Chemla, D.S.
1993-06-30
This article reviews recent investigations of nonlinear optical processes in semiconductors. Section II discusses theory of coherent wave mixing in semiconductors, with emphasis on resonant excitation with only one exciton state. Section III reviews recent experimental investigations of amplitude and phase of coherent wave-mixing resonant with quasi-2d excitons in GaAs quantum wells.
Kim, T.; Liu, B.; Smith, R.; Athanasiou, M.; Gong, Y.; Wang, T.
2014-04-21
A “coherent” nanocavity structure has been designed on two-dimensional well-ordered InGaN/GaN nanodisk arrays with an emission wavelength in the green spectral region, leading to a massive enhancement in resonance mode in the green spectra region. By means of a cost-effective nanosphere lithography technique, we have fabricated such a structure on an InGaN/GaN multiple quantum well epiwafer and have observed the “coherent” nanocavity effect, which leads to an enhanced spontaneous emission (SE) rate. The enhanced SE rate has been confirmed by time resolved photoluminescence measurements. Due to the coherent nanocavity effect, we have achieved a massive improvement in internal quantum efficiency with a factor of 88, compared with the as-grown sample, which could be significant to bridge the “green gap” in solid-state lighting.
Narrow dark polariton due to coupled coherence in a quantum well microcavity
NASA Astrophysics Data System (ADS)
Wang, Tao; Li, Cui Li; Zhang, Rui; Zhuo, Zhong Chang; Su, Xue Mei
2015-10-01
A scheme is proposed to obtain slow light in a coulped quantum wells microcavity with tunneling induced transparency between intersubband electronic transitions. Three prolaritons are created by intracavity Fano interference between fundamental mode photon and two quantum oscillators of coherent subband electronic excitations. A narrow middle dark polariton of the three can be produced, which can be used to suppress the line profiles of the transmission or reflection spectra for the incident light. This leads to slow propagation of the incident light in the microcavity. The semiconductor optical microcavity can be an alternative choice of quantum photoelectronic devices in nanoscale.
Optical pump-probe measurements of local nuclear spin coherence in semiconductor quantum wells.
Sanada, H; Kondo, Y; Matsuzaka, S; Morita, K; Hu, C Y; Ohno, Y; Ohno, H
2006-02-17
We demonstrate local manipulation and detection of nuclear spin coherence in semiconductor quantum wells by an optical pump-probe technique combined with pulse rf NMR. The Larmor precession of photoexcited electron spins is monitored by time-resolved Kerr rotation (TRKR) as a measure of nuclear magnetic field. Under the irradiation of resonant pulsed rf magnetic fields, Rabi oscillations of nuclear spins are traced by TRKR signals. The intrinsic coherence time evaluated by a spin-echo technique reveals the dependence on the orientation of the magnetic field with respect to the crystalline axis as expected by the nearest neighbor dipole-dipole interaction. PMID:16606048
Coherent coupling of excitons and trions in a photoexcited CdTe/CdMgTe quantum well.
Moody, G; Akimov, I A; Li, H; Singh, R; Yakovlev, D R; Karczewski, G; Wiater, M; Wojtowicz, T; Bayer, M; Cundiff, S T
2014-03-01
We present zero-, one-, and two-quantum two-dimensional coherent spectra of excitons and trions in a CdTe/(Cd,Mg)Te quantum well. The set of spectra provides a unique and comprehensive picture of the coherent nonlinear optical response. Distinct peaks in the spectra are manifestations of exciton-exciton and exciton-trion coherent coupling. Excellent agreement using density matrix calculations highlights the essential role of many-body effects on the coupling. Strong exciton-trion coherent interactions open up the possibility for novel conditional control schemes in coherent optoelectronics. PMID:24655274
Coherent Coupling of Excitons and Trions in a Photoexcited CdTe/CdMgTe Quantum Well
NASA Astrophysics Data System (ADS)
Moody, G.; Akimov, I. A.; Li, H.; Singh, R.; Yakovlev, D. R.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Bayer, M.; Cundiff, S. T.
2014-03-01
We present zero-, one-, and two-quantum two-dimensional coherent spectra of excitons and trions in a CdTe/(Cd,Mg)Te quantum well. The set of spectra provides a unique and comprehensive picture of the coherent nonlinear optical response. Distinct peaks in the spectra are manifestations of exciton-exciton and exciton-trion coherent coupling. Excellent agreement using density matrix calculations highlights the essential role of many-body effects on the coupling. Strong exciton-trion coherent interactions open up the possibility for novel conditional control schemes in coherent optoelectronics.
Chen, Yuan; Deng, Li; Chen, Aixi
2015-02-15
We investigate the nonlinear optical phenomena of the optical bistability and multistability via spontaneously generated coherence in an asymmetric double quantum well structure coupled by a weak probe field and a controlling field. It is shown that the threshold and hysteresis cycle of the optical bistability can be conveniently controlled only by adjusting the intensity of the SGC or the controlling field. Moreover, switching between optical bistability and multistability can be achieved. These studies may have practical significance for the preparation of optical bistable switching device.
Quantum correlation via quantum coherence
NASA Astrophysics Data System (ADS)
Yu, Chang-shui; Zhang, Yang; Zhao, Haiqing
2014-06-01
Quantum correlation includes quantum entanglement and quantum discord. Both entanglement and discord have a common necessary condition—quantum coherence or quantum superposition. In this paper, we attempt to give an alternative understanding of how quantum correlation is related to quantum coherence. We divide the coherence of a quantum state into several classes and find the complete coincidence between geometric (symmetric and asymmetric) quantum discords and some particular classes of quantum coherence. We propose a revised measure for total coherence and find that this measure can lead to a symmetric version of geometric quantum correlation, which is analytic for two qubits. In particular, this measure can also arrive at a monogamy equality on the distribution of quantum coherence. Finally, we also quantify a remaining type of quantum coherence and find that for two qubits, it is directly connected with quantum nonlocality.
Spin coherence of the two-dimensional electron gas in a GaAs quantum well
Larionov, A. V.
2015-01-15
The coherent spin dynamics of the quasi-two-dimensional electron gas in a GaAs quantum well is experimentally investigated using the time-resolved spin Kerr effect in an optical cryostat with a split coil inducing magnetic fields of up to 6 T at a temperature of about 2 K. The electron spin dephasing times and degree of anisotropy of the spin relaxation of electrons are measured in zero magnetic field at different electron densities. The dependence of the spin-orbit splitting on the electron-gas density is established. In the integral quantum-Hall-effect mode, the unsteady behavior of the spin dephasing time of 2D electrons of the lower Landau spin sublevel near the odd occupation factor ν = 3 is found. The experimentally observed unsteady behavior of the spin dephasing time can be explained in terms of new-type cyclotron modes that occur in a liquid spin texture.
Multipulse operation and optical detection of nuclear spin coherence in a GaAs/AlGaAs quantum well.
Kondo, Y; Ono, M; Matsuzaka, S; Morita, K; Sanada, H; Ohno, Y; Ohno, H
2008-11-14
We demonstrate manipulation of nuclear spin coherence in a GaAs/AlGaAs quantum well by optically detected nuclear magnetic resonance (NMR). A phase shift of the Larmor precession of photoexcited electron spins is detected to read out the hyperfine-coupled nuclear spin polarization. Multipulse NMR sequences are generated to control the population and examine the phase coherence in quadrupolar-split spin-3/2 75As nuclei. The phase coherence among the multilevel nuclear spin states is addressed by application of pulse sequences that are used in quantum gate operations. PMID:19113379
Nanosecond spin coherence of excitons bound to acceptors in a CdTe quantum well
NASA Astrophysics Data System (ADS)
Grinberg, P.; Bernardot, F.; Eble, B.; Karczewski, G.; Testelin, C.; Chamarro, M.
2016-03-01
We have studied the coherent spin dynamics of excitons bound to acceptors, A0X, immersed in a CdTe quantum well by using time resolved photo-induced Faraday rotation. We have also measured the time-resolved differential transmission in order to determine a A0X lifetime of 220 ps, which is independent of the applied magnetic field. We show that at low magnetic field, the spin of A0X is completely frozen during a time, ≅ 4.5 ns, at least twenty times longer than its lifetime. We compare the spin properties of A0X with the spin properties of other charged excitons systems, and we conclude that the hyperfine interaction of the photo-created electron spin with nuclear spins is very likely to be at the origin of the observed spin dephasing times.
Real-time contrast-enhanced holographic imaging using phase coherent photorefractive quantum wells.
Dongol, A; Thompson, J; Schmitzer, H; Tierney, D; Wagner, H P
2015-05-18
We demonstrate wide-field real-time and depth-resolved contrast enhanced holographic imaging (CEHI) using the all-optical phase coherent photorefractive effect in ZnSe quantum wells. Moving objects are imaged at large depth-of-field by the local enhancement of a static reference hologram. The high refresh rate of the holographic films enables direct-to-video monitoring of floating glass beads and of living Paramecium and Euglena cells moving in water. Depth resolution is achieved by tilting the incident laser beam with respect to the normal of the cuvette. This creates double images of the objects, which are analyzed geometrically and with Fresnel diffraction theory. A two-color CEHI set-up further enables the visualization of a concealed 95 µm thick wire behind a thin layer of chicken skin. PMID:26074534
NASA Astrophysics Data System (ADS)
Kabir, A.; Dongol, A.; Wang, X.; Wagner, H. P.
2010-12-01
We demonstrate two real-time optical coherence imaging acquisition modes using all-optical phase coherent photorefractive ZnSe quantum wells as dynamic holographic films. These films use the coherence of excitons for time-gating which provides depth information of an object according to the brightness profile of its holographic image. This quality allows depth-resolved imaging of moving particles with a resolution of a few micrometers in a single-shot three-dimensional mode. In a complementary contrast-enhanced mode moving particles are imaged by the local enhancement of a static reference hologram, enabling optical coherence imaging at a large depth-of-field.
Phase control of Goos-Hänchen shift via biexciton coherence in a multiple quantum well
NASA Astrophysics Data System (ADS)
Asadpour, Seyyed Hossein; Nasehi, Rajab; Soleimani, H. Rahimpour; Mahmoudi, M.
2015-09-01
The behavior of the Goos-Hänchen (GH) shifts of the reflected and transmitted probe and signal pulses through a cavity containing four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3Ga0.7As barriers is theoretically discussed. The biexciton coherence set up by two coupling fields can induce the destructive interference to control the absorption and gain properties of probe field under appropriate conditions. It is realized that for the specific values of the intensities and the relative phase of applied fields, the simultaneous negative or positive GH shift in the transmitted and reflected light beam can be obtained via amplification in a probe light. It is found that by adjusting the controllable parameters, the GH shifts can be switched between the large positive and negative values in the medium. Moreover, the effect of exciton spin relaxation on the GH shift has also been discussed. We find that the exciton spin relaxation can manipulate the behavior of GH shift in the reflected and transmitted probe beam through the cavity. We show that by controlling the incident angles of probe beam and under certain conditions, the GH shifts in the reflected and transmitted probe beams can become either negative or positive corresponding to the superluminal or subluminal light propagation. Our proposed model may supply a new prospect in technological applications for the light amplification in optical sensors working on quantum coherence impacts in solid-state systems.
NASA Astrophysics Data System (ADS)
Busch, Alexander Anthony
2003-10-01
This thesis reports a systematic study of near-band edge linear and nonlinear optical properties of doped and undoped semiconductor multiple quantum well samples, aimed at quantifying and separating the numerous contributions to the overall material response from photon excitation. Information obtained from both linear absorption and nonlinear, degenerate four-wave-mixing experiments is compared with elaborate numerical simulations. Accurate measures of 1S--2S binding energies and dephasing rates as a function of temperature from 5 to 40 K is established. The biexciton binding energy and dephasing rate over the temperature range 5 to 40 K is measured and, by comparison with theories reported in the literature, it is found that localization effects have a significant influence on the biexciton binding energy in 5 nm quantum wells. The first systematic attempt to quantitatively account for the continuum contribution to nonlinear response by fitting a series of spectra obtained at various input laser pulse detunings was conducted. Unique evidence for coherent beating between multi-exciton/free electron complexes in lightly doped material was also found.
NASA Astrophysics Data System (ADS)
Kabir, Amin
The phase coherent photorefractive (PCP) effect in different ZnSe quantum well structures and its dependence on various extrinsic and intrinsic parameters have been investigated using 90 fs laser pulse in a two-beam four-wave-mixing (FWM) configuration. At low excitation intensities the signal is dominated by the PCP effect (which is attributed to a long living electron grating formed in the QW due to coherent QW excitons) and pulse overlap (PO) effect while at high excitation intensities it is governed by chi(3) FWM processes and the PO effect. With increasing excitation intensity the signal dip at pulse overlap (tau ≈ 0 ) which is characteristic for the destructive interference between the PO and PCP effect shifts to positive delay times tau > 0. The higher PCP diffraction efficiency value of ˜1.5 x10-3 in QW B (Zn0.92Mg0.08Se/ZnSe) as compared to the value of ˜3.5 x 10-4 in QW A (Zn0.94Mg 0.06Se/ZnSe) at 55 K is attributed to an increased Mg concentration in the barrier of QW B leading to a higher captured equilibrium electron density ne. Repetition rate dependent measurements on QW B show a drop of the diffraction efficiency for repetition times larger than 1.25 mus which is attributed to the reduction of the electron grating amplitude due to thermally activated electron tunneling. FWM experiments on two 10 nm ZnSe QWs with different barrier thicknesses of 20 (QW1) and 50 nm (QW2) between the QW and substrate show a redshift of the exciton line and an increased exciton dephasing rate due to increasing E-field induced tilt of the QW structure indicating an increased density of captured electrons ne. At temperatures below 35 K and laser excitation close to the exciton energy the creation of trions significantly compensates the formation of the spatially modulated electron density grating. At lower excitation energies increasing space-charge-fields significantly tilt the QW which reduces the trion binding energy leading to an enhanced thermal ionization of
Tsuchiya, Takuma
2013-12-04
We have investigated the possibility that the coherence length of spatially oscillating electron-spin polarization is improved in dilute magnetic semiconductors. In usual nonmagnetic quantum wells, the spin polarization of the electrons injected from a ferromagnetic source electrode oscillates spatially because of the spin precession due to spin-orbit effective magnetic fields, i.e., the Rashba and Dresselhaus fields. However, the polarization is damped within an oscillation period by the D’yakonov-Perel’ spin relaxation. In paramagnetic dilute magnetic semiconductors, impurity spin polarization is induced under the electron-spin polarization, and this impurity polarization influences the electron-spin precession and possibly improves the spatial electron-spin coherence. The validity of this effect is demonstrated by a numerical simulation for a CdMnTe quantum well.
Relaxation and coherent oscillations in the spin dynamics of II-VI diluted magnetic quantum wells
NASA Astrophysics Data System (ADS)
Ungar, F.; Cygorek, M.; Tamborenea, P. I.; Axt, V. M.
2015-10-01
We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic quantum wells in the presence of spin-orbit interaction. We extend a recent study where it was shown that the spin-orbit interaction and the exchange sd coupling in bulk and quantum wells can compete resulting in qualitatively new dynamics when they act simultaneously. We concentrate on Hg1-x-yMnxCdyTe quantum wells, which have a highly tunable Rashba spin-orbit coupling. Our calculations use a recently developed formalism which incorporates electronic correlations originating from the exchange sd-coupling. We find that the dependence of electronic spin oscillations on the excess energy changes qualitatively depending on whether or not the spin-orbit interaction dominates or is of comparable strength with the sd interaction.
Carrier Dynamics and Application of the Phase Coherent Photorefractive Effect in ZnSe Quantum Wells
NASA Astrophysics Data System (ADS)
Dongol, Amit
The intensity dependent diffraction efficiency of a phase coherent photorefractive (PCP) ZnSe quantum well (QW) is investigated at 80 K in a two-beam four-wave mixing (FWM) configuration using 100 fs laser pulses with a repetition rate of 80 MHz. The observed diffraction efficiencies of the first and second-order diffracted beam are on the order of 10-3 and 10-5, respectively, revealing nearly no intensity dependence. The first-order diffraction is caused by the PCP effect where the probe-pulse is diffracted due to a long-living incoherent electron density grating in the QW. The second-order diffraction is created by a combination of diffraction processes. For negative probe-pulse delay, the exciton polarization is diffracted at the electron grating twice by a cascade effect. For positive delay, the diffracted signal is modified by the destructive interference with a chi(5) generated signal due to a dynamical screening effect. Model calculations of the signal traces based on the optical Bloch equations considering inhomogeneous broadening of exciton energies are in good agreement with the experimental data. To study the carrier dynamics responsible for the occurrence of the PCP effect, threebeam FWM experiments are carried out. The non-collinear wave-vectors k1 , k2 and k3 at central wavelength of 441 nm (~2.81 eV) were resonantly tuned to the heavy-hole exciton transition energy at 20 K. In the FWM experiment the time coincident strong pump pulses k1 and k2 create both an exciton density grating in the QW and an electron-hole pair grating in the GaAs while the delayed weak pulse k3 simultaneously probes the exciton lifetime as well as the electron grating capture time. The model calculations are in good agreement with the experimental results also providing information about the transfer delay of electrons arriving from the substrate to the QW. For negative probe-pulse delay we still observe a diffracted signal due to the long living electron density grating in
Highly coherent long cavity GaAs/AlGaAs single-quantum-well lasers
Larsson, A. ); Andrekson, P.A.; Jonsson, B.; Lindstrom, C. )
1989-09-01
The authors report on measurements of the spectral properties of ridge waveguide graded index separate confinement heterostructure single-quantum-well GaAs/AlGaAs lasers. Long cavity lasers (800{mu}m) exhibit remarkably pure single-longitudinal-mode spectra under continuous operation in spite of the short cavity mode spacing. At an output power of 5 mW, the sidemode suppression exceeds 24 dB and the linewidth is 1.5 MHz. This is among the narrowest linewidths reported for solitary AlGaAs lasers. The linewidth-power product is 6.4 MHz mW. Measurements of the linewidth-power product as a function of cavity length L gives an L/sup -2/ dependence in agreement with theory for lasers with small internal loss. No significant deviation from this dependence was observed for lasers short enough to operate at the second quantized state. The results are also used to deduce the linewidth enhancement factor {alpha} at the gain peak wavelength and its dependence on the excitation level. The sublinear gain-carrier density relation in the single quantum well results in an increase in a with increasing carrier density (decreasing cavity length) in contrast to conventional double heterostructure lasers and multiple-quantum-well lasers. In addition, a decrease in {alpha} was observed for lasers operating at the second quantized state due to recovery of the differential gain.
NASA Astrophysics Data System (ADS)
Ullah, S.; Gusev, G. M.; Bakarov, A. K.; Hernandez, F. G. G.
2016-06-01
We investigated the spin coherence of high-mobility two-dimensional electron gases confined in multilayer GaAs quantum wells. The dynamics of the spin polarization was optically studied using pump-probe techniques: time-resolved Kerr rotation and resonant spin amplification. For double and triple quantum wells doped beyond the metal-to-insulator transition, the spin-orbit interaction was tailored by the sample parameters of structural symmetry (Rashba constant), width, and electron density (Dresselhaus linear and cubic constants) which allow us to attain long dephasing times in the nanoseconds range. The determination of the scales, namely, transport scattering time, single-electron scattering time, electron-electron scattering time, and spin polarization decay time further supports the possibility of using n-doped multilayer systems for developing spintronic devices.
Determination of Spin-Orbit Coefficients and Phase Coherence Times in InGaAs/InAlAs Quantum Wells
NASA Astrophysics Data System (ADS)
Koga, Takaaki; Faniel, Sebastien; Matsuura, Toru; Mineshige, Shunsuke; Sekine, Yoshiaki; Sugiyama, H.
2011-12-01
We report the determination of the intrinsic spin-orbit interaction (SOI) parameters and phase coherence times for In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As quantum wells (QWs) from the analysis of the weak antilocalization (WAL) measurements at dilution temperatures. We find that the Dresselhaus SOI is mostly negligible in this system and that the intrinsic parameters for the Rashba effect, aSO≡α/
NASA Technical Reports Server (NTRS)
Liu, Ansheng; Ning, Cun-Zheng
1999-01-01
Terahertz optical gain due to intersubband transitions in optically-pumped semiconductor quantum wells (QW's) is calculated nonperturbatively. We solve the pump- field-induced nonequilibrium distribution function for each subband of the QW system from a set of rate equations that include both intrasubband and intersubband relaxation processes. The gain arising from population inversion and stimulated Raman processes is calculated in a unified manner. We show that the coherent pump and signal wave interactions contribute significantly to the THz gain. Because of the optical Stark effect and pump-induced population redistribution, optical gain saturation at larger pump intensities is predicted.
Multiple quantum coherence spectroscopy.
Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Pakoulev, Andrei V; Kornau, Kathryn M; Wright, John C
2009-08-20
Multiple quantum coherences provide a powerful approach for studies of complex systems because increasing the number of quantum states in a quantum mechanical superposition state increases the selectivity of a spectroscopic measurement. We show that frequency domain multiple quantum coherence multidimensional spectroscopy can create these superposition states using different frequency excitation pulses. The superposition state is created using two excitation frequencies to excite the symmetric and asymmetric stretch modes in a rhodium dicarbonyl chelate and the dynamic Stark effect to climb the vibrational ladders involving different overtone and combination band states. A monochromator resolves the free induction decay of different coherences comprising the superposition state. The three spectral dimensions provide the selectivity required to observe 19 different spectral features associated with fully coherent nonlinear processes involving up to 11 interactions with the excitation fields. The different features act as spectroscopic probes of the diagonal and off-diagonal parts of the molecular potential energy hypersurface. This approach can be considered as a coherent pump-probe spectroscopy where the pump is a series of excitation pulses that prepares a multiple quantum coherence and the probe is another series of pulses that creates the output coherence. PMID:19507812
NASA Astrophysics Data System (ADS)
Baraff, G. A.
1998-11-01
We study the effect of an imaginary potential and (separately) of a finite coherence length on the transmission, reflection, and capture fractions for a thermal distribution of carriers incident on a single quantum well. The formalism used is closely related to one used by Kuhn and Mahler for the same purpose. Closed-form expressions are obtained for the three transport fractions resulting from a single incident beam. Three independent fitting parameters are used in this formalism, namely, the size of the imaginary potential, the extent it penetrates into the barriers adjacent to the well, and the phase-coherence length. This last is a length scale associated with a correlation function that appears when the phase of the wave function is treated as a stochastic variable. We show that the parameters can be chosen so that the transport fractions agree with those calculated from first principles, and show how a shortening of the coherence length, e.g., by electron-electron interactions that have been left out of the first-principles calculation, destroys the resonant behavior of these fractions predicted by Brum and Bastard [Phys. Rev. B 33, 1420 (1986)].
Converting Coherence to Quantum Correlations
NASA Astrophysics Data System (ADS)
Ma, Jiajun; Yadin, Benjamin; Girolami, Davide; Vedral, Vlatko; Gu, Mile
2016-04-01
Recent results in quantum information theory characterize quantum coherence in the context of resource theories. Here, we study the relation between quantum coherence and quantum discord, a kind of quantum correlation which appears even in nonentangled states. We prove that the creation of quantum discord with multipartite incoherent operations is bounded by the amount of quantum coherence consumed in its subsystems during the process. We show how the interplay between quantum coherence consumption and creation of quantum discord works in the preparation of multipartite quantum correlated states and in the model of deterministic quantum computation with one qubit.
Hole spin coherence in coupled GaAs/AlAs quantum wells
NASA Astrophysics Data System (ADS)
Gradl, Christian; Kempf, Michael; Holler, Johannes; Schuh, Dieter; Bougeard, Dominique; Schueller, Christian; Korn, Tobias
Due to its p-like character, the valence band in GaAs-based heterostructures offers rich and complex spin-dependent phenomena. Especially for some low-symmetry growth directions, a strong anisotropy of the hole g factor with respect to the in-plane magnetic field direction is theoretically predicted. Therefore, we perform time-resolved Kerr rotation measurements on an undoped [113]-grown double quantum well (QW) structure to resolve the spin dynamics of hole ensembles at low temperatures. Our gated system consists of two QWs with different well widths, which we use for the spatial separation of the optically excited electron-hole pairs. Thus, we are able to create hole ensembles with spin lifetimes of several hundreds of picoseconds in the broader QW without any doping. This allows the observation of a strong hole g factor anisotropy by varying the magnetic field direction in the QW plane. The experimental g factor values are in very good agreement with theoretical predictions. Furthermore, we observe an unexpected additional non-precessing component in the Kerr signal for certain in-plane magnetic field directions. This might have its origin in a precession axis that is tilted relative to the magnetic field due to the crystal structure of this low-symmetry growth direction. Financial support by the DFG via SFB 689 is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Zhu, Zhonghu; Chen, Ai-Xi; Bai, Yanfeng; Yang, Wen-Xing; Lee, Ray-Kuang
2014-05-01
In this paper, we analyze theoretically the optical steady behavior in GaAs quantum well structure which interacts with a single elliptically polarized field (EPF) and a π-polarized probe field. Due to the existence of the robust nonradiative coherence, we demonstrate that the controllable optical steady behavior including multi-stability (OM) and optical bistability (OB) can be obtained. More interestingly, our numerical results also illustrate that tuning the phase difference between two components of polarized electric field of the EPF can realize the conversion between OB and OM. Our results illustrate the potential to utilize the optical phase for developing the new all-optical switching devices, as well as a guidance in the design for possible experimental implementations.
Quantum coherence and correlations in quantum system
Xi, Zhengjun; Li, Yongming; Fan, Heng
2015-01-01
Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795
Total quantum coherence and its applications
NASA Astrophysics Data System (ADS)
Yu, Chang-shui; Yang, Si-ren; Guo, Bao-qing
2016-06-01
Quantum coherence is the most fundamental feature of quantum mechanics. The usual understanding of it depends on the choice of the basis, that is, the coherence of the same quantum state is different within different reference framework. To reveal all the potential coherence, we present the total quantum coherence measures in terms of two different methods. One is optimizing maximal basis-dependent coherence with all potential bases considered and the other is quantifying the distance between the state and the incoherent state set. Interestingly, the coherence measures based on relative entropy and l_2 norm have the same form in the two different methods. In particular, we show that the measures based on the non-contractive l_2 norm are also a good measure different from the basis-dependent coherence. In addition, we show that all the measures are analytically calculable and have all the good properties. The experimental schemes for the detection of these coherence measures are also proposed by multiple copies of quantum states instead of reconstructing the full density matrix. By studying one type of quantum probing schemes, we find that both the normalized trace in the scheme of deterministic quantum computation with one qubit and the overlap of two states in quantum overlap measurement schemes can be well described by the change of total coherence of the probing qubit. Hence the nontrivial probing always leads to the change of the total coherence.
NASA Astrophysics Data System (ADS)
Walecki, Wojciech J.; Fittinghoff, David N.; Smirl, Arthur L.
1997-03-01
Four wave mixing (FWM) techniques using ultrashort pulses have proven to be extremely powerful tools for studying coherent processes and excitonic effects in semiconductors and multiple quantum wells (MQWs). Complete characterization of the emitted electromagnetic field requires the measurement of the phase, the polarization, and the amplitude. Failure to measure any one of these will result in a loss of essential information about the optical interactions. Present techniques for measuring the phase and the polarization state, however, are insensitive, and labor intensive. Here, we demonstrate that spectral interferometry can be used to completely characterize the FWM emission from MQWs. This method, involving only a linear measurement at a single fixed time delay, is simpler and more sensitive than previous techniques, which require measurements for various orientations of waveplates and for various time delays and which require a cross correlation with a reference pulse. We demonstrate the power of this technique by investigating the temporal dynamics of the FWM signal emitted from GaAs/AlGaAs MQWs as a function of the excitation fluence, time delay between the two incident pulses, and orientation of the input polarizations.
Quantum coherence in multipartite systems
NASA Astrophysics Data System (ADS)
Yao, Yao; Xiao, Xing; Ge, Li; Sun, C. P.
2015-08-01
Within the unified framework of exploiting the relative entropy as a distance measure of quantum correlations, we make explicit the hierarchical structure of quantum coherence, quantum discord, and quantum entanglement in multipartite systems. On this basis, we define a basis-independent measure of quantum coherence and prove that it is exactly equivalent to quantum discord. Furthermore, since the original relative entropy of coherence is a basis-dependent quantity, we investigate the local and nonlocal unitary creation of quantum coherence, focusing on the two-qubit unitary gates. Intriguingly, our results demonstrate that nonlocal unitary gates do not necessarily outperform the local unitary gates. Finally, the additivity relationship of quantum coherence in tripartite systems is discussed in detail, where the strong subadditivity of von Neumann entropy plays an essential role.
Bagaev, V. S.; Davletov, E. T.; Krivobok, V. S. Nikolaev, S. N.; Novikov, A. V.; Onishchenko, E. E.; Pruchkina, A. A.; Skorikov, M. L.
2015-12-15
The measured stationary and time-resolved photoluminescence is used to study the properties of the exciton gas in a second-order 5-nm-thick Si{sub 0.905}Ge{sub 0.095}/Si quantum well. It is shown that, despite the presence of an electron barrier in the Si{sub 0.905}Ge{sub 0.095} layer, a spatially indirect biexciton is the most favorable energy state of the electron–hole system at low temperatures. This biexciton is characterized by a lifetime of 1100 ns and a binding energy of 2.0–2.5 meV and consists of two holes localized in the SiGe layer and two electrons mainly localized in silicon. The formation of biexcitons is shown to cause low-temperature (5 K) luminescence spectra over a wide excitation density range and to suppress the formation of an exciton gas, in which quantum statistics effects are significant. The Bose statistics can only be experimentally observed for a biexciton gas at a temperature of 1 K or below because of the high degree of degeneracy of biexciton states (28) and a comparatively large effective mass (about 1.3m{sub e}). The heat energy at such temperatures is much lower than the measured energy of localization at potential fluctuations (about 1 meV). This feature leads to biexciton localization and fundamentally limits the possibility of observation of quantum coherence in the biexciton gas.
Measuring Quantum Coherence with Entanglement
NASA Astrophysics Data System (ADS)
Streltsov, Alexander; Singh, Uttam; Dhar, Himadri Shekhar; Bera, Manabendra Nath; Adesso, Gerardo
2015-07-01
Quantum coherence is an essential ingredient in quantum information processing and plays a central role in emergent fields such as nanoscale thermodynamics and quantum biology. However, our understanding and quantitative characterization of coherence as an operational resource are still very limited. Here we show that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. This finding allows us to define a novel general class of measures of coherence for a quantum system of arbitrary dimension, in terms of the maximum bipartite entanglement that can be generated via incoherent operations applied to the system and an incoherent ancilla. The resulting measures are proven to be valid coherence monotones satisfying all the requirements dictated by the resource theory of quantum coherence. We demonstrate the usefulness of our approach by proving that the fidelity-based geometric measure of coherence is a full convex coherence monotone, and deriving a closed formula for it on arbitrary single-qubit states. Our work provides a clear quantitative and operational connection between coherence and entanglement, two landmark manifestations of quantum theory and both key enablers for quantum technologies.
Complementarity relations for quantum coherence
NASA Astrophysics Data System (ADS)
Cheng, Shuming; Hall, Michael J. W.
2015-10-01
Various measures have been suggested recently for quantifying the coherence of a quantum state with respect to a given basis. We first use two of these, the l1-norm and relative entropy measures, to investigate tradeoffs between the coherences of mutually unbiased bases. Results include relations between coherence, uncertainty, and purity; tight general bounds restricting the coherences of mutually unbiased bases; and an exact complementarity relation for qubit coherences. We further define the average coherence of a quantum state. For the l1-norm measure this is related to a natural "coherence radius" for the state and leads to a conjecture for an l2-norm measure of coherence. For relative entropy the average coherence is determined by the difference between the von Neumann entropy and the quantum subentropy of the state and leads to upper bounds for the latter quantity. Finally, we point out that the relative entropy of coherence is a special case of G-asymmetry, which immediately yields several operational interpretations in contexts as diverse as frame alignment, quantum communication, and metrology, and suggests generalizing the property of quantum coherence to arbitrary groups of physical transformations.
Assisted Distillation of Quantum Coherence.
Chitambar, E; Streltsov, A; Rana, S; Bera, M N; Adesso, G; Lewenstein, M
2016-02-19
We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed. PMID:26943512
Assisted Distillation of Quantum Coherence
NASA Astrophysics Data System (ADS)
Chitambar, E.; Streltsov, A.; Rana, S.; Bera, M. N.; Adesso, G.; Lewenstein, M.
2016-02-01
We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.
Evolution equation for quantum coherence
NASA Astrophysics Data System (ADS)
Hu, Ming-Liang; Fan, Heng
2016-07-01
The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures.
Evolution equation for quantum coherence
Hu, Ming-Liang; Fan, Heng
2016-01-01
The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933
Evolution equation for quantum coherence.
Hu, Ming-Liang; Fan, Heng
2016-01-01
The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933
Quantum coherence of steered states
NASA Astrophysics Data System (ADS)
Hu, Xueyuan; Milne, Antony; Zhang, Boyang; Fan, Heng
2016-01-01
Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to ‘steer’ Bob’s reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation.
Quantum coherence of steered states
Hu, Xueyuan; Milne, Antony; Zhang, Boyang; Fan, Heng
2016-01-01
Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to ‘steer’ Bob’s reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation. PMID:26781214
Quantum Coherence in a Superfluid Josephson Junction
Narayana, Supradeep; Sato, Yuki
2011-02-04
We report a new kind of experiment in which we take an array of nanoscale apertures that form a superfluid {sup 4}He Josephson junction and apply quantum phase gradients directly along the array. We observe collective coherent behaviors from aperture elements, leading to quantum interference. Connections to superconducting and Bose-Einstein condensate Josephson junctions as well as phase coherence among the superfluid aperture array are discussed.
Photoelectric devices with quantum coherence
NASA Astrophysics Data System (ADS)
Shanhe, Su
A phtotoelectric device consisting of a three-level system contacted with two fermionic baths and a photon bath is built. Making the Born-Markov approximation, the equation of motion for the density operator in a Lindblad-like form is derived. We obtain the coherence and the efficiency of the system under the steady-state condition. Results show that quantum coherence can enhance the photoelectric conversion efficiency. The efficiency at maximum power can be larger than the CA efficiency bound with the existence of coherence.
Photoelectric converters with quantum coherence.
Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can
2016-05-01
Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency η_{CA}. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to η_{CA} through manipulation of carefully controlled quantum coherences. PMID:27300826
Photoelectric converters with quantum coherence
NASA Astrophysics Data System (ADS)
Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can
2016-05-01
Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency ηCA. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to ηCA through manipulation of carefully controlled quantum coherences.
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Coherent dynamics of Landau-Levels in modulation doped GaAs quantum wells at high magnetic fields
NASA Astrophysics Data System (ADS)
Liu, Cunming; Paul, Jagannath; Reno, John; McGill, Stephen; Hilton, David; Karaiskaj, Denis
By using two-dimensional Fourier transform spectroscopy, we investigate the dynamics of Landau-Levels formed in modulation doped GaAs/AlGaAs quantum wells of 18 nm thickness at high magnetic fields and low temperature. The measurements show interesting dephasing dynamics and linewidth dependency as a function of the magnetic field. The work at USF and UAB was supported by the National Science Foundation under grant number DMR-1409473. The work at NHMFL, FSU was supported by the National Science Foundation under grant numbers DMR-1157490 and DMR-1229217. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
Quantum coherence and quantum phase transitions
Li, Yan-Chao; Lin, Hai-Qing
2016-01-01
We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD. PMID:27193057
Quantum coherence and quantum phase transitions
NASA Astrophysics Data System (ADS)
Li, Yan-Chao; Lin, Hai-Qing
2016-05-01
We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD.
Quantum coherence and quantum phase transitions.
Li, Yan-Chao; Lin, Hai-Qing
2016-01-01
We study the connections between local quantum coherence (LQC) based on Wigner-Yanase skew information and quantum phase transitions (QPTs). When applied on the one-dimensional Hubbard, XY spin chain with three-spin interaction, and Su-Schrieffer-Heeger models, the LQC and its derivatives are used successfully to detect different types of QPTs in these spin and fermionic systems. Furthermore, the LQC is effective as the quantum discord (QD) in detecting QPTs at finite temperatures, where the entanglement has lost its effectiveness. We also demonstrate that the LQC can exhibit different behaviors in many forms compared with the QD. PMID:27193057
Quantum coherent states in cosmology
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri
2015-07-01
Coherent states consist of superposition of infinite number of particles and do not have a classical analogue. We study their evolution in a FLRW cosmology and show that only when full quantum corrections are considered, they may survive the expansion of the Universe and form a global condensate. This state of matter can be the origin of accelerating expansion of the Universe, generally called dark energy, and inflation in the early universe. Additionally, such a quantum pool may be the ultimate environment for decoherenceat shorter distances. If dark energy is a quantum coherent state, its dominant contribution to the total energy of the Universe at present provides a low entropy state which may be necessary as an initial condition for a new Big Bang in the framework of bouncing cosmology models.
NASA Astrophysics Data System (ADS)
Kononov, A.; Egorov, S. V.; Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.; Deviatov, E. V.
2015-06-01
We experimentally investigate spin-polarized electron transport between two ferromagnetic contacts, placed at the edge of a two-dimensional electron system with band inversion. The system is realized in a narrow (8 nm) HgTe quantum well, the ferromagnetic side contacts are formed from a premagnetized permalloy film. In zero magnetic field, we find a significant edge current contribution to the transport between two ferromagnetic contacts. We experimentally demonstrate that this transport is sensitive to the mutual orientation of the magnetization directions of two 200 µm-spaced ferromagnetic leads. This is a direct experimental evidence on the spin-coherent edge transport over the macroscopic distances. Thus, the spin is extremely robust at the edge of a two-dimensional electron system with band inversion, confirming the helical spin-resolved nature of edge currents.
Distribution of Quantum Coherence in Multipartite Systems.
Radhakrishnan, Chandrashekar; Parthasarathy, Manikandan; Jambulingam, Segar; Byrnes, Tim
2016-04-15
The distribution of coherence in multipartite systems is examined. We use a new coherence measure with entropic nature and metric properties, based on the quantum Jensen-Shannon divergence. The metric property allows for the coherence to be decomposed into various contributions, which arise from local and intrinsic coherences. We find that there are trade-off relations between the various contributions of coherence, as a function of parameters of the quantum state. In bipartite systems the coherence resides on individual sites or is distributed among the sites, which contribute in a complementary way. In more complex systems, the characteristics of the coherence can display more subtle changes with respect to the parameters of the quantum state. In the case of the XXZ Heisenberg model, the coherence changes from a monogamous to a polygamous nature. This allows us to define the shareability of coherence, leading to monogamy relations for coherence. PMID:27127948
Distribution of Quantum Coherence in Multipartite Systems
NASA Astrophysics Data System (ADS)
Radhakrishnan, Chandrashekar; Parthasarathy, Manikandan; Jambulingam, Segar; Byrnes, Tim
2016-04-01
The distribution of coherence in multipartite systems is examined. We use a new coherence measure with entropic nature and metric properties, based on the quantum Jensen-Shannon divergence. The metric property allows for the coherence to be decomposed into various contributions, which arise from local and intrinsic coherences. We find that there are trade-off relations between the various contributions of coherence, as a function of parameters of the quantum state. In bipartite systems the coherence resides on individual sites or is distributed among the sites, which contribute in a complementary way. In more complex systems, the characteristics of the coherence can display more subtle changes with respect to the parameters of the quantum state. In the case of the X X Z Heisenberg model, the coherence changes from a monogamous to a polygamous nature. This allows us to define the shareability of coherence, leading to monogamy relations for coherence.
Zory, P.S. Jr.
1993-01-01
The semiconductor quantum well (QW) laser structure is rapidly becoming the preferred design in many applications because of its low threshold, design flexibility, and high reliability. The book begins with a brief, interesting foreword by C.H. Henry on the history of the QW laser concept and its early development. Following this introduction is a 79-page chapter by S.W. Corzine et al. on optical gain in III-V bulk and QW lasers. The next chapter on intraband relaxation and line broadening effects by M. Asada is an excellent expanded review of a topic introduced by Corzine. The remaining chapters describe multiple QW lasers, low-threshold QW laser, special aspects of AlGaAs and (short-wavelength) InGaAsP lasers, valence-band engineering, strained-layer QW lasers, AlGaInP QW lasers, and quantum wire lasers. These chapters are well written by recognized experts in the field.
Hader, K.; Engel, V.
2014-05-14
We study laser excitation processes in a double well potential. The possibility to influence localization via the carrier-envelope phase (CEP) of a laser pulse is investigated for various situations which differ in the nature of the initial state prior to the laser interactions. In more detail, the CEP-dependence of asymmetries in the case where initially the system is described by localized wave packets, eigenstates, or incoherent mixtures are calculated and interpreted within time-dependent perturbation theory. It is investigated which contributions to the asymmetry exist and how they can be modified to reveal a more or less pronounced CEP-effect.
Coherent communication with continuous quantum variables
Wilde, Mark M.; Krovi, Hari; Brun, Todd A.
2007-06-15
The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.
Coherent Control of Quantum Matter
Cavalleri, Andrea
2011-10-05
This talk addresses some recent work aimed at controlling the low-lying electrodynamics of quantum solids using strong field transients. The excitation of selected vibrational resonances to manipulate the many-body physics of one dimensional Mott Hubbard Insulators and to perturb competing orders in High-Tc superconductors is also covered. Finally, the speaker shows how the electrodynamics of layered superconductors can be driven through the orderparameter phase gradient, demonstrating ultrafast transistor action in a layered superconductor. Advances in the use of coherent optics, from tabletop sources to THz and x-ray free-electron lasers are also discussed.
Quantum entanglement and coherence in molecular magnets
NASA Astrophysics Data System (ADS)
Shiddiq, Muhandis
Quantum computers are predicted to outperform classical computers in certain tasks, such as factoring large numbers and searching databases. The construction of a computer whose operation is based on the principles of quantum mechanics appears extremely challenging. Solid state approaches offer the potential to answer this challenge by tailor-making novel nanomaterials for quantum information processing (QIP). Molecular magnets, which are materials whose energy levels and magnetic quantum states are well defined at the molecular level, have been identified as a class of material with properties that make them attractive for quantum computing purpose. In this dissertation, I explore the possibilities and challenges for molecular magnets to be used in quantum computing architecture. The properties of molecular magnets that are critical for applications in quantum computing, i.e., quantum entanglement and coherence, are comprehensively investigated to probe the feasibility of molecular magnets to be used as quantum bits (qubits). Interactions of qubits with photons are at the core of QIP. Photons can be used to detect and manipulate qubits, after which information can then be transferred over long distances. As a potential candidate for qubits, the interactions between Fe8 single-molecule magnets (SMMs) and cavity photons were studied. An earlier report described that a cavity mode splitting was observed in a spectrum of a cavity filled with a single-crystal of Fe8 SMMs. This splitting was interpreted as a vacuum Rabi splitting (VRS), which is a signature of an entanglement between a large number of SMMs and a cavity photon. However, find that large absorption and dispersion of the magnetic susceptibility are the reasons for this splitting. This finding highlights the fact that an observation of a peak splitting in a cavity transmission spectrum neither represents an unambiguous indication of quantum coherence in a large number of spins, nor a signature of
Coherent and incoherent tunneling in asymmetric double-well potentials
Ranfagni, A.; Cacciari, I.; Vitali, M. A.; Viliani, G.; Moretti, P.; Ruggeri, R.
2006-07-15
The determination of the time scale for coherent and incoherent tunneling in asymmetric double-well potentials is reconsidered according to the instanton-bounce method. In particular, by making use of Feynman's transition elements, a different, relatively simpler approach to this problem, with respect to conventional quantum-mechanical treatments, is obtained.
Room temperature quantum coherence in a potential molecular qubit
NASA Astrophysics Data System (ADS)
Bader, Katharina; Dengler, Dominik; Lenz, Samuel; Endeward, Burkhard; Jiang, Shang-Da; Neugebauer, Petr; van Slageren, Joris
2014-10-01
The successful development of a quantum computer would change the world, and current internet encryption methods would cease to function. However, no working quantum computer that even begins to rival conventional computers has been developed yet, which is due to the lack of suitable quantum bits. A key characteristic of a quantum bit is the coherence time. Transition metal complexes are very promising quantum bits, owing to their facile surface deposition and their chemical tunability. However, reported quantum coherence times have been unimpressive. Here we report very long quantum coherence times for a transition metal complex of 68 μs at low temperature (qubit figure of merit QM=3,400) and 1 μs at room temperature, much higher than previously reported values for such systems. We show that this achievement is because of the rigidity of the lattice as well as removal of nuclear spins from the vicinity of the magnetic ion.
Room temperature quantum coherence in a potential molecular qubit.
Bader, Katharina; Dengler, Dominik; Lenz, Samuel; Endeward, Burkhard; Jiang, Shang-Da; Neugebauer, Petr; van Slageren, Joris
2014-01-01
The successful development of a quantum computer would change the world, and current internet encryption methods would cease to function. However, no working quantum computer that even begins to rival conventional computers has been developed yet, which is due to the lack of suitable quantum bits. A key characteristic of a quantum bit is the coherence time. Transition metal complexes are very promising quantum bits, owing to their facile surface deposition and their chemical tunability. However, reported quantum coherence times have been unimpressive. Here we report very long quantum coherence times for a transition metal complex of 68 μs at low temperature (qubit figure of merit QM=3,400) and 1 μs at room temperature, much higher than previously reported values for such systems. We show that this achievement is because of the rigidity of the lattice as well as removal of nuclear spins from the vicinity of the magnetic ion. PMID:25328006
Strong Quantum Coherence between Fermi Liquid Mahan Excitons
NASA Astrophysics Data System (ADS)
Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.
2016-04-01
In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.
Robust quantum receivers for coherent state discrimination
NASA Astrophysics Data System (ADS)
Becerra, Francisco Elohim
2014-05-01
Quantum state discrimination is a central task for quantum information and is a fundamental problem in quantum mechanics. Nonorthogonal states, such as coherent states which have intrinsic quantum noise, cannot be discriminated with total certainty because of their intrinsic overlap. This nonorthogonality is at the heart of quantum key distribution for ensuring absolute secure communications between a transmitter and a receiver, and can enable many quantum information protocols based on coherent states. At the same time, while coherent states are used for communications because of their robustness to loss and simplicity of generation and detection, their nonorthogonality inherently produces errors in the process of decoding the information. The minimum error probability in the discrimination of nonorthogonal coherent states measured by an ideal lossless and noiseless conventional receiver is given by the standard quantum limit (SQL). This limit sets strict bounds on the ultimate performance of coherent communications and many coherent-state-based quantum information protocols. However, measurement strategies based on the quantum properties of these states can allow for better measurements that surpass the SQL and approach the ultimate measurement limits allowed by quantum mechanics. These measurement strategies can allow for optimally extracting information encoded in these states for coherent and quantum communications. We present the demonstration of a receiver based on adaptive measurements and single-photon counting that unconditionally discriminates multiple nonorthogonal coherent states below the SQL. We also discuss the potential of photon-number-resolving detection to provide robustness and high sensitivity under realistic conditions for an adaptive coherent receiver with detectors with finite photon-number resolution.
Quantum coherent oscillations in the early universe
NASA Astrophysics Data System (ADS)
Pikovski, Igor; Loeb, Abraham
2016-05-01
Cosmic inflation is commonly assumed to be driven by quantum fields. Quantum mechanics predicts phenomena such as quantum fluctuations and tunneling of the field. Here, we show an example of a quantum interference effect which goes beyond the semiclassical treatment and which may be of relevance in the early Universe. We study the quantum coherent dynamics for a tilted, periodic potential, which results in genuine quantum oscillations of the inflaton field, analogous to Bloch oscillations in condensed matter and atomic systems. The underlying quantum superpositions are typically very fragile but may persist in the early Universe giving rise to quantum interference phenomena in cosmology.
Quantum coherence, wormholes, and the cosmological constant
Unruh, W.G. )
1989-08-15
Coleman has argued that if wormhole solutions to the Euclidean action coupled to matter dominate the Euclidean path integral for quantum gravity, they do not lead to a loss of quantum coherence for wave functions in our Universe. Furthermore, they also lead to the prediction that the ultimate'' cosmological constant is zero. I analyze the assumptions that go into this result and argue that the presence of wormhole solutions does lead to a loss of quantum coherence and, furthermore, completely destroys the Euclidean quantum theory by producing a highly nonlocal effective Euclidean action which is violently unbounded from below.
Cohering and decohering power of quantum channels
NASA Astrophysics Data System (ADS)
Mani, Azam; Karimipour, Vahid
2015-09-01
We introduce the concepts of cohering and decohering power of quantum channels. Using the axiomatic definition of the coherence measure, we show that the optimization required for calculations of these measures can be restricted to pure input states and hence greatly simplified. We then use two examples of this measure, one based on the skew information and the other based on the l1 norm; we find the cohering and decohering measures of a number of one-, two-, and n -qubit channels. Contrary to the view at first glance, it is seen that quantum channels can have cohering power. It is also shown that a specific property of a qubit unitary map is that it has equal cohering and decohering power in any basis. Finally, we derive simple relations between cohering and decohering powers of unitary qubit gates and their tensor products, results which have physically interesting implications.
Emergence of coherence and the dynamics of quantum phase transitions
Braun, Simon; Friesdorf, Mathis; Hodgman, Sean S.; Schreiber, Michael; Ronzheimer, Jens Philipp; Riera, Arnau; del Rey, Marco; Bloch, Immanuel; Eisert, Jens
2015-01-01
The dynamics of quantum phase transitions pose one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition. In the 1D Bose–Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We, thereby, perform a largely certified analog quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions, where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behavior of the coherence length, reminiscent of the Kibble–Zurek mechanism. However, we find nonuniversal exponents that cannot be captured by this mechanism or any other known model. PMID:25775515
Sequential quantum teleportation of optical coherent states
Yonezawa, Hidehiro; Furusawa, Akira; Loock, Peter van
2007-09-15
We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F{sub 1}=0.70{+-}0.02 and F{sub 2}=0.75{+-}0.02, while the fidelity between the input and the sequentially teleported states is determined as F{sup (2)}=0.57{+-}0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state. PMID:27367369
Entanglement and Coherence in Quantum State Merging
NASA Astrophysics Data System (ADS)
Streltsov, A.; Chitambar, E.; Rana, S.; Bera, M. N.; Winter, A.; Lewenstein, M.
2016-06-01
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Laser-Limited Signatures of Quantum Coherence.
Tempelaar, Roel; Halpin, Alexei; Johnson, Philip J M; Cai, Jianxin; Murphy, R Scott; Knoester, Jasper; Miller, R J Dwayne; Jansen, Thomas L C
2016-05-19
Quantum coherence is proclaimed to promote efficient energy collection by light-harvesting complexes and prototype organic photovoltaics. However, supporting spectroscopic studies are hindered by the problem of distinguishing between the excited state and ground state origin of coherent spectral transients. Coherence amplitude maps, which systematically represent quantum beats observable in two-dimensional (2D) spectroscopy, are currently the prevalent tool for making this distinction. In this article, we present coherence amplitude maps of a molecular dimer, which have become significantly distorted as a result of the finite laser bandwidth used to record the 2D spectra. We argue that under standard spectroscopic conditions similar distortions are to be expected for compounds absorbing over a spectral range similar to, or exceeding, that of the dimer. These include virtually all photovoltaic polymers and certain photosynthetic complexes. With the distortion of coherence amplitude maps, alternative ways to identify quantum coherence are called for. Here, we use numerical simulations that reproduce the essential photophysics of the dimer to unambiguously determine the excited state origin of prominent quantum beats observed in the 2D spectral measurements. This approach is proposed as a dependable method for coherence identification. PMID:26558888
Relating the Resource Theories of Entanglement and Quantum Coherence.
Chitambar, Eric; Hsieh, Min-Hsiu
2016-07-01
Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability. PMID:27447493
Relating the Resource Theories of Entanglement and Quantum Coherence
NASA Astrophysics Data System (ADS)
Chitambar, Eric; Hsieh, Min-Hsiu
2016-07-01
Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.
Energy cost of creating quantum coherence
NASA Astrophysics Data System (ADS)
Misra, Avijit; Singh, Uttam; Bhattacharya, Samyadeb; Pati, Arun Kumar
2016-05-01
We consider physical situations where the resource theories of coherence and thermodynamics play competing roles. In particular, we study the creation of quantum coherence using unitary operations with limited thermodynamic resources. We find the maximal coherence that can be created under unitary operations starting from a thermal state and find explicitly the unitary transformation that creates the maximal coherence. Since coherence is created by unitary operations starting from a thermal state, it requires some amount of energy. This motivates us to explore the trade-off between the amount of coherence that can be created and the energy cost of the unitary process. We also find the maximal achievable coherence under the constraint on the available energy. Additionally, we compare the maximal coherence and the maximal total correlation that can be created under unitary transformations with the same available energy at our disposal. We find that when maximal coherence is created with limited energy, the total correlation created in the process is upper bounded by the maximal coherence, and vice versa. For two-qubit systems we show that no unitary transformation exists that creates the maximal coherence and maximal total correlation simultaneously with a limited energy cost.
Photovoltaic quantum well infrared photodetectors
NASA Technical Reports Server (NTRS)
Lyon, Steve A.; Goossen, Keith; Parihar, Sanjay; Alavi, Kambiz; Santos, Mike; Shayegan, Mansour
1990-01-01
Quantum well infrared photodetectors (QWIP) are a promising new approach to long-wavelength infrared detector arrays. Both single-well photovoltaic and multiple-well photoconductive devices have been demonstrated. The author discusses noise considerations as they apply to photovoltaic devices, grating coupling of the infrared light into QWIPs, and recently demonstrated electrically tunable detectors. The use of light trapping to enhance the quantum efficiency and reduce cross-talk in an array is addressed.
Coherent control of atomic tunneling in a driven triple well
Lu Gengbiao; Hai Wenhua; Xie Qiongtao
2011-01-15
Coherent control of quantum tunneling is investigated for a single atom held in a driven triple-well potential without tight-binding approximation. In the high-frequency regime within or without multiphoton resonance, we find the analytical solutions and their numerical correspondences, including the special Floquet states of invariant populations and the non-Floquet states of slowly varying populations. The Floquet quasienergy spectrum exhibits anticrossings and crossings for different values of the driving parameters, which are associated with different tunneling properties described by the non-Floquet states. Applying the presented results, we suggest a scheme for transporting a single atom between nonadjacent wells or between adjacent wells.
Transient quantum coherent response to a partially coherent radiation field
Sadeq, Zaheen S.; Brumer, Paul
2014-02-21
The response of an arbitrary closed quantum system to a partially coherent electric field is investigated, with a focus on the transient coherences in the system. As a model we examine, both perturbatively and numerically, the coherences induced in a three level V system. Both rapid turn-on and pulsed turn-on effects are investigated. The effect of a long and incoherent pulse is also considered, demonstrating that during the pulse the system shows a coherent response which reduces after the pulse is over. Both the pulsed scenario and the thermally broadened CW case approach a mixed state in the long time limit, with rates dictated by the adjacent level spacings and the coherence time of the light, and via a mechanism that is distinctly different from traditional decoherence. These two excitation scenarios are also explored for a minimal “toy” model of the electronic levels in pigment protein complex PC645 by both a collisionally broadened CW laser and by a noisy pulse, where unexpectedly long transient coherence times are observed and explained. The significance of environmentally induced decoherence is noted.
Quantum well multijunction photovoltaic cell
Chaffin, Roger J.; Osbourn, Gordon C.
1987-01-01
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Quantum well multijunction photovoltaic cell
Chaffin, R.J.; Osbourn, G.C.
1983-07-08
A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.
Langer, L; Poltavtsev, S V; Yugova, I A; Yakovlev, D R; Karczewski, G; Wojtowicz, T; Kossut, J; Akimov, I A; Bayer, M
2012-10-12
We report on magnetic field-induced oscillations of the photon echo signal from negatively charged excitons in a CdTe/(Cd,Mg)Te semiconductor quantum well. The oscillatory signal is due to Larmor precession of the electron spin about a transverse magnetic field and depends sensitively on the polarization configuration of the exciting and refocusing pulses. The echo amplitude can be fully tuned from the maximum down to zero depending on the time delay between the two pulses and the magnetic-field strength. The results are explained in terms of the optical Bloch equations accounting for the spin level structure of electrons and trions. PMID:23102368
Communication: Fully coherent quantum state hopping
Martens, Craig C.
2015-10-14
In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.
Communication: Fully coherent quantum state hopping
NASA Astrophysics Data System (ADS)
Martens, Craig C.
2015-10-01
In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) "probability" of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.
Intrinsic randomness as a measure of quantum coherence
NASA Astrophysics Data System (ADS)
Yuan, Xiao; Zhou, Hongyi; Cao, Zhu; Ma, Xiongfeng
2015-08-01
Based on the theory of quantum mechanics, intrinsic randomness in measurement distinguishes quantum effects from classical ones. From the perspective of states, this quantum feature can be summarized as coherence or superposition in a specific (classical) computational basis. Recently, by regarding coherence as a physical resource, Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401] presented a comprehensive framework for coherence measures. Here, we propose a quantum coherence measure essentially using the intrinsic randomness of measurement. The proposed coherence measure provides an answer to the open question in completing the resource theory of coherence. Meanwhile, we show that the coherence distillation process can be treated as quantum extraction, which can be regarded as an equivalent process of classical random number extraction. From this viewpoint, the proposed coherence measure also clarifies the operational aspect of quantum coherence. Finally, our results indicate a strong similarity between two types of quantumness—coherence and entanglement.
Coherent quantum effects through dispersive bosonic media
Ye Saiyun; Yang Zhenbiao; Zheng Shibiao; Serafini, Alessio
2010-07-15
The coherent evolution of two qubits mediated by a set of bosonic field modes is investigated. By assuming a specific asymmetric encoding of the quantum states in the internal levels of the qubits, we show that entangling quantum gates can be realized, with high fidelity, even when a large number of mediating modes is involved. The effect of losses and imperfections on the gates' operation is also considered in detail.
Multiconfigurational quantum propagation with trajectory-guided generalized coherent states
NASA Astrophysics Data System (ADS)
Grigolo, Adriano; Viscondi, Thiago F.; de Aguiar, Marcus A. M.
2016-03-01
A generalized version of the coupled coherent states method for coherent states of arbitrary Lie groups is developed. In contrast to the original formulation, which is restricted to frozen-Gaussian basis sets, the extended method is suitable for propagating quantum states of systems featuring diversified physical properties, such as spin degrees of freedom or particle indistinguishability. The approach is illustrated with simple models for interacting bosons trapped in double- and triple-well potentials, most adequately described in terms of SU(2) and SU(3) bosonic coherent states, respectively.
Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence
NASA Astrophysics Data System (ADS)
Napoli, Carmine; Bromley, Thomas R.; Cianciaruso, Marco; Piani, Marco; Johnston, Nathaniel; Adesso, Gerardo
2016-04-01
Quantifying coherence is an essential endeavor for both quantum foundations and quantum technologies. Here, the robustness of coherence is defined and proven to be a full monotone in the context of the recently introduced resource theories of quantum coherence. The measure is shown to be observable, as it can be recast as the expectation value of a coherence witness operator for any quantum state. The robustness of coherence is evaluated analytically on relevant classes of states, and an efficient semidefinite program that computes it on general states is given. An operational interpretation is finally provided: the robustness of coherence quantifies the advantage enabled by a quantum state in a phase discrimination task.
Quantum coherence in semiconductor nanostructures for improved lasers and detectors.
Chow, Weng Wah Dr.; Lyo, Sungkwun Kenneth; Cederberg, Jeffrey George; Modine, Normand Arthur; Biefeld, Robert Malcolm
2006-02-01
The potential for implementing quantum coherence in semiconductor self-assembled quantum dots has been investigated theoretically and experimentally. Theoretical modeling suggests that coherent dynamics should be possible in self-assembled quantum dots. Our experimental efforts have optimized InGaAs and InAs self-assembled quantum dots on GaAs for demonstrating coherent phenomena. Optical investigations have indicated the appropriate geometries for observing quantum coherence and the type of experiments for observing quantum coherence have been outlined. The optical investigation targeted electromagnetically induced transparency (EIT) in order to demonstrate an all optical delay line.
Mesoscopic systems: classical irreversibility and quantum coherence.
Barbara, Bernard
2012-09-28
Mesoscopic physics is a sub-discipline of condensed-matter physics that focuses on the properties of solids in a size range intermediate between bulk matter and individual atoms. In particular, it is characteristic of a domain where a certain number of interacting objects can easily be tuned between classical and quantum regimes, thus enabling studies at the border of the two. In magnetism, such a tuning was first realized with large-spin magnetic molecules called single-molecule magnets (SMMs) with archetype Mn(12)-ac. In general, the mesoscopic scale can be relatively large (e.g. micrometre-sized superconducting circuits), but, in magnetism, it is much smaller and can reach the atomic scale with rare earth (RE) ions. In all cases, it is shown how quantum relaxation can drastically reduce classical irreversibility. Taking the example of mesoscopic spin systems, the origin of irreversibility is discussed on the basis of the Landau-Zener model. A classical counterpart of this model is described enabling, in particular, intuitive understanding of most aspects of quantum spin dynamics. The spin dynamics of mesoscopic spin systems (SMM or RE systems) becomes coherent if they are well isolated. The study of the damping of their Rabi oscillations gives access to most relevant decoherence mechanisms by different environmental baths, including the electromagnetic bath of microwave excitation. This type of decoherence, clearly seen with spin systems, is easily recovered in quantum simulations. It is also observed with other types of qubits such as a single spin in a quantum dot or a superconducting loop, despite the presence of other competitive decoherence mechanisms. As in the molecular magnet V(15), the leading decoherence terms of superconducting qubits seem to be associated with a non-Markovian channel in which short-living entanglements with distributions of two-level systems (nuclear spins, impurity spins and/or charges) leading to 1/f noise induce τ(1)-like
NASA Astrophysics Data System (ADS)
Naseri, Tayebeh
2016-06-01
A new scheme for investigating electromagnetically induced grating (EIG) in the vanishing two-photon absorption condition in a three-level ladder-configuration n-doped semiconductor quantum well is presented. By applying a standing-wave field interacting with the system, the absorption and dispersion of the probe field will change with the spatial periodical modulation. It is shown that the first-order diffraction intensity sensitively depends on the intensity of coupling fields, detuning of applied laser fields and interaction length. Moreover, it can reach its maximum on varying the system parameters. A novel result shows the considerable efficiency of higher order diffractions is significantly improved via relative phase between applied laser fields. Furthermore, it is found that the intensity of the switching and coupling fields can increase the efficiency of the phase grating in the present model. Such a unique feature of the cooperative Electromagnetic Induced Grating may be extended to further develop diffraction based new photonic devices in quantum information networks and new photonic devices in all-optical switching and optical imaging.
Coherent control in simple quantum systems
NASA Technical Reports Server (NTRS)
Prants, Sergey V.
1995-01-01
Coherent dynamics of two, three, and four-level quantum systems, simultaneously driven by concurrent laser pulses of arbitrary and different forms, is treated by using a nonperturbative, group-theoretical approach. The respective evolution matrices are calculated in an explicit form. General aspects of controllability of few-level atoms by using laser fields are treated analytically.
Low-temperature thermodynamics with quantum coherence
Narasimhachar, Varun; Gour, Gilad
2015-01-01
Thermal operations are an operational model of non-equilibrium quantum thermodynamics. In the absence of coherence between energy levels, exact state transition conditions under thermal operations are known in terms of a mathematical relation called thermo-majorization. But incorporating coherence has turned out to be challenging, even under the relatively tractable model wherein all Gibbs state-preserving quantum channels are included. Here we find a mathematical generalization of thermal operations at low temperatures, ‘cooling maps', for which we derive the necessary and sufficient state transition condition. Cooling maps that saturate recently discovered bounds on coherence transfer are realizable as thermal operations, motivating us to conjecture that all cooling maps are thermal operations. Cooling maps, though a less-conservative generalization to thermal operations, are more tractable than Gibbs-preserving operations, suggesting that cooling map-like models at general temperatures could be of use in gaining insight about thermal operations. PMID:26138621
Quantum-Well Thermophotovoltaic Cells
NASA Technical Reports Server (NTRS)
Freudlich, Alex; Ignatiev, Alex
2009-01-01
Thermophotovoltaic cells containing multiple quantum wells have been invented as improved means of conversion of thermal to electrical energy. The semiconductor bandgaps of the quantum wells can be tailored to be narrower than those of prior thermophotovoltaic cells, thereby enabling the cells to convert energy from longer-wavelength photons that dominate the infrared-rich spectra of typical thermal sources with which these cells would be used. Moreover, in comparison with a conventional single-junction thermophotovoltaic cell, a cell containing multiple narrow-bandgap quantum wells according to the invention can convert energy from a wider range of wavelengths. Hence, the invention increases the achievable thermal-to-electrical energy-conversion efficiency. These thermophotovoltaic cells are expected to be especially useful for extracting electrical energy from combustion, waste-heat, and nuclear sources having temperatures in the approximate range from 1,000 to 1,500 C.
Tunable quantum well infrared detector
NASA Technical Reports Server (NTRS)
Maserjian, Joseph (Inventor)
1990-01-01
A novel infrared detector (20, 20', 20), is provided, which is characterized by photon-assisted resonant tunneling between adjacent quantum wells (22a, 22b) separated by barrier layers (28) in an intrinsic semiconductor layer (24) formed on an n.sup.+ substrate (26), wherein the resonance is electrically tunable over a wide band of wavelengths in the near to long infrared region. An n.sup.+ contacting layer (34) is formed over the intrinsic layer and the substrate is n.sup.+ doped to provide contact to the quantum wells. The detector permits fabrication of arrays (30) (one-dimensional and two-dimensional) for use in imaging and spectroscopy applications.
Coherence and measurement in quantum thermodynamics.
Kammerlander, P; Anders, J
2016-01-01
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503
Coherence and measurement in quantum thermodynamics
Kammerlander, P.; Anders, J.
2016-01-01
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503
Coherence and measurement in quantum thermodynamics
NASA Astrophysics Data System (ADS)
Kammerlander, P.; Anders, J.
2016-02-01
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.
Strong quantum coherence between Fermi liquid Mahan excitons
Paul, J.; Stevens, C. E.; Liu, C.; Dey, P.; McIntyre, C.; Turkowski, V.; Reno, J. L.; Hilton, D. J.; Karaiskaj, D.
2016-04-14
In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called “Mahan excitons.” The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the opticalmore » Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Furthermore, time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system.« less
Strong Quantum Coherence between Fermi Liquid Mahan Excitons.
Paul, J; Stevens, C E; Liu, C; Dey, P; McIntyre, C; Turkowski, V; Reno, J L; Hilton, D J; Karaiskaj, D
2016-04-15
In modulation doped quantum wells, the excitons are formed as a result of the interactions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the so-called "Mahan excitons." The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence destroyed as a result of the screening and electron-electron interactions. Surprisingly, we observe strong quantum coherence between the heavy hole and light hole excitons. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum two-dimensional Fourier transform spectra. Theoretical simulations based on the optical Bloch equations where many-body effects are included phenomenologically reproduce well the experimental spectra. Time-dependent density functional theory calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system. PMID:27127985
Quantum measurement in coherence-vector representation
NASA Astrophysics Data System (ADS)
Zhou, Tao
2016-04-01
We consider the quantum measurements on a finite quantum system in coherence-vector representation. In this representation, all the density operators of an N-level ( N ⩾ 2) quantum system constitute a convex set M (N) embedded in an ( N 2 - 1)-dimensional Euclidean space R^{N^2 - 1}, and we find that an orthogonal measurement is an ( N - 1)-dimensional projector operator on R^{N^2 - 1}. The states unchanged by an orthogonal measurement form an ( N - 1)-dimensional simplex, and in the case when N is prime or power of prime, the space of the density operator is a direct sum of ( N + 1) such simplices. The mathematical description of quantum measurement is plain in this representation, and this may have further applications in quantum information processing.
Quantum Coherence Arguments for Cosmological Scale
Lindesay, James; /SLAC
2005-05-27
Homogeneity and correlations in the observed CMB are indicative of some form of cosmological coherence in early times. Quantum coherence in the early universe would be expected to give space-like phase coherence to any effects sourced to those times. If dark energy de-coherence is assumed to occur when the rate of expansion of the relevant cosmological scale parameter in the Friedmann-Lemaitre equations is no longer supra-luminal, a critical energy density is immediately defined. It is shown that the general class of dynamical models so defined necessarily requires a spatially flat cosmology in order to be consistent with observed structure formation. The basic assumption is that the dark energy density which is fixed during de-coherence is to be identified with the cosmological constant. It is shown for the entire class of models that the expected amplitude of fluctuations driven by the dark energy de-coherence process is of the order needed to evolve into the fluctuations observed in cosmic microwave background radiation and galactic clustering. The densities involved during de-coherence which correspond to the measured dark energy density turn out to be of the electroweak symmetry restoration scale. In an inflationary cosmology, this choice of the scale parameter in the FL equations directly relates the scale of dark energy decoherence to the De Sitter scales (associated with the positive cosmological constants) at both early and late times.
Coherent versus incoherent sequential quantum measurements
Filip, Radim
2011-03-15
We compare a trade-off between knowledge and decoherence for the incoherent and coherent partial sequential compatible measurements on single-qubit systems. The individual partial measurement nondestructively monitors basis states of the system by single-qubit meter. For the same decoherence caused by this unbiased measurement, the individual coherent measurement gives more knowledge than the incoherent one. For identical sequential coherent measurements, knowledge accumulated not additively increases more slowly than for the incoherent measurements. The overall knowledge can be accumulated using an adaptive measurement strategy on the meters if the single-qubit coherence of meters is kept. On the other hand, preservation of the mutual qubit coherence between the meters necessary for the collective measurement strategy is not required. A loss of single-qubit coherence degrades the coherent measurements back to the incoherent ones. Since the decoherence caused by the measurement process is a quadratic function of knowledge extracted by the individual measurement, Zeno-like behavior can be observed for repetitive weak compatible measurements. This unconditional universal effect does not depend on any dynamics of the qubit and it is a direct consequence of optimally controlled sequential evolution of quantum information.
Quantum coherence and closed timelike curves
NASA Astrophysics Data System (ADS)
Hawking, S. W.
1995-11-01
Various calculations of the S matrix have shown that it seems to be nonunitary for interacting fields when there are closed timelike curves. It is argued that this is because there is loss of quantum coherence caused by the fact that part of the quantum state circulates on the closed timelike curves and is not measured at infinity. A prescription is given for calculating the superscattering matrix on spacetimes whose parameters can be analytically continued to obtain a Euclidean metric. It is illustrated by a discussion of a spacetime in which two disks in flat space are indentified. If the disks have an imaginary time separation, this corresponds to a heat bath. An external field interacting with the heat bath will lose quantum coherence. One can then analytically continue to an almost real separation of the disks. This will give closed timelike curves but one will still get loss of quantum coherence. A comparison is made with the work of authors who find a nonunitary S matrix. It is shown that this is because the does not factor into an S matrix and its adjoint when the spacetime does not have the property of asymptotic completeness.
Quantum State Engineering Via Coherent-State Superpositions
NASA Technical Reports Server (NTRS)
Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.
1996-01-01
The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.
Irreversible degradation of quantum coherence under relativistic motion
NASA Astrophysics Data System (ADS)
Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng
2016-06-01
We study the dynamics of quantum coherence under Unruh thermal noise and seek under which condition the coherence can be frozen in a relativistic setting. We find that the frozen condition is either (i) the initial state is prepared as an incoherence state or (ii) the detectors have no interaction with the external field. That is to say, the decoherence of the detectors' quantum state is irreversible under the influence of thermal noise induced by Unruh radiation. It is shown that quantum coherence approaches zero only in the limit of an infinite acceleration, while quantum entanglement could reduce to zero for a finite acceleration. It is also demonstrated that the robustness of quantum coherence is better than entanglement under the influence of the atom-field interaction for an extremely large acceleration. Therefore, quantum coherence is more robust than entanglement in an accelerating system and the coherence-type quantum resources are more accessible for relativistic quantum information processing tasks.
Quantum Zeno control of coherent dissociation
Khripkov, C.; Vardi, A.
2011-08-15
We study the effect of dephasing on the coherent dissociation dynamics of an atom-molecule Bose-Einstein condensate. We show that when phase-noise intensity is strong with respect to the inverse correlation time of the stimulated process, dissociation is suppressed via a Bose enhanced quantum Zeno effect. This is complementary to the quantum Zeno control of phase-diffusion in a bimodal condensate by symmetric noise [Phys. Rev. Lett. 100, 220403 (2008)] in that the controlled process here is phase formation and the required decoherence mechanism for its suppression is purely phase noise.
Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion
Romero, Elisabet; Augulis, Ramunas; Novoderezhkin, Vladimir I.; Ferretti, Marco; Thieme, Jos; Zigmantas, Donatas; van Grondelle, Rienk
2014-01-01
The crucial step in the conversion of solar to chemical energy in Photosynthesis takes place in the reaction center where the absorbed excitation energy is converted into a stable charge separated state by ultrafast electron transfer events. However, the fundamental mechanism responsible for the near unity quantum efficiency of this process is unknown. Here we elucidate the role of coherence in determining the efficiency of charge separation in the plant photosystem II reaction centre (PSII RC) by comprehensively combining experiment (two-dimensional electronic spectroscopy) and theory (Redfield theory). We reveal the presence of electronic coherence between excitons as well as between exciton and charge transfer states which we argue to be maintained by vibrational modes. Furthermore, we present evidence for the strong correlation between the degree of electronic coherence and efficient and ultrafast charge separation. We propose that this coherent mechanism will inspire the development of new energy technologies. PMID:26870153
Quantum memory with millisecond coherence in circuit QED
NASA Astrophysics Data System (ADS)
Reagor, Matthew; Pfaff, Wolfgang; Axline, Christopher; Heeres, Reinier W.; Ofek, Nissim; Sliwa, Katrina; Holland, Eric; Wang, Chen; Blumoff, Jacob; Chou, Kevin; Hatridge, Michael J.; Frunzio, Luigi; Devoret, Michel H.; Jiang, Liang; Schoelkopf, Robert J.
2016-07-01
Significant advances in coherence render superconducting quantum circuits a viable platform for fault-tolerant quantum computing. To further extend capabilities, highly coherent quantum systems could act as quantum memories for these circuits. A useful quantum memory must be rapidly addressable by Josephson-junction-based artificial atoms, while maintaining superior coherence. We demonstrate a superconducting microwave cavity architecture that is highly robust against major sources of loss that are encountered in the engineering of circuit QED systems. The architecture allows for storage of quantum superpositions in a resonator on the millisecond scale, while strong coupling between the resonator and a transmon qubit enables control, encoding, and readout at MHz rates. This extends the maximum available coherence time attainable in superconducting circuits by almost an order of magnitude compared to earlier hardware. Our design is an ideal platform for studying coherent quantum optics and marks an important step towards hardware-efficient quantum computing in Josephson-junction-based quantum circuits.
Spatially indirect excitons in coupled quantum wells
Lai, Chih-Wei Eddy
2004-03-01
Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were
Intrinsic quantum correlations of weak coherent states for quantum communication
Sua Yongmeng; Scanlon, Erin; Beaulieu, Travis; Bollen, Viktor; Lee, Kim Fook
2011-03-15
Intrinsic quantum correlations of weak coherent states are observed between two parties through a novel detection scheme, which can be used as a supplement to the existence decoy-state Bennett-Brassard 1984 protocol and the differential phase-shift quantum key distribution (DPS-QKD) protocol. In a proof-of-principle experiment, we generate bipartite correlations of weak coherent states using weak local oscillator fields in two spatially separated balanced homodyne detections. We employ a nonlinearity of postmeasurement method to obtain the bipartite correlations from two single-field interferences at individual homodyne measurements. This scheme is then used to demonstrate bits correlations between two parties over a distance of 10 km through a transmission fiber. We believe that the scheme can add another physical layer of security to these protocols for quantum key distribution.
Quantum speed limits, coherence, and asymmetry
NASA Astrophysics Data System (ADS)
Marvian, Iman; Spekkens, Robert W.; Zanardi, Paolo
2016-05-01
The resource theory of asymmetry is a framework for classifying and quantifying the symmetry-breaking properties of both states and operations relative to a given symmetry. In the special case where the symmetry is the set of translations generated by a fixed observable, asymmetry can be interpreted as coherence relative to the observable eigenbasis, and the resource theory of asymmetry provides a framework to study this notion of coherence. We here show that this notion of coherence naturally arises in the context of quantum speed limits. Indeed, the very concept of speed of evolution, i.e., the inverse of the minimum time it takes the system to evolve to another (partially) distinguishable state, is a measure of asymmetry relative to the time translations generated by the system Hamiltonian. Furthermore, the celebrated Mandelstam-Tamm and Margolus-Levitin speed limits can be interpreted as upper bounds on this measure of asymmetry by functions which are themselves measures of asymmetry in the special case of pure states. Using measures of asymmetry that are not restricted to pure states, such as the Wigner-Yanase skew information, we obtain extensions of the Mandelstam-Tamm bound which are significantly tighter in the case of mixed states. We also clarify some confusions in the literature about coherence and asymmetry, and show that measures of coherence are a proper subset of measures of asymmetry.
Quantum coherence and entanglement control for atom-cavity systems
NASA Astrophysics Data System (ADS)
Shu, Wenchong
Coherence and entanglement play a significant role in the quantum theory. Ideal quantum systems, "closed" to the outside world, remain quantum forever and thus manage to retain coherence and entanglement. Real quantum systems, however, are open to the environment and are therefore susceptible to the phenomenon of decoherence and disentanglement which are major hindrances to the effectiveness of quantum information processing tasks. In this thesis we have theoretically studied the evolution of coherence and entanglement in quantum systems coupled to various environments. We have also studied ways and means of controlling the decay of coherence and entanglement. We have studied the exact qubit entanglement dynamics of some interesting initial states coupled to a high-Q cavity containing zero photon, one photon, two photons and many photons respectively. We have found that an initially correlated environmental state can serve as an enhancer for entanglement decay or generation processes. More precisely, we have demonstrated that the degree of entanglement, including its collapse as well as its revival times, can be significantly modified by the correlated structure of the environmental modes. We have also studied dynamical decoupling (DD) technique --- a prominent strategy of controlling decoherence and preserving entanglement in open quantum systems. We have analyzed several DD control methods applied to qubit systems that can eliminate the system-environment coupling and prolong the quantum coherence time. Particularly, we have proposed a new DD sequence consisting a set of designed control operators that can universally protected an unknown qutrit state against colored phase and amplitude environment noises. In addition, in a non-Markovian regime, we have reformulated the quantum state diffusion (QSD) equation to incorporate the effect of the external control fields. Without any assumptions on the system-environment coupling and the size of environment, we have
Witnessing Quantum Coherence: from solid-state to biological systems
Li, Che-Ming; Lambert, Neill; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco
2012-01-01
Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent “quantumness” still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two “quantum witnesses” to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems. PMID:23185690
Quantum theory of optical coherence of nonstationary light in the space-frequency domain
Lahiri, Mayukh; Wolf, Emil
2010-10-15
Classical theories of coherence for statistically stationary, as well as, nonstationary optical fields are frequently discussed both in the space-time and in the space-frequency domains. However, the quantum treatment of coherence theory is generally carried out in the space-time domain. In this paper, we present a quantum-mechanical theory of first-order coherence for statistically nonstationary light in the space-frequency domain.
Quantum Well Infrared Photodetectors (QWIP)
NASA Technical Reports Server (NTRS)
Levine, B. F.
1990-01-01
There has been a lot of interest in III-V long wavelength detectors in the lambda = 8 to 12 micron spectral range as alternatives to HgCdTe. Recently high performance quantum well infrared photodetectors (QWIP) have been demonstrated. They have a responsivity of R = 1.2 A/W, and a detectivity D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at 68 K for a QWIP with a cutoff wavelength of lambda sub c = 10.7 micron and a R = 1.0 A/W, and D(exp asterisk) sub lambda = 2 times 10(exp 10) cm Hz(exp 1/2)/W at T = 77 K for lambda sub c = 8.4 micron. These detectors consist of 50 periods of molecular beam epitaxy (MBE) grown layers doped n = 1 times 10(exp 18)cm(exp -3) having GaAs quantum well widths of 40 A and barrier widths of 500 A of Al sub x Ga sub 1-x As. Due to the well-established GaAs growth and processing techniques, these detectors have the potential for large, highly uniform, low cost, high performance arrays as well as monolithic integration with GaAs electronics, high speed and radiation hardness. Latest results on the transport physics, device performance and arrays are discussed.
Quantum well infrared photodetector FPA
NASA Astrophysics Data System (ADS)
Kozlowski, L.
1994-03-01
The AT&T/Rockwell team met all the objectives of this collaborative program; AT&T supplied the QWIP detector arrays and Rockwell subsequently fabricated hybrid focal plane arrays using available high performance CMOS multiplexers, tested the hybrids, performed breadboard imaging demonstrations and delivered several hybrid FPA's. Eighteen hybrids were fabricated and evaluated. The collaboration yielded significant improvements in QWIP FPA performance and reliability and many milestones including: first BLIP LWIR FPA sensitivity demonstration at low photon backgrounds (less than 1 x 10(exp 12) photons/sq cm-sec) with the GaAs-based quantum well infrared photodetector (QWIP) technology, high LWIR FPA pixel operability; NE Delta T's as low as 5 mK at LWIR imaging backgrounds at f/1.4 and temperatures consistent with mechanical coolers (approx. 65K), increased coupling efficiency by over an order of magnitude; achieved effective quantum efficiency of approx. 10% with low crosstalk; effective quantum efficiencies of up to 30% under flood illumination, though with high crosstalk; mean D* of 1 x10(exp 14) cm-Hz(exp 1/2)/W at 3.0 x 10(exp 9) photons/sq cm-sec background at 32.5K operating temperature with greater than 98% operability; maximum temperature for 9.5 microns m FPA BLIP sensitivity as high as 62K; excellent hybrid reliability by mechanically thinning the QWIP; and responsivity nonuniformity less than 3% rms, thus enabling greater than 83 dB dynamic range.
Robust Multiple-Range Coherent Quantum State Transfer
NASA Astrophysics Data System (ADS)
Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng
2016-07-01
We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise.
Robust Multiple-Range Coherent Quantum State Transfer.
Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng
2016-01-01
We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise. PMID:27364891
Robust Multiple-Range Coherent Quantum State Transfer
Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng
2016-01-01
We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise. PMID:27364891
Observable measure of quantum coherence in finite dimensional systems.
Girolami, Davide
2014-10-24
Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes. PMID:25379903
Versluis, J H; Kimel, A V; Gridnev, V N; Yakovlev, D R; Karczewski, G; Wojtowicz, T; Kossut, J; Kirilyuk, A; Rasing, Th
2010-03-24
Two temporally non-overlapping linearly cross-polarized 140 fs laser pulses are shown to control the spin polarization in a three-level system. Simultaneous excitation of the two excited states triggers quantum beatings originating from the interference of the wavefunctions corresponding to different spin sublevels of the states. Although the beatings are not seen in the spin densities of the excited states they are clearly observed in the magneto-optical Kerr effect. An analytical expression for the description of the beatings is obtained. Experimental results are in good agreement with theoretical predictions and demonstrate the control of beatings with attosecond resolution. PMID:21389474
Kolarczik, Mirco; Owschimikow, Nina; Korn, Julian; Lingnau, Benjamin; Kaptan, Yücel; Bimberg, Dieter; Schöll, Eckehard; Lüdge, Kathy; Woggon, Ulrike
2013-01-01
Coherence in light–matter interaction is a necessary ingredient if light is used to control the quantum state of a material system. Coherent effects are firmly associated with isolated systems kept at low temperature. The exceedingly fast dephasing in condensed matter environments, in particular at elevated temperatures, may well erase all coherent information in the material at timescales shorter than a laser excitation pulse. Here we show for an ensemble of semiconductor quantum dots that even in the presence of ultrafast dephasing, for suitably designed condensed matter systems quantum-coherent effects are robust enough to be observable at room temperature. Our conclusions are based on an analysis of the reshaping an ultrafast laser pulse undergoes on propagation through a semiconductor quantum dot amplifier. We show that this pulse modification contains the signature of coherent light–matter interaction and can be controlled by adjusting the population of the quantum dots via electrical injection. PMID:24336000
NASA Astrophysics Data System (ADS)
Benatti, Fabio; Floreanini, Roberto; Scholes, Greg
2012-08-01
The last years have witnessed fast growing developments in the use of quantum mechanics in technology-oriented and information-related fields, especially in metrology, in the developments of nano-devices and in understanding highly efficient transport processes. The consequent theoretical and experimental outcomes are now driving new experimental tests of quantum mechanical effects with unprecedented accuracies that carry with themselves the concrete possibility of novel technological spin-offs. Indeed, the manifold advances in quantum optics, atom and ion manipulations, spintronics and nano-technologies are allowing direct experimental verifications of new ideas and their applications to a large variety of fields. All of these activities have revitalized interest in quantum mechanics and created a unique framework in which theoretical and experimental physics have become fruitfully tangled with information theory, computer, material and life sciences. This special issue aims to provide an overview of what is currently being pursued in the field and of what kind of theoretical reference frame is being developed together with the experimental and theoretical results. It consists of three sections: 1. Memory effects in quantum dynamics and quantum channels 2. Driven open quantum systems 3. Experiments concerning quantum coherence and/or decoherence The first two sections are theoretical and concerned with open quantum systems. In all of the above mentioned topics, the presence of an external environment needs to be taken into account, possibly in the presence of external controls and/or forcing, leading to driven open quantum systems. The open system paradigm has proven to be central in the analysis and understanding of many basic issues of quantum mechanics, such as the measurement problem, quantum communication and coherence, as well as for an ever growing number of applications. The theory is, however, well-settled only when the so-called Markovian or memoryless
Excitons in asymmetric quantum wells
NASA Astrophysics Data System (ADS)
Grigoryev, P. S.; Kurdyubov, A. S.; Kuznetsova, M. S.; Ignatiev, I. V.; Efimov, Yu. P.; Eliseev, S. A.; Petrov, V. V.; Lovtcius, V. A.; Shapochkin, P. Yu.
2016-09-01
Resonance dielectric response of excitons is studied for the high-quality InGaAs/GaAs heterostructures with wide asymmetric quantum wells (QWs). To highlight effects of the QW asymmetry, we have grown and studied several heterostructures with nominally square QWs as well as with triangle-like QWs. Several quantum confined exciton states are experimentally observed as narrow exciton resonances. A standard approach for the phenomenological analysis of the profiles is generalized by introducing different phase shifts for the light waves reflected from the QWs at different exciton resonances. Good agreement of the phenomenological fit to the experimentally observed exciton spectra for high-quality structures allowed us to reliably obtain parameters of the exciton resonances: the exciton transition energies, the radiative broadenings, and the phase shifts. A direct numerical solution of the Schrödinger equation for the heavy-hole excitons in asymmetric QWs is used for microscopic modeling of the exciton resonances. Remarkable agreement with the experiment is achieved when the effect of indium segregation is taken into account. The segregation results in a modification of the potential profile, in particular, in an asymmetry of the nominally square QWs.
Transient coherent nonlinear spectroscopy of single quantum dots.
Langbein, Wolfgang; Patton, Brian
2007-07-25
We review our recent advances in four-wave mixing spectroscopy of single semiconductor quantum dots using heterodyne spectral interferometry, a novel implementation of transient nonlinear spectroscopy allowing the study of the transient nonlinear polarization emitted from individual electronic transitions in both amplitude and phase. We present experiments on individual excitonic transitions localized in monolayer islands of GaAs/AlAs quantum wells and in self-assembled CdTe/ZnTe quantum dots. We investigate the formation of the photon echo from individual transitions, both with increasing number of transitions in the ensemble, and in the presence of temporal jitter of the energy of a single transition. The detection of amplitude and phase of the signal allows the implementation of a two-dimensional femtosecond spectroscopy, in which mutual coherent coupling of single quantum dot states can observed and quantified. PMID:21483055
External cavity coherent quantum cascade laser array
NASA Astrophysics Data System (ADS)
Vallon, Raphael; Parvitte, Bertrand; Bizet, Laurent; De Naurois, Guy Mael; Simozrag, Bouzid; Maisons, Grégory; Carras, Mathieu; Zeninari, Virginie
2016-05-01
We report on the development of a coherent quantum cascade laser array that consists in the fabrication of multi-stripes array. The main characteristic of this kind of source is that an anti-symmetrical signature with two lobes is obtained in the far field. Taking advantage of this drawback, a grating is aligned with one lobe of the source. Thus a Littrow configuration is designed that permit to obtain a wide tunability of the source. First results are presented and a preliminary test of the source is realized by measurements on acetone.
Silicon Germanium Quantum Well Thermoelectrics
NASA Astrophysics Data System (ADS)
Davidson, Anthony Lee, III
Today's growing energy demands require new technologies to provide high efficiency clean energy. Thermoelectrics that convert heat to electrical energy directly can provide a method for the automobile industry to recover waste heat to power vehicle electronics, hence improving fuel economy. If large enough efficiencies can be obtained then the internal combustion engine could even be replaced. Exhaust temperature for automotive application range from 400 to 800 K. In this temperature range the current state of the art materials are bulk Si1-xGex alloys. By alternating layers of Si and Si1-xGex alloy device performance may be enhanced through quantum well effects and variations in material thermal properties. In this study, superlattices designed for in-plane operation with varying period and crystallinity are examined to determine the effect on electrical and thermal properties. In-plane electrical resistivity of these materials was found to be below the bulk material at a similar doping at room temperature, confirming the role of quantum wells in electron transport. As period is reduced in the structures boundary scattering limits electron propagation leading to increased resistivity. The Seebeck coefficient measured at room temperature is higher than the bulk material, additionally lending proof to the effects of quantum wells. When examining cross-plane operation the low doping in the Si layers of the device produce high resistivity resulting from boundary scattering. Thermal conductivity was measured from 77 K up to 674 K and shows little variation due to periodicity and temperature, however an order of magnitude reduction over bulk Si1-xGex is shown in all samples. A model is developed that suggests a combination of phonon dispersion effects and strong boundary scattering. Further study of the phonon dispersion effects was achieved through the examination of the heat capacity by combining thermal diffusivity with thermal conductivity. All superlattices show a
Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence.
Napoli, Carmine; Bromley, Thomas R; Cianciaruso, Marco; Piani, Marco; Johnston, Nathaniel; Adesso, Gerardo
2016-04-15
Quantifying coherence is an essential endeavor for both quantum foundations and quantum technologies. Here, the robustness of coherence is defined and proven to be a full monotone in the context of the recently introduced resource theories of quantum coherence. The measure is shown to be observable, as it can be recast as the expectation value of a coherence witness operator for any quantum state. The robustness of coherence is evaluated analytically on relevant classes of states, and an efficient semidefinite program that computes it on general states is given. An operational interpretation is finally provided: the robustness of coherence quantifies the advantage enabled by a quantum state in a phase discrimination task. PMID:27127946
Ballistic effects and intersubband excitations in multiple quantum well structures
NASA Astrophysics Data System (ADS)
Schneider, H.; Schönbein, C.; Schwarz, K.; Walther, M.
1998-07-01
We have studied the transport properties of electrons in asymmetric quantum well structures upon far-infrared optical excitation of carriers from the lowest subband into the continuum. Here the photocurrent consists of a coherent component originating from ballistic transport upon excitation, and of an incoherent part associated with asymmetric diffusion and relaxation processes, which occur after the coherence has been lost. The signature of the coherent contribution is provided by a sign reversal of the photocurrent upon changing the excitation energy. This sign reversal arises from the energy-dependent interference between continuum states, which have a twofold degeneracy characterized by positive and negative momenta. The interference effect also allows us to estimate the coherent mean free path ( >20 nm at 77K). In specifically designed device structures, we use both the coherent and incoherent components in order to achieve a pronounced photovoltaic infrared response for detector applications.
Blind Quantum Computing with Weak Coherent Pulses
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Kashefi, Elham; Leverrier, Anthony
2012-05-01
The universal blind quantum computation (UBQC) protocol [A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual IEEE Symposiumon Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, USA, 2009), pp. 517-526.] allows a client to perform quantum computation on a remote server. In an ideal setting, perfect privacy is guaranteed if the client is capable of producing specific, randomly chosen single qubit states. While from a theoretical point of view, this may constitute the lowest possible quantum requirement, from a pragmatic point of view, generation of such states to be sent along long distances can never be achieved perfectly. We introduce the concept of ɛ blindness for UBQC, in analogy to the concept of ɛ security developed for other cryptographic protocols, allowing us to characterize the robustness and security properties of the protocol under possible imperfections. We also present a remote blind single qubit preparation protocol with weak coherent pulses for the client to prepare, in a delegated fashion, quantum states arbitrarily close to perfect random single qubit states. This allows us to efficiently achieve ɛ-blind UBQC for any ɛ>0, even if the channel between the client and the server is arbitrarily lossy.
Effects of quantum coherence in metalloprotein electron transfer
NASA Astrophysics Data System (ADS)
Dorner, Ross; Goold, John; Heaney, Libby; Farrow, Tristan; Vedral, Vlatko
2012-09-01
Many intramolecular electron transfer (ET) reactions in biology are mediated by metal centers in proteins. This process is commonly described by a model of diffusive hopping according to the semiclassical theories of Marcus and Hopfield. However, recent studies have raised the possibility that nontrivial quantum mechanical effects play a functioning role in certain biomolecular processes. Here, we investigate the potential effects of quantum coherence in biological ET by extending the semiclassical model to allow for the possibility of quantum coherent phenomena using a quantum master equation based on the Holstein Hamiltonian. We test the model on the structurally defined chain of seven iron-sulfur clusters in nicotinamide adenine dinucleotide plus hydrogen:ubiquinone oxidoreductase (complex I), a crucial respiratory enzyme and one of the longest chains of metal centers in biology. Using experimental parameters where possible, we find that, in limited circumstances, a small quantum mechanical contribution can provide a marked increase in the ET rate above the semiclassical diffusive-hopping rate. Under typical biological conditions, our model reduces to well-known diffusive behavior.
Ultra Thin Quantum Well Materials
Dr Saeid Ghamaty
2012-08-16
This project has enabled Hi-Z technology Inc. (Hi-Z) to understand how to improve the thermoelectric properties of Si/SiGe Quantum Well Thermoelectric Materials. The research that was completed under this project has enabled Hi-Z Technology, Inc. (Hi-Z) to satisfy the project goal to understand how to improve thermoelectric conversion efficiency and reduce costs by fabricating ultra thin Si/SiGe quantum well (QW) materials and measuring their properties. In addition, Hi-Z gained critical new understanding on how thin film fabrication increases the silicon substrate's electrical conductivity, which is important new knowledge to develop critical material fabrication parameters. QW materials are constructed with alternate layers of an electrical conductor, SiGe and an electrical insulator, Si. Film thicknesses were varied, ranging from 2nm to 10nm where 10 nm was the original film thickness prior to this work. The optimum performance was determined at a Si and SiGe thickness of 4nm for an electrical current and heat flow parallel to the films, which was an important conclusion of this work. Essential new information was obtained on how the Si substrate electrical conductivity increases by up to an order of magnitude upon deposition of QW films. Test measurements and calculations are accurate and include both the quantum well and the substrate. The large increase in substrate electrical conductivity means that a larger portion of the electrical current passes through the substrate. The silicon substrate's increased electrical conductivity is due to inherent impurities and thermal donors which are activated during both molecular beam epitaxy and sputtering deposition of QW materials. Hi-Z's forward looking cost estimations based on future high performance QW modules, in which the best Seebeck coefficient and electrical resistivity are taken from separate samples predict that the electricity cost produced with a QW module could be achieved at <$0.35/W. This price would
Quantum well earth science testbed
NASA Astrophysics Data System (ADS)
Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Hill, Cory J.; Mumolo, Jason M.; Eng, Bjorn T.
2009-11-01
A thermal hyperspectral imager is underdevelopment which utilizes the compact Dyson optical configuration and the broadband (8-12 μm) quantum well infrared photodetector (QWIP) focal plane array technology. The Dyson configuration uses a single monolithic prism-like grating design which allows for a high throughput instrument (F/1.6) with minimal ghosting, stray light and large swath width. The configuration has the potential to be the optimal high resolution imaging spectroscopy solution for aerial and space remote sensing applications due to its small form factor and relatively low power requirements. The planned instrument specifications are discussed as well as thermal design trade-offs. The current design uses a single high power cryocooler which allows operation of the QWIP at 40 K with adequate temperature stability. Calibration testing results (noise equivalent temperature difference, spectral linearity and spectral bandwidth) and laboratory emissivity plots from samples are shown using an operational testbed unit which has similar specifications as the final airborne system. Field testing of the testbed unit was performed to acquire plots of emissivity for various known standard minerals (quartz, opal, alunite). A comparison is made using data from the ASTER spectral library. The current single band (8-9 μm) testbed utilizes the high uniformity and operability of the QWIP array and shows excellent laboratory and field spectroscopic results.
Quantum Coherence, Time-Translation Symmetry, and Thermodynamics
NASA Astrophysics Data System (ADS)
Lostaglio, Matteo; Korzekwa, Kamil; Jennings, David; Rudolph, Terry
2015-04-01
The first law of thermodynamics imposes not just a constraint on the energy content of systems in extreme quantum regimes but also symmetry constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermomajorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.
Arbitrated Quantum Signature Scheme with Continuous-Variable Coherent States
NASA Astrophysics Data System (ADS)
Guo, Ying; Feng, Yanyan; Huang, Dazu; Shi, Jinjing
2016-04-01
Motivated by the revealing features of the continuous-variable (CV) quantum cryptography, we suggest an arbitrated quantum signature (AQS) protocol with CV coherent states. It involves three participants, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie who is trustworthy by Alice and Bob. Three phases initializing phase, signing phase and verifying phase are included in our protocol. The security of the signature scheme is guaranteed by the generation of the shared keys via the CV-based quantum key distribution (CV-QKD) and the implementation process of the CV-based quantum teleportation as well. Security analysis demonstrates that the signature can be neither forged by anyone nor disavowed by the receiver and signer. Moreover, the authenticity and integrality of the transmitted messages can be ensured. The paper shows that a potential high-speed quantum signature scheme with high detection efficiency and repetition rate can be realized when compared to the discrete-variable (DV) quantum signature scheme attributing to the well characteristics of CV-QKD.
Coherent control of diamond defects for quantum information science and quantum sensing
NASA Astrophysics Data System (ADS)
Maurer, Peter
Quantum mechanics, arguably one of the greatest achievements of modern physics, has not only fundamentally changed our understanding of nature but is also taking an ever increasing role in engineering. Today, the control of quantum systems has already had a far-reaching impact on time and frequency metrology. By gaining further control over a large variety of different quantum systems, many potential applications are emerging. Those applications range from the development of quantum sensors and new quantum metrological approaches to the realization of quantum information processors and quantum networks. Unfortunately most quantum systems are very fragile objects that require tremendous experimental effort to avoid dephasing. Being able to control the interaction between a quantum system with its local environment embodies therefore an important aspect for application and hence is at the focus of this thesis. Nitrogen Vacancy (NV) color centers in diamond have recently attracted attention as a room temperature solid state spin system that expresses long coherence times. The electronic spin associated with NV centers can be efficiently manipulated, initialized and readout using microwave and optical techniques. Inspired by these extraordinary properties, much effort has been dedicated to use NV centers as a building block for scalable room temperature quantum information processing and quantum communication as well as a quantum sensing. In the first part of this thesis we demonstrate that by decoupling the spin from the local environment the coherence time of a NV quantum register can be extended by three order of magnitudes. Employing a novel dissipative mechanism in combination with dynamical decoupling, memory times exceeding one second are observed. The second part shows that, based on quantum control, NV centers in nano-diamonds provide a nanoscale temperature sensor with unprecedented accuracy enabling local temperature measurements in living biological cells
Certifying the quantumness of a generalized coherent control scenario
NASA Astrophysics Data System (ADS)
Scholak, Torsten; Brumer, Paul
2014-11-01
We consider the role of quantum mechanics in a specific coherent control scenario, designing a "coherent control interferometer" as the essential tool that links coherent control to quantum fundamentals. Building upon this allows us to rigorously display the genuinely quantum nature of a generalized weak-field coherent control scenario (utilizing 1 vs. 2 photon excitation) via a Bell-CHSH test. Specifically, we propose an implementation of "quantum delayed-choice" in a bichromatic alkali atom photoionization experiment. The experimenter can choose between two complementary situations, which are characterized by a random photoelectron spin polarization with particle-like behavior on the one hand, and by spin controllability and wave-like nature on the other. Because these two choices are conditioned coherently on states of the driving fields, it becomes physically unknowable, prior to measurement, whether there is control over the spin or not.
Certifying the quantumness of a generalized coherent control scenario.
Scholak, Torsten; Brumer, Paul
2014-11-28
We consider the role of quantum mechanics in a specific coherent control scenario, designing a "coherent control interferometer" as the essential tool that links coherent control to quantum fundamentals. Building upon this allows us to rigorously display the genuinely quantum nature of a generalized weak-field coherent control scenario (utilizing 1 vs. 2 photon excitation) via a Bell-CHSH test. Specifically, we propose an implementation of "quantum delayed-choice" in a bichromatic alkali atom photoionization experiment. The experimenter can choose between two complementary situations, which are characterized by a random photoelectron spin polarization with particle-like behavior on the one hand, and by spin controllability and wave-like nature on the other. Because these two choices are conditioned coherently on states of the driving fields, it becomes physically unknowable, prior to measurement, whether there is control over the spin or not. PMID:25429946
Certifying the quantumness of a generalized coherent control scenario
Scholak, Torsten Brumer, Paul
2014-11-28
We consider the role of quantum mechanics in a specific coherent control scenario, designing a “coherent control interferometer” as the essential tool that links coherent control to quantum fundamentals. Building upon this allows us to rigorously display the genuinely quantum nature of a generalized weak-field coherent control scenario (utilizing 1 vs. 2 photon excitation) via a Bell-CHSH test. Specifically, we propose an implementation of “quantum delayed-choice” in a bichromatic alkali atom photoionization experiment. The experimenter can choose between two complementary situations, which are characterized by a random photoelectron spin polarization with particle-like behavior on the one hand, and by spin controllability and wave-like nature on the other. Because these two choices are conditioned coherently on states of the driving fields, it becomes physically unknowable, prior to measurement, whether there is control over the spin or not.
Coherent and passive one dimensional quantum memory
NASA Astrophysics Data System (ADS)
Ping, Yuting; Jefferson, John H.; Lovett, Brendon W.
2014-10-01
We show that the state of a flying qubit may be transferred to a chain of identical, (near) ferromagnetically polarized, but non-interacting, static spin-\\frac{1}{2} particles in a passive way. During this process the flying qubit is coherently polarized, emerging in the direction of the majority static spins. We conjecture that this process is reversible for any number of flying qubits injected sequentially in an arbitrary superposition state, proving this explicitly for an arbitrary state of one and two flying qubits. We also find a special case in which we are able to prove the conjecture for an arbitrary number of qubits. Our architecture thus has the potential to be exploited as a passive quantum memory to encode the flying qubits without the necessity of resetting between successive encoding operations. We also illustrate that the quantum information may be spread over many static spins in the memory chain, making the mechanism resistant to spin decoherence and other imperfections. We discuss implementing the memory system with trapped bosonic atoms, controlled by a spatial light modulator.
Quantum dot spin coherence governed by a strained nuclear environment.
Stockill, R; Le Gall, C; Matthiesen, C; Huthmacher, L; Clarke, E; Hugues, M; Atatüre, M
2016-01-01
The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin-photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity. PMID:27615704
Frobenius-norm-based measures of quantum coherence and asymmetry.
Yao, Yao; Dong, G H; Xiao, Xing; Sun, C P
2016-01-01
We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective transformations. In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance. PMID:27558009
Frobenius-norm-based measures of quantum coherence and asymmetry
Yao, Yao; Dong, G. H.; Xiao, Xing; Sun, C. P.
2016-01-01
We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective transformations. In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance. PMID:27558009
Quantum tunneling switch in a planar four-well system
NASA Astrophysics Data System (ADS)
Lu, Gengbiao; Hai, Wenhua
2011-05-01
We investigate the tunneling dynamics of a single atom in a planar four-well potential driven by a high-frequency ac field. The quasienergy spectrum exhibits anticrossing and crossing, which are related to selective coherent destruction of tunneling (CDT) with several selectable directions. By using the CDTs of different directions, the switchlike effect is shown for the six tunneling pathways among the four wells. Applying the present results, we suggest a scheme for designing a single-atom quantum motor with the driving field as a quantum starter.
Quantum tunneling switch in a planar four-well system
Lu Gengbiao; Hai Wenhua
2011-05-15
We investigate the tunneling dynamics of a single atom in a planar four-well potential driven by a high-frequency ac field. The quasienergy spectrum exhibits anticrossing and crossing, which are related to selective coherent destruction of tunneling (CDT) with several selectable directions. By using the CDTs of different directions, the switchlike effect is shown for the six tunneling pathways among the four wells. Applying the present results, we suggest a scheme for designing a single-atom quantum motor with the driving field as a quantum starter.
Measuring finite quantum geometries via quasi-coherent states
NASA Astrophysics Data System (ADS)
Schneiderbauer, Lukas; Steinacker, Harold C.
2016-07-01
We develop a systematic approach to determine and measure numerically the geometry of generic quantum or ‘fuzzy’ geometries realized by a set of finite-dimensional Hermitian matrices. The method is designed to recover the semi-classical limit of quantized symplectic spaces embedded in {{{R}}}d including the well-known examples of fuzzy spaces, but it applies much more generally. The central tool is provided by quasi-coherent states, which are defined as ground states of Laplace- or Dirac operators corresponding to localized point branes in target space. The displacement energy of these quasi-coherent states is used to extract the local dimension and tangent space of the semi-classical geometry, and provides a measure for the quality and self-consistency of the semi-classical approximation. The method is discussed and tested with various examples, and implemented in an open-source Mathematica package.
Quantum coherence and uncertainty in the anisotropic XY chain
NASA Astrophysics Data System (ADS)
Karpat, G.; ćakmak, B.; Fanchini, F. F.
2014-09-01
We explore the local quantum coherence and the local quantum uncertainty, based on Wigner-Yanase skew information, in the ground state of the anisotropic spin-1/2 XY chain in a transverse magnetic field. We show that the skew information, as a figure of merit, supplies the necessary information to reveal the occurrence of the second-order phase transition and the completely factorized ground state in the XY model. Additionally, in the same context, we also discuss the usefulness of a simple experimentally friendly lower bound of local quantum coherence. Furthermore, we demonstrate how the connection between the appearance of nonanalyticities in the local quantum uncertainty of the ground state and the quantum phase transitions does not hold in general, by providing explicit examples of the situation. Lastly, we discuss the ability of the local quantum coherence to accurately estimate the critical point of the phase transition, and we investigate the robustness of the factorization phenomenon at low temperatures.
Manipulating single electron spins and coherence in quantum dots
NASA Astrophysics Data System (ADS)
Awschalom, David
2008-05-01
The non-destructive detection of a single electron spin in a quantum dot (QD) is demonstrated using a time- averaged magneto-optical Kerr rotation measurementootnotetextJ. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 314, 1916 (2006).. This technique provides a means to directly probe the spin off- resonance, thus minimally disturbing the system. Furthermore, the ability to sequentially initialize, manipulate, and read out the state of a qubit, such as an electron spin in a quantum dot, is necessary for virtually any scheme for quantum information processing. In addition to the time-averaged measurements, we have extended the single dot KR technique into the time domain with pulsed pump and probe lasers, allowing the observation of the coherent evolution of an electron spin stateootnotetextM. H. Mikkelsen, J. Berezovsky, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Nature Physics 3, 770 (2007).. The dot is formed by interface fluctuations of a GaAs quantum well and embedded in a diode structure to allow controllable gating/charging of the QD. To enhance the small single spin signal, the QD is positioned within a vertical optical cavity. Observations of coherent single spin precession in an applied magnetic field allow a direct measurement of the electron g-factor and transverse spin lifetime. These measurements reveal information about the relevant spin decoherence mechanisms, while also providing a sensitive probe of the local nuclear spin environment. Finally, we have recently eveloped a scheme for high speed all-optical manipulation of the spin state that enables multiple operations within the coherence timeootnotetextJ. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, accepted for publication (2008).. The results represent progress toward the control and coupling of single spins and photons for quantum information processingootnotetextS. Ghosh, W.H. Wang, F. M. Mendoza, R. C
Quantum walk coherences on a dynamical percolation graph
NASA Astrophysics Data System (ADS)
Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine
2015-08-01
Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.
Editorial . Quantum fluctuations and coherence in optical and atomic structures
NASA Astrophysics Data System (ADS)
Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna
2003-03-01
From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics
Quantum coherence in a coupled-cavity array
NASA Astrophysics Data System (ADS)
Cao, De-Wei; Zhang, Yixin; Wang, Jicheng; Hu, Zheng-Da
2016-05-01
The dynamical properties of quantum coherence in the system of two-coupled-cavities, each of which resonantly interacts with a two-level atom, is investigated via the relative entropy measure. We focus on the coherences for the atom-atom, atom-cavity and cavity-cavity subsystems and find that the dynamical behaviors of these coherences depend largely on the cavity-cavity coupling, which may indicate the Mott insulator-superfluid transition in the thermodynamic limit. We also study the influences of the initial cavity-cavity correlation on the coherences and show that the initial correlation of the cavity-cavity subsystem can enhance the revival ability for the atom-atom and cavity-cavity coherences while reduce that for the atom-cavity coherence. Besides, we demonstrate the qualitative difference of dynamics between coherence and entanglement. Finally, the influences of dissipations including cavity losses and atomic decays on the coherence are explored.
Atomtronics with holes: Coherent transport of an empty site in a triple-well potential
Benseny, A.; Fernandez-Vidal, S.; Baguda, J.; Corbalan, R.; Picon, A.; Mompart, J.; Roso, L.; Birkl, G.
2010-07-15
We investigate arrays of three traps with two fermionic or bosonic atoms. The tunneling interaction between neighboring sites is used to prepare multisite dark states for the empty site (i.e., the hole) which allows for the coherent manipulation of its external degrees of freedom. By means of an ab initio integration of the Schroedinger equation, we investigate the adiabatic transport of a hole between the two extreme traps of a triple-well potential. Furthermore, a quantum-trajectory approach based on the de Broglie-Bohm formulation of quantum mechanics is used to get physical insight into the transport process. Finally, we discuss the use of the hole for the construction of a coherent single hole diode and a coherent single hole transistor.
Türkpençe, Deniz; Müstecaplıoğlu, Özgür E
2016-01-01
We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], to the case of N+1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies. PMID:26871061
NASA Astrophysics Data System (ADS)
Türkpençe, Deniz; Müstecaplıoǧlu, Özgür E.
2016-01-01
We investigate scaling of work and efficiency of a photonic Carnot engine with a number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther [Science 299, 862 (2003), 10.1126/science.1078955], to the case of N +1 level atoms with N coherent lower levels. We take into account atomic relaxation and dephasing as well as the cavity loss and derive a coarse-grained master equation to evaluate the work and efficiency analytically. Analytical results are verified by microscopic numerical examination of the thermalization dynamics. We find that efficiency and work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. We consider typical modern resonator set ups and conclude that multilevel phaseonium fuel can be utilized to overcome the decoherence in available systems. Preparation of the atomic coherences and the associated cost of coherence are analyzed and the engine operation within the bounds of the second law is verified. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.
Coherence susceptibility as a probe of quantum phase transitions
NASA Astrophysics Data System (ADS)
Chen, Jin-Jun; Cui, Jian; Zhang, Yu-Ran; Fan, Heng
2016-08-01
We introduce a coherence susceptibility method, based on the fact that it signals quantum fluctuations, for identifying quantum phase transitions, which are induced by quantum fluctuations. This method requires no prior knowledge of order parameter, and there is no need for careful considerations concerning the choice of a bipartition of the system. It can identify different types of quantum phase transition points exactly. At finite temperatures, where quantum criticality is influenced by thermal fluctuations, our method can pinpoint the temperature frame of quantum criticality, which perfectly coincides with recent experiments.
Bound states in continuum: Quantum dots in a quantum well
NASA Astrophysics Data System (ADS)
Prodanović, Nikola; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan; Harrison, Paul
2013-11-01
We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.
General framework for quantum macroscopicity in terms of coherence
NASA Astrophysics Data System (ADS)
Yadin, Benjamin; Vedral, Vlatko
2016-02-01
We propose a universal language to assess macroscopic quantumness in terms of coherence, with a set of conditions that should be satisfied by any measure of macroscopic coherence. We link the framework to the resource theory of asymmetry. We show that the quantum Fisher information gives a good measure of macroscopic coherence, enabling a rigorous justification of a previously proposed measure of macroscopicity. This picture lets us draw connections between different measures of macroscopicity and evaluate them; we show that another widely studied measure fails one of our criteria.
Coherent States of Quantum Free Particle on the Spherical Space
NASA Astrophysics Data System (ADS)
Dehdashti, Shahram; Roknizadeh, Rasoul; Mahdifar, Ali; Chen, Hongsheng
2016-01-01
In this paper, we study the quantum free particle on the spherical space by applying da costa approach for quantum particle on the curved space. We obtain the discrete energy eigenvalues and associated normalized eigenfunctions of the free particle on the sphere. In addition, we introduce the Gazeau-Klauder coherent states of free particle on the sphere. Then, the Gaussian coherent states is defined, which is used to describe the localized particle on the spherical space. Finally, we study the relation between the f-deformed coherent states and Gazeau-Klauder ones for this system.
Quantum dots as active material for quantum cascade lasers: comparison to quantum wells
NASA Astrophysics Data System (ADS)
Michael, Stephan; Chow, Weng W.; Schneider, Hans Christian
2016-03-01
We review a microscopic laser theory for quantum dots as active material for quantum cascade lasers, in which carrier collisions are treated at the level of quantum kinetic equations. The computed characteristics of such a quantum-dot active material are compared to a state-of-the-art quantum-well quantum cascade laser. We find that the current requirement to achieve a comparable gain-length product is reduced compared to that of the quantum-well quantum cascade laser.
Coherent quantum depletion of an interacting atom condensate
Kira, M.
2015-01-01
Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose–Einstein condensates (BECs), strong atom–atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom–atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044
Coherent quantum depletion of an interacting atom condensate.
Kira, M
2015-01-01
Sufficiently strong interactions promote coherent quantum transitions in spite of thermalization and losses, which are the adversaries of delicate effects such as reversibility and correlations. In atomic Bose-Einstein condensates (BECs), strong atom-atom interactions can eject atoms from the BEC to the normal component, yielding quantum depletion instead of temperature depletion. A recent experiment has already been verified to overcome losses. Here I show that it also achieves coherent quantum-depletion dynamics in a BEC swept fast enough from weak to strong atom-atom interactions. The elementary coherent process first excites the normal component into a liquid state that evolves into a spherical shell state, where the atom occupation peaks at a finite momentum to shield 50% of the BEC atoms from annihilation. The identified coherent processes resemble ultrafast semiconductor excitations expanding the scope of BEC explorations to many-body non-equilibrium studies. PMID:25767044
Focus on coherent control of complex quantum systems
NASA Astrophysics Data System (ADS)
Whaley, Birgitta; Milburn, Gerard
2015-10-01
The rapid growth of quantum information sciences over the past few decades has fueled a corresponding rise in high profile applications in fields such as metrology, sensors, spintronics, and attosecond dynamics, in addition to quantum information processing. Realizing this potential of today’s quantum science and the novel technologies based on this requires a high degree of coherent control of quantum systems. While early efforts in systematizing methods for high fidelity quantum control focused on isolated or closed quantum systems, recent advances in experimental design, measurement and monitoring, have stimulated both need and interest in the control of complex or large scale quantum systems that may also be coupled to an interactive environment or reservoir. This focus issue brings together new theoretical and experimental work addressing the formulation and implementation of quantum control for a broad range of applications in quantum science and technology today.
Quantum Detection and Invisibility in Coherent Nanostructures
Fransson, J.
2010-04-28
We address quantum invisibility in the context of electronics in nanoscale quantum structures. In analogy with metamaterials, we use the freedom of design that quantum corrals provide and show that quantum mechanical objects can be hidden inside the corral, with respect to inelastic electron scattering spectroscopy in combination with scanning tunneling microscopy, and we propose a design strategy. A simple illustration of the invisibility is given in terms of an elliptic quantum corral containing a molecule, with a local vibrational mode, at one of the foci. Our work has implications to quantum information technology and presents new tools for nonlocal quantum detection and distinguishing between different molecules.
Dynamics of open bosonic quantum systems in coherent state representation
Dalvit, D. A. R.; Berman, G. P.; Vishik, M.
2006-01-15
We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.
Considerations for the extension of coherent optical processors into the quantum computing regime
NASA Astrophysics Data System (ADS)
Young, Rupert C. D.; Birch, Philip M.; Chatwin, Chris R.
2016-04-01
Previously we have examined the similarities of the quantum Fourier transform to the classical coherent optical implementation of the Fourier transform (R. Young et al, Proc SPIE Vol 87480, 874806-1, -11). In this paper, we further consider how superposition states can be generated on coherent optical wave fronts, potentially allowing coherent optical processing hardware architectures to be extended into the quantum computing regime. In particular, we propose placing the pixels of a Spatial Light Modulator (SLM) individually in a binary superposition state and illuminating them with a coherent wave front from a conventional (but low intensity) laser source in order to make a so-called `interaction free' measurement. In this way, the quantum object, i.e. the individual pixels of the SLM in their superposition states, and the illuminating wavefront would become entangled. We show that if this were possible, it would allow the extension of coherent processing architectures into the quantum computing regime and we give an example of such a processor configured to recover one of a known set of images encrypted using the well-known coherent optical processing technique of employing a random Fourier plane phase encryption mask which classically requires knowledge of the corresponding phase conjugate key to decrypt the image. A quantum optical computer would allow interrogation of all possible phase masks in parallel and so immediate decryption.
NASA Astrophysics Data System (ADS)
Viola, Lorenza; Tannor, David
2011-08-01
Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance
Quantum correlations and coherence in spin-1 Heisenberg chains
NASA Astrophysics Data System (ADS)
Malvezzi, A. L.; Karpat, G.; ćakmak, B.; Fanchini, F. F.; Debarba, T.; Vianna, R. O.
2016-05-01
We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renormalization group theory. Exploiting the tools of quantum information theory, that is, by studying quantum discord, quantum mutual information, and three recently introduced coherence measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that, as none of the studied measures can detect the infinite-order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite-order quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.
Coherent tunnelling across a quantum point contact in the quantum Hall regime.
Martins, F; Faniel, S; Rosenow, B; Sellier, H; Huant, S; Pala, M G; Desplanque, L; Wallart, X; Bayot, V; Hackens, B
2013-01-01
The unique properties of quantum hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already revealed rich physics, like fractionally charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy, magnetic field and temperature dependences of electron transport reveal a quantitatively consistent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put forward a new model which relies on the presence of a quantum Hall island at the centre of the constriction as well as on different tunnelling paths surrounding the island, thereby creating a new type of interferometer. This work sets the ground for new device concepts based on coherent tunnelling. PMID:23475303
Coherent tunnelling across a quantum point contact in the quantum Hall regime
Martins, F.; Faniel, S.; Rosenow, B.; Sellier, H.; Huant, S.; Pala, M. G.; Desplanque, L.; Wallart, X.; Bayot, V.; Hackens, B.
2013-01-01
The unique properties of quantum hall devices arise from the ideal one-dimensional edge states that form in a two-dimensional electron system at high magnetic field. Tunnelling between edge states across a quantum point contact (QPC) has already revealed rich physics, like fractionally charged excitations, or chiral Luttinger liquid. Thanks to scanning gate microscopy, we show that a single QPC can turn into an interferometer for specific potential landscapes. Spectroscopy, magnetic field and temperature dependences of electron transport reveal a quantitatively consistent interferometric behavior of the studied QPC. To explain this unexpected behavior, we put forward a new model which relies on the presence of a quantum Hall island at the centre of the constriction as well as on different tunnelling paths surrounding the island, thereby creating a new type of interferometer. This work sets the ground for new device concepts based on coherent tunnelling. PMID:23475303
Editorial . Quantum fluctuations and coherence in optical and atomic structures
NASA Astrophysics Data System (ADS)
Eschner, Jürgen; Gatti, Alessandra; Maître, Agnès; Morigi, Giovanna
2003-03-01
From simple interference fringes, over molecular wave packets, to nonlinear optical patterns - the fundamental interaction between light and matter leads to the formation of structures in many areas of atomic and optical physics. Sophisticated technology in experimental quantum optics, as well as modern computational tools available to theorists, have led to spectacular achievements in the investigation of quantum structures. This special issue is dedicated to recent developments in this area. It presents a selection of examples where quantum dynamics, fluctuations, and coherence generate structures in time or in space or where such structures are observed experimentally. The examples range from coherence phenomena in condensed matter, over atoms in optical structures, entanglement in light and matter, to quantum patterns in nonlinear optics and quantum imaging. The combination of such seemingly diverse subjects formed the basis of a successful European TMR network, "Quantum Structures" (visit http://cnqo.phys.strath.ac.uk/~gianluca/QSTRUCT/). This special issue partly re.ects the results and collaborations of the network, going however well beyond its scope by including contributions from a global community and from many related topics which were not addressed directly in the network. The aim of this issue is to present side by side these di.erent topics, all of which are loosely summarized under quantum structures, to highlight their common aspects, their di.erences, and the progress which resulted from the mutual exchange of results, methods, and knowledge. To guide the reader, we have organized the articles into subsections which follow a rough division into structures in material systems and structures in optical .elds. Nevertheless, in the following introduction we point out connections between the contributions which go beyond these usual criteria, thus highlighting the truly interdisciplinary nature of quantum structures. Much of the progress in atom optics
Resonator-quantum well infrared photodetectors
Choi, K. K. Sun, J.; Olver, K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.
2013-11-11
We applied a recent electromagnetic model to design the resonator-quantum well infrared photodetector (R-QWIP). In this design, we used an array of rings as diffractive elements to diffract normal incident light into parallel propagation and used the pixel volume as a resonator to intensify the diffracted light. With a proper pixel size, the detector resonates at certain optical wavelengths and thus yields a high quantum efficiency (QE). To test this detector concept, we fabricated a number of R-QWIPs with different quantum well materials and detector geometries. The experimental result agrees satisfactorily with the prediction, and the highest QE achieved is 71%.
Coherent x-ray diffraction from quantum dots
Vartanyants, I.A.; Robinson, I. K.; Onken, J.D.; Pfeifer, M.A.; Williams, G.J.; Pfeiffer, F.; Metzger, H.; Zhong, Z.; Bauer, G.
2005-06-15
Coherent x-ray diffraction is a new experimental method for studying perfect and imperfect crystals. Instead of incoherent averaging, a coherent sum of amplitudes produces a coherent diffraction pattern originating from the real space arrangement of the sample. We applied this method for studying quantum dot samples that were specially fabricated GeSi islands of nanometer size and in a regular array embedded into a Si substrate. A coherent beam was focused by special Kirkpatric-Baez optics to a micrometer size. In the experiment it was observed that such a microfocused coherent beam produced coherent diffraction pattern with Bragg spots and broad diffuse maxima. The diffuse peak breaks up into a fine speckle pattern. The grazing incidence diffraction pattern has a typical shape resulting from the periodic array of identical islands. We used this diffraction pattern to reconstruct the average shape of the islands using a model independent approach.
NASA Astrophysics Data System (ADS)
Lloyd, Seth
2014-03-01
Femtosecond spectroscopy reveals significant quantum coherence in excitonic transport in photosynthetic organisms. How and why are living systems using quantum mechanics? This talk presents a simple theory of how to optimize energy transport in quantum systems that possess noise and disorder. Too much quantum coherence leads to destructive interference and localization, while too little coherence prevents energy from moving at all, via the watchdog or quantum Zeno effect. With just the right amount of quantum coherence, however, energy can move through photosynthetic complexes with almost 100% efficiency. This talk explains how plants and photosynthetic bacteria attain such high efficiencies for energy transport, and discusses how human-made systems could be designed to attain similar efficiencies.
Coherent states and parasupersymmetric quantum mechanics
NASA Technical Reports Server (NTRS)
Debergh, Nathalie
1992-01-01
It is well known that Parafermi and Parabose statistics are natural extensions of the usual Fermi and Bose ones, enhancing trilinear (anti)commutation relations instead of bilinear ones. Due to this generalization, positive parameters appear: the so-called orders of paraquantization p (= 1, 2, 3, ...) and h sub 0 (= 1/2, 1, 3/2, ...), respectively, the first value leading in each case to the usual statistics. The superpostion of the parabosonic and parafermionic operators gives rise to parasupermultiplets for which mixed trilinear relations have already been studied leading to two (nonequivalent) sets: the relative Parabose and the relative Parafermi ones. For the specific values p = 1 = 2h sub 0, these sets reduce to the well known supersymmetry. Coherent states associated with this last model have been recently put in evidence through the annihilation operator point of view and the group theoretical approach or displacement operator context. We propose to realize the corresponding studies within the new context p = 2 = 2h sub 0, being then directly extended to any order of paraquantization.
Quantum repeater based on cavity QED evolutions and coherent light
NASA Astrophysics Data System (ADS)
Gonţa, Denis; van Loock, Peter
2016-05-01
In the framework of cavity QED, we propose a quantum repeater scheme that uses coherent light and chains of atoms coupled to optical cavities. In contrast to conventional repeater schemes, in our scheme there is no need for an explicit use of two-qubit quantum logical gates by exploiting solely the cavity QED evolution. In our previous work (Gonta and van Loock in Phys Rev A 88:052308, 2013), we already proposed a quantum repeater in which the entanglement between two neighboring repeater nodes was distributed using controlled displacements of input coherent light, while the produced low-fidelity entangled pairs were purified using ancillary (four-partite) entangled states. In the present work, the entanglement distribution is realized using a sequence of controlled phase shifts and displacements of input coherent light. Compared to previous coherent-state-based distribution schemes for two-qubit entanglement, our scheme here relies only upon a simple discrimination of two coherent states with opposite signs, which can be performed in a quantum mechanically optimal fashion via a beam splitter and two on-off detectors. For the entanglement purification, we employ a method that avoids the use of extra entangled ancilla states. Our repeater scheme exhibits reasonable fidelities and repeater rates providing an attractive platform for long-distance quantum communication.
Coherent radiation by quantum dots and magnetic nanoclusters
Yukalov, V. I.; Yukalova, E. P.
2014-03-31
The assemblies of either quantum dots or magnetic nanoclusters are studied. It is shown that such assemblies can produce coherent radiation. A method is developed for solving the systems of nonlinear equations describing the dynamics of such assemblies. The method is shown to be general and applicable to systems of different physical nature. Despite mathematical similarities of dynamical equations, the physics of the processes for quantum dots and magnetic nanoclusters is rather different. In a quantum dot assembly, coherence develops due to the Dicke effect of dot interactions through the common radiation field. For a system of magnetic clusters, coherence in the spin motion appears due to the Purcell effect caused by the feedback action of a resonator. Self-organized coherent spin radiation cannot arise without a resonator. This principal difference is connected with the different physical nature of dipole forces between the objects. Effective dipole interactions between the radiating quantum dots, appearing due to photon exchange, collectivize the dot radiation. While the dipolar spin interactions exist from the beginning, yet before radiation, and on the contrary, they dephase spin motion, thus destroying the coherence of moving spins. In addition, quantum dot radiation exhibits turbulent photon filamentation that is absent for radiating spins.
Generation of infrared entangled light in asymmetric semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Lü, Xin-You; Wu, Jing; Zheng, Li-Li; Huang, Pei
2010-12-01
We proposed a scheme to achieve two-mode CV entanglement with the frequencies of entangled modes in the infrared range in an asymmetric semiconductor double-quantum-wells (DQW), where the required quantum coherence is obtained by inducing the corresponding intersubband transitions (ISBTs) with a classical field. By numerically simulating the dynamics of system, we show that the entanglement period can be prolonged via enhancing the intensity of classical field, and the generation of entanglement doesn't depend intensively on the initial condition of system in our scheme. Moreover, we also show that a bipartite entanglement amplifier can be realized in our scheme. The present research provides an efficient approach to achieve infrared entangled light in the semiconductor nanostructure, which may have significant impact on the progress of solid-state quantum information theory.
Quantum communication with coherent states and linear optics
NASA Astrophysics Data System (ADS)
Arrazola, Juan Miguel; Lütkenhaus, Norbert
2014-10-01
We introduce a general mapping for encoding quantum communication protocols involving pure states of multiple qubits, unitary transformations, and projective measurements into another set of protocols that employ a coherent state of light in a linear combination of optical modes, linear-optics transformations, and measurements with single-photon threshold detectors. This provides a general framework for transforming protocols in quantum communication into a form in which they can be implemented with current technology. We explore the similarity between properties of the original qubit protocols and the coherent-state protocols obtained from the mapping and make use of the mapping to construct additional protocols in the context of quantum communication complexity and quantum digital signatures. Our results have the potential of bringing a wide class of quantum communication protocols closer to their experimental demonstration.
Quantum mirages formed by coherent projection of electronic structure
Manoharan; Lutz; Eigler
2000-02-01
Image projection relies on classical wave mechanics and the use of natural or engineered structures such as lenses or resonant cavities. Well-known examples include the bending of light to create mirages in the atmosphere, and the focusing of sound by whispering galleries. However, the observation of analogous phenomena in condensed matter systems is a more recent development, facilitated by advances in nanofabrication. Here we report the projection of the electronic structure surrounding a magnetic Co atom to a remote location on the surface of a Cu crystal; electron partial waves scattered from the real Co atom are coherently refocused to form a spectral image or 'quantum mirage'. The focusing device is an elliptical quantum corral, assembled on the Cu surface. The corral acts as a quantum mechanical resonator, while the two-dimensional Cu surface-state electrons form the projection medium. When placed on the surface, Co atoms display a distinctive spectroscopic signature, known as the many-particle Kondo resonance, which arises from their magnetic moment. By positioning a Co atom at one focus of the ellipse, we detect a strong Kondo signature not only at the atom, but also at the empty focus. This behaviour contrasts with the usual spatially-decreasing response of an electron gas to a localized perturbation. PMID:10676952
Waveguide switches using asymmetric coupled quantum wells
NASA Astrophysics Data System (ADS)
Ritter, Kenneth J.; Horst, Scott C.
1994-07-01
This report contains the results of a three-year effort to investigate the use of Asymmetric Coupled Quantum Well in optical waveguide cross bar switches. The two types of devices investigated are the standard delta beta switch and the delta alpha switch. The delta alpha switch uses the imaginary part of the refractive index to modulate the intensity along different waveguide paths in the switch structure. Both types of switch were fabricated and tested. The delta beta switches produced are suitable as 1-input 2-output devices. The delta alpha switches were demonstrated as 2 by 2 cross bar switches with up to 40% throughput. To compensate for losses in the switches the use of amplifying elements was investigated. To provide gain at a longer wavelength than that of the excitons in the modulation waveguides, the quantum wells in the modulation waveguides were blue shifted using vacancy induced disordering (VID). The VID shifted quantum wells showed less Stark shift than the unshifted quantum wells. This effect is explained by the nearly parabolic shape of the disordered wells. Coupled quantum wells can be used to create a structure that will maintain a strongly Stark shifted spatially indirect transition even after VID. Modeling of the various waveguide structures used is also discussed.
Coherent eavesdropping strategies for the four state quantum cryptography protocol
NASA Astrophysics Data System (ADS)
Cirac, J. I.; Gisin, N.
1997-02-01
An elementary derivation of best eavesdropping strategies for the four state BB84 quantum cryptography protocol is presented, for both incoherent and two-qubit coherent attacks. While coherent attacks do not help Eve to obtain more information, they are more powerful to reveal the whole message sent by Alice. Our results are based on symmetric eavesdropping strategies, which we show to be sufficient to analyze these kind of problems.
Experimental quantum fingerprinting with weak coherent pulses
NASA Astrophysics Data System (ADS)
Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong
2015-10-01
Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity.
Experimental quantum fingerprinting with weak coherent pulses.
Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong
2015-01-01
Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity. PMID:26515586
Experimental quantum fingerprinting with weak coherent pulses
Xu, Feihu; Arrazola, Juan Miguel; Wei, Kejin; Wang, Wenyuan; Palacios-Avila, Pablo; Feng, Chen; Sajeed, Shihan; Lütkenhaus, Norbert; Lo, Hoi-Kwong
2015-01-01
Quantum communication holds the promise of creating disruptive technologies that will play an essential role in future communication networks. For example, the study of quantum communication complexity has shown that quantum communication allows exponential reductions in the information that must be transmitted to solve distributed computational tasks. Recently, protocols that realize this advantage using optical implementations have been proposed. Here we report a proof-of-concept experimental demonstration of a quantum fingerprinting system that is capable of transmitting less information than the best-known classical protocol. Our implementation is based on a modified version of a commercial quantum key distribution system using off-the-shelf optical components over telecom wavelengths, and is practical for messages as large as 100 Mbits, even in the presence of experimental imperfections. Our results provide a first step in the development of experimental quantum communication complexity. PMID:26515586
Microscopic quantum coherence in a photosynthetic-light-harvesting antenna.
Dawlaty, Jahan M; Ishizaki, Akihito; De, Arijit K; Fleming, Graham R
2012-08-13
We briefly review the coherent quantum beats observed in recent two-dimensional electronic spectroscopy experiments in a photosynthetic-light-harvesting antenna. We emphasize that the decay of the quantum beats in these experiments is limited by ensemble averaging. The in vivo dynamics of energy transport depends upon the local fluctuations of a single photosynthetic complex during the energy transfer time (a few picoseconds). Recent analyses suggest that it remains possible that the quantum-coherent motion may be robust under individual realizations of the environment-induced fluctuations contrary to intuition obtained from condensed phase spectroscopic measurements and reduced density matrices. This result indicates that the decay of the observed quantum coherence can be understood as ensemble dephasing. We propose a fluorescence-detected single-molecule experiment with phase-locked excitation pulses to investigate the coherent dynamics at the level of a single molecule without hindrance by ensemble averaging. We discuss the advantages and limitations of this method. We report our initial results on bulk fluorescence-detected coherent spectroscopy of the Fenna-Mathews-Olson complex. PMID:22753820
The high-order quantum coherence of thermal light
NASA Astrophysics Data System (ADS)
Chen, Hui
Turbulence-free Imaging System, which provides high contrast as well as high resolution. Based on the experiments of the simulations of quantum interference in thermal light and the dramatically improvement of the contrast in quantum imaging, this study of the high-order coherence of thermal light has a great significance both for fundamental physics and applications.
Large Scale Quantum Coherence of Nearly Circular Wavepackets
Reinhold, Carlos O; Yoshida, S.; Burgdorfer, J.; Wyker, B.; Mestayer, J. J.; Dunning, F. B.
2009-01-01
We demonstrate that the quantum coherence of mesoscopic very-high-n, n {approx} 305, Rydberg wave packets travelling along nearly circular orbits can be maintained on microsecond time scales corresponding to hundreds of classical orbital periods. The coherence is probed through collapses and revivals of periodic oscillations in the average electron position. The temporal interferences of spatially separated Schroedinger cat-like wave packets are also observed. A novel hybrid quantum-classical trajectory method is employed to simulate the wave packet dynamics.
Control of atomic spin squeezing via quantum coherence
NASA Astrophysics Data System (ADS)
Shao, Xuping; Ling, Yang; Yang, Xihua; Xiao, Min
2016-06-01
We propose a scheme to generate and control atomic spin squeezing via atomic coherence induced by the strong coupling and probe fields in the Λ-type electromagnetically-induced-transparency configuration in an atomic ensemble. Manipulation of squeezing of the two components in the plane orthogonal to the mean atomic spin direction and generation of nearly perfect squeezing in either component can be achieved by varying the relative intensities of the coupling and probe fields. This method provides a flexible and convenient way to create and control atomic spin squeezing, which may find potential applications in high-precision atomic-physics measurement, quantum coherent control, and quantum information processing.
Coherent coupling of multiple transverse modes in quantum cascade lasers.
Yu, Nanfang; Diehl, Laurent; Cubukcu, Ertugrul; Bour, David; Corzine, Scott; Höfler, Gloria; Wojcik, Aleksander K; Crozier, Kenneth B; Belyanin, Alexey; Capasso, Federico
2009-01-01
Quantum cascade lasers are a unique laboratory for studying nonlinear laser dynamics because of their high intracavity intensity, strong intersubband optical nonlinearity, and an unusual combination of relaxation time scales. Here we investigate the nonlinear coupling between the transverse modes of quantum cascade lasers. We present evidence for stable phase coherence of multiple transverse modes over a large range of injection currents. We explain the phase coherence by a four-wave mixing interaction originating from the strong optical nonlinearity of the gain transition. The phase-locking conditions predicted by theory are supported by spectral data and both near- and far-field mode measurements. PMID:19257192
Signatures of discrete breathers in coherent state quantum dynamics
Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis
2013-02-07
In classical mechanics, discrete breathers (DBs) - a spatial time-periodic localization of energy - are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space - a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes - high order tunneling modes - that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments that
Phase-controlled coherent population trapping in superconducting quantum circuits
NASA Astrophysics Data System (ADS)
Cheng, Guang-Ling; Wang, Yi-Ping; Chen, Ai-Xi
2015-04-01
We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single Δ-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 11165008 and 11365009), the Foundation of Young Scientist of Jiangxi Province, China (Grant No. 20142BCB23011), and the Scientific Research Foundation of Jiangxi Provincial Department of Education (Grant No. GJJ13348).
Robustness of asymmetry and coherence of quantum states
NASA Astrophysics Data System (ADS)
Piani, Marco; Cianciaruso, Marco; Bromley, Thomas R.; Napoli, Carmine; Johnston, Nathaniel; Adesso, Gerardo
2016-04-01
Quantum states may exhibit asymmetry with respect to the action of a given group. Such an asymmetry of states can be considered a resource in applications such as quantum metrology, and it is a concept that encompasses quantum coherence as a special case. We introduce explicitly and study the robustness of asymmetry, a quantifier of asymmetry of states that we prove to have many attractive properties, including efficient numerical computability via semidefinite programming and an operational interpretation in a channel discrimination context. We also introduce the notion of asymmetry witnesses, whose measurement in a laboratory detects the presence of asymmetry. We prove that properly constrained asymmetry witnesses provide lower bounds to the robustness of asymmetry, which is shown to be a directly measurable quantity itself. We then focus our attention on coherence witnesses and the robustness of coherence, for which we prove a number of additional results; these include an analysis of its specific relevance in phase discrimination and quantum metrology, an analytical calculation of its value for a relevant class of quantum states, and tight bounds that relate it to another previously defined coherence monotone.
Loss of quantum coherence through scattering off virtual black holes
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Ross, Simon F.
1997-11-01
In quantum gravity, fields may lose quantum coherence by scattering off vacuum fluctuations in which virtual black hole pairs appear and disappear. Although it is not possible to properly compute the scattering off such fluctuations, we argue that one can get useful qualitative results, which provide a guide to the possible effects of such scattering, by considering a quantum field on the C metric, which has the same topology as a virtual black hole pair. We study a scalar field on the Lorentzian C metric background, with the scalar field in the analytically continued Euclidean vacuum state. We find that there are a finite number of particles at infinity in this state, contrary to recent claims made by Yi. Thus, this state is not determined by data at infinity, and there is loss of quantum coherence in this semiclassical calculation.
Coherent pulse position modulation quantum cipher
Sohma, Masaki; Hirota, Osamu
2014-12-04
On the basis of fundamental idea of Yuen, we present a new type of quantum random cipher, where pulse position modulated signals are encrypted in the picture of quantum Gaussian wave form. We discuss the security of our proposed system with a phase mask encryption.
Finite-temperature scaling of quantum coherence near criticality in a spin chain
NASA Astrophysics Data System (ADS)
Cheng, Weiwen; Zhang, Zhijun; Gong, Longyan; Zhao, Shengmei
2016-06-01
We explore quantum coherence, inherited from Wigner-Yanase skew information, to analyze quantum criticality in the anisotropic XY chain model at finite temperature. Based on the exact solutions of the Hamiltonian, the quantum coherence contained in a nearest-neighbor spin pairs reduced density matrix ρ is obtained. The first-order derivative of the quantum coherence is non-analytic around the critical point at sufficient low temperature. The finite-temperature scaling behavior and the universality are verified numerically. In particular, the quantum coherence can also detect the factorization transition in such a model at sufficient low temperature. We also show that quantum coherence contained in distant spin pairs can characterize quantum criticality and factorization phenomena at finite temperature. Our results imply that quantum coherence can serve as an efficient indicator of quantum criticality in such a model and shed considerable light on the relationships between quantum phase transitions and quantum information theory at finite temperature.
The set of triple-resonance sequences with a multiple quantum coherence evolution period
NASA Astrophysics Data System (ADS)
Koźmiński, Wiktor; Zhukov, Igor
2004-12-01
The new pulse sequence building block that relies on evolution of heteronuclear multiple quantum coherences is proposed. The particular chemical shifts are obtained in multiple quadrature, using linear combinations of frequencies taken from spectra measured at different quantum levels. The pulse sequences designed in this way consist of small number of RF-pulses, are as short as possible, and could be applied for determination of coupling constants. The examples presented involve 2D correlations H NCO, H NCA, H N(CO) CA, and H(N) COCA via heteronuclear zero and double coherences, as well as 2D H NCOCA technique with simultaneous evolution of triple and three distinct single quantum coherences. Applications of the new sequences are presented for 13C, 15N-labeled ubiquitin.
A Calculation of Cosmological Scale from Quantum Coherence
Lindesay, J
2004-07-23
We use general arguments to examine the energy scales for which a quantum coherent description of gravitating quantum energy units is necessary. The cosmological dark energy density is expected to decouple from the Friedman-Lemaitre energy density when the Friedman-Robertson-Walker scale expansion becomes sub-luminal at R = c, at which time the usual microscopic interactions of relativistic quantum mechanics (QED, QCD, etc) open new degrees of freedom. We assume that these microscopic interactions cannot signal with superluminal exchanges, only superluminal quantum correlations. The expected gravitational vacuum energy density at that scale would be expected to freeze out due to the loss of gravitational coherence. We define the vacuum energy which generates this cosmological constant to be that of a zero temperature Bose condensate at this gravitational de-coherence scale. We presume a universality throughout the universe in the available degrees of freedom determined by fundamental constants during its evolution. Examining the reverse evolution of the universe from the present, long before reaching Planck scale dynamics one expects major modifications from the de-coherent thermal equations of state, suggesting that the pre-coherent phase has global coherence properties. Since the arguments presented involve primarily counting of degrees of freedom, we expect the statistical equilibrium states of causally disconnected regions of space to be independently identical. Thus, there is no horizon problem associated with the lack of causal influences between spatially separated regions in this approach. The scale of the amplitude of fluctuations produced during de-coherence of cosmological vacuum energy are found to evolve to values consistent with those observed in cosmic microwave background radiation and galactic clustering.
Robb, G. R. M.; Bonifacio, R.
2013-03-15
We extend previous analyses of spontaneous emission in a quantum free electron laser (QFEL) and competition between spontaneous and coherent QFEL emission to include a broad distribution of photon frequencies and momenta appropriate for spontaneous undulator radiation. We show that although the predictions of monochromatic and broadband models predict different electron momentum distributions for the quantum regime due to spontaneous emission alone after many photon emissions, the inclusion of broadband spontaneous emission has a negligible effect on the competition between spontaneous and coherent emission in the QFEL. Numerical results from both models are well described by the same condition for the threshold/critical value of spontaneous emission rate.
Bipartite quantum channels using multipartite cluster-type entangled coherent states
Munhoz, P. P.; Semiao, F. L.; Roversi, J. A.; Vidiella-Barranco, A.
2010-04-15
We propose a particular encoding for bipartite entangled states derived from multipartite cluster-type entangled coherent states (CTECSs). We investigate the effects of amplitude damping on the entanglement content of this bipartite state, as well as its usefulness as a quantum channel for teleportation. We find interesting relationships among the amplitude of the coherent states constituting the CTECSs, the number of subsystems forming the logical qubits (redundancy), and the extent to which amplitude damping affects the entanglement of the channel. For instance, in the sense of sudden death of entanglement, given a fixed value of the initial coherent state amplitude, the entanglement life span is shortened if redundancy is increased.
Long-distance coherent coupling in a quantum dot array.
Braakman, F R; Barthelemy, P; Reichl, C; Wegscheider, W; Vandersypen, L M K
2013-06-01
Controlling long-distance quantum correlations is central to quantum computation and simulation. In quantum dot arrays, experiments so far rely on nearest-neighbour couplings only, and inducing long-distance correlations requires sequential local operations. Here, we show that two distant sites can be tunnel-coupled directly. The coupling is mediated by virtual occupation of an intermediate site, with a strength that is controlled via the energy detuning of this site. It permits a single charge to oscillate coherently between the outer sites of a triple dot array without passing through the middle, as demonstrated through the observation of Landau-Zener-Stückelberg interference. The long-distance coupling significantly improves the prospects of fault-tolerant quantum computation using quantum dot arrays, and opens up new avenues for performing quantum simulations in nanoscale devices. PMID:23624695
Quantum walk coherences on a dynamical percolation graph
Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine
2015-01-01
Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media. PMID:26311434
Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities
Harrison, Neil; Singleton, John; Migliori, Albert
2008-08-05
A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.
Dirac Cones in Periodically Modulated Quantum Wells
NASA Astrophysics Data System (ADS)
Yao, Yuanzhao; Sakoda, Kazuaki
2016-06-01
We show by a degenerate k · p perturbation theory and group theory that Dirac cones in the Brillouin-zone center can be materialized for the electronic bands of periodically modulated quantum wells. We examine in particular the periodic modulation of the C4v and C6v symmetries. The analytical conclusions are confirmed by numerical calculations using the finite element method.
Spectroscopy of GaAs quantum wells
West, L.C.
1985-07-01
A new type of optical dipole transition in GaAs quantum wells has been observed. The dipole occurs between two envelope states of the conduction band electron wavefunction, and is called a quantum well envelope state transition (QWEST). The QWEST is observed by infrared absorption in three different samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, and 108 MeV, respectively. The oscillator strength is found to have values of over 12, in good agreement with prediction. The linewidths are seen as narrow as 10 MeV at room temperature and 7 MeV at low temperature, thus proving a narrow line resonance can indeed occur between transitions of free electrons. Techniques for the proper growth of these quantum well samples to enable observation of the QWEST have also been found using (AlGa)As compounds. This QWEST is considered to be an ideal material for an all optical digital computer. The QWEST can be made frequency matched to the inexpensive Carbon Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and fast relaxation time of the QWEST indicate a logic element with a subpicosecond switch time can be built in the near future, with a power level which will eventually be limited only by the noise from a lack of quanta to above approximately 10 microwatts. 64 refs., 35 figs., 6 tabs.
Coherent controllers for optical-feedback cooling of quantum oscillators
NASA Astrophysics Data System (ADS)
Hamerly, Ryan; Mabuchi, Hideo
2013-01-01
We study the cooling performance of optical-feedback controllers for open optical and mechanical resonators in the linear quadratic Gaussian setting of stochastic control theory. We utilize analysis and numerical optimization of closed-loop models based on quantum stochastic differential equations to show that coherent control schemes, where we embed the resonator in an interferometer to achieve all-optical feedback, can outperform optimal measurement-based feedback control schemes in the quantum regime of low steady-state excitation number. These performance gains are attributed to the coherent controller's ability to simultaneously process both quadratures of an optical probe field without measurement or loss of fidelity, and may guide the design of coherent feedback schemes for more general problems of robust nonlinear and robust control.
Fractional quantum conductance in edge channels of silicon quantum wells
Bagraev, Nikolay; Klyachkin, Leonid; Kudryavtsev, Andrey; Malyarenko, Anna
2013-12-04
We present the findings for the fractional quantum conductance of holes that is caused by the edge channels in the silicon nanosandwich prepared within frameworks of the Hall geometry. This nanosandwich represents the ultra-narrow p-type silicon quantum well (Si-QW), 2 nm, confined by the δ-barriers heavily doped with boron on the n-type Si (100) surface. The edge channels in the Si-QW plane are revealed by measuring the longitudinal quantum conductance staircase, G{sub xx}, as a function of the voltage applied to the Hall contacts, V{sub xy}, to a maximum of 4e{sup 2}/h. In addition to the standard plateau, 2e{sup 2}/h, the variations of the V{sub xy} voltage appear to exhibit the fractional form of the quantum conductance staircase with the plateaus and steps that bring into correlation respectively with the odd and even fractions.
Quantum Discord and Entanglement of Quasi-Werner States Based on Bipartite Entangled Coherent States
NASA Astrophysics Data System (ADS)
Mishra, Manoj K.; Maurya, Ajay K.; Prakash, Hari
2016-06-01
Present work is an attempt to compare quantum discord and quantum entanglement of quasi-Werner states formed with the four bipartite entangled coherent states (ECS) used recently for quantum teleportation of a qubit encoded in superposed coherent state. Out of these, the quasi-Werner states based on maximally ECS due to its invariant nature under local operation is independent of measurement basis and mean photon numbers, while for quasi-Werner states based on non-maximally ECS, it depends upon measurement basis as well as on mean photon number. However, for large mean photon numbers since non-maximally ECS becomes almost maximally entangled therefore dependence of quantum discord for non-maximally ECS based quasi-Werner states on the measurement basis disappears.
Gaussian private quantum channel with squeezed coherent states.
Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong
2015-01-01
While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893
Gaussian private quantum channel with squeezed coherent states
Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong
2015-01-01
While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893
Gaussian private quantum channel with squeezed coherent states
NASA Astrophysics Data System (ADS)
Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong
2015-09-01
While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.
Nonlocal entanglement of coherent states, complementarity, and quantum erasure
Gerry, Christopher C.; Grobe, R.
2007-03-15
We describe a nonlocal method for generating entangled coherent states of a two-mode field wherein the field modes never meet. The proposed method is an extension of an earlier proposal [C. C. Gerry, Phys. Rev. A 59, 4095 (1999)] for the generation of superpositions of coherent states. A single photon injected into a Mach-Zehnder interferometer with cross-Kerr media in both arms coupling with two external fields in coherent states produces entangled coherent states upon detection at one of the output ports. We point out that our proposal can be alternatively viewed as a 'which path' experiment, and in the case of only one external field, we describe the implementation of a quantum eraser.
Semiconductor Lasers Containing Quantum Wells in Junctions
NASA Technical Reports Server (NTRS)
Yang, Rui Q.; Qiu, Yueming
2004-01-01
In a recent improvement upon In(x)Ga(1-x)As/InP semiconductor lasers of the bipolar cascade type, quantum wells are added to Esaki tunnel junctions, which are standard parts of such lasers. The energy depths and the geometric locations and thicknesses of the wells are tailored to exploit quantum tunneling such that, as described below, electrical resistances of junctions and concentrations of dopants can be reduced while laser performances can be improved. In(x)Ga(1-x)As/InP bipolar cascade lasers have been investigated as sources of near-infrared radiation (specifically, at wavelengths of about 980 and 1,550 nm) for photonic communication systems. The Esaki tunnel junctions in these lasers have been used to connect adjacent cascade stages and to enable transport of charge carriers between them. Typically, large concentrations of both n (electron-donor) and p (electron-acceptor) dopants have been necessary to impart low electrical resistances to Esaki tunnel junctions. Unfortunately, high doping contributes free-carrier absorption, thereby contributing to optical loss and thereby, further, degrading laser performance. In accordance with the present innovation, quantum wells are incorporated into the Esaki tunnel junctions so that the effective heights of barriers to quantum tunneling are reduced (see figure).
Cavity-enhanced coherent light scattering from a quantum dot
Bennett, Anthony J.; Lee, James P.; Ellis, David J. P.; Meany, Thomas; Murray, Eoin; Floether, Frederik F.; Griffths, Jonathan P.; Farrer, Ian; Ritchie, David A.; Shields, Andrew J.
2016-01-01
The generation of coherent and indistinguishable single photons is a critical step for photonic quantum technologies in information processing and metrology. A promising system is the resonant optical excitation of solid-state emitters embedded in wavelength-scale three-dimensional cavities. However, the challenge here is to reject the unwanted excitation to a level below the quantum signal. We demonstrate this using coherent photon scattering from a quantum dot in a micropillar. The cavity is shown to enhance the fraction of light that is resonantly scattered toward unity, generating antibunched indistinguishable photons that are 16 times narrower than the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create two-photon N00N states with which we make superresolving phase measurements in a photonic circuit. PMID:27152337
Cavity-enhanced coherent light scattering from a quantum dot.
Bennett, Anthony J; Lee, James P; Ellis, David J P; Meany, Thomas; Murray, Eoin; Floether, Frederik F; Griffths, Jonathan P; Farrer, Ian; Ritchie, David A; Shields, Andrew J
2016-04-01
The generation of coherent and indistinguishable single photons is a critical step for photonic quantum technologies in information processing and metrology. A promising system is the resonant optical excitation of solid-state emitters embedded in wavelength-scale three-dimensional cavities. However, the challenge here is to reject the unwanted excitation to a level below the quantum signal. We demonstrate this using coherent photon scattering from a quantum dot in a micropillar. The cavity is shown to enhance the fraction of light that is resonantly scattered toward unity, generating antibunched indistinguishable photons that are 16 times narrower than the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create two-photon N00N states with which we make superresolving phase measurements in a photonic circuit. PMID:27152337
Quantum Coherence between Two Atoms beyond Q=10{sup 15}
Chou, C. W.; Hume, D. B.; Thorpe, M. J.; Wineland, D. J.; Rosenband, T.
2011-04-22
We place two atoms in quantum superposition states and observe coherent phase evolution for 3.4x10{sup 15} cycles. Correlation signals from the two atoms yield information about their relative phase even after the probe radiation has decohered. This technique allowed a frequency comparison of two {sup 27}Al{sup +} ions with fractional uncertainty 3.7{sub -0.8}{sup +1.0}x10{sup -16}/{radical}({tau}/s). Two measures of the Q factor are reported: The Q factor derived from quantum coherence is 3.4{sub -1.1}{sup +2.4}x10{sup 16}, and the spectroscopic Q factor for a Ramsey time of 3 s is 6.7x10{sup 15}. We demonstrate a method to detect the individual quantum states of two Al{sup +} ions in a Mg{sup +}-Al{sup +}-Al{sup +} linear ion chain without spatially resolving the ions.
Numerical study on dynamical behavior in oscillatory driven quantum double-well systems
NASA Astrophysics Data System (ADS)
Igarashi, Akira; Yamada, Hiroaki
2008-08-01
We numerically investigate quantum dynamics in a one-dimensional double-well system emphasizing influence of a parametrically polychromatic perturbation on the dynamics. It is found that time dependence of transition probability for an initially localized wave packet between the wells shows two types of motion, coherent and incoherent motion, depending on the perturbation parameters. As the strength and/or the number of frequency components of the perturbation increase, coherent motion changes into incoherent one. The former is related to coherent tunneling of the wave packet due to coherence; the latter is related to a delocalized state caused by decoherence. In coherent motion, by virtue of coherence of the dynamics, the expectation value and the standard deviation of a dynamical variable such as the energy of the system show oscillatory time dependence around the initial values. On the contrary in incoherent motion, because of the decoherence, the time dependence fluctuates irregularly around a certain value after a rapid increase due to the resonance. We find that negativity of the Wigner function also show similar time dependence in each type of motion. We compare the classification of the quantum dynamics based on regularity of the time dependence with the one of corresponding classical dynamics based on the Lyapunov exponent. The classifications of the quantum and classical dynamics overlap well in the parameter space. Furthermore, we confirm decoherence of quantum dynamics in a kicked double-well system.
Quantum mechanical coherence, resonance, and mind
Stapp, H.P.
1995-03-26
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.
Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography
NASA Astrophysics Data System (ADS)
Bechmann-Pasquinucci, H.; Gisin, N.
1999-06-01
All incoherent as well as 2- and 3-qubit coherent eavesdropping strategies on the six-state protocol of quantum cryptography are classified. For a disturbance of 1/6, the optimal incoherent eavesdropping strategy reduces to the universal quantum cloning machine. Coherent eavesdropping cannot increase Eve's Shannon information, neither on the entire string of bits, nor on the set of bits received undisturbed by Bob. However, coherent eavesdropping can increase as well Eve's Renyi information as her probability of guessing correctly all bits. The case that Eve delays the measurement of her probe until after the public discussion on error correction and privacy amplification is also considered. It is argued that by doing so, Eve gains only negligibly small additional information.
Coherent and conventional gravidynamic quantum 1/f noise
NASA Astrophysics Data System (ADS)
Handel, Peter H.; George, Thomas F.
2008-04-01
Quantum 1/f noise is a fundamental fluctuation of currents, physical cross sections or process rates, caused by infrared coupling of the current carriers to very low frequency (soft) quanta, also known as infraquanta. The latter are soft gravitons in the gravidynamic case with the coupling constant g= pGM2/Nch considered here -- soft photons in the electrodynamic case and soft transversal piezo-phonons in the lattice-dynamical case. Here p=3.14 and F=psi. Quantum 1/f noise is a new aspect of quantum mechanics expressed mainly through the coherent quantum 1/f effect 2g/pf derived here for large systems, and mainly through the conventional quantum 1/f effect for small systems or individual particles. Both effects are present in general, and their effects are superposed in a first approximation with the help of a coherence (weight) parameter s" that will be derived elsewhere for the gravitational case. The spectral density of fractional fluctuations S(dj/j,f) for j=e(hk/2pm)|F|2 is S(F2,f)/<|F|2> = S(j,f)/
Strained quantum well photovoltaic energy converter
NASA Technical Reports Server (NTRS)
Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)
1998-01-01
An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.
Quantum confinement in transition metal oxide quantum wells
Choi, Miri; Lin, Chungwei; Butcher, Matthew; Posadas, Agham B.; Demkov, Alexander A.; Rodriguez, Cesar; Zollner, Stefan; He, Qian; Borisevich, Albina Y.
2015-05-11
We report on the quantum confinement in SrTiO{sub 3} (STO) quantum wells (QWs) grown by molecular beam epitaxy. The QW structure consists of LaAlO{sub 3} (LAO) and STO layers grown on LAO substrate. Structures with different QW thicknesses ranging from two to ten unit cells were grown and characterized. Optical properties (complex dielectric function) were measured by spectroscopic ellipsometry in the range of 1.0 eV–6.0 eV at room temperature. We observed that the absorption edge was blue-shifted by approximately 0.39 eV as the STO quantum well thickness was reduced to two unit cells. This demonstrates that the energy level of the first sub-band can be controlled by the QW thickness in a complex oxide material.
Extending quantum coherence of superconducting flux
NASA Astrophysics Data System (ADS)
Yan, Fei; Kamal, Archana; Orlando, Terry; Gustavsson, Simon; Oliver, William; Engineering Quantum Systems, MIT Team
We present the design of a superconducting qubit with multiple Josephson junctions. The design starts with a capacitively shunted flux qubit, and it incorporates particular junction parameter choices for the purpose of simultaneously optimizing over transition frequency, anharmonicity, flux- and charge-noise sensitivity around flux degeneracy. By studying the scaling properties with design parameters, we identify directions to extend coherence substantially. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002.
Negative refraction without absorption via quantum coherence
NASA Astrophysics Data System (ADS)
Fang, Ai-Ping; Ge, Wenchao; Wang, Meng; Li, Fu-li; Zubairy, M. Suhail
2016-02-01
Negative refraction of a probe field is studied in a dense gas consisting of cascade-type four-level atoms. By coupling the magnetic component of the probe field to a Λ scheme with initially prepared coherence in the two lower levels, strong negative permeability with minimal absorption can be obtained. The permittivity of the gas to the electric component of the probe field can be made negative by taking into account the local field effect of the dense atoms. Strong negative refraction with zero absorption can be achieved in a wide range of parameters in our scheme. A possible experimental realization is also discussed.
Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits
NASA Astrophysics Data System (ADS)
Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.
2015-02-01
We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.
Time evolution of multiple quantum coherences in NMR
NASA Astrophysics Data System (ADS)
Sánchez, Claudia M.; Pastawski, Horacio M.; Levstein, Patricia R.
2007-09-01
In multiple quantum NMR, individual spins become correlated with one another over time through their dipolar couplings. In this way, the usual Zeeman selection rule can be overcome and forbidden transitions can be excited. Experimentally, these multiple quantum coherences (MQC) are formed by the application of appropriate sequences of radio frequency pulses that force the spins to act collectively. 1H spin coherences of even order up to 16 were excited in a polycrystalline sample of ferrocene (C 5H 5) 2Fe and up to 32 in adamantane (C 10H 16) and their evolutions studied in different conditions: (a) under the natural dipolar Hamiltonian, H ZZ (free evolution) and with H ZZ canceled out by (b) time reversion or (c) with the MREV8 sequence. The results show that when canceling H ZZ the coherences decay with characteristic times ( τc≈200 μs), which are more than one order of magnitude longer than those under free evolution ( τc≈10 μs). In addition, it is observed that with both MREV8 and time reversion sequences, the higher the order of the coherence (larger number of correlated spins) the faster the speed of degradation, as it happens during the evolution with H ZZ. In both systems, it is observed that the sequence of time reversion of the dipolar Hamiltonian preserves coherences for longer times than MREV8.
Molecular Spintronics: Wiring Spin Coherence between Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Ouyang, Min
2004-03-01
Semiconductor quantum dots (QDs) are attractive candidates for scalable solid state implementations of quantum information processing based on electron spin states, where a crucial requirement for practical devices is to have efficient and tunable spin coupling between them. We focus on recent femtosecond time-resolved Faraday rotation studies of self-assembled multilayer spintronic devices based on colloidal quantum dots bridged by conjugated molecules (M. Ouyang et al., Science 301, 1074 (2003)). The data reveal the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room temperature spin transfer efficiency exceeds 20%, which approximately doubles the value measured at T=4.5K. A molecular π-orbital mediated spin coherence transfer mechanism is proposed to provide a qualitative insight into the experimental observations, suggesting a correlation between the stereochemistry of molecules and the transfer process. The results show that conjugated molecules can be used not only as physical links for the assembly of functional networks, but also as efficient channels for shuttling quantum information. This class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies.
Cavity-based architecture to preserve quantum coherence and entanglement
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-01-01
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability. PMID:26351004
Cavity-based architecture to preserve quantum coherence and entanglement.
Man, Zhong-Xiao; Xia, Yun-Jie; Lo Franco, Rosario
2015-01-01
Quantum technology relies on the utilization of resources, like quantum coherence and entanglement, which allow quantum information and computation processing. This achievement is however jeopardized by the detrimental effects of the environment surrounding any quantum system, so that finding strategies to protect quantum resources is essential. Non-Markovian and structured environments are useful tools to this aim. Here we show how a simple environmental architecture made of two coupled lossy cavities enables a switch between Markovian and non-Markovian regimes for the dynamics of a qubit embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely preserved if the cavity without qubit is perfect. We then focus on entanglement control of two independent qubits locally subject to such an engineered environment and discuss its feasibility in the framework of circuit quantum electrodynamics. With up-to-date experimental parameters, we show that our architecture allows entanglement lifetimes orders of magnitude longer than the spontaneous lifetime without local cavity couplings. This cavity-based architecture is straightforwardly extendable to many qubits for scalability. PMID:26351004
Interacting Electrodynamics of Short Coherent Conductors in Quantum Circuits
NASA Astrophysics Data System (ADS)
Altimiras, C.; Portier, F.; Joyez, P.
2016-07-01
When combining lumped mesoscopic electronic components to form a circuit, quantum fluctuations of electrical quantities lead to a nonlinear electromagnetic interaction between the components, which is generally not understood. The Landauer-Büttiker formalism that is frequently used to describe noninteracting coherent mesoscopic components is not directly suited to describe such circuits since it assumes perfect voltage bias, i.e., the absence of fluctuations. Here, we show that for short coherent conductors of arbitrary transmission, the Landauer-Büttiker formalism can be extended to take into account quantum voltage fluctuations similarly to what is done for tunnel junctions. The electrodynamics of the whole circuit is then formally worked out disregarding the non-Gaussianity of fluctuations. This reveals how the aforementioned nonlinear interaction operates in short coherent conductors: Voltage fluctuations induce a reduction of conductance through the phenomenon of dynamical Coulomb blockade, but they also modify their internal density of states, leading to an additional electrostatic modification of the transmission. Using this approach, we can quantitatively account for conductance measurements performed on quantum point contacts in series with impedances of the order of RK=h /e2 . Our work should enable a better engineering of quantum circuits with targeted properties.
Electron spin coherence near room temperature in magnetic quantum dots.
Moro, Fabrizio; Turyanska, Lyudmila; Wilman, James; Fielding, Alistair J; Fay, Michael W; Granwehr, Josef; Patanè, Amalia
2015-01-01
We report on an example of confined magnetic ions with long spin coherence near room temperature. This was achieved by confining single Mn(2+) spins in colloidal semiconductor quantum dots (QDs) and by dispersing the QDs in a proton-spin free matrix. The controlled suppression of Mn-Mn interactions and minimization of Mn-nuclear spin dipolar interactions result in unprecedentedly long phase memory (TM ~ 8 μs) and spin-lattice relaxation (T1 ~ 10 ms) time constants for Mn(2+) ions at T = 4.5 K, and in electron spin coherence observable near room temperature (TM ~ 1 μs). PMID:26040432
Energy loss rate in disordered quantum well
Tripathi, P.; Ashraf, S. S. Z.; Hasan, S. T.; Sharma, A. C.
2014-04-24
We report the effect of dynamically screened deformation potential on the electron energy loss rate in disordered semiconductor quantum well. Interaction of confined electrons with bulk acoustic phonons has been considered in the deformation coupling. The study concludes that the dynamically screened deformation potential coupling plays a significant role as it substantially affects the power dependency of electron relaxation on temperature and mean free path.
Functionalized Graphene Nanoroads for Quantum Well Device
Zhou, Yungang; Yang, Ping; Wang, Zhiguo; Xiao, Hai Yan; Zu, Xiaotao T.; Sun, Xin; Khaleel, Mohammad A.; Gao, Fei
2011-03-02
Using density functional theory, a series of calculations of structural and electronic properties of Si-substituted graphene were conducted. Through substituting C atoms by Si atoms on graphene in the present study, we found that the band gap of graphene can be continuously tuned with differently substitutional concentration. To utilize such substitution-induced band gap changes, we proposed a special design to fabricate graphene-based quantum well device.
Spin-dependent coherent transport in a double quantum dot system
NASA Astrophysics Data System (ADS)
Petrosyan, L. S.; Shahbazyan, T. V.
2015-09-01
We study spin-resolved resonant tunneling in a system of two quantum dots sandwiched between doped quantum wells. In the coherent (Dicke) regime, i.e., when quantum dot separation is smaller than the Fermi wavelength in a two-dimensional electron gas in quantum wells, application of an in-plane magnetic field leads to a pronounced spin-resolved structure of conductance peak line shape even for very small Zeeman splitting of the quantum dots' resonant levels. In the presence of electron-gas spin-orbit coupling, this spin-resolved structure is washed out due to Fermi surface deformation in the momentum space. We also show that Aharonov-Bohm flux penetrating the area enclosed by tunneling electron pathways completely destroys the conductance spin structure.
Fractional Quantum Hall States in a Ge Quantum Well
NASA Astrophysics Data System (ADS)
Mironov, O. A.; d'Ambrumenil, N.; Dobbie, A.; Leadley, D. R.; Suslov, A. V.; Green, E.
2016-04-01
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe /(001 )Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.
Fractional Quantum Hall States in a Ge Quantum Well.
Mironov, O A; d'Ambrumenil, N; Dobbie, A; Leadley, D R; Suslov, A V; Green, E
2016-04-29
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required. PMID:27176531
External-field effect on quantum features of radiation emitted by a quantum well in a microcavity
Sete, Eyob A.; Das, Sumanta; Eleuch, H.
2011-02-15
We consider a semiconductor quantum well in a microcavity driven by coherent light and coupled to a squeezed vacuum reservoir. By systematically solving the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes, we study the effect of exciton-photon detuning, external coherent light, and the squeezed vacuum reservoir on vacuum Rabi splitting and on quantum statistical properties of the light emitted by the quantum well. We show that the exciton-photon detuning leads to a shift in polariton resonance frequencies and a decrease in fluorescence intensity. We also show that the fluorescent light exhibits quadrature squeezing, which predominately depends on the exciton-photon detuning and the degree of the squeezing of the input field.
Spectroscopy of Single Free Standing Quantum Wells
Williams, M D; Hollars, C W; Huser, T; Jallow, N; Cochran, A; Bryant, R
2006-03-14
We investigated the interaction of quantum confined exciton states GaAs quantum wells with native surface states. Single molecule photoluminescence (PL) spectroscopy, developed by T. Huser at LLNL was used to probe the unique bare quantum wells in the free standing quantum well structure. The latter was developed by the M. D. Williams at Clark Atlanta University. The goals of the project during this budget cycle were to procure samples containing GaAs free standing QWs, identify suitable regions for PL analysis at Lawrence Livermore, analyze the structures at room temperature and at liquid nitrogen temperatures. The specific regions of interest on the sample structures were identified by scanning electron microscopy at Clark Atlanta prior to transport to LLNL. Previous attempts at other facilities using NSOM, cathodoluminescence, and conventional PL showed little luminescence activity at room temperature from the 200 {angstrom} thick wells. This suggested either excess recombination due to surface states in the quantum well region or insufficient absorption length for photoluminescence. The literature suggested that the effect of the defects could be eliminated by reducing the sample temperature below their associated activation energies. In our previous subcontract work with LLNL, a significant amount of effort was expended to modify the apparatus to allow low temperature measurements. The modifications were not successful and we concluded that in order to do the measurements at low temperature we would need to purchase a commercial optical cryostat to get reliable results. Ms. Rochelle Bryant worked during the summer as an intern at LLNL on the project under the supervision of C. Hollars and in collaboration with T. Huser and found that PL emission could be obtained at room temperature. This was a surprising result as the literature and our experience shows that there is no PL emission from GaAs at room temperature. We speculate that this is due to the small
Generalized coherent states under deformed quantum mechanics with maximum momentum
NASA Astrophysics Data System (ADS)
Ching, Chee Leong; Ng, Wei Khim
2013-10-01
Following the Gazeau-Klauder approach, we construct generalized coherent states (GCS) as the quantum simulator to examine the deformed quantum mechanics, which exhibits an intrinsic maximum momentum. We study deformed harmonic oscillators and compute their probability distribution and entropy of states exactly. Also, a particle in an infinite potential box is studied perturbatively. In particular, unlike usual quantum mechanics, the present deformed case increases the entropy of the Planck scale quantum optical system. Furthermore, for simplicity, we obtain the modified uncertainty principle (MUP) with the perturbative treatment up to leading order. MUP turns out to increase generally. However, for certain values of γ (a parameter of GCS), it is possible that the MUP will vanish and hence will exhibit the classical characteristic. This is interpreted as the manifestation of the intrinsic high-momentum cutoff at lower momentum in a perturbative treatment. Although the GCS saturates the minimal uncertainty in a simultaneous measurement of physical position and momentum operators, thus constituting the squeezed states, complete coherency is impossible in quantum gravitational physics. The Mandel Q number is calculated, and it is shown that the statistics can be Poissonian and super-/sub-Poissonian depending on γ. The equation of motion is studied, and both Ehrenfest’s theorem and the correspondence principle are recovered. Fractional revival times are obtained through the autocorrelation, and they indicate that the superposition of a classical-like subwave packet is natural in GCS. We also contrast our results with the string-motivated (Snyder) type of deformed quantum mechanics, which incorporates a minimum position uncertainty rather than a maximum momentum. With the advances of quantum optics technology, it might be possible to realize some of these distinguishing quantum-gravitational features within the domain of future experiments.
Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information
NASA Astrophysics Data System (ADS)
Yamamoto, Naoki
2014-10-01
To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.
Realization of a scalable coherent quantum Fourier transform
NASA Astrophysics Data System (ADS)
Debnath, Shantanu; Linke, Norbert; Figgatt, Caroline; Landsman, Kevin; Wright, Ken; Monroe, Chris
2016-05-01
The exponential speed-up in some quantum algorithms is a direct result of parallel function-evaluation paths that interfere through a quantum Fourier transform (QFT). We report the implementation of a fully coherent QFT on five trapped Yb+ atomic qubits using sequences of fundamental quantum logic gates. These modular gates can be used to program arbitrary sequences nearly independent of system size and distance between qubits. We use this capability to first perform a Deutsch-Jozsa algorithm where several instances of three-qubit balanced and constant functions are implemented and then examined using single qubit QFTs. Secondly, we apply a fully coherent five-qubit QFT as a part of a quantum phase estimation protocol. Here, the QFT operates on a five-qubit superposition state with a particular phase modulation of its coefficients and directly produces the corresponding phase to five-bit precision. Finally, we examine the performance of the QFT in the period finding problem in the context of Shor's factorization algorithm. This work is supported by the ARO with funding from the IARPA MQCO program and the AFOSR MURI on Quantum Measurement and Verification.
Quantum Communication between Atomic Ensembles Using Coherent Light
NASA Astrophysics Data System (ADS)
Duan, Lu-Ming; Cirac, J. I.; Zoller, P.; Polzik, E. S.
2000-12-01
Protocols for quantum communication between massive particles, such as atoms, are usually based on making use of nonclassical light, and/or superhigh finesse optical cavities are normally needed to enhance interaction between atoms and photons. We demonstrate a remarkable result: by using only coherent light, entanglement can be generated between distant free space atomic ensembles, and an unknown quantum state can thus be teleported from one to another. Neither nonclassical light nor cavities are needed in the scheme, which greatly simplifies its experimental implementation.
Coherent state quantum key distribution based on entanglement sudden death
NASA Astrophysics Data System (ADS)
Jaeger, Gregg; Simon, David; Sergienko, Alexander V.
2016-03-01
A method for quantum key distribution (QKD) using entangled coherent states is discussed which is designed to provide key distribution rates and transmission distances surpassing those of traditional entangled photon pair QKD by exploiting entanglement sudden death. The method uses entangled electromagnetic signal states of `macroscopic' average photon numbers rather than single photon or entangled photon pairs, which have inherently limited rate and distance performance as bearers of quantum key data. Accordingly, rather than relying specifically on Bell inequalities as do entangled photon pair-based methods, the security of this method is based on entanglement witnesses and related functions.
Electron transfer and capture dynamics in ZnSe quantum wells grown on GaAs
Dongol, A.; Wagner, H. P.
2013-12-04
We investigate the transfer and capture dynamics of electrons in phase coherent photorefractive ZnSe quantum wells grown on GaAs using degenerate three-beam four-wave-mixing. The measurements reveal electron capture times by the quantum well in the order of several tens of picoseconds and a transit time of approximately 5 picoseconds from the GaAs substrate through the ZnMgSe barrier.
Probing mechanical quantum coherence with an ultracold-atom meter
Lo Gullo, N.; Busch, Th.; Palma, G. M.; Paternostro, M.
2011-12-15
We propose a scheme to probe quantum coherence in the state of a nanocantilever based on its magnetic coupling (mediated by a magnetic tip) with a spinor Bose Einstein condensate (BEC). By mapping the BEC into a rotor, its coupling with the cantilever results in a gyroscopic motion whose properties depend on the state of the cantilever: the dynamics of one of the components of the rotor angular momentum turns out to be strictly related to the presence of quantum coherence in the state of the cantilever. We also suggest a detection scheme relying on Faraday rotation, which produces only a very small back-action on the BEC and is thus suitable for a continuous detection of the cantilever's dynamics.
Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell.
Karki, Khadga J; Widom, Julia R; Seibt, Joachim; Moody, Ian; Lonergan, Mark C; Pullerits, Tõnu; Marcus, Andrew H
2014-01-01
Recently there has been growing interest in the role of coherence in electronic dynamics. Coherent multidimensional spectroscopy has been used to reveal coherent phenomena in numerous material systems. Here we utilize a recent implementation of coherent multidimensional spectroscopy--two-dimensional photocurrent spectroscopy--in which we detect the photocurrent from a PbS quantum dot photocell resulting from its interactions with a sequence of four ultrafast laser pulses. We observe sub-picosecond evolution of two-dimensional spectra consistent with multiple exciton generation. Moreover, a comparison with two-dimensional fluorescence spectra of the quantum dots demonstrates the potential of two-dimensional photocurrent spectroscopy to elucidate detailed origins of photocurrent generating electronic state coherence pathways. Since the measurement is based on detecting the photocell current in situ, the method is well suited to study the fundamental ultrafast processes that affect the function of the device. This opens new avenues to investigate and implement coherent optimization strategies directly within devices. PMID:25519819
Control of Population Flow in Coherently Driven Quantum Ladders
Garcia-Fernandez, Ruth; Bergmann, Klaas; Ekers, Aigars; Yatsenko, Leonid P.; Vitanov, Nikolay V.
2005-07-22
A technique for adiabatic control of the population flow through a preselected decaying excited level in a three-level quantum ladder is presented. The population flow through the intermediate or upper level is controlled efficiently and robustly by varying the pulse delay between a pair of partly overlapping coherent laser pulses. The technique is analyzed theoretically and demonstrated in an experiment with Na{sub 2} molecules.
Electronic quantum confinement in cylindrical potential well
NASA Astrophysics Data System (ADS)
Baltenkov, Arkadiy S.; Msezane, Alfred Z.
2016-04-01
The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limiting cases of the ratio of the cylinder length H and its radius R0 have been considered; when the cylinder length H significantly exceeds its radius R0 and when the cylinder radius is much greater than its length. The cylindrical quantum confinement effects on the momentum distribution of electrons in these potential wells have been analyzed. The possible application of the results obtained here for the description of the general features in the behavior of electrons in nanowires with metallic type of conductivity (or nanotubes) and ultrathin epitaxial films (or graphene sheets) are discussed. Possible experiments are suggested where the quantum confinement can be manifested. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.
Quantum-coherence quantifiers based on the Tsallis relative α entropies
NASA Astrophysics Data System (ADS)
Rastegin, Alexey E.
2016-03-01
The concept of coherence is one of cornerstones in physics. The development of quantum information science has lead to renewed interest in properly approaching the coherence at the quantum level. Various measures could be proposed to quantify coherence of a quantum state with respect to the prescribed orthonormal basis. To be a proper measure of coherence, each candidate should enjoy certain properties. It seems that the monotonicity property plays a crucial role here. Indeed, there is known an intuitive measure of coherence that does not share this condition. We study coherence measures induced by quantum divergences of the Tsallis type. Basic properties of the considered coherence quantifiers are derived. Tradeoff relations between coherence and mixedness are examined. The property of monotonicity under incoherent selective measurements has to be reformulated. The proposed formulation can naturally be treated as a parametric extension of its standard form. Finally, two coherence measures quadratic in moduli of matrix elements are compared from the monotonicity viewpoint.
Quantum-well lasers for direct solar photopumping
NASA Technical Reports Server (NTRS)
Unnikrishnan, Sreenath; Anderson, Neal G.
1993-01-01
Semiconductor lasers directly photopumped by focused sunlight may be viable sources of coherent light for intersatellite communications and other low-power spaceborne applications. In this work, we theoretically explore the possibility of realizing such devices. We specifically assess solar pumped operation of separate-confinement-quantum-well heterostructure (SCQWH) lasers based on InGaAs, GaAs, and AlGaA, as fabrication technology for these lasers is mature and they can operate at very low thresholds. We develop a model for step-index single-well SCQWH lasers photopumped by sunlight, examine how threshold solar photoexcitation intensities depend upon material and structure parameters, design optimum structures for solar-pumped operation, and identify design tradeoffs. Our results suggest that laser action should be possible in properly designed structures at readily achievable solar concentrations and that optimum designs for solar-pumped SCQWH lasers differ significantly from those for analogous current injection devices.
Quantum state transfer in double-quantum-well devices
NASA Technical Reports Server (NTRS)
Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris
1994-01-01
A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.
NASA Astrophysics Data System (ADS)
Uzdin, Raam
2016-08-01
Collective behavior, where a set of elements interact and generate effects that are beyond the reach of the individual noninteracting elements, is always of great interest in physics. Quantum collective effects that have no classical analog are even more intriguing. In this work, we show how to construct collective quantum heat machines and explore their performance boosts with respect to regular machines. Without interactions between the machines, the individual units operate in a stochastic, nonquantum manner. The construction of the collective machine becomes possible by introducing two simple quantum operations: coherence extraction and coherence injection. Together, these operations can harvest coherence from one engine and use it to boost the performance of a slightly different engine. For weakly driven engines, we show that the collective work output scales quadratically with the number of engines rather than linearly. Eventually, the boost saturates and then becomes linear. Nevertheless, even in saturation, work is still significantly boosted compared to individual operation. To study the reversibility of the collective machine, we introduce the "entropy-pollution" measure. It is shown that there is a regime where the collective machine is N times more reversible while producing N times more work, compared to the individual operation of N units. Moreover, the collective machine can even be more reversible than the most reversible unit in the collective. This high level of reversibility becomes possible due to a special symbiotic mechanism between engine pairs.
Terahertz detection using double quantum well devices
NASA Astrophysics Data System (ADS)
Khodier, Majid; Christodoulou, Christos G.; Simmons, Jerry A.
2001-12-01
This paper discusses the principle of operation of an electrically tunable THz detector, working around 2.54 THz, integrated with a bowtie antenna. The detection is based on the idea of photon-assisted tunneling (PAT) in a double quantum well (DQW) device. The bowtie antenna is used to collect the THz radiation and feed it to the detector for processing. The Bowtie antenna geometry is integrated with the DQW device to achieve broadband characteristic, easy design, and compatibility with the detector fabrication process. The principle of operation of the detector is introduced first. Then, results of different bowtie antenna layouts are presented and discussed.
Quantum Well Infrared Photodetectors (QWIPs) for Astronomy
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Luong, E.; Bock, J. J.; Ressler, M. E.; Werner, M. W.
1998-01-01
In recent years, many research groups in the world have demonstrated large format Quantum Well Infrared Photodetector (QWIP) focal plane arrays for various thermal imaging applications. QWIPs as opposed to conventional low bandgap infrared detectors, are limited by thermionic dark current and not tunneling currents down to 30K or less. As a result the performance of QWIPs can be substantially improved (orders of magnitude) by cooling from 70K to 30K. Cooling does not induce any nonuniformity or 1/f noise in QWIP focal plane arrays. In this paper, we discuss the development of highly uniform long- wavelength QWIPs for astronomical applications.
Excitons in a surface quantum well
NASA Astrophysics Data System (ADS)
Arulmozhi, M.; Anitha, A.
2014-11-01
Binding energies of excitons in a Surface Quantum Well (SQW) composed of vacuum/GaAs/AlxGa1-xAs as a function of wellwidth are calculated. The effect of non-parabolicity is considered by using an energy dependent effective mass. The effect of mass anisotropy and the effect of image charges which arise due to the large dielectric discontinuity at the vacuum/GaAs interface are also considered. The average distances of the electron
Can quantum coherent solar cells break detailed balance?
Kirk, Alexander P.
2015-07-21
Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.
Quantum well intersubband THz lasers and detectors
NASA Astrophysics Data System (ADS)
Soref, Richard A.; Friedman, Lionel R.; Sun, Gregory; Noble, Michael J.; Ram-Mohan, L. R.
1999-11-01
This paper presents modeling and simulation results on Si- based quantum-well intersubband THz detectors and THz lasers (tasers) in the 3 to 10 THz range where the intersubband transition energy is 12 to 41 meV. The incoherent cryogenically cooled (4 K to 20 K) quantum well terahertz detector (QWTD) consists of p-type Si0.9Ge0.1 QWs with Si barriers on an Si substrate, or of p-Si0.85Ge0.15/Si on a relaxed Si0.97Ge0.03 buffer on Si. The QWTD senses THz radiation at normal incidence (the XY polarization on the HH1 to LH1 transition) or at edge- illumination (the Z polarization on the HH1 to HH2 transition). Resonant-cavity enhancement, coupling to Si THz waveguides, and integration with SiGe transistor preamplifiers appear feasible for QWTDs. The quantum staircase taser is a simplified far-infrared version of the quantum cascade laser in which each superlattice transfer region is replaced by a thin tunnel-barrier layer. We have adapted to group IV the III-V idea of Sun, Lu, and Khurgin; the `inverted mass taser'. On a Si0.81Ge0.19 substrate, we find that an inverted effective mass exists in LH1 at kg equals 0.013 angstroms-1 in 9-nm single- wells of Si0.7Ge0.3 with 5-nm Si barriers. Selective electrical injection of holes into LH1 at T equals 77 K is postulated. This offers local-in-k-space LH1-HH1 population inversion and tasing at 7.2 THz. Since the taser emission is XY-polarized, the active MQW staircase (a set of identical square QWs) is suitable for insertion into a vertical cavity surface-emitting taser. The VCSET would have resonator thickness of (lambda) /2n equals 6 micrometers , and Bragg mirrors constructed from SiO2/Si multilayers.
Kinetics of radiative recombination in quantum wells
NASA Astrophysics Data System (ADS)
Ridley, B. K.
1990-06-01
A theory of radiative-recombination kinetics which treats free carriers, excitons, and photon recycling in a quantum-well system is presented. An expression for the temporal decay of excess carriers which encompasses large- and small-signal regimes is derived. When excitons are present the decay can be approximated by two exponentials in general, and in the large-signal regime the photoluminescence time constant is half as long as that associated with photoconductivity. Explicit expressions for the recombination coefficients are given and their magnitudes discussed for nondegenerate and degenerate populations in GaAs. Excitons are shown to enhance the temperature dependence. A simple model of exciton screening is used to illustrate the dependence of radiative time constants on background carrier density, which deviates significantly from the conventional free-carrier dependence. The magnitudes of radiative time constants in real systems depend, in addition to material characteristics, upon the details of exciton screening, the overlap of the electron and hole wave functions in the quantum well, and the probability of photon reabsorption, all of which are specimen specific. It is pointed out that the transition from a degenerate to a nondegenerate population may be misinterpreted in terms of Auger processes.
Ultrafast optical control of electron spins in quantum wells and quantum dots
NASA Astrophysics Data System (ADS)
Carter, Samuel G.; Economou, Sophia E.; Shabaev, Andrew; Kennedy, Thomas A.; Bracker, Allan S.; Reinecke, Thomas L.; Chen, Zhigang; Cundiff, Steven T.
2010-02-01
Using two-color time-resolved Faraday rotation and ellipticity, we demonstrate ultrafast optical control of electron spins in GaAs quantum wells and InAs quantum dots. In quantum wells, a magnetic-field induced electron spin polarization is manipulated by off-resonant pulses. By measuring the amplitude and phase of the spin polarization as a function of pulse detuning, we observe the two competing optical processes: real excitation, which generates a spin polarization through excitation of electron-hole pairs; and virtual excitation, which can manipulate a spin polarization through a stimulated Raman process without exciting electron-hole pairs. In InAs quantum dots, the spin coherence time is much longer, so that the effect of many repetitions of the pump pulses is important. Through real excitation, the pulse train efficiently polarizes electron spins that precess at multiples of the laser repetition frequency, leading to a "mode-locking" phenomenon. Through virtual excitation, the spins can be partially rotated toward the magnetic field direction, leading to a sensitive dependence of the spin orientation on the precession frequency and detuning. The electron spin dynamics strongly influence the nuclear spin dynamics as well, leading to directional control of the nuclear polarization distribution.
Coherence-Driven Topological Transition in Quantum Metamaterials
NASA Astrophysics Data System (ADS)
Jha, Pankaj K.; Mrejen, Michael; Kim, Jeongmin; Wu, Chihhui; Wang, Yuan; Rostovtsev, Yuri V.; Zhang, Xiang
2016-04-01
We introduce and theoretically demonstrate a quantum metamaterial made of dense ultracold neutral atoms loaded into an inherently defect-free artificial crystal of light, immune to well-known critical challenges inevitable in conventional solid-state platforms. We demonstrate an all-optical control, on ultrafast time scales, over the photonic topological transition of the isofrequency contour from an open to closed topology at the same frequency. This atomic lattice quantum metamaterial enables a dynamic manipulation of the decay rate branching ratio of a probe quantum emitter by more than an order of magnitude. Our proposal may lead to practically lossless, tunable, and topologically reconfigurable quantum metamaterials, for single or few-photon-level applications as varied as quantum sensing, quantum information processing, and quantum simulations using metamaterials.
Coherence-Driven Topological Transition in Quantum Metamaterials.
Jha, Pankaj K; Mrejen, Michael; Kim, Jeongmin; Wu, Chihhui; Wang, Yuan; Rostovtsev, Yuri V; Zhang, Xiang
2016-04-22
We introduce and theoretically demonstrate a quantum metamaterial made of dense ultracold neutral atoms loaded into an inherently defect-free artificial crystal of light, immune to well-known critical challenges inevitable in conventional solid-state platforms. We demonstrate an all-optical control, on ultrafast time scales, over the photonic topological transition of the isofrequency contour from an open to closed topology at the same frequency. This atomic lattice quantum metamaterial enables a dynamic manipulation of the decay rate branching ratio of a probe quantum emitter by more than an order of magnitude. Our proposal may lead to practically lossless, tunable, and topologically reconfigurable quantum metamaterials, for single or few-photon-level applications as varied as quantum sensing, quantum information processing, and quantum simulations using metamaterials. PMID:27152810
NASA Astrophysics Data System (ADS)
Castro, E.; Gómez, R.; Ladera, C. L.; Zambrano, A.
2013-11-01
Among many applications quantum weak measurements have been shown to be important in exploring fundamental physics issues, such as the experimental violation of the Heisenberg uncertainty relation and the Hardy paradox, and have also technological implications in quantum optics, quantum metrology and quantum communications, where the precision of the measurement is as important as the precision of quantum state preparation. The theory of weak measurement can be formulated using the pre-and post-selected quantum systems, as well as using the weak measurement operator formalism. In this work, we study the quantum discord (QD) of quasi-Werner mixed states based on bipartite entangled coherent states using the weak measurements operator, instead of the projective measurement operators. We then compare the quantum discord for both kinds of measurement operators, in terms of the entanglement quality, the latter being measured using the concept of concurrence. It's found greater quantum correlations using the weak measurement operators.
NASA Astrophysics Data System (ADS)
Daoud, M.; Ahl Laamara, R.
2012-07-01
We give the explicit expressions of the pairwise quantum correlations present in superpositions of multipartite coherent states. A special attention is devoted to the evaluation of the geometric quantum discord. The dynamics of quantum correlations under a dephasing channel is analyzed. A comparison of geometric measure of quantum discord with that of concurrence shows that quantum discord in multipartite coherent states is more resilient to dissipative environments than is quantum entanglement. To illustrate our results, we consider some special superpositions of Weyl-Heisenberg, SU(2) and SU(1,1) coherent states which interpolate between Werner and Greenberger-Horne-Zeilinger states.
Corrugated Quantum Well Infrared Photodetectors and Arrays
NASA Technical Reports Server (NTRS)
Choi, K. K.; Chen, C. J.; Rohkinson, L. P.; Das, N. C.; Jhabvala, M.
1999-01-01
Quantum well infrared photodetectors (QWIPs) have many advantages in infrared detection, mainly due to the mature Ill-V material technology. The employment of the corrugation structure further advances the technology by providing a simple, yet efficient light-coupling scheme. A C-QWIP enjoys the same flexibility as a detector with intrinsic normal incident absorption. In this paper, we will discuss the utilities of C-QWIPs in different applications, including two-color detection and polarization-sensitive detection. Besides practical applications, C-QWIPs are also useful in detector characterization. They can be used for measuring the absorption coefficient of light propagating parallel to the layers under bias and providing information on the energy resolved photoconductive gain. These two quantities have never been measured before. Based on the corrugation design, we have made several modifications that further improve the detector sensitivity without increasing its complexity. Other than the C-QWIP structure, we also continue searching for other sensitive detector architectures. In a quantum grid infrared photodetector, 3-dimensional electron confinement can be achieved, with which the detector is able to absorb light in all directions. At the same time, the photoconductive gain can also be improved. We further improve the design using a blazed structure. All the experimental results are supported by a rigorous electromagnetic modal transmission-line theory developed especially for these types of structures. Preliminary thermal imaging using C-QWIP FPAs validates the advantages of the present approach.
Quantum wells for high-efficiency photovoltaics
NASA Astrophysics Data System (ADS)
Alonso-Álvarez, Diego; Ekins-Daukes, Nicholas
2016-03-01
Over the last couple of decades, there has been an intense research on strain balanced semiconductor quantum wells (QW) to increase the efficiency of multi-junction solar (MJ) solar cells grown monolithically on germanium. So far, the most successful application of QWs have required just to tailor a few tens of nanometers the absorption edge of a given subcell in order to reach the optimum spectral position. However, the demand for higher efficiency devices requiring 3, 4 or more junctions, represents a major difference in the challenges QWs must face: tailoring the absorption edge of a host material is not enough, but a complete new device, absorbing light in a different spectral region, must be designed. Among the most important issues to solve is the need for an optically thick structure to absorb enough light while keeping excellent carrier extraction using highly strained materials. Improvement of the growth techniques, smarter device designs - involving superlattices and shifted QWs, for example - or the use of quantum wires rather than QWs, have proven to be very effective steps towards high efficient MJ solar cells based on nanostructures in the last couple of years. But more is to be done to reach the target performances. This work discusses all these challenges, the limitations they represent and the different approaches that are being used to overcome them.
Two-dimensional Electronic Double-Quantum Coherence Spectroscopy
Kim, Jeongho; Mukamel, Shaul
2009-01-01
CONSPECTUS The theory of electronic structure of many-electron systems like molecules is extraordinarily complicated. A lot can be learned by considering how electron density is distributed, on average, in the average field of the other electrons in the system. That is, mean field theory. However, to describe quantitatively chemical bonds, reactions, and spectroscopy requires consideration of the way that electrons avoid each other by the way they move; this is called electron correlation (or in physics, the many-body problem for fermions). While great progress has been made in theory, there is a need for incisive experimental tests that can be undertaken for large molecular systems in the condensed phase. Here we report a two-dimensional (2D) optical coherent spectroscopy that correlates the double excited electronic states to constituent single excited states. The technique, termed two-dimensional double-coherence spectroscopy (2D-DQCS), makes use of multiple, time-ordered ultrashort coherent optical pulses to create double- and single-quantum coherences over time intervals between the pulses. The resulting two-dimensional electronic spectrum maps the energy correlation between the first excited state and two-photon allowed double-quantum states. The principle of the experiment is that when the energy of the double-quantum state, viewed in simple models as a double HOMO to LUMO excitation, equals twice that of a single excitation, then no signal is radiated. However, electron-electron interactions—a combination of exchange interactions and electron correlation—in real systems generates a signal that reveals precisely how the energy of the double-quantum resonance differs from twice the single-quantum resonance. The energy shift measured in this experiment reveals how the second excitation is perturbed by both the presence of the first excitation and the way that the other electrons in the system have responded to the presence of that first excitation. We
NASA Astrophysics Data System (ADS)
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
Trapping and transport of indirect excitons in coupled quantum wells
NASA Astrophysics Data System (ADS)
Wuenschell, Jeffrey K.
Spatially indirect excitons are optically generated composite bosons with a radiative lifetime sufficient to reach thermal equilibrium. This work explores the physics of indirect excitons in coupled quantum wells in the GaAs/AlGaAs system, specifically in the low-temperature, high-density regime. Particular attention is paid to a technique whereby a spatially inhomogeneous strain field is used as a trapping potential. In the process of modeling the trapping profile in wide quantum wells, dramatic effects due to intersubband coupling were observed at high strain. Experimentally, this regime coincides with the abrupt appearance of a dark population of indirect excitons at trap center, an effect originally suspected to be related to Bose-Einstein condensation. Here, the role of band mixing due to the strain-induced distortion of the crystal symmetry will be explored in detail in the context of this effect. Experimental studies presented here and in the literature suggest that Bose-Einstein condensation in indirect exciton systems may be difficult to detect with optical means (e.g., coherence measurements, momentum-space narrowing), possibly due to the strong dipole interaction between indirect excitons. Due to similarities between this system and liquid helium, it may be more fruitful to look for transport-related signatures of condensation, such as super fluidity. Here, a method for performing transport measurements on optically generated indirect excitons is also outlined and preliminary results are presented.
Conversion of type of quantum well structure
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng (Inventor)
2007-01-01
A method for converting a Type 2 quantum well semiconductor material to a Type 1 material. A second layer of undoped material is placed between first and third layers of selectively doped material, which are separated from the second layer by undoped layers having small widths. Doping profiles are chosen so that a first electrical potential increment across a first layer-second layer interface is equal to a first selected value and/or a second electrical potential increment across a second layer-third layer interface is equal to a second selected value. The semiconductor structure thus produced is useful as a laser material and as an incident light detector material in various wavelength regions, such as a mid-infrared region.
Conversion of Type of Quantum Well Structure
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng (Inventor)
2007-01-01
A method for converting a Type 2 quantum well semiconductor material to a Type 1 material. A second layer of undoped material is placed between first and third layers of selectively doped material, which are separated from the second layer by undoped layers having small widths. Doping profiles are chosen so that a first electrical potential increment across a first layer-second layer interface is equal to a first selected value and/or a second electrical potential increment across a second layer-third layer interface is equal to a second selected value. The semiconductor structure thus produced is useful as a laser material and as an incident light detector material in various wavelength regions, such as a mid-infrared region.
Thermal and thermoelectric transport in superlattice and quantum wells
NASA Astrophysics Data System (ADS)
Yang, Bao
Low dimensional structures such as superlattice and quantum wells may offer a new approach to achieve high thermoelectric figure-of-merit for solid-state energy conversion applications. This work addresses the effects of low dimensionality on the fundamental thermophysical properties and experimentally studies the thermoelectric transport in superlattice and quantum wells. The mechanisms of thermal transport in superlattice are under hot debate. Current models on thermal transport fall into two groups: particle models and wave models. The effects of phonon confinement are investigated in both in-plane and cross-plane directions of superlattice based on a lattice dynamics model, which treats phonons as coherent wave. It is found that the in-plane thermal conductivity drop, caused by the suppressed group velocity, is very small, and cannot explain the experimentally observed values. Even in the cross-plane direction, the calculated thermal conductivity is many times higher than the experimental data. Similarly, only very small reduction in thermal conductivity in quantum wells is predicted based on the lattice dynamics model. The discrepancy between the lattice dynamics models and the experiment is due to the absence of the diffuse interface scattering. Two different approaches, namely the unified wave-particle model and partially coherent phonon heat conduction model, have been developed to combine the effects of phonon confinement and diffuse interface scattering on thermal conductivity in superlattice. The experimental data, including period thickness dependence and temperature dependence in both in-plane and cross-plane directions of superlattice, can be well explained by these two models. It is extremely challenging to measure the thermoelectric properties in superlattice. A novel method is developed to simultaneously measure the Seebeck coefficient and thermal conductivity across thin films. Moreover, the thermoelectric properties in both in-plane and cross
Bredtmann, Timm; Manz, Jörn; Zhao, Jian-Ming
2016-05-19
The quantum theory of concerted electronic and nuclear fluxes (CENFs) during coherent periodic tunnelling from reactants (R) to products (P) and back to R in molecules with asymmetric double-well potentials is developed. The results are deduced from the solution of the time-dependent Schrödinger equation as a coherent superposition of two eigenstates; here, these are the two states of the lowest tunnelling doublet. This allows the periodic time evolutions of the resulting electronic and nuclear probability densities (EPDs and NPDs) as well as the CENFs to be expressed in terms of simple sinusodial functions. These analytical results reveal various phenomena during coherent tunnelling in asymmetric double-well potentials, e.g., all EPDs and NPDs as well as all CENFs are synchronous. Distortion of the symmetric reference to a system with an asymmetric double-well potential breaks the spatial symmetry of the EPDs and NPDs, but, surprisingly, the symmetry of the CENFs is conserved. Exemplary application to the Cope rearrangement of semibullvalene shows that tunnelling of the ideal symmetric system can be suppressed by asymmetries induced by rather small external electric fields. The amplitude for the half tunnelling, half nontunnelling border is as low as 0.218 × 10(-8) V/cm. At the same time, the delocalized eigenstates of the symmetric reference, which can be regarded as Schrödinger's cat-type states representing R and P with equal probabilities, get localized at one or the other minima of the asymmetric double-well potential, representing either R or P. PMID:26799383
Spin-orbit interaction in multiple quantum wells
Hao, Ya-Fei
2015-01-07
In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.
Magnetic quantum coherence effect in Ni4 molecular transistors.
González, Gabriel; Leuenberger, Michael N
2014-07-01
We present a theoretical study of electron transport in Ni4 molecular transistors in the presence of Zeeman spin splitting and magnetic quantum coherence (MQC). The Zeeman interaction is extended along the leads which produces gaps in the energy spectrum which allow electron transport with spin polarized along a certain direction. We show that the coherent states in resonance with the spin up or down states in the leads induces an effective coupling between localized spin states and continuum spin states in the single molecule magnet and leads, respectively. We investigate the conductance at zero temperature as a function of the applied bias and magnetic field by means of the Landauer formula, and show that the MQC is responsible for the appearence of resonances. Accordingly, we name them MQC resonances. PMID:24918902
Electron spin coherence near room temperature in magnetic quantum dots
Moro, Fabrizio; Turyanska, Lyudmila; Wilman, James; Fielding, Alistair J.; Fay, Michael W.; Granwehr, Josef; Patanè, Amalia
2015-01-01
We report on an example of confined magnetic ions with long spin coherence near room temperature. This was achieved by confining single Mn2+ spins in colloidal semiconductor quantum dots (QDs) and by dispersing the QDs in a proton-spin free matrix. The controlled suppression of Mn–Mn interactions and minimization of Mn–nuclear spin dipolar interactions result in unprecedentedly long phase memory (TM ~ 8 μs) and spin–lattice relaxation (T1 ~ 10 ms) time constants for Mn2+ ions at T = 4.5 K, and in electron spin coherence observable near room temperature (TM ~ 1 μs). PMID:26040432
Coherent control of quantum dynamics in laser kicked molecular rotors
NASA Astrophysics Data System (ADS)
Bitter, Martin; Milner, Valery
2016-05-01
We investigate experimentally the dynamics of true quantum kicked rotors - oxygen and nitrogen molecules subject to a sequence of more than 20 ultrashort laser pulses with peak intensities exceeding 1013 W/ cm2 per pulse. Using state-resolved rotational Raman spectroscopy, we show that the centrifugal distortion is the main obstacle in reaching high rotational states, as it results in the coherent oscillations of rotational population similar to Bloch oscillations in condensed matter. We demonstrate that the timing of the individual pulses can be optimized to partially mitigate the centrifugal limit and produce broader rotational wave packets with higher degrees of rotational coherence. Progress towards the experimental observation of Anderson localization in laser-kicked molecular rotors will be discussed.
Universe’s memory and spontaneous coherence in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Pawłowski, Tomasz
2016-07-01
The quantum bounce a priori connects several (semi)classical epochs of universe evolution, however determining if and how well the semiclassicality is preserved in this transition is highly nontrivial. We review the present state of knowledge in that regards in the isotropic sector of loop quantum cosmology (LQC). This knowledge is next extended by studies of an isotropic universe admitting positive cosmological constant (featuring an infinite chain of large universe epochs). It is also shown, that such universe always admits a semiclassical epoch thanks to spontaneous coherence, provided it is semiclassical in certain constant of motion playing the role of energy.
GENERAL: Decoy State Quantum Key Distribution with Odd Coherent State
NASA Astrophysics Data System (ADS)
Sun, Shi-Hai; Gao, Ming; Dai, Hong-Yi; Chen, Ping-Xing; Li, Cheng-Zu
2008-07-01
We propose a decoy state quantum key distribution scheme with odd coherent state which follows sub-Poissonian distributed photon count and has low probability of the multi-photon event and vacuum event in each pulse. The numerical calculations show that our scheme can improve efficiently the key generation rate and secure communication distance. Furthermore, only one decoy state is necessary to approach to the perfect asymptotic limit with infinite decoy states in our scheme, but at least two decoy states are needed in other scheme.
Using Feedback for Coherent Control of Quantum Systems
NASA Astrophysics Data System (ADS)
Weinacht, Thomas
2001-05-01
The control of atoms and molecules using coherent light fields has been a longstanding goal in chemical physics. I will discuss experiments which use a programmable pulse shaper to control the quantum state of electronic wavepackets in Rydberg atoms and nuclear dynamics in molecular liquids. The shape of Rydberg wavepackets was controlled by using tailored ultrafast laser pulses to excite a beam of cesium atoms. The quantum state of these atoms was measured using holographic techniques borrowed from optics. The experiments with molecular liquids involved the contstruction of an automated learning machine. A Genetic Algorithm directed the choice of shaped pulses which interacted with the molecular system inside a learning control loop. Analysis of successful pulse shapes that were found by the algorithm yield insight into the systems being controlled.
Quantum Optics Theory of Electronic Noise in Coherent Conductors
NASA Astrophysics Data System (ADS)
Grimsmo, Arne L.; Qassemi, Farzad; Reulet, Bertrand; Blais, Alexandre
2016-01-01
We consider the electromagnetic field generated by a coherent conductor in which electron transport is described quantum mechanically. We obtain an input-output relation linking the quantum current in the conductor to the measured electromagnetic field. This allows us to compute the outcome of measurements on the field in terms of the statistical properties of the current. We moreover show how under ac bias the conductor acts as a tunable medium for the field, allowing for the generation of single- and two-mode squeezing through fermionic reservoir engineering. These results explain the recently observed squeezing using normal tunnel junctions [G. Gasse et al., Phys. Rev. Lett. 111, 136601 (2013); J.-C. Forgues et al., Phys. Rev. Lett. 114, 130403 (2015)].
Quantum Optics Theory of Electronic Noise in Coherent Conductors.
Grimsmo, Arne L; Qassemi, Farzad; Reulet, Bertrand; Blais, Alexandre
2016-01-29
We consider the electromagnetic field generated by a coherent conductor in which electron transport is described quantum mechanically. We obtain an input-output relation linking the quantum current in the conductor to the measured electromagnetic field. This allows us to compute the outcome of measurements on the field in terms of the statistical properties of the current. We moreover show how under ac bias the conductor acts as a tunable medium for the field, allowing for the generation of single- and two-mode squeezing through fermionic reservoir engineering. These results explain the recently observed squeezing using normal tunnel junctions [G. Gasse et al., Phys. Rev. Lett. 111, 136601 (2013); J.-C. Forgues et al., Phys. Rev. Lett. 114, 130403 (2015)]. PMID:26871330
Phase Coherent Charge Transport in Graphene Quantum Billiards
NASA Astrophysics Data System (ADS)
Lau, Chun Ning
2008-03-01
As an emergent model system for condensed matter physics and a promising electronic material, graphene's electrical transport properties has become a subject of intense focus. Via low temperature transport spectroscopy on single and bi-layer graphene devices, we show that the minimum conductivity value is geometry dependent and approaches the theoretical value of 4e^2/πh only for wide and short graphene strips. Moreover, we observe periodic conductance oscillations with bias and gate voltages, arising from quantum interference of multiply-reflected waves of charges in graphene. When graphene is coupled to superconducting electrodes, we observe gate tunable supercurrent and sub-gap structures, which originate from multiple Andreev reflection at the graphene-superconductor interfaces. Our results demonstrate that graphene can act as a quantum billiard with a long phase coherence length. This work was supported in part by DOD/DMEA-H94003-06-2-0608.
Dwell-time related saturation of phase coherence in ballistic quantum dots
NASA Astrophysics Data System (ADS)
Hackens, B.; Faniel, S.; Gustin, C.; Wallart, X.; Bollaert, S.; Cappy, A.; Bayot, V.
2006-08-01
We present our experimental investigations on the low-temperature ( T) saturation of the electron phase coherence time τ φ in open ballistic quantum dots fabricated from InGaAs/InAlAs heterostructures. At high temperature, we observe that τ φ= aT- p, with 2/3
quantum well. Below a temperature Tonset, in the range 0.5 K< Tonset<5 K, τ φ saturates in all our samples. The condition for the occurrence of saturation is found to be τ φ, sat= τd, where τ φ, sat is the saturated coherence time and τd is the dwell time. We discuss possible interpretations for this observation.
Chitambar, Eric; Gour, Gilad
2016-07-15
Considerable work has recently been directed toward developing resource theories of quantum coherence. In this Letter, we establish a criterion of physical consistency for any resource theory. This criterion requires that all free operations in a given resource theory be implementable by a unitary evolution and projective measurement that are both free operations in an extended resource theory. We show that all currently proposed basis-dependent theories of coherence fail to satisfy this criterion. We further characterize the physically consistent resource theory of coherence and find its operational power to be quite limited. After relaxing the condition of physical consistency, we introduce the class of dephasing-covariant incoherent operations as a natural generalization of the physically consistent operations. Necessary and sufficient conditions are derived for the convertibility of qubit states using dephasing-covariant operations, and we show that these conditions also hold for other well-known classes of incoherent operations. PMID:27472102
NASA Astrophysics Data System (ADS)
Chitambar, Eric; Gour, Gilad
2016-07-01
Considerable work has recently been directed toward developing resource theories of quantum coherence. In this Letter, we establish a criterion of physical consistency for any resource theory. This criterion requires that all free operations in a given resource theory be implementable by a unitary evolution and projective measurement that are both free operations in an extended resource theory. We show that all currently proposed basis-dependent theories of coherence fail to satisfy this criterion. We further characterize the physically consistent resource theory of coherence and find its operational power to be quite limited. After relaxing the condition of physical consistency, we introduce the class of dephasing-covariant incoherent operations as a natural generalization of the physically consistent operations. Necessary and sufficient conditions are derived for the convertibility of qubit states using dephasing-covariant operations, and we show that these conditions also hold for other well-known classes of incoherent operations.
Magnetophonon resonance in double quantum wells
NASA Astrophysics Data System (ADS)
Ploch, D.; Sheregii, E. M.; Marchewka, M.; Wozny, M.; Tomaka, G.
2009-05-01
The experimental results obtained for the magnetotransport in pulsed magnetic fields in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells and different values of the electron density are reported. The magnetophonon resonance (MPR) was observed for both types of structures within the temperature range 77-125 K. Four kinds of LO phonons are taken into account to interpret the MPR oscillations in the DQW and a method of the Landau level calculation in the DQW is elaborated for this aim. The peculiarity of the MPR in the DQW is the large number of the Landau levels caused by SAS splitting of the electron states (splitting on the symmetric and anti-symmetric states) and the large number of the phonon assistance electron transitions between Landau levels. The significant role of the carrier statistics is shown too. The behavior of the electron states in the DQWs at comparably high temperatures has been studied using the MPR. It is shown that the Huang and Manasreh [Manasreh [Phys. Rev. B 54, 2044 (1996)] model involving screening of exchange interaction is confirmed.
Quantum cryptography using coherent states: Randomized encryption and key generation
NASA Astrophysics Data System (ADS)
Corndorf, Eric
objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.
Kaszlikowski, Dagomir; Lim, J.Y.; Englert, Berthold-Georg; Kwek, L.C.
2005-10-15
The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. We show that - for protocols that use quantum channels of any dimension and completely characterize them by state tomography - the noise threshold for classical advantage distillation of a specific kind is substantially lower than the threshold for quantum entanglement distillation if the eavesdropper can perform powerful coherent attacks. In marked contrast, earlier investigations had shown that the thresholds are identical for incoherent attacks on the same classical distillation scheme. It remains an open question whether other schemes for classical advantage distillation have higher thresholds for coherent eavesdropping attacks.
Electronic Conduction through Atomic Chains, Quantum Well and Quantum Wire
NASA Astrophysics Data System (ADS)
Sharma, A. C.
2011-07-01
Charge transport is dynamically and strongly linked with atomic structure, in nanostructures. We report our ab-initio calculations on electronic transport through atomic chains and the model calculations on electron-electron and electron-phonon scattering rates in presence of random impurity potential in a quantum well and in a quantum wire. We computed synthesis and ballistic transport through; (a) C and Si based atomic chains attached to metallic electrodes, (b) armchair (AC), zigzag (ZZ), mixed, rotated-AC and rotated-ZZ geometries of small molecules made of 2S, 6C & 4H atoms attaching to metallic electrodes, and (c) carbon atomic chain attached to graphene electrodes. Computed results show that synthesis of various atomic chains are practically possible and their transmission coefficients are nonzero for a wide energy range. The ab-initio calculations on electronic transport have been performed with the use of Landauer-type scattering formalism formulated in terms of Grben's functions in combination with ground-state DFT. The electron-electron and electron-phonon scattering rates have been calculated as function of excitation energy both at zero and finite temperatures for disordered 2D and 1D systems. Our model calculations suggest that electron scattering rates in a disordered system are mainly governed by effective dimensionality of a system, carrier concentration and dynamical screening effects.
Coherence and Squeezing of Bose-Einstein Condensates in Double Wells
NASA Astrophysics Data System (ADS)
Yi, Xiao-jie
2016-05-01
We investigate coherence and squeezing of a two-mode Bose-Einstein condensate trapped in a double-well potential. By analytically deriving the form of coherence and numerically calculating the squeezing parameter, we show that the coherence and the squeezing may be controlled by adjusting some parameters of the two-mode Bose-Einstein condensate.
NASA Astrophysics Data System (ADS)
Bonderson, Parsa; Lutchyn, Roman M.
2011-04-01
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.
Bonderson, Parsa; Lutchyn, Roman M
2011-04-01
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems. PMID:21517366
Quantum key distribution using gaussian-modulated coherent states
NASA Astrophysics Data System (ADS)
Grosshans, Frédéric; Van Assche, Gilles; Wenger, Jérôme; Brouri, Rosa; Cerf, Nicolas J.; Grangier, Philippe
2003-01-01
Quantum continuous variables are being explored as an alternative means to implement quantum key distribution, which is usually based on single photon counting. The former approach is potentially advantageous because it should enable higher key distribution rates. Here we propose and experimentally demonstrate a quantum key distribution protocol based on the transmission of gaussian-modulated coherent states (consisting of laser pulses containing a few hundred photons) and shot-noise-limited homodyne detection; squeezed or entangled beams are not required. Complete secret key extraction is achieved using a reverse reconciliation technique followed by privacy amplification. The reverse reconciliation technique is in principle secure for any value of the line transmission, against gaussian individual attacks based on entanglement and quantum memories. Our table-top experiment yields a net key transmission rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per second for a line with losses of 3.1dB. We anticipate that the scheme should remain effective for lines with higher losses, particularly because the present limitations are essentially technical, so that significant margin for improvement is available on both the hardware and software.
Quantum key distribution using gaussian-modulated coherent states.
Grosshans, Frédéric; Van Assche, Gilles; Wenger, Jérôme; Brouri, Rosa; Cerf, Nicolas J; Grangier, Philippe
2003-01-16
Quantum continuous variables are being explored as an alternative means to implement quantum key distribution, which is usually based on single photon counting. The former approach is potentially advantageous because it should enable higher key distribution rates. Here we propose and experimentally demonstrate a quantum key distribution protocol based on the transmission of gaussian-modulated coherent states (consisting of laser pulses containing a few hundred photons) and shot-noise-limited homodyne detection; squeezed or entangled beams are not required. Complete secret key extraction is achieved using a reverse reconciliation technique followed by privacy amplification. The reverse reconciliation technique is in principle secure for any value of the line transmission, against gaussian individual attacks based on entanglement and quantum memories. Our table-top experiment yields a net key transmission rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per second for a line with losses of 3.1 dB. We anticipate that the scheme should remain effective for lines with higher losses, particularly because the present limitations are essentially technical, so that significant margin for improvement is available on both the hardware and software. PMID:12529636
Coherence-enhanced efficiency of feedback-driven quantum engines
NASA Astrophysics Data System (ADS)
Brandner, Kay; Bauer, Michael; Schmid, Michael T.; Seifert, Udo
2015-06-01
A genuine feature of projective quantum measurements is that they inevitably alter the mean energy of the observed system if the measured quantity does not commute with the Hamiltonian. Compared to the classical case, Jacobs proved that this additional energetic cost leads to a stronger bound on the work extractable after a single measurement from a system initially in thermal equilibrium (2009 Phys. Rev. A 80 012322). Here, we extend this bound to a large class of feedback-driven quantum engines operating periodically and in finite time. The bound thus implies a natural definition for the efficiency of information to work conversion in such devices. For a simple model consisting of a laser-driven two-level system, we maximize the efficiency with respect to the observable whose measurement is used to control the feedback operations. We find that the optimal observable typically does not commute with the Hamiltonian and hence would not be available in a classical two level system. This result reveals that periodic feedback engines operating in the quantum realm can exploit quantum coherences to enhance efficiency.
Wavelength limits for InGaN quantum wells on GaN
Pristovsek, Markus
2013-06-17
The emission wavelength of coherently strained InGaN quantum wells (QW) is limited by the maximum thickness before relaxation starts. For high indium contents x>40% the resulting wavelength decreases because quantum confinement dominates. For low indium content x<40% the electron hole wave function overlap (and hence radiative emission) is strongly reduced with increasing QW thickness due to the quantum confined Stark effect and imposes another limit. This results in a maximum usable emission wavelength at around 600 nm for QWs with 40%-50% indium content. Relaxed InGaN buffer layers could help to push this further, especially on non- and semi-polar orientations.
Magnetic breakdown in double quantum wells
Harff, N.E. |; Simmons, J.A.; Klem, J.F.; Boebinger, G.S.; Pfeiffer, L.N.; West, K.W.
1996-08-01
The authors find that a sufficiently large perpendicular magnetic field (B{sub {perpendicular}}) causes magnetic breakdown (MB) in coupled double quantum wells (QWs) that are subject to an in-plane magnetic field (B{sub {parallel}}). B{sub {parallel}} shifts one QW dispersion curve with respect to that of the other QW, resulting in an anticrossing and an energy gap. When the gap is below the Fermi level the resulting Fermi surface (FS) consists of two components, a lens-shaped inner orbit and an hour-glass shaped outer orbit. B{sub {perpendicular}} causes Landau level formation and Shubnikov-de Haas (SdH) oscillations for each component of the FS. MB occurs when the magnetic forces from B{sub {perpendicular}} become dominant and the electrons move on free-electron circular orbits rather than on the lens and hour-glass orbits. MB is observed by identifying the peaks present in the Fourier power spectrum of the longitudinal resistance vs. 1/B{sub {perpendicular}} at constant B{sub {parallel}}, an arrangement achieved with an in-situ tilting sample holder. Results are presented for two strongly coupled GaAs/AlGaAs DQW samples.
Quasibound states in semiconductor quantum well structures
NASA Astrophysics Data System (ADS)
Rihani, Samir; Page, Hideaki; Beere, Harvey E.
2010-02-01
We present a study on quasibound states in multiple quantum well structures using a finite element model (FEM). The FEM is implemented for solving the effective mass Schrödinger equation in arbitrary layered semiconductor nanostructures with an arbitrary applied potential. The model also includes nonparabolicity effects by using an energy dependent effective mass, where the resulting nonlinear eigenvalue problem was solved using an iterative approach. We focus on quasibound/continuum states above the barrier potential and show that such states can be determined using cyclic boundary conditions. This new method enables the determination of both bound and quasibound states simultaneously, making it more efficient than other methods where different boundary conditions have to be used in extracting the relevant states. Furthermore, the new method lifted the problem of quasibound state divergence commonly seen with many other methods of calculation. Hence enabling accurate determination of dipole matrix elements involving both bound and quasibound states. Such calculations are vital in the design of intersubband optoelectronic devices and reveal the interesting properties of quasibound states above the potential barriers.
The quantum coherent mechanism for singlet fission: experiment and theory.
Chan, Wai-Lun; Berkelbach, Timothy C; Provorse, Makenzie R; Monahan, Nicholas R; Tritsch, John R; Hybertsen, Mark S; Reichman, David R; Gao, Jiali; Zhu, X-Y
2013-06-18
The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline
Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system
Sun, Guozhu; Wen, Xueda; Mao, Bo; Chen, Jian; Yu, Yang; Wu, Peiheng; Han, Siyuan
2010-01-01
Coherent control of quantum states is at the heart of implementing solid-state quantum processors and testing quantum mechanics at the macroscopic level. Despite significant progress made in recent years in controlling single- and bi-partite quantum systems, coherent control of quantum wave function in multipartite systems involving artificial solid-state qubits has been hampered due to the relatively short decoherence time and lack of precise control methods. Here we report the creation and coherent manipulation of quantum states in a tripartite quantum system, which is formed by a superconducting qubit coupled to two microscopic two-level systems (TLSs). The avoided crossings in the system's energy-level spectrum due to the qubit–TLS interaction act as tunable quantum beam splitters of wave functions. Our result shows that the Landau–Zener–Stückelberg interference has great potential in precise control of the quantum states in the tripartite system. PMID:20975719
Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system.
Sun, Guozhu; Wen, Xueda; Mao, Bo; Chen, Jian; Yu, Yang; Wu, Peiheng; Han, Siyuan
2010-01-01
Coherent control of quantum states is at the heart of implementing solid-state quantum processors and testing quantum mechanics at the macroscopic level. Despite significant progress made in recent years in controlling single- and bi-partite quantum systems, coherent control of quantum wave function in multipartite systems involving artificial solid-state qubits has been hampered due to the relatively short decoherence time and lack of precise control methods. Here we report the creation and coherent manipulation of quantum states in a tripartite quantum system, which is formed by a superconducting qubit coupled to two microscopic two-level systems (TLSs). The avoided crossings in the system's energy-level spectrum due to the qubit-TLS interaction act as tunable quantum beam splitters of wave functions. Our result shows that the Landau-Zener-Stückelberg interference has great potential in precise control of the quantum states in the tripartite system. PMID:20975719
Coherent states, quantum gravity, and the Born- Oppenheimer approximation. II. Compact Lie groups
NASA Astrophysics Data System (ADS)
Stottmeister, Alexander; Thiemann, Thomas
2016-07-01
In this article, the second of three, we discuss and develop the basis of a Weyl quantisation for compact Lie groups aiming at loop quantum gravity-type models. This Weyl quantisation may serve as the main mathematical tool to implement the program of space adiabatic perturbation theory in such models. As we already argued in our first article, space adiabatic perturbation theory offers an ideal framework to overcome the obstacles that hinder the direct implementation of the conventional Born-Oppenheimer approach in the canonical formulation of loop quantum gravity. Additionally, we conjecture the existence of a new form of the Segal-Bargmann-Hall "coherent state" transform for compact Lie groups G, which we prove for G = U(1)n and support by numerical evidence for G = SU(2). The reason for conjoining this conjecture with the main topic of this article originates in the observation that the coherent state transform can be used as a basic building block of a coherent state quantisation (Berezin quantisation) for compact Lie groups G. But, as Weyl and Berezin quantisation for ℝ2d are intimately related by heat kernel evolution, it is natural to ask whether a similar connection exists for compact Lie groups as well. Moreover, since the formulation of space adiabatic perturbation theory requires a (deformation) quantisation as minimal input, we analyse the question to what extent the coherent state quantisation, defined by the Segal-Bargmann-Hall transform, can serve as basis of the former.
Trion-based Optical Processes in Semiconductor Quantum Wells
NASA Astrophysics Data System (ADS)
Baldwin, Thomas Kendrick
In a semiconductor, negative charge is carried by conduction-band electrons and positive charge is carried by valence-band holes. While charge transport properties can be understood by considering the motion of these carriers individually, the optical properties are largely determined by their mutual interaction. The hydrogen-like bound state of an electron with a hole, or exciton, is the fundamental optical excitation in direct-gap materials such as gallium arsenide and cadmium telluride. In this dissertation, we consider charged excitons, or trions. A bound state of an exciton with a resident electron or hole, trions are a relatively pure manifestation of the three-body problem which can be studied experimentally. This is a subject of practical as well as academic interest: Since the trion is the elementary optical excitation of a resident free carrier, the related optical processes can open pathways for manipulating carrier spin and carrier transport. We present three experimental investigations of trion-based optical processes in semiconductor quantum wells. In the first, we demonstrate electromagnetically induced transparency via the electron spin coherence made possible by the trion transition. We explore the practical limits of this technique in high magnetic fields. In the second, we present a direct measurement of trion and exciton oscillator strength at high magnetic fields. These data reveal insights about the structure of the trion's three-body wavefunction relative to that of its next excited state, the triplet trion. In the last, we investigate the mechanism underlying exciton-correlated tunneling, an optically-controllable transport process in mixed-type quantum wells. Extensive experimental studies indicate that it is due to a local, indirect interaction between an exciton and a hole, forming one more example of a trion-mediated optical process. This dissertation includes previously published co-authored material.
Quantum computation mediated by ancillary qudits and spin coherent states
NASA Astrophysics Data System (ADS)
Proctor, Timothy J.; Dooley, Shane; Kendon, Viv
2015-01-01
Models of universal quantum computation in which the required interactions between register (computational) qubits are mediated by some ancillary system are highly relevant to experimental realizations of a quantum computer. We introduce such a universal model that employs a d -dimensional ancillary qudit. The ancilla-register interactions take the form of controlled displacements operators, with a displacement operator defined on the periodic and discrete lattice phase space of a qudit. We show that these interactions can implement controlled phase gates on the register by utilizing geometric phases that are created when closed loops are traversed in this phase space. The extra degrees of freedom of the ancilla can be harnessed to reduce the number of operations required for certain gate sequences. In particular, we see that the computational advantages of the quantum bus (qubus) architecture, which employs a field-mode ancilla, are also applicable to this model. We then explore an alternative ancilla-mediated model which employs a spin ensemble as the ancillary system and again the interactions with the register qubits are via controlled displacement operators, with a displacement operator defined on the Bloch sphere phase space of the spin coherent states of the ensemble. We discuss the computational advantages of this model and its relationship with the qubus architecture.
Transport through quantum wells and superlattices on topological insulator surfaces.
Song, J-T; Li, Y-X; Sun, Q-F
2014-05-01
We investigate electron transmission coefficients through quantum wells and quantum superlattices on topological insulator surfaces. The quantum well or superlattice is not constituted by general electronic potential barriers but by Fermi velocity barriers which originate in the different topological insulator surfaces. It is found that electron resonant modes can be renormalized by quantum wells and more clearly by quantum superlattices. The depth and width of a quantum well and superlattice, the incident angle of an electron, and the Fermi energy can be used to effectively tune the electron resonant modes. In particular, the number N of periodic structures that constitute a superlattice can further strengthen these regulating effects. These results suggest that a device could be developed to select and regulate electron propagation modes on topological insulator surfaces. Finally, we also study the conductance and the Fano factor through quantum wells and quantum superlattices. In contrast to what has been reported before, the suppression factors of 0.4 in the conductance and 0.85 in the Fano factor are observed in a quantum well, while the transport for a quantum superlattice shows strong oscillating behavior at low energy and reaches the same saturated values as in the case of a quantum well at sufficiently large energies. PMID:24759077
NASA Astrophysics Data System (ADS)
Kraft, Manuel; Hein, Sven M.; Lehnert, Judith; Schöll, Eckehard; Hughes, Stephen; Knorr, Andreas
2016-08-01
Quantum coherent feedback control is a measurement-free control method fully preserving quantum coherence. In this paper we show how time-delayed quantum coherent feedback can be used to control the degree of squeezing in the output field of a cavity containing a degenerate parametric oscillator. We focus on the specific situation of Pyragas-type feedback control where time-delayed signals are fed back directly into the quantum system. Our results show how time-delayed feedback can enhance or decrease the degree of squeezing as a function of time delay and feedback strength.
NASA Astrophysics Data System (ADS)
Zhou, Zong-Quan; Huelga, Susana F.; Li, Chuan-Feng; Guo, Guang-Can
2015-09-01
We discuss the use of inequalities of the Leggett-Garg type (LGtI) to witness quantum coherence and present the first experimental violation of this type of inequalities using a light-matter interfaced system. By separately benchmarking the Markovian character of the evolution and the translational invariance of the conditional probabilities, the observed violation of a LGtI is attributed to the quantum coherent character of the process. These results provide a general method to benchmark "quantumness" when the absence of memory effects can be independently certified and confirm the persistence of quantum coherent features within systems of increasing complexity.
NASA Astrophysics Data System (ADS)
Liu, Jian-Heng; Tu, Matisse Wei-Yuan; Zhang, Wei-Min
2016-07-01
By considering a nanoscale Aharonov-Bohm (AB) interferometer consisting of a laterally coupled double dot coupled to the source and drain electrodes, we investigate the AB phase dependence of the bonding and antibonding states and the transport currents via the bonding and antibonding state channels. The relations of the AB phase dependence between the quantum states and the associated transport current components are analyzed, which provides useful information for the reconstruction of quantum states through the measurement of the transport current in such systems. We also obtain the validity of the experimental analysis [given in T. Hatano et al., Phys. Rev. Lett. 106, 076801 (2011), 10.1103/PhysRevLett.106.076801] that bonding state currents in different energy configurations are almost the same. With the coherent properties in the quantum dot states as well as in the transport currents, we also provide a way to manipulate the bonding and antibonding states through the AB magnetic flux.
Quantum confined stark effect in wide parabolic quantum wells: real density matrix approach
NASA Astrophysics Data System (ADS)
Zielińska-Raczyńska, Sylwia; Czajkowski, Gerard; Ziemkiewicz, David
2015-12-01
We show how to compute the optical functions of wide parabolic quantum wells (WPQWs) exposed to uniform electric F applied in the growth direction, in the excitonic energy region. The effect of the coherence between the electron-hole pair and the electromagnetic field of the propagating wave including the electron-hole screened Coulomb potential is adopted, and the valence band structure is taken into account in the cylindrical approximation. The role of the interaction potential and of the applied electric field, which mix the energy states according to different quantum numbers and create symmetry forbidden transitions, is stressed. We use the real density matrix approach (RDMA) and an effective e-h potential, which enable to derive analytical expressions for the WPQWs electrooptical functions. Choosing the susceptibility, we performed numerical calculations appropriate to a GaAs/GaAlAs WPQWs. We have obtained a red shift of the absorption maxima (quantum confined Stark effect), asymmetric upon the change of the direction of the applied field ( F → - F), parabolic for the ground state and strongly dependent on the confinement parameters (the QWs sizes), changes in the oscillator strengths, and new peaks related to the states with different parity for electron and hole.
A study of non-equilibrium phonons in GaAs/AlAs quantum wells
Su, Zhenpeng
1996-11-01
In this thesis we have studied the non-equilibrium phonons in GaAs/AlAs quantum wells via Raman scattering. We have demonstrated experimentally that by taking into account the time-reversal symmetry relation between the Stokes and anti-Stokes Raman cross sections, one can successfully measure the non-equilibrium phonon occupancy in quantum wells. Using this technique, we have studied the subject of resonant intersubband scattering of optical phonons. We find that interface roughness plays an important role in resonant Raman scattering in quantum wells. The lateral size of the smooth regions in such interface is estimated to be of the order of 100 {Angstrom}. Through a study of photoluminescence of GaAs/AlAs quantum wells under high intensity laser excitation, we have found that band nonparabolicity has very little effect on the electron subband energies even for subbands as high as a few hundred meV above the lowest one. This finding may require additional theoretical study to understand its origin. We have also studied phonon confinement and propagation in quantum wells. We show that Raman scattering of non-equilibrium phonons in quantum wells can be a sensitive measure of the spatial extent of the longitudinal optical (LO) phonons. We deduce the coherence length of LO phonons in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells as a function of the Al concentration x.
Quantum Discord in Photon-Added Glauber Coherent States of GHZ-Type
NASA Astrophysics Data System (ADS)
Daoud, M.; Kaydi, W.; El Hadfi, H.
2015-11-01
We investigate the influence of photon excitations on quantum correlations in tripartite Glauber coherent states of Greenberger-Horne-Zeilinger type (GHZ-type). The pairwise correlations are measured by means of the entropy-based quantum discord. We also analyze the monogamy property of quantum discord in this class of tripartite states in terms of the strength of Glauber coherent states and the photon excitation order.
Dwell-time-limited coherence in open quantum dots.
Hackens, B; Faniel, S; Gustin, C; Wallart, X; Bollaert, S; Cappy, A; Bayot, V
2005-04-15
We present measurements of the electron phase coherence time tau(varphi) on a wide range of open ballistic quantum dots (QDs) made from InGaAs heterostructures. The observed saturation of tau(varphi) below temperatures 0.5 K
Dwell-Time-Limited Coherence in Open Quantum Dots
NASA Astrophysics Data System (ADS)
Hackens, B.; Faniel, S.; Gustin, C.; Wallart, X.; Bollaert, S.; Cappy, A.; Bayot, V.
2005-04-01
We present measurements of the electron phase coherence time τϕ on a wide range of open ballistic quantum dots (QDs) made from InGaAs heterostructures. The observed saturation of τϕ below temperatures 0.5 K
Guiding effect of quantum wells in semiconductor lasers
Aleshkin, V Ya; Dikareva, Natalia V; Dubinov, A A; Zvonkov, B N; Karzanova, Maria V; Kudryavtsev, K E; Nekorkin, S M; Yablonskii, A N
2013-05-31
The guiding effect of InGaAs quantum wells in GaAs- and InP-based semiconductor lasers has been studied theoretically and experimentally. The results demonstrate that such waveguides can be effectively used in laser structures with a large refractive index difference between the quantum well material and semiconductor matrix and a large number of quantum wells (e.g. in InP-based structures). (semiconductor lasers. physics and technology)
NASA Astrophysics Data System (ADS)
Chen, Bing; Li, Yong
2016-04-01
Quantum state transfer (QST) is an important task in quantum information processing. In this study, we describe two approaches for the high-fidelity transfer of a quantum state between two opposite quantum dots attached to a multi-channel quantum network. First, we demonstrate that a high-efficiency QST can be achieved with the coherent time evolution of a quantum system without any external control. Second, we present an approach that uses an alternative mechanism for a high-fidelity QST. By adiabatically varying tunnel couplings, it is possible to implement the complete transmission of a quantum state based on this quantum mechanical mechanism.
Effects of quantum coherence and interference in atoms near nanoparticles
NASA Astrophysics Data System (ADS)
Dhayal, Suman; Rostovtsev, Yuri V.
2016-04-01
Optical properties of ensembles of realistic quantum emitters coupled to plasmonic systems are studied by using adequate models that can take into account full atomic geometry. In particular, the coherent effects such as forming "dark states," optical pumping, coherent Raman scattering, and the stimulated Raman adiabatic passage (STIRAP) are revisited in the presence of metallic nanoparticles. It is shown that the dark states are still formed but they have more complicated structure, and the optical pumping and the STIRAP cannot be employed in the vicinity of plasmonic nanostructures. Also, there is a huge difference in the behavior of the local atomic polarization and the atomic polarization averaged over an ensemble of atoms homogeneously spread near nanoparticles. The average polarization is strictly related to the polarization induced by the external field, while the local polarization can be very different from the one induced by the external field. This is important for the excitation of single molecules, e.g., different components of scattering from single molecules can be used for their efficient detection.
Coherent quantum squeezing due to the phase space noncommutativity
NASA Astrophysics Data System (ADS)
Bernardini, Alex E.; Mizrahi, Salomon S.
2015-06-01
The effects of general noncommutativity of operators on producing deformed coherent squeezed states is examined in phase space. A two-dimensional noncommutative (NC) quantum system supported by a deformed mathematical structure, similar to that of Hadamard billiard, is obtained and the components behaviour is monitored in time. It is assumed that the independent degrees of freedom are two free 1D harmonic oscillators (HOs), so the system Hamiltonian does not contain interaction terms. Through the NC deformation parameterized by a Seiberg-Witten transform on the original canonical variables, one gets the standard commutation relations for the new ones, such that the obtained, new, Hamiltonian represents two interacting 1D HOs. By admitting that one HO is inverted relatively to the other, we show that their effective interaction induces a squeezing dynamics for initial coherent states imaged in the phase space. A suitable pattern of logarithmic spirals is obtained and some relevant properties are discussed in terms of Wigner functions, which are essential to put in evidence the effects of the noncommutativity.
Ultrafast Coherent Control of a Single Electron Spin in a Quantum Dot
NASA Astrophysics Data System (ADS)
Mikkelsen, Maiken H.
2009-03-01
Practical quantum information processing schemes require fast single-qubit operations. For spin-based qubits, this involves performing arbitrary coherent rotations of the spin state on timescales much faster than the spin coherence time. While we recently demonstrated the ability to initialize and monitor the evolution of single spins in quantum dots (QDs)ootnotetextM. H. Mikkelsen, J. Berezovsky, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, Nature Physics 3, 770 (2007); J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 314, 1916 (2006)., here we present an all-optical scheme for ultrafast manipulation of these states through arbitrary angles. The GaAs QDs are embedded in a diode structure to allow controllable charging of the QDs and positioned within a vertical optical cavity to enhance the small single spin signal. By applying off-resonant optical pulses, we coherently rotate a single electron spin in a QD up to π radians on picosecond timescales ootnotetextJ. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom, Science 320, 349 (2008)..We directly observe this spin manipulation using time-resolved Kerr rotation spectroscopy at T=10K. Measurements of the spin rotation as a function of laser detuning and intensity confirm that the optical Stark effect is the operative mechanism and the results are well-described by a model including the electron-nuclear spin interaction. Using short tipping pulses, this technique enables one to perform a large number of operations within the coherence time. This ability to perform arbitrary single-qubit operations enables sequential all-optical initialization, ultrafast control and detection of a single electron spin for quantum information purposes.
Killoran, N.; Huelga, S. F.; Plenio, M. B.
2015-10-21
Recent evidence suggests that quantum effects may have functional importance in biological light-harvesting systems. Along with delocalized electronic excitations, it is now suspected that quantum coherent interactions with certain near-resonant vibrations may contribute to light-harvesting performance. However, the actual quantum advantage offered by such coherent vibrational interactions has not yet been established. We investigate a quantum design principle, whereby coherent exchange of single energy quanta between electronic and vibrational degrees of freedom can enhance a light-harvesting system’s power above what is possible by thermal mechanisms alone. We present a prototype quantum heat engine which cleanly illustrates this quantum design principle and quantifies its quantum advantage using thermodynamic measures of performance. We also demonstrate the principle’s relevance in parameter regimes connected to natural light-harvesting structures.
Fast coherent manipulation of three-electron states in a double quantum dot
NASA Astrophysics Data System (ADS)
Shi, Zhan; Simmons, C. B.; Ward, Daniel R.; Prance, J. R.; Wu, Xian; Koh, Teck Seng; Gamble, John King; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.
2014-01-01
An important goal in the manipulation of quantum systems is the achievement of many coherent oscillations within the characteristic dephasing time T2*. Most manipulations of electron spins in quantum dots have focused on the construction and control of two-state quantum systems, or qubits, in which each quantum dot is occupied by a single electron. Here we perform quantum manipulations on a system with three electrons per double quantum dot. We demonstrate that tailored pulse sequences can be used to induce coherent rotations between three-electron quantum states. Certain pulse sequences yield coherent oscillations fast enough that more than 100 oscillations are visible within a T2* time. The minimum oscillation frequency we observe is faster than 5 GHz. The presence of the third electron enables very fast rotations to all possible states, in contrast to the case when only two electrons are used, in which some rotations are slow.
Quantum entropy and uncertainty for two-mode squeezed, coherent and intelligent spin states
NASA Technical Reports Server (NTRS)
Aragone, C.; Mundarain, D.
1993-01-01
We compute the quantum entropy for monomode and two-mode systems set in squeezed states. Thereafter, the quantum entropy is also calculated for angular momentum algebra when the system is either in a coherent or in an intelligent spin state. These values are compared with the corresponding values of the respective uncertainties. In general, quantum entropies and uncertainties have the same minimum and maximum points. However, for coherent and intelligent spin states, it is found that some minima for the quantum entropy turn out to be uncertainty maxima. We feel that the quantum entropy we use provides the right answer, since it is given in an essentially unique way.
Energy level spectroscopy of InSb quantum wells using quantum-well LED emission
NASA Astrophysics Data System (ADS)
Tenev, T. G.; Palyi, A.; Mirza, B. I.; Nash, G. R.; Fearn, M.; Smith, S. J.; Buckle, L.; Emeny, M. T.; Ashley, T.; Jefferson, J. H.; Lambert, C. J.
2009-02-01
We have investigated the low-temperature optical properties of InSb quantum-well (QW) light-emitting diodes, with different barrier compositions, as a function of well width. Three devices were studied: QW1 had a 20 nm undoped InSb quantum well with a barrier composition of Al0.143In0.857Sb , QW2 had a 40 nm undoped InSb well with a barrier composition of Al0.077In0.923Sb , and QW3 had a 100 nm undoped InSb well with a barrier composition of Al0.025In0.975Sb . For QW1, the signature of two transitions (CB1-HH1 and CB1-HH2) can be seen in the measured spectrum, whereas for QW2 and QW3 the signature of a large number of transitions is present in the measured spectra. In particular transitions to HH2 can be seen, the first time this has been observed in AlInSb/InSb heterostructures. To identify the transitions that contribute to the measured spectra, the spectra have been simulated using an eight-band k.p calculation of the band structure together with a first-order time-dependent perturbation method (Fermi golden rule) calculation of spectral emittance, taking into account broadening. In general there is good agreement between the measured and simulated spectra. For QW2 we attribute the main peak in the experimental spectrum to the CB2-HH1 transition, which has the highest overall contribution to the emission spectrum of QW2 compared with all the other interband transitions. This transition normally falls into the category of “forbidden transitions,” and in order to understand this behavior we have investigated the momentum matrix elements, which determine the selection rules of the problem.
Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field
NASA Astrophysics Data System (ADS)
Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang
2016-03-01
In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transversely polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.
NASA Astrophysics Data System (ADS)
Tian, Si-Cong; Wan, Ren-Gang; Wang, Chun-Liang; Shu, Shi-Li; Wang, Li-Jie; Tong, Chun-Zhu
2016-04-01
We propose a scheme for creation and transfer of coherence among ground state and indirect exciton states of triple quantum dots via the technique of stimulated Raman adiabatic passage. Compared with the traditional stimulated Raman adiabatic passage, the Stokes laser pulse is replaced by the tunneling pulse, which can be controlled by the externally applied voltages. By varying the amplitudes and sequences of the pump and tunneling pulses, a complete coherence transfer or an equal coherence distribution among multiple states can be obtained. The investigations can provide further insight for the experimental development of controllable coherence transfer in semiconductor structure and may have potential applications in quantum information processing.
Observation of an Excitonic Quantum Coherence in CdSe Nanocrystals.
Dong, Shuo; Trivedi, Dhara; Chakrabortty, Sabyasachi; Kobayashi, Takayoshi; Chan, Yinthai; Prezhdo, Oleg V; Loh, Zhi-Heng
2015-10-14
Recent observations of excitonic coherences within photosynthetic complexes suggest that quantum coherences could enhance biological light harvesting efficiencies. Here, we employ optical pump-probe spectroscopy with few-femtosecond pulses to observe an excitonic quantum coherence in CdSe nanocrystals, a prototypical artificial light harvesting system. This coherence, which encodes the high-speed migration of charge over nanometer length scales, is also found to markedly alter the displacement amplitudes of phonons, signaling dynamics in the non-Born-Oppenheimer regime. PMID:26359970
Tian, Si-Cong; Wan, Ren-Gang; Wang, Chun-Liang; Shu, Shi-Li; Wang, Li-Jie; Tong, Chun-Zhu
2016-12-01
We propose a scheme for creation and transfer of coherence among ground state and indirect exciton states of triple quantum dots via the technique of stimulated Raman adiabatic passage. Compared with the traditional stimulated Raman adiabatic passage, the Stokes laser pulse is replaced by the tunneling pulse, which can be controlled by the externally applied voltages. By varying the amplitudes and sequences of the pump and tunneling pulses, a complete coherence transfer or an equal coherence distribution among multiple states can be obtained. The investigations can provide further insight for the experimental development of controllable coherence transfer in semiconductor structure and may have potential applications in quantum information processing. PMID:27107772
Security improvement by using a modified coherent state for quantum cryptography
Lu, Y.J.; Zhu, Luobei; Ou, Z.Y.
2005-03-01
Weak coherent states as a photon source for quantum cryptography have a limit in secure data rate and transmission distance because of the presence of multiphoton events and loss in transmission line. Two-photon events in a coherent state can be taken out by a two-photon interference scheme. We investigate the security issue of utilizing this modified coherent state in quantum cryptography. A 4-dB improvement in the secure data rate or a nearly twofold increase in transmission distance over the coherent state are found. With a recently proposed and improved encoding strategy, further improvement is possible.
Quantum coherent optical phase modulation in an ultrafast transmission electron microscope
NASA Astrophysics Data System (ADS)
Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus
2015-05-01
Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.
NASA Technical Reports Server (NTRS)
Yuen, H. P.; Shapiro, J. H.
1978-01-01
To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena
2016-01-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms. PMID:27112420
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity.
Dory, Constantin; Fischer, Kevin A; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Vučković, Jelena
2016-01-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms. PMID:27112420
Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity
NASA Astrophysics Data System (ADS)
Dory, Constantin; Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L.; Kelaita, Yousif; Vučković, Jelena
2016-04-01
Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms.
Ordering states with coherence measures
NASA Astrophysics Data System (ADS)
Liu, C. L.; Yu, Xiao-Dong; Xu, G. F.; Tong, D. M.
2016-07-01
The quantification of quantum coherence has attracted a growing attention, and based on various physical contexts, several coherence measures have been put forward. An interesting question is whether these coherence measures give the same ordering when they are used to quantify the coherence of quantum states. In this paper, we consider the two well-known coherence measures, the l_1 norm of coherence and the relative entropy of coherence, to show that there are the states for which the two measures give a different ordering. Our analysis can be extended to other coherence measures, and as an illustration of the extension we further consider the formation of coherence to show that the l_1 norm of coherence and the formation of coherence, as well as the relative entropy of coherence and the coherence of formation, do not give the same ordering too.
NASA Astrophysics Data System (ADS)
Ćwikliński, Piotr; Studziński, Michał; Horodecki, Michał; Oppenheim, Jonathan
2015-11-01
The second law of thermodynamics places a limitation into which states a system can evolve into. For systems in contact with a heat bath, it can be combined with the law of energy conservation, and it says that a system can only evolve into another if the free energy goes down. Recently, it's been shown that there are actually many second laws, and that it is only for large macroscopic systems that they all become equivalent to the ordinary one. These additional second laws also hold for quantum systems, and are, in fact, often more relevant in this regime. They place a restriction on how the probabilities of energy levels can evolve. Here, we consider additional restrictions on how the coherences between energy levels can evolve. Coherences can only go down, and we provide a set of restrictions which limit the extent to which they can be maintained. We find that coherences over energy levels must decay at rates that are suitably adapted to the transition rates between energy levels. We show that the limitations are matched in the case of a single qubit, in which case we obtain the full characterization of state-to-state transformations. For higher dimensions, we conjecture that more severe constraints exist. We also introduce a new class of thermodynamical operations which allow for greater manipulation of coherences and study its power with respect to a class of operations known as thermal operations.
Ćwikliński, Piotr; Studziński, Michał; Horodecki, Michał; Oppenheim, Jonathan
2015-11-20
The second law of thermodynamics places a limitation into which states a system can evolve into. For systems in contact with a heat bath, it can be combined with the law of energy conservation, and it says that a system can only evolve into another if the free energy goes down. Recently, it's been shown that there are actually many second laws, and that it is only for large macroscopic systems that they all become equivalent to the ordinary one. These additional second laws also hold for quantum systems, and are, in fact, often more relevant in this regime. They place a restriction on how the probabilities of energy levels can evolve. Here, we consider additional restrictions on how the coherences between energy levels can evolve. Coherences can only go down, and we provide a set of restrictions which limit the extent to which they can be maintained. We find that coherences over energy levels must decay at rates that are suitably adapted to the transition rates between energy levels. We show that the limitations are matched in the case of a single qubit, in which case we obtain the full characterization of state-to-state transformations. For higher dimensions, we conjecture that more severe constraints exist. We also introduce a new class of thermodynamical operations which allow for greater manipulation of coherences and study its power with respect to a class of operations known as thermal operations. PMID:26636834
On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom
Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can
2016-01-01
In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821
On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.
Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can
2016-01-01
In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821
NASA Astrophysics Data System (ADS)
Yang, Yuxiang; Chiribella, Giulio; Adesso, Gerardo
2014-10-01
Quantum technology promises revolutionary advantages in information processing and transmission compared to classical technology; however, determining which specific resources are needed to surpass the capabilities of classical machines often remains a nontrivial problem. To address such a problem, one first needs to establish the best classical solutions, which set benchmarks that must be beaten by any implementation claiming to harness quantum features for an enhanced performance. Here we introduce and develop a self-contained formalism to obtain the ultimate, generally probabilistic benchmarks for quantum information protocols including teleportation and approximate cloning, with arbitrary ensembles of input states generated by a group action, so-called Gilmore-Perelomov coherent states. This allows us to construct explicit fidelity thresholds for the transmission of multimode Gaussian and non-Gaussian states of continuous-variable systems, as well as qubit and qudit pure states drawn according to nonuniform distributions on the Bloch hypersphere, which accurately model the current laboratory facilities. The performance of deterministic classical procedures such as square-root measurement strategies is further compared with the optimal probabilistic benchmarks, and the state-of-the-art performance of experimental quantum implementations against our newly derived thresholds is discussed. This work provides a comprehensive collection of directly useful criteria for the reliable certification of quantum communication technologies.
Photoluminescence from narrow InAs-AlSb quantum wells
NASA Technical Reports Server (NTRS)
Brar, Berinder; Kroemer, Herbert; Ibbetson, James; English, John H.
1993-01-01
We report on photoluminescence spectra from narrow InAs-AlSb quantum wells. Strong, clearly resolved peaks for well widths from 2 to 8 monolayers were observed. Transmission electron micrographs show direct evidence for the structural quality of the quantum well structures. The transition energies of the narrowest wells suggest a strong influence of the AlSb X-barrier on the electronic states in the conduction band.
Chemical Compass Model for Avian Magnetoreception as a Quantum Coherent Device
NASA Astrophysics Data System (ADS)
Cai, Jianming; Plenio, Martin B.
2013-12-01
It is known that more than 50 species use the Earth’s magnetic field for orientation and navigation. Intensive studies, particularly behavior experiments with birds, provide support for a chemical compass based on magnetically sensitive free radical reactions as a source of this sense. However, the fundamental question of how quantum coherence plays an essential role in such a chemical compass model of avian magnetoreception yet remains controversial. Here, we show that the essence of the chemical compass model can be understood in analogy to a quantum interferometer exploiting global quantum coherence rather than any subsystem coherence. Within the framework of quantum metrology, we quantify global quantum coherence and correlate it with the function of chemical magnetoreception. Our results allow us to understand and predict how various factors can affect the performance of a chemical compass from the unique perspective of quantum coherence assisted metrology. This represents a crucial step to affirm a direct connection between quantum coherence and the function of a chemical compass.
Chemical compass model for avian magnetoreception as a quantum coherent device.
Cai, Jianming; Plenio, Martin B
2013-12-01
It is known that more than 50 species use the Earth's magnetic field for orientation and navigation. Intensive studies, particularly behavior experiments with birds, provide support for a chemical compass based on magnetically sensitive free radical reactions as a source of this sense. However, the fundamental question of how quantum coherence plays an essential role in such a chemical compass model of avian magnetoreception yet remains controversial. Here, we show that the essence of the chemical compass model can be understood in analogy to a quantum interferometer exploiting global quantum coherence rather than any subsystem coherence. Within the framework of quantum metrology, we quantify global quantum coherence and correlate it with the function of chemical magnetoreception. Our results allow us to understand and predict how various factors can affect the performance of a chemical compass from the unique perspective of quantum coherence assisted metrology. This represents a crucial step to affirm a direct connection between quantum coherence and the function of a chemical compass. PMID:24476240
Wei, Wei; Dai, Ying; Niu, Chengwang; Huang, Baibiao
2015-01-01
In-plane transition-metal dichalcogenides (TMDs) quantum wells have been studied on the basis of first-principles density functional calculations to reveal how to control the electronic structures and the properties. In collection of quantum confinement, strain and intrinsic electric field, TMD quantum wells offer a diverse of exciting new physics. The band gap can be continuously reduced ascribed to the potential drop over the embedded TMD and the strain substantially affects the band gap nature. The true type-II alignment forms due to the coherent lattice and strong interface coupling suggesting the effective separation and collection of excitons. Interestingly, two-dimensional quantum wells of in-plane TMD can enrich the photoluminescence properties of TMD materials. The intrinsic electric polarization enhances the spin-orbital coupling and demonstrates the possibility to achieve topological insulator state and valleytronics in TMD quantum wells. In-plane TMD quantum wells have opened up new possibilities of applications in next-generation devices at nanoscale. PMID:26616013
Exciton absorption of entangled photons in semiconductor quantum wells
NASA Astrophysics Data System (ADS)
Rodriguez, Ferney; Guzman, David; Salazar, Luis; Quiroga, Luis; Condensed Matter Physics Group Team
2013-03-01
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on space-time-polarization biphoton parameters and absorber density of states for both bound exciton states as well as for unbound electron-hole pairs. We report on the connection between biphoton entanglement, as quantified by the Schmidt number, and absorption by a semiconductor quantum well. Comparison between frequency-anti-correlated, unentangled and frequency-correlated biphoton absorption is addressed. We found that exciton oscillator strengths are highly increased when photons arrive almost simultaneously in an entangled state. Two-photon-absorption becomes a highly sensitive probe of photon quantum correlations when narrow semiconductor quantum wells are used as two-photon absorbers. Research funds from Facultad de Ciencias, Universidad de los Andes
Full counting statistics as a probe of quantum coherence in a side-coupled double quantum dot system
Xue, Hai-Bin
2013-12-15
We study theoretically the full counting statistics of electron transport through side-coupled double quantum dot (QD) based on an efficient particle-number-resolved master equation. It is demonstrated that the high-order cumulants of transport current are more sensitive to the quantum coherence than the average current, which can be used to probe the quantum coherence of the considered double QD system. Especially, quantum coherence plays a crucial role in determining whether the super-Poissonian noise occurs in the weak inter-dot hopping coupling regime depending on the corresponding QD-lead coupling, and the corresponding values of super-Poissonian noise can be relatively enhanced when considering the spins of conduction electrons. Moreover, this super-Poissonian noise bias range depends on the singly-occupied eigenstates of the system, which thus suggests a tunable super-Poissonian noise device. The occurrence-mechanism of super-Poissonian noise can be understood in terms of the interplay of quantum coherence and effective competition between fast-and-slow transport channels. -- Highlights: •The FCS can be used to probe the quantum coherence of side-coupled double QD system. •Probing quantum coherence using FCS may permit experimental tests in the near future. •The current noise characteristics depend on the quantum coherence of this QD system. •The super-Poissonian noise can be enhanced when considering conduction electron spin. •The side-coupled double QD system suggests a tunable super-Poissonian noise device.
Becerra, F E; Fan, J; Migdall, A
2013-01-01
Generalized quantum measurements implemented to allow for measurement outcomes termed inconclusive can perform perfect discrimination of non-orthogonal states, a task which is impossible using only measurements with definitive outcomes. Here we demonstrate such generalized quantum measurements for unambiguous discrimination of four non-orthogonal coherent states and obtain their quantum mechanical description, the positive-operator valued measure. For practical realizations of this positive-operator valued measure, where noise and realistic imperfections prevent perfect unambiguous discrimination, we show that our experimental implementation outperforms any ideal standard-quantum-limited measurement performing the same non-ideal unambiguous state discrimination task for coherent states with low mean photon numbers. PMID:23774177
Quantum minimax receiver for ternary coherent state signal in the presence of thermal noise
NASA Astrophysics Data System (ADS)
Kato, Kentaro
2013-02-01
This paper is concerned with the minimax strategy in quantum signal detection theory. First we show a numerical calculation method for finding a solution to the quantum minimax decision problem in the case that the average probability of decision errors is used as the quality function of a quantum communication system. To verify the numerical calculation method, ternary coherent state signal is considered in the absence of thermal noise. After that, the error probability of the quantum minimax receiver for the ternary coherent state signal in the pressure of thermal noise is computed by using this numerical calculation method.
Electronic Enhancement of the Exciton Coherence Time in Charged Quantum Dots
NASA Astrophysics Data System (ADS)
Moody, G.; McDonald, C.; Feldman, A.; Harvey, T.; Mirin, R. P.; Silverman, K. L.
2016-01-01
Minimizing decoherence due to coupling of a quantum system to its fluctuating environment is at the forefront of quantum information and photonics research. Nature sets the ultimate limit, however, given by the strength of the system's coupling to the electromagnetic field. Here, we establish the ability to electronically control this coupling and enhance the optical coherence time of the charged exciton transition in quantum dots embedded in a photonic waveguide. By manipulating the electronic wave functions through an applied lateral electric field, we increase the coherence time from ˜1.4 to ˜2.7 ns . Numerical calculations reveal that longer coherence arises from the separation of charge carriers by up to ˜6 nm , which leads to a 30% weaker transition dipole moment. The ability to electronically control the coherence time opens new avenues for quantum communication and novel coupling schemes between distant qubits.
Electronic Enhancement of the Exciton Coherence Time in Charged Quantum Dots
Moody, G.; McDonald, C.; Feldman, A.; Harvey, T.; Mirin, R. P.; Silverman, K. L.
2016-01-01
Minimizing decoherence due to coupling of a quantum system to its fluctuating environment is at the forefront of quantum information and photonics research. Nature sets the ultimate limit, however, given by the strength of the system’s coupling to the electromagnetic field. Here, we establish the ability to electronically control this coupling and enhance the optical coherence time of the charged exciton transition in quantum dots embedded in a photonic waveguide. By manipulating the electronic wavefunctions through an applied lateral electric field, we increase the coherence time from ~ 1.4 ns to ~ 2.7 ns. Numerical calculations reveal that longer coherence arises from the separation of charge carriers by up to ~ 6 nm, which leads to a 30% weaker transition dipole moment. The ability to electronically control the coherence time opens new avenues for quantum communication and novel coupling schemes between distant qubits. PMID:26849614
Electronic Enhancement of the Exciton Coherence Time in Charged Quantum Dots.
Moody, G; McDonald, C; Feldman, A; Harvey, T; Mirin, R P; Silverman, K L
2016-01-22
Minimizing decoherence due to coupling of a quantum system to its fluctuating environment is at the forefront of quantum information and photonics research. Nature sets the ultimate limit, however, given by the strength of the system's coupling to the electromagnetic field. Here, we establish the ability to electronically control this coupling and enhance the optical coherence time of the charged exciton transition in quantum dots embedded in a photonic waveguide. By manipulating the electronic wave functions through an applied lateral electric field, we increase the coherence time from ∼1.4 to ∼2.7 ns. Numerical calculations reveal that longer coherence arises from the separation of charge carriers by up to ∼6 nm, which leads to a 30% weaker transition dipole moment. The ability to electronically control the coherence time opens new avenues for quantum communication and novel coupling schemes between distant qubits. PMID:26849614
Polaron mass of charge carriers in semiconductor quantum wells
Maslov, A. Yu. Proshina, O. V.
2015-10-15
A theory of the interaction of charge carriers with optical phonons in a quantum well is developed with consideration for interface optical phonons. The dependence of the polaron effective mass on the quantum-well dimensions and dielectric characteristics of barriers is analyzed in detail. It is shown that, in narrow quantum wells, a quasi-two-dimensional polaron can be formed. In this case, however, the interaction parameters are defined by the charge-carrier effective mass in the quantum well and by the frequencies of interface optical phonons. If barriers are made of a nonpolar material, the polaron effective mass depends on the quantum-well width. As the quantum-well width is increased, a new mechanism of enhancement of the electron–phonon interaction develops. The mechanism is implemented, if the optical phonon energy is equal to the energy of one of the electronic transitions. This condition yields an unsteady dependence of the polaron effective mass on the quantum-well width.
Quantum-coherence-enhanced surface plasmon amplification by stimulated emission of radiation.
Dorfman, Konstantin E; Jha, Pankaj K; Voronine, Dmitri V; Genevet, Patrice; Capasso, Federico; Scully, Marlan O
2013-07-26
We investigate surface plasmon amplification in a silver nanoparticle coupled to an externally driven three-level gain medium and show that quantum coherence significantly enhances the generation of surface plasmons. Surface plasmon amplification by stimulated emission of radiation is achieved in the absence of population inversion on the spasing transition, which reduces the pump requirements. The coherent drive allows us to control the dynamics and holds promise for quantum control of nanoplasmonic devices. PMID:23931365
NASA Astrophysics Data System (ADS)
Lassen, Mikael; Sabuncu, Metin; Huck, Alexander; Niset, Julien; Leuchs, Gerd; Cerf, Nicolas J.; Andersen, Ulrik L.
2010-10-01
A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that quantum error-correcting code will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Our quantum code is based on linear optics, and it protects a four-mode entangled mesoscopic state of light against erasures. We investigate two approaches for circumventing in-line losses, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means. Because in-line attenuation is generally the strongest limitation to quantum communication, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances.
Decoy-state protocol for quantum cryptography with four different intensities of coherent light
Wang Xiangbin
2005-07-15
We propose an efficient decoy-state protocol for practical quantum key distribution using coherent states. The protocol uses four intensities of different coherent light. A good final key rate is achieved by our protocol with typical parameters of existing practical setups, even with a very low channel transmittance.
Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems
ERIC Educational Resources Information Center
Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih
2009-01-01
In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…
Double well potentials and quantum phase transitions in ion traps.
Retzker, A; Thompson, R C; Segal, D M; Plenio, M B
2008-12-31
We demonstrate that the radial degree of freedom of strings of trapped ions in the quantum regime may be prepared and controlled accurately through the variation of the external trapping potential while at the same time its properties are measurable with high spatial and temporal resolution. This provides a new testbed giving access to static and dynamical properties of the physics of quantum-many-body systems and quantum phase transitions that are hard to simulate on classical computers. Furthermore, it allows for the creation of double well potentials with experimentally accessible tunneling rates, with applications in testing the foundations of quantum physics and precision sensing. PMID:19437628
Single electron tunneling in double and triple quantum wells
NASA Astrophysics Data System (ADS)
Filikhin, I.; Karoui, A.; Vlahovic, B.
2016-03-01
Electron localization and tunneling in laterally distributed double quantum well (DQW) and triple quantum well (TQW) are studied. Triangular configuration for the TQWs as well as various quantum well (QW) shapes and asymmetry are considered. The effect of adding a third well to a DQW is investigated as a weakly coupled system. InAs/GaAs DQWs and TQWs were modeled using single subband effective mass approach with effective potential simulating the strain effect. Electron localization dynamics in DQW and TQW over the whole spectrum is studied by varying the inter-dot distances. The electron tunneling appeared highly sensitive to small violations of the DQW mirror symmetry. We show that the presence of a third dot increases the tunneling in the DQW. The dependence of the tunneling in quantum dot (QD) arrays on inter-dot distances is also discussed.
NASA Astrophysics Data System (ADS)
Zhang, Zhedong; Wang, Jin
2015-05-01
Recently the quantum nature in the energy transport in solar cell and light-harvesting complexes have attracted much attention, by being triggered by the experimental observations. We model the light-harvesting complex (i.e., PEB50 dimer) as a quantum heat engine and study the effect of the undamped intra-molecule vibrational modes on the coherent energy transfer and quantum transport. Possibly this system can be artificially simulated by atom-cavity setup. We find that the exciton-vibration interaction has non-trivial contribution to the promotion of quantum yield as well as transport properties of the quantum heat engine at steady state, by enhancing the quantum coherence quantified by entanglement entropy. The perfect quantum yield over 90% has been obtained, assisted by exciton-vibration coupling. We attribute these improvements to the renormalization of the electronic couplings effectively induced by exciton-vibration interaction and the subsequent delocalization of excitons. Finally we demonstrate that the thermal relaxation and dephasing can help the excitation energy transfer in PEB50 dimer.
Thermoelectric transport in quantum well superlattices
Broido, D.A.; Reinecke, T.L.
1997-05-01
A full theory of thermoelectric transport in superlattices, including the well width and energy dependence of the optical and acoustic phonon scattering and the effects of confinement in raising valley degeneracy is developed. It is shown that these features result in qualitatively significant modifications in the predicted figure of merit of superlattice systems. Results are given for PbTe superlattices, and comments are made on recent experimental results for such systems. {copyright} {ital 1997 American Institute of Physics.}
Electro-optical switching between polariton and cavity lasing in an InGaAs quantum well microcavity.
Amthor, Matthias; Weißenseel, Sebastian; Fischer, Julian; Kamp, Martin; Schneider, Christian; Höfling, Sven
2014-12-15
We report on the condensation of microcavity exciton polaritons under optical excitation in a microcavity with four embedded InGaAs quantum wells. The polariton laser is characterized by a distinct non-linearity in the input-output-characteristics, which is accompanied by a drop of the emission linewidth indicating temporal coherence and a characteristic persisting emission blueshift with increased particle density. The temporal coherence of the device at threshold is underlined by a characteristic drop of the second order coherence function to a value close to 1. Furthermore an external electric field is used to switch between polariton regime, polariton condensate and photon lasing. PMID:25607064
Quantum Well Infrared Photodetectors for Low Background Applications
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, S. V.; Singh, A.; Liu, J. K.; Luong, E. M.; Mumolo, J. M.; McKelvey, M. J.
1998-01-01
High performance long-wavelength GaAs/Al(x)Ga(1-x)As quantum well infrared photodetectors for low background applications have been demonstrated. This is the first theoretical analysis of quantum well infrared photodetectors for low background applications and the detectivity D* of 6 x 10(exp 13) cm.square root of Hz/W has been achieved at T = 40 K with 2 x 10(exp 9) photons/cm2/sec background. In addition, this paper describes the demonstration of mid-wavelength/long-wavelength dualband quantum well infrared photodetectors and long-wavelength/very long-wavelength dualband quantum well infrared photodetectors in 4-26 micrometers wavelength region.
Piezo-Phototronic Effect in a Quantum Well Structure.
Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin
2016-05-24
With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design. PMID:27088347
Optimal discrimination of M coherent states with a small quantum computer
Silva, Marcus P. da; Guha, Saikat; Dutton, Zachary
2014-12-04
The ability to distinguish between coherent states optimally plays in important role in the efficient usage of quantum resources for classical communication and sensing applications. While it has been known since the early 1970’s how to optimally distinguish between two coherent states, generalizations to larger sets of coherent states have so far failed to reach optimality. In this work we outline how optimality can be achieved by using a small quantum computer, building on recent proposals for optimal qubit state discrimination with multiple copies.
Preparing and preserving the double quantum coherence in NV- centers in Diamond at low fields
NASA Astrophysics Data System (ADS)
Moussa, Osama; Hincks, Ian; Cory, David G.
2014-12-01
We present and demonstrate a simple idea to excite and preserve the double-quantum-coherence (DQC) in the ground state of the electron spin of the Nitrogen-vacancy (NV) color center in diamond. We measure the coherence time of the DQC and compare it to the single quantum coherence time, both, in a Ramsey fringe experiment and under a Hahn echo sequence. We also demonstrate a robust pulse sequence based on the DANTE pulse sequence for selectively isolating the signal from the electron transitions conditional on the state of the always-present Nitrogen spin.
Two-way Gaussian quantum cryptography against coherent attacks in direct reconciliation
NASA Astrophysics Data System (ADS)
Ottaviani, Carlo; Mancini, Stefano; Pirandola, Stefano
2015-12-01
We consider a two-way quantum cryptographic protocol with coherent states assuming direct reconciliation. A detailed security analysis is performed considering a two-mode coherent attack, which represents the residual eavesdropping once the parties have reduced the general attack by applying symmetric random permutations. In this context we provide a general analytical expression for the key rate, discussing the impact of the residual two-mode correlations on the security of the scheme. In particular, we identify the optimal eavesdropping against two-way quantum communication, which is given by a two-mode coherent attack with symmetric and separable correlations.
Preparing and preserving the double quantum coherence in NV(-) centers in Diamond at low fields.
Moussa, Osama; Hincks, Ian; Cory, David G
2014-10-01
We present and demonstrate a simple idea to excite and preserve the double-quantum-coherence (DQC) in the ground state of the electron spin of the Nitrogen-vacancy (NV) color center in diamond. We measure the coherence time of the DQC and compare it to the single quantum coherence time, both, in a Ramsey fringe experiment and under a Hahn echo sequence. We also demonstrate a robust pulse sequence based on the DANTE pulse sequence for selectively isolating the signal from the electron transitions conditional on the state of the always-present Nitrogen spin. PMID:25462943
NASA Astrophysics Data System (ADS)
Chen, Y. F.
2011-03-01
The geometry of classical dynamics in coupled oscillators with SU(2) transformations is explored and found to be relevant to a family of continuous-transformation orbits between Lissajous and trochoidal curves. The quantum wave-packet coherent states are derived analytically to correspond exactly to the transformation geometry of classical dynamics. By using the quantum wave-packet coherent states derived herein, stationary coherent states are constructed and are shown to possess spatial patterns identical to the transformation geometry between Lissajous and trochoidal orbits.
Coherent manipulation of quantum spin states in a single molecular nanomagnet
NASA Astrophysics Data System (ADS)
Wernsdorfer, Wolfgang
The endeavour of quantum electronics is driven by one of the most ambitious technological goals of today's scientists: the realization of an operational quantum computer (http://qurope.eu). We started to address this goal by the new research field of molecular quantum spintronics. The building blocks are magnetic molecules, i.e. well-defined spin qubits. We will discuss this still largely unexplored field and present our first results: For example, using a molecular spin-transistor, we achieved the electronic read-out of the nuclear spin of an individual metal atom embedded in an SMM. We could show very long spin lifetimes (>10 s). Using the hyperfine Stark effect, which transforms electric fields into local effective magnetic fields, we could not only tune the resonance frequency by several MHz, but also perform coherent quantum manipulations on a single nuclear qubit faster than a μs by means of electrical fields only, establishing the individual addressability of identical nuclear qubits. Using three different microwave frequencies, we could implement a simple four-level Grover algorithm. S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 344, 1135 (2014).
Kato, Akihito Tanimura, Yoshitaka
2015-08-14
We consider a system consisting of two interacting qubits that are individually coupled to separate heat baths at different temperatures. The quantum effects in heat transport are investigated in a numerically rigorous manner with a hierarchial equations of motion (HEOM) approach for non-perturbative and non-Markovian system-bath coupling cases under non-equilibrium steady-state conditions. For a weak interqubit interaction, the total system is regarded as two individually thermostatted systems, whereas for a strong interqubit interaction, the two-qubit system is regarded as a single system coupled to two baths. The roles of quantum coherence (or entanglement) between the two qubits (q-q coherence) and between the qubit and bath (q-b coherence) are studied through the heat current calculated for various strengths of the system-bath coupling and interqubit coupling for high and low temperatures. The same current is also studied using the time convolutionless (TCL) Redfield equation and using an expression derived from the Fermi golden rule (FGR). We find that the HEOM results exhibit turnover behavior of the heat current as a function of the system-bath coupling strength for all values of the interqubit coupling strength, while the results obtained with the TCL and FGR approaches do not exhibit such behavior, because they do not possess the capability of treating the q-b and q-q coherences. The maximum current is obtained in the case that the q-q coherence and q-b coherence are balanced in such a manner that coherence of the entire heat transport process is realized. We also find that the heat current does not follow Fourier’s law when the temperature difference is very large, due to the non-perturbative system-bath interactions.
Quantum displacement receiver for M-ary phase-shift-keyed coherent states
Izumi, Shuro; Takeoka, Masahiro; Fujiwara, Mikio; Sasaki, Masahide; Pozza, Nicola Dalla; Assalini, Antonio
2014-12-04
We propose quantum receivers for 3- and 4-ary phase-shift-keyed (PSK) coherent state signals to overcome the standard quantum limit (SQL). Our receiver, consisting of a displacement operation and on-off detectors with or without feedforward, provides an error probability performance beyond the SQL. We show feedforward operations can tolerate the requirement for the detector specifications.
Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
Hildner, Richard; Brinks, Daan; Nieder, Jana B; Cogdell, Richard J; van Hulst, Niek F
2013-06-21
The initial steps of photosynthesis comprise the absorption of sunlight by pigment-protein antenna complexes followed by rapid and highly efficient funneling of excitation energy to a reaction center. In these transport processes, signatures of unexpectedly long-lived coherences have emerged in two-dimensional ensemble spectra of various light-harvesting complexes. Here, we demonstrate ultrafast quantum coherent energy transfer within individual antenna complexes of a purple bacterium under physiological conditions. We find that quantum coherences between electronically coupled energy eigenstates persist at least 400 femtoseconds and that distinct energy-transfer pathways that change with time can be identified in each complex. Our data suggest that long-lived quantum coherence renders energy transfer in photosynthetic systems robust in the presence of disorder, which is a prerequisite for efficient light harvesting. PMID:23788794
QUANTUM INFORMATION. Coherent coupling of a single spin to microwave cavity photons.
Viennot, J J; Dartiailh, M C; Cottet, A; Kontos, T
2015-07-24
Electron spins and photons are complementary quantum-mechanical objects that can be used to carry, manipulate, and transform quantum information. To combine these resources, it is desirable to achieve the coherent coupling of a single spin to photons stored in a superconducting resonator. Using a circuit design based on a nanoscale spin valve, we coherently hybridize the individual spin and charge states of a double quantum dot while preserving spin coherence. This scheme allows us to achieve spin-photon coupling up to the megahertz range at the single-spin level. The cooperativity is found to reach 2.3, and the spin coherence time is about 60 nanoseconds. We thereby demonstrate a mesoscopic device suitable for nondestructive spin readout and distant spin coupling. PMID:26206930
Description of quantum coherence in thermodynamic processes requires constraints beyond free energy
Lostaglio, Matteo; Jennings, David; Rudolph, Terry
2015-01-01
Recent studies have developed fundamental limitations on nanoscale thermodynamics, in terms of a set of independent free energy relations. Here we show that free energy relations cannot properly describe quantum coherence in thermodynamic processes. By casting time-asymmetry as a quantifiable, fundamental resource of a quantum state, we arrive at an additional, independent set of thermodynamic constraints that naturally extend the existing ones. These asymmetry relations reveal that the traditional Szilárd engine argument does not extend automatically to quantum coherences, but instead only relational coherences in a multipartite scenario can contribute to thermodynamic work. We find that coherence transformations are always irreversible. Our results also reveal additional structural parallels between thermodynamics and the theory of entanglement. PMID:25754774
Turner, Daniel B; Dinshaw, Rayomond; Lee, Kyung-Koo; Belsley, Michael S; Wilk, Krystyna E; Curmi, Paul M G; Scholes, Gregory D
2012-04-14
Recent measurements using two-dimensional electronic spectroscopy (2D ES) have shown that the initial dynamic response of photosynthetic proteins can involve quantum coherence. We show how electronic coherence can be differentiated from vibrational coherence in 2D ES. On that basis we conclude that both electronic and vibrational coherences are observed in the phycobiliprotein light-harvesting complex PC645 from Chroomonas sp. CCMP270 at ambient temperature. These light-harvesting antenna proteins of the cryptophyte algae are suspended in the lumen, where the pH drops significantly under sustained illumination by sunlight. Here we measured 2D ES of PC645 at increasing levels of acidity to determine if the change in pH affects the quantum coherence; quantitative analysis reveals that the dynamics are insensitive to the pH change. PMID:22374579
Quantum Anomalous Hall Effect in Hg_1-yMn_yTe Quantum Wells
Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
The quantum Hall effect is usually observed when the two-dimensional electron gas is subjected to an external magnetic field, so that their quantum states form Landau levels. In this work we predict that a new phenomenon, the quantum anomalous Hall effect, can be realized in Hg{sub 1-y}Mn{sub y}Te quantum wells, without the external magnetic field and the associated Landau levels. This effect arises purely from the spin polarization of the Mn atoms, and the quantized Hall conductance is predicted for a range of quantum well thickness and the concentration of the Mn atoms. This effect enables dissipationless charge current in spintronics devices.
Spectral quantum beating in mixed frequency/time-domain coherent multidimensional spectroscopy.
Pakoulev, Andrei V; Rickard, Mark A; Mathew, Nathan A; Kornau, Kathryn M; Wright, John C
2007-08-01
Coherent multidimensional spectroscopy performed in the mixed frequency/time domain exhibits both temporal and spectral quantum beating when two quantum states are simultaneously excited. The excitation of both quantum states can occur because either the spectral width of the states or the excitation pulse exceeds the frequency separation of the quantum states. The quantum beating appears as a line that broadens and splits into two peaks and then recombines as the time delay between excitation pulses increases. The splitting depends on the spectral width of the excitation pulses. We observe the spectral quantum beating between the two nearly degenerate asymmetric carbonyl stretch modes in a nickel tricarbonyl chelate using the nonrephasing, ground state bleaching coherence pathway in triply vibrationally enhanced four-wave mixing as the time delay between the first two excitation pulses changes. PMID:17628051
Homodyne detection of coherence and phase shift of a quantum dot in a cavity.
Bakker, Morten P; Snijders, Henk; Löffler, Wolfgang; Barve, Ajit V; Coldren, Larry A; Bouwmeester, Dirk; van Exter, Martin P
2015-07-01
A homodyne measurement technique is demonstrated that enables direct observation of the coherence and phase of light that passed through a coupled quantum dot (QD)-microcavity system, which in turn enables clear identification of coherent and incoherent QD transitions. As an example, we study the effect of power-induced decoherence, where the QD transition saturates and incoherent emission from the excited state dominates at higher power. Further, we show that the same technique allows measurement of the quantum phase shift induced by a single QD in the cavity, which is strongly enhanced by cavity quantum electrodynamics effects. PMID:26125395
Control of the probe absorption in coupled quantum wells in two dimensions
NASA Astrophysics Data System (ADS)
Kang, Chengxian; Ma, Yangcheng; Wang, Zhiping; Yu, Benli
2016-06-01
We investigate the probe absorption of a weak probe field in two dimensions (the so-called two-dimensional probe absorption) in an asymmetric two coupled quantum wells. It is found that, due to the joint quantum interference induced by the standing-wave and coherent coupling fields, the probe absorption can be easily controlled via adjusting the system parameters in two dimensions. Most importantly, the pattern of probe absorption can be localized at a particular position and the maximal probability of finding the pattern in one period of the standing-wave fields reaches unity by properly adjusting the system parameters. Thus, our scheme may provide some technological applications in solid-state optoelectronics and quantum information science.
Experimental control of transport resonances in a coherent quantum rocking ratchet
Grossert, Christopher; Leder, Martin; Denisov, Sergey; Hänggi, Peter; Weitz, Martin
2016-01-01
The ratchet phenomenon is a means to get directed transport without net forces. Originally conceived to rectify stochastic motion and describe operational principles of biological motors, the ratchet effect can be used to achieve controllable coherent quantum transport. This transport is an ingredient of several perspective quantum devices including atomic chips. Here we examine coherent transport of ultra-cold atoms in a rocking quantum ratchet. This is realized by loading a rubidium atomic Bose–Einstein condensate into a periodic optical potential subjected to a biharmonic temporal drive. The achieved long-time coherence allows us to resolve resonance enhancement of the atom transport induced by avoided crossings in the Floquet spectrum of the system. By tuning the strength of the temporal modulations, we observe a bifurcation of a single resonance into a doublet. Our measurements reveal the role of interactions among Floquet eigenstates for quantum ratchet transport. PMID:26852803
Experimental control of transport resonances in a coherent quantum rocking ratchet
NASA Astrophysics Data System (ADS)
Grossert, Christopher; Leder, Martin; Denisov, Sergey; Hänggi, Peter; Weitz, Martin
2016-02-01
The ratchet phenomenon is a means to get directed transport without net forces. Originally conceived to rectify stochastic motion and describe operational principles of biological motors, the ratchet effect can be used to achieve controllable coherent quantum transport. This transport is an ingredient of several perspective quantum devices including atomic chips. Here we examine coherent transport of ultra-cold atoms in a rocking quantum ratchet. This is realized by loading a rubidium atomic Bose-Einstein condensate into a periodic optical potential subjected to a biharmonic temporal drive. The achieved long-time coherence allows us to resolve resonance enhancement of the atom transport induced by avoided crossings in the Floquet spectrum of the system. By tuning the strength of the temporal modulations, we observe a bifurcation of a single resonance into a doublet. Our measurements reveal the role of interactions among Floquet eigenstates for quantum ratchet transport.
Experimental control of transport resonances in a coherent quantum rocking ratchet.
Grossert, Christopher; Leder, Martin; Denisov, Sergey; Hänggi, Peter; Weitz, Martin
2016-01-01
The ratchet phenomenon is a means to get directed transport without net forces. Originally conceived to rectify stochastic motion and describe operational principles of biological motors, the ratchet effect can be used to achieve controllable coherent quantum transport. This transport is an ingredient of several perspective quantum devices including atomic chips. Here we examine coherent transport of ultra-cold atoms in a rocking quantum ratchet. This is realized by loading a rubidium atomic Bose-Einstein condensate into a periodic optical potential subjected to a biharmonic temporal drive. The achieved long-time coherence allows us to resolve resonance enhancement of the atom transport induced by avoided crossings in the Floquet spectrum of the system. By tuning the strength of the temporal modulations, we observe a bifurcation of a single resonance into a doublet. Our measurements reveal the role of interactions among Floquet eigenstates for quantum ratchet transport. PMID:26852803
Distribution of geometric quantum discord in photon-added coherent states
NASA Astrophysics Data System (ADS)
Daoud, M.; Kaydi, W.; El Hadfi, H.
2015-12-01
In this paper, we examine the influence of photon excitation on the monogamy property of quantum discord in tripartite coherent states of Greenberger-Horne-Zeilinger (GHZ) type. The Hilbert-Schmidt norm is used as quantifier of pairwise quantum correlations. The geometric quantum discord in all bipartite subsystems are explicitly given. We show that the geometric discord is monogamous for any photon excitation order.
Zhang, Zhedong; Wang, Jin
2015-04-01
Recently, the quantum nature in the energy transport in solar cells and light-harvesting complexes has attracted much attention as being triggered by the experimental observations. We model the light-harvesting complex (i.e., PEB50 dimer) as a quantum heat engine (QHE) and study the effect of the undamped intramolecule vibrational modes on the coherent energy-transfer process and quantum transport. We find that the exciton-vibration interaction has nontrivial contribution to the promotion of quantum yield as well as transport properties of the QHE at steady state by enhancing the quantum coherence quantified by entanglement entropy. The perfect quantum yield over 90% has been obtained, with the exciton-vibration coupling. We attribute these improvements to the renormalization of the electronic couplings effectively induced by exciton-vibration interaction and the subsequent delocalization of excitons. Finally, we demonstrate that the thermal relaxation and dephasing can help the excitation energy transfer in the PEB50 dimer. PMID:25776946
NASA Astrophysics Data System (ADS)
Hasaneen, El-Sayed; Heller, Evan; Bansal, Rajeev; Jain, Faquir
2003-10-01
In this paper, we compute the tunneling of electrons in a nonvolatile quantum dot memory (NVQDM) cell during the WRITE operation. The transition rate of electrons from a quantum well channel to the quantum dots forming the floating gate is calculated using a recently reported method by Chuang et al.[1]. Tunneling current is computed based on transport of electrons from the channel to the floating quantum dots. The maximum number of electrons on a dot is calculated using surface electric field and break down voltage of the tunneling dielectric material. Comparison of tunneling for silicon oxide and high-k dielectric gate insulators is also described. Capacitance-Voltage characteristics of a NVQDM device are calculated by solving the Schrodinger and Poisson equations self-consistently. In addition, the READ operation of the memory has been investigated analytically. Results for 70 nm channel length Si NVQDMs are presented. Threshold voltage is calculated including the effect of the charge on nanocrystal quantum dots. Current-voltage characteristics are obtained using BSIM3v3 model [2-3]. This work is supported by Office of Navel Research (N00014210883, Dr. D. Purdy, Program Monitor), Connecticut Innovations Inc./TranSwitch (CII # 00Y17), and National Science Foundation (CCR-0210428) grants. [1] S. L. Chuang and N. Holonyak, Appl. Phys. Lett., 80, pp. 1270, 2002. [2] Y. Chen et. al., BSIM3v3 Manual, Elect. Eng. and Comp. Dept., U. California, Berkeley, CA, 1996. [3] W. Liu, MOSFET Models for SPICE Simulation, John Wiley & Sons, Inc., 2001.
Coupling effect of quantum wells on band structure
NASA Astrophysics Data System (ADS)
Jie, Chen; Weiyou, Zeng
2015-10-01
The coupling effects of quantum wells on band structure are numerically investigated by using the Matlab programming language. In a one dimensional finite quantum well with the potential barrier V0, the calculation is performed by increasing the number of inserted barriers with the same height Vb, and by, respectively, varying the thickness ratio of separated wells to inserted barriers and the height ratio of Vb to V0. Our calculations show that coupling is strongly influenced by the above parameters of the inserted barriers and wells. When these variables change, the width of the energy bands and gaps can be tuned. Our investigation shows that it is possible for quantum wells to achieve the desired width of the bands and gaps.
NASA Astrophysics Data System (ADS)
Ooi, C. H. Raymond; Beadie, Guy; Kattawar, George W.; Reintjes, John F.; Rostovtsev, Yuri; Zubairy, M. Suhail; Scully, Marlan O.
2005-08-01
Backscattered signal of coherent anti-Stokes Raman spectroscopy can be an extremely useful tool for remote identification of airborne particles, provided the signal is sufficiently large. We formulate a semiclassical theory of nonlinear scattering to estimate the number of detectable photons from a bacterial spore at a distance. For the first time, the theory incorporates enhanced quantum coherence via femtosecond pulses and a nonlinear process into the classical scattering problem. Our result shows a large backscattered signal in the far field, using typical parameters of an anthrax spore with maximally prepared vibrational coherence. Using train pulses of 1 kHz of repetition rate each with energy of 10 mJ, we estimate that about 107 photons can be detected by a 1 m diameter detector placed 1 km away from the spore in the backward scattering direction. The result shows the feasibility of developing a real time remote detection of hazardous microparticles in the atmosphere, particularly biopathogenic spores.
Ooi, C.H. Raymond; Rostovtsev, Yuri; Scully, Marlan O.; Beadie, Guy; Reintjes, John F.; Kattawar, George W.; Zubairy, M. Suhail
2005-08-15
Backscattered signal of coherent anti-Stokes Raman spectroscopy can be an extremely useful tool for remote identification of airborne particles, provided the signal is sufficiently large. We formulate a semiclassical theory of nonlinear scattering to estimate the number of detectable photons from a bacterial spore at a distance. For the first time, the theory incorporates enhanced quantum coherence via femtosecond pulses and a nonlinear process into the classical scattering problem. Our result shows a large backscattered signal in the far field, using typical parameters of an anthrax spore with maximally prepared vibrational coherence. Using train pulses of 1 kHz of repetition rate each with energy of 10 mJ, we estimate that about 10{sup 7} photons can be detected by a 1 m diameter detector placed 1 km away from the spore in the backward scattering direction. The result shows the feasibility of developing a real time remote detection of hazardous microparticles in the atmosphere, particularly biopathogenic spores.
Liu, Lei; Li, Yu-Xian; Zhang, Ying-Tao; Liu, Jian-Jun
2014-01-14
The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structures as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.
Low-cost DH and quantum well laser array development
NASA Technical Reports Server (NTRS)
Linden, Kurt J.; Geoffroy, Leo M.; Pesarcik, Scott F.; Magee, Carl J.
1989-01-01
The intial results of a program aimed at developing low-cost diode laser arrays for use as solid-state laser pumps are reported. MOCVD is used to demonstrate excellent run-to-run reproducibility in emission wavelength, threshold current density, and quantum efficiency. For this first experimental series, J(th) values of approximately 1310 Amps/sq cm were obtained for broad-area unthinned devices from the growth runs. Differential quantum efficiencies of between 41 percent and 47 percent were measured on the non-facet-coated devices from all four runs. Single quantum well, separate confinement heterostructure lasers fabricated from wafers grown in the same MOCVD reactor exhibited near single-mode emission, with J(th) values of approximately 300 Amps/sq cm. Photoluminescence data confirm quantum well widths of 80 A and 150 A for two different MOCVD growth runs.
Dot-in-Well Quantum-Dot Infrared Photodetectors
NASA Technical Reports Server (NTRS)
Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung
2008-01-01
Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material
In-plane electrical transport across cavity-quantum well system in Bose-Einstein condensate phase
NASA Astrophysics Data System (ADS)
Xie, Ming; MacDonald, Allan
Cavity polaritons are coupled states of quantum well excitons and vertical cavity photons which can undergo Bose-Einstein condensation under appropriate circumstances. The macroscopic condensate state can be described by two coupled order parameters - the coherent exciton field and the coherent photon field. When the dominant process for electron transfer between conduction and valence bands is by scattering off the photon condensate, electrical bias voltages can be used to control the condensate. We study the in-plane transport properties of electrical current through the cavity-quantum well system, and show how the coherent photon fields respond to the current flow. The possibility of tailoring light via electrical current and vice versa simultaneously might lead to interesting new applications.
Engineering of perturbation effects in onion-like heteronanocrystal quantum dot-quantum well
NASA Astrophysics Data System (ADS)
SalmanOgli, A.; Rostami, R.
2013-10-01
In this article, the perturbation influences on optical characterization of quantum dot and quantum dot-quantum well (modified quantum dot) heteronanocrystal is investigated. The original aim of this article is to investigate the quantum dot-quantum well heteronanocrystal advantages and disadvantages, when used as a functionalized particle in biomedical applications. Therefore, all of the critical features of quantum dots are fundamentally studied and their influences on optical properties are simulated. For the first time, the perturbation effects on optical characteristics are observed in the quantum dot-quantum well heteronanocrystals by 8-band K.P theory. The impact of perturbation on optical features such as photoluminescence and shifting of wavelength is studied. The photoluminescence and operation wavelength of quantum dots play a vital role in biomedical applications, where their absorption and emission in biological assays are altered by shifting of wavelength. Furthermore, in biomedical applications, by tuning the emission wavelengths of the quantum dot into far-red and near-infrared ranges, non-invasive in-vivo imaging techniques have been easily developed. In this wavelength window, tissue absorption, scattering and auto-fluorescence intensities have minimum quantities; thus fixing or minimizing of wavelength shifting can be regarded as an important goal which is investigated in this work.
NASA Astrophysics Data System (ADS)
Motazedifard, Ali; Bemani, F.; Naderi, M. H.; Roknizadeh, R.; Vitali, D.
2016-07-01
We propose and analyse a feasible experimental scheme for a quantum force sensor based on the elimination of backaction noise through coherent quantum noise cancellation (CQNC) in a hybrid atom-cavity optomechanical setup assisted with squeezed vacuum injection. The force detector, which allows for a continuous, broadband detection of weak forces well below the standard quantum limit (SQL), is formed by a single optical cavity simultaneously coupled to a mechanical oscillator and to an ensemble of ultracold atoms. The latter acts as a negative-mass oscillator so that atomic noise exactly cancels the backaction noise from the mechanical oscillator due to destructive quantum interference. Squeezed vacuum injection enforces this cancellation and allows sub-SQL sensitivity to be reached in a very wide frequency band, and at much lower input laser powers.
Excitons and charged excitons in semiconductor quantum wells
Riva, C.; Peeters, F. M.; Varga, K.
2000-05-15
A variational calculation of the ground-state energy of neutral excitons and of positively and negatively charged excitons (trions) confined in a single-quantum well is presented. We study the dependence of the correlation energy and of the binding energy on the well width and on the hole mass. The conditional probability distribution for positively and negatively charged excitons is obtained, providing information on the correlation and the charge distribution in the system. A comparison is made with available experimental data on trion binding energies in GaAs-, ZnSe-, and CdTe-based quantum well structures, which indicates that trions become localized with decreasing quantum well width. (c) 2000 The American Physical Society.
Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.
Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus
2015-05-14
Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers. PMID:25971512
Semiconductor quantum wells: old technology or new device functionalities
NASA Astrophysics Data System (ADS)
Kolbas, R. M.; Lo, Y. C.; Hsieh, K. Y.; Lee, J. H.; Reed, F. E.; Zhang, D.; Zhang, T.
2009-08-01
The introduction of semiconductor quantum wells in the 1970s created a revolution in optoelectronic devices. A large fraction of today's lasers and light emitting diodes are based on quantum wells. It has been more than 30 years but novel ideas and new device functions have recently been demonstrated using quantum well heterostructures. This paper provides a brief overview of the subject and then focuses on the physics of quantum wells that the lead author believes holds the key to new device functionalities. The data and figures contained within are not new. They have been assembled from 30 years of work. They are presented to convey the story of why quantum wells continue to fuel the engine that drives the semiconductor optoelectronic business. My apologies in advance to my students and co-workers that contributed so much that could not be covered in such a short manuscript. The explanations provided are based on the simplest models possible rather than the very sophisticated mathematical models that have evolved over many years. The intended readers are those involved with semiconductor optoelectronic devices and are interested in new device possibilities.
Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs
NASA Astrophysics Data System (ADS)
Chia, A.; Tan, K. C.; Pawela, Ł.; Kurzyński, P.; Paterek, T.; Kaszlikowski, D.
2016-03-01
Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013), 10.1063/1.4844355], in contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010), 10.1016/j.cplett.2010.01.063]. The standard radical-pair reaction has conventionally been described by either a normalized density operator incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states. Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.
Generation of a macroscopic entangled coherent state using quantum memories in circuit QED.
Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco
2016-01-01
W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055
Generation of a macroscopic entangled coherent state using quantum memories in circuit QED
Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco
2016-01-01
W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055
Bipolar spin blockade and coherent state superpositions in a triple quantum dot.
Busl, M; Granger, G; Gaudreau, L; Sánchez, R; Kam, A; Pioro-Ladrière, M; Studenikin, S A; Zawadzki, P; Wasilewski, Z R; Sachrajda, A S; Platero, G
2013-04-01
Spin qubits based on interacting spins in double quantum dots have been demonstrated successfully. Readout of the qubit state involves a conversion of spin to charge information, which is universally achieved by taking advantage of a spin blockade phenomenon resulting from Pauli's exclusion principle. The archetypal spin blockade transport signature in double quantum dots takes the form of a rectified current. At present, more complex spin qubit circuits including triple quantum dots are being developed. Here we show, both experimentally and theoretically, that in a linear triple quantum dot circuit the spin blockade becomes bipolar with current strongly suppressed in both bias directions and also that a new quantum coherent mechanism becomes relevant. In this mechanism, charge is transferred non-intuitively via coherent states from one end of the linear triple dot circuit to the other, without involving the centre site. Our results have implications for future complex nanospintronic circuits. PMID:23416792
Bipolar spin blockade and coherent state superpositions in a triple quantum dot
NASA Astrophysics Data System (ADS)
Busl, M.; Granger, G.; Gaudreau, L.; Sánchez, R.; Kam, A.; Pioro-Ladrière, M.; Studenikin, S. A.; Zawadzki, P.; Wasilewski, Z. R.; Sachrajda, A. S.; Platero, G.
2013-04-01
Spin qubits based on interacting spins in double quantum dots have been demonstrated successfully. Readout of the qubit state involves a conversion of spin to charge information, which is universally achieved by taking advantage of a spin blockade phenomenon resulting from Pauli's exclusion principle. The archetypal spin blockade transport signature in double quantum dots takes the form of a rectified current. At present, more complex spin qubit circuits including triple quantum dots are being developed. Here we show, both experimentally and theoretically, that in a linear triple quantum dot circuit the spin blockade becomes bipolar with current strongly suppressed in both bias directions and also that a new quantum coherent mechanism becomes relevant. In this mechanism, charge is transferred non-intuitively via coherent states from one end of the linear triple dot circuit to the other, without involving the centre site. Our results have implications for future complex nanospintronic circuits.
NASA Astrophysics Data System (ADS)
Maxmilian Caligiuri, Luigi; Musha, Takaaki
Sonoluminescence, or its more frequently studied version known as Single Bubble Sonoluminescence, consisting in the emission of light by a collapsing bubble in water under ultrasounds, represents one of the most challenging and interesting phenomenon in theoretical physics. In fact, despite its relatively easy reproducibility in a simple laboratory, its understanding within the commonly accepted picture of condensed matter remained so far unsatisfactory. On the other hand, the possibility to control the physical process involved in sonoluminescence, representing a sort of nuclear fusion on small scale, could open unthinkable prospects of free energy production from water. Different explanations has been proposed during the past years considering, in various way, the photoemission to be related to electromagnetic Zero Point Field energy dynamics, by considering the bubble surface as a Casimir force boundary. More recently a model invoking Cherenkov radiation emission from superluminal photons generated in quantum vacuum has been successfully proposed. In this paper it will be shown that the same results can be more generally explained and quantitative obtained within a QED coherent dynamics of quantum vacuum, according to which the electromagnetic energy of the emitted photons would be related to the latent heat involved in the phase transition from water's vapor to liquid phase during the bubble collapse. The proposed approach could also suggest an explanation of a possible mechanism of generation of faster than light (FTL) photons required to start Cherenkov radiation as well as possible applications to energy production from quantum vacuum.
Coherent photocurrent spectroscopy of single InP-based quantum dots in the telecom band at 1.5 µm
NASA Astrophysics Data System (ADS)
Gordon, S.; Yacob, M.; Reithmaier, J. P.; Benyoucef, M.; Zrenner, A.
2016-02-01
In this work we study the resonant and coherent properties of single InP-based InAs quantum dots, which show an optical emission in the telecom C-band and L-band. High-resolution resonant photocurrent spectroscopy on p-i-n devices reveals narrow linewidths and fully resolved fine structure splittings. We observe Lorentzian line shapes, which allow for the extraction of dephasing times as a function of the applied bias voltage. Coherent ps laser excitation results in pronounced Rabi rotations with increasing pulse area. For π-pulse excitation, we obtain more than 93 % of the theoretically expected photocurrent amplitude. Our results also demonstrate that such state-of-the-art InP-based quantum dots for the telecom band exhibit promising key parameters comparable to well-established InAs/GaAs counterparts.
Phase-Sensitive Coherence and the Classical-Quantum Boundary in Ghost Imaging
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Hardy, Nicholas D.; Venkatraman, Dheera; Wong, Franco N. C.; Shapiro, Jeffrey H.
2011-01-01
The theory of partial coherence has a long and storied history in classical statistical optics. the vast majority of this work addresses fields that are statistically stationary in time, hence their complex envelopes only have phase-insensitive correlations. The quantum optics of squeezed-state generation, however, depends on nonlinear interactions producing baseband field operators with phase-insensitive and phase-sensitive correlations. Utilizing quantum light to enhance imaging has been a topic of considerable current interest, much of it involving biphotons, i.e., streams of entangled-photon pairs. Biphotons have been employed for quantum versions of optical coherence tomography, ghost imaging, holography, and lithography. However, their seemingly quantum features have been mimicked with classical-sate light, questioning wherein lies the classical-quantum boundary. We have shown, for the case of Gaussian-state light, that this boundary is intimately connected to the theory of phase-sensitive partial coherence. Here we present that theory, contrasting it with the familiar case of phase-insensitive partial coherence, and use it to elucidate the classical-quantum boundary of ghost imaging. We show, both theoretically and experimentally, that classical phase-sensitive light produces ghost imaging most closely mimicking those obtained in biphotons, and we derived the spatial resolution, image contrast, and signal-to-noise ratio of a standoff-sensing ghost imager, taking into account target-induced speckle.
Quantum-coherence driven self-organized criticality and non-equilibrium light localization
NASA Astrophysics Data System (ADS)
Jha, Pankaj; Tsakmakidis, Kosmas; Wang, Yuan; Zhang, Xiang
In its 28 years since its introduction in 1987, self-organized criticality (SOC) has had a major impact across a broad range of seemingly dissimilar fields of science. However, until now, it has primarily been applied to classical systems, and it remains a fundamental open question whether the theory also finds a place in complex systems driven by quantum coherence (QC). Here, on the basis of a many-body quantum-field theory and corroborating Maxwell-Bloch-Langevin computations, we report on the first example of fractal SOC driven, in the nano-world, by quantum coherence. We show that a quantum-coherently controlled active nano-plasmonic heterostructure allows, in the regime where the light speed is very close to zero, for the phase-synchronization in space of a continuous ensemble of nano-optical oscillators, giving rise to a fundamentally new kind of non-equilibrium light localization. We observe all hallmarks of SOC in this quantum many-body photonic nano-system of interacting heavy bosons, and we identify two critical points, one signifying the onset of spontaneous spatial self-organization, followed in time by another one that signifies the onset of activity. Our analysis reveals a quantum-coherence driven self-organized double-critical property in photonics and a new type of robust light localization, far out of thermodynamic and optical equilibria, with a broad range of potential applications in nano-optics and condensed-matter photonics.
Quantum phase transitions of atom-molecule Bose mixtures in a double-well potential.
Relaño, A; Dukelsky, J; Pérez-Fernández, P; Arias, J M
2014-10-01
The ground state and spectral properties of Bose gases in double-well potentials are studied in two different scenarios: (i) an interacting atomic Bose gas, and (ii) a mixture of an atomic gas interacting with diatomic molecules. A ground state second-order quantum phase transition is observed in both scenarios. For large attractive values of the atom-atom interaction, the ground state is degenerate. For repulsive and small attractive interaction, the ground state is not degenerate and is well approximated by a boson coherent state. Both systems depict an excited state quantum phase transition. In both cases, a critical energy separates a region in which all the energy levels are degenerate in pairs, from another region in which there are no degeneracies. For the atomic system, the critical point displays a singularity in the density of states, whereas this behavior is largely smoothed for the mixed atom-molecule system. PMID:25375470
Investigation of heterodyne performance of quantum-well detectors. Final report
Simpson, M.L.; Hutchinson, D.P.; Calabretta, J.
1994-09-23
The purpose of this Cooperative Research and Development Agreement (CRADA) between Martin Marietta Energy Systems Inc., (Contractor) and Martin Marietta Electronic Missles (Participant) is the determination of the heterodyne characteristics of quantum-well detectors. The Participant has developed a quantum-well infrared imaging video detector with very low light level characteristics. A further improvement in low-level infrared detection could be achieved if this device can be operated in the coherent or heterodyne mode. A major program in the Physics Division of Oak Ridge National Laboratory (ORNL) presently uses individual heterodyne infrared detectors in a system under development for fusion diagnostics. An imaging infrared heterodyne detector would represent a major breakthrough in this area and would have major implications for other plasma diagnostic programs. The Participant is also studying the application of this device in the area of laser radar.
Detection of electromagnetic radiation using micromechanical multiple quantum wells structures
Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN
2007-07-17
An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.
Magnetotransport of a wide quantum well ballistic billiard
NASA Astrophysics Data System (ADS)
Gustin, C.; Hackens, B.; Faniel, S.; Bayot, V.; Shayegan, M.
2001-03-01
We investigate the magnetotransport properties of an open quantum dot built from a phquasi-two dimensional electron gas. The structure is patterned by electron beam lithography on a high mobility (μ=2 10^6cm^2/Vs) GaAs/AlGaAs quantum well with a width of 450ÅBy means of electrostatic gates, both the shape of the billiard and the electron density can be controlled, as well as the finite thickness of the 2DEG. We discuss the results of low temperature magnetotransport measurements, specifically the influence of an phin-situ tilted magnetic field on the statistics of the universal conductance fluctuations (UCF).
Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption
NASA Technical Reports Server (NTRS)
Li, Jianzhong; Ning, C. Z.
2004-01-01
We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well
Single-Quantum Coherence Filter for Strongly Coupled Spin Systems for Localized 1H NMR Spectroscopy
NASA Astrophysics Data System (ADS)
Trabesinger, Andreas H.; Mueller, D. Christoph; Boesiger, Peter
2000-08-01
A pulse sequence for localized in vivo1H NMR spectroscopy is presented, which selectively filters single-quantum coherence built up by strongly coupled spin systems. Uncoupled and weakly coupled spin systems do not contribute to the signal output. Analytical calculations using a product operator description of the strongly coupled AB spin system as well as in vitro tests demonstrate that the proposed filter produces a signal output for a strongly coupled AB spin system, whereas the resonances of a weakly coupled AX spin system and of uncoupled spins are widely suppressed. As a potential application, the detection of the strongly coupled AA‧BB‧ spin system of taurine at 1.5 T is discussed.
Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide
Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle
2016-01-01
We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516
Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide.
Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle
2016-01-01
We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold (23)Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516
Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide
NASA Astrophysics Data System (ADS)
Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle
2016-07-01
We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry.
NASA Technical Reports Server (NTRS)
Carlson, N. W.; Evans, G. A.; Liew, S. K.; Kaiser, C. J.
1990-01-01
The electro-optic switching properties of injection-coupled coherent 2-D grating-surface-emitting laser arrays with multiple gain sections and quantum well active layers are discussed and demonstrated. Within such an array of injection-coupled grating-surface-emitting lasers, a single gain section can be operated as intra-cavity saturable loss element that can modulate the output of the entire array. Experimental results demonstrate efficient sub-nanosecond switching of high power grading-surface-emitting laser arrays by using only one gain section as an intra-cavity loss modulator.
All-electrical coherent control of the exciton states in a single quantum dot
NASA Astrophysics Data System (ADS)
Boyer de La Giroday, A.; Bennett, A. J.; Pooley, M. A.; Stevenson, R. M.; Sköld, N.; Patel, R. B.; Farrer, I.; Ritchie, D. A.; Shields, A. J.
2010-12-01
We demonstrate high-fidelity reversible transfer of quantum information from the polarization of photons into the spin state of an electron-hole pair in a semiconductor quantum dot. Moreover, spins are electrically manipulated on a subnanosecond time scale, allowing us to coherently control their evolution. By varying the area of the electrical pulse, we demonstrate phase-shift and spin-flip gate operations with near-unity fidelities. Our system constitutes a controllable quantum interface between flying and stationary qubits, an enabling technology for quantum logic in the solid state.
InAs/GaSb quantum wells: quantum spin Hall effect and topological superconductivity
NASA Astrophysics Data System (ADS)
Sitte, Matthias; Everschor-Sitte, Karin; MacDonald, Allan
2014-03-01
In recent years, topological insulators (TIs) have attracted great attention as a new quantum state of matter. The first experimental 2D TIs were HgTe/CdTe quantum well heterostructures. Recently, another semiconducting system - the InAs/GaSb quantum well heterostructure - was shown to be a 2D TI as well. These semiconducting heterojunctions have many advantages compared to HgTe/CdTe systems, including continuously tunable band structure via electric fields and stronger proximity coupling to superconductors. Proximity coupling of a 2D TI and an ordinary superconductor gives rise to one-dimensional topological superconductivity which supports non-local excitations known as Majoranas that can be used for topologically protected quantum computing. We perform empirical tight-binding calculations on these systems, studying the topological phases and their properties. With this knowlegde, we then extend our theory to study the proximity effects when InAs/GaSb quantum wells are coupled to a superconductor.
Artificial graphene in nanopatterned GaAs Quantum Wells
NASA Astrophysics Data System (ADS)
Wang, Sheng; Scarabelli, Diego; Levy, Antonio; Pfeiffer, Loren; West, Ken; Pellegrini, Vittorio; Manfra, Michael J.; Wind, Shalom; Pinczuk, Aron
2015-03-01
Electrons in graphene have linear energy-momentum dispersion, making them massless Dirac fermions. An alternative way to achieve massless Dirac-fermions in a controlled and tunable manner is to construct a honeycomb lattice potential for a 2D electron gas in a semiconductor quantum well. We report realization of very short period (as small as 40 nm) honeycomb lattice pattern using e-beam lithography and drying etching on a GaAs quantum well and spectroscopy data of electron states under this potential modulation. The study is carried out using photoluminescence and light scattering at low temperature (about 4K). Inter mini-band transitions are observed by resonant inelastic light scattering and interpreted with calculated mini-band structure. Control over parameters such as Fermi level should permit manipulation of massless fermions. This will provide a platform for novel behavior such as topological states in a semiconductor quantum simulator. Supported by DOE-BES Award DE-SC0010695.
Hidden symmetry and excitonic transitions in the quantum well
NASA Astrophysics Data System (ADS)
Kazaryan, E. M.; Petrosyan, L. S.; Sarkisyan, H. A.
2008-01-01
In this article it is shown that, Sommerfeld's coefficients for excitonic transitions in quantum wells are determined only with the principle quantum number within the framework of two-dimensional Coulomb potential. This is a consequence of hidden symmetry of two-dimensional Coulomb problem, conditioned by the existence of two-dimensional analog of the Runge-Lentz vector. For the narrow gap semiconductor quantum well with the non-parabolic dispersion law of electron and hole in the two-band Kane model it is shown that two-dimensional excitonic states are described in the frames of an analog of Klein-Gordon equation with the two-dimensional Coulomb potential. The non-stability of the ground state of the two-dimensional Kane's exciton is shown.
Optical properties of transition metal oxide quantum wells
Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.
2015-01-21
Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.
Optical properties of transition metal oxide quantum wells
NASA Astrophysics Data System (ADS)
Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.
2015-01-01
Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.
NASA Astrophysics Data System (ADS)
Allegra, Michele; Giorda, Paolo; Lloyd, Seth
2016-04-01
Assessing the role of interference in natural and artificial quantum dynamical processes is a crucial task in quantum information theory. To this aim, an appropriate formalism is provided by the decoherent histories framework. While this approach has been deeply explored from different theoretical perspectives, it still lacks of a comprehensive set of tools able to concisely quantify the amount of coherence developed by a given dynamics. In this paper, we introduce and test different measures of the (average) coherence present in dissipative (Markovian) quantum evolutions, at various time scales and for different levels of environmentally induced decoherence. In order to show the effectiveness of the introduced tools, we apply them to a paradigmatic quantum process where the role of coherence is being hotly debated: exciton transport in photosynthetic complexes. To spot out the essential features that may determine the performance of the transport, we focus on a relevant trimeric subunit of the Fenna-Matthews-Olson complex and we use a simplified (Haken-Strobl) model for the system-bath interaction. Our analysis illustrates how the high efficiency of environmentally assisted transport can be traced back to a quantum recoil avoiding effect on the exciton dynamics, that preserves and sustains the benefits of the initial fast quantum delocalization of the exciton over the network. Indeed, for intermediate levels of decoherence, the bath is seen to selectively kill the negative interference between different exciton pathways, while retaining the initial positive one. The concepts and tools here developed show how the decoherent histories approach can be used to quantify the relation between coherence and efficiency in quantum dynamical processes.
Coherence and degree of time-bin entanglement from quantum dots
NASA Astrophysics Data System (ADS)
Huber, Tobias; Ostermann, Laurin; Prilmüller, Maximilian; Solomon, Glenn S.; Ritsch, Helmut; Weihs, Gregor; Predojević, Ana
2016-05-01
We report a study on coherence of excitation of single quantum dots. We address the coherent excitation of biexcitons, the process that is indispensable for deterministic photon pair generation in quantum dots. Based on theoretical modeling we optimized the duration of the excitation pulse in our experiment to minimize the laser-induced dephasing and increase the biexciton-to-background single-exciton occupation probability. An additional effect of this approach is a high degree of time-bin entanglement with a concurrence of up to 0.78(6) and a 0.88(3) overlap with a maximally entangled state.
Quantum-fluctuation-initiated coherence in multioctave Raman optical frequency combs.
Wang, Y Y; Wu, Chunbai; Couny, F; Raymer, M G; Benabid, F
2010-09-17
We show experimentally and theoretically that the spectral components of a multioctave frequency comb spontaneously created by stimulated Raman scattering in a hydrogen-filled hollow-core photonic crystal fiber exhibit strong self-coherence and mutual coherence within each 12 ns driving laser pulse. This coherence arises in spite of the field's initiation being from quantum zero-point fluctuations, which causes each spectral component to show large phase and energy fluctuations. This points to the possibility of an optical frequency comb with nonclassical correlations between all comb lines. PMID:20867639
NASA Astrophysics Data System (ADS)
Mittelstein, Michael
Structures of GaAs/GaAlAs lasers and their performance characteristics are investigated experimentally and theoretically. A self-consistent model for the longitudinal gain and intensity distribution in injection lasers is introduced. The model is applied to unstable-resonator semiconductor lasers to evaluate their lateral losses and quantum efficiencies, and an advanced design is presented. Symmetric, unstable -resonator semiconductor lasers are manufactured and a virtual source point inside the laser more than an order of magnitude narrower than the width of the near field is demonstrated. Young's double-slit experiment is adopted for lateral coherence measurements in semiconductor lasers. A high degree of lateral coherence is found, indicating operation of the unstable-resonator lasers in predominantly one mode. In the pulsed measurements on broad-area, single -quantum-well, graded-index wave-guide, separate-confinement -heterostructure lasers, very high quantum efficiencies, very low losses, and very high output powers are observed. The devices are found to exhibit beam divergence narrower than two times the diffraction limit in single-lobed, far-field patterns. Using these single-quantum-well lasers, the "second quantized-state lasing" is found experimentally, and a simple model is developed to explain it. A general model for the gain spectrum and required current density of quantum-well lasers is introduced. The eigenfunctions and eigenvalues of the charge carriers and optical mode of the transverse structure are used to derive the gain spectrum and current density from the Einstein coefficients. The two-dimensional density of states for the charge carriers and the effective width of the optical mode (not the width of the quantum well) are identified as the dominant parameters. The model includes a new heuristic approach to account for the observed smeared onset of subbands, eliminating convolution calculations. Applications of the model for a typical
NASA Technical Reports Server (NTRS)
Kroemer, Herbert
1990-01-01
Researchers studied the InAs/AlSb system recently, obtaining 12nm wide quantum wells with room temperature mobilities up to 28,000 cm(exp 2)/V center dot S and low-temperature mobilities up to 325,000 cm(exp 2)/V center dot S, both at high electron sheet concentrations in the 10(exp 12)/cm(exp 2) range (corresponding to volume concentrations in the 10(exp 18)/cm(exp 2) range). These wells were not intentionally doped; the combination of high carrier concentrations and high mobilities suggest that the electrons are due to not-intentional modulation doping by an unknown donor in the AlSb barriers, presumably a stoichiometric defect, like an antisite donor. Inasmuch as not intentionally doped bulk AlSb is semi-insulating, the donor must be a deep one, being ionized only by draining into the even deeper InAs quantum well. The excellent transport properties are confirmed by other observations, like excellent quantum Hall effect data, and the successful use of the quantum wells as superconductive weak links between Nb electrodes, with unprecendentedly high critical current densities. The system is promising for future field effect transistors (FETs), but many processing problems must first be solved. Although the researchers have achieved FETs, the results so far have not been competitive with GaAs FETs.
Ishizaki, Akihito; Fleming, Graham R
2009-06-21
A new quantum dynamic equation for excitation energy transfer is developed which can describe quantum coherent wavelike motion and incoherent hopping in a unified manner. The developed equation reduces to the conventional Redfield theory and Forster theory in their respective limits of validity. In the regime of coherent wavelike motion, the equation predicts several times longer lifetime of electronic coherence between chromophores than does the conventional Redfield equation. Furthermore, we show quantum coherent motion can be observed even when reorganization energy is large in comparison to intersite electronic coupling (the Forster incoherent regime). In the region of small reorganization energy, slow fluctuation sustains longer-lived coherent oscillation, whereas the Markov approximation in the Redfield framework causes infinitely fast fluctuation and then collapses the quantum coherence. In the region of large reorganization energy, sluggish dissipation of reorganization energy increases the time electronic excitation stays above an energy barrier separating chromophores and thus prolongs delocalization over the chromophores. PMID:19548715
Intrinsic spin hall effect induced by quantum phase transition in HgCdTe quantum wells.
Yang, Wen; Chang, Kai; Zhang, Shou-Cheng
2008-02-01
The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions. PMID:18352404
Thermoelectric properties of symmetric and asymmetric double quantum well structures
Sur, I. V.
2009-05-15
The electronic states and carrier transport in (100)PbTe/Pb {sub 1-x} Eu{sub x} Te double quantum wells are theoretically analyzed. The dependences of the mobility and Seebeck coefficient on the thickness of the internal barrier in symmetric and asymmetric structures are investigated. It was found that at great distance between the wells even small violation of the structure symmetry and essential reconstruction of electron wave functions results in suppression of intersubband scattering with carriers transfer between the wells and provides the correct limit to isolated quantum well in kinetic coefficients. Some possibilities of increasing the thermoelectric power factor are found, and a suitable set of structure parameters is calculated within the proposed model.
Quantum detection of coherent-state signals in the presence of noise
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Lau, C. W.
2003-01-01
A general method for solving an important class of quantum detection problems will be presented and evaluated. The quantum theory for detecting pure states for communications purposes has been developed over two decades ago, however the mixed state problem representing signal plus noise states has received little attention due to its great complexity. Here we develop a practical model for solving the mixed-state problem using a discrete approximation to the coherent-state representation of signal plus noise density operators.
Room-temperature resonant tunneling of electrons in carbon nanotube junction quantum wells
NASA Astrophysics Data System (ADS)
Biswas, Sujit K.; Schowalter, Leo J.; Jung, Yung Joon; Vijayaraghavan, Aravind; Ajayan, Pulickel M.; Vajtai, Robert
2005-05-01
Resonant tunneling structures [M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. B. Lieber, M. Tinkham, and H. Park, Science 291, 283 (2001)], formed between the junction of two single walled nanotubes and the conductive atomic force microscopy tip contact were investigated using current sensing atomic force microscopy. Oscillations in the current voltage characteristics were measured at several positions of the investigated nanotube. The oscillatory behavior is shown to follow a simple quantum mechanical model, dependent on the energy separation in the quantum well formed within the two junctions. Our model shows that these observations seen over several hundreds of nanometers, are possible only if the scattering cross section at defects is small resulting in long phase coherence length, and if the effective mass of the carrier electrons is small. We have calculated the approximate mass of the conduction electrons to be 0.003me.
Nonlinear intersubband optical absorption in a semiconductor quantum well
NASA Technical Reports Server (NTRS)
Ahn, D.; Chuang, S. L.
1987-01-01
The third-order nonlinear intersubband absorption in a semiconductor quantum well is studied theoretically using the density matrix formalism including intrasubband relaxation. It is shown that the peak absorption is reduced by half for an optical intensity 1 MW/sq cm for the well size L = 126.5 A with 3.0 x 10 to the 16th/cu cm electrons.
Charge-transfer-state photoluminescence in asymmetric coupled quantum wells
NASA Astrophysics Data System (ADS)
Norris, T. B.; Vodjdani, N.; Vinter, B.; Weisbuch, C.; Mourou, G. A.
1989-07-01
We have performed continuous and time-resolved photoluminescence experiments on novel double-quantum-well structures in Schottky diodes. We have directly observed the buildup of a charge-transfer (CT) state in which the electrons and holes are in separate wells because of the fact that they tunnel in opposite directions. We have studied the effect of an electric field on the CT state formation, and have observed a strong, linear Stark shift of the CT luminescence.
Electron transport in coupled double quantum wells and wires
Harff, N.E.; Simmons, J.A.; Lyo, S.K.
1997-04-01
Due to inter-quantum well tunneling, coupled double quantum wells (DQWs) contain an extra degree of electronic freedom in the growth direction, giving rise to new transport phenomena not found in single electron layers. This report describes work done on coupled DQWs subject to inplane magnetic fields B{sub {parallel}}, and is based on the lead author`s doctoral thesis, successfully defended at Oregon State University on March 4, 1997. First, the conductance of closely coupled DQWs in B{sub {parallel}} is studied. B{sub {parallel}}-induced distortions in the dispersion, the density of states, and the Fermi surface are described both theoretically and experimentally, with particular attention paid to the dispersion anticrossing and resulting partial energy gap. Measurements of giant distortions in the effective mass are found to agree with theoretical calculations. Second, the Landau level spectra of coupled DQWs in tilted magnetic fields is studied. The magnetoresistance oscillations show complex beating as Landau levels from the two Fermi surface components cross the Fermi level. A third set of oscillations resulting from magnetic breakdown is observed. A semiclassical calculation of the Landau level spectra is then performed, and shown to agree exceptionally well with the data. Finally, quantum wires and quantum point contacts formed in DQW structures are investigated. Anticrossings of the one-dimensional DQW dispersion curves are predicted to have interesting transport effects in these devices. Difficulties in sample fabrication have to date prevented experimental verification. However, recently developed techniques to overcome these difficulties are described.
Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results
NASA Technical Reports Server (NTRS)
Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.
1999-01-01
The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.
Simulated quantum annealing of double-well and multiwell potentials.
Inack, E M; Pilati, S
2015-11-01
We analyze the performance of quantum annealing as a heuristic optimization method to find the absolute minimum of various continuous models, including landscapes with only two wells and also models with many competing minima and with disorder. The simulations performed using a projective quantum Monte Carlo (QMC) algorithm are compared with those based on the finite-temperature path-integral QMC technique and with classical annealing. We show that the projective QMC algorithm is more efficient than the finite-temperature QMC technique, and that both are inferior to classical annealing if this is performed with appropriate long-range moves. However, as the difficulty of the optimization problem increases, classical annealing loses efficiency, while the projective QMC algorithm keeps stable performance and is finally the most effective optimization tool. We discuss the implications of our results for the outstanding problem of testing the efficiency of adiabatic quantum computers using stochastic simulations performed on classical computers. PMID:26651813
Quantum wells with zincblende MnTe barriers
NASA Astrophysics Data System (ADS)
Han, J.; Durbin, S. M.; Gunshor, R. L.; Kobayashi, M.; Menke, D. R.; Pelekanos, N.; Hagerott, M.; Nurmikko, A. V.; Nakamura, Y.; Otsuka, N.
1991-05-01
In this paper we describe a series of MnTe/CdTe/MnTe and MnTe/InSb/MnTe single quantum well structures. For the CdTe quantum wells we report the observation of luminescence covering the entire visible range from red to blue; a quantized state in the InSb well is used to implement resonant tunneling. X-ray diffraction and transmission electron microscopy (TEM) were used to evaluate the microstructural quality of the structures. Dark-field TEM showed that, in spite of the 2.3% lattice mismatch, the MnTe layers remained pseudomorphic and dislocation-free. High resolution images (also used to determine dimensional details) indicated that the interfaces were atomically abrupt, and that the CdTe and InSb wells were essentially unstrained in each of the structures; most of the strain was contained in the MnTe barrier layers. Optical properties of the single quantum well structures have been studied using photoluminescence and photoluminescence excitation spectroscopy. Blue luminescence at 2.59 eV ( n = 1 transition) has been observed from a structure with a 10 Å CdTe well. The negative differential resistance observed from MnTe/InSb resonant tunneling structures represents, to our knowledge, the first report of a dimensionally quantized state in InSb.
Coherence-assisted single-shot cooling by quantum absorption refrigerators
NASA Astrophysics Data System (ADS)
Mitchison, Mark T.; Woods, Mischa P.; Prior, Javier; Huber, Marcus
2015-11-01
The extension of thermodynamics into the quantum regime has received much attention in recent years. A primary objective of current research is to find thermodynamic tasks which can be enhanced by quantum mechanical effects. With this goal in mind, we explore the finite-time dynamics of absorption refrigerators composed of three quantum bits (qubits). The aim of this finite-time cooling is to reach low temperatures as fast as possible and subsequently extract the cold particle to exploit it for information processing purposes. We show that the coherent oscillations inherent to quantum dynamics can be harnessed to reach temperatures that are colder than the steady state in orders of magnitude less time, thereby providing a fast source of low-entropy qubits. This effect demonstrates that quantum thermal machines can surpass classical ones, reminiscent of quantum advantages in other fields, and is applicable to a broad range of technologically important scenarios.
Evaluation of Quantum Scattering Time in Ultra-High Quality GaAs Quantum Wells
NASA Astrophysics Data System (ADS)
Qian, Qi; Mondal, Sumit; Gardner, Geoffrey C.; Watson, John D.; Manfra, Michael J.
2015-03-01
We present a critical analysis of the extraction of quantum scattering time from Shubnikov-de Haas oscillations in ultra-high quality GaAs quantum wells. In the regime of temperature and magnetic field study here (T ~0.3K, B <=0.3T) we find the canonical method for determination of quantum scattering time yields unreliable results (cf.). We elaborate a formalism that allows extraction of the quantum scattering time in a regime in which the normalized modulation of the density of states Δg /g0 is greater than unity. This approach describes well low-field data for samples that display very large excitation gaps for fragile fractional quantum Hall states at large magnetic field.
Ultrafast hole tunneling in asymmetric double quantum wells
NASA Astrophysics Data System (ADS)
Krol, Mark F.; Ten, Sergey Y.; McGinnis, Brian P.; Hayduk, Michael J.; Khitrova, Galina; Peyghambarian, Nasser
1995-04-01
We present the results of an experimental study of tunneling in Asymmetric Double Quantum Well (ADQW) structures for which holes were found to tunnel from the narrow well to the wide well on sub-picosecond time-scales. These times are as fast, or faster than electron tunneling times despite the absence of resonances between hole states. Valence band structure calculations for our ADQW structures indicate that ultrafast hole tunneling can be attributed spin-dependent delocalization of the hole wavefunctions with a concomitant singularity (in principle) in the density of final wide well states.
Optical electron spin pumping in n-doped quantum wells.
Ungier, W; Buczko, R
2009-01-28
A theoretical model for optical spin pumping of electrons in a quantum well with low intrinsic electron density is presented. A system of electrons under continuous-wave illumination by circularly polarized light tuned to the electron-trion resonance is considered. The simultaneous off-resonant creation of excitons is also taken into account. The spin flip of trions and their radiative decay as the basic processes which allow the electronic spin pumping, as well as other processes, such as the formation of trions from excitons and electrons, are accounted for in the appropriate kinetic equations. The results obtained for CdTe and GaAs quantum wells indicate that significant electron spin polarization can be achieved in a time range of a few nanoseconds. PMID:21715824
Measures of electronic-vibrational entanglement and quantum coherence in a molecular system
NASA Astrophysics Data System (ADS)
Vatasescu, Mihaela
2015-10-01
We characterize both entanglement and quantum coherence in a molecular system by connecting the linear entropy of electronic-nuclear entanglement with Wigner-Yanase skew information measuring vibronic coherence and local quantum uncertainty on electronic energy. Linear entropy of entanglement and quantifiers of quantum coherence are derived for a molecular system described in a bipartite Hilbert space H =He l⨂Hv i b of finite dimension Ne l×Nv , and relations between them are established. For the specific case of the electronic-vibrational entanglement, we find the linear entropy of entanglement as having a more complex informational content than the von Neumann entropy. By keeping the information carried by the vibronic coherences in a molecule, linear entropy seizes vibrational motion in the electronic potentials as entanglement dynamics. We analyze entanglement oscillations in an isolated molecule, and show examples for the control of entanglement dynamics in a molecule through the creation of coherent vibrational wave packets in several electronic potentials by using chirped laser pulses.
Excitation-induced Quantum Confined Stark Effect in a Coupled Double Quantum Wells
NASA Astrophysics Data System (ADS)
Shin, Y. H.; Park, Y. H.; Kim, Yongmin; Perry, C. H.
2011-12-01
We report a photoluminescence detected anticrossing of the energy levels in an undoped asymmetric coupled-double-quantum-well buried in a p-i-n structure. Due to the built-in electric field, the quantum wells are tilted in such a way that the symmetric energy level is higher than that of the antisymmetric one in the conduction band. Keeping the laser excitation energy below the barrier, with increasing laser power, the level anticrossing and the quantum confined Stark effect were observed due to decreasing built-in electric field by the photogenerated electron and hole pairs.
Magnetotransport in p-type Ge quantum well narrow wire arrays
Newton, P. J. Llandro, J.; Mansell, R.; Barnes, C. H. W.; Holmes, S. N.; Morrison, C.; Foronda, J.; Myronov, M.; Leadley, D. R.
2015-04-27
We report magnetotransport measurements of a SiGe heterostructure containing a 20 nm p-Ge quantum well with a mobility of 800 000 cm{sup 2} V{sup −1} s{sup −1}. By dry etching arrays of wires with widths between 1.0 μm and 3.0 μm, we were able to measure the lateral depletion thickness, built-in potential, and the phase coherence length of the quantum well. Fourier analysis does not show any Rashba related spin-splitting despite clearly defined Shubnikov-de Haas oscillations being observed up to a filling factor of ν = 22. Exchange-enhanced spin-splitting is observed for filling factors below ν = 9. An analysis of boundary scattering effects indicates lateral depletion of the hole gas by 0.5 ± 0.1 μm from the etched germanium surface. The built-in potential is found to be 0.25 ± 0.04 V, presenting an energy barrier for lateral transport greater than the hole confinement energy. A large phase coherence length of 3.5 ± 0.5 μm is obtained in these wires at 1.7 K.
NASA Astrophysics Data System (ADS)
Lekhal, Kaddour; Hussain, Sakhawat; De Mierry, Philippe; Vennéguès, Philippe; Nemoz, Maud; Chauveau, Jean-Michel; Damilano, Benjamin
2016-01-01
Yellow-emitting InxGa1-xN/GaN multiple quantum wells (MQWs) with different pairs of In composition and QW thickness have been grown by metal-organic chemical vapor deposition on sapphire substrates. We show that a trade-off between the MQW crystalline quality and the quantum confined Stark effect has to be found to maximize the room temperature photoluminescence efficiency. With our growth conditions, an optimum design of the MQW is obtained for x=0.21 and a QW thickness of 3.6 nm.
Entanglement entropy in dynamic quantum-coherent conductors
NASA Astrophysics Data System (ADS)
Thomas, Konrad H.; Flindt, Christian
2015-03-01
We investigate the entanglement and the Rényi entropies of two electronic leads connected by a quantum point contact. For noninteracting electrons, the entropies can be related to the cumulants of the full counting statistics of transferred charge which in principle are measurable. We consider the entanglement entropy generated by operating the quantum point contact as a quantum switch which is opened and closed in a periodic manner. Using a numerically exact approach we analyze the conditions under which a logarithmic growth of the entanglement entropy predicted by conformal field theory should be observable in an electronic conductor. In addition, we consider clean single-particle excitations on top of the Fermi sea (levitons) generated by applying designed pulses to the leads. We identify a Hong-Ou-Mandel-like suppression of the entanglement entropy by interfering two levitons on a quantum point contact tuned to half transmission.
Coherent chemical kinetics as quantum walks. II. Radical-pair reactions in Arabidopsis thaliana
NASA Astrophysics Data System (ADS)
Chia, A.; Górecka, A.; Kurzyński, P.; Paterek, T.; Kaszlikowski, D.
2016-03-01
We apply the quantum-walk approach proposed in the preceding paper [A. Chia et al., preceding paper, Phys. Rev. E 93, 032407 (2016), 10.1103/PhysRevE.93.032407] to a radical-pair reaction where realistic estimates for the intermediate transition rates are available. The well-known average hitting time from quantum walks can be adopted as a measure of how quickly the reaction occurs and we calculate this for varying degrees of dephasing in the radical pair. The time for the radical pair to react to a product is found to be independent of the amount of dephasing introduced, even in the limit of no dephasing where the transient population dynamics exhibits strong coherent oscillations. This can be seen to arise from the existence of a rate-limiting step in the reaction and we argue that in such examples, a purely classical model based on rate equations can be used for estimating the time scale of the reaction but not necessarily its population dynamics.
Evidence for coherent transport in GaAs hole open quantum dots.
NASA Astrophysics Data System (ADS)
Faniel, S.; Hackens, B.; Vlad, A.; Gustin, C.; Moldovan, L.; Melinte, S.; Bayot, V.; Shayegan, M.
2006-03-01
We report magnetotransport measurements in GaAs hole open quantum dots. Our samples were fabricated from a p-type GaAs quantum well with a density of 2.2 x10^15 m-2 and a mobility of 35 m^2/Vs. Two different dots were patterned using e-beam lithography and wet etching. A top gate was added in order to control the dots openings and the hole density. The measurements were performed down to 30 mK with the magnetic field applied perpendicular to the plane of the two- dimensional system. We observed large, reproducible conductance fluctuations associated with the coherent transport of holes inside the dots at lowest temperatures which vanish above 500 mK. From the variance of these fluctuations and from the Random Matrix Theory, we extracted the hole dephasing time τ. The temperature dependence of the calculated τ lies between a T-1 and T-2 behavior and exhibits a saturation at very low temperature which is similar with τ measured in 2D electron systems. B. Hackens et al., Phys. Rev. Lett. 94, 146802 (2005).
NASA Astrophysics Data System (ADS)
Veklenko, B. A.
2002-05-01
It is shown that, according to the quantum theory of light, the spatial period of an interference pattern formed by light incident on a medium and reflected from it is determined both by the wavelength of light and the number of coherent photons in a scattered mode. The scattered signal is assumed arbitrarily weak.
NASA Astrophysics Data System (ADS)
Joo, Jaewoo; Ginossar, Eran
2016-06-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.
Joo, Jaewoo; Ginossar, Eran
2016-01-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775
Joo, Jaewoo; Ginossar, Eran
2016-01-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775
Gaussian-modulated coherent-state measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Ma, Xiang-Chun; Sun, Shi-Hai; Jiang, Mu-Sheng; Gui, Ming; Liang, Lin-Mei
2014-04-01
Measurement-device-independent quantum key distribution (MDI-QKD), leaving the detection procedure to the third partner and thus being immune to all detector side-channel attacks, is very promising for the construction of high-security quantum information networks. We propose a scheme to implement MDI-QKD, but with continuous variables instead of discrete ones, i.e., with the source of Gaussian-modulated coherent states, based on the principle of continuous-variable entanglement swapping. This protocol not only can be implemented with current telecom components but also has high key rates compared to its discrete counterpart; thus it will be highly compatible with quantum networks.
Frustrated quantum phase diffusion and increased coherence of solitons due to nonlocality
Batz, Sascha; Peschel, Ulf
2011-03-15
We investigate the quantum properties of solitons with nonlocal self-interaction. We find significant changes when compared to the local interaction. Quantum phase diffusion of nonlocal solitons is always reduced with respect to the local interaction and vanishes in the strongly nonlocal limit. Thus, coherence is increased in the nonlocal case. Furthermore, we compare the intrinsic quantum wave packet spreading to the recently discussed classical Gordon-Haus effect for nonlocal solitons [V. Folli and C. Conti, Phys. Rev. Lett. 104, 193901 (2010)].
Coherent Scattering of a Multiphoton Quantum Superposition by a Mirror BEC
De Martini, Francesco; Sciarrino, Fabio; Vitelli, Chiara; Cataliotti, Francesco S.
2010-02-05
We present the proposition of an experiment in which the multiphoton quantum superposition consisting of Napprox =10{sup 5} particles generated by a quantum-injected optical parametric amplifier, seeded by a single-photon belonging to an Einstein-Podolsky-Rosen entangled pair, is made to interact with a mirror-Bose-Einstein condensate (BEC) shaped as a Bragg interference structure. The overall process will realize a macroscopic quantum superposition involving a microscopic single-photon state of polarization entangled with the coherent macroscopic transfer of momentum to the BEC structure, acting in spacelike separated distant places.
Quantum cascade light emitting diodes based on type-2 quantum wells
NASA Technical Reports Server (NTRS)
Lin, C. H.; Yang, R. Q.; Zhang, D.; Murry, S. J.; Pei, S. S.; Allerman, A. A.; Kurtz, S. R.
1997-01-01
The authors have demonstrated room-temperature CW operation of type-2 quantum cascade (QC) light emitting diodes at 4.2 (micro)m using InAs/InGaSb/InAlSb type-2 quantum wells. The type-2 QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-2 quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 (micro)W at 80 K, and 140 (micro)W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.
Quantum cascade light emitting diodes based on type-II quantum wells
Lin, C.H.; Yang, R.Q.; Zhang, D.; Murry, S.J.; Pei, S.S.; Allerman, A.A.; Kurtz, S.R.
1997-01-21
The authors have demonstrated room-temperature CW operation of type-II quantum cascade (QC) light emitting diodes at 4.2 {micro}m using InAs/InGaSb/InAlSb type-II quantum wells. The type-II QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-II quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 {micro}W at 80 K, and 140 {micro}W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.
Storage and retrieval of light pulse in coupled quantum wells
NASA Astrophysics Data System (ADS)
Liu, Jibing; Liu, Na; Shan, Chuanjia; Li, Hong; Liu, Tangkun; Zheng, Anshou
2016-03-01
In this paper, we propose an effective scheme to create a frequency entangled states based on bound-to-bound inter-subband transitions in an asymmetric three-coupled quantum well structure. A four-subband cascade configuration quantum well structure is illuminated with a pulsed probe field and two continuous wave control laser fields to generate a mixing field. By properly adjusting the frequency detunings and the intensity of coupling fields, the conversion efficiency can reach 100%. A maximum entangled state can be achieved by selecting a proper length of the sample. We also numerically investigate the propagation dynamics of the probe pulse and mixing pulse, the results show that two frequency components are able to exchange energy through a four-wave mixing process. Moreover, by considering special coupling fields, the storage and retrieval of the probe pulse is also numerically simulated.
Intersubband Transitions in InAs/AlSb Quantum Wells
NASA Technical Reports Server (NTRS)
Li, J.; Koloklov, K.; Ning, C. Z.; Larraber, D. C.; Khodaparast, G. A.; Kono, J.; Ueda, K.; Nakajima, Y.; Sasa, S.; Inoue, M.
2003-01-01
We have studied intersubband transitions in InAs/AlSb quantum wells experimentally and theoretically. Experimentally, we performed polarization-resolved infrared absorption spectroscopy to measure intersubband absorption peak frequencies and linewidths as functions of temperature (from 4 K to room temperature) and quantum well width (from a few nm to 10 nm). To understand experimental results, we performed a self-consistent 8-band k-p band-structure calculation including spatial charge separation. Based on the calculated band structure, we developed a set of density matrix equations to compute TE and TM optical transitions self-consistently, including both interband and intersubband channels. This density matrix formalism is also ideal for the inclusion of various many-body effects, which are known to be important for intersubband transitions. Detailed comparison between experimental data and theoretical simulations is presented.
Anomalous capacitance of quantum well double-barrier diodes
NASA Technical Reports Server (NTRS)
Boric, Olga; Tolmunen, Timo J.; Kollberg, Erik; Frerking, Margaret A.
1992-01-01
The S-parameters of several different quantum well double barrier diodes have been measured. A technique has been developed for measuring whisker contacted diodes with an HP 8510B automatic network analyzer. Special coaxial mounts using K-connectors were designed to enable measurements up to 20 GHz. The voltage-dependent conductance and capacitance were derived from the measured reflection coefficient of each device. The C/V characteristics were observed to exhibit an anomalous increase at voltages corresponding to the negative differential resistance region (NDR). These are the first reported S-parameter measurements in the negative differential resistance region of quantum well double barrier diodes. A theory is presented that explains, in part, the observed results.
Low ensemble disorder in quantum well tube nanowires.
Davies, Christopher L; Parkinson, Patrick; Jiang, Nian; Boland, Jessica L; Conesa-Boj, Sonia; Tan, H Hoe; Jagadish, Chennupati; Herz, Laura M; Johnston, Michael B
2015-12-28
We have observed very low disorder in high quality quantum well tubes (QWT) in GaAs-Al(0.4)Ga(0.6)As core-multishell nanowires. Room-temperature photoluminescence spectra were measured from 150 single nanowires enabling a full statistical analysis of both intra- and inter-nanowire disorder. By modelling individual nanowire spectra, we assigned a quantum well tube thickness, a core disorder parameter and a QWT disorder parameter to each nanowire. A strong correlation was observed between disorder in the GaAs cores and disorder in the GaAs QWTs, which indicates that variations in core morphology effectively propagate to the shell layers. This highlights the importance of high quality core growth prior to shell deposition. Furthermore, variations in QWT thicknesses for different facet directions was found to be a likely cause of intra-wire disorder, highlighting the need for accurate shell growth. PMID:26586279
Quantum-well diode frequency multipliers - Varistor case
NASA Technical Reports Server (NTRS)
Batelaan, Paul D.; Tolmunen, Timo J.; Frerking, Margaret A.
1992-01-01
Local oscillators for heterodyne receivers at submillimeter wavelengths are typically made using a fundamental source followed by a harmonic frequency multiplier. An investigation of the required circuit embedding conditions for a possible new harmonic generator, the quantum-well resonant-tunneling diode, is summarized. A low-frequency multiplier has been tested that employs the resistive nonlinearity of the device as opposed to the reactive nonlinearity. The results show good agreement between practice and theory.
Terahertz quantum well photodetectors with reflection-grating couplers
Zhang, R.; Fu, Z. L.; Gu, L. L.; Guo, X. G.; Cao, J. C.
2014-12-08
The design, fabrication, and characterization of terahertz (THz) quantum well photodetectors with one-dimensional reflection-grating coupler are presented. It is found that the reflection gratings could effectively couple the THz waves normally incident to the device. Compared with the 45-degree facet sample, the peak responsivity of this grating-coupled detector is enhanced by over 20%. The effects of the gratings on the photocurrent spectra are also analyzed.
Temperature independent quantum well FET with delta channel doping
NASA Technical Reports Server (NTRS)
Young, P. G.; Mena, R. A.; Alterovitz, S. A.; Schacham, S. E.; Haugland, E. J.
1992-01-01
A temperature independent device is presented which uses a quantum well structure and delta doping within the channel. The device requires a high delta doping concentration within the channel to achieve a constant Hall mobility and carrier concentration across the temperature range 300-1.4 K. Transistors were RF tested using on-wafer probing and a constant G sub max and F sub max were measured over the temperature range 300-70 K.
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman
2015-01-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F; Schnabel, Roman
2015-01-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components. PMID:26514280
NASA Astrophysics Data System (ADS)
Gehring, Tobias; Händchen, Vitus; Duhme, Jörg; Furrer, Fabian; Franz, Torsten; Pacher, Christoph; Werner, Reinhard F.; Schnabel, Roman
2015-10-01
Secret communication over public channels is one of the central pillars of a modern information society. Using quantum key distribution this is achieved without relying on the hardness of mathematical problems, which might be compromised by improved algorithms or by future quantum computers. State-of-the-art quantum key distribution requires composable security against coherent attacks for a finite number of distributed quantum states as well as robustness against implementation side channels. Here we present an implementation of continuous-variable quantum key distribution satisfying these requirements. Our implementation is based on the distribution of continuous-variable Einstein-Podolsky-Rosen entangled light. It is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector. Since continuous-variable encoding is compatible with conventional optical communication technology, our work is a step towards practical implementations of quantum key distribution with state-of-the-art security based solely on telecom components.
Optical initialization and dynamics of spin in a remotely doped quantum well
Kennedy, T. A.; Scheibner, M.; Efros, Al. L.; Bracker, A. S.; Gammon, D.; Shabaev, A.
2006-01-15
The excitation of electron spin polarization and coherence by picosecond light pulses and their dynamics in a wide remotely doped quantum well are studied theoretically and experimentally. Assuming that all electrons in the quantum well are localized, the theory considers the resonant interaction of light pulses with the four-level system formed by the electron spins of the ground state and the hole spins of the trion excited state. The theory describes the effects of spontaneous emission, a transverse magnetic field and hole spin relaxation on the dynamics detected by the Kerr rotation of a probe pulse. Time resolved Kerr rotation experiments were carried out on a remotely doped 14 nm GaAs quantum well in the frequency range of optical transitions to the heavy hole (HH) trion and to the light-hole (LH) trion degenerate with the HH exciton. The experiments on the resonant excitation of the HH trion show a very slow heavy hole spin relaxation and, consequently, a weak electron spin polarization after the trion relaxation. In contrast, the resonant excitation of the LH trion/HH exciton results in a fast hole spin relaxation that increases electron spin polarization.
Generating single-photon catalyzed coherent states with quantum-optical catalysis
NASA Astrophysics Data System (ADS)
Xu, Xue-xiang; Yuan, Hong-chun
2016-07-01
We theoretically generate single-photon catalyzed coherent states (SPCCSs) by means of quantum-optical catalysis based on the beam splitter (BS) or the parametric amplifier (PA). These states are obtained in one of the BS (or PA) output channels if a coherent state and a single-photon Fock state are present in two input ports and a single photon is registered in the other output port. The success probabilities of the detection (also the normalization factors) are discussed, which is different for BS and PA catalysis. In addition, we prove that the generated states catalyzed by BS and PA devices are actually the same quantum states after analyzing photon number distribution of the SPCCSs. The quantum properties of the SPCCSs, such as sub-Poissonian distribution, anti-bunching effect, quadrature squeezing effect, and the negativity of the Wigner function are investigated in detail. The results show that the SPCCSs are non-Gaussian states with an abundance of nonclassicality.
Yin, H-L; Cao, W-F; Fu, Y; Tang, Y-L; Liu, Y; Chen, T-Y; Chen, Z-B
2014-09-15
Measurement-device-independent quantum key distribution (MDI-QKD) with decoy-state method is believed to be securely applied to defeat various hacking attacks in practical quantum key distribution systems. Recently, the coherent-state superpositions (CSS) have emerged as an alternative to single-photon qubits for quantum information processing and metrology. Here, in this Letter, CSS are exploited as the source in MDI-QKD. We present an analytical method that gives two tight formulas to estimate the lower bound of yield and the upper bound of bit error rate. We exploit the standard statistical analysis and Chernoff bound to perform the parameter estimation. Chernoff bound can provide good bounds in the long-distance MDI-QKD. Our results show that with CSS, both the security transmission distance and secure key rate are significantly improved compared with those of the weak coherent states in the finite-data case. PMID:26466295
Two-electron coherence and its measurement in electron quantum optics
NASA Astrophysics Data System (ADS)
Thibierge, É.; Ferraro, D.; Roussel, B.; Cabart, C.; Marguerite, A.; Fève, G.; Degiovanni, P.
2016-02-01
Engineering and studying few-electron states in ballistic conductors is a key step towards understanding entanglement in quantum electronic systems. In this Rapid Communication, we introduce the intrinsic two-electron coherence of an electronic source in quantum Hall edge channels and relate it to two-electron wave functions and to current noise in a Hanbury Brown-Twiss interferometer. Inspired by the analogy with photon quantum optics, we propose to measure the intrinsic two-electron coherence of a source using low-frequency current correlation measurements at the output of a Franson interferometer. To illustrate this protocol, we discuss how it can distinguish between a time-bin-entangled pure state and a statistical mixture of time-shifted electron pairs.
Measurement device-independent quantum key distribution with heralded pair coherent state
NASA Astrophysics Data System (ADS)
Chen, Dong; Shang-Hong, Zhao; Lei, Shi
2016-07-01
The original measurement device-independent quantum key distribution is reviewed, and a modified protocol using heralded pair coherent state (HPCS) is proposed to overcome the quantum bit error rate associated with the dark count rate of the detectors in long-distance quantum key distribution. Our simulation indicates that the secure transmission distance can be improved evidently with HPCS owing to the lower probability of vacuum events when compared with weak coherent source scenario, while the secure key rate can be increased with HPCS due to the higher probability of single-photon events when compared with heralded single-photon source scenario. Furthermore, we apply the finite key analysis to the decoy state MDI-QKD with HPCS and obtain a practical key rate.
Charge transport and localization in atomically coherent quantum dot solids
NASA Astrophysics Data System (ADS)
Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.; Kourkoutis, Lena F.; Wise, Frank; Hanrath, Tobias
2016-05-01
Epitaxial attachment of quantum dots into ordered superlattices enables the synthesis of quasi-two-dimensional materials that theoretically exhibit features such as Dirac cones and topological states, and have major potential for unprecedented optoelectronic devices. Initial studies found that disorder in these structures causes localization of electrons within a few lattice constants, and highlight the critical need for precise structural characterization and systematic assessment of the effects of disorder on transport. Here we fabricated superlattices with the quantum dots registered to within a single atomic bond length (limited by the polydispersity of the quantum dot building blocks), but missing a fraction (20%) of the epitaxial connections. Calculations of the electronic structure including the measured disorder account for the electron localization inferred from transport measurements. The calculations also show that improvement of the epitaxial connections will lead to completely delocalized electrons and may enable the observation of the remarkable properties predicted for these materials.
Quantum Noise in Large-Scale Coherent Nonlinear Photonic Circuits
NASA Astrophysics Data System (ADS)
Santori, Charles; Pelc, Jason S.; Beausoleil, Raymond G.; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo
2014-06-01
A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasiprobability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total and functions as a four-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important property for scalability.
Magneto-optical properties of indium antimide based quantum wells
NASA Astrophysics Data System (ADS)
Khodaparast, Giti Adham
2001-08-01
The goal of this work was to study the band structure and spin properties of the InSb quantum wells experimentally. Many new observations resulted such as spin resolved cyclotron resonance and zero field spin splitting in InSb quantum wells. Our cyclotron resonance experimental results are in good agreement with our theoretical model. The values of the effective mass show the expected nonparabolicity behavior. We observed spin resolved cyclotron resonance in the high mobility samples with a rather unexpected amplitude pattern at 70.6 μm which might be a result of deviation from the Kohn theorem. More experiments using FTIR are required to understand the spin resolved cyclotron resonance in InSb. We observe electron spin resonance using FIR laser spectroscopy in symmetric and asymmetric InSb quantum wells over a wide range of magnetic field and the Landau level index. The behavior of the asymmetric wells at low magnetic fields with g-factors far in excess of the bulk g-factor of InSb is due to spin splitting at zero magnetic field. Asymmetry-induced shifts in the spin resonance at high fields depend on the Landau level index as predicted by the Bychkov-Rashba model. In an extension of this work, we plan to compare samples where the asymmetry in the confinement potential is due to differing Al concentrations in the barriers on either side of the quantum well to samples with asymmetric doping which were studied in this work. The α values measured in this work (1.5 × 10-9 eVcm) are among the largest reported as would be expected for a material like InSb with a large bulk g-factor. Recently, in gated InAs samples [61] α values ranging from 2 × 10-9 to 4 × 10-9 eV cm have been measured which suggest that we can achieve even larger α in InSb quantum wells. We are extending our spin resonance studies to gated samples. These should give us the ability to study the spin resonance in the absence of any applied magnetic field.
Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays
NASA Technical Reports Server (NTRS)
Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.
2006-01-01
This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.
NASA Astrophysics Data System (ADS)
Nasehi, R.
2016-08-01
The optical bistability (OB) and multi-stability (OM) behavior in a dielectric slab medium doped with semiconductor quantum well nanostructure has been discussed by employing the spin coherence effect. It is shown that, by changing the relative phase of applied fields the bistable behavior switches from OB to OM or vice versa in a dielectric medium. The effect of the frequency detuning of laser fields on the OB and OM behavior are also discussed in this paper.
NASA Astrophysics Data System (ADS)
Nasehi, R.
2016-03-01
The optical bistability (OB) and multi-stability (OM) behavior in a dielectric slab medium doped with semiconductor quantum well nanostructure has been discussed by employing the spin coherence effect. It is shown that, by changing the relative phase of applied fields the bistable behavior switches from OB to OM or vice versa in a dielectric medium. The effect of the frequency detuning of laser fields on the OB and OM behavior are also discussed in this paper.
Nonlinear Exciton Dynamics in IndiumGalliumArsenic Quantum Wells
NASA Astrophysics Data System (ADS)
Zaks, Benjamin Rene
Near infrared and optical light applied near the band edge of a semiconductor can lead to the formation of bound electron-hole pairs known as excitons. Using growth methods such as molecular beam epitaxy, semiconductor heterostructures can be engineered to have properties beneficial to particular experiments. The formation of thin layers of semiconductor can lead electrons and holes to be confined along a particular direction, and one structure that can be grown is called a quantum well. Confinement of charge in the quantum well increases the Coulomb interaction between the electron and hole, increasing exciton formation. When excitons are driven with an intense THz field, changes to the optical properties of the semiconductor are observed. These changes to the optical properties can not only provide interesting information about the exciton system, but also may provide insight on modulating optical beams at THz frequencies, information that may be necessary to further improve the speed of our cable and internet connections. By growing InGaAs quantum wells with AlGaAs barriers on a GaAs substrate, we have observed strong changes to the optical spectrum due to intense THz fields. We find that when the strong THz field is applied to an intersubband transition in the quantum well, the applied field can significantly shift the energy of that intersubband transition. This shift is unexpected within the approximations often used to describe this system, and we find that full numerical simulations of the system are necessary to interpret our results. When the strong THz field is polarized in the plane of the quantum well, we are able to observe optical light at up to 11 frequencies that were not present before application of the THz. The new frequencies are separated from the optical frequency by multiples of the THz frequency and are often referred to as sidebands. To understand the origin of the high-order sidebands observed, which are present up to 8 th order, a
Formation of a self-consistent double quantum well in a wide p-type quantum well
NASA Astrophysics Data System (ADS)
Alshanskiǐ, G. A.; Yakunin, M. V.
2004-11-01
The process of formation of self-consistent double quantum wells (DQWs) in a wide p-type quantum well in the presence of uniaxial strain is investigated. A feature of p-type systems is the structure of the valence band, which consists of two branches of energy dispersion—light and heavy holes. It is shown that this feature leads to significant splitting of the subbands of symmetric and antisymmetric states, as a result of which it is difficult to form states of the DQW with a vanishingly small tunneling gap; a uniaxial strain, by lifting the degeneracy of the band, suppresses this property, so that the two ground subbands of the size quantization of the DQW remain degenerate to high energies.
Electrostatic enhancement of light emitted by semiconductor quantum well
NASA Astrophysics Data System (ADS)
Krokhin, A.; Neogi, A.; Llopis, A.; Mahat, M.; Gumen, L.; Pereira, S.; Watson, I.
2015-10-01
Carrier dynamics in metal-semiconductor structures is driven by electrodynamic coupling of carriers to the evanescent field of surface plasmons. Useful modifications in electron and hole dynamics due to presence of metallic inclusions show promise for applications from light emitters to communications. However, this picture does not include contributions from electrostatics. We propose here an electrostatic mechanism for enhancement of light radiated from semiconductor emitter which is comparable in effect to plasmonic mechanism. Arising from Coulomb attraction of e-h pairs to their electrostatic images in metallic nanoparticles, this mechanism produces large carrier concentrations near the nanoparticle. A strong inhomogeneity in the carrier distribution and an increase in the internal quantum efficiency are predicted. In our experiments, this manifests as emission enhancement in InGaN quantum well (QW) radiating in the near-UV region. This fundamental mechanism provides a new perspective for improving the efficiency of broadband light emitters.
Electron bilayers in an undoped Si/SiGe double-quantum-well heterostructure
NASA Astrophysics Data System (ADS)
Lu, Tzu-Ming; Laroche, Dominique; Huang, Shih-Hsien; Nielsen, Erik; Chuang, Yen; Li, Jiun-Yun; Liu, Cheewee
We report the design, fabrication, and the magneto-transport study of an undoped Si/SiGe double quantum well heterostructure. We show that employing asymmetric quantum wells for our single-side-gated devices allows us to observe a cross-over from single-layer-like to bi-layer-llike behavior in the mobility-density dependence. We also observe an integer quantum Hall state at filling factor ν = 2, which is expected to arise from inter-layer effects for Si electrons. This state could be due to either inter-layer coherence, or the symmetric-antisymmetric tunneling gap. This work has been supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Recent Developments in Quantum-Well Infrared Photodetectors
NASA Technical Reports Server (NTRS)
Gunapala, S. D.; Bandara, K. M. S. V.
1995-01-01
Intrinsic infrared (IR) detectors in the long wavelength range (8-20 Am) are based on an optically excited interband transition, which promotes an electron across the band gap (E(sub g)) from the valence band to the conduction band as shown. These photoelectrons can be collected efficiently, thereby producing a photocurrent in the external circuit. Since the incoming photon has to promote an electron from the valence band to the conduction band, the energy of the photon (h(sub upsilon)) must be higher than the E(sub g) of the photosensitive material. Therefore, the spectral response of the detectors can be controlled by controlling the E(sub g) of the photosensitive material. Examples for such materials are Hg(1-x), Cd(x), Te, and Pb(1-x), Sn(x), Te, in which the energy gap can be controlled by varying x. This means detection of very-long-wavelength IR radiation up to 20 microns requires small band gaps down to 62 meV. It is well known that these low band gap materials, characterized by weak bonding and low melting points, are more difficult to grow and process than large-band gap semiconductors such as GaAs. These difficulties motivate the exploration of utilizing the intersub-band transitions in multiquantum well (MQW) structures made of more refractory large-band gap semiconductors. The idea of using MQW structures to detect IR radiation can be explained by using the basic principles of quantum mechanics. The quantum well is equivalent to the well-known particle in a box problem in quantum mechanics, which can be solved by the time independent Schroudiner equation.
Strong Electron-Hole Exchange in Coherently Coupled Quantum Dots
NASA Astrophysics Data System (ADS)
Fält, Stefan; Atatüre, Mete; Türeci, Hakan E.; Zhao, Yong; Badolato, Antonio; Imamoglu, Atac
2008-03-01
We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.
Proposal for a coherent quantum memory for propagating microwave photons
NASA Astrophysics Data System (ADS)
Afzelius, M.; Sangouard, N.; Johansson, G.; Staudt, M. U.; Wilson, C. M.
2013-06-01
We describe a multi-mode quantum memory for propagating microwave photons that combines a solid-state spin ensemble resonantly coupled to a frequency tunable single-mode microwave cavity. We first show that high efficiency mapping of the quantum state transported by a free photon to the spin ensemble is possible both for strong and weak coupling between the cavity mode and the spin ensemble. We also show that even in the weak coupling limit unit efficiency and faithful retrieval can be obtained through time reversal inhomogeneous dephasing based on spin echo techniques. This is possible provided that the cavity containing the spin ensemble and the transmission line are impedance matched. We finally discuss the prospects for an experimental implementation using a rare-earth doped crystal coupled to a superconducting resonator.
NASA Astrophysics Data System (ADS)
Qi, Bing; Lougovski, Pavel; Pooser, Raphael; Grice, Warren; Bobrek, Miljko
2015-10-01
Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad2 ), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.
Coherent frequency combs produced by self frequency modulation in quantum cascade lasers
Khurgin, J. B.; Dikmelik, Y.; Hugi, A.; Faist, J.
2014-02-24
One salient characteristic of Quantum Cascade Laser (QCL) is its very short τ ∼ 1 ps gain recovery time that so far thwarted the attempts to achieve self-mode locking of the device into a train of single pulses. We show theoretically that four wave mixing, combined with the short gain recovery time causes QCL to operate in the self-frequency-modulated regime characterized by a constant power in time domain and stable coherent comb in the frequency domain. Coherent frequency comb may enable many potential applications of QCL's in sensing and measurement.
Coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system.
Zhang, Kaibiao; Zhang, Hong; Li, Chikang
2015-05-14
Noble metal nanoparticles can modify the optical properties of graphene. Here we present a detailed theoretical analysis of the coherent resonance of quantum plasmons in the graphene-gold cluster hybrid system by using time dependent density functional theory (TDDFT). This plasmon coherent effect is mainly attributed to the electromagnetic field coupling between the graphene and the gold cluster. As a result, the optical response of the hybrid system exhibits a remarkably strong, selectable tuning and polarization dependent plasmon resonance enhanced in wide frequency regions. This investigation provides an improved understanding of the plasmon enhancement effect in a graphene-based photoelectric device. PMID:25874280
Somma, Carmine; Folpini, Giulia; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas
2016-04-29
We report the first observation of two-phonon quantum coherences in a semiconductor. Two-dimensional terahertz (THz) spectra recorded with a sequence of three THz pulses display strong two-phonon signals, clearly distinguished from signals due to interband two-photon absorption and electron tunneling. The two-phonon coherences originate from impulsive off-resonant excitation in the nonperturbative regime of light-matter interaction. A theoretical analysis provides the relevant Liouville pathways, showing that nonlinear interactions using the large interband dipole moment generate stronger two-phonon excitations than linear interactions. PMID:27176538
Superconducting proximity effect in inverted InAs/GaSb quantum well structures with Ta electrodes
Yu, Wenlong; Jiang, Yuxuan; Huan, Chao; Chen, Xunchi; Jiang, Zhigang; Hawkins, Samuel D.; Klem, John F.; Pan, Wei
2014-11-10
We present our recent electronic transport results in top-gated InAs/GaSb quantum well hybrid structures with superconducting Ta electrodes. We show that the transport across the InAs−Ta junction depends largely on the interfacial transparency, exhibiting distinct zero-bias behavior. For a relatively resistive interface, a broad conductance peak is observed at zero bias. When a transparent InAs−Ta interface is achieved, a zero-bias conductance dip appears with two coherent-peak-like features forming at bias voltages corresponding to the superconducting gap of Ta. The conductance spectra of the transparent InAs−Ta junction at different gate voltages can be fit well using the standard Blonder-Tinkham-Klapwijk theory.
Nikodem, Astrid; Levine, R D; Remacle, F
2016-05-19
The quantum wave packet dynamics following a coherent electronic excitation of LiH by an ultrashort, polarized, strong one-cycle infrared optical pulse is computed on several electronic states using a grid method. The coupling to the strong field of the pump and the probe pulses is included in the Hamiltonian used to solve the time-dependent Schrodinger equation. The polarization of the pump pulse allows us to control the localization in time and in space of the nonequilibrium coherent electronic motion and the subsequent nuclear dynamics. We show that transient absorption, resulting from the interaction of the total molecular dipole with the electric fields of the pump and the probe, is a very versatile probe of the different time scales of the vibronic dynamics. It allows probing both the ultrashort, femtosecond time scale of the electronic coherences as well as the longer dozens of femtoseconds time scales of the nuclear motion on the excited electronic states. The ultrafast beatings of the electronic coherences in space and in time are shown to be modulated by the different periods of the nuclear motion. PMID:26928262
Low ensemble disorder in quantum well tube nanowires
NASA Astrophysics Data System (ADS)
Davies, Christopher L.; Parkinson, Patrick; Jiang, Nian; Boland, Jessica L.; Conesa-Boj, Sonia; Tan, H. Hoe; Jagadish, Chennupati; Herz, Laura M.; Johnston, Michael B.
2015-12-01
We have observed very low disorder in high quality quantum well tubes (QWT) in GaAs-Al0.4Ga0.6As core-multishell nanowires. Room-temperature photoluminescence spectra were measured from 150 single nanowires enabling a full statistical analysis of both intra- and inter-nanowire disorder. By modelling individual nanowire spectra, we assigned a quantum well tube thickness, a core disorder parameter and a QWT disorder parameter to each nanowire. A strong correlation was observed between disorder in the GaAs cores and disorder in the GaAs QWTs, which indicates that variations in core morphology effectively propagate to the shell layers. This highlights the importance of high quality core growth prior to shell deposition. Furthermore, variations in QWT thicknesses for different facet directions was found to be a likely cause of intra-wire disorder, highlighting the need for accurate shell growth.We have observed very low disorder in high quality quantum well tubes (QWT) in GaAs-Al0.4Ga0.6As core-multishell nanowires. Room-temperature photoluminescence spectra were measured from 150 single nanowires enabling a full statistical analysis of both intra- and inter-nanowire disorder. By modelling individual nanowire spectra, we assigned a quantum well tube thickness, a core disorder parameter and a QWT disorder parameter to each nanowire. A strong correlation was observed between disorder in the GaAs cores and disorder in the GaAs QWTs, which indicates that variations in core morphology effectively propagate to the shell layers. This highlights the importance of high quality core growth prior to shell deposition. Furthermore, variations in QWT thicknesses for different facet directions was found to be a likely cause of intra-wire disorder, highlighting the need for accurate shell growth. Electronic supplementary information (ESI) available: A full description of the modelling used to obtain well widths along with TEM images. See DOI: 10.1039/C5NR06996C
Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km.
Yoshida, Masato; Hirooka, Toshihiko; Kasai, Keisuke; Nakazawa, Masataka
2016-01-11
We demonstrate the first 40 Gbit/s single-channel polarization-multiplexed, 5 Gsymbol/s, 16 QAM quantum noise stream cipher (QNSC) transmission over 480 km by incorporating ASE quantum noise from EDFAs as well as the quantum shot noise of the coherent state with multiple photons for the random masking of data. By using a multi-bit encoded scheme and digital coherent transmission techniques, secure optical communication with a record data capacity and transmission distance has been successfully realized. In this system, the signal level received by Eve is hidden by both the amplitude and the phase noise. The highest number of masked signals, 7.5 x 10(4), was achieved by using a QAM scheme with FEC, which makes it possible to reduce the output power from the transmitter while maintaining an error free condition for Bob. We have newly measured the noise distribution around I and Q encrypted data and shown experimentally with a data size of as large as 2(25) that the noise has a Gaussian distribution with no correlations. This distribution is suitable for the random masking of data. PMID:26832295
Coherent transport of nanowire surface plasmons coupled to quantum dots.
Chen, Wei; Chen, Guang-Yin; Chen, Yueh-Nan
2010-05-10
The coherent transport of surface plasmons with nonlinear dispersion relations on a metal nanowire coupled to two-level emitters is investigated theoretically. Real-space Hamiltonians are used to obtain the transmission and reflection spectra of the surface plasmons. For the single-dot case, we find that the scattering spectra can show completely different features due to the non-linear quadratic dispersion relation. For the double-dot case, we obtain the interference behavior in transmission and reflection spectra, similar to that in resonant tunneling through a double-barrier potential. Moreover, Fano-like line shape of the transmission spectrum is obtained due to the quadratic dispersion relation. All these peculiar behaviors indicate that the dot-nanowire system provides a onedimensional platform to demonstrate the bandgap feature widely observed in photonic crystals. PMID:20588891
Reliability assessment of multiple quantum well avalanche photodiodes
NASA Technical Reports Server (NTRS)
Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.
1995-01-01
The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.
Magnetic field induced minigap in double quantum wells
Simmons, J.A.; Lyo, S.K.; Klem, J.F.; Harff, N.E. |
1994-07-01
We report discovery of a partial energy gap, or minigap, in strongly coupled double quantum wells (QWs), due to an anticrossing of the two QW dispersion curves. The anticrossing and minigap are induced by an in-plane magnetic field B{sub {parallel}}, and give rise to large distortions in the Fermi surface and density of states, including a Van Hove singularity. Sweeping B{sub {parallel}} moves the minigap through the Fermi level, with the upper and lower gap edges producing a sharp maximum and minimum in the low-temperature in-plane conductance, in agreement with theoretical calculations. The gap energy may be directly determined from the data.
Quantum well states in Rashba semiconductor BiTeI
NASA Astrophysics Data System (ADS)
He, Yang; Zhu, Zhihuai; Hamidian, Mohammad; Chen, Pengcheng; Yam, Yau Chuen; Hoffman, Jennifer
BiTeI displays large Rashba-type spin splitting in both valence and conduction bands. In this work, we use scanning tunneling microscopy to reveal the bipolar nature of BiTeI, confirming the previously observed p-n junction electronic structure. We also discover two-dimensional quantum well states both below and above the semiconducting gap on the Te-terminated surface. This work sheds light on the origin of the giant Rashba splitting in the system. This effort is funded by the NSF Grant DMR-1410480.
Strong photoluminescence emission from resonant Fibonacci quantum wells.
Chang, C H; Chen, C H; Hsueh, W J
2013-06-17
Strong photoluminescence (PL) emission from a resonant Fibonacci quantum well (FQW) is demonstrated. The maximum PL intensity in the FQW is significantly stronger than that in a periodic QW under the Bragg or anti-Bragg conditions. Moreover, the peaks of the squared electric field in the FQW are located very near each of the QWs. The optimal PL spectrum in the FQW has an asymmetrical form rather than the symmetrical one in the periodic case. The maximum PL intensity and the corresponding thickness filling factor in the FQW become greater with increasing generation order. PMID:23787654
Thermopower enhancement in quantum wells with the Rashba effect
Wu, Lihua; Yang, Jiong; Wang, Shanyu; Wei, Ping; Yang, Jihui E-mail: wqzhang@mail.sic.ac.cn; Zhang, Wenqing E-mail: wqzhang@mail.sic.ac.cn; Chen, Lidong
2014-11-17
We theoretically demonstrate that the thermopower in two-dimensional quantum wells (QWs) can be significantly enhanced by its Rashba spin-splitting effect, governed by the one-dimensional density of states in the low Fermi energy region. The thermopower enhancement is due to the lower Fermi level for a given carrier concentration in Rashba QWs, as compared with that in normal two-dimensional systems without the spin-splitting effect. The degenerate approximation directly shows that larger strength of Rashba effect leads to higher thermopower and consequently better thermoelectric performance in QWs.
Electromagnetically induced grating in asymmetric quantum wells via Fano interference.
Zhou, Fengxue; Qi, Yihong; Sun, Hui; Chen, Dijun; Yang, Jie; Niu, Yueping; Gong, Shangqing
2013-05-20
We propose a scheme for obtaining an electromagnetically induced grating in an asymmetric semiconductor quantum well (QW) structure via Fano interference. In our structure, owing to Fano interference, the diffraction intensity of the grating, especially the first-order diffraction, can be significantly enhanced. The diffraction efficiency of the grating can be controlled efficiently by tuning the control field intensity, the interaction length, the coupling strength of tunneling, etc. This investigation may be used to develop novel photonic devices in semiconductor QW systems. PMID:23736445
Pseudomorphic Single-Quantum-Well Lasers Emit At 980 Nm
NASA Technical Reports Server (NTRS)
Larsson, Anders; Forouhar, Siamak; Cody, Jeffrey G.; Lang, Robert J.; Andrekson, Peter A.
1992-01-01
Narrow-stripe semiconductor lasers emitting at 980 nm include pseudomorphic In0.2Ga0.8As/GaAs/AlxGa1-xAs graded-index-of-refraction, separate-confinement-heterostructure single quantum well(GRINSCH SQW) with overlaid ridge waveguide. 980 nm chosen as one that yields most efficient pumping because there is no absorption in excited states at this wavelength. Suitable for pumping Er(Sup3+)-doped optical-fiber amplifiers in optical-fiber communication systems and optical phased-array ranging systems.