidently, the usage of classical beams to explore the dynamics of point-like quantum particles is possible since both phenomena are mathematically equivalent. This in turn makes our approach suitable for the realization of random walks using different quantum particles, including electrons and photons. To study the spatial evolution of a wavefunction theoretically, we consider the one-dimensional paraxial wave equation (i∂z +1/2 ∂x2) Ψ = 0 . Starting with the initially localized wavefunction Ψ (x , 0) = exp [ -x2 / 2σ2 ] J0 (αx) , one can show that the evolution of such Gaussian-apodized Bessel envelopes within a region of validity resembles the probability pattern of a quantum walker traversing a uniform lattice. In order to generate the desired input-field in our experimental setting we shape the amplitude and phase of a collimated light beam originating from a classical HeNe-Laser (633 nm) utilizing a spatial light modulator.
Studies of excited states of HeH by the multi-reference configuration-interaction method
NASA Astrophysics Data System (ADS)
Lee, Chun-Woo; Gim, Yeongrok
2013-11-01
The excited states of a HeH molecule for an n of up to 4 are studied using the multi-reference configuration-interaction method and Kaufmann's Rydberg basis functions. The advantages of using two different ways of locating Rydberg orbitals, either on the atomic nucleus or at the charge centre of molecules, are exploited by limiting their application to different ranges of R. Using this method, the difference between the experimental binding energies of the lower Rydberg states obtained by Ketterle and the ab initio results obtained by van Hemert and Peyerimhoff is reduced from a few hundreds of wave numbers to a few tens of wave numbers. A substantial improvement in the accuracy allows us to obtain quantum defect curves characterized by the correct behaviour. We obtain several Rydberg series that have more than one member, such as the ns series (n = 2, 3 and 4), npσ series (n = 3 and 4), npπ (n = 2, 3, 4) series and ndπ (n = 3, 4) series. These quantum defect curves are compared to the quantum defect curves obtained by the R-matrix or the multichannel quantum defect theory methods.
Quantum hydrodynamics: capturing a reactive scattering resonance.
Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K
2005-08-01
The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system.
From quantum measurement to biology via retrocausality.
Matsuno, Koichiro
2017-12-01
A reaction cycle in general or a metabolic cycle in particular owes its evolutionary emergence to the covering reaction environment acting as a measurement apparatus of a natural origin. The quantum measurement of the environmental origin underlying the molecular processes observed in the biological realm is operative cohesively between the measuring and the measured. The measuring part comes to pull in a quantum as an indivisible lump available from an arbitrary material body to be measured. The inevitable difference between the impinging quantum upon the receiving end on the part of the environment and the actual quantum pulled into the receiving end comes to effectively be nullified through the retrocausative propagation of the corresponding wave function proceeding backwards in time. The retrocausal regulation applied to the interface between the measuring and the measured is to function as the organizational agency supporting biology, and is sought in the act for the present in the immediate future within the realm of quantum phenomena. Molecular dynamics in biology owes both the evolutionary buildup and maintenance of its organization to the retrocausal operation of the unitary transformation applied to quantum phenomena proceeding backwards in time. Quantum measurement provides the cohesive agency that is pivotal for implementing the retrocausal regulation. In particular, the physical origin of Darwinian natural selection can be seen in the retrocausal regulation applied to the unitary transformation of a quantum origin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wave Function Engineering in CdSe/PbS Core/Shell Quantum Dots.
Wieliczka, Brian M; Kaledin, Alexey L; Buhro, William E; Loomis, Richard A
2018-05-25
The synthesis of epitaxial CdSe/PbS core/shell quantum dots (QDs) is reported. The PbS shell grows in a rock salt structure on the zinc blende CdSe core, thereby creating a crystal structure mismatch through additive growth. Absorption and photoluminescence (PL) band edge features shift to lower energies with increasing shell thickness, but remain above the CdSe bulk band gap. Nevertheless, the profiles of the absorption spectra vary with shell growth, indicating that the overlap of the electron and hole wave functions is changing significantly. This leads to over an order of magnitude reduction of absorption near the band gap and a large, tunable energy shift, of up to 550 meV, between the onset of strong absorption and the band edge PL. While the bulk valence and conduction bands adopt an inverse type-I alignment, the observed spectroscopic behavior is consistent with a transition between quasi-type-I and quasi-type-II behavior depending on shell thickness. Three effective mass approximation models support this hypothesis and suggest that the large difference in effective masses between the core and shell results in hole localization in the CdSe core and a delocalization of the electron across the entire QD. These results show the tuning of wave functions and transition energies in CdSe/PbS nanoheterostructures with prospects for use in optoelectronic devices for luminescent solar concentration or multiexciton generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakatsuji, H.; Nakashima, H.; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510
2007-12-14
A local Schroedinger equation (LSE) method is proposed for solving the Schroedinger equation (SE) of general atoms and molecules without doing analytic integrations over the complement functions of the free ICI (iterative-complement-interaction) wave functions. Since the free ICI wave function is potentially exact, we can assume a flatness of its local energy. The variational principle is not applicable because the analytic integrations over the free ICI complement functions are very difficult for general atoms and molecules. The LSE method is applied to several 2 to 5 electron atoms and molecules, giving an accuracy of 10{sup -5} Hartree in total energy.more » The potential energy curves of H{sub 2} and LiH molecules are calculated precisely with the free ICI LSE method. The results show the high potentiality of the free ICI LSE method for developing accurate predictive quantum chemistry with the solutions of the SE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.
2009-04-15
Linear and nonlinear propagation characteristics of low frequency magnetoacoustic waves in quantum magnetoplasmas are studied employing the quantum magnetohydrodynamic model. In this regard, a quantum Kadomtsev-Petviashvili-Burgers (KPB) equation is derived using the small amplitude expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. Furthermore, the solution of KPB equation is presented using the tangent hyperbolic (tanh) method. The variation in the fast and slow magnetoacoustic shock profiles with the quantum Bohm potential via increasing number density, obliqueness angle {theta}, magnetic field, and the resistivity are also investigated. It is observed that themore » aforementioned plasma parameters significantly modify the propagation characteristics of nonlinear magnetoacoustic shock waves in quantum magnetoplasmas. The relevance of the present investigation with regard to dense astrophysical environments is also pointed out.« less
A Study of the Errors of the Fixed-Node Approximation in Diffusion Monte Carlo
NASA Astrophysics Data System (ADS)
Rasch, Kevin M.
Quantum Monte Carlo techniques stochastically evaluate integrals to solve the many-body Schrodinger equation. QMC algorithms scale favorably in the number of particles simulated and enjoy applicability to a wide range of quantum systems. Advances in the core algorithms of the method and their implementations paired with the steady development of computational assets have carried the applicability of QMC beyond analytically treatable systems, such as the Homogeneous Electron Gas, and have extended QMC's domain to treat atoms, molecules, and solids containing as many as several hundred electrons. FN-DMC projects out the ground state of a wave function subject to constraints imposed by our ansatz to the problem. The constraints imposed by the fixed-node Approximation are poorly understood. One key step in developing any scientific theory or method is to qualify where the theory is inaccurate and to quantify how erroneous it is under these circumstances. I investigate the fixed-node errors as they evolve over changing charge density, system size, and effective core potentials. I begin by studying a simple system for which the nodes of the trial wave function can be solved almost exactly. By comparing two trial wave functions, a single determinant wave function flawed in a known way and a nearly exact wave function, I show that the fixed-node error increases when the charge density is increased. Next, I investigate a sequence of Lithium systems increasing in size from a single atom, to small molecules, up to the bulk metal form. Over these systems, FN-DMC calculations consistently recover 95% or more of the correlation energy of the system. Given this accuracy, I make a prediction for the binding energy of Li4 molecule. Last, I turn to analyzing the fixed-node error in first and second row atoms and their molecules. With the appropriate pseudo-potentials, these systems are iso-electronic, show similar geometries and states. One would expect with identical number of particles involved in the calculation, errors in the respective total energies of the two iso-electronic species would be quite similar. I observe, instead, that the first row atoms and their molecules have errors larger by twice or more in size. I identify a cause for this difference in iso-electronic species. The fixed-node errors in all of these cases are calculated by careful comparison to experimental results, showing that FN-DMC to be a robust tool for understanding quantum systems and also a method for new investigations into the nature of many-body effects.
Particles, Waves, and the Interpretation of Quantum Mechanics
ERIC Educational Resources Information Center
Christoudouleas, N. D.
1975-01-01
Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)
NASA Astrophysics Data System (ADS)
Bassi, Angelo; Großardt, André; Ulbricht, Hendrik
2017-10-01
We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity (G and g) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems.
Gravitationally self-bound quantum states in unstable potentials
NASA Astrophysics Data System (ADS)
Jääskeläinen, Markku
2018-04-01
Quantum mechanics at present cannot be unified with the theory of gravity at the deepest level, and to guide research towards the solution of this fundamental problem, we need to look for ways to observe or refute predictions originating from attempts to combine quantum theory with gravity. The influence of the gravitational field created by the material density given by the wave function itself gives rise to nontrivial phenomena. In this study I consider the wave function for the center-of-mass coordinate of a spherical mass distribution under the influence of the self-interaction of Newtonian gravity. I solve numerically for the ground state in the presence of an unstable potential and find that the energy of the free-space bound state can be lowered despite the nontrapping character of the potential. The center-of-mass ground state becomes increasingly localized for the used unstable potentials, although only in a limited parameter regime. The feebleness of the energy shift makes the observation of these effects demanding and requires further developments in the cooling of material particles. In addition, the influence of gravitational perturbations that are present in typical laboratory settings necessitates the use of extremely quiet and controlled environments such as those provided by recently proposed space-borne experiments.
Connection between the two branches of the quantum two-stream instability across the k space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.; Haas, F.
2010-05-15
The stability of two quantum counterstreaming electron beams is investigated within the quantum plasma fluid equations for arbitrarily oriented wave vectors k. The analysis reveals that the two quantum two-stream unstable branches are indeed connected by a continuum of unstable modes with oblique wave vectors. Using the longitudinal approximation, the stability domain for any k is analytically explained, together with the growth rate.
Newtonian self-gravitation in the neutral meson system
NASA Astrophysics Data System (ADS)
Großardt, André; Hiesmayr, Beatrix C.
2015-03-01
We derive the effect of the Schrödinger-Newton equation, which can be considered as a nonrelativistic limit of classical gravity, for a composite quantum system in the regime of high energies. Such meson-antimeson systems exhibit very unique properties, e.g., distinct masses due to strong and electroweak interactions. This raises an immediate question: what does one mean by mass in gravity for a state that is a superposition of mass eigenstates due to strong and electroweak interactions? We find conceptually different physical scenarios due to lacking of a clear physical guiding principle to explain which mass is the relevant one and due to the fact that it is not clear how the flavor wave function relates to the spatial wave function. There seems to be no principal contradiction. However, a nonlinear extension of the Schrödinger equation in this manner strongly depends on the relation between the flavor wave function and spatial wave function and its particular shape. In opposition to the continuous spontaneous localization collapse models we find a change in the oscillating behavior and not in the damping of the flavor oscillation.
Composite fermion basis for two-component Bose gases
NASA Astrophysics Data System (ADS)
Meyer, Marius; Liabotro, Ola
The composite fermion (CF) construction is known to produce wave functions that are not necessarily orthogonal, or even linearly independent, after projection. While usually not a practical issue in the quantum Hall regime, we have previously shown that it presents a technical challenge for rotating Bose gases with low angular momentum. These are systems where the CF approach yield surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving the problem of linearly dependent wave functions is of interest. It can also be useful for studying CF excitations for fermions. Here we present several ways of constructing a basis for the space of ``simple CF states'' for two-component rotating Bose gases in the lowest Landau level, and prove that they all give a basis. Using the basis, we study the structure of the lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between the exact and CF wave functions at the maximal possible angular momentum for simple states. This work was financially supported by the Research Council of Norway.
Four-Wave Mixing Spectroscopy of Quantum Dot Molecules
NASA Astrophysics Data System (ADS)
Sitek, A.; Machnikowski, P.
2007-08-01
We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.
NASA Astrophysics Data System (ADS)
Cheng, Xiaolu; Cina, Jeffrey A.
2014-07-01
A variational mixed quantum-semiclassical theory for the internal nuclear dynamics of a small molecule and the induced small-amplitude coherent motion of a low-temperature host medium is developed, tested, and used to simulate the temporal evolution of nonstationary states of the internal molecular and surrounding medium degrees of freedom. In this theory, termed the Fixed Vibrational Basis/Gaussian Bath (FVB/GB) method, the system is treated fully quantum mechanically while Gaussian wave packets are used for the bath degrees of freedom. An approximate time-dependent wave function of the entire model is obtained instead of just a reduced system density matrix, so the theory enables the analysis of the entangled system and bath dynamics that ensues following initial displacement of the internal-molecular (system) coordinate from its equilibrium position. The norm- and energy-conserving properties of the propagation of our trial wave function are natural consequences of the Dirac-Frenkel-McLachlan variational principle. The variational approach also stabilizes the time evolution in comparison to the same ansatz propagated under a previously employed locally quadratic approximation to the bath potential and system-bath interaction terms in the bath-parameter equations of motion. Dynamics calculations are carried out for molecular iodine in a 2D krypton lattice that reveal both the time-course of vibrational decoherence and the details of host-atom motion accompanying energy dissipation and dephasing. This work sets the stage for the comprehensive simulation of ultrafast time-resolved optical experiments on small molecules in low-temperature solids.
Koshka, Yaroslav; Perera, Dilina; Hall, Spencer; Novotny, M A
2017-07-01
The possibility of using a quantum computer D-Wave 2X with more than 1000 qubits to determine the global minimum of the energy landscape of trained restricted Boltzmann machines is investigated. In order to overcome the problem of limited interconnectivity in the D-Wave architecture, the proposed RBM embedding combines multiple qubits to represent a particular RBM unit. The results for the lowest-energy (the ground state) and some of the higher-energy states found by the D-Wave 2X were compared with those of the classical simulated annealing (SA) algorithm. In many cases, the D-Wave machine successfully found the same RBM lowest-energy state as that found by SA. In some examples, the D-Wave machine returned a state corresponding to one of the higher-energy local minima found by SA. The inherently nonperfect embedding of the RBM into the Chimera lattice explored in this work (i.e., multiple qubits combined into a single RBM unit were found not to be guaranteed to be all aligned) and the existence of small, persistent biases in the D-Wave hardware may cause a discrepancy between the D-Wave and the SA results. In some of the investigated cases, introduction of a small bias field into the energy function or optimization of the chain-strength parameter in the D-Wave embedding successfully addressed difficulties of the particular RBM embedding. With further development of the D-Wave hardware, the approach will be suitable for much larger numbers of RBM units.
Invariance of Topological Indices Under Hilbert Space Truncation
Huang, Zhoushen; Zhu, Wei; Arovas, Daniel P.; ...
2018-01-05
Here, we show that the topological index of a wave function, computed in the space of twisted boundary phases, is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation affects the boundary condition of the resulting state, the invariant index may acquire a different physical interpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, Z 2 topological insulators, and spin-1 Affleck-Kennedy-Lieb-Tasaki and Heisenberg chains, as well as its relation with the notion of bulk entanglement. As a possiblemore » application, we propose a partial quantum tomography scheme from which the topological index of a generic multicomponent wave function can be extracted by measuring only a small subset of wave function components, equivalent to the measurement of a bulk entanglement topological index.« less
Constructing topological models by symmetrization: A projected entangled pair states study
NASA Astrophysics Data System (ADS)
Fernández-González, Carlos; Mong, Roger S. K.; Landon-Cardinal, Olivier; Pérez-García, David; Schuch, Norbert
2016-10-01
Symmetrization of topologically ordered wave functions is a powerful method for constructing new topological models. Here we study wave functions obtained by symmetrizing quantum double models of a group G in the projected entangled pair states (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G ˜ which is always non-Abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wave functions in the same phase as the double model of G ˜. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G ˜.
Invariance of Topological Indices Under Hilbert Space Truncation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhoushen; Zhu, Wei; Arovas, Daniel P.
Here, we show that the topological index of a wave function, computed in the space of twisted boundary phases, is preserved under Hilbert space truncation, provided the truncated state remains normalizable. If truncation affects the boundary condition of the resulting state, the invariant index may acquire a different physical interpretation. If the index is symmetry protected, the truncation should preserve the protecting symmetry. We discuss implications of this invariance using paradigmatic integer and fractional Chern insulators, Z 2 topological insulators, and spin-1 Affleck-Kennedy-Lieb-Tasaki and Heisenberg chains, as well as its relation with the notion of bulk entanglement. As a possiblemore » application, we propose a partial quantum tomography scheme from which the topological index of a generic multicomponent wave function can be extracted by measuring only a small subset of wave function components, equivalent to the measurement of a bulk entanglement topological index.« less
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Zhang, Likun
2016-11-01
When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.
Stark effect on an excited hydrogen atom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barratt, C.
1983-07-01
The method of degenerate perturbation theory is used to study the dipolar nature of an excited hydrogen atom in an external electric field. The dependence of the atoms perturbed energy levels on the principal and magnetic quantum numbers, n and m, is investigated, along with the perturbed wave functions.
If It's Resonance, What is Resonating?
ERIC Educational Resources Information Center
Kerber, Robert C.
2006-01-01
The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…
EPR paradox, quantum nonlocality and physical reality
NASA Astrophysics Data System (ADS)
Kupczynski, M.
2016-03-01
Eighty years ago Einstein, Podolsky and Rosen demonstrated that instantaneous reduction of wave function, believed to describe completely a pair of entangled physical systems, led to EPR paradox. The paradox disappears in statistical interpretation of quantum mechanics (QM) according to which a wave function describes only an ensemble of identically prepared physical systems. QM predicts strong correlations between outcomes of measurements performed on different members of EPR pairs in far-away locations. Searching for an intuitive explanation of these correlations John Bell analysed so called local realistic hidden variable models and proved that correlations consistent with these models satisfy Bell inequalities which are violated by some predictions of QM and by experimental data. Several different local models were constructed and inequalities proven. Some eminent physicists concluded that Nature is definitely nonlocal and that it is acting according to a law of nonlocal randomness. According to these law perfectly random, but strongly correlated events, can be produced at the same time in far away locations and a local and causal explanation of their occurrence cannot be given. We strongly disagree with this conclusion and we prove the contrary by analysing in detail some influential finite sample proofs of Bell and CHSH inequalities and so called Quantum Randi Challenges. We also show how one can win so called Bell's game without violating locality of Nature. Nonlocal randomness is inconsistent with local quantum field theory, with standard model in elementary particle physics and with causal laws and adaptive dynamics prevailing in the surrounding us world. The experimental violation of Bell-type inequalities does not prove the nonlocality of Nature but it only confirms a contextual character of quantum observables and gives a strong argument against counterfactual definiteness and against a point of view according to which experimental outcomes are produced in irreducible random way.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang Haiyan; Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223-0001; Cai Wei
2010-06-20
In this paper, we conduct a study of quantum transport models for a two-dimensional nano-size double gate (DG) MOSFET using two approaches: non-equilibrium Green's function (NEGF) and Wigner distribution. Both methods are implemented in the framework of the mode space methodology where the electron confinements below the gates are pre-calculated to produce subbands along the vertical direction of the device while the transport along the horizontal channel direction is described by either approach. Each approach handles the open quantum system along the transport direction in a different manner. The NEGF treats the open boundaries with boundary self-energy defined by amore » Dirichlet to Neumann mapping, which ensures non-reflection at the device boundaries for electron waves leaving the quantum device active region. On the other hand, the Wigner equation method imposes an inflow boundary treatment for the Wigner distribution, which in contrast ensures non-reflection at the boundaries for free electron waves entering the device active region. In both cases the space-charge effect is accounted for by a self-consistent coupling with a Poisson equation. Our goals are to study how the device boundaries are treated in both transport models affects the current calculations, and to investigate the performance of both approaches in modeling the DG-MOSFET. Numerical results show mostly consistent quantum transport characteristics of the DG-MOSFET using both methods, though with higher transport current for the Wigner equation method, and also provide the current-voltage (I-V) curve dependence on various physical parameters such as the gate voltage and the oxide thickness.« less
Computational Studies of Strongly Correlated Quantum Matter
NASA Astrophysics Data System (ADS)
Shi, Hao
The study of strongly correlated quantum many-body systems is an outstanding challenge. Highly accurate results are needed for the understanding of practical and fundamental problems in condensed-matter physics, high energy physics, material science, quantum chemistry and so on. Our familiar mean-field or perturbative methods tend to be ineffective. Numerical simulations provide a promising approach for studying such systems. The fundamental difficulty of numerical simulation is that the dimension of the Hilbert space needed to describe interacting systems increases exponentially with the system size. Quantum Monte Carlo (QMC) methods are one of the best approaches to tackle the problem of enormous Hilbert space. They have been highly successful for boson systems and unfrustrated spin models. For systems with fermions, the exchange symmetry in general causes the infamous sign problem, making the statistical noise in the computed results grow exponentially with the system size. This hinders our understanding of interesting physics such as high-temperature superconductivity, metal-insulator phase transition. In this thesis, we present a variety of new developments in the auxiliary-field quantum Monte Carlo (AFQMC) methods, including the incorporation of symmetry in both the trial wave function and the projector, developing the constraint release method, using the force-bias to drastically improve the efficiency in Metropolis framework, identifying and solving the infinite variance problem, and sampling Hartree-Fock-Bogoliubov wave function. With these developments, some of the most challenging many-electron problems are now under control. We obtain an exact numerical solution of two-dimensional strongly interacting Fermi atomic gas, determine the ground state properties of the 2D Fermi gas with Rashba spin-orbit coupling, provide benchmark results for the ground state of the two-dimensional Hubbard model, and establish that the Hubbard model has a stripe order in the underdoped region.
Electronic and optical properties of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems
NASA Astrophysics Data System (ADS)
Amini, M.; Soleimani, M.; Ehsani, M. H.
2017-12-01
We numerically investigated the optical rectification coefficients (ORCs), transmission coefficient, energy levels and corresponding eigen-functions of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems (FO-MQWs) in the presence of an external electric field. In our calculations, two different methods, including transfer matrix and finite-difference have been used. It has been illustrated that with three types of the FO-MQWs, presented here, localization of the wave-function in any position of the structure is possible. Therefore, managing the electron distribution within the system is easier now. Finally, using the presented structures we could tune the position and amplitude of the ORCs.
Student understanding of time dependence in quantum mechanics
NASA Astrophysics Data System (ADS)
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.
NASA Astrophysics Data System (ADS)
Fu, Y.; Wang, S.-M.; Wang, X.-D.; Larsson, A.
2005-08-01
We have studied theoretically the energy band structures and optical properties of highly strained dipole δ-doped In0.3Ga0.7As/GaAs single quantum wells. Including dopant diffusion effect, strain in the quantum well, spin-orbital interactions, and many-body effects, the self-consistent calculations of the eight-band k •p model and the Poisson equation show that the dipole δ doping induces an electric field across the In0.3Ga0.7As quantum well by the Stark effect so that both the interband transition energy and the wave-function overlap between the ground-state electrons and holes are reduced. Applying an external bias across the quantum well partially cancels the built-in electric field and reduces the wavelength redshift. The calculated material gain peak is close to the experimental lasing wavelength.
NASA Astrophysics Data System (ADS)
Fu, Xi; Zhou, Guang-Hui
2009-02-01
We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density js,xiT and js,yiT (i = x, y, z). We find that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level as js,xxT and js,yyT. We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.
NASA Astrophysics Data System (ADS)
Bagrov, Andrey A.; Principi, Alessandro; Katsnelson, Mikhail I.
2017-03-01
We address the question of the stability of the fractional quantum Hall effect in the presence of pseudomagnetic disorder generated by mechanical deformations of a graphene sheet. Neglecting the potential disorder and taking into account only strain-induced random pseudomagnetic fields, it is possible to write down a Laughlin-like trial ground-state wave function explicitly. Exploiting the Laughlin plasma analogy, we demonstrate that in the case of fluctuating pseudomagnetic fluxes of a relatively small amplitude, the fractional quantum Hall effect is always stable upon the deformations. By contrast, in the case of bubble-induced pseudomagnetic fields in graphene on a substrate (a small number of large fluxes) the disorder can be strong enough to cause a glass transition in the corresponding classical Coulomb plasma, resulting in the destruction of the fractional quantum Hall regime and in a quantum phase transition to a nonergodic state of the lowest Landau level.
Kushwaha, Manvir S
2011-09-28
We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices and in the quantum computation, it is quite interesting and important to explore the electronic, optical, and transport phenomena in such systems. © 2011 American Institute of Physics
Emergent Irreversibility and Entanglement Spectrum Statistics
NASA Astrophysics Data System (ADS)
Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo R.
2014-06-01
We study the problem of irreversibility when the dynamical evolution of a many-body system is described by a stochastic quantum circuit. Such evolution is more general than a Hamiltonian one, and since energy levels are not well defined, the well-established connection between the statistical fluctuations of the energy spectrum and irreversibility cannot be made. We show that the entanglement spectrum provides a more general connection. Irreversibility is marked by a failure of a disentangling algorithm and is preceded by the appearance of Wigner-Dyson statistical fluctuations in the entanglement spectrum. This analysis can be done at the wave-function level and offers an alternative route to study quantum chaos and quantum integrability.
Geometrization of quantum physics
NASA Astrophysics Data System (ADS)
Ol'Khov, O. A.
2009-12-01
It is shown that the Dirac equation for free particle can be considered as a description of specific distortion of the space euclidean geometry (space topological defect). This approach is based on possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such concept explains all so called “strange” properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There is no any particles a priori, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device.
A Portable Double-Slit Quantum Eraser with Individual Photons
ERIC Educational Resources Information Center
Dimitrova, T. L.; Weis, A.
2011-01-01
The double-slit experiment has played an important role in physics, from supporting the wave theory of light, via the discussions of the wave-particle duality of light (and matter) to the foundations of modern quantum optics. Today it keeps playing an active role in the context of quantum optics experiments involving single photons. In this paper,…
NASA Astrophysics Data System (ADS)
Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.
2016-03-01
We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.
Quantum mechanical probability current as electromagnetic 4-current from topological EM fields
NASA Astrophysics Data System (ADS)
van der Mark, Martin B.
2015-09-01
Starting from a complex 4-potential A = αdβ we show that the 4-current density in electromagnetism and the probability current density in relativistic quantum mechanics are of identical form. With the Dirac-Clifford algebra Cl1,3 as mathematical basis, the given 4-potential allows topological solutions of the fields, quite similar to Bateman's construction, but with a double field solution that was overlooked previously. A more general nullvector condition is found and wave-functions of charged and neutral particles appear as topological configurations of the electromagnetic fields.
Optical Rabi Oscillations in a Quantum Dot Ensemble
NASA Astrophysics Data System (ADS)
Kujiraoka, Mamiko; Ishi-Hayase, Junko; Akahane, Kouichi; Yamamoto, Naokatsu; Ema, Kazuhiro; Sasaki, Masahide
2010-09-01
We have investigated Rabi oscillations of exciton polarization in a self-assembled InAs quantum dot ensemble. The four-wave mixing signals measured as a function of the average of the pulse area showed the large in-plane anisotropy and nonharmonic oscillations. The experimental results can be well reproduced by a two-level model calculation including three types of inhomogeneities without any fitting parameter. The large anisotropy can be well explained by the anisotropic dipole moments. We also find that the nonharmonic behaviors partly originate from the polarization interference.
NASA Technical Reports Server (NTRS)
Ahn, Doyeol; Chuang, S. L.
1986-01-01
Variational calculations of subband eigenstates in an infinite quantum well with an applied electric field using Gram-Schmidt orthogonalized trial wave functions are presented. The results agree very well with the exact numerical solutions even up to 1200 kV/cm. It is also shown that, for increasing electric fields, the energy of the ground state decreases, while that of higher subband states increases slightly up to 1000 kV/cm and then decreases for a well size of 100 A.
Hopping transport through an array of Luttinger liquid stubs
NASA Astrophysics Data System (ADS)
Chudnovskiy, A. L.
2004-01-01
We consider a thermally activated transport across and array of parallel one-dimensional quantum wires of finite length (quantum stubs). The disorder enters as a random tunneling between the nearest-neighbor stubs as well as a random shift of the bottom of the energy band in each stub. Whereas one-particle wave functions are localized across the array, the plasmons are delocalized, which affects the variable-range hopping. A perturbative analytical expression for the low-temperature resistance across the array is obtained for a particular choice of plasmon dispersion.
Elementary derivation of the quantum propagator for the harmonic oscillator
NASA Astrophysics Data System (ADS)
Shao, Jiushu
2016-10-01
Operator algebra techniques are employed to derive the quantum evolution operator for the harmonic oscillator. The derivation begins with the construction of the annihilation and creation operators and the determination of the wave function for the coherent state as well as its time-dependent evolution, and ends with the transformation of the propagator in a mixed position-coherent-state representation to the desired one in configuration space. Throughout the entire procedure, besides elementary operator manipulations, it is only necessary to solve linear differential equations and to calculate Gaussian integrals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durran, Richard; Neate, Andrew; Truman, Aubrey
2008-03-15
We consider the Bohr correspondence limit of the Schroedinger wave function for an atomic elliptic state. We analyze this limit in the context of Nelson's stochastic mechanics, exposing an underlying deterministic dynamical system in which trajectories converge to Keplerian motion on an ellipse. This solves the long standing problem of obtaining Kepler's laws of planetary motion in a quantum mechanical setting. In this quantum mechanical setting, local mild instabilities occur in the Keplerian orbit for eccentricities greater than (1/{radical}(2)) which do not occur classically.
NASA Astrophysics Data System (ADS)
Sandner, Raimar; Vukics, András
2014-09-01
The v2 Milestone 10 release of C++QED is primarily a feature release, which also corrects some problems of the previous release, especially as regards the build system. The adoption of C++11 features has led to many simplifications in the codebase. A full doxygen-based API manual [1] is now provided together with updated user guides. A largely automated, versatile new testsuite directed both towards computational and physics features allows for quickly spotting arising errors. The states of trajectories are now savable and recoverable with full binary precision, allowing for trajectory continuation regardless of evolution method (single/ensemble Monte Carlo wave-function or Master equation trajectory). As the main new feature, the framework now presents Python bindings to the highest-level programming interface, so that actual simulations for given composite quantum systems can now be performed from Python. Catalogue identifier: AELU_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELU_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 492422 No. of bytes in distributed program, including test data, etc.: 8070987 Distribution format: tar.gz Programming language: C++/Python. Computer: i386-i686, x86 64. Operating system: In principle cross-platform, as yet tested only on UNIX-like systems (including Mac OS X). RAM: The framework itself takes about 60MB, which is fully shared. The additional memory taken by the program which defines the actual physical system (script) is typically less than 1MB. The memory storing the actual data scales with the system dimension for state-vector manipulations, and the square of the dimension for density-operator manipulations. This might easily be GBs, and often the memory of the machine limits the size of the simulated system. Classification: 4.3, 4.13, 6.2. External routines: Boost C++ libraries, GNU Scientific Library, Blitz++, FLENS, NumPy, SciPy Catalogue identifier of previous version: AELU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1381 Does the new version supersede the previous version?: Yes Nature of problem: Definition of (open) composite quantum systems out of elementary building blocks [2,3]. Manipulation of such systems, with emphasis on dynamical simulations such as Master-equation evolution [4] and Monte Carlo wave-function simulation [5]. Solution method: Master equation, Monte Carlo wave-function method Reasons for new version: The new version is mainly a feature release, but it does correct some problems of the previous version, especially as regards the build system. Summary of revisions: We give an example for a typical Python script implementing the ring-cavity system presented in Sec. 3.3 of Ref. [2]: Restrictions: Total dimensionality of the system. Master equation-few thousands. Monte Carlo wave-function trajectory-several millions. Unusual features: Because of the heavy use of compile-time algorithms, compilation of programs written in the framework may take a long time and much memory (up to several GBs). Additional comments: The framework is not a program, but provides and implements an application-programming interface for developing simulations in the indicated problem domain. We use several C++11 features which limits the range of supported compilers (g++ 4.7, clang++ 3.1) Documentation, http://cppqed.sourceforge.net/ Running time: Depending on the magnitude of the problem, can vary from a few seconds to weeks. References: [1] Entry point: http://cppqed.sf.net [2] A. Vukics, C++QEDv2: The multi-array concept and compile-time algorithms in the definition of composite quantum systems, Comp. Phys. Comm. 183(2012)1381. [3] A. Vukics, H. Ritsch, C++QED: an object-oriented framework for wave-function simulations of cavity QED systems, Eur. Phys. J. D 44 (2007) 585. [4] H. J. Carmichael, An Open Systems Approach to Quantum Optics, Springer, 1993. [5] J. Dalibard, Y. Castin, K. Molmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68 (1992) 580.
Generation of electron Airy beams.
Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady
2013-02-21
Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.
NASA Astrophysics Data System (ADS)
Hoque, Md. Fazlul; Marquette, Ian; Post, Sarah; Zhang, Yao-Zhong
2018-04-01
We introduce an extended Kepler-Coulomb quantum model in spherical coordinates. The Schrödinger equation of this Hamiltonian is solved in these coordinates and it is shown that the wave functions of the system can be expressed in terms of Laguerre, Legendre and exceptional Jacobi polynomials (of hypergeometric type). We construct ladder and shift operators based on the corresponding wave functions and obtain their recurrence formulas. These recurrence relations are used to construct higher-order, algebraically independent integrals of motion to prove superintegrability of the Hamiltonian. The integrals form a higher rank polynomial algebra. By constructing the structure functions of the associated deformed oscillator algebras we derive the degeneracy of energy spectrum of the superintegrable system.
NASA Astrophysics Data System (ADS)
Pushin, Dmitry
Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.
Aharonov–Anandan quantum phases and Landau quantization associated with a magnetic quadrupole moment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca, I.C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br
The arising of geometric quantum phases in the wave function of a moving particle possessing a magnetic quadrupole moment is investigated. It is shown that an Aharonov–Anandan quantum phase (Aharonov and Anandan, 1987) can be obtained in the quantum dynamics of a moving particle with a magnetic quadrupole moment. In particular, it is obtained as an analogue of the scalar Aharonov–Bohm effect for a neutral particle (Anandan, 1989). Besides, by confining the quantum particle to a hard-wall confining potential, the dependence of the energy levels on the geometric quantum phase is discussed and, as a consequence, persistent currents can arisemore » from this dependence. Finally, an analogue of the Landau quantization is discussed. -- Highlights: •Scalar Aharonov–Bohm effect for a particle possessing a magnetic quadrupole moment. •Aharonov–Anandan quantum phase for a particle with a magnetic quadrupole moment. •Dependence of the energy levels on the Aharonov–Anandan quantum phase. •Landau quantization associated with a particle possessing a magnetic quadrupole moment.« less