Science.gov

Sample records for quantum wires

  1. Magnetoconductance of quantum wires

    NASA Astrophysics Data System (ADS)

    Ferreira, Gerson J.; Sammarco, Filipe; Egues, Carlos

    2010-03-01

    At low temperatures the conductance of a quantum wires exhibit characteristic plate-aus due to the quantization of the transverse modes [1]. In the presence of high in-plane magnetic fields these spin-split transverse modes cross. Recently, these crossings were observed experimentally [2] via measurements of the differential conductance as a function of the gate voltage and the in-plane magnetic-field. These show structures described as either anti-crossings or magnetic phase transitions. Motivated by our previous works on magnetotransport in 2DEGs via the Spin Density Functional Theory (SDFT) [3], here we propose a similar model to investigate the magnetoconductance of quantum wires. We use (i) the SDFT via the Kohn-Sham self-consistent scheme within the local spin density approximation to obtain the electronic structure and (ii) the Landauer-Buettiker formalism to calculate the conductance of a quantum wire. Our results show qualitative agreement with the data of Ref. [2]. [1] B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988). [2] A. C. Graham et al., Phys. Rev. Lett. 100, 226804 (2008). [3] H. J. P. Freire, and J. C. Egues, Phys. Rev. Lett. 99, 026801 (2007); G. J. Ferreira, and J. Carlos Egues, J. Supercond. Nov. Mag., in press; G. J. Ferreira, H. J. P. Freire, J. Carlos Egues, submitted.

  2. Wire recycling for quantum circuit optimization

    NASA Astrophysics Data System (ADS)

    Paler, Alexandru; Wille, Robert; Devitt, Simon J.

    2016-10-01

    Quantum information processing is expressed using quantum bits (qubits) and quantum gates which are arranged in terms of quantum circuits. Here, each qubit is associated with a quantum circuit wire which is used to conduct the desired operations. Most of the existing quantum circuits allocate a single quantum circuit wire for each qubit and hence introduce significant overhead. In fact, qubits are usually not needed during the entire computation, only between their initialization and measurement. Before and after that, corresponding wires may be used by other qubits. In this work, we propose a solution which exploits this fact in order to optimize the design of quantum circuits with respect to the required wires. To this end, we introduce a representation of the lifetimes of all qubits which is used to analyze the respective need for wires. Based on this analysis, a method is proposed which "recycles" the available wires and, as a result, reduces the size of the resulting circuit. Numerical tests based on established reversible and fault-tolerant quantum circuits confirm that the proposed solution reduces the number of wires by more than 90% compared to unoptimized quantum circuits.

  3. Electrochemical Fabrication of Metallic Quantum Wires

    ERIC Educational Resources Information Center

    Tao, Nongjian

    2005-01-01

    The fabrication of metallic quantum wires using simple electrochemical techniques is described. The conductance of the system can be readily measured that allows one to constantly monitor the conductance during fabrication and use conductance quantization as a signature to guide the fabrication.

  4. Spectroscopic properties of colloidal indium phosphide quantum wires

    SciTech Connect

    Wang, Lin-Wang; Wang, Fudong; Yu, Heng; Li, Jingbo; Hang, Qingling; Zemlyanov, Dmitry; Gibbons, Patrick C.; Wang, Lin-Wang; Janes, David B.; Buhro, William E.

    2008-07-11

    Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photo-oxidation, without a significant influence on quantum-wire photoluminescence. However, photo-oxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation, and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.

  5. Negative excess noise in gated quantum wires

    SciTech Connect

    Dolcini, F.; Trauzettel, B.; Safi, I.; Grabert, H.

    2009-04-23

    The electrical current noise of a quantum wire is expected to increase with increasing applied voltage. We show that this intuition can be wrong. Specifically, we consider a single channel quantum wire with impurities and with a capacitive coupling to a metallic gate, and find that its excess noise, defined as the change in the noise caused by the finite voltage, can be negative at zero temperature. This feature is present both for large (c>>c{sub q}) and small (c<quantum capacitance of the wire. In particular, for c>>c{sub q}, negativity of the excess noise can occur at finite frequency when the transmission coefficients are energy dependent, i.e. in the presence of Fabry-Perot resonances or band curvature. In the opposite regime c < or approx. c{sub q}, a non trivial voltage dependence of the noise arises even for energy independent transmission coefficients: at zero frequency the noise decreases with voltage as a power law when c

  6. Universal quantum computation in a semiconductor quantum wire network

    NASA Astrophysics Data System (ADS)

    Sau, Jay D.; Tewari, Sumanta; Das Sarma, S.

    2010-11-01

    Universal quantum computation (UQC) using Majorana fermions on a two-dimensional topological superconducting (TS) medium remains an outstanding open problem. This is because the quantum gate set that can be generated by braiding of the Majorana fermions does not include any two-qubit gate and also no single-qubit π/8 phase gate. In principle, it is possible to create these crucial extra gates using quantum interference of Majorana fermion currents. However, it is not clear if the motion of the various order parameter defects (vortices, domain walls, etc.), to which the Majorana fermions are bound in a TS medium, can be quantum coherent. We show that these obstacles can be overcome using a semiconductor quantum wire network in the vicinity of an s-wave superconductor, by constructing topologically protected two-qubit gates and any arbitrary single-qubit phase gate in a topologically unprotected manner, which can be error corrected using magic-state distillation. Thus our strategy, using a judicious combination of topologically protected and unprotected gate operations, realizes UQC on a quantum wire network with a remarkably high error threshold of 0.14 as compared to 10-3 to 10-4 in ordinary unprotected quantum computation.

  7. Nonequilibrium functional bosonization of quantum wire networks

    SciTech Connect

    Ngo Dinh, Stephane; Bagrets, Dmitry A.; Mirlin, Alexander D.

    2012-11-15

    We develop a general approach to nonequilibrium nanostructures formed by one-dimensional channels coupled by tunnel junctions and/or by impurity scattering. The formalism is based on nonequilibrium version of functional bosonization. A central role in this approach is played by the Keldysh action that has a form reminiscent of the theory of full counting statistics. To proceed with evaluation of physical observables, we assume the weak-tunneling regime and develop a real-time instanton method. A detailed exposition of the formalism is supplemented by two important applications: (i) tunneling into a biased Luttinger liquid with an impurity, and (ii) quantum Hall Fabry-Perot interferometry. - Highlights: Black-Right-Pointing-Pointer A nonequilibrium functional bosonization framework for quantum wire networks is developed Black-Right-Pointing-Pointer For the study of observables in the weak tunneling regime a real-time instanton method is elaborated. Black-Right-Pointing-Pointer We consider tunneling into a biased Luttinger liquid with an impurity. Black-Right-Pointing-Pointer We analyze electronic Fabry-Perot interferometers in the integer quantum Hall regime.

  8. Research on quantum efficiency of GaN wire photocathode

    NASA Astrophysics Data System (ADS)

    Xia, Sihao; Liu, Lei; Diao, Yu; Kong, Yike

    2017-02-01

    On the basis of three-dimensional continuity equation in semiconductors and finite difference method, the carrier concentration and the quantum efficiency of GaN wire photocathode as a function of incident photon energy are achieved. Results show that the quantum efficiency of the wire photocathode is largely enhanced compared with the conventional planar photocathode. The superiority of the wire photocathode is reflected in its structure with surrounding surfaces. The quantum efficiency of the wire photocathode largely depends on the wire width, surface reflectivity, surface escape probability and incident angle of light. The back interface recombination rate, however, has little influences on the quantum efficiency of the wire photocathode. The simulation results suggest that the optimal width for photoemission is 150-200 nm. Besides, the quantum efficiency increases and decreases linearly with increasing surface escape probability and surface reflectivity, respectively. With increasing ratio of wire spacing to wire height, the optimal incident angle of light is reduced. These simulations are expected to guide the preparation of a better performing GaN wire photocathode.

  9. Heat Current Fluctuations in Quantum Wires

    NASA Astrophysics Data System (ADS)

    Bogachek, E. N.; Krive, I. V.; Scherbakov, A. G.; Landman, Uzi

    2001-03-01

    The noise in the heat current for fermionic and bosonic systems is investigated in the Landauer-Buttiker approach. We show that the thermal (Jonhson-Nyquist) noise in perfect quantum wires does not depend on the statistics of the heat carriers. The nonequilibrium noise produced by the temperature difference between the heat reservoirs (hot and cold leads) is different for bosons and fermions. The contribution of ''fermionic'' nonequilibrium noise to the thermal noise is positive, while that due to ''bosonic'' noise is negative. At all temperatures the nonequilibrium noise P_Δ T is much smaller then the Johnson-Nyquist noise P_JN. Even in the most favorable situations | P_Δ T | /P_JN<= 0.3 for bosons and P_Δ T/P_JN<= 0.1 for fermions. The expressions obtained for bosons are applied for a description of the thermal transport through a Luttinger liquid constriction.

  10. Peltier effect in strongly driven quantum wires

    NASA Astrophysics Data System (ADS)

    Mierzejewski, M.; Crivelli, D.; Prelovšek, P.

    2014-08-01

    We study a microscopic model of a thermocouple device with two connected correlated quantum wires driven by a constant electric field. In such a closed system we follow the time and position dependence of the entropy density using the concept of the reduced density matrix. At weak driving, the initial changes of the entropy at the junctions can be described by the linear Peltier response. At longer times the quasiequilibrium situation is reached with well defined local temperatures which increase due to an overall Joule heating. On the other hand, a strong electric field induces a nontrivial nonlinear thermoelectric response, e.g., the Bloch oscillations of the energy current. Moreover, we show for the doped Mott insulators that strong driving can reverse the Peltier effect.

  11. Si, Ge, and SiGe quantum wires and quantum dots

    NASA Astrophysics Data System (ADS)

    Pearsall, T. P.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses Si, Ge, and SiGe quantum wire and quantum dot structures, the synthesis of quantum wires and quantum dots, and applications of SiGe quantum-dot structures as photodetectors, light-emitting diodes, for optical amplification and as Si quantum-dot memories.

  12. Spectrum of localized states in graphene quantum dots and wires

    NASA Astrophysics Data System (ADS)

    Zalipaev, V. V.; Maksimov, D. N.; Linton, C. M.; Kusmartsev, F. V.

    2013-01-01

    We developed semiclassical method and show that any smooth potential in graphene describing elongated a quantum dot or wire may behave as a barrier or as a trapping well or as a double barrier potential, Fabry-Perot structure, for 1D Schrödinger equation. The energy spectrum of quantum wires has been found and compared with numerical simulations. We found that there are two types of localized states, stable and metastable, having finite life time. These life times are calculated, as is the form of the localized wave functions which are exponentially decaying away from the wire in the perpendicular direction.

  13. Colloidal GaAs quantum wires: solution-liquid-solid synthesis and quantum-confinement studies.

    PubMed

    Dong, Angang; Yu, Heng; Wang, Fudong; Buhro, William E

    2008-05-07

    Colloidal GaAs quantum wires with diameters of 5-11 nm and narrow diameter distributions (standard deviation = 12-21% of the mean diameter) are grown by two methods based on the solution-liquid-solid (SLS) mechanism. Resolved excitonic absorption features arising from GaAs quantum wires are detected, allowing extraction of the size-dependent effective band gaps of the wires. The results allow the first systematic comparison of the size dependences of the effective band gaps in corresponding sets of semiconductor quantum wires and quantum wells. The GaAs quantum wire and well band gaps scale according to the prediction of a simple effective-mass-approximation, particle-in-a-box (EMA-PIB) model, which estimates the kinetic confinement energies of electron-hole pairs in quantum nanostructures of different shapes and confinement dimensionalities.

  14. Growth and Characterization of III-V Nitride Quantum Dots and Quantum Wires

    DTIC Science & Technology

    2010-03-26

    REPORT Growth and Characterization of III - V Nitride Quantum Dots and Quantum Wires 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Our research program...ANSI Std. Z39.18 - 14-Sep-2009 Final report Growth and Characterization of III - V Nitride Quantum Dots and Quantum Wires Statement of the...has two interrelated components: the growth of GaN nanowires and the fabrication of electronic devices, including gas sensors, on these nanowires . A

  15. Optical properties of GaN wurtzite quantum wires

    NASA Astrophysics Data System (ADS)

    Zhang, X. W.; Xia, J. B.

    2006-03-01

    The electronic structure and optical properties of freestanding GaN wurtzite quantum wires are studied in the framework of six-band effective-mass envelope function theory. It is found that the electron states are either twofold or fourfold degenerate. There is a dark exciton effect when the radius R of GaN wurtzite quantum wires is in the range of [0.7, 10.9] nm. The linear polarization factors are calculated in three cases, the quantum confinement effect (finite long wire), the dielectric effect and both effects (infinitely long wire). It is found that the linear polarization factor of a finite long wire whose length is much less than the electromagnetic wavelength decreases as R increases, is very close to unity (0.979) at R = 1 nm, and changes from a positive value to a negative value around R = 4.1 nm. The linear polarization factor of the dielectric effect is 0.934, independent of radius, as long as the radius remains much less than the electromagnetic wavelength. The result for the two effects shows that the quantum confinement effect gives a correction to the dielectric effect result. It is found that the linear polarization factor of very long (treated approximately as infinitely long) quantum wires is in the range of [0.8, 1]. The linear polarization factors of the quantum confinement effect of CdSe wurtzite quantum wires are calculated for comparison. In the CdSe case, the linear polarization factor of R = 1 nm is 0.857, in agreement with the experimental results (Hu et al 2001 Science 292 2060). This value is much smaller than unity, unlike 0.979 in the GaN case, mainly due to the big spin-orbit splitting energy Δso of CdSe material with wurtzite structure.

  16. IR photodetector based on rectangular quantum wire in magnetic field

    SciTech Connect

    Jha, Nandan

    2014-04-24

    In this paper we study rectangular quantum wire based IR detector with magnetic field applied along the wires. The energy spectrum of a particle in rectangular box shows level repulsions and crossings when external magnetic field is applied. Due to this complex level dynamics, we can tune the spacing between any two levels by varying the magnetic field. This method allows user to change the detector parameters according to his/her requirements. In this paper, we numerically calculate the energy sub-band levels of the square quantum wire in constant magnetic field along the wire and quantify the possible operating wavelength range that can be obtained by varying the magnetic field. We also calculate the photon absorption probability at different magnetic fields and give the efficiency for different wavelengths if the transition is assumed between two lowest levels.

  17. Time-Domain Simulation of Three Dimensional Quantum Wires

    PubMed Central

    Mossman, Sean; Kuzyk, Mark G.

    2016-01-01

    A method is presented to calculate the eigenenergies and eigenfunctions of quantum wires. This is a true three-dimensional method based on a direct implementation of the time-dependent Schrödinger equation. It makes no approximations to the Schrödinger equation other than the finite-difference approximation of the space and time derivatives. The accuracy of our method is tested by comparing it to analytical results in a cylindrical wire. PMID:27124603

  18. Anisotropic intrinsic spin Hall effect in quantum wires.

    PubMed

    Cummings, A W; Akis, R; Ferry, D K

    2011-11-23

    We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [N110] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.

  19. The Quantum Socket: Wiring for Superconducting Qubits - Part 1

    NASA Astrophysics Data System (ADS)

    McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.

  20. Superradiance in a two-channel quantum wire

    SciTech Connect

    Tayebi, A.; Zelevinsky, V.

    2014-10-15

    A one-dimensional, two-channel quantum wire is studied in the effective non-Hermitian Hamiltonian framework. Analytical expressions are derived for the band structure of the isolated wire. Quantum states and transport properties of the wire coupled to two ideal leads at the edges are studied in detail. The width distribution of the quasistationary states varies as a function of the coupling strength to the environment. At weak coupling, all the eigenenergies uniformly acquire small widths. The picture changes entirely at strong coupling, a certain number of states (“super-radiant”) are greatly broadened, while the rest remain long-lived states, a pure quantum mechanical effect as a consequence of quantum interference. The transition between the two regimes greatly influences the transport properties of the system. The maximum transmission through the wire occurs at the super-radiance transition. We consider also a realistic situation with energy-dependent coupling to the continuum due to the existence of decay threshold where super-radiance still plays a significant role in transport properties of the system.

  1. Interlevel cascade transition in electrically confined quantum wire arrays.

    PubMed

    Wu, Wei; Hassani, Iman; Mohseni, Hooman

    2011-09-27

    Vertical stacks of electrically confined quantum wires were demonstrated in devices with large areas. Multiple current plateaus and strong differential conductance oscillations were observed at above liquid nitrogen temperatures because of interlevel cascade transition of carriers. Our simulation results for charge transport, as well as interlevel infrared photoresponse red-shift, due to lateral electric field confinement show good agreement with experimental data.

  2. Signatures of subband quantization in the Coulomb blockade regime of a disordered quantum wire

    NASA Astrophysics Data System (ADS)

    Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie

    2017-01-01

    We report experiments on the two-terminal conductance of a long disordered quantum wire in a perpendicular magnetic field. Pronouncedly enhanced magnetoconductance in magnetic fields of intermediate strength is observed in the Coulomb blockade regime, which is well explained using the boundary roughness scattering and the subband quantization of the quantum wire, by modeling the disordered quantum wire as that of a quantum dot defined in a quantum wire. Assuming a parabolic constriction in the disordered quantum wire, we further obtained the magnetic field dependence of high energy levels in the quantum dot and the gate voltage dependence of the effective width of the quantum wire. Our results may provide useful information for further studies on integrated structures in on-chip laboratories.

  3. Development and Characterization of Intermediate-Band Quantum Wire Solar Cells

    NASA Astrophysics Data System (ADS)

    Furrow, Colin S.

    The effects of a quantum wire intermediate band, grown by molecular beam epitaxy, on the optical and electrical properties of solar cells are reported. To investigate the behavior of the intermediate band, the quantum wires were remotely doped at three different doping concentrations, the number of quantum wire layers was varied from three to twenty, and the solar cell structure was optimized. For all the structures, current-voltage and external quantum efficiency measurements were performed to examine the effect of absorption and power conversion of the intermediate band solar cell (IBSC). Time-resolved photoluminescence measurements showed that ?-doping can increase the lifetime of the excited electrons in the quantum wires. The quantum efficiency measurements revealed that the quantum wires extend the absorption spectrum in the infrared and produce a photocurrent by absorption of photons with energies below the GaAs band gap energy. In addition, the quantum wire intermediate band solar cell increased the solar conversion efficiency by 13.3% over the reference cell. An increase in the quantum efficiency was observed by increasing the number of quantum wire layers in the intermediate band. Furthermore, by optimizing the solar cell structure, the quantum efficiency and solar power conversion efficiency were substantially improved. Finally, temperature dependent current-voltage measurements reveal that the quantum wire intermediate band does not degrade the temperature sensitivity of the device. This research shows the potential for a quantum wire intermediate band as a viable option for creating higher efficiency solar cell devices.

  4. LDRD final report on quantum computing using interacting semiconductor quantum wires.

    SciTech Connect

    Lyo, Sungkwun Kenneth; Dunn, Roberto G.; Lilly, Michael Patrick; Tibbetts, Denise R. ); Stephenson, Larry L.; Seamons, John Andrew; Reno, John Louis; Bielejec, Edward Salvador; Simmons, Jerry Alvon

    2006-01-01

    For several years now quantum computing has been viewed as a new paradigm for certain computing applications. Of particular importance to this burgeoning field is the development of an algorithm for factoring large numbers which obviously has deep implications for cryptography and national security. Implementation of these theoretical ideas faces extraordinary challenges in preparing and manipulating quantum states. The quantum transport group at Sandia has demonstrated world-leading, unique double quantum wires devices where we have unprecedented control over the coupling strength, number of 1 D channels, overlap and interaction strength in this nanoelectronic system. In this project, we study 1D-1D tunneling with the ultimate aim of preparing and detecting quantum states of the coupled wires. In a region of strong tunneling, electrons can coherently oscillate from one wire to the other. By controlling the velocity of the electrons, length of the coupling region and tunneling strength we will attempt to observe tunneling oscillations. This first step is critical for further development double quantum wires into the basic building block for a quantum computer, and indeed for other coupled nanoelectronic devices that will rely on coherent transport. If successful, this project will have important implications for nanoelectronics, quantum computing and information technology.

  5. Spin Polarized Transport and Spin Relaxation in Quantum Wires

    NASA Astrophysics Data System (ADS)

    Wenk, Paul; Yamamoto, Masayuki; Ohe, Jun-Ichiro; Ohtsuki, Tomi; Kramer, Bernhard; Kettemann, Stefan

    We give an introduction to spin dynamics in quantum wires. After a review of spin-orbit coupling (SOC) mechanisms in semiconductors, the spin diffusion equation with SOC is introduced. We discuss the particular conditions in which solutions of the spin diffusion equation with vanishing spin relaxation rates exist, where the spin density forms persistent spin helices. We give an overview of spin relaxation mechanisms, with particular emphasis on the motional narrowing mechanism in disordered conductors, the D'yakonov-Perel' spin relaxation. The solution of the spin diffusion equation in quantum wires shows that the spin relaxation becomes diminished when reducing the wire width below the spin precession length L SO. This corresponds to an effective alignment of the spin-orbit field in quantum wires and the formation of persistent spin helices whose form as well as amplitude is a measure of the particular SOCs, the linear Rashba and the linear Dresselhaus coupling. Cubic Dresselhaus coupling is found to yield in diffusive wires an undiminished contribution to the spin relaxation rate, however. We discuss recent experimental results which confirm the reduction of the spin relaxation rate. We next review theoretical proposals for creating spin-polarized currents in a T-shape structure with Rashba-SOC. For relatively small SOC, high spin polarization can be obtained. However, the corresponding conductance has been found to be small. Due to the self-duality of the scattering matrix for a system with spin-orbit interaction, no spin polarization of the current can be obtained for single-channel transport in two-terminal devices. Therefore, one has to consider at least a conductor with three terminals. We review results showing that the amplitude of the spin polarization becomes large if the SOC is sufficiently strong. We argue that the predicted effect should be experimentally accessible in InAs. For a possible experimental realization of InAs spin filters, see [1].

  6. Efficient numerical simulation of electron states in quantum wires

    NASA Technical Reports Server (NTRS)

    Kerkhoven, Thomas; Galick, Albert T.; Ravaioli, Umberto; Arends, John H.; Saad, Youcef

    1990-01-01

    A new algorithm is presented for the numerical simulation of electrons in a quantum wire as described by a two-dimensional eigenvalue problem for Schroedinger's equation coupled with Poisson's equation. Initially, the algorithm employs an underrelaxed fixed point iteration to generate an approximation which is reasonably close to the solution. Subsequently, this approximate solution is employed as an initial guess for a Jacobian-free implementation of an approximate Newton method. In this manner the nonlinearity in the model is dealt with effectively. The effectiveness of this approach is demonstrated in a set of numerical experiments which study the electron states on the cross section of a quantum wire structure based on III-V semiconductors at 4.2 and 77 K.

  7. Dissipation in a Quantum Wire: Fact and Fantasy

    NASA Astrophysics Data System (ADS)

    Das, Mukunda P.; Green, Frederick

    2008-10-01

    Where, and how, does energy dissipation of electrical energy take place in a ballistic wire? Fully two decades after the advent of the transmissive phenomenology of electrical conductance, this deceptively simple query remains unanswered. We revisit the quantum kinetic basis of dissipation and show its power to give a definitive answer to our query. Dissipation leaves a clear, quantitative trace in the non-equilibrium current noise of a quantum point contact; this signature has already been observed in the laboratory. We then highlight the current state of accepted understandings in the light of well-known yet seemingly contradictory measurements. The physics of mesoscopic transport rests not in coherent carrier transmission through a perfect and dissipationless metallic channel, but explicitly in their dissipative inelastic scattering at the wire's interfaces and adjacent macroscopic leads.

  8. Wigner crystallization in quantum wires within the Yukawa approximation

    NASA Astrophysics Data System (ADS)

    Méndez-Camacho, Reyna; Cruz-Hernández, Esteban; Castañeda-Priego, Ramón

    2017-02-01

    One crucial and important aspect to account for the nature of the quantum wires is the understanding of the effects associated to many-body interactions between confined electrons. The inclusion of such many-body forces in any theoretical framework is a difficult and computationally demanding task. Then one has to make use of coarse-grained descriptions that allow one to incorporate the contribution of all the electrons. In a simple physical picture, the interaction between two electrons can be considered screened due to the presence of the other ones. If the latter are homogeneously distributed inside the wire, the interaction between the former can then be assumed of the Yukawa form. In this contribution, we report on the lower energy states of n -doped GaAs circular-quantum wires with two electrons in the conduction band interacting through a repulsive Yukawa potential. By varying the length and the electronic density of the wire, quite different trends in the electronic distribution are observed. By changing the material parameters to InSb and InAs nanowires, we found that our results are consistent with available experimental data that have reported the formation of Wigner crystals.

  9. Quantum charge pumping through fractional fermions in charge density modulated quantum wires and Rashba nanowires

    NASA Astrophysics Data System (ADS)

    Saha, Arijit; Rainis, Diego; Tiwari, Rakesh P.; Loss, Daniel

    2014-07-01

    We study the phenomenon of adiabatic quantum charge pumping in systems supporting fractionally charged fermionic bound states in two different setups. The first quantum pump setup consists of a charge density modulated quantum wire, and the second one is based on a semiconducting nanowire with Rashba spin-orbit interaction, in the presence of a spatially oscillating magnetic field. In both these quantum pumps transport is investigated in an N-X-N geometry, with the system of interest (X) connected to two normal-metal leads (N), and the two pumping parameters are the strengths of the effective wire-lead barriers. Pumped charge is calculated within the scattering matrix formalism. We show that quantum pumping in both setups provides a unique signature of the presence of the fractional-fermion bound states, in terms of the asymptotically quantized pumped charge. Furthermore, we investigate shot noise arising due to quantum pumping, verifying that the quantized pumped charge corresponds to minimal shot noise.

  10. Cadmium selenide quantum wires and the transition from 3D to 2D confinement.

    PubMed

    Yu, Heng; Li, Jingbo; Loomis, Richard A; Gibbons, Patrick C; Wang, Lin-Wang; Buhro, William E

    2003-12-31

    Soluble CdSe quantum wires are prepared by the solution-liquid-solid mechanism, using monodisperse bismith nanoparticles to catalyze wire growth. The quantum wires have micrometer lengths, diameters in the range of 5-20 nm, and diameter distributions of +/-10-20%. Spectroscopically determined wire band gaps compare closely to those calculated by the semiemipirical pseudopotential method, confirming 2D quantum confinement. The diameter dependence of the quantum wire band gaps is compared to that of CdSe quantum dots and rods. Quantum rod band gaps are shown to be delimited by the band gaps of dots and wires of like diameter, for short and long rods, respectively. The experimental data suggest that a length of ca. 30 nm is required for the third dimension of quantum confinement to fully vanish in CdSe rods. That length is about six times the bulk CdSe exciton Bohr radius.

  11. Quasiclassical theory of disordered multi-channel Majorana quantum wires

    NASA Astrophysics Data System (ADS)

    Neven, Patrick; Bagrets, Dmitry; Altland, Alexander

    2013-05-01

    Multi-channel spin-orbit quantum wires, when subjected to a magnetic field and proximity coupled to an s-wave superconductor, may support Majorana states. We study what happens to these systems in the presence of disorder. Inspired by the widely established theoretical methods of mesoscopic superconductivity, we develop á la Eilenberger a quasiclassical approach to topological nanowires valid in the limit of strong spin-orbit coupling. We find that the ‘Majorana number’ {\\cal M} , distinguishing between the state with Majorana fermions (symmetry class B) and no Majorana fermions (class D), is given by the product of two Pfaffians of gapped quasiclassical Green's functions fixed by the right and left terminals connected to the wire. A numerical solution of the Eilenberger equations reveals that the class D disordered quantum wires are prone to the formation of the zero-energy anomaly (class D impurity spectral peak) in the local density of states that shares the key features of the Majorana peak. In this way, we confirm the robustness of our previous conclusions (Bagrets and Altland 2012 Phys. Rev. Lett. 109 227005) on a more restrictive system setup. Generally speaking, we find that the quasiclassical approach provides a highly efficient means to address disordered class D superconductors both in the presence and in the absence of topological structures.

  12. Topological phases and transport properties of screened interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Xu, Hengyi; Xiong, Ye; Wang, Jun

    2016-10-01

    We study theoretically the effects of long-range and on-site Coulomb interactions on the topological phases and transport properties of spin-orbit-coupled quasi-one-dimensional quantum wires imposed on a s-wave superconductor. The distributions of the electrostatic potential and charge density are calculated self-consistently within the Hartree approximation. Due to the finite width of the wires and charge repulsion, the potential and density distribute inhomogeneously in the transverse direction and tend to accumulate along the lateral edges where the hard-wall confinement is assumed. This result has profound effects on the topological phases and the differential conductance of the interacting quantum wires and their hybrid junctions with superconductors. Coulomb interactions renormalize the gate voltage and alter the topological phases strongly by enhancing the topological regimes and producing jagged boundaries. Moreover, the multicritical points connecting different topological phases are modified remarkably in striking contrast to the predictions of the two-band model. We further suggest the possible non-magnetic topological phase transitions manipulated externally with the aid of long-range interactions. Finally, the transport properties of normal-superconductor junctions are further examined, in particular, the impacts of Coulomb interactions on the zero-bias peaks related to the Majorana fermions and near zero-energy peaks.

  13. Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket

    NASA Astrophysics Data System (ADS)

    Béjanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Earnest, C. T.; McRae, C. R. H.; Shiri, D.; Bateman, J. D.; Rohanizadegan, Y.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.; Mariantoni, M.

    2016-10-01

    Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error-correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and the measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: the quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted microwires—the three-dimensional wires—that push directly on a microfabricated chip, making electrical contact. A small wire cross section (approximately 1 mm), nearly nonmagnetic components, and functionality at low temperatures make the quantum socket ideal for operating solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from dc to 8 GHz, with a contact resistance of approximately 150 m Ω , an impedance mismatch of approximately 10 Ω , and minimal cross talk. As a proof of principle, we fabricate and use a quantum socket to measure high-quality superconducting resonators at a temperature of approximately 10 mK. Quantum error-correction codes such as the surface code will largely benefit from the quantum socket, which will make it possible to address qubits located on a two-dimensional lattice. The present implementation of the socket could be readily extended to accommodate a

  14. Polariton dispersion of a quantum wire superlattice system

    SciTech Connect

    Wilson, K. S. Joseph; Revathy, V.; Amalanathan, M.; Lenin, S. Maria

    2015-06-24

    Superlattices have drawn considerable attention in the recent years. In this work, the behaviour of polaritons in a quantum wire superlattice is analysed both at the brillouin zone edge and at centre of the brillouin zone using LiNbO3/ LiTaO3 as an example. The significance of the polariton modes in both the cases are analysed. New modes on the polaritonic gap, where the propagation of electromagnetic wave is forbidden, is obtained in the system as suggested by some recent literature. The effect on nonlinear interactions of phonon polaritons in LiNbO3/ LiTaO3 superlattices is also discussed.

  15. van Hove singularities in disordered multichannel quantum wires and nanotubes

    NASA Astrophysics Data System (ADS)

    Hügle, S.; Egger, R.

    2002-11-01

    We present a theory for the van Hove singularity (VHS) in the tunneling density of states (TDOS) of disordered multichannel quantum wires, in particular multiwall carbon nanotubes. We assume close-by gates that screen off electron-electron interactions. Diagrammatic perturbation theory within the noncrossing approximation yields analytical expressions governing the disorder-induced broadening and shift of VHS's as new subbands are opened. This problem is nontrivial because the (lowest-order) Born approximation breaks down close to the VHS. Interestingly, compared to the bulk case, the boundary TDOS shows drastically altered VHS's, even in the clean limit.

  16. Quantum Monte Carlo Studies of Interaction-Induced Localization in Quantum Dots and Wires

    NASA Astrophysics Data System (ADS)

    Devrim Güçlü, A.

    2009-03-01

    We investigate interaction-induced localization of electrons in both quantum dots and inhomogeneous quantum wires using variational and diffusion quantum Monte Carlo methods. Quantum dots and wires are highly tunable systems that enable the study of the physics of strongly correlated electrons. With decreasing electronic density, interactions become stronger and electrons are expected to localize at their classical positions, as in Wigner crystallization in an infinite 2D system. (1) Dots: We show that the addition energy shows a clear progression from features associated with shell structure to those caused by commensurability of a Wigner crystal. This cross-over is, then, a signature of localization; it occurs near rs˜20. For higher values of rs, the configuration symmetry of the quantum dot becomes fully consistent with the classical ground state. (2) Wires: We study an inhomogeneous quasi-one-dimensional system -- a wire with two regions, one at low density and the other high. We find that strong localization occurs in the low density quantum point contact region as the gate potential is increased. The nature of the transition from high to low density depends on the density gradient -- if it is steep, a barrier develops between the two regions, causing Coulomb blockade effects. We find no evidence for ferromagnetic spin polarization for the range of parameters studied. The picture emerging here is in good agreement with the experimental measurements of tunneling between two wires. Collaborators: C. J. Umrigar (Cornell), Hong Jiang (Fritz Haber Institut), Amit Ghosal (IISER Calcutta), and H. U. Baranger (Duke).

  17. Disorder-induced bound states within an adatom-quantum wire system

    NASA Astrophysics Data System (ADS)

    Magnetta, Bradley; Ordonez, Gonzalo

    2014-03-01

    Bound states induced by disorder are theoretically observed within a quantum wire and adatom system. The quantum wire is modeled as an array of quantum wells with random energies and exhibits Anderson Localization. By varying the energy of our adatom and adjusting the tunneling strength between the adatom and the quantum wire we observe disorder-induced bound states between the the adatom and its attached point. The characteristics of these disorder-induced bound states are greatly influenced by the site of interest on the quantum wire. Utilizing random quantum wires and disordered superlattices to produce bound states may offer flexibility in fabrication as well as provide grounds for energy transmission in photovoltaics.

  18. Piled up charge effects in a ballistic transport in quantum wires

    NASA Astrophysics Data System (ADS)

    Sablikov, V. A.; Shchamkhalova, B. S.

    2003-04-01

    We have found that a high-field domain appears in a quantum wire with ballistic transport under far from equilibrium condition. The domain is located near the injecting electrode. The applied voltage drops mainly across the domain while the rest part of the wire remains nearly equipotential. The potential hump in the domain limits the current through the wire.

  19. Electron transport in coupled double quantum wells and wires

    SciTech Connect

    Harff, N.E.; Simmons, J.A.; Lyo, S.K.

    1997-04-01

    Due to inter-quantum well tunneling, coupled double quantum wells (DQWs) contain an extra degree of electronic freedom in the growth direction, giving rise to new transport phenomena not found in single electron layers. This report describes work done on coupled DQWs subject to inplane magnetic fields B{sub {parallel}}, and is based on the lead author`s doctoral thesis, successfully defended at Oregon State University on March 4, 1997. First, the conductance of closely coupled DQWs in B{sub {parallel}} is studied. B{sub {parallel}}-induced distortions in the dispersion, the density of states, and the Fermi surface are described both theoretically and experimentally, with particular attention paid to the dispersion anticrossing and resulting partial energy gap. Measurements of giant distortions in the effective mass are found to agree with theoretical calculations. Second, the Landau level spectra of coupled DQWs in tilted magnetic fields is studied. The magnetoresistance oscillations show complex beating as Landau levels from the two Fermi surface components cross the Fermi level. A third set of oscillations resulting from magnetic breakdown is observed. A semiclassical calculation of the Landau level spectra is then performed, and shown to agree exceptionally well with the data. Finally, quantum wires and quantum point contacts formed in DQW structures are investigated. Anticrossings of the one-dimensional DQW dispersion curves are predicted to have interesting transport effects in these devices. Difficulties in sample fabrication have to date prevented experimental verification. However, recently developed techniques to overcome these difficulties are described.

  20. Micro-Photoluminescence Confocal Mapping of Single V-Grooved GaAs Quantum Wire

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Hua; Chen, Zhang-Hai; Bai, Li-Hui; Shen, Xue-Chu; Tan H., H.; L., Fu; Fraser, M.; Jagadish, C.

    2006-12-01

    We perform the micro-photoluminescence measurement at low temperatures and a scanning optical mapping with high spatial resolution of a single V-grooved GaAs quantum wire modified by the selective ion-implantation and rapid thermally annealing. While the mapping shows the luminescences respectively from the quantum wires and from quantum well areas between quantum wires in general, the micro-photoluminescence at liquid He temperatures reveals a plenty of spectral structures of the PL band for a single quantum wire. The spectral structures are attributed to the inhomogeneity and non-uniformity of both the space structure and compositions of real wires as well as the defects nearby the interface between quantum wire and surrounding quantum well structures. All these make the excitons farther localized in quasi-zero-dimensional quantum potential boxes related to these non-uniformity and/or defects. The results also demonstrate the ability of micro-photoluminescence measurement and mapping for the characterization of both opto-electronic and structural properties of real quantum wires.

  1. Nonlinear conductance of long quantum wires at a conductance plateau transition: where does the voltage drop?

    PubMed

    Micklitz, T; Levchenko, A; Rosch, A

    2012-07-20

    We calculate the linear and nonlinear conductance of spinless fermions in clean, long quantum wires, where short-ranged interactions lead locally to equilibration. Close to the quantum phase transition, where the conductance jumps from zero to one conductance quantum, the conductance obtains a universal form governed by the ratios of temperature, bias voltage, and gate voltage. Asymptotic analytic results are compared to solutions of a Boltzmann equation which includes the effects of three-particle scattering. Surprisingly, we find that for long wires the voltage predominantly drops close to one end of the quantum wire due to a thermoelectric effect.

  2. Two-layer synchronized ternary quantum-dot cellular automata wire crossings.

    PubMed

    Bajec, Iztok Lebar; Pečar, Primož

    2012-04-16

    : Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay.

  3. Spin resonance and spin fluctuations in a quantum wire

    NASA Astrophysics Data System (ADS)

    Pokrovsky, V. L.

    2017-02-01

    This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the

  4. Comparison studies of infrared photodetectors with a quantum-dot and a quantum-wire base

    NASA Astrophysics Data System (ADS)

    El Tokhy, M. S.; Mahmoud, I. I.; Konber, H. A.

    2011-12-01

    This paper mainly presents a theoretical analysis for the characteristics of quantum dot infrared photodetectors (QDIPs) and quantum wire infrared photodetectors (QRIPs). The paper introduces a unique mathematical model of solving Poisson's equations with the usage of Lambert W functions for infrared detectors' structures based on quantum effects. Even though QRIPs and QDIPs have been the subject of extensive researches and development during the past decade, it is still essential to implement theoretical models allowing to estimate the ultimate performance of those detectors such as photocurrent and its figure-of-merit detectivity vs. various parameter conditions such as applied voltage, number of quantum wire layers, quantum dot layers, lateral characteristic size, doping density, operation temperature, and structural parameters of the quantum dots (QDs), and quantum wires (QRs). A comparison is made between the computed results of the implemented models and fine agreements are observed. It is concluded from the obtained results that the total detectivity of QDIPs can be significantly lower than that in the QRIPs and main features of the QRIPs such as large gap between the induced photocurrent and dark current of QRIP which allows for overcoming the problems in the QDIPs. This confirms what is evaluated before in the literature. It is evident that by increasing the QD/QR absorption volume in QDIPs/QRIPs as well as by separating the dark current and photocurrents, the specific detectivity can be improved and consequently the devices can operate at higher temperatures. It is an interesting result and it may be benefit to the development of QDIP and QRIP for infrared sensing applications.

  5. Quantum Transport in Gated Dangling-Bond Atomic Wires.

    PubMed

    Bohloul, S; Shi, Q; Wolkow, Robert A; Guo, Hong

    2017-01-11

    A single line of dangling bonds (DBs) on Si(100)-2 × 1:H surface forms a perfect metallic atomic-wire. In this work, we investigate quantum transport properties of such dangling bond wires (DBWs) by a state-of-the-art first-principles technique. It is found that the conductance of the DBW can be gated by electrostatic potential and orbital overlap due to only a single DB center (DBC) within a distance of ∼16 Å from the DBW. The gating effect is more pronounced for two DBCs and especially, when these two DB "gates" are within ∼3.9 Å from each other. These effective length scales are in excellent agreement with those measured in scanning tunnelling microscope experiments. By analyzing transmission spectrum and density of states of DBC-DBW systems, with or without subsurface doping, for different length of the DBW, distance between DBCs and the DBW, and distance between DB gates, we conclude that charge transport in a DBW can be regulated to have both an on-state and an off-state using only one or two DBs.

  6. Rashba quantum wire: exact solution and ballistic transport.

    PubMed

    Perroni, C A; Bercioux, D; Ramaglia, V Marigliano; Cataudella, V

    2007-05-08

    The effect of Rashba spin-orbit interaction in quantum wires with hard-wall boundaries is discussed. The exact wavefunction and eigenvalue equation are worked out, pointing out the mixing between the spin and spatial parts. The spectral properties are also studied within perturbation theory with respect to the strength of the spin-orbit interaction and diagonalization procedure. A comparison is made with the results of a simple model, the two-band model, that takes account only of the first two sub-bands of the wire. Finally, the transport properties within the ballistic regime are analytically calculated for the two-band model and through a tight-binding Green function for the entire system. Single and double interfaces separating regions with different strengths of spin-orbit interaction are analysed by injecting carriers into the first and the second sub-band. It is shown that in the case of a single interface the spin polarization in the Rashba region is different from zero, and in the case of two interfaces the spin polarization shows oscillations due to spin-selective bound states.

  7. Negative tunneling magneto-resistance in quantum wires with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Han, Seungju; Serra, Llorenç; Choi, Mahn-Soo

    2015-06-01

    We consider a two-dimensional magnetic tunnel junction of the FM/I/QW(FM+SO)/I/N structure, where FM, I and QW(FM+SO) stand for a ferromagnet, an insulator and a quantum wire with both magnetic ordering and Rashba spin-orbit (SOC), respectively. The tunneling magneto-resistance (TMR) exhibits strong anisotropy and switches sign as the polarization direction varies relative to the quantum-wire axis, due to interplay among the one-dimensionality, the magnetic ordering, and the strong SOC of the quantum wire.

  8. Fano resonance in electronic transport through a quantum wire with a side-coupled quantum dot: X-boson treatment

    NASA Astrophysics Data System (ADS)

    Franco, R.; Figueira, M. S.; Anda, E. V.

    2003-04-01

    The transport through a quantum wire with a side-coupled quantum dot is studied. We use the X-boson treatment for the Anderson single impurity model in the limit of U=∞. The conductance presents a minimum for values of T=0 in the crossover from mixed valence to Kondo regime due to a destructive interference between the ballistic channel associated with the quantum wire and the quantum dot channel. We obtain the experimentally studied Fano behavior of the resonance. The conductance as a function of temperature exhibits a logarithmic and universal behavior, that agrees with recent experimental results.

  9. Externally controlled local magnetic field in a conducting mesoscopic ring coupled to a quantum wire

    SciTech Connect

    Maiti, Santanu K.

    2015-01-14

    In the present work, the possibility of regulating local magnetic field in a quantum ring is investigated theoretically. The ring is coupled to a quantum wire and subjected to an in-plane electric field. Under a finite bias voltage across the wire a net circulating current is established in the ring which produces a strong magnetic field at its centre. This magnetic field can be tuned externally in a wide range by regulating the in-plane electric field, and thus, our present system can be utilized to control magnetic field at a specific region. The feasibility of this quantum system in designing spin-based quantum devices is also analyzed.

  10. Energy and matter-efficient size-selective growth of thin quantum wires in a plasma

    SciTech Connect

    Ostrikov, K.; Mehdipour, H.

    2011-01-17

    It is shown that plasmas can minimize the adverse Gibbs-Thompson effect in thin quantum wire growth. The model of Si nanowire nucleation includes the unprecedented combination of the plasma sheath, ion- and radical-induced species creation and heating effects on the surface and within an Au catalyst nanoparticle. Compared to neutral gas thermal processes, much thinner, size-selective wires can nucleate at the same temperature and pressure while much lower energy and matter budget is needed to grow same-size wires. This explains the experimental observations and may lead to energy- and matter-efficient synthesis of a broader range of one-dimensional quantum structures.

  11. Raman scattering from confined phonons in GaAs/AlGaAs quantum wires

    NASA Astrophysics Data System (ADS)

    Bairamov, B. H.; Aydinli, A.; Tanatar, B.; Güven, K.; Gurevich, S.; Mel'tser, B. Ya.; Ivanov, S. V.; Kop'ev, P. S.; Smirnitskii, V. B.; Timofeev, F. N.

    1998-10-01

    We report on photoluminescence and Raman scattering performed at low temperature (T = 10 K) on GaAs/Al0.3Ga0.7As quantum-well wires with effective wire widths ofL = 100.0 and 10.9 nm prepared by molecular beam epitaxial growth followed by holographic patterning, reactive ion etching, and anodic thinning. We find evidence for the existence of longitudinal optical phonon modes confined to the GaAs quantum wire. The observed frequency at οL10 = 285.6 cm-1forL = 11.0 nm is in good agreement with that calculated on the basis of the dispersive dielectric continuum theory of Enderleinas applied to the GaAs/Al0.3Ga0.7As system. Our results indicate the high crystalline quality of the quantum-well wires fabricated using these techniques.

  12. Phase-dependent electron transport through a quantum wire on a surface.

    PubMed

    Kwapiński, T

    2012-02-08

    Electron transport through a quantum wire in the presence of external periodic energy-level modulations with different on-site phases is studied within the time evolution operator method for a tight-binding Hamiltonian. It is found that in the presence of spatial symmetry of the system and no source-drain and static gate voltages the pumping current can be generated. Moreover, for a wire which is tunnel-coupled to the underlying substrate, the current flowing through an unbiased wire does not fade away but increases with the wire-surface coupling. For randomly chosen phases at every wire site two regimes of the phase-averaged current are found which are related to small and high wire density of states.

  13. The quantum pinch effect in semiconducting quantum wires: A bird’s-eye view

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-01-01

    Those who measure success with culmination do not seem to be aware that life is a journey not a destination. This spirit is best reflected in the unceasing failures in efforts for solving the problem of controlled thermonuclear fusion for even the simplest pinches for over decades; and the nature keeps us challenging with examples. However, these efforts have permitted researchers the obtention of a dense plasma with a lifetime that, albeit short, is sufficient to study the physics of the pinch effect, to create methods of plasma diagnostics, and to develop a modern theory of plasma processes. Most importantly, they have impregnated the solid state plasmas, particularly the electron-hole plasmas in semiconductors, which do not suffer from the issues related with the confinement and which have demonstrated their potential not only for the fundamental physics but also for the device physics. Here, we report on a two-component, cylindrical, quasi-one-dimensional quantum plasma subjected to a radial confining harmonic potential and an applied magnetic field in the symmetric gauge. It is demonstrated that such a system, as can be realized in semiconducting quantum wires, offers an excellent medium for observing the quantum pinch effect at low temperatures. An exact analytical solution of the problem allows us to make significant observations: Surprisingly, in contrast to the classical pinch effect, the particle density as well as the current density display a determinable maximum before attaining a minimum at the surface of the quantum wire. The effect will persist as long as the equilibrium pair density is sustained. Therefore, the technological promise that emerges is the route to the precise electronic devices that will control the particle beams at the nanoscale.

  14. Geometrical dependence of quantum decoherence in circular arenas with side-wires

    NASA Astrophysics Data System (ADS)

    Xie, Yuantao; Le Priol, Clément; Heremans, Jean J.

    2016-12-01

    Low-temperature quantum phase coherence lengths were experimentally measured in mesoscopic circular arenas fabricated on InGaAs quantum wells. The arenas are connected to wide sample regions by short side-wires, to investigate the effects of geometry in comparison to intrinsic materials properties on quantum decoherence. Universal conductance fluctuations were used to quantify the phase coherence lengths as a function of temperature and geometry. The experimental data show a dependence of phase coherence lengths on side-wire length and width-to-length ratio, which is accounted for by the competing effects of decoherence by coupling to the classical environment and Nyquist decoherence in ergodic wires. The observed decay of phase coherence lengths with the increasing temperature is consistent with expectations. The work demonstrates that geometrical effects influence the measured mesoscopic quantum decoherence.

  15. Geometrical dependence of quantum decoherence in circular arenas with side-wires.

    PubMed

    Xie, Yuantao; Le Priol, Clément; Heremans, Jean J

    2016-12-14

    Low-temperature quantum phase coherence lengths were experimentally measured in mesoscopic circular arenas fabricated on InGaAs quantum wells. The arenas are connected to wide sample regions by short side-wires, to investigate the effects of geometry in comparison to intrinsic materials properties on quantum decoherence. Universal conductance fluctuations were used to quantify the phase coherence lengths as a function of temperature and geometry. The experimental data show a dependence of phase coherence lengths on side-wire length and width-to-length ratio, which is accounted for by the competing effects of decoherence by coupling to the classical environment and Nyquist decoherence in ergodic wires. The observed decay of phase coherence lengths with the increasing temperature is consistent with expectations. The work demonstrates that geometrical effects influence the measured mesoscopic quantum decoherence.

  16. Quantum phase diagram of Polar Molecules in 1D Double Wire Systems

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ming; Wang, Daw-Wei

    2007-03-01

    We study the quantum phase transitions of fermionic polar molecules loaded in a double wire potential. By tuning the magnitude and direction of external electric field we observed many interesting quantum phases in different parameter range, including an easy-plane spin density wave, a triplet superconducting phase, and a truly long range order of easy-axis ferromagnetic phase in strong interacting regime. We also discuss how these exotic quantum phases can be measured in the existing experimental techniques.

  17. Laser field induced optical gain in a group III-V quantum wire

    NASA Astrophysics Data System (ADS)

    Saravanan, Subramanian; Peter, Amalorpavam John; Lee, Chang Woo

    2016-08-01

    Effect of intense high frequency laser field on the electronic and optical properties of heavy hole exciton in an InAsP/InP quantum well wire is investigated taking into consideration of the spatial confinement. Laser field induced exciton binding energies, optical band gap, oscillator strength and the optical gain in the InAs0.8P0.2/InP quantum well wire are studied. The variational formulism is applied to find the respective energies. The laser field induced optical properties are studied. The optical gain as a function of photon energy, in the InAs0.8P0.2/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The results show that the 1.55 μm wavelength for the fibre optic telecommunication applications is achieved for 45 Å wire radius in the absence of laser field intensity whereas the 1.55 μm wavelength is obtained for 40 Å if the amplitude of the laser field amplitude parameter is 50 Å. The characterizing wavelength for telecommunication network is optimized when the intense laser field is applied for the system. It is hoped that the obtained optical gain in the group III-V narrow quantum wire can be applied for fabricating laser sources for achieving the preferred telecommunication wavelength.

  18. Effect of geometry on the screened acceptor binding energy in a quantum wire

    SciTech Connect

    Shanthi, R. Vijaya Nithiananthi, P.

    2014-04-24

    The effect of various Geometries G(x, y) of the GaAs/Al{sub x}Ga{sub 1−x}As Quantum wire like G{sub 1}: (L, L) {sub 2}: (L, L/2) {sub 3}: (L/2, L/4) on the binding energy of an on-center acceptor impurity has been investigated through effective mass approximation using variational technique. The observations were made including the effect of spatial dependent dielectric screening for different concentration of Al, at T=300K. The influence of spatial dielectric screening on different geometries of the wire has been compared and hence the behavior of the acceptor impurity in GaAs/Al{sub x}Ga{sub 1−x}As Quantum wire has been discussed.

  19. Dielectric confinement influenced screened Coulomb potential for a semiconductor quantum wire

    NASA Astrophysics Data System (ADS)

    Aharonyan, K. H.; Margaryan, N. B.

    2016-01-01

    A formalism of the Thomas-Fermi method has been applied for studying the screening effect due to quasi-one-dimensional electron gas in a semiconductor cylindrical quantum wire embedded in the barrier environment. With taking into account of strongly low dielectric properties of the barrier material, an applicability of the quantum wire effective interaction potential of the confined charge carriers has been revealed. Both screened quasi- one-dimensional interaction potential and effective screening length analytical expressions are derived in the first time. It is shown that in the long wavelength moderate limit dielectric confinement effect enhances strength of the screening potential depending on the both radius of the wire and effective screening length, whereas in the long wavelength strong limit the screening potential solely is determined by barrier environment dielectric properties.

  20. Magnetoresistance of One-Dimensional Subbands in Tunnel-Coupled Double Quantum Wires

    SciTech Connect

    Blount, M.A.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1999-04-27

    We study the low-temperature in-plane magnetoresistance of tunnel-coupled quasi-one-dimensional quantum wires. The wires are defined by two pairs of mutually aligned split gates on opposite sides of a < 1 micron thick AlGaAs/GaAs double quantum well heterostructure, allowing independent control of their widths. In the ballistic regime, when both wires are defined and the field is perpendicular to the current, a large resistance peak at ~6 Tesla is observed with a strong gate voltage dependence. The data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands.

  1. Inducing time-reversal-invariant topological superconductivity and fermion parity pumping in quantum wires.

    PubMed

    Keselman, Anna; Fu, Liang; Stern, Ady; Berg, Erez

    2013-09-13

    We propose a setup to realize time-reversal-invariant topological superconductors in quantum wires, proximity coupled to conventional superconductors. We consider a model of quantum wire with strong spin-orbit coupling and proximity coupling to two s-wave superconductors. When the relative phase between the two superconductors is ϕ=π a Kramers pair of Majorana zero modes appears at each edge of the wire. We study the robustness of the phase in the presence of both time-reversal-invariant and time-reversal-breaking perturbations. In addition, we show that the system forms a natural realization of a fermion parity pump, switching the local fermion parity of both edges when the relative phase between the superconductors is changed adiabatically by 2π.

  2. Conductance of a quantum wire in the Wigner-crystal regime.

    PubMed

    Matveev, K A

    2004-03-12

    We study the effect of Coulomb interactions on the conductance of a single-mode quantum wire connecting two bulk leads. When the density of electrons in the wire is very low, they arrange in a finite-length Wigner crystal. In this regime the electron spins form an antiferromagnetic Heisenberg chain with an exponentially small coupling J. An electric current in the wire perturbs the spin chain and gives rise to a temperature-dependent contribution of the spin subsystem to the resistance. At low temperature Twire remains close to 2e2/h. At T>J the spin effect reduces the conductance to e2/h.

  3. Non-Abelian statistics and topological quantum information processing in 1D wire networks

    NASA Astrophysics Data System (ADS)

    Alicea, Jason; Oreg, Yuval; Refael, Gil; von Oppen, Felix; Fisher, Matthew P. A.

    2011-03-01

    Topological quantum computation provides an elegant way around decoherence, as one encodes quantum information in a non-local fashion that the environment finds difficult to corrupt. Here we establish that one of the key operations---braiding of non-Abelian anyons---can be implemented in one-dimensional semiconductor wire networks. Previous work [Lutchyn et al., arXiv:1002.4033 and Oreg et al., arXiv:1003.1145] provided a recipe for driving semiconducting wires into a topological phase supporting long-sought particles known as Majorana fermions that can store topologically protected quantum information. Majorana fermions in this setting can be transported, created, and fused by applying locally tunable gates to the wire. More importantly, we show that networks of such wires allow braiding of Majorana fermions and that they exhibit non-Abelian statistics like vortices in a p+ip superconductor. We propose experimental setups that enable the Majorana fusion rules to be probed, along with networks that allow for efficient exchange of arbitrary numbers of Majorana fermions. This work paves a new path forward in topological quantum computation that benefits from physical transparency and experimental realism.

  4. Coulomb interaction effects on the Majorana states in quantum wires.

    PubMed

    Manolescu, A; Marinescu, D C; Stanescu, T D

    2014-04-30

    The stability of the Majorana modes in the presence of a repulsive interaction is studied in the standard semiconductor wire-metallic superconductor configuration. The effects of short-range Coulomb interaction, which is incorporated using a purely repulsive δ-function to model the strong screening effect due to the presence of the superconductor, are determined within a Hartree-Fock approximation of the effective Bogoliubov-De Gennes Hamiltonian that describes the low-energy physics of the wire. Through a numerical diagonalization procedure we obtain interaction corrections to the single particle eigenstates and calculate the extended topological phase diagram in terms of the chemical potential and the Zeeman energy. We find that, for a fixed Zeeman energy, the interaction shifts the phase boundaries to a higher chemical potential, whereas for a fixed chemical potential this shift can occur either at lower or higher Zeeman energies. These effects can be interpreted as a renormalization of the g-factor due to the interaction. The minimum Zeeman energy needed to realize Majorana fermions decreases with the increasing strength of the Coulomb repulsion. Furthermore, we find that in wires with multi-band occupancy this effect can be enhanced by increasing the chemical potential, i.e. by occupying higher energy bands.

  5. Bound Electron States in Skew-symmetric Quantum Wire Intersections

    DTIC Science & Technology

    2014-01-01

    in transistors, solar cells , LEDs, and diode lasers. They have also investigated quantum dots as agents for medical imaging and as possible qubits in... solar cells .” Chemical reviews 110.11 (2010): 6873-6890. [9] Bonadeo, Nicolas H., et al. ”Coherent optical control of the quantum state of a single...dots on GaAs /InP , (inset) a single InAs quantum dot. two reasons. First, the superposition of the ground and excited states de- phases more slowly in

  6. Effect of Γ-X band mixing on the donor binding energy in a Quantum Wire

    NASA Astrophysics Data System (ADS)

    Vijaya Shanthi, R.; Jayakumar, K.; Nithiananthi, P.

    2015-02-01

    To invoke the technological applications of heterostructure semiconductors like Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD), it is important to understand the property of impurity energy which is responsible for the peculiar electronic & optical behavior of the Low Dimensional Semiconductor Systems (LDSS). Application of hydrostatic pressure P>35kbar drastically alters the band offsets leading to the crossover of Γ band of the well & X band of the barrier resulting in an indirect transition of the carrier and this effect has been studied experimentally and theoretically in a QW structure. In this paper, we have investigated the effect of Γ-X band mixing due to the application of hydrostatic pressure in a GaAs/AlxGa1-xAs QWW system. The results are presented and discussed for various widths of the wire.

  7. Spin-orbit interaction effects on the electronic structure of coaxial quantum well wires

    NASA Astrophysics Data System (ADS)

    Ghafari, A.; Vaseghi, B.; Rezaei, G.; Taghizadeh, S. F.; Karimi, M. J.

    2017-01-01

    The finite element method and effective mass approximation are used to investigate the simultaneous effects of SOI, electric and magnetic fields and quantum geometry on the energy and wave function of a cylindrical quantum well wire. Calculations are performed for a typical GaAs /AlxGa1-xAs cylindrical quantum well wire. It is found that SOI, external fields and layers thickness have considerable effects on the energy eigenvalues and functions of the system. Moreover it is shown that the tunneling effect and energy level anti-crossing depend on the SOI and external factors. We have proposed the SOI strength as an agent to control the tunneling effect in typical nanostructures.

  8. Preferential sites for InAsP/InP quantum wire nucleation using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nuñez-Moraleda, Bernardo; Pizarro, Joaquin; Guerrero, Elisa; Guerrero-Lebrero, Maria P.; Yáñez, Andres; Molina, Sergio Ignacio; Galindo, Pedro Luis

    2014-11-01

    In this paper, stress fields at the surface of the capping layer of self-assembled InAsP quantum wires grown on an InP (001) substrate have been determined from atomistic models using molecular dynamics and Stillinger-Weber potentials. To carry out these calculations, the quantum wire compositional distribution was extracted from previous works, where the As and P distributions were determined by electron energy loss spectroscopy and high-resolution aberration-corrected Z-contrast imaging. Preferential sites for the nucleation of wires on the surface of the capping layer were studied and compared with (i) previous simulations using finite element analysis to solve anisotropic elastic theory equations and (ii) experimentally measured locations of stacked wires. Preferential nucleation sites of stacked wires were determined by the maximum stress location at the MD model surface in good agreement with experimental results and those derived from finite element analysis. This indicates that MD simulations based on empirical potentials provide a suitable and flexible tool to study strain dependent atom processes.

  9. Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates

    NASA Astrophysics Data System (ADS)

    Han, Yu; Li, Qiang; Lau, Kei May

    2016-12-01

    We report the characteristics of indium gallium arsenide stacked quantum structures inside planar indium phosphide nanowires grown on exact (001) silicon substrates. The morphological evolution of the indium phosphide ridge buffers inside sub-micron trenches has been studied, and the role of inter-facet diffusion in this process is discussed. Inside a single indium phosphide nanowire, we are able to stack quantum structures including indium gallium arsenide flat quantum wells, quasi-quantum wires, quantum wires, and ridge quantum wells. Room temperature photoluminescence measurements reveal a broadband emission spectrum centered at 1550 nm. Power dependent photoluminescence analysis indicates the presence of quasi-continuum states. This work thus provides insights into the design and growth process control of multiple quantum wells in wire structures for high performance nanowire lasers on a silicon substrate with 1550 nm band emission.

  10. Magnetoconductance of interacting electrons in quantum wires in the integer quantum Hall regime.

    NASA Astrophysics Data System (ADS)

    Zozoulenko, Igor; Ihnatsenka, Siarhei

    2008-03-01

    We present systematic quantitative description of the magnetoconductance of the split-gate quantum wires. Accounting for the exchange and correlation interactions within the spin density function theory (DFT) leads to the lifting of the spin degeneracy and formation of the spin-resolved plateaus at odd values of e^2/h. We show that the width of the odd conductance steps in the spin DFT calculations is equal to the width of the transition intervals between the conductance steps for the spinless Hartree electrons. A detailed analysis of the structure of compressible/incompressible strips and the evolution of the Hartree and the spin-DFT subband structure provides an explanation of this finding. Our spin-DFT calculations reproduce not only qualitatively, but rather quantitatively all the features in the magnetoconductance observed in the experiment [1] including the unexpected effect of the collapse of the odd conductance plateaus at lower fields. [1] I. P. Radu, J. B. Miller, S. Amasha, E. Levenson-Falk, D. M. Zumbuhl, M. A. Kastner, C. M. Marcus, L. N. Pfeiffer, and K. W. West, unpublished.

  11. InAs/InP single quantum wire formation and emission at 1.5 {mu}m

    SciTech Connect

    Alen, B.; Fuster, D.; Gonzalez, Y.; Gonzalez, L.; Martinez-Pastor, J.

    2006-12-04

    Isolated InAs/InP self-assembled quantum wires have been grown using in situ accumulated stress measurements to adjust the optimal InAs thickness. Atomic force microscopy imaging shows highly asymmetric nanostructures with average length exceeding more than ten times their width. High resolution optical investigation of as-grown samples reveals strong photoluminescence from individual quantum wires at 1.5 {mu}m. Additional sharp features are related to monolayer fluctuations of the two-dimensional InAs layer present during the early stages of the quantum wire self-assembling process.

  12. Self-assembled quantum dot-sensitized multivalent DNA photonic wires.

    PubMed

    Boeneman, Kelly; Prasuhn, Duane E; Blanco-Canosa, Juan B; Dawson, Philip E; Melinger, Joseph S; Ancona, Mario; Stewart, Michael H; Susumu, Kimihiro; Huston, Alan; Medintz, Igor L

    2010-12-29

    Combining the inherent scaffolding provided by DNA structure with spatial control over fluorophore positioning allows the creation of DNA-based photonic wires with the capacity to transfer excitation energy over distances greater than 150 Å. We demonstrate hybrid multifluorophore DNA-photonic wires that both self-assemble around semiconductor quantum dots (QDs) and exploit their unique photophysical properties. In this architecture, the QDs function as both central nanoscaffolds and ultraviolet energy harvesting donors that drive Förster resonance energy transfer (FRET) cascades through the DNA wires with emissions that approach the near-infrared. To assemble the wires, DNA fragments labeled with a series of increasingly red-shifted acceptor-dyes were hybridized in a predetermined linear arrangement to a complementary DNA template that was chemoselectively modified with a hexahistidine-appended peptide. The peptide portion facilitated metal-affinity coordination of multiple hybridized DNA-dye structures to a central QD completing the final nanocrystal-DNA photonic wire structure. We assembled several such hybrid structures where labeled-acceptor dyes were excited by the QDs and arranged to interact with each other via consecutive FRET processes. The inherently facile reconfiguration properties of this design allowed testing of alternate formats including the addition of an intercalating dye located in the template DNA or placement of multiple identical dye acceptors that engaged in homoFRET. Lastly, a photonic structure linking the central QD with multiple copies of DNA hybridized with 4-sequentially arranged acceptor dyes and demonstrating 4-consecutive energy transfer steps was examined. Step-by-step monitoring of energy transfer with both steady-state and time-resolved spectroscopy allowed efficiencies to be tracked through the structures and suggested that acceptor dye quantum yields are the predominant limiting factor. Integrating such DNA-based photonic

  13. Electron interactions and lasing in high quality GaAs single quantum wires

    NASA Astrophysics Data System (ADS)

    Akiyama, Hidefumi

    2002-03-01

    Since the first observation of ground-state lasing in quantum wire lasers(W. Wegscheider, L. N Pfeiffer, M. M Dignam, A. Pinczuk, K. W West, S. L McCall, and R. Hull, Phys. Rev. Lett. 71), 4071 (1993)., questions about existence of band-gap renormalization and contribution of excitons to gain in lasing have been hotly argued but remain unsolved for about a decade. Here, we study these problems in highly-uniform T-shaped quantum wires (T-wires) of 14nm x 6nm cross-sectional size and lasers containing these T-wires, fabricated by the cleaved-edge overgrowth method with molecular-beam epitaxy and a recently developed annealing technique(M. Yoshita, H. Akiyama, L. N. Pfeiffer, and K. W. West, Jpn. J. Appl. Phys. 40), L252 (2001).. We studied PL of modulation-doped single T-wire structures with tunable 1-D electron density by electrical gating to study many-body electron interaction effects. It shows PL of 1-D neutral excitons and charged excitons at low densities, which evolves as the density increases to band-to-band optical recombination of single holes and an electron plasma with significant band-gap renormalization. In undoped twenty-T-wire samples, we found clear signatures of 1-D free excitons and 1-D continuum states in PLE spectra, and biexcitons in strongly pumped PL. We then studied twenty-T-wire lasers via optical pumping. Lasing by T-wires was observed up to about 100 K. Lasing energy was not at the free exciton energy, but at the low-energy tail of biexcitons. Therefore, origin of gain for lasing is attributed not to free excitons, but most probably to biexcitons. We finally realized a single-T-wire laser. In a laser bar of 500μm optical cavity with mirrors coated by gold, lasing was observed for 5-60 K via optical pumping. The threshold power was as low as 5 mW at 5 K, which is equivalent to 3 mA of current injection in generating electron-hole pairs in the device.

  14. Band filling effects on temperature performance of intermediate band quantum wire solar cells

    SciTech Connect

    Kunets, Vas. P. Furrow, C. S.; Ware, M. E.; Souza, L. D. de; Benamara, M.; Salamo, G. J.; Mortazavi, M.

    2014-08-28

    Detailed studies of solar cell efficiency as a function of temperature were performed for quantum wire intermediate band solar cells grown on the (311)A plane. A remotely doped one-dimensional intermediate band made of self-assembled In{sub 0.4}Ga{sub 0.6}As quantum wires was compared to an undoped intermediate band and a reference p-i-n GaAs sample. These studies indicate that the efficiencies of these solar cells depend on the population of the one-dimensional band by equilibrium free carriers. A change in this population by free electrons under various temperatures affects absorption and carrier transport of non-equilibrium carriers generated by incident light. This results in different efficiencies for both the doped and undoped intermediate band solar cells in comparison with the reference GaAs p-i-n solar cell device.

  15. Effective field theory for the quantum electrodynamics of a graphene wire

    SciTech Connect

    Faccioli, P.; Lipparini, E.

    2009-07-15

    We study the low-energy quantum electrodynamics of electrons and holes in a thin graphene wire. We develop an effective field theory (EFT) based on an expansion in p/p{sub T}, where p{sub T} is the typical momentum of electrons and holes in the transverse direction, while p are the momenta in the longitudinal direction. We show that, to the lowest order in (p/p{sub T}), our EFT theory is formally equivalent to the exactly solvable Schwinger model. By exploiting such an analogy, we find that the ground state of the quantum wire contains a condensate of electron-hole pairs. The excitation spectrum is saturated by electron-hole collective bound states, and we calculate the dispersion law of such modes. We also compute the dc conductivity per unit length at zero chemical potential and find g{sub s}(e{sup 2}/h), where g{sub s}=4 is the degeneracy factor.

  16. Anisotropic Formation of Quantum Turbulence Generated by a Vibrating Wire in Superfluid 4He

    NASA Astrophysics Data System (ADS)

    Yano, H.; Ogawa, K.; Chiba, Y.; Obara, K.; Ishikawa, O.

    2016-12-01

    To investigate the formation of quantum turbulence in superfluid 4He, we have studied the emission of vortex rings with a ring size of larger than 38 μm in diameter from turbulence generated by a vibrating wire. The emission rate of vortex rings from a turbulent region remains low until the beginning of high-rate emissions, suggesting that some of the vortex lines produced by the wire combine to form a vortex tangle, until an equilibrium is established between the rate of vortex line combination with the tangle and dissociation. The formation times of equilibrium turbulence are proportional to ɛ^{-1.2} and ɛ^{-0.6} in the directions perpendicular and parallel to the vibrating direction of the generator, respectively, indicating the anisotropic formation of turbulence. Here, ɛ is the generation power of the turbulence. This power dependence may be associated with the characteristics of quantum turbulence with a constant energy flux.

  17. Nuclear Quantum Effects in H(+) and OH(-) Diffusion along Confined Water Wires.

    PubMed

    Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David E

    2016-08-04

    The diffusion of protons and hydroxide ions along water wires provides an efficient mechanism for charge transport that is exploited by biological membrane channels and shows promise for technological applications such as fuel cells. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we focus on two aspects of this process that are often disregarded because of their high computational cost: the use of first-principles potential energy surfaces and the treatment of the nuclei as quantum particles. We consider proton and hydroxide ions in finite water wires using density functional theory augmented with an apolar cylindrical confining potential. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition that takes explicitly into account the delocalization of the charge in the Grotthus-like mechanism. We include nuclear quantum effects (NQEs) through the thermostated ring polymer molecular dynamics method and model finite system size effects by considering Langevin dynamics on the potential of mean force of the charged species, allowing us to extract the same "universal" diffusion coefficient from simulations with different wire sizes. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate water-water distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire.

  18. Parabolic tailored-potential quantum-wires grown in inverted pyramids

    NASA Astrophysics Data System (ADS)

    Lazarev, M.; Szeszko, J.; Rudra, A.; Karlsson, K. F.; Kapon, E.

    2015-03-01

    Quasi-one-dimensional AlGaAs quantum wires (QWRs) with parabolic heterostructure profiles along their axis were fabricated using metallorganic vapor phase epitaxy (MOVPE) on patterned (111)B GaAs substrates. Tailoring of the confined electronic states via modification in the parabolic potential profile is demonstrated using model calculations and photoluminescence spectroscopy. These novel nanostructures are useful for studying the optical properties of systems with dimensionality between zero and one.

  19. Negatively charged donors in parabolic quantum-well wires under magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhai, Li-Xue; Liu, Jian-Jun

    2007-09-01

    The ground state of a negatively charged donor (D-) in a parabolic GaAs quantum-well wire in the presence of a magnetic field is investigated using the finite difference method within the quasi-one-dimensional effective potential model. The magnetic effects on the binding energies of the ground state of a D- center are calculated for various parabolic potentials. The distance between the electrons and the donor ion and the distance between the two electrons are also calculated, respectively, as a function of the strength of the parabolic potential and the magnetic field. We find that the interplay of the spatial confinement and the magnetic confinement of electrons in quantum-well wires leads to complicated behavior of the binding energies of the D- center and that the increase of the electron-donor ion attraction dominates the increase of the electron-electron repulsion as the spatial and magnetic confinement increases for the ground state of a D- center in a parabolic quantum-well wire.

  20. Quantum wire structures by MBE overgrowth on a cleaved edge

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Loren; Störmer, H. L.; West, K.; Baldwin, K. W.

    1991-05-01

    We have recently demonstrated the existence of a high mobility (6.1×10 5 cm 2/V·s) two-dimensional electron gas (2DEG) at the (110) vicinal surface formed by cleaving [L. Pfeiffer et al., Appl. Phys. Letters 56 (1990) 1697] a (100) GaAs wafer. We have now expanded this work to modulation-doped overgrowth on the cleaved edge of a multiperiod superlattice. We report here the first observation of the quantum Hall characteristics in such a two-dimensional system containing an atomically precise 71 Å GaAs by 31 Å Al 0.24Ga 0.76As compositional superlattice. The onset of Shubnikov-De Haas oscillations occurs at only 3000 G, implying the Landau cyclotron orbits are phase coherent over diameters as large as 5000 Å, corresponding to more than 200 GaAs/AlGaAs interface crossings.

  1. Conductance plateau due to Majorana bound state in a quantum dot coupled to a topological quantum wire

    NASA Astrophysics Data System (ADS)

    Vernek, Edson; Penteado, Poliana; Seridonio, Antonio; Egues, José C.

    2014-03-01

    The search for Majorana bound state (MBS) is topological superconductor nanowires is currently a topic of great interest. Despite the various theoretical proposals and the experimental results, the question of whether the possible signatures of MBS can be distinguished from those arising from other phenomena such as the Kondo effect is still under debate. A recent proposal for detecting MBS using a quantum dot coupled to normal two leads and to a topological quantum wire has proven to be very appropriate structure to investigate this problem. In this system, the presence of MBS in the wire is marked as a e2 / 2 h conductance through the dot. In this work we find, that the e2 / 2 h conductance peak is not per se an distinct signature of a MBS in the wire. We show instead that it results from a leaking of the Majorana state into the dot. Moreover, by gating the dot level (ɛd) far away below and above the Fermi level of the leads (ɛF), the conductance remains at e2 / 2 h . The surviving of the conductance plateau for ɛd >ɛF contrasts with Kondo effect plateau known to emerge only for ɛd <ɛF . This work is supported by FAPESP, CNPq, CAPES and FAPEMIG.

  2. The superconductor-metal quantum phase transition in ultra-narrow wires

    NASA Astrophysics Data System (ADS)

    Del Maestro, Adrian Giuseppe

    We present a complete description of a zero temperature phase transition between superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism originating from a number of possible sources. These include impurities localized to the surface of the wire, a magnetic field orientated parallel to the wire or, disorder in an unconventional superconductor. The order parameter describing pairing is strongly overdamped by its coupling to an effectively infinite bath of unpaired electrons imagined to reside in the transverse conduction channels of the wire. The dissipative critical theory thus contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inverse number of complex components of the superconducting order parameter (equal to one in the physical case). The fluctuation corrections to the electrical and thermal conductivities are determined, and we find that the zero frequency electrical transport has a non-monotonic temperature dependence when moving from the quantum critical to low temperature metallic phase, which may be consistent with recent experimental results on ultra-narrow MoGe wires. Near criticality, the ratio of the thermal to electrical conductivity displays a linear temperature dependence and thus the Wiedemann-Franz law is obeyed. We compute the constant of proportionality in a systematic expansion and find a universal and experimentally verifiable fluctuation correction to the Lorenz number. In the presence of quenched disorder, a novel algorithm is developed to solve the self-consistency condition arising when the number of complex order parameter components is taken to be large. In this limit, we find striking evidence for the flow to infinite randomness, and observe dynamically activated scaling consistent with predictions from the strong disorder renormalization group. Moreover, the infinite

  3. Hetero-junction of two quantum wires: Critical line and duality

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2016-08-01

    Applying the Fermi-Bose equivalence and the boundary state formulation, we study the hetero-junction of two quantum wires. Two quantum wires are described by using Tomonaga-Luttinger (TL) liquids with different TL parameters, and electron transport between the two wires is depicted by using a simple hopping interaction. We calculate the radiative corrections to the hopping interaction and obtain the renormalization (RG) exponent, making use of perturbation theory based on the boundary state formulation. The model exhibits a phase transition at zero temperature. We discuss the critical line that defines the phase boundary on the two-dimensional parameter space. The model also exhibits the particle-kink duality, which maps the strong coupling region of the model onto the weak coupling region of the dual model. The strong coupling region of the model is found to match exactly the weak coupling region of the dual model. This model is also important to study the critical behaviors of two-dimensional dissipative systems with anisotropic friction coefficients.

  4. Higher-order mesoscopic fluctuations in quantum wires: Conductance and current cumulants

    NASA Astrophysics Data System (ADS)

    Stenberg, Markku P. V.; Särkkä, Jani

    2006-07-01

    We study conductance cumulants ⟪gn⟫ and current cumulants Cj related to heat and electrical transport in coherent mesoscopic quantum wires near the diffusive regime. We consider the asymptotic behavior in the limit where the number of channels and the length of the wire in the units of the mean free path are large but the bare conductance is fixed. A recursion equation unifying the descriptions of the standard and Bogoliubov-de Gennes (BdG) symmetry classes is presented. We give values and come up with a novel scaling form for the higher-order conductance cumulants. In the BdG wires, in the presence of time-reversal symmetry, for the cumulants higher than the second it is found that there may be only contributions which depend nonanalytically on the wire length. This indicates that diagrammatic or semiclassical pictures do not adequately describe higher-order spectral correlations. Moreover, we obtain the weak-localization corrections to Cj with j⩽10 .

  5. Computer Simulation and Measurement of Capacitance-Voltage Characteristics in Quantum Wire Devices of Trench-Oxide MOS Structure

    NASA Astrophysics Data System (ADS)

    Tsukui, Tetsuya; Oda, Shunri

    1995-02-01

    We have proposed the trench-oxide metal-oxide-semiconductor (MOS) structure as a novel quantum wire device. In this paper we present results of computer simulation based on a self-consistent system and calculated quantized electron distribution and capacitance-voltage (C-V) characteristics. We have also fabricated the quantum wire MOS structure using electron beam lithography and electron cyclotron resonance reactive ion etching method and carried out measurements of C-V characteristics at 0.55 K. Possible evidence of one-dimensional quantum effect is obtained for the first time from C-V measurements using the 28 nm-wide trench-oxide structure.

  6. Nonlinear spectra of spinons and holons in short GaAs quantum wires

    PubMed Central

    Moreno, M; Ford, C. J. B.; Jin, Y.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Tsyplyatyev, O.; Schofield, A. J.

    2016-01-01

    One-dimensional electronic fluids are peculiar conducting systems, where the fundamental role of interactions leads to exotic, emergent phenomena, such as spin-charge (spinon-holon) separation. The distinct low-energy properties of these 1D metals are successfully described within the theory of linear Luttinger liquids, but the challenging task of describing their high-energy nonlinear properties has long remained elusive. Recently, novel theoretical approaches accounting for nonlinearity have been developed, yet the rich phenomenology that they predict remains barely explored experimentally. Here, we probe the nonlinear spectral characteristics of short GaAs quantum wires by tunnelling spectroscopy, using an advanced device consisting of 6000 wires. We find evidence for the existence of an inverted (spinon) shadow band in the main region of the particle sector, one of the central predictions of the new nonlinear theories. A (holon) band with reduced effective mass is clearly visible in the particle sector at high energies. PMID:27627993

  7. Ultranarrow resonance in Coulomb drag between quantum wires at coinciding densities

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. P.; Gornyi, I. V.; Polyakov, D. G.

    2016-08-01

    We investigate the influence of the chemical potential mismatch Δ (different electron densities) on Coulomb drag between two parallel ballistic quantum wires. For pair collisions, the drag resistivity ρD(Δ ) shows a peculiar anomaly at Δ =0 with ρD being finite at Δ =0 and vanishing at any nonzero Δ . The "bodyless" resonance in ρD(Δ ) at zero Δ is only broadened by processes of multiparticle scattering. We analyze Coulomb drag for finite Δ in the presence of both two- and three-particle scattering within the kinetic equation framework, focusing on a Fokker-Planck picture of the interaction-induced diffusion in momentum space of the double-wire system. We describe the dependence of ρD on Δ for both weak and strong intrawire equilibration due to three-particle scattering.

  8. Weakly-coupled quasi-1D helical modes in disordered 3D topological insulator quantum wires

    PubMed Central

    Dufouleur, J.; Veyrat, L.; Dassonneville, B.; Xypakis, E.; Bardarson, J. H.; Nowka, C.; Hampel, S.; Schumann, J.; Eichler, B.; Schmidt, O. G.; Büchner, B.; Giraud, R.

    2017-01-01

    Disorder remains a key limitation in the search for robust signatures of topological superconductivity in condensed matter. Whereas clean semiconducting quantum wires gave promising results discussed in terms of Majorana bound states, disorder makes the interpretation more complex. Quantum wires of 3D topological insulators offer a serious alternative due to their perfectly-transmitted mode. An important aspect to consider is the mixing of quasi-1D surface modes due to the strong degree of disorder typical for such materials. Here, we reveal that the energy broadening γ of such modes is much smaller than their energy spacing Δ, an unusual result for highly-disordered mesoscopic nanostructures. This is evidenced by non-universal conductance fluctuations in highly-doped and disordered Bi2Se3 and Bi2Te3 nanowires. Theory shows that such a unique behavior is specific to spin-helical Dirac fermions with strong quantum confinement, which retain ballistic properties over an unusually large energy scale due to their spin texture. Our result confirms their potential to investigate topological superconductivity without ambiguity despite strong disorder. PMID:28374744

  9. T-shaped GaAs quantum-wire lasers and the exciton Mott transition.

    PubMed

    Yoshita, M; Liu, S M; Okano, M; Hayamizu, Y; Akiyama, H; Pfeiffer, L N; West, K W

    2007-07-25

    T-shaped GaAs quantum-wire (T-wire) lasers fabricated by the cleaved-edge overgrowth method with molecular beam epitaxy on the interface improved by a growth-interrupt high-temperature anneal are measured to study the laser device physics and fundamental many-body physics in clean one-dimensional (1D) systems. A current-injection T-wire laser that has 20 periods of T-wires in the active region and a 0.5 mm long cavity with high-reflection coatings shows a low threshold current of 0.27 mA at 30 K. The origin of the laser gain above the lasing threshold is studied with the high-quality T-wire lasers by means of optical pumping. The lasing energy is about 5 meV below the photoluminescence (PL) peak of free excitons, and is on the electron-hole (e-h) plasma PL band at a high e-h carrier density. The observed energy shift excludes the laser gain due to free excitons, and it suggests a contribution from the e-h plasma instead. A systematic micro-PL study reveals that the PL evolves with the e-h density from a sharp exciton peak, via a biexciton peak, to an e-h-plasma PL band. The data demonstrate an important role of biexcitons in the exciton Mott transition. Comparison with microscopic theories points out some problems in the picture of the exciton Mott transition.

  10. Picosecond excitonic absorption recovery of 100 nm GaAs/AlGaAs narrow multiple quantum-well wires

    NASA Astrophysics Data System (ADS)

    Tackeuchi, Atsushi; Kitada, Hideki; Arimoto, Hiroshi; Sugiyama, Yoshihiro; Endoh, Akira; Nakata, Yoshiaki; Inata, Tsuguo; Muto, Shunichi

    1991-08-01

    We report the time-resolved absorption measurement of narrow multiple quantum-well (MQW) wires to investigate their fast recoveries from excitonic absorption bleaching. Wires down to 130 nm were fabricated from MQWs using focused ion beam lithography and electron cyclotron-resonance chlorine-plasma etching. In this structure, the photoexcited carriers diffuse toward the sidewalls and recombine on the surface of the sidewalls. We show that the strong optical nonlinearity of excitons is preserved, even in wires of 130 nm width, and having a fast recovery time in the picosecond region. We also briefly discuss the possibility of making quantum wires which have a faster recovery time and larger optical nonlinearity.

  11. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.

    PubMed

    Kushwaha, Manvir S

    2011-09-28

    We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices

  12. Wire-shaped quantum dots-sensitized solar cells based on nanosheets and nanowires.

    PubMed

    Chen, Haining; Zhu, Liqun; Wang, Meng; Liu, Huicong; Li, Weiping

    2011-11-25

    Wire-shaped quantum dots-sensitized solar cells (WS-QDSCs) based on nanosheets and nanowires were fabricated and investigated for this paper. The nanosheets grown on stainless steel (SS) wire by electrodeposition were mainly composed of Zn₅(OH)₈Cl₂·H₂O and most of the Zn₅(OH)₈Cl₂·H₂O was converted to ZnO by post-treatment, and ZnO nanowires were directly grown on SS wire by the hydrothermal method. CdS QDs were deposited on nanosheets and nanowires by successive ionic layer adsorption and reaction method. The results of photoelectrochemical performance indicated that WS-QDSCs showed a similar conversion efficiency in polysulfide and Na₂SO₄ electrolytes, while the WS-QDSCs based on the Cu2S counter electrode achieved much higher performance than those based on SS and Cu counter electrodes. By optimizing electrodeposition duration, the WS-QDSCs based on nanosheets presented the highest conversion efficiency of 0.60% for the duration of 20 min. Performance comparison indicated that the WS-QDSC based on nanosheets showed very superior performance to that based on the nanowires with similar film thickness.

  13. Inelastic electron and Raman scattering from the collective excitations in quantum wires: Zero magnetic field

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2013-04-01

    The nanofabrication technology has taught us that an m-dimensional confining potential imposed upon an n-dimensional electron gas paves the way to a quasi-(n-m)-dimensional electron gas, with m ⩽ n and 1 ⩽ n, m ⩽ 3. This is the road to the (semiconducting) quasi-n dimensional electron gas systems we have been happily traversing on now for almost two decades. Achieving quasi-one dimensional electron gas (Q-1DEG) [or quantum wire(s) for more practical purposes] led us to some mixed moments in this journey: while the reduced phase space for the scattering led us believe in the route to the faster electron devices, the proximity to the 1D systems left us in the dilemma of describing it as a Fermi liquid or as a Luttinger liquid. No one had ever suspected the potential of the former, but it took quite a while for some to convince the others on the latter. A realistic Q-1DEG system at the low temperatures is best describable as a Fermi liquid rather than as a Luttinger liquid. In the language of condensed matter physics, a critical scrutiny of Q-1DEG systems has provided us with a host of exotic (electronic, optical, and transport) phenomena unseen in their higher- or lower-dimensional counterparts. This has motivated us to undertake a systematic investigation of the inelastic electron scattering (IES) and the inelastic light scattering (ILS) from the elementary electronic excitations in quantum wires. We begin with the Kubo's correlation functions to derive the generalized dielectric function, the inverse dielectric function, and the Dyson equation for the dynamic screened potential in the framework of Bohm-Pines' random-phase approximation. These fundamental tools then lead us to develop methodically the theory of IES and ILS for the Q-1DEG systems. As an application of the general formal results, which know no bounds regarding the subband occupancy, we compute the density of states, the Fermi energy, the full excitation spectrum [comprised of intrasubband and

  14. Magnetotransport in p-type Ge quantum well narrow wire arrays

    NASA Astrophysics Data System (ADS)

    Newton, P. J.; Llandro, J.; Mansell, R.; Holmes, S. N.; Morrison, C.; Foronda, J.; Myronov, M.; Leadley, D. R.; Barnes, C. H. W.

    2015-04-01

    We report magnetotransport measurements of a SiGe heterostructure containing a 20 nm p-Ge quantum well with a mobility of 800 000 cm2 V-1 s-1. By dry etching arrays of wires with widths between 1.0 μm and 3.0 μm, we were able to measure the lateral depletion thickness, built-in potential, and the phase coherence length of the quantum well. Fourier analysis does not show any Rashba related spin-splitting despite clearly defined Shubnikov-de Haas oscillations being observed up to a filling factor of ν = 22. Exchange-enhanced spin-splitting is observed for filling factors below ν = 9. An analysis of boundary scattering effects indicates lateral depletion of the hole gas by 0.5 ± 0.1 μm from the etched germanium surface. The built-in potential is found to be 0.25 ± 0.04 V, presenting an energy barrier for lateral transport greater than the hole confinement energy. A large phase coherence length of 3.5 ± 0.5 μm is obtained in these wires at 1.7 K.

  15. Electron motion induced by magnetic pulse in a bilayer quantum wire

    NASA Astrophysics Data System (ADS)

    Chwiej, T.

    2016-06-01

    We consider theoretical stimulation of electron motion in a quantum wire by means of ultrashort magnetic pulses of time duration between several and a few tens of picoseconds. In our considerations, an electron is confined in a nanowire which consists of two vertically stacked tunnel-coupled layers. If a magnetic pulse pierces this nanowire and its direction is parallel to the plane established by the layers, and additionally, it is perpendicular to the wire's axis, then the eigenstates of a single electron energy operator for vertical direction are hybridized by the off-diagonal terms of the full Hamiltonian. These terms depend linearly on the momentum operator, which means that such magnetically forced hybridization may induce electron motion in a nanowire. The classical counterpart of this quantum-mechanical picture is a situation in which the rotational electric field generated by a time-varying magnetic field pushes the charge densities localized in the upper and lower layers in opposite directions. We have found, however, that for an asymmetric vertical confinement in a bilayer nanowire, the major part of the single electron density starts to move in the direction of the local electric field in its layer forcing the minority part to move in this direction as well. It results in coherent motion of both densities in a particular direction. We analyze the dynamics of such motion in dependence on the time characteristics of a magnetic pulse and discuss potential applications of this effect in the construction of a magnetic valve.

  16. Magnetotransport in p-type Ge quantum well narrow wire arrays

    SciTech Connect

    Newton, P. J. Llandro, J.; Mansell, R.; Barnes, C. H. W.; Holmes, S. N.; Morrison, C.; Foronda, J.; Myronov, M.; Leadley, D. R.

    2015-04-27

    We report magnetotransport measurements of a SiGe heterostructure containing a 20 nm p-Ge quantum well with a mobility of 800 000 cm{sup 2} V{sup −1} s{sup −1}. By dry etching arrays of wires with widths between 1.0 μm and 3.0 μm, we were able to measure the lateral depletion thickness, built-in potential, and the phase coherence length of the quantum well. Fourier analysis does not show any Rashba related spin-splitting despite clearly defined Shubnikov-de Haas oscillations being observed up to a filling factor of ν = 22. Exchange-enhanced spin-splitting is observed for filling factors below ν = 9. An analysis of boundary scattering effects indicates lateral depletion of the hole gas by 0.5 ± 0.1 μm from the etched germanium surface. The built-in potential is found to be 0.25 ± 0.04 V, presenting an energy barrier for lateral transport greater than the hole confinement energy. A large phase coherence length of 3.5 ± 0.5 μm is obtained in these wires at 1.7 K.

  17. Quantum transport through disordered 1D wires: Conductance via localized and delocalized electrons

    SciTech Connect

    Gopar, Víctor A.

    2014-01-14

    Coherent electronic transport through disordered systems, like quantum wires, is a topic of fundamental and practical interest. In particular, the exponential localization of electron wave functions-Anderson localization-due to the presence of disorder has been widely studied. In fact, Anderson localization, is not an phenomenon exclusive to electrons but it has been observed in microwave and acoustic experiments, photonic materials, cold atoms, etc. Nowadays, many properties of electronic transport of quantum wires have been successfully described within a scaling approach to Anderson localization. On the other hand, anomalous localization or delocalization is, in relation to the Anderson problem, a less studied phenomenon. Although one can find signatures of anomalous localization in very different systems in nature. In the problem of electronic transport, a source of delocalization may come from symmetries present in the system and particular disorder configurations, like the so-called Lévy-type disorder. We have developed a theoretical model to describe the statistical properties of transport when electron wave functions are delocalized. In particular, we show that only two physical parameters determine the complete conductance distribution.

  18. Density-functional theory of interacting electrons in inhomogeneous quantum wires

    NASA Astrophysics Data System (ADS)

    Abedinpour, Saeed H.; Polini, Marco; Xianlong, Gao; Tosi, Mario P.

    2007-03-01

    Motivated by the experimental evidence of electron localization in cleaved edge overgrowth quantum wires and by the recent interest in the development of density-functional schemes for inhomogeneous Luttinger and Luther-Emery liquids, we present a novel density-functional study of a few interacting electrons confined by power-law external potentials into a short portion of a thin quantum wire. The theory employs the quasi-one-dimensional (Q1D) homogeneous electron liquid as the reference system and transfers the appropriate Q1D ground-state correlations to the confined inhomogeneous system through a suitable local-density approximation (LDA) to the exchange and correlation energy functional. The LDA describes accurately ``liquid-like'' phases at weak coupling but fails in describing the emergence of ``Wigner molecules'' at strong coupling. A local spin-density approximation allowing for the formation of antiferromagnetic quasi-order with increasing coupling strength is proposed as a first step to overcome this problem.

  19. Electron-phonon interaction effect on the energy levels and diamagnetic susceptibility of quantum wires: Parallelogram and triangle cross section

    SciTech Connect

    Khordad, R. Bahramiyan, H.

    2014-03-28

    In this paper, optical phonon modes are studied within the framework of dielectric continuum approach for parallelogram and triangular quantum wires, including the derivation of the electron-phonon interaction Hamiltonian and a discussion on the effects of this interaction on the electronic energy levels. The polaronic energy shift is calculated for both ground-state and excited-state electron energy levels by applying the perturbative approach. The effects of the electron-phonon interaction on the expectation value of r{sup 2} and diamagnetic susceptibility for both quantum wires are discussed.

  20. Generic framework for the secure Yuen 2000 quantum-encryption protocol employing the wire-tap channel approach

    SciTech Connect

    Mihaljevic, Miodrag J.

    2007-05-15

    It is shown that the security, against known-plaintext attacks, of the Yuen 2000 (Y00) quantum-encryption protocol can be considered via the wire-tap channel model assuming that the heterodyne measurement yields the sample for security evaluation. Employing the results reported on the wire-tap channel, a generic framework is proposed for developing secure Y00 instantiations. The proposed framework employs a dedicated encoding which together with inherent quantum noise at the attacker's side provides Y00 security.

  1. Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.

    PubMed

    Spillmann, Christopher M; Ancona, Mario G; Buckhout-White, Susan; Algar, W Russ; Stewart, Michael H; Susumu, Kimihiro; Huston, Alan L; Goldman, Ellen R; Medintz, Igor L

    2013-08-27

    Assembling DNA-based photonic wires around semiconductor quantum dots (QDs) creates optically active hybrid architectures that exploit the unique properties of both components. DNA hybridization allows positioning of multiple, carefully arranged fluorophores that can engage in sequential energy transfer steps while the QDs provide a superior energy harvesting antenna capacity that drives a Förster resonance energy transfer (FRET) cascade through the structures. Although the first generation of these composites demonstrated four-sequential energy transfer steps across a distance >150 Å, the exciton transfer efficiency reaching the final, terminal dye was estimated to be only ~0.7% with no concomitant sensitized emission observed. Had the terminal Cy7 dye utilized in that construct provided a sensitized emission, we estimate that this would have equated to an overall end-to-end ET efficiency of ≤ 0.1%. In this report, we demonstrate that overall energy flow through a second generation hybrid architecture can be significantly improved by reengineering four key aspects of the composite structure: (1) making the initial DNA modification chemistry smaller and more facile to implement, (2) optimizing donor-acceptor dye pairings, (3) varying donor-acceptor dye spacing as a function of the Förster distance R0, and (4) increasing the number of DNA wires displayed around each central QD donor. These cumulative changes lead to a 2 orders of magnitude improvement in the exciton transfer efficiency to the final terminal dye in comparison to the first-generation construct. The overall end-to-end efficiency through the optimized, five-fluorophore/four-step cascaded energy transfer system now approaches 10%. The results are analyzed using Förster theory with various sources of randomness accounted for by averaging over ensembles of modeled constructs. Fits to the spectra suggest near-ideal behavior when the photonic wires have two sequential acceptor dyes (Cy3 and Cy3.5) and

  2. Non-Abelian S U (N -1 ) -singlet fractional quantum Hall states from coupled wires

    NASA Astrophysics Data System (ADS)

    Fuji, Y.; Lecheminant, P.

    2017-03-01

    The construction of fractional quantum Hall (FQH) states from the two-dimensional array of quantum wires provides a useful way to control strong interactions in microscopic models and has been successfully applied to the Laughlin, Moore-Read, and Read-Rezayi states. We extend this construction to the Abelian and non-Abelian S U (N -1 ) -singlet FQH states at filling fraction ν =k (N -1 )/[N +k (N -1 )m ] labeled by integers k and m , which are potentially realized in multicomponent quantum Hall systems or S U (N ) spin systems. Utilizing the bosonization approach and conformal field theory (CFT), we show that their bulk quasiparticles and gapless edge excitations are both described by an (N -1 ) -component free-boson CFT and the S U (N) k/[U(1 ) ] N -1 CFT known as the Gepner parafermion. Their generalization to different filling fractions is also proposed. In addition, we argue possible applications of these results to two kinds of lattice systems: bosons interacting via occupation-dependent correlated hoppings and an S U (N ) Heisenberg model.

  3. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    SciTech Connect

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  4. Synthesis of cadmium telluride quantum wires and the similarity of their effective band gaps to those of equidiameter cadmium telluride quantum dots.

    PubMed

    Sun, Jianwei; Wang, Lin-Wang; Buhro, William E

    2008-06-25

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure and grow along the [002] direction (parallel to the c axis). The size dependence of the effective band gaps in the wires is determined from the absorption spectra and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the effective band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire effective band gaps converge. The origin and magnitude of this threshold diameter are discussed.

  5. Dual fermionic variables and renormalization group approach to junctions of strongly interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Nava, Andrea

    2015-09-01

    Making a combined use of bosonization and fermionization techniques, we build nonlocal transformations between dual fermion operators, describing junctions of strongly interacting spinful one-dimensional quantum wires. Our approach allows for trading strongly interacting (in the original coordinates) fermionic Hamiltonians for weakly interacting (in the dual coordinates) ones. It enables us to generalize to the strongly interacting regime the fermionic renormalization group approach to weakly interacting junctions. As a result, on one hand, we are able to pertinently complement the information about the phase diagram of the junction obtained within the bosonization approach; on the other hand, we map out the full crossover of the conductance tensors between any two fixed points in the phase diagram connected by a renormalization group trajectory.

  6. Synthesizing Majorana zero-energy modes in a periodically gated quantum wire

    NASA Astrophysics Data System (ADS)

    Malard, Mariana; Japaridze, George I.; Johannesson, Henrik

    2016-09-01

    We explore a scheme for engineering a one-dimensional spinless p -wave superconductor hosting unpaired Majorana zero-energy modes, using an all-electric setup with a spin-orbit-coupled quantum wire in proximity to an s -wave superconductor. The required crossing of the Fermi level by a single spin-split energy band is ensured by employing a periodically modulated Rashba interaction, which, assisted by electron-electron interactions and a uniform Dresselhaus interaction, opens a gap at two of the spin-orbit shifted Fermi points. While an implementation in a hybrid superconductor-semiconductor device requires improvements upon present-day capabilities, a variant of our scheme where spin-orbit-coupled cold fermions are effectively proximity coupled to a BEC reservoir of Feshbach molecules may provide a ready-to-use platform.

  7. Effective electron mass in quantum wires of III-V, ternary and quaternary materials.

    PubMed

    Paitya, N; Ghatak, K P

    2012-12-01

    In this paper, an attempt is made to study the effective electron mass (EEM) in Quantum wires (QWs) of III-V, ternary and quaternary materials on the basis of three and two band models of Kane within the framework of k x p formalism. It has been found, taking QWs of InAs, InSb, GaAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x)As(1-y)P(t) that the 1D EEM increases with electron concentration per unit length and decreases with increasing film thickness respectively. For ternary and quaternary materials the EEM increases with increase in alloy composition. Under certain special conditions all the results for all the 1-D materials get simplified into the well known parabolic energy bands and thus confirming the compatibility test. The results of this paper find two applications in the fields of nanoscience and technology.

  8. Effect of the tilted magnetic field on the magnetosubbands and conductance in the bilayer quantum wire

    NASA Astrophysics Data System (ADS)

    Chwiej, T.

    2016-10-01

    We theoretically study the single electron magnetotransport in GaAs and InGaAs vertically stacked bilayer nanowires. In considered geometry, the tilted magnetic field is always perpendicular to the main (transport) axis of the quantum wire and, therefore its transverse and vertical components allow separately for changing the magnitude of intralayer and interlayer subbands mixing. We study the changes introduced to energy dispersion relation E(k) by tilted magnetic field of strength up to several tesla and analyze their origins for symmetric as well as asymmetric confining potentials in the growth direction. Calculated energy dispersion relations are thereafter used to show that the value of a conductance of the bilayer nanowire may abruptly rise as well as fall by few conductance quanta when the Fermi energy in nanosystem is changed. It is also shown that such conductance oscillations, in conjunction with spin Zeeman effect, may give a moderately spin polarized current in the bilayer nanowire.

  9. Observation of correlated spin-orbit order in a strongly anisotropic quantum wire system.

    PubMed

    Brand, C; Pfnür, H; Landolt, G; Muff, S; Dil, J H; Das, Tanmoy; Tegenkamp, Christoph

    2015-09-10

    Quantum wires with spin-orbit coupling provide a unique opportunity to simultaneously control the coupling strength and the screened Coulomb interactions where new exotic phases of matter can be explored. Here we report on the observation of an exotic spin-orbit density wave in Pb-atomic wires on Si(557) surfaces by mapping out the evolution of the modulated spin-texture at various conditions with spin- and angle-resolved photoelectron spectroscopy. The results are independently quantified by surface transport measurements. The spin polarization, coherence length, spin dephasing rate and the associated quasiparticle gap decrease simultaneously as the screened Coulomb interaction decreases with increasing excess coverage, providing a new mechanism for generating and manipulating a spin-orbit entanglement effect via electronic interaction. Despite clear evidence of spontaneous spin-rotation symmetry breaking and modulation of spin-momentum structure as a function of excess coverage, the average spin polarization over the Brillouin zone vanishes, indicating that time-reversal symmetry is intact as theoretically predicted.

  10. Field effect in the quantum Hall regime of a high mobility graphene wire

    SciTech Connect

    Barraud, C. E-mail: clement.barraud@univ-paris-diderot.fr; Choi, T.; Ihn, T.; Ensslin, K.; Butti, P.; Shorubalko, I.; Taniguchi, T.; Watanabe, K.

    2014-08-21

    In graphene-based electronic devices like in transistors, the field effect applied thanks to a gate electrode allows tuning the charge density in the graphene layer and passing continuously from the electron to the hole doped regime across the Dirac point. Homogeneous doping is crucial to understand electrical measurements and for the operation of future graphene-based electronic devices. However, recently theoretical and experimental studies highlighted the role of the electrostatic edge due to fringing electrostatic field lines at the graphene edges [P. Silvestrov and K. Efetov, Phys. Rev. B 77, 155436 (2008); F. T. Vasko and I. V. Zozoulenko, Appl. Phys. Lett. 97, 092115 (2010)]. This effect originates from the particular geometric design of the samples. A direct consequence is a charge accumulation at the graphene edges giving a value for the density, which deviates from the simple picture of a plate capacitor and also varies along the width of the graphene sample. Entering the quantum Hall regime would, in principle, allow probing this accumulation thanks to the extreme sensitivity of this quantum effect to charge density and the charge distribution. Moreover, the presence of an additional and counter-propagating edge channel has been predicted [P. Silvestrov and K. Efetov, Phys. Rev. B 77, 155436 (2008)] giving a fundamental aspect to this technological issue. In this article, we investigate this effect by tuning a high mobility graphene wire into the quantum Hall regime in which charge carriers probe the electrostatic potential at high magnetic field close to the edges. We observe a slight deviation to the linear shift of the quantum Hall plateaus with magnetic field and we study its evolution for different filling factors, which correspond to different probed regions in real space. We discuss the possible origins of this effect including an increase of the charge density towards the edges.

  11. Pyramidal GaAs/AlzGa1-zAs quantum wire/dot systems with controlled heterostructure potential

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Ganière, J. D.; He, Z. B.; Karlsson, K. F.; Byszewski, M.; Pelucchi, E.; Rudra, A.; Kapon, E.

    2010-10-01

    The structural and optical properties of controlled-heterostructure-potential, low-dimensional GaAs/AlGaAs nanostructures self-formed during organometallic chemical vapor deposition in tetrahedral pyramids etched in (111)B-GaAs substrates, are investigated using electron microscopy, cathodoluminescence, photoluminescence (PL), photon correlation spectroscopy, and theoretical modeling. Quantum wires/dots with AlGaAs cores with growth-controlled dimensions are formed, with a system of well-defined, low-dimensional nanostructure barriers around them. Transitions between carrier states confined in the AlGaAs quantum wires and dots are identified in the PL spectra, with features in good agreement with model calculations. Emission of single-photons and bunched-photon pairs is observed using temporal photon correlation spectroscopy. This self-formed nanostructure system provides new ways for shaping low-dimensional quantum structures and their heterostructure environment.

  12. Nonlinear optical rectification in laterally-coupled quantum well wires with applied electric field

    NASA Astrophysics Data System (ADS)

    Liu, Guanghui; Guo, Kangxian; Zhang, Zhongmin; Hassanbadi, Hassan; Lu, Liangliang

    2017-03-01

    Nonlinear optical rectification coefficient χ0(2) in laterally-coupled AlxGa1-xAs/GaAs quantum well wires with an applied electric field is theoretically investigated using the effective mass approximation as well as the numerical energy levels and wavefunctions of electrons. We find that χ0(2) is greatly influenced by the electric field as well as both the distance and the radius of the coupled system. A blue shift of χ0(2) with increasing electric field is exhibited while a red shift followed by a blue shift with increasing distance or radius is exhibited. A nonmonotonic behavior can be found in the resonant peak values of χ0(2) along with the increase of the electric field, the distance or the radius. One or two of the following physical mechanisms: the increased localization of the ground and first-excited states, the reduced coupling and the reduced quantum confinement effect are applied to elucidate the results above. Our results play a potential role in infrared photodetectors based on the coupled system.

  13. Optical investigation of the one-dimensional confinement effects in narrow GaAs/GaAlAs quantum wires

    NASA Astrophysics Data System (ADS)

    Birotheau, L.; Izrael, A.; Marzin, J. Y.; Azoulay, R.; Thierry-Mieg, V.; Ladan, F. R.

    1992-12-01

    We show optical data obtained at 8 K on narrow GaAs/GaAlAs quantum wires, with width down to 15 nm, fabricated by reactive ion etching and metal organic chemical vapor deposition overgrowth. Lateral confinement energies (up to 23 meV) and polarization effects are evidenced in the photoluminescence excitation spectra. These experimental results are in good agreement with calculated absorption spectra, which include the effects of wire width fluctuations, yielding, for our fabrication technique, a value of ±5 nm for these size fluctuations.

  14. Proposal of Trench-Oxide Metal-Oxide-Semiconductor Structure and Computer Simulation of Silicon Quantum-Wire Characteristics

    NASA Astrophysics Data System (ADS)

    Tsukui, Tetsuya; Oda, Shunri

    1993-12-01

    We propose “trench-oxide metal-oxide-semiconductor (MOS)” structures as a novel formation method of silicon-based low-dimensional quantum structures, which are considered to be basic elements of future ultrahigh-speed and ultralarge-scale integrated devices. In this method, the applied gate voltage forms the potential well confined in an additional direction defined by ultrafine “trenches” on the oxide layer of the MOS structure. We characterize “trench-oxide MOS” quantum wire structures by two-dimensional numerical calculation of the shape of the potential well, the subband energy levels and the electron density, and investigate the possibility of the experimental observation of quantized density of states peculiar to quantum wires, by measuring capacitance-gate voltage (C-V) characteristics of “trench-oxide MOS capacitors.” We also have successfully fabricated “trench-oxide MOS” quantum wires with the width of 16 nm using electron beam (EB) lithography and electron cyclotron resonance reactive ion etching (ECR-RIE).

  15. Tuning directional dependent metal-insulator transitions in quasi-1D quantum wires with spin-orbit density wave instability

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy

    2016-07-01

    We study directional dependent band gap evolutions and metal-insulator transitions (MITs) in model quantum wire systems within the spin-orbit density wave (SODW) model. The evolution of MIT is studied as a function of varying anisotropy between the intra-wire hopping ({{t}\\parallel} ) and inter-wire hopping ({{t}\\bot} ) with Rashba spin-orbit coupling. We find that as long as the anisotropy ratio (β ={{t}\\bot}/{{t}\\parallel} ) remains below 0.5, and the Fermi surface nesting is tuned to {{\\mathbf{Q}}1}=≤ft(π,0\\right) , an exotic SODW induced MIT easily develops, with its critical interaction strength increasing with increasing anisotropy. As β \\to 1 (2D system), the nesting vector switches to {{\\mathbf{Q}}2}=≤ft(π,π \\right) , making this state again suitable for an isotropic MIT. Finally, we discuss various physical consequences and possible applications of the directional dependent MIT.

  16. Resonant soft x-ray scattering from La1-xSrxMnO3 quantum wire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Smadici, Serban; Lee, James; Odlyzko, Michael; Zhai, Xiaofang; Eckstein, James; Shah, Amish; Zuo, Jian-Min; Abbamonte, Peter; Bhattacharya, Anand

    2009-03-01

    Any finite sized, patterned system with an energy gap is expected to have elementary excitations that are characteristic of its boundary. To test this idea we have fabricated large arrays (>60000 elements) of colossal magnetoresistance- phase La2/3 Sr1/3 MnO3 quantum wires. These wires are 80 nm in width so have properties that are dominated by edge effects. We used resonant soft x-ray scattering (RSXS) and SQUID magnetometry to study their magnetic properties. We found that patterning lowers the Curie temperature and suppresses the degree of magnetization. RSXS studies show diffraction maxima from the wire period, as well as temperature-dependent diffuse scattering. We will discuss these results in the context of combined structural and magnetic disorder. Funding #: DOE grants DE-FG02-07ER46453 and DE-FG02-06ER46285

  17. Optically excited structural transition in atomic wires on surfaces at the quantum limit.

    PubMed

    Frigge, T; Hafke, B; Witte, T; Krenzer, B; Streubühr, C; Samad Syed, A; Mikšić Trontl, V; Avigo, I; Zhou, P; Ligges, M; von der Linde, D; Bovensiepen, U; Horn-von Hoegen, M; Wippermann, S; Lücke, A; Sanna, S; Gerstmann, U; Schmidt, W G

    2017-03-29

    Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds. In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer. This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low- to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors.

  18. Kondo effect in a quantum wire with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    de Sousa, G. R.; Silva, Joelson F.; Vernek, E.

    2016-09-01

    The influence of spin-orbit interactions on the Kondo effect has been under debate recently. Studies conducted recently on a system composed of an Anderson impurity on a two-dimensional electron gas with a Rashba spin orbit have shown that it can enhance or suppress the Kondo temperature (TK), depending on the relative energy level position of the impurity with respect to the particle-hole symmetric point. Here, we investigate a system composed of a single Anderson impurity, side coupled to a quantum wire with spin-orbit coupling (SOC). We derive an effective Hamiltonian in which the Kondo coupling is modified by the SOC. In addition, the Hamiltonian contains two other scattering terms, the so-called Dzyaloshinskii-Moriya interaction, known to appear in these systems, and another one describing processes similar to the Elliott-Yafet scattering mechanisms. By performing a renormalization group analysis on the effective Hamiltonian, we find that the correction on the Kondo coupling due to the SOC favors the enhancement of the Kondo temperature even in the particle-hole symmetric point of the Anderson model, agreeing with the numerical renormalization group results. Moreover, away from the particle-hole symmetric point, TK always increases with the SOC, accordingly with a previous renormalization group analysis.

  19. Rashba-Zeeman-effect-induced spin filtering energy windows in a quantum wire

    SciTech Connect

    Xiao, Xianbo Nie, Wenjie; Chen, Zhaoxia; Zhou, Guanghui; Li, Fei

    2014-06-14

    We perform a numerical study on the spin-resolved transport in a quantum wire (QW) under the modulation of both Rashba spin-orbit coupling (SOC) and a perpendicular magnetic field by using the developed Usuki transfer-matrix method in combination with the Landauer-Büttiker formalism. Wide spin filtering energy windows can be achieved in this system for unpolarized spin injection. In addition, both the width of energy window and the magnitude of spin conductance within these energy windows can be tuned by varying Rashba SOC strength, which can be apprehended by analyzing the energy dispersions and spin-polarized density distributions inside the QW, respectively. Further study also demonstrates that these Rashba-SOC-controlled spin filtering energy windows show a strong robustness against disorders. These findings may not only benefit to further understand the spin-dependent transport properties of a QW in the presence of external fields but also provide a theoretical instruction to design a spin filter device.

  20. Temperature dependence of coulomb drag between finite-length quantum wires.

    PubMed

    Peguiron, J; Bruder, C; Trauzettel, B

    2007-08-24

    We evaluate the Coulomb drag current in two finite-length Tomonaga-Luttinger-liquid wires coupled by an electrostatic backscattering interaction. The drag current in one wire shows oscillations as a function of the bias voltage applied to the other wire, reflecting interferences of the plasmon standing waves in the interacting wires. In agreement with this picture, the amplitude of the current oscillations is reduced with increasing temperature. This is a clear signature of non-Fermi-liquid physics because for coupled Fermi liquids the drag resistance is always expected to increase as the temperature is raised.

  1. Magnetoelectric subbands and eigenstates in the presence of Rashba and Dresselhaus spin-orbit interactions in a quantum wire

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, S.; Pramanik, S.; Cahay, M.

    2004-01-01

    We derive the eigenenergies and spin-dependent eigenstates of electrons in a quantum wire subjected to an external magnetic field. These are calculated in the presence of spin-orbit interactions arising from the Rashba (structural inversion asymmetry) and Dresselhaus (bulk inversion asymmetry) effects. We consider three cases: the external magnetic field is oriented (i) along the axis of the wire, (ii) perpendicular to the axis but parallel to the electric field associated with structural inversion asymmetry (Rashba effect), and (iii) perpendicular to the axis as well as this electric field. In all cases, the dispersions of the eigenenergies are non-parabolic and the subbands do not have a fixed spin quantization axis (meaning that the spin polarization of the electron is wavevector dependent). Except in the second case, the dispersion diagrams are also, in general, asymmetric about the energy axis.

  2. Intense laser field effects on the linear and nonlinear optical properties in a semiconductor quantum wire with triangle cross section

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.; Duque, C. A.; Niculescu, E. C.; Radu, A.

    2014-02-01

    We study the laser field effects on the intersubband optical absorption and the refractive index changes in a GaAs/AlGaAs quantum wire with equilateral triangle cross section. The wire is under the action of a laser beam which is assumed to be non-resonant with the semiconductor structure and linearly polarized perpendicularly to the triangle side. In the effective mass approximation and for a finite potential barrier we calculate the subband states by using a finite element method. Linear, non linear and total absorption coefficients and refractive index changes are calculated as functions of the laser field for the allowed intersubband transitions. Two polarizations of the pump radiation, parallel and perpendicular to the laser field direction, are discussed.

  3. Dissipative Quantum Tunneling of a Single Defect in a Submicron Bismuth Wire Below 1 K

    NASA Astrophysics Data System (ADS)

    Chun, Kookjin

    The quantum mechanical problem of a particle tunneling in a double-well potential is of great theoretical and experimental interest. Interaction of the tunneling system with a dissipative environment can have a striking effect on the tunneling dynamics. A very interesting case is that of ohmic dissipation, which occurs when an atom tunnels in a metal in the presence of conduction electrons. We have studied the electrical resistance of submicron Bi wires at low temperature. Due to quantum interference of the conduction electrons, the resistance is highly sensitive to the motion of even a single scattering center. We observe discrete switching of the resistance due to the motion of bistable defects in the sample. We have measured the tunneling rates of a particular defect over the temperature range 0.1-2 K and magnetic field range 0-7 T. The energy asymmetry, varepsilon, of this defect varied over the range 40-420 mK depending on the value of the magnetic field. The temperature dependence of the tunneling rates is qualitatively different for the cases k_{B}T << varepsilon and k_{B}T gg varepsilon . We observe that for k_{B }T << varepsilon, the fast rate (transition rate from upper state to lower state) is roughly temperature independent and the slow rate (transition from lower state to upper state) decreases exponentially, as expected from a simple picture of spontaneous emission and stimulated absorption. When k_{B }T gg varepsilon, however, both rates increase as the temperature is lowered, as predicted by dissipative quantum tunneling theory. We fit our data to the theory and discuss the defect-electron bath coupling parameter alpha, and the renormalized tunneling matrix element Delta_{ rm r}. We have also studied the effect of Joule heating on the dynamics of the defect in the same sample. The ratio of the fast and slow transition rates of a defect depends on temperature through the detailed balance relation, gamma_{f}/ gamma_{s} e^ {varepsilon / k_{B}T}. We

  4. Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires

    NASA Astrophysics Data System (ADS)

    Halperin, Bertrand I.; Oreg, Yuval; Stern, Ady; Refael, Gil; Alicea, Jason; von Oppen, Felix

    2012-04-01

    It has been proposed that localized zero-energy Majorana states can be realized in a two-dimensional network of quasi-one-dimensional semiconductor wires that are proximity coupled to a bulk superconductor. The wires should have strong spin-orbit coupling with appropriate symmetry, and their electrons should be partially polarized by a strong Zeeman field. Then, if the Fermi level is in an appropriate range, the wire can be in a topological superconducting phase, with Majorana states that occur at wire ends and at Y junctions, where three topological superconductor segments may be joined. Here we generalize these ideas to consider a three-dimensional network. The positions of Majorana states can be manipulated, and their non-Abelian properties made visible, by using external gates to selectively deplete portions of the network or by physically connecting and redividing wire segments. Majorana states can also be manipulated by reorientations of the Zeeman field on a wire segment, by physically rotating the wire about almost any axis, or by evolution of the phase of the order parameter in the proximity-coupled superconductor. We show how to keep track of sign changes in the zero-energy Hilbert space during adiabatic manipulations by monitoring the evolution of each Majorana state separately, rather than keeping track of the braiding of all possible pairs. This has conceptual advantages in the case of a three-dimensional network, and may be computationally useful even in two dimensions, if large numbers of Majorana sites are involved.

  5. Improving the intrinsic cut-off frequency of gate-all-around quantum-wire transistors without channel length scaling

    NASA Astrophysics Data System (ADS)

    Benali, A.; Traversa, F. L.; Albareda, G.; Aghoutane, M.; Oriols, X.

    2013-04-01

    Progress in high-frequency transistors is based on reducing electron transit time, either by scaling their lengths or by introducing materials with higher electron mobility. For gate-all-around quantum-wire transistors with lateral dimensions similar or smaller than their length, a careful analysis of the displacement current reveals that a time shorter than the transit time controls their high-frequency performance. Monte Carlo simulations of such transistors with a self-consistent solution of the 3D Poisson equation clearly show an improvement of the intrinsic cut-off frequency when their lateral areas are reduced, without length scaling.

  6. Spectroscopic identification of tri-n-octylphosphine oxide (TOPO) impurities and elucidation of their roles in cadmium selenide quantum-wire growth.

    PubMed

    Wang, Fudong; Tang, Rui; Kao, Jeff L-F; Dingman, Sean D; Buhro, William E

    2009-04-08

    Tri-n-octylphosphine oxide (TOPO) is the most commonly used solvent for the synthesis of colloidal nanocrystals. Here we show that the use of different batches of commercially obtained TOPO solvent introduces significant variability into the outcomes of CdSe quantum-wire syntheses. This irreproducibility is attributed to varying amounts of phosphorus-containing impurities in the different TOPO batches. We employ (31)P NMR to identify 10 of the common TOPO impurities. Their beneficial, harmful, or negligible effects on quantum-wire growth are determined. The impurity di-n-octylphosphinic acid (DOPA) is found to be the important beneficial TOPO impurity for the reproducible growth of high-quality CdSe quantum wires. DOPA is shown to beneficially modify precursor reactivity through ligand substitution. The other significant TOPO impurities are ranked according to their abilities to similarly influence precursor reactivity. The results are likely of general relevance to most nanocrystal syntheses conducted in TOPO.

  7. Statistical study of conductance properties in one-dimensional quantum wires focusing on the 0.7 anomaly

    NASA Astrophysics Data System (ADS)

    Smith, L. W.; Al-Taie, H.; Sfigakis, F.; See, P.; Lesage, A. A. J.; Xu, B.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2014-07-01

    The properties of conductance in one-dimensional (1D) quantum wires are statistically investigated using an array of 256 lithographically identical split gates, fabricated on a GaAs/AlGaAs heterostructure. All the split gates are measured during a single cooldown under the same conditions. Electron many-body effects give rise to an anomalous feature in the conductance of a one-dimensional quantum wire, known as the "0.7 structure" (or "0.7 anomaly"). To handle the large data set, a method of automatically estimating the conductance value of the 0.7 structure is developed. Large differences are observed in the strength and value of the 0.7 structure [from 0.63 to 0.84×(2e2/h)], despite the constant temperature and identical device design. Variations in the 1D potential profile are quantified by estimating the curvature of the barrier in the direction of electron transport, following a saddle-point model. The 0.7 structure appears to be highly sensitive to the specific confining potential within individual devices.

  8. The trouble with TOPO; identification of adventitious impurities beneficial to the growth of cadmium selenide quantum dots, rods, and wires.

    PubMed

    Wang, Fudong; Tang, Rui; Buhro, William E

    2008-10-01

    Tri-n-octylphosphine oxide (TOPO) is a commonly used solvent for nanocrystal synthesis. Commercial TOPO samples contain varying amounts of phosphorus-containing impurities, some of which significantly influence nanocrystal growth. Consequently, nanocrystal syntheses often give irreproducible results with different batches of TOPO solvent. In this study, we identify TOPO impurities by (31)P NMR, and correlate their presence with the outcomes of CdSe nanocrystal syntheses. We subsequently add the active impurity species, one by one, to purified TOPO to confirm their influence on nanocrystal syntheses. In this manner, di-n-octylphosphine oxide (DOPO) is shown to assist CdSe quantum-dot growth; di-n-octylphosphinic acid (DOPA) and mono-n-octylphosphinic acid (MOPA) are shown to assist CdSe quantum-rod growth, and DOPA is shown to assist CdSe quantum-wire growth. (The TOPO impurity n-octylphosphonic acid, OPA, has been previously shown to assist quantum-rod growth.) The beneficial impurities are prepared on multigram scales and can be added to recrystallized TOPO to provide reproducible synthetic results.

  9. Nonlinear absorption coefficient and optically detected electrophonon resonance in cylindrical GaAs/AlAs quantum wires with different confined phonon models

    NASA Astrophysics Data System (ADS)

    Khoa, Doan Quoc; Phuong, Le Thi Thu; Hoi, Bui Dinh

    2017-03-01

    A quantum kinetic equation for electrons interacting with confined phonons is used to investigate the nonlinear absorption of an intense electromagnetic wave by electrons in cylindrical GaAs/AlAs quantum wires. The analytic expression for absorption coefficient is calculated for three models of confined optical phonons: the dielectric continuum (DC), hydrodynamic continuum (HC), and Huang-Zhu (HZ) models. The absorption coefficient depends on the square of the electromagnetic wave amplitude. The electrophonon resonance and optically detected electrophonon resonance (ODEPR) are observed through the absorption spectrum. The full width at half maximum (the line-width) of the ODEPR peaks is obtained by a computational method. The line-width is found to increase with increasing temperature and decrease with increasing the quantum wire radius. In particular, numerical results show that the DC and HZ models lead to a similar behaviour of electron - confined phonon interaction whereas the HC model results in a quite different one, especially at small quantum wire radius. For large quantum wire radii, above mentioned phonon models have equivalent contributions to the ODEPR line-width.

  10. Majorana modes and Kondo effect in a quantum dot attached to a topological superconducting wire (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Vernek, Edson; Ruiz-Tijerina, David; da Silva, Luis D.; Egues, José Carlos

    2015-09-01

    Quantum dot attached to topological wires has become an interesting setup to study Majorana bound state in condensed matter[1]. One of the major advantage of using a quantum dot for this purpose is that it provides a suitable manner to study the interplay between Majorana bound states and the Kondo effect. Recently we have shown that a non-interacting quantum dot side-connected to a 1D topological superconductor and to metallic normal leads can sustain a Majorana mode even when the dot is empty. This is due to the Majorana bound state of the wire leaking into the quantum dot. Now we investigate the system for the case in which the quantum dot is interacting[3]. We explore the signatures of a Majorana zero-mode leaking into the quantum dot, using a recursive Green's function approach. We then study the Kondo regime using numerical renormalization group calculations. In this regime, we show that a "0.5" contribution to the conductance appears in system due to the presence of the Majorana mode, and that it persists for a wide range of the dot parameters. In the particle-hole symmetric point, in which the Kondo effect is more robust, the total conductance reaches 3e^2/2h, clearly indicating the coexistence of a Majorana mode and the Kondo resonance in the dot. However, the Kondo effect is suppressed by a gate voltage that detunes the dot from its particle-hole symmetric point as well as by a Zeeman field. The Majorana mode, on the other hand, is almost insensitive to both of them. We show that the zero-bias conductance as a function of the magnetic field follows a well-known universal curve. This can be observed experimentally, and we propose that this universality followed by a persistent conductance of 0.5,e^2/h are evidence for the presence of Majorana-Kondo physics. This work is supported by the Brazilians agencies FAPESP, CNPq and FAPEMIG. [1] A. Y. Kitaev, Ann.Phys. {bf 303}, 2 (2003). [2] E. Vernek, P.H. Penteado, A. C. Seridonio, J. C. Egues, Phys. Rev. B {bf

  11. Conductance noise of submicron wires in the regime of quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Wróbel, J.; Jaroszyń Ski, J.; Dietl, T.; Regiń Ski, K.; Bugajski, M.

    1998-12-01

    A detailed study of low-temperature magnetoconductance in between quantized Hall plateaux is presented. The data are obtained for disordered two-terminal submicron wires defined in GaAs/AlGaAs heterostructures modulation-doped by Si. Slow time evolution of conductance G is observed on the high-field side of the quantized plateaux - for filling factors ν<3 and ν<2. This surprising noise is attributed to glassy dynamics of localized electrons in the wire centre, and to the corresponding time dependence of the impurity-assisted tunnelling probability between the current carrying regions.

  12. Band structure of a three-dimensional topological insulator quantum wire in the presence of a magnetic field.

    PubMed

    Liu, Zhe; Jiang, Liwei; Zheng, Yisong

    2016-07-13

    By means of a numerical diagonalization approach, we calculate the electronic structure of a three-dimensional topological insulator (3DTI) quantum wire (QW) in the presence of a magnetic field. The QW can be viewed as a 3DTI film with lateral surfaces, when its rectangular cross section has a large aspect ratio. Our calculation indicates that nonchiral edge states emerge because of the confined states at the lateral surfaces. These states completely cover the valence band region among the Landau levels, which reasonably account for the absence of the [Formula: see text] quantum Hall effect in the relevant experimental works. In an ultrathin 3DTI film, inversion between the electron-type and hole-type bands occurs, which leads to the so-called pseudo-spin Hall effect. In a 3DTI QW with a square cross section, a tilting magnetic field can establish well-defined Landau levels in all four surfaces. In such a case, the quantum Hall edge states are localized at the square corners, characterized by the linearly crossing one-dimensional band profile. And they can be shifted between the adjacent corners by simply rotating the magnetic field.

  13. Spin dynamics and spin noise in the presence of randomly varying spin-orbit interaction in a semiconductor quantum wire.

    PubMed

    Agnihotri, Pratik; Bandyopadhyay, Supriyo

    2012-05-30

    Using ensemble Monte Carlo simulation, we have studied hot carrier spin dynamics and spin noise in a multi-subband GaAs quantum wire in the presence of a randomly varying Rashba spin-orbit interaction. The random variation reduces the carrier ensemble's spin dephasing time due to the D'yakonov-Perel' mechanism, but otherwise makes no qualitative difference to the temporal spin relaxation characteristics. However, it makes a qualitative difference to the spatial spin relaxation characteristics which change from monotonic and smooth to non-monotonic and chaotic because of a complex interplay between carriers in different subbands. As far as spin fluctuation and spin noise are concerned, the random variation has no major effect except that the low-frequency noise power spectral density increases slightly when the magnitude of the Rashba spin-orbit interaction field is varied randomly while holding the direction constant.

  14. Growth and fabrication of proximity-coupled topological quantum wire circuits from thin InAs films

    NASA Astrophysics Data System (ADS)

    Kan, Carolyn; Xue, Chi; Bai, Yang; Eckstein, James

    The realization of topological states in strongly spin orbit coupled semiconductors proximity-coupled to conventional superconductors requires delicate materials engineering. Key areas for improvement include the crystalline quality of the semiconductor itself, but a high-quality interface between the semiconductor and superconductor is essential. Recent results have demonstrated the necessity of forming an in situ interface to eliminate the ``soft gap'' observed in earlier experiments. While much work has focused on vertically grown nanowires, we take a lithographic approach to fabricating quantum wires out of MBE-grown thin films, which allow for increased flexibility and scalability of device structures. Notably, our films are grown entirely in situ in linked MBE systems, vastly improving interface transmission and cleanliness. Aspects of growth architecture aimed toward increasing the InAs mobility, such as substrate choice and layer structure, are also discussed.

  15. Effects of electron-phonon interaction and impurity on optical properties of hexagonal-shaped quantum wires

    NASA Astrophysics Data System (ADS)

    Khordad, R.; Bahramiyan, H.

    2017-03-01

    We have investigated the influence of electron-phonon (e-p) interaction and hydrogenic donor impurity simultaneously on energy difference, binding energy, the linear, nonlinear and total refractive index changes and absorption coefficients of a hexagonal-shaped quantum wire. For this goal, we have used finite-element method (FEM), a compact density matrix approach and an iterative procedure. It is deduced that energy difference and binding energy decrease by changing the impurity position with and without e-p interaction. The dipole matrix elements have complex behaviours in the presence of impurity with and without e-p interaction. The refractive index changes and absorption coefficients increase and shift towards lower energies by enhancing a 1 with central impurity. In the presence of central impurity, the absorption coefficients and refractive index changes enhance and shift toward higher energies when e-p interaction is considered.

  16. Non-linear optical processes involving excited subbands in laser-dressed quantum wires with triangular cross-section

    NASA Astrophysics Data System (ADS)

    Radu, A.; Duque, C. A.

    2015-08-01

    The conduction subband structure of a triangular cross-section GaAs/AlGaAs quantum well wire under intense laser field is theoretically investigated by taking into account a finite confining potential. The calculation of the subband energy levels is based on a two-dimensional finite element method within the effective mass approximation. It is shown that a transversally polarized laser field non-uniformly shifts the subband energy levels and could be used for tuning the intersubband transitions and altering the related optical susceptibilities. We found that the non-resonant laser field allows the magnification and the red- or blueshift of the third-order non-linear susceptibility peaks for particular polarizations of the pump light and proper laser parameter values. The effects of the laser dressing field on the intersubband third harmonic generation and quadratic electro-optical process are discussed.

  17. The quantum-mechanical basis of an extended Landau-Lifshitz-Gilbert equation for a current-carrying ferromagnetic wire.

    PubMed

    Edwards, D M; Wessely, O

    2009-04-08

    An extended Landau-Lifshitz-Gilbert (LLG) equation is introduced to describe the dynamics of inhomogeneous magnetization in a current-carrying wire. The coefficients of all the terms in this equation are calculated quantum-mechanically for a simple model which includes impurity scattering. This is done by comparing the energies and lifetimes of a spin wave calculated from the LLG equation and from the explicit model. Two terms are of particular importance since they describe non-adiabatic spin-transfer torque and damping processes which do not rely on spin-orbit coupling. It is shown that these terms may have a significant influence on the velocity of a current-driven domain wall and they become dominant in the case of a narrow wall.

  18. Quantum theory of the effect of grain boundaries on the electrical conductivity of thin films and wires

    NASA Astrophysics Data System (ADS)

    Moraga, Luis; Henriquez, Ricardo; Solis, Basilio

    2015-08-01

    We calculate the electrical conductivity of a metallic sample under the effects of distributed impurities and a random distribution of grain boundaries by means of a quantum mechanical procedure based on Kubo formula. Grain boundaries are represented either by a one-dimensional regular array of Dirac delta potentials (Mayadas and Shatzkes model) or by its three-dimensional extension (Szczyrbowski and Schmalzbauer model). We give formulas expressing the conductivity of bulk samples, thin films and thin wires of rectangular cross-sections in the case when the samples are bounded by perfectly flat surfaces. We find that, even in the absence of surface roughness, the conductivity in thin samples is reduced from its bulk value. If there are too many grain boundaries per unit length, or their scattering strength is high enough, there is a critical value Rc of the reflectivity R of an individual boundary such that the electrical conductivity vanishes for R >Rc. Also, the conductivity of thin wires shows a stepwise dependence on R. The effect of weak random variations in the strength or separation of the grain boundaries is computed by means of the method of correlation length. Finally, the resistivity of nanometric polycrystalline tungsten films reported in Choi et al. J. Appl. Phys. (2014) 115 104308 is tentatively analyzed by means of the present formalism.

  19. Real Space Renormalization of Majorana Fermions in Quantum Nano-Wire Superconductors

    NASA Astrophysics Data System (ADS)

    Jafari, R.; Langari, A.; Akbari, Alireza; Kim, Ki-Seok

    2017-02-01

    We develop the real space quantum renormalization group (QRG) approach for majorana fermions. As an example we focus on the Kitaev chain to investigate the topological quantum phase transition (TQPT) in the one-dimensional spinless p-wave superconductor. Studying the behaviour of local compressibility and ground-state fidelity, show that the TQPT is signalled by the maximum of local compressibility at the quantum critical point tuned by the chemical potential. Moreover, a sudden drop of the ground-state fidelity and the divergence of fidelity susceptibility at the topological quantum critical point are used as proper indicators for the TQPT, which signals the appearance of Majorana fermions. Finally, we present the scaling analysis of ground-state fidelity near the critical point that manifests the universal information about the TQPT, which reveals two different scaling behaviors as we approach the critical point and thermodynamic limit.

  20. Fabrication and Luminescence of Narrow Reactive Ion Etched In1-xGaxAs/InP and GaAs/Gas1-xAlxAs Quantum Wires

    NASA Astrophysics Data System (ADS)

    Izrael, A.; Marzin, J. Y.; Sermage, B.; Birotheau, L.; Robein, D.; Azoulay, R.; Benchimol, J. L.; Henry, L.; Thierry-Mieg, V.; Ladan, F. R.; Taylor, L.

    1991-11-01

    We present the fabrication process of narrow quantum wires in both In1-xGaxAs/InP and GaAs/Ga1-xAlxAs systems based upon e-beam lithography, lift-off, reactive ion etching and MOCVD overgrowth. The carrier lifetime, deduced from low temperature time-resolved photoluminescence, remains of the order of one nanosecond in both systems, showing the good quality of the overgrown interfaces. An efficient capture of the carriers created in the barrier material into the wires is demonstrated. One-dimension quantum confinement effects are observed for the lowest lateral sizes: in In1-xGaxAs/InP wires (width down to 15 nm), quantum shifts of the low temperature cw photoluminescence peak (up to 30 meV) are observed while in GaAs/Ga1-xAlxAs wires (width down to 20 nm), we report shifts up to 10 meV of the emission peak.

  1. Quantum wire and magnetic control of a spin qubit in the Landau-Zener-Stückelberg interferometry transition

    NASA Astrophysics Data System (ADS)

    Danga, J. E.; Kenfack, S. C.; Fai, L. C.

    2016-05-01

    Landau-Zener-Stückelberg interferometry is extensively investigated in a 3D heterostructure magnetic quantum wire. Local magnetic fields are used to coherently manipulate and control a qubit’s quantum state. For our numerical calculations, a parabolic confinement is assumed. Energy eigenvalues, non-adiabatic and adiabatic transition probabilities are calculated from the diabatic and adiabatic bases for two-level systems. Here, we show that the spatial crossing between interspin levels becomes a spatial anticrossing if the two spin states are coupled by external fields, and that consequently, due to the spin dependence of the harmonic confinement, it will undergo Landau-Zener-Stückelberg interference. It is shown that the system undergoes nonadiabatic Landau-Zener dynamics for a strong confinement in a strong external field, whereas a weak external field induces adiabatic Landau-Zener transition dynamics. Our system allows the coupling strength between the level states at the anti(crossing) point to be modulated. This system allows one to tune the wire’s parabolic confinement potential using experimentally accessible parameters.

  2. On Improving Accuracy of Finite-Element Solutions of the Effective-Mass Schrödinger Equation for Interdiffused Quantum Wells and Quantum Wires

    NASA Astrophysics Data System (ADS)

    Topalović, D. B.; Arsoski, V. V.; Pavlović, S.; Čukarić, N. A.; Tadić, M. Ž.; Peeters, F. M.

    2016-01-01

    We use the Galerkin approach and the finite-element method to numerically solve the effective-mass Schrödinger equation. The accuracy of the solution is explored as it varies with the range of the numerical domain. The model potentials are those of interdiffused semiconductor quantum wells and axially symmetric quantum wires. Also, the model of a linear harmonic oscillator is considered for comparison reasons. It is demonstrated that the absolute error of the electron ground state energy level exhibits a minimum at a certain domain range, which is thus considered to be optimal. This range is found to depend on the number of mesh nodes N approximately as α0 logeα1(α2N), where the values of the constants α0, α1, and α2 are determined by fitting the numerical data. And the optimal range is found to be a weak function of the diffusion length. Moreover, it was demonstrated that a domain range adaptation to the optimal value leads to substantial improvement of accuracy of the solution of the Schrödinger equation. Supported by the Ministry of Education, Science, and Technological Development of Serbia and the Flemish fund for Scientific Research (FWO Vlaanderen)

  3. Anomalous diamagnetic shifts in InP-GaP lateral quantum-wires.

    PubMed

    Shin, Y H; Choi, B K; Kim, Yongmin; Song, J D; Nakamura, D; Matsuda, Y H; Takeyama, S

    2015-11-02

    Linearly polarized photoluminescence (PL) measurements were carried out on InP-GaP lateral nanowires grown using a lateral composition modulation method in pulsed magnetic fields up to ∼ 50 T. In these structures, the energy band alignment becomes type-I and type-II in In-rich wire and Ga-rich barrier regions, respectively. It is revealed that the polarization of the type-I PL is oriented along the [11̄0] crystal direction, whereas that of the type-II PL is along the [110] direction in the absence of magnetic field. These two different PL peaks exhibit anomalous energy shifts with respect to the direction of the magnetic field due to the variation of the confined energy in the exciton center of mass potential.

  4. Ensemble Monte Carlo simulation of electron transport in GaAs/AlAs quantum wire structure under the effect of terahertz electric field

    NASA Astrophysics Data System (ADS)

    Borzdov, Andrei V.; Borzdov, Vladimir M.; V'yurkov, Vladimir V.

    2016-12-01

    Ensemble Monte Carlo simulation of electron transport in GaAs/AlAs quantum wire transistor structure is performed. The response of electron drift velocity on the action of harmonic longitudinal electric field is calculated for several values of electric field strength amplitude and gate bias at 77 and 300 K. The periodical electric field has a 1 THz frequency. The nonlinear behaviour of electron drift velocity due to scattering processes is observed.

  5. Tunneling into quantum wires: Regularization of the tunneling Hamiltonian and consistency between free and bosonized fermions

    NASA Astrophysics Data System (ADS)

    Filippone, Michele; Brouwer, Piet W.

    2016-12-01

    Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling Hamiltonian that contains a δ function in position space. Whereas the leading-order contribution to the tunneling current is independent of the way this δ function is regularized, higher-order corrections with respect to the tunneling amplitude are known to depend on the regularization. Instead of regularizing the δ function in the tunneling Hamiltonian, one may also obtain a finite tunneling current by invoking the ultraviolet cutoffs in a field-theoretic description of the electrons in the one-dimensional conductor, a procedure that is often used in the literature. For the latter case, we show that standard ultraviolet cutoffs lead to different results for the tunneling current in fermionic and bosonized formulations of the theory, when going beyond leading order in the tunneling amplitude. We show how to recover the standard fermionic result using the formalism of functional bosonization and revisit the tunneling current to leading order in the interacting case.

  6. Localized states in a semiconductor quantum ring with a tangent wire

    SciTech Connect

    Yang, F.; Wu, M. W.

    2014-08-28

    We extend a special kind of localized state trapped at the intersection due to the geometric confinement, first proposed in a three-terminal-opening T-shaped structure [L. A. Openov, Europhys. Lett. 55, 539 (2001)], into a ring geometry with a tangent connection to the wire. In this ring geometry, there exists one localized state trapped at the intersection with energy lying inside the lowest subband. We systematically study this localized state and the resulting Fano-type interference due to the coupling between this localized state and the continuum ones. It is found that the increase of inner radius of the ring weakens the coupling to the continuum ones and the asymmetric Fano dip fades away. A wide energy gap in transmission appears due to the interplay of two types of antiresonances: the Fano-type antiresonance and the structure antiresonance. The size of this antiresonance gap can be modulated by adjusting the magnetic flux. Moreover, a large transmission amplitude can be obtained in the same gap area. The strong robustness of the antiresonance gap is demonstrated and shows the feasibility of the proposed geometry for a real application.

  7. Diameter dependent polarization in ZnO/MgO disk-in-wire emitters: Multiscale modeling of optical quantum efficiency

    NASA Astrophysics Data System (ADS)

    Al-Qahtani, Saad Mubarak; Abdullah, Abdulmuin Mostafa A.; Nishat, Md. Rezaul Karim; Ahmed, Shaikh S.

    2017-03-01

    A multiscale computational study is performed to investigate how electronic structure, optical transitions, and terminal characteristics of nanostructured ZnO/MgO disk-in-wire emitters are governed by an intricate coupling of size-quantization, atomicity, and built-in structural and polarization fields. As for the models, an 8-band sp3 (with spin) atomistic tight-binding basis set was used to construct the Hamiltonian of the device in wurtzite crystal symmetry. Strain and the associated distortions of bond directions and bond lengths were modeled via the valence force-field (VFF) molecular mechanics framework. Specifically, in this work, a recently proposed ab initio based diameter-dependent model for the piezoelectric fields was implemented, which, as compared to the conventional diameter-independent model, was found to curb the influence of spontaneous (pyroelectric) polarization significantly. This particular finding is further illustrated through the calculation of electronic bandgap and localization of wavefunctions, optical emission characteristics, and the internal quantum efficiency of the device.

  8. Atomically thin cesium lead bromide perovskite quantum wires with high luminescence.

    PubMed

    Huang, Hongwen; Liu, Mei; Li, Jing; Luo, Laihao; Zhao, Jiangtao; Luo, Zhenlin; Wang, Xiaoping; Ye, Zhizhen; He, Haiping; Zeng, Jie

    2017-01-07

    We report a room-temperature colloidal synthesis of few-unit-cell-thick CsPbBr3 QWs with lengths over a hundred nanometers. The surfactant-directed oriented attachment growth mechanism was proposed to explain the formation of such CsPbBr3 QWs. Owing to the strong quantum confinement effect, the photoluminescence (PL) emission peak of few-unit-cell-thick CsPbBr3 QWs blue-shifted to 430 nm. The ensemble PL quantum yield (PLQY) of the few-unit-cell-thick CsPbBr3 QWs increased to 21.13% through a simple heat-treatment process. The improvement of PLQY was ascribed to the reduction of the density of surface trap states and defect states induced by the heat-treatment process. Notably, the dependence of the bandgap on the diameter with different numbers of unit cells was presented for the first time in 1-D CsPbBr3 QWs on the basis of the produced few-unit-cell-thick CsPbBr3 QWs.

  9. Nature of the many-body excitations in a quantum wire: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Tsyplyatyev, O.; Schofield, A. J.; Jin, Y.; Moreno, M.; Tan, W. K.; Anirban, A. S.; Ford, C. J. B.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.

    2016-02-01

    The natural excitations of an interacting one-dimensional system at low energy are the hydrodynamic modes of a Luttinger liquid, protected by the Lorentz invariance of the linear dispersion. We show that beyond low energies, where the quadratic dispersion reduces the symmetry to Galilean, the main character of the many-body excitations changes into a hierarchy: calculations of dynamic correlation functions for fermions (without spin) show that the spectral weights of the excitations are proportional to powers of R2/L2 , where R is a length-scale related to interactions and L is the system length. Thus only small numbers of excitations carry the principal spectral power in representative regions on the energy-momentum planes. We have analyzed the spectral function in detail and have shown that the first-level (strongest) excitations form a mode with parabolic dispersion, like that of a renormalized single particle. The second-level excitations produce a singular power-law line shape to the first-level mode and multiple power laws at the spectral edge. We have illustrated a crossover to a Luttinger liquid at low energy by calculating the local density of states through all energy scales: from linear to nonlinear, and to above the chemical potential energies. In order to test this model, we have carried out experiments to measure the momentum-resolved tunneling of electrons (fermions with spin) from/to a wire formed within a GaAs heterostructure. We observe a well-resolved spin-charge separation at low energy with appreciable interaction strength and only a parabolic dispersion of the first-level mode at higher energies. We find a structure resembling the second-level excitations, which dies away rapidly at high momentum in line with the theoretical predictions here.

  10. Effects of phonon scattering on the magneto-conductance in single and double quantum wires

    NASA Astrophysics Data System (ADS)

    Huang, D.; Lyo, S. K.

    2003-03-01

    We present an exact numerical formalism for the solution of the Boltzmann equation dominated by elastic (e.g., interface-roughness) and phonon scattering in a quasi-one-dimensional system. The result is employed to study the temperature-dependent conductance of a single and tunnel-coupled double quantum wells (DQWs) as a function of a perpendicular magnetic field. According to recent studies, the zero-temperature conductance is enhanced dramatically as a function of the field when the Fermi level lies inside the anticrossing gap of the DQWs. [S. K. Lyo, J. Phys.-Condens. Matter 8, L703 (1996), D. Huang and S. K. Lyo, ibid, 12, 3383 (2000), S. V. Korepov and M. A. Liberman, Phys. Rev. B 60, 13770 (1999)] Our results show that phonon scattering modifies the conductance and its enhancement significantly at temperatures corresponding to the gap energy or the sublevel separation or higher.

  11. Electron spin rotations induced by oscillating Rashba interaction in a quantum wire

    NASA Astrophysics Data System (ADS)

    Pawłowski, J.; Szumniak, P.; Bednarek, S.

    2016-01-01

    A method and nanodevice are introduced that allows us to rotate the single electron spin confined in a gated electrostatic InSb nanowire quantum dot. The proposed method does not require the application of any (oscillating or static) external magnetic fields. Our proposal instead employs spatial and time modulation of confining potential induced by electric gates, which, in turn leads to oscillating Rashba-type spin-orbit coupling. Moving electron back and forth in such a variable Rashba field allows for the realization of spin rotations around two different axes separately without using an external magnetic field. The results are supported by realistic three-dimensional time-dependent Poisson-Schrödinger calculations for systems and material parameters corresponding to experimentally accessible structures.

  12. InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Alonso-Álvarez, D.; Thomas, T.; Führer, M.; Hylton, N. P.; Ekins-Daukes, N. J.; Lackner, D.; Philipps, S. P.; Bett, A. W.; Sodabanlu, H.; Fujii, H.; Watanabe, K.; Sugiyama, M.; Nasi, L.; Campanini, M.

    2014-08-01

    Quantum wires (QWRs) form naturally when growing strain balanced InGaAs/GaAsP multi-quantum wells (MQW) on GaAs [100] 6° misoriented substrates under the usual growth conditions. The presence of wires instead of wells could have several unexpected consequences for the performance of the MQW solar cells, both positive and negative, that need to be assessed to achieve high conversion efficiencies. In this letter, we study QWR properties from the point of view of their performance as solar cells by means of transmission electron microscopy, time resolved photoluminescence and external quantum efficiency (EQE) using polarised light. We find that these QWRs have longer lifetimes than nominally identical QWs grown on exact [100] GaAs substrates, of up to 1 μs, at any level of illumination. We attribute this effect to an asymmetric carrier escape from the nanostructures leading to a strong 1D-photo-charging, keeping electrons confined along the wire and holes in the barriers. In principle, these extended lifetimes could be exploited to enhance carrier collection and reduce dark current losses. Light absorption by these QWRs is 1.6 times weaker than QWs, as revealed by EQE measurements, which emphasises the need for more layers of nanostructures or the use light trapping techniques. Contrary to what we expected, QWR show very low absorption anisotropy, only 3.5%, which was the main drawback a priori of this nanostructure. We attribute this to a reduced lateral confinement inside the wires. These results encourage further study and optimization of QWRs for high efficiency solar cells.

  13. An efficient finite-difference scheme for computation of electron states in free-standing and core-shell quantum wires

    NASA Astrophysics Data System (ADS)

    Arsoski, V. V.; Čukarić, N. A.; Tadić, M. Ž.; Peeters, F. M.

    2015-12-01

    The electron states in axially symmetric quantum wires are computed by means of the effective-mass Schrödinger equation, which is written in cylindrical coordinates φ, ρ, and z. We show that a direct discretization of the Schrödinger equation by central finite differences leads to a non-symmetric Hamiltonian matrix. Because diagonalization of such matrices is more complex it is advantageous to transform it in a symmetric form. This can be done by the Liouville-like transformation proposed by Rizea et al. (2008), which replaces the wave function ψ(ρ) with the function F(ρ) = ψ(ρ) √{ ρ } and transforms the Hamiltonian accordingly. Even though a symmetric Hamiltonian matrix is produced by this procedure, the computed wave functions are found to be inaccurate near the origin, and the accuracy of the energy levels is not very high. In order to improve on this, we devised a finite-difference scheme which discretizes the Schrödinger equation in the first step, and then applies the Liouville-like transformation to the difference equation. Such a procedure gives a symmetric Hamiltonian matrix, resulting in an accuracy comparable to the one obtained with the finite element method. The superior efficiency of the new finite-difference scheme (FDM) is demonstrated for a few ρ-dependent one-dimensional potentials which are usually employed to model the electron states in free-standing and core-shell quantum wires. The new scheme is compared with the other FDM schemes for solving the effective-mass Schrödinger equation, and is found to deliver energy levels with much smaller numerical error for all the analyzed potentials. It also gives more accurate results than the scheme of Rizea et al., except for the ground state of an infinite rectangular potential in freestanding quantum wires. Moreover, the PT symmetry is invoked to explain similarities and differences between the considered FDM schemes.

  14. An easy shortcut synthesis of size-controlled bismuth nanoparticles and their use in the SLS growth of high-quality colloidal cadmium selenide quantum wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2010-02-22

    An easy shortcut synthesis of thermally stable, near-monodisperse Bi nanoparticles from BiCl(3) and Na[N(SiMe(3))(2)] is described. The diameters of the Bi nanoparticles are controlled in the range of 4-29 nm by varying the amounts of BiCl(3) and Na[N(SiMe(3))(2)] employed. Standard deviations in their diameter distributions are 5-15% of the mean diameters, consistent with near monodispersity. These Bi nanoparticles are shown to be the best currently available catalysts for the solution-liquid-solid (SLS) growth of high-quality CdSe quantum wires.

  15. Circular photogalvanic effect induced by near-infrared radiation in InAs quantum wires patterned quasi-two-dimensional electron system

    SciTech Connect

    Jiang Chongyun; Chen Yonghai; Ma Hui; Yu Jinling; Liu Yu

    2011-06-06

    In this letter we investigated the InAs/InAlAs quantum wires (QWRs) superlattice by optically exciting the structure with near-infrared radiation. By varying the helicity of the radiation at room temperature we observed the circular photogalvanic effect related to the C{sub 2v} symmetry of the structure, which could be attributed to the formation of a quasi-two-dimensional system underlying in the vicinity of the QWRs pattern. The ratio of Rashba and Dresselhaus terms shows an evolution of the spin-orbit interaction in quasi-two-dimensional structure with the QWR layer deposition thickness.

  16. Energy dispersion of the electrosubbands in parabolic confining quantum wires: interplay of Rashba, Dresselhaus, lateral spin-orbit interaction and the Zeeman effect.

    PubMed

    Zhang, Tong-Yi; Zhao, Wei; Liu, Xue-Ming

    2009-08-19

    We have made a thorough theoretical investigation of the interplay of spin-orbit interactions (SOIs) resulting from Rashba, Dresselhaus and the lateral parabolic confining potential on the energy dispersion relation of the spin subbands in a parabolic quantum wire. The influence of an applied external magnetic field is also discussed. We show the interplay of different types of SOI, as well as the Zeeman effect, leads to rather complex and intriguing electrosubbands for different spin branches. The effect of different coupling strengths and different magnetic field strengths is also investigated.

  17. Luminescence of narrow RIE etched In 1-xGa xAs/InP and GaAs/Ga 1-xAl xAs quantum wires

    NASA Astrophysics Data System (ADS)

    Marzin, J. Y.; Izrael, A.; Birotheau, L.; Sermage, B.; Roy, N.; Azoulay, R.; Robein, D.; Benchimol, J.-L.; Henry, L.; Thierry-Mieg, V.; Ladan, F. R.; Taylor, L.

    We present low temperature optical data obtained on narrow quantum wires, fabricated with reactive ion etching and MOCVD overgrowth, in both In 1- xGa xAs/InP and GaAs/Ga 1- xAl xAs systems. One-dimensional quantum confinement effects are observed in both cases for the lowest lateral sizes ( Lx), in which carrier lifetimes remain of the order of one nanosecond. For In 1- xGa xAs/InP wires ( Lx down to 15 nm, quantum shifts of the photoluminescence peak (up to 30 meV) are observed. For GaAs/Ga 1- xAl xAs wires ( Lx down to 20 nm). We present photoluminescence excitation spectra showing additional lateral confinement effects, concerning mainly the polarization of the observed transitions.

  18. Influence of composition and substrate miscut on the evolution of (105)-terminated in-plane Si{sub 1−x}Ge{sub x} quantum wires on Si(001)

    SciTech Connect

    Watzinger, H.; Glaser, M.; Zhang, J. J.; Daruka, I.; Schäffler, F.

    2014-07-01

    Isolated in-plane wires on Si(001) are promising nanostructures for quantum transport applications. They can be fabricated in a catalyst-free process by thermal annealing of self-organized Si{sub 1−x}Ge{sub x} hut clusters. Here, we report on the influence of composition and small substrate miscuts on the unilateral wire growth during annealing at 570 °C. The addition of up to 20% of Si mainly affects the growth kinetics in the presence of energetically favorable sinks for diffusing Ge atoms, but does not significantly change the wire base width. For the investigated substrate miscuts of <0.12°, we find geometry-induced wire tapering, but no strong influence on the wire lengths. Miscuts <0.02° lead to almost perfect quantum wires terminated by virtually step-free (105) and (001) facets over lengths of several 100 nm. Generally, the investigated Si{sub 1−x}Ge{sub x} wires are metastable: Annealing at ≥600 °C under otherwise identical conditions leads to the well-known coexistence of Si{sub 1−x}Ge{sub x} pyramids and domes.

  19. Investigation of electrically active defects in InGaAs quantum wire intermediate-band solar cells using deep-level transient spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Saqri, Noor alhuda Al; Felix, Jorlandio F.; Aziz, Mohsin; Kunets, Vasyl P.; Jameel, Dler; Taylor, David; Henini, Mohamed; Abd El-sadek, Mahmmoud S.; Furrow, Colin; Ware, Morgan E.; Benamara, Mourad; Mortazavi, Mansour; Salamo, Gregory

    2017-01-01

    InGaAs quantum wire (QWr) intermediate-band solar cell-based nanostructures grown by molecular beam epitaxy are studied. The electrical and interface properties of these solar cell devices, as determined by current-voltage (I-V) and capacitance-voltage (C-V) techniques, were found to change with temperature over a wide range of 20-340 K. The electron and hole traps present in these devices have been investigated using deep-level transient spectroscopy (DLTS). The DLTS results showed that the traps detected in the QWr-doped devices are directly or indirectly related to the insertion of the Si δ-layer used to dope the wires. In addition, in the QWr-doped devices, the decrease of the solar conversion efficiencies at low temperatures and the associated decrease of the integrated external quantum efficiency through InGaAs could be attributed to detected traps E1QWR_D, E2QWR_D, and E3QWR_D with activation energies of 0.0037, 0.0053, and 0.041 eV, respectively.

  20. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Stark Effect Dependence on Hydrogenic Impurities in GaAs Parabolic Quantum-Well Wires

    NASA Astrophysics Data System (ADS)

    Wang, Sheng; Wei, Guo-Zhu; Han, Yu

    2009-11-01

    The ground-state and lowest excited-state binding energies of a hydrogenic impurity in GaAs parabolic quantum-well wires (QWWs) subjected to external electric and magnetic fields are investigated using the finite-difference method within the quasi-one-dimensional effective potential model. We define an effective radius ρeff of a cylindrical QWW, which can describe the strength of the lateral confinement. For the ground state, the position of the largest probability density of electron in x-y plane is located at a point, while for the lowest excited state, is located on a circularity whose radius is ρeff. The point and circularity are pushed along the left half of the center axis of the quantum-well wire by the electric field directed along the right half. When an impurity is located at the point or within the circularity, the ground-state or lowest excited-state binding energies are the largest; when the impurity is apart from the point or circularity, the ground-state or lowest excited-state binding energies start to decrease.

  1. Investigation of electrically active defects in InGaAs quantum wire intermediate-band solar cells using deep-level transient spectroscopy technique.

    PubMed

    Al Saqri, Noor Alhuda; Felix, Jorlandio F; Aziz, Mohsin; Kunets, Vasyl P; Jameel, Dler; Taylor, David; Henini, Mohamed; Abd El-Sadek, Mahmmoud S; Furrow, Colin; Ware, Morgan E; Benamara, Mourad; Mortazavi, Mansour; Salamo, Gregory

    2017-01-27

    InGaAs quantum wire (QWr) intermediate-band solar cell-based nanostructures grown by molecular beam epitaxy are studied. The electrical and interface properties of these solar cell devices, as determined by current-voltage (I-V) and capacitance-voltage (C-V) techniques, were found to change with temperature over a wide range of 20-340 K. The electron and hole traps present in these devices have been investigated using deep-level transient spectroscopy (DLTS). The DLTS results showed that the traps detected in the QWr-doped devices are directly or indirectly related to the insertion of the Si δ-layer used to dope the wires. In addition, in the QWr-doped devices, the decrease of the solar conversion efficiencies at low temperatures and the associated decrease of the integrated external quantum efficiency through InGaAs could be attributed to detected traps E1QWR_D, E2QWR_D, and E3QWR_D with activation energies of 0.0037, 0.0053, and 0.041 eV, respectively.

  2. Basic Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This module is the first in a series of three wiring publications; it serves as the foundation for students enrolled in a wiring program. It is a prerequisite to either "Residential Wiring" or "Commercial and Industrial Wiring." The module contains 16 instructional units that cover the following topics: occupational…

  3. Hydrostatic pressure and temperature effects on the electronic energy levels of a spherical quantum dot placed at the center of a nano-wire

    NASA Astrophysics Data System (ADS)

    Safarpour, Gh.; Moradi, M.; Barati, M.

    2012-10-01

    The effect of pressure and temperature on the electronic structure of an InAs spherical quantum dot located at the center of a GaAs cylindrical nano-wire have been determined using finite element method, within the effective mass approximation. The energy levels and transition energies are numerically calculated as a function of the dot radius, pressure and temperature. It is shown that the pressure and temperature effects are significant and should be considered in the study of low-dimensional semiconducting systems. The results show that; energy levels (i) decrease as the dot radius increases (ii) decrease as the pressure increases and (iii) increase as the temperature increases. For very small dot radii, the energy levels show unusual behavior, such that the energy levels increase as the pressure increases. We also found that the transition energy (i) increases as the dot size decreases (ii) increases as the pressure increases and (iii) decreases as the temperature increases.

  4. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    SciTech Connect

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  5. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-01

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  6. Self-assembled InAs quantum wire lasers on (001)InP at 1.6 {mu}m

    SciTech Connect

    Suarez, F.; Fuster, D.; Gonzalez, L.; Gonzalez, Y.; Garcia, J. M.; Dotor, M. L.

    2006-08-28

    In this work, the authors present results on the growth by atomic layer molecular beam epitaxy and characterization of lasers with one and three stacked layers of InAs quantum wires (QWRs) as active zone and aluminum-free waveguides on (001) InP substrates. The separated confinement heterostructure consists of n-p InP claddings and a waveguide formed by short period superlattices of (InP){sub 5}/(GaInAs){sub 4} lattice matched to the InP substrate. The optimum growth conditions (substrate temperature and As and P pressures) have been determined to obtain waveguides with a flat surface in order to get a uniform QWR distribution. Lasing emission is observed at a wavelength of {approx}1.66 {mu}m up to 270 K from 15x3000 {mu}m{sup 2} devices, with a threshold current density at that temperature of 2 kA/cm{sup 2}.

  7. Doping-induced stability in vanadium-doped ZnO quantum well wires (QWW): Combination of DFT calculations within experimental measurements

    NASA Astrophysics Data System (ADS)

    Yumak, A.; Goumri-Said, Souraya; Khan, Wilayat; Boubaker, Karem; Petkova, P.

    2016-07-01

    ZnO quantum well wires (QWW) have grown on glass substrates by an inexpensive, simplified and enhanced spray pyrolysis technique then doped by Vanadium. The effects of V-doping on the structural, morphological and optical properties of the QWW were investigated experimentally and theoretically. The accuracy of control can be achieved on functional performance by adjusting vanadium doping extent. The incorporation of Vanadium in ZnO-QWW induced the formation of band tailing in states. The interactions with phonons and the presence of a tail absorption profile are following the empirical Urbach law. The electronic structure using density functional theory have shown the changes induced by vanadium doping in ZnO-QWW, where the phonon band structure and density of states were reported. The DFT results showed a good agreement with the lattice compatibility theory as well as with the experimental results.

  8. Polarization-sensitive nanowire photodetectors based on solution-synthesized CdSe quantum-wire solids.

    PubMed

    Singh, Amol; Li, Xiangyang; Protasenko, Vladimir; Galantai, Gabor; Kuno, Masaru; Xing, Huili Grace; Jena, Debdeep

    2007-10-01

    Polarization-sensitive photodetectors are demonstrated using solution-synthesized CdSe nanowire (NW) solids. Photocurrent action spectra taken with a tunable white light source match the solution linear absorption spectra of the NWs, showing that the NW network is responsible for the device photoconductivity. Temperature-dependent transport measurements reveal that carriers responsible for the dark current through the nanowire solids are thermally excited across CdSe band gap. The NWs are aligned using dielectrophoresis between prepatterned electrodes using conventional optical photolithography. The photocurrent through the NW solid is found to be polarization-sensitive, consistent with complementary absorption (emission) measurements of both single wires and their ensembles. The range of solution-processed semiconducting NW materials, their facile synthesis, ease of device fabrication, and compatibility with a variety of substrates make them attractive for potential nanoscale polarization-sensitive photodetectors.

  9. Residential Wiring.

    ERIC Educational Resources Information Center

    Taylor, Mark

    The second in a series of three curriculum packages on wiring, these materials for a five-unit course were developed to prepare postsecondary students for entry-level employment in the residential wiring trade. The five units are: (1) blueprint reading and load calculations; (2) rough-in; (3) service; (4) trim out and troubleshooting; and (5) load…

  10. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  11. Optical properties of self-assembled arrays of InP quantum wires confined in nanotubes of chrysotile asbestos

    NASA Astrophysics Data System (ADS)

    Romanov, S. G.; Sotomayor Torres, C. M.; Yates, H. M.; Pemble, M. E.; Butko, V.; Tretijakov, V.

    1997-07-01

    Three-dimensional arrays of structurally confined InP wire-like nanostructures were grown in channels (nanotubes) of a chrysotile asbestos matrix by metalorganic chemical vapor deposition. The formation of the InP compound was confirmed by absorption spectroscopy, X-ray diffraction and Raman scattering. It is shown that the density of states around the band edge increases with the InP loading of the matrix. Photoluminescence spectra of the asbestos filled in with InP consist mainly of two bands: a high energy band which is interpreted to be associated with charge transfer from InP to defect states of the asbestos and a low energy band which is associated with energy relaxation in the InP deposit itself. We show that the optical properties of this material are dominated by the size and dimensionality of the pore system of the matrix for heavy loading and by the semiconductor-to-matrix interface for light loading of the matrix with InP.

  12. SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties.

    PubMed

    Xu, Xiangxing; Zhuang, Jing; Wang, Xun

    2008-09-17

    SnO2 quantum dots (QDs) and ultrathin nanowires (NWs) with diameters of approximately 0.5-2.5 and approximately 1.5-4.5 nm, respectively, were controllably synthesized in a simple solution system. They are supposed to be ideal models for studying the continuous evolution of the quantum-confinement effect in SnO2 1D --> 0D systems. The observed transition from strong to weak quantum confinement in SnO2 QDs and ultrathin NWs is interpreted through the use of the Brus effective-mass approximation and the Nosaka finite-depth well model. Photoluminescence properties that were coinfluenced by size effects, defects (oxygen vacancies), and surface capping are discussed in detail. With the SnO2 QDs as building blocks, various 2D porous structures with ordered hexagonal, distorted hexagonal, and square patterns were prepared on silicon-wafer surfaces and exhibited optical features of 2D photonic crystals and enhanced gas sensitivity.

  13. Wire Wise.

    ERIC Educational Resources Information Center

    Swanquist, Barry

    1998-01-01

    Discusses how today's technology is encouraging schools to invest in furnishings that are adaptable to computer use and telecommunications access. Explores issues concerning modularity, wiring management, ergonomics, durability, price, and aesthetics. (GR)

  14. Spatial filtering of radiation from wire lasers

    NASA Astrophysics Data System (ADS)

    Orlova, E. E.; Solyankin, P. M.; Angeluts, A. A.; Lee, A.; Kosareva, O. G.; Ozheredov, I. A.; Balakin, A. V.; Andreeva, V. A.; Panov, N. A.; Aksenov, V. N.; Shkurinov, A. P.

    2017-04-01

    In this letter we propose an approach to obtain directive radiation from wire lasers with subwavelength transverse dimensions and length much larger than the radiation wavelength (wire lasers) based on spatial filtering of their radiation using a combination of a spherical lens and a diaphragm. Theoretical modeling based on the antenna model for wire lasers shows that a directive beam with the uniform phase front can be formed when the diaphragm separates the maximum of the image field of the laser created by the lens. We demonstrate spatial filtering of wire laser radiation experimentally using a terahertz quantum cascade laser.

  15. No Wires.

    ERIC Educational Resources Information Center

    DeLoughry, Thomas J.

    1995-01-01

    The University of California at Santa Cruz has completed a successful test of a wireless computer network that would enable students and professors to get on line from anywhere on campus. The network, linked by radio waves, could save millions of dollars in campus wiring costs and would better meet student and faculty information needs. (MSE)

  16. Binding Energy of Hydrogen-Like Impurities in Quantum Well Wires of InSb/GaAs in a Magnetic Field

    PubMed Central

    2007-01-01

    The binding energy of a hydrogen-like impurity in a thin size-quantized wire of the InSb/GaAs semiconductors with Kane’s dispersion law in a magnetic fieldBparallel to the wire axis has been calculated as a function of the radius of the wire and magnitude ofB, using a variational approach. It is shown that when wire radius is less than the Bohr radius of the impurity, the nonparabolicity of dispersion law of charge carriers leads to a considerable increase of the binding energy in the magnetic field, as well as to a more rapid growth of binding energy with growth ofB.

  17. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.

    1992-08-11

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.

  18. Precision wire feeder for small diameter wire

    DOEpatents

    Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.

    1992-01-01

    A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.

  19. Wire Retrieves Broken Pin

    NASA Technical Reports Server (NTRS)

    Burow, G. H.

    1984-01-01

    Safety wire retains pieces of broken tool. Retrieval wire running through shaft of tool used to pull pieces of tool out of hole, should tool break during use. Safety wire concept suitable for pins subject to deflection or breakage.

  20. Automated wire preparation system

    NASA Astrophysics Data System (ADS)

    McCulley, Deborah J.

    The first step toward an automated wire harness facility for the aerospace industry has been taken by implementing the Wire Vektor 2000 into the wire harness preparation area. An overview of the Wire Vektor 2000 is given, including the facilities for wire cutting, marking, and transporting, for wire end processing, and for system control. Production integration in the Wire Vektor 2000 system is addressed, considering the hardware/software debug system and the system throughput. The manufacturing changes that have to be made in implementing the Wire Vektor 2000 are discussed.

  1. Binding energy of the donor impurities in GaAs-Ga 1- x Al x As quantum well wires with Morse potential in the presence of electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Aciksoz, Esra; Bayrak, Orhan; Soylu, Asim

    2016-10-01

    The behavior of a donor in the GaAs-Ga1-x Al x As quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters (D e, r e, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential. Project supported by the Turkish Science Research Council (TÜBİTAK) and the Financial Supports from Akdeniz and Nigde Universities.

  2. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. Trolley wires, trolley feeder wires, and bare signal wires shall be...

  3. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. Trolley wires, trolley feeder wires, and bare signal wires shall be...

  4. Windows: Life after Wire.

    ERIC Educational Resources Information Center

    Razwick, Jerry

    2003-01-01

    Although wired glass is extremely common in school buildings, the International Building Code adopted new standards that eliminate the use of traditional wired glass in K-12 schools, daycare centers, and athletic facilities. Wired glass breaks easily, and the wires can cause significant injuries by forming dangerous snags when the glass breaks.…

  5. Automatic wire twister.

    PubMed

    Smith, J F; Rodeheaver, G T; Thacker, J G; Morgan, R F; Chang, D E; Fariss, B L; Edlich, R F

    1988-06-01

    This automatic wire twister used in surgery consists of a 6-inch needle holder attached to a twisting mechanism. The major advantage of this device is that it twists wires significantly more rapidly than the conventional manual techniques. Testing has found that the ultimate force required to disrupt the wires twisted by either the automatic wire twister or manual techniques did not differ significantly and was directly related to the number of twists. The automatic wire twister reduces the time needed for wire twisting without altering the security of the twisted wire.

  6. Stretched Wire Mechanics

    SciTech Connect

    Bowden, Gordon; /SLAC

    2005-09-06

    Stretched wires are beginning to play an important role in the alignment of accelerators and synchrotron light sources. Stretched wires are proposed for the alignment of the 130 meter long LCLS undulator. Wire position technology has reached sub-micron resolution yet analyses of perturbations to wire straightness are hard to find. This paper considers possible deviations of stretched wire from the simple 2-dimensional catenary form.

  7. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  8. Wire Test Grip Fixture

    NASA Technical Reports Server (NTRS)

    Burke, Christopher S.

    2011-01-01

    Wire-testing issues, such as the gripping strains imposed on the wire, play a critical role in obtaining clean data. In a standard test frame fitted with flat wedge grips, the gripping action alone creates stresses on the wire specimen that cause the wire to fail at the grip location. A new test frame, which is outfitted with a vacuum chamber, negated the use of any conventional commercially available wire test fixtures, as only 7 in. (17.8 cm) existed between the grip faces. An innovative grip fixture was designed to test thin gauge wire for a variety of applications in an existing Instron test frame outfitted with a vacuum chamber.

  9. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1999-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 degree C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire (2) bundle of 15 or more wires (3) 70 C environment (4) vacuum of 10(exp -5) torr or less To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  10. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: (1) 3.7 amps per wire; (2) bundle of 15 or more wires; (3) 70 C environment: and (4) vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  11. Cable Bundle Wire Derating

    NASA Technical Reports Server (NTRS)

    Lundquist, Ray A.; Leidecker, Henning

    1998-01-01

    The allowable operating currents of electrical wiring when used in the space vacuum environment is predominantly determined by the maximum operating temperature of the wire insulation. For Kapton insulated wire this value is 200 C. Guidelines provided in the Goddard Space Flight Center (GSFC) Preferred Parts List (PPL) limit the operating current of wire within vacuum to ensure the maximum insulation temperature is not exceeded. For 20 AWG wire, these operating parameters are: 3.7 amps per wire, bundle of 15 or more wires, 70 C environment, and vacuum of 10(exp -5) torr or less. To determine the behavior and temperature of electrical wire at different operating conditions, a thermal vacuum test was performed on a representative electrical harness of the Hubble Space Telescope (HST) power distribution system. This paper describes the test and the results.

  12. Wire harness twisting aid

    NASA Technical Reports Server (NTRS)

    Casey, E. J.; Commadore, C. C.; Ingles, M. E.

    1980-01-01

    Long wire bundles twist into uniform spiral harnesses with help of simple apparatus. Wires pass through spacers and through hand-held tool with hole for each wire. Ends are attached to low speed bench motor. As motor turns, operator moves hand tool away forming smooth twists in wires between motor and tool. Technique produces harnesses that generate less radio-frequency interference than do irregularly twisted cables.

  13. Quantum phase slip noise

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.; Zaikin, Andrei D.

    2016-07-01

    Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .

  14. EMF wire code research

    SciTech Connect

    Jones, T.

    1993-11-01

    This paper examines the results of previous wire code research to determines the relationship with childhood cancer, wire codes and electromagnetic fields. The paper suggests that, in the original Savitz study, biases toward producing a false positive association between high wire codes and childhood cancer were created by the selection procedure.

  15. Flicking-wire drag tensioner

    NASA Technical Reports Server (NTRS)

    Dassele, M. A.; Fairall, H.

    1978-01-01

    Wire-drag system improves wire profile and applies consistent drag to wire. Wire drag is continuously adjustable from zero drag to tensile strength of wire. No-sag wire drag is easier to thread than former system and requires minimal downtime for cleaning and maintenance.

  16. Electronic properties of quasi one-dimensional quantum wire models under equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions in the presence of an in-plane magnetic field

    SciTech Connect

    Papp, E.; Micu, C.; Racolta, D.

    2013-11-13

    In this paper one deals with the theoretical derivation of energy bands and of related wavefunctions characterizing quasi 1D semiconductor heterostructures, such as InAs quantum wire models. Such models get characterized this time by equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions of dimensionless magnitude a under the influence of in-plane magnetic fields of magnitude B. We found that the orientations of the field can be selected by virtue of symmetry requirements. For this purpose one resorts to spin conservations, but alternative conditions providing sensible simplifications of the energy-band formula can be reasonably accounted for. Besides the wavenumber k relying on the 1D electron, one deals with the spin-like s=±1 factors in the front of the square root term of the energy. Having obtained the spinorial wavefunction, opens the way to the derivation of spin precession effects. For this purpose one resorts to the projections of the wavenumber operator on complementary spin states. Such projections are responsible for related displacements proceeding along the Ox-axis. This results in a 2D rotation matrix providing both the precession angle as well as the precession axis.

  17. Base Information Transport Infrastructure Wired (BITI Wired)

    DTIC Science & Technology

    2016-03-01

    Information Retrieval (DAMIR) UNCLASSIFIED BITI Wired 2016 MAR UNCLASSIFIED 2 Table of Contents Common Acronyms and Abbreviations for MAIS...Major Automated Information System MAIS OE - MAIS Original Estimate MAR – MAIS Annual Report MDA - Milestone Decision Authority MDD - Materiel...Then Year U.S.C- United States Code USD(AT&L) - Under Secretary of Defense for Acquisition, Technology, & Logistics BITI Wired 2016 MAR

  18. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  19. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  20. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and...

  1. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare..., and bare signal wires shall be adequately guarded: (a) At all points where men are required to work...

  2. 30 CFR 77.1802 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 77.1802 Section 77.1802... Wires and Trolley Feeder Wires § 77.1802 Insulation of trolley wires, trolley feeder wires and bare..., and bare signal wires shall be adequately guarded: (a) At all points where men are required to work...

  3. Nanowire terahertz quantum cascade lasers

    SciTech Connect

    Grange, Thomas

    2014-10-06

    Quantum cascade lasers made of nanowire axial heterostructures are proposed. The dissipative quantum dynamics of their carriers is theoretically investigated using non-equilibrium Green functions. Their transport and gain properties are calculated for varying nanowire thickness, from the classical-wire regime to the quantum-wire regime. Our calculation shows that the lateral quantum confinement provided by the nanowires allows an increase of the maximum operation temperature and a strong reduction of the current density threshold compared to conventional terahertz quantum cascade lasers.

  4. Thin wire pointing method

    NASA Technical Reports Server (NTRS)

    Green, G.; Mattauch, R. J. (Inventor)

    1983-01-01

    A method is described for forming sharp tips on thin wires, in particular phosphor bronze wires of diameters such as one-thousandth inch used to contact micron size Schottky barrier diodes, which enables close control of tip shape and which avoids the use of highly toxic solutions. The method includes dipping an end of a phosphor bronze wire into a dilute solution of sulfamic acid and applying a current through the wire to electrochemically etch it. The humidity in the room is controlled to a level of less than 50%, and the voltage applied between the wire and another electrode in the solutions is a half wave rectified voltage. The current through the wire is monitored, and the process is stopped when the current falls to a predetermined low level.

  5. Sintered wire annode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2007-12-25

    A plurality of high atomic number wires are sintered together to form a porous rod that is parted into porous disks which will be used as x-ray targets. A thermally conductive material is introduced into the pores of the rod, and when a stream of electrons impinges on the sintered wire target and generates x-rays, the heat generated by the impinging x-rays is removed by the thermally conductive material interspersed in the pores of the wires.

  6. Wire-inhomogeneity detector

    DOEpatents

    Gibson, G.H.; Smits, R.G.; Eberhard, P.H.

    1982-08-31

    A device for uncovering imperfections in electrical conducting wire, particularly superconducting wire, by detecting variations in eddy currents. Eddy currents effect the magnetic field in a gap of an inductor, contained in a modified commercial ferrite core, through which the wire being tested is passed. A small increase or decrease in the amount of conductive material, such as copper, in a fixed cross section of wire will unbalance a bridge used to measure the impedance of the inductor, tripping a detector and sounding an alarm.

  7. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface is disclosed. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest. 4 figs.

  8. Weld Wire Investigation Summary

    SciTech Connect

    Cunningham, M.A.

    1999-03-22

    After GTA welding reservoir A production/process prove-in assemblies, X-ray examination detected a lack of sidewall fusion. After examining several possible causes, it was determined that the weld wire filler metal was responsible, particularly the wire cleaning process. The final conclusion was that the filler wire must be abrasively cleaned in a particular manner to perform as required. The abrasive process was incorporated into the wire material specification, ensuring consistency for all reservoir GTA welding at AlliedSignal Federal Manufacturing and Technologies (FM and T).

  9. 1998 wire development workshop proceedings

    SciTech Connect

    1998-04-01

    This report consists of vugraphs of the presentations at the conference. The conference was divided into the following sessions: (1) First Generation Wire Development: Status and Issues; (2) First Generation Wire in Pre-Commercial Prototypes; (3) Second Generation Wire Development: Private Sector Progress and Issues; (4) Second Generation Wire Development: Federal Laboratories; and (5) Fundamental Research Issues for HTS Wire Development.

  10. Energy relaxation studies in In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As two-dimensional electron gases and quantum wires

    NASA Astrophysics Data System (ADS)

    Prasad, C.; Ferry, D. K.; Wieder, H. H.

    2004-04-01

    We present Joule heating measurements carried out over a wide temperature range on two-dimensional electron gases (2DEGs) and quantum wires of varying widths fabricated in an In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As heterostructure system that has a 25 nm wide In0.53Ga0.47As quantum well region. The power dissipated per electron is extracted and the electron-phonon coupling processes in these systems are studied. The temperature decay of the power loss at the 2DEG points towards unscreened piezoelectric coupling to the acoustic modes over temperatures of 1-30 K, with boundary scattering in the ohmic contacts gaining importance at very low temperatures. In the wires, we observe different behaviour and the effect of wire width and carrier density on the observed energy-loss rates. Possible phonon confinement and exponential suppression in these structures are also looked at.

  11. VIEW SOUTHEASTBUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTHEAST-BUILDING 4 NO. 1 WIRE MILL (1871) WIRE DRAWING MACHINE - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  12. Wire Array Photovoltaics

    NASA Astrophysics Data System (ADS)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  13. Majorana fermions in noisy Kitaev wires

    NASA Astrophysics Data System (ADS)

    Hu, Ying; Cai, Zi; Baranov, Mikhail A.; Zoller, Peter

    2015-10-01

    Robustness of edge states and non-Abelian excitations of topological states of matter promises quantum memory and quantum processing, which are naturally immune to microscopic imperfections such as static disorder. However, topological properties will not in general protect quantum systems from time-dependent disorder or noise. Here we take the example of a network of Kitaev wires with Majorana edge modes storing qubits to investigate the effects of classical noise in the crossover from the quasistatic to the fast fluctuation regime. We present detailed results for the Majorana edge correlations, and fidelity of braiding operations for both global and local noise sources preserving parity symmetry, such as random chemical potentials and phase fluctuations. While in general noise will induce heating and dephasing, we identify examples of long-lived quantum correlations in the presence of fast noise due to motional narrowing, where external noise drives the system rapidly between the topological and nontopological phases.

  14. Imagination Visualized in Wire.

    ERIC Educational Resources Information Center

    Skophammer, Karen

    2003-01-01

    Describes an art lesson achieved with a Very Special Artist (VSA) in residence for sixth- and seventh-grade students in which they created wire sculptures. Discusses how the VSA taught the students. Includes a list of art materials and characteristics of wire. (CMK)

  15. 2016 MOST WIRED.

    PubMed

    Barr, Paul; Butcher, Lola; Hoppszallern, Suzanna

    2016-07-01

    This year's IT survey shows that hospitals are aggressively fighting cyber crime and looking for ways to use data to help in the transition to value-based care. Find out who made the 2016 lists of Most Wired, Most Advanced, Most Improved and Most Wired-Small and Rural.

  16. Commercial and Industrial Wiring.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; Flowers, Gary

    This module is the third in a series of three wiring publications, includes additional technical knowledge and applications required for job entry in the commercial and industrial wiring trade. The module contains 15 instructional units that cover the following topics: blueprint reading and load calculations; tools and equipment; service;…

  17. Next Generation Wiring

    NASA Technical Reports Server (NTRS)

    Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo

    2007-01-01

    Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.

  18. Orbiter Kapton wire operational requirements and experience

    NASA Astrophysics Data System (ADS)

    Peterson, R. V.

    1994-09-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  19. Orbiter Kapton wire operational requirements and experience

    NASA Technical Reports Server (NTRS)

    Peterson, R. V.

    1994-01-01

    The agenda of this presentation includes the Orbiter wire selection requirements, the Orbiter wire usage, fabrication and test requirements, typical wiring installations, Kapton wire experience, NASA Kapton wire testing, summary, and backup data.

  20. Cavitation during wire brushing

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zou, Jun; Ji, Chen

    2016-11-01

    In our daily life, brush is often used to scrub the surface of objects, for example, teeth, pots, shoes, pool, etc. And cleaning rust and stripping paint are accomplished using wire brush. Wire brushes also can be used to clean the teeth for large animals, such as horses, crocodiles. By observing brushing process in water, we capture the cavitation phenomenon on the track of moving brush wire. It shows that the cavitation also can affect the surface. In order to take clear and entire pictures of cavity, a simplified model of one stainless steel wire brushing a boss is adopted in our experiment. A transparent organic tank filled with deionized water is used as a view box. And a high speed video camera is used to record the sequences. In experiment, ambient pressure is atmospheric pressure and deionized water temperature is kept at home temperature. An obvious beautiful flabellate cavity zone appears behind the moving steel wire. The fluctuation of pressure near cavity is recorded by a hydrophone. More movies and pictures are used to show the behaviors of cavitation bubble following a restoring wire. Beautiful tracking cavitation bubble cluster is captured and recorded to show.

  1. Superconducting wire manufactured

    NASA Astrophysics Data System (ADS)

    Fu, Yuexian; Sun, Yue; Xu, Shiming; Peng, Ying

    1985-10-01

    The MF Nb/Cu Extrusion Tube Method was used to manufacture 3 kg of stable practical MF Nb2Sn composite superconducting wire containing pure Cu(RRR approx. 200)/Ta. The draw state composite wire diameter was 0.56 mm, it contained 11,448 x 2.6 micron Nb core, and the twist distance was 1.5 cm. The composite wire cross-section was pure Cu/Ta/11,448 Nb core/Cu/ 91Sn-Cu; containing 22.8 v. % pure Cu, 13.3 v. % Ta; within the Ta layer to prevent Sn diffusion. The wire was sheathed in nonalkaline glass fiber as an insulating layer. A section of wire weighing 160 g was cut off and coiled it into a small solenoid. After reaction diffusion processing at 675 C/30 and curing by vacuum dipping in paraffin, it was measured in a Nb-Ti backfield of 7.2 T intensity, a current of 129 A was passed through the Nb3Sn solenoid and produced a strength of 2.5 T, the overall magnetic field intensity of the composite magnet reached 9.7 T. At this time, the wire full current density J sub c.w. = 5.2 x 10 to the 4th power A/sq cm; the effective current density J sub c (Nb + Sn - Cu) = 8.2 x 10 to the 4th power A/sq cm.

  2. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  3. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires §...

  4. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires §...

  5. 30 CFR 75.1003 - Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Insulation of trolley wires, trolley feeder wires and bare signal wires; guarding of trolley wires and trolley feeder wires. 75.1003 Section 75.1003... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trolley Wires and Trolley Feeder Wires §...

  6. In Situ Grown Quantum-Wire Lasers

    DTIC Science & Technology

    1994-04-07

    laser development . This latter effort also required substantial improvements in the MBE growth technology. Much of this technology is now ready for transfer to industry. In fact, a number of joint projects with industry are underway, as a result of this

  7. Anomalous Conductances in an Ultracold Quantum Wire

    NASA Astrophysics Data System (ADS)

    Kanász-Nagy, M.; Glazman, L.; Esslinger, T.; Demler, E. A.

    2016-12-01

    We analyze the recently measured anomalous transport properties of an ultracold gas through a ballistic constriction [S. Krinner et al., Proc. Natl. Acad. Sci. U.S.A. 113, 8144 (2016)]. The quantized conductance observed at weak interactions increases severalfold as the gas is made strongly interacting, which cannot be explained by the Landauer theory of single-channel transport. We show that this phenomenon is due to the multichannel Andreev reflections at the edges of the constriction, where the interaction and confinement result in a superconducting state. Andreev processes convert atoms of otherwise reflecting channels into the condensate propagating through the constriction, leading to a significant excess conductance. Furthermore, we find the spin conductance being suppressed by superconductivity; the agreement with experiment provides an additional support for our model.

  8. Phase Slips in Topological Superconductor Wire Devices

    NASA Astrophysics Data System (ADS)

    Goldberg, Samuel; Bergman, Doron; Pekker, David; Refael, Gil

    2012-02-01

    We make a detailed study of phase slips in topological superconducting wires and devices based on topological wires. We begin by investigating a device composed of a topological superconducting wire connected to a non-topological wire (T-S). In the T-segment only slips of the phase by multiples of 4π are allowed, while in the S-segment slips by 2π are also allowed. We show that near the interface, 2π phase slips are also allowed and we comment on the consequences of such phase slips for the Aharonov-Casher effect. We also consider an implementation of a q-bit consisting of a T-S-T device, where the quantum information is stored in the parity of the two topological segments via the four Majorana modes. We show that the central S-segment of this type of device can support 2π phase-slips which result in the decoherence of the q-bit.

  9. Superconducting properties of long TiN wires

    NASA Astrophysics Data System (ADS)

    Mironov, A. Yu.; Postolova, S. V.; Nasimov, D. A.

    2016-12-01

    The low-temperature transport properties of titanium nitride wires with the width comparable with or much larger than the superconducting coherence length are studied experimentally. It is shown that the reduction of the width of wires does not affect the transport properties at the temperatures above the superconducting transition temperature and electron transport in this temperature range is determined by quantum contributions to the conductivity from weak localization and electron-electron interaction. It is established that the reduction of the width of wires does not change the superconducting transition temperature but completely suppresses the topological Berezinskii-Kosterlitz-Thouless transition. It is found that the threshold magnetic field increases with a decrease in the width of wires.

  10. Wire brush fastening device

    DOEpatents

    Meigs, Richard A.

    1995-01-01

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  11. Wire brush fastening device

    DOEpatents

    Meigs, R.A.

    1995-09-19

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus. 13 figs.

  12. 2. TYPICAL OVERHEAD WIRE CONSTRUCTION CURVE GUY WIRE ARRANGEMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. TYPICAL OVERHEAD WIRE CONSTRUCTION - CURVE GUY WIRE ARRANGEMENT (ABANDONED WEST LEG OF WYE AT SIXTH AVENUE AND PINE STREET) - Yakima Valley Transportation Company Interurban Railroad, Trackage, Yakima, Yakima County, WA

  13. Flying wires at Fermilab

    SciTech Connect

    Gannon, J.; Crawford, C.; Finley, D.; Flora, R.; Groves, T.; MacPherson, M.

    1989-03-01

    Transverse beam profile measurement systems called ''Flying Wires'' have been installed and made operational in the Fermilab Main Ring and Tevatron accelerators. These devices are used routinely to measure the emittance of both protons and antiprotons throughout the fill process, and for emittance growth measurements during stores. In the Tevatron, the individual transverse profiles of six proton and six antiproton bunches are obtained simultaneously, with a single pass of the wire through the beam. Essential features of the hardware, software, and system operation are explained in the rest of the paper. 3 refs., 4 figs.

  14. One hundred angstrom niobium wire

    NASA Technical Reports Server (NTRS)

    Cline, H. E.; Rose, R. M.; Wulff, J.

    1968-01-01

    Composite of fine niobium wires in copper is used to study the size and proximity effects of a superconductor in a normal matrix. The niobium rod was drawn to a 100 angstrom diameter wire on a copper tubing.

  15. Wiring for space applications program

    NASA Astrophysics Data System (ADS)

    Hammoud, Ahmad

    1994-01-01

    The insulation testing and analysis consists of: identifying and prioritizing NASA wiring requirements; selecting candidate wiring constructions; developing test matrix and formulating test program; managing, coordinating, and conducting tests; and analyzing and documenting data, establishing guidelines and recommendations.

  16. Gaseous wire detectors

    SciTech Connect

    Va'vra, J.

    1997-08-01

    This article represents a series of three lectures describing topics needed to understand the design of typical gaseous wire detectors used in large high energy physics experiments; including the electrostatic design, drift of electrons in the electric and magnetic field, the avalanche, signal creation, limits on the position accuracy as well as some problems one encounters in practical operations.

  17. SCALING UNDERWATER EXPLODING WIRES

    DTIC Science & Technology

    heat of detonation of TNT in calories per gram. This scaling behavior extends the law of similarity six decades in terms of weight, from pounds to micropounds. The peak pressure for exploding-wire phenomena has been obtained from data and is emprically expressed as pm = 26,800 (cube root of W/R) to

  18. Basic Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Kaltwasser, Stan; And Others

    This guide is designed to assist teachers conducting a foundation course to prepare students for additional courses of training for entry-level employment in either the residential or commercial and industrial wiring trades. Included in the guide are 17 instructional units and the following sections of information for teachers: guidelines in using…

  19. Residential Wiring. Revised.

    ERIC Educational Resources Information Center

    Taylor, Mark

    This competency-based curriculum guide contains materials for conducting a course in residential wiring. A technically revised edition of the 1978 publication, the guide includes 28 units. Each instructional unit includes some or all of the following basic components: performance objectives, suggested activities for teachers and students,…

  20. NewsWire, 2002.

    ERIC Educational Resources Information Center

    Byrom, Elizabeth, Ed.; Bingham, Margaret, Ed.; Bowman, Gloria, Ed.; Shoemaker, Dan, Ed.

    2002-01-01

    This document presents the 3 2002 issues of the newsletter "NewsWire," (volume 5). Issue Number One focuses on collaborative Web projects. This issue begins with descriptions of four individual projects: "iEARN"; "Operation RubyThroat"; "Follow the Polar Huskies!"; and "Log in Your Animal Roadkill!" Features that follow include: "Bringing the…

  1. One-wire thermocouple

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Staimach, C. J.

    1977-01-01

    Nickel alloy/constantan device accurately measures surface temperature at precise locations. Device is moderate in cost and simplifies fabrication of highly-instrumented seamless-surface heat-transfer models. Device also applies to metal surfaces if constantan wire has insulative coat.

  2. Debate: Wired versus Wireless.

    ERIC Educational Resources Information Center

    Meeks, Glenn; Nair, Prakash

    2000-01-01

    Debates the issue of investing in wiring schools for desktop computer networks versus using laptops and wireless networks. Included are cost considerations and the value of technology for learning. Suggestions include using wireless networks for existing schools, hardwiring computers for new construction, and not using computers for elementary…

  3. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  4. A World without Wires

    ERIC Educational Resources Information Center

    Panettieri, Joseph C.

    2006-01-01

    The wireless bandwagon is rolling across Mississippi, picking up a fresh load of converts and turning calamity into opportunity. Traditional wired school networks, many of which unraveled during Hurricane Katrina, are giving way to advanced wireless mesh networks that frequently include voice-over-IP (VoIP) capabilities. Vendor funding is helping…

  5. Residential Wiring. Second Edition.

    ERIC Educational Resources Information Center

    Taylor, Mark; And Others

    This guide is designed to assist teachers conducting a course to prepare students for entry-level employment in the residential wiring trade. Included in the guide are six instructional units and the following sections of information for teachers: guidelines in using the unit components; academic and workplace skills classifications and…

  6. Reliable Wiring Harness

    NASA Technical Reports Server (NTRS)

    Gaspar, Kenneth C.

    1987-01-01

    New harness for electrical wiring includes plugs that do not loosen from vibration. Ground braids prevented from detaching from connectors and constrained so braids do not open into swollen "birdcage" sections. Spring of stainless steel encircles ground braid. Self-locking connector contains ratchet not only preventing connector from opening, but tightens when vibrated.

  7. Extending wire rope service life

    SciTech Connect

    Not Available

    1982-06-01

    Selecting the proper wire rope is not a simple procedure. Wire rope is a precision mining machine with scores of moving parts. It is therefore important for mining equipment users to know wire rope and how it is designed and constructed. Good lubrication and regular inspection is important for a safe and long service life.

  8. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7...

  9. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7...

  10. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7...

  11. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7...

  12. 46 CFR 111.60-11 - Wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Wire. 111.60-11 Section 111.60-11 Shipping COAST GUARD... Wiring Materials and Methods § 111.60-11 Wire. (a) Wire must be in an enclosure. (b) Wire must be component insulated. (c) Wire, other than in switchboards, must meet the requirements in sections 24.6.7...

  13. Unpacking of a Crumpled Wire from Two-Dimensional Cavities.

    PubMed

    Sobral, Thiago A; Gomes, Marcelo A F; Machado, Núbia R; Brito, Valdemiro P

    2015-01-01

    The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon.

  14. Unpacking of a Crumpled Wire from Two-Dimensional Cavities

    PubMed Central

    Sobral, Thiago A.; Gomes, Marcelo A. F.; Machado, Núbia R.; Brito, Valdemiro P.

    2015-01-01

    The physics of tightly packed structures of a wire and other threadlike materials confined in cavities has been explored in recent years in connection with crumpled systems and a number of topics ranging from applications to DNA packing in viral capsids and surgical interventions with catheter to analogies with the electron gas at finite temperature and with theories of two-dimensional quantum gravity. When a long piece of wire is injected into two-dimensional cavities, it bends and originates in the jammed limit a series of closed structures that we call loops. In this work we study the extraction of a crumpled tightly packed wire from a circular cavity aiming to remove loops individually. The size of each removed loop, the maximum value of the force needed to unpack each loop, and the total length of the extracted wire were measured and related to an exponential growth and a mean field model consistent with the literature of crumpled wires. Scaling laws for this process are reported and the relationship between the processes of packing and unpacking of wire is commented upon. PMID:26047315

  15. Wire insulation defect detector

    NASA Technical Reports Server (NTRS)

    Greulich, Owen R. (Inventor)

    2004-01-01

    Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.

  16. Dental Arch Wire

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Straightening teeth is an arduous process requiring months, often years, of applying corrective pressure by means of arch wires-better known as brace-which may have to be changed several times in the course of treatment. A new method has been developed by Dr. George Andreasen, orthodontist and dental scientist at the University of Iowa. The key is a new type of arch wire material, called Nitinol, with exceptional elasticity which helps reduce the required number of brace changes. An alloy of nickel and titanium, Nitinol was originally developed for aerospace applications by the Naval Ordnance Laboratory, now the Naval Surface Weapons Laboratory, White Oaks, Maryland. NASA subsequently conducted additional research on the properties of Nitinol and on procedures for processing the metal.

  17. From wires to cosmology

    NASA Astrophysics Data System (ADS)

    Amin, Mustafa A.; Baumann, Daniel

    2016-02-01

    We provide a statistical framework for characterizing stochastic particle production in the early universe via a precise correspondence to current conduction in wires with impurities. Our approach is particularly useful when the microphysics is uncertain and the dynamics are complex, but only coarse-grained information is of interest. We study scenarios with multiple interacting fields and derive the evolution of the particle occupation numbers from a Fokker-Planck equation. At late times, the typical occupation numbers grow exponentially which is the analog of Anderson localization for disordered wires. Some statistical features of the occupation numbers show hints of universality in the limit of a large number of interactions and/or a large number of fields. For test cases, excellent agreement is found between our analytic results and numerical simulations.

  18. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  19. Superconducting magnet wire

    DOEpatents

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  20. Printed wiring assembly cleanliness

    SciTech Connect

    Stephens, J.M.

    1992-12-01

    This work installed a product cleanliness test capability in a manufacturing environment. A previously purchased testing device was modified extensively and installed in a production department. The device, the testing process, and some soldering and cleaning variables were characterized to establish their relationship to the device output. The characterization provided information which will be required for cleanliness testing to be an adequate process control of printed wiring assembly soldering and cleaning processes.

  1. Wiring for aerospace applications

    NASA Technical Reports Server (NTRS)

    Christian, J. L., Jr.; Dickman, J. E.; Bercaw, R. W.; Myers, I. T.; Hammoud, A. N.; Stavnes, M.; Evans, J.

    1992-01-01

    In this paper, the authors summarize the current state of knowledge of arc propagation in aerospace power wiring and efforts by the National Aeronautics and Space Administration (NASA) towards the understanding of the arc tracking phenomena in space environments. Recommendations will be made for additional testing. A database of the performance of commonly used insulating materials will be developed to support the design of advanced high power missions, such as Space Station Freedom and Lunar/Mars Exploration.

  2. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    NASA Astrophysics Data System (ADS)

    Spurgeon, Joshua Michael

    /polymer composite films showed that their energy-conversion properties were comparable to those of an array attached to the growth substrate. High quantum efficiencies were observed relative to the packing density of the wires, particularly with illumination at high angles of incidence. The results indicate that an inexpensive, solid-state Si wire array solar cell is possible, and a plan is presented to develop one.

  3. Dual wire welding torch and method

    DOEpatents

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  4. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  5. Manually Operated Welding Wire Feeder

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor)

    2001-01-01

    A manual welding wire feeder apparatus comprising a bendable elongate metal frame with a feed roller mounted at the center thereof for rotation about an axis transverse to the longitudinal axis of the frame. The frame ends are turned up as tabs and each provided with openings in alignment with each other and the mid-width center of the roller surface. The tab openings are sized to accommodate welding wire and each extends to a side edge of the tab, both opening on the same side of the frame, whereby welding wire can be side-loaded onto the frame. On the side of the frame, opposite the roller a lock ring handle is attached tangentially and is rotatable about the attachment point and an axis perpendicular to the frame. The device is grasped in the hand normally used to hold the wire. A finger is placed through the loop ring and the frame positioned across the palm and lower fingers. The thumb is positioned atop the wire so it can be moved from the back of the frame across the roller, and towards the front. In doing so, the wire is advanced at a steady rate in axial alignment with the tab openings and roller. To accommodate different wire diameters the frame is bendable about its center in the plane of the frame axis and wire so as to keep the wire in sufficient tension against the roller and to keep the wire fixed when the frame is tilted and thumb pressure released.

  6. Metering Wheel-Wire Track Wire Boom Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Granoff, Mark S.

    2014-01-01

    The NASA MMS Spin Plane Double Probe (SDP) Deployer utilizes a helical path, rotating Metering Wheel and a spring loaded Wire "Holding" Track to pay out a "fixed end" 57 meter x 1.5 mm diameter Wire Boom stored between concentric storage cylinders. Unlike rotating spool type storage devices, the storage cylinders remain stationary, and the boom wire is uncoiled along the length of the cylinder via the rotation of the Metering Wheel. This uncoiling action avoids the need for slip-ring contacts since the ends of the wire can remain stationary. Conventional fixed electrical connectors (Micro-D type) are used to terminate to operational electronics.

  7. Ground-State Electronic Structure of Quasi-One-Dimensional Wires in Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Owen, E. T.; Barnes, C. H. W.

    2016-11-01

    We apply density-functional theory, in the local-density approximation, to a quasi-one-dimensional electron gas in order to quantify the effect of Coulomb and correlation effects in modulating and, therefore, patterning, the charge-density distribution. Our calculations are presented specifically for surface-gate-defined quasi-one-dimensional quantum wires in a GaAs-(AlGa)As heterostructure, but we expect our results to apply more generally for other low-dimensional semiconductor systems. We show that at high densities with strong confinement, screening of electrons in the direction transverse to the wire is efficient and density modulations are not visible. In the low-density, weak-confinement regime, the exchange-correlation potential induces small density modulations as the electrons are depleted from the wire. At the weakest confinements and lowest densities, the electron density splits into two rows, thereby forming a pair of quantum wires that lies beneath the surface gates. An additional double-well external potential forms at very low density which enhances this row-splitting phenomenon. We produce phase diagrams that show a transition between the presence of a single quantum wire in a split-gate structure and two quantum wires. We suggest that this phenomenon can be used to pattern and modulate the electron density in low-dimensional structures with particular application to systems where a proximity effect from a surface gate is valuable.

  8. Mesoscopic mechanical resonators as quantum noninertial reference frames

    NASA Astrophysics Data System (ADS)

    Katz, B. N.; Blencowe, M. P.; Schwab, K. C.

    2015-10-01

    An atom attached to a micrometer-scale wire that is vibrating at a frequency ˜100 MHz and with displacement amplitude ˜1 nm experiences an acceleration magnitude ˜109ms -2 , approaching the surface gravity of a neutron star. As one application of such extreme noninertial forces in a mesoscopic setting, we consider a model two-path atom interferometer with one path consisting of the 100 MHz vibrating wire atom guide. The vibrating wire guide serves as a noninertial reference frame and induces an in principle measurable phase shift in the wave function of an atom traversing the wire frame. We furthermore consider the effect on the two-path atom wave interference when the vibrating wire is modeled as a quantum object, hence functioning as a quantum noninertial reference frame. We outline a possible realization of the vibrating wire, atom interferometer using a superfluid helium quantum interference setup.

  9. The Drag of Streamline Wires

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1933-01-01

    Preliminary results are given of drag tests of streamline wires. Full-size wires were tested over a wide range of speeds in the N.A.C.A. high speed tunnel. The results are thus directly applicable to full-scale problems and include any compressibility effects encountered at the higher speeds. The results show how protuberances may be employed on conventional streamline wires to reduce the drag, and also show how the conventional wires compare with others having sections more like strut or symmetrical airfoil sections. Because the new wire sections developed are markedly superior aerodynamically to conventional wires, it is recommended that some of them be tested in service in order to investigate their relative susceptibility to vibration and to fatigue failure.

  10. Twin-Axial Wire Antenna

    DTIC Science & Technology

    2015-08-06

    08-2015 Publication Twin-Axial Wire Antenna David A. Tonn Naval Under Warfare Center Division, Newport 1176 Howell St., Code 00L, Bldg 102T...Approved for Public Release Distribution is unlimited Attorney Docket No. 300030 1 of 10 TWIN-AXIAL WIRE ANTENNA STATEMENT OF GOVERNMENT INTEREST...2 of 10 length of the antenna wire . This creates a high pass filter in the antenna and prevents current flow in the VLF/LF bands. [0005] U.S

  11. Photofabricated Wire-Grid Polarizers

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Dengler, Robert J.

    1992-01-01

    Freestanding metallic grids for use as polarizers for electromagnetic radiation at millimeter and submillimeter wavelengths made by simple modification of designs of freestanding square- and nearly-square cell metallic grids, according to proposal. Cross wires provide mechanical support, but distance between cross wires made greater than one wavelength so cross wires have little effect on polarizing characteristics of grid. Possible to fabricate grids commercially for frequencies up to several terahertz.

  12. Subminiature Hot-Wire Probes

    NASA Technical Reports Server (NTRS)

    Westphal, R. V.; Lemos, F. R.; Ligrani, P. M.

    1989-01-01

    Class of improved subminiature hot-wire flow-measuring probes developed. Smaller sizes yield improved resolution in measurements of practical aerodynamic flows. Probe made in one-wire, two-perpendicular-wire, and three-perpendicular-wire version for measurement of one, two, or all three components of flow. Oriented and positioned on micromanipulator stage and viewed under microscope during fabrication. Tested by taking measurements in constant-pressure turbulent boundary layer. New probes give improved measurements of turbulence quantities near surfaces and anisotropies of flows strongly influence relative errors caused by phenomena related to spatial resolution.

  13. Plasma Formation Around Single Wires

    NASA Astrophysics Data System (ADS)

    Duselis, Peter U.; Kusse, Bruce R.

    2002-12-01

    At Cornell's Laboratory of Plasma Studies, single wires of various metals were exploded using a ˜250 ns pulser with a rise time of ˜20 A/ns. It was found that the wires first experience a resistive heating phase that lasts 50-80 ns before a rapid collapse of voltage. From that point on, the voltage across the wire was negligible while the current through the wire continued to increase. We attribute this voltage collapse to the formation of plasma about the wire. Further confirmation of this explanation will be presented along with new experimental data describing preliminary spectroscopy results, the expansion rate of the plasma, and current flow along the wire as a function of radius. The resistance of the wire-electrode connection will be shown to significantly affect the energy deposition. Various diagnostics were used to obtain these experiments. Ultraviolet sensitive vacuum photodiodes and a framing camera with an 8 ns shutter were used to detect and measure the width of the visible light emitted by the plasma. A special wire holder was constructed that allowed the transfer of current from the wire to the surrounding plasma to be observed.

  14. Texture development in Galfenol wire

    NASA Astrophysics Data System (ADS)

    Boesenberg, A. J.; Restorff, J. B.; Wun-Fogle, M.; Sailsbury, H.; Summers, E.

    2013-05-01

    Galfenol (Fe-Ga alloy) wire fabrication provides a low cost alternative to directional solidification methods. This work evaluates the compositional dependence of the wire drawing suitability of Fe-Ga and characterizes the microstructural and magnetic properties of these wires. Wire has been produced with Ga contents between 10 at. % and 17 at. % to allow determination of the ductile to brittle transition (DTBT) in wire manufacture. Published results on chill cast bend specimens indicated that a DTBT occurs at roughly 15 at. % Ga. This DTBT was observed under tensile loading with a corresponding change in fracture behavior from transverse fracture to intergranular fracture. For improved magnetostrictive performance, higher Ga contents are desired, closer to the 17 at. % Ga evaluated in this work. Electron backscattered diffraction B-H loop and resonance measurements as a function of magnetic field (to determine modulus and coupling factor) are presented for as-drawn, furnace, and direct current (DC) annealed wire. Galfenol wire produced via traditional drawing methods is found to have a strong <110> (α) texture parallel to the drawing direction. As-drawn wire was observed to have a lower magnetic permeability and larger hysteresis than DC annealed wire. This is attributed to the presence of a large volume of crystalline defects; such as vacancies and dislocations.

  15. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations...

  16. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations...

  17. Neural wiring optimization.

    PubMed

    Cherniak, Christopher

    2012-01-01

    Combinatorial network optimization theory concerns minimization of connection costs among interconnected components in systems such as electronic circuits. As an organization principle, similar wiring minimization can be observed at various levels of nervous systems, invertebrate and vertebrate, including primate, from placement of the entire brain in the body down to the subcellular level of neuron arbor geometry. In some cases, the minimization appears either perfect, or as good as can be detected with current methods. One question such best-of-all-possible-brains results raise is, what is the map of such optimization, does it have a distinct neural domain?

  18. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Carpenter, K. H.

    1974-01-01

    The design, construction, and test history of a 4096 word by 18 bit random access NDRO Plated Wire Memory for use in conjunction with a spacecraft input/output and central processing unit is reported. A technical and functional description is given along with diagrams illustrating layout and systems operation. Test data is shown on the procedures and results of system level and memory stack testing, and hybrid circuit screening. A comparison of the most significant physical and performance characteristics of the memory unit versus the specified requirements is also included.

  19. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  20. Soft magnetic wires

    NASA Astrophysics Data System (ADS)

    Vázquez, M.

    2001-06-01

    An overview of the present state of the art on the preparation techniques, outstanding magnetic properties and applications of soft magnetic micro and nanowires is presented. Rapid solidification techniques (in-rotating-water quenching and drawing methods) to fabricate amorphous microwires with diameter in the range from 100 down to 1 μm are first described. Electrodeposition is also employed to prepare composite microtubes (magnetic coatings) and to fill porous membranes (diameter of the order of 0.1 μm). Magnetic behaviours of interest are related to the different hysteresis loops of samples: square-shaped loops typical of bistable behaviour, and nearly non-hysteretic loop with well-defined transverse anisotropy field. The role played by magnetic dipolar interactions in the magnetic behaviour of arrays of micro and nanowires is described. A particular analysis is done on the giant magnetoimpedance (GMI) effect in the radio and microwave frequency ranges exhibited by ultrasoft microwires. Finally, a few examples of applications are introduced for magnetostrictive and non-magnetostrictive wires, they are: “magnetoelastic pens”, micromotors; DC current-sensors based on GMI, and sharpened amorphous wire tips in spin polarised scanning tunneling microscopy.

  1. The Current in a Wire

    ERIC Educational Resources Information Center

    Thompson, Keith

    2009-01-01

    This little problem arose because I was frustrated with the standard electromagnetism texts, which show the magnetic field due to a current-bearing wire outside the wire [proportional to] 1/r and inside [proportional to] r. However, they never point out that the moving electrons must be influenced by the magnetic field created by the other moving…

  2. Wire and Packing Tape Sandwiches

    ERIC Educational Resources Information Center

    Rabinowitz, Sandy

    2009-01-01

    In this article, the author describes how students can combine craft wire with clear packing tape to create a two-dimensional design that can be bent and twisted to create a three-dimensional form. Students sandwich wire designs between two layers of tape. (Contains 1 online resource.)

  3. Aircraft wiring program status report

    NASA Technical Reports Server (NTRS)

    Beach, Rex

    1995-01-01

    In this Naval Air Warfare Center (NAWC) Aircraft Division status report, the general and wire and cable component activities, the systems engineering activities, the aircraft wiring lead maintenance activities, the NAVAIR/NASA interface activities, and the Base Realignment and Closure (BRAC) Commission recommendations are presented.

  4. Aircraft wiring program status report

    NASA Astrophysics Data System (ADS)

    Beach, Rex

    1995-11-01

    In this Naval Air Warfare Center (NAWC) Aircraft Division status report, the general and wire and cable component activities, the systems engineering activities, the aircraft wiring lead maintenance activities, the NAVAIR/NASA interface activities, and the Base Realignment and Closure (BRAC) Commission recommendations are presented.

  5. Particle in a Moebius wire and half-integer orbital angular momentum

    SciTech Connect

    Miliordos, Evangelos

    2011-06-15

    Restricting one particle on the rim of a Moebius strip (Moebius wire), its wave functions are explicitly calculated through the nonrelativistic quantum theory. Demanding the wave function to be single valued, it is proven that in the case of a narrow strip the orbital angular momentum of the particle takes both integer and half-integer values of ({h_bar}/2{pi}). In addition, the energy values of two chiral Moebius wires are proven to be equal.

  6. Forming Refractory Insulation On Copper Wire

    NASA Technical Reports Server (NTRS)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  7. Apollo experience report: Electrical wiring subsystem

    NASA Technical Reports Server (NTRS)

    White, L. D.

    1975-01-01

    The general requirements of the electrical wiring subsystems and the problem areas and solutions that occurred during the major part of the Apollo Program are detailed in this report. The concepts and definitions of specific requirements for electrical wiring; wire-connecting devices; and wire-harness fabrication, checkout, and installation techniques are discussed. The design and development of electrical wiring and wire-connecting devices are described. Mission performance is discussed, and conclusions and recommendations for future programs are presented.

  8. Tungsten wire for incandescent lamps

    SciTech Connect

    Walter, J.L.; Briant, C.L. )

    1990-09-01

    Tungsten wire for incandescent lamp filaments must operate at high temperatures and for long times. To meet these requirements, the grain morphology of the wire must be controlled to reduce the propensity for grain boundary sliding. The morphology is a function of the distribution of very small pockets of potassium in the wire and the mechanical processing from ingot to wire. The behavior of the filament is directly related to the grain morphology. This paper describes the mechanism by which the potassium is incorporated into and distributed in the ingot. The elongation and spheroidization of the bubbles during hot rolling and swaging is also examined and related to the grain morphology of wire. Some indications of the relationship between grain morphology and filament behavior are also given.

  9. Welding wire pressure sensor assembly

    NASA Technical Reports Server (NTRS)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  10. Q1D-Polarons in Rigid Boundary Cylindrical Wires: "Mixed-Coupling Approximation"

    NASA Astrophysics Data System (ADS)

    Senger, R. T.; Erçelebý, A.

    1998-02-01

    We consider the interaction of a confined electron with bulk polar-optical phonons in a cylindrical quantum well wire with infinite boundary potential. Expressions for the polaron self energy and mass are derived within a composite variational scheme consisting of a strong-coupling characterization imposed in the lateral directions and a weak-coupling LLP-counterpart structured along the length of the wire. The formulation is seen to be rather commendable and yields a sensible description of the Q1D-polaron in thin wires of weak or intermediate electron-phonon coupling strengths.

  11. Sintered wire cathode

    DOEpatents

    Falce, Louis R.; Ives, R. Lawrence

    2009-06-09

    A porous cathode structure is fabricated from a plurality of wires which are placed in proximity to each other in elevated temperature and pressure for a sintering time. The sintering process produces the porous cathode structure which may be divided into a plurality of individual porous cathodes, one of which may be placed into a dispenser cathode support which includes a cavity for containing a work function reduction material such as BaO, CaO, and Al.sub.2O.sub.3. The work function reduction material migrates through the pores of the porous cathode from a work replenishment surface adjacent to the cavity of the dispenser cathode support to an emitting cathode surface, thereby providing a dispenser cathode which has a uniform work function and therefore a uniform electron emission.

  12. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  13. Quantum Electronic Solids

    DTIC Science & Technology

    2013-03-07

    electronics at the nanoscale: superconductivity , metamaterials and nanoelectronics - exploiting quantum phenomena to create faster, smarter, smaller and...more energy-efficient devices SUB-AREAS IN PORTFOLIO: Superconductivity : find more-useful materials for high magnetic fields, microwave...Unclassified, Unlimited Distribution Superconducting Flexible Wire: MgB2@CNT; FeSe@CNT A. Zakhidov, University of Texas at Dallas MgB2

  14. Influence of Flaws of Wire Rod Surface, Inclusions and Voids on Wire Breaks in Superfine Wire Drawing

    NASA Astrophysics Data System (ADS)

    Yoshida, Kazunari; Norasethasopon, Somchai; Shinohara, Tetsuo; Ido, Ryuta

    By means of the finite element analysis (FEA), this study analyzed wire breaks that occurred in the drawing fine wires containing flaws on the wire surface, inclusion and void. The deformation behavior of an inclusion was examined, in which the inclusion's location is assumed to be on the center axis of the wire, and the cause of wire breaks and their prevention method were clarified. It was found that an inclusion diameter/wire diameter ratio of 0.4 or higher increases the likelihood of wire breaks occurring. When the inclusion is not assumed to be in the center axis of the wire, it was also found that necking and wire breaks appear more frequently. FEA showed that a flaw grows with each processing step, when a small circumferential flaw is placed on the wire rod surface, and eventually becomes a surface defect, which is called a check mark in practice.

  15. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same...

  16. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same...

  17. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same...

  18. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same...

  19. 29 CFR 1919.79 - Wire rope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Wire rope. 1919.79 Section 1919.79 Labor Regulations...) GEAR CERTIFICATION Certification of Shore-Based Material Handling Devices § 1919.79 Wire rope. (a) Wire rope and replacement wire rope shall be of the same size, same or better grade, and same...

  20. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Fouling wires. 234.231 Section 234.231... wires. Each set of fouling wires in a highway-rail grade crossing train detection circuit shall consist... detection circuit is shunted. Installation of a single duplex wire with single plug acting as fouling...

  1. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Fouling wires. 234.231 Section 234.231... wires. Each set of fouling wires in a highway-rail grade crossing train detection circuit shall consist... detection circuit is shunted. Installation of a single duplex wire with single plug acting as fouling...

  2. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Fouling wires. 234.231 Section 234.231... wires. Each set of fouling wires in a highway-rail grade crossing train detection circuit shall consist... detection circuit is shunted. Installation of a single duplex wire with single plug acting as fouling...

  3. Spring control of wire harness loops

    NASA Technical Reports Server (NTRS)

    Curcio, P. J.

    1979-01-01

    Negator spring control guides wire harness between movable and fixed structure. It prevents electrical wire harness loop from jamming or being severed as wire moves in response to changes in position of aircraft rudder. Spring-loaded coiled cable controls wire loop regardless of rudder movement.

  4. Universal conductance of nanowires near the superconductor-metal quantum transition.

    PubMed

    Sachdev, Subir; Werner, Philipp; Troyer, Matthias

    2004-06-11

    We consider wires near a zero temperature transition between superconducting and metallic states. The critical theory obeys hyperscaling, which leads to a universal frequency, temperature, and length dependence of the conductance; quantum and thermal phase slips are contained within this critical theory. Normal, superconducting, and mixed (SN) leads on the wire determine distinct universality classes. For the SN case, wires near the critical point have a universal dc conductance which is independent of the length of the wire at low temperatures.

  5. Wire Jewelry/Black History.

    ERIC Educational Resources Information Center

    Daniel, Robert A.; Robinson, Charles C.

    1984-01-01

    Described is a project which made the study of Black history more real to fifth graders by having them make wire jewelry, smaller versions of the ornate filigreed ironwork produced by slave blacksmiths. (RM)

  6. Demonstrating Forces between Parallel Wires.

    ERIC Educational Resources Information Center

    Baker, Blane

    2000-01-01

    Describes a physics demonstration that dramatically illustrates the mutual repulsion (attraction) between parallel conductors using insulated copper wire, wooden dowels, a high direct current power supply, electrical tape, and an overhead projector. (WRM)

  7. Modeling birds on wires.

    PubMed

    Aydoğdu, A; Frasca, P; D'Apice, C; Manzo, R; Thornton, J M; Gachomo, B; Wilson, T; Cheung, B; Tariq, U; Saidel, W; Piccoli, B

    2017-02-21

    In this paper we introduce a mathematical model to study the group dynamics of birds resting on wires. The model is agent-based and postulates attraction-repulsion forces between the interacting birds: the interactions are "topological", in the sense that they involve a given number of neighbors irrespective of their distance. The model is first mathematically analyzed and then simulated to study its main properties: we observe that the model predicts birds to be more widely spaced near the borders of each group. We compare the results from the model with experimental data, derived from the analysis of pictures of pigeons and starlings taken in New Jersey: two different image elaboration protocols allow us to establish a good agreement with the model and to quantify its main parameters. We also discuss the potential handedness of the birds, by analyzing the group organization features and the group dynamics at the arrival of new birds. Finally, we propose a more refined mathematical model that describes landing and departing birds by suitable stochastic processes.

  8. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits,...

  9. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits,...

  10. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits,...

  11. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits,...

  12. 30 CFR 75.701-4 - Grounding wires; capacity of wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Grounding wires; capacity of wires. 75.701-4... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Grounding § 75.701-4 Grounding wires; capacity of wires. Where grounding wires are used to ground metallic sheaths, armors, conduits,...

  13. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from...

  14. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... of insulated wire; splice in underground wire. Insulated wire shall be protected from...

  15. Smart Wire Grid: Resisting Expectations

    SciTech Connect

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  16. Method of manufacturing superconductor wire

    SciTech Connect

    Motowidlo, Leszek

    2014-09-16

    A method for forming Nb.sub.3Sn superconducting wire is provided. The method employs a powder-in-tube process using a high-tin intermetallic compound, such as MnSn.sub.2, for producing the Nb.sub.3Sn. The use of a high-tin intermetallic compound enables the process to perform hot extrusion without melting the high-tin intermetallic compound. Alternatively, the method may entail drawing the wire without hot extrusion.

  17. Brake-By-Wire Program

    DTIC Science & Technology

    2006-05-31

    SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Two design iterations for electric calipers and two systems (full brake by wire and hybrid brakes ...were developed for use on a ground vehicle. The program demonstrated a fully integrated electric caliper and full brake -by-wire system on a sports...release. Project Context The development of an electric brake caliper and associated systems for automotive application represented a significant

  18. Smart Wire Grid: Resisting Expectations

    ScienceCinema

    Ramsay, Stewart; Lowe, DeJim

    2016-07-12

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  19. 1 mil gold bond wire study.

    SciTech Connect

    Huff, Johnathon; McLean, Michael B.; Jenkins, Mark W.; Rutherford, Brian Milne

    2013-05-01

    In microcircuit fabrication, the diameter and length of a bond wire have been shown to both affect the current versus fusing time ratio of a bond wire as well as the gap length of the fused wire. This study investigated the impact of current level on the time-to-open and gap length of 1 mil by 60 mil gold bond wires. During the experiments, constant current was provided for a control set of bond wires for 250ms, 410ms and until the wire fused; non-destructively pull-tested wires for 250ms; and notched wires. The key findings were that as the current increases, the gap length increases and 73% of the bond wires will fuse at 1.8A, and 100% of the wires fuse at 1.9A within 60ms. Due to the limited scope of experiments and limited data analyzed, further investigation is encouraged to confirm these observations.

  20. HTS Wire Development Workshop: Proceedings

    SciTech Connect

    Not Available

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  1. Laser soldering of enameled wires

    NASA Astrophysics Data System (ADS)

    Böhm, S.; Hemken, G.; Noack, K.

    2009-02-01

    In electrical connections with enameled copper wires, isolation material residue can be found in the solder area when the coating is not stripped. This residue can lead to mechanical and electrical problems. In electronic devices and MEMS, quality requirements increase with rising thermal requirements for electrical contacts made from enameled copper wire. Examples for this exist in the area of automotive electronics, consumer electronics and in the field of machine design. Typical products with electrical connecting which use enameled wires include: micro-phones and speakers (especially for mobile phones), coil forms, small transformers, relays, clock coils, and so on. Due to increasing thermal and electrical requirements, the manufacturer of enameled wires continuously develops new isolating materials for the improvement of isolation classes, thermal resistance, etc. When using current bonding and solder processes, there exist problems for contacting enameled copper wire with these insulation layers. Therefore the Institute of Joining and Welding, Department Micro Joining developed a laser based solder process with which enamels copper wires can enable high quality electrical connections without a preceding stripping process.

  2. Connecting to Thermocouples with Fewer Lead Wires

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2003-01-01

    A simple technique has been devised to reduce the number of lead wires needed to connect an array of thermocouples to the instruments (e.g., voltmeters) used to read their output voltages. Because thermocouple wires are usually made of expensive metal alloys, reducing the number of lead wires can effect a considerable reduction in the cost of such an array. Reducing the number of wires also reduces the number of terminals and the amount of space needed to accommodate the wires.

  3. Fabrication of Pd-Cr wire

    NASA Technical Reports Server (NTRS)

    Diamond, Sidney; Leach, Dennen M.

    1989-01-01

    Fabrication of Pd-13 percent Cr alloy wires is described. Melting, casting, swaging and annealing processes are discussed. Drawing to reach two diameters (0.003 inch and 0.00176 inch) of wire is described. Representative micrographs of the Pd-Cr alloy at selected stages during wire fabrication are included. The resistance of the wire was somewhat lower, by about 15 to 20 percent, than comparable wire of other alloys used for strain gages.

  4. Geometric methods in quantum computation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    Recent advances in the physical sciences and engineering have created great hopes for new computational paradigms and substrates. One such new approach is the quantum computer, which holds the promise of enhanced computational power. Analogous to the way a classical computer is built from electrical circuits containing wires and logic gates, a quantum computer is built from quantum circuits containing quantum wires and elementary quantum gates to transport and manipulate quantum information. Therefore, design of quantum gates and quantum circuits is a prerequisite for any real application of quantum computation. In this dissertation we apply geometric control methods from differential geometry and Lie group representation theory to analyze the properties of quantum gates and to design optimal quantum circuits. Using the Cartan decomposition and the Weyl group, we show that the geometric structure of nonlocal two-qubit gates is a 3-Torus. After further reducing the symmetry, the geometric representation of nonlocal gates is seen to be conveniently visualized as a tetrahedron. Each point in this tetrahedron except on the base corresponds to a different equivalent class of nonlocal gates. This geometric representation is one of the cornerstones for the discussion on quantum computation in this dissertation. We investigate the properties of those two-qubit operations that can generate maximal entanglement. It is an astonishing finding that if we randomly choose a two-qubit operation, the probability that we obtain a perfect entangler is exactly one half. We prove that given a two-body interaction Hamiltonian, it is always possible to explicitly construct a quantum circuit for exact simulation of any arbitrary nonlocal two-qubit gate by turning on the two-body interaction for at most three times, together with at most four local gates. We also provide an analytic approach to construct a universal quantum circuit from any entangling gate supplemented with local gates

  5. Quantum tunneling between bent semiconductor nanowires

    SciTech Connect

    Sousa, A. A.; Chaves, Andrey Farias, G. A.; Pereira, T. A. S.; Peeters, F. M.

    2015-11-07

    We theoretically investigate the electronic transport properties of two closely spaced L-shaped semiconductor quantum wires, for different configurations of the output channel widths as well as the distance between the wires. Within the effective-mass approximation, we solve the time-dependent Schrödinger equation using the split-operator technique that allows us to calculate the transmission probability, the total probability current, the conductance, and the wave function scattering between the energy subbands. We determine the maximum distance between the quantum wires below which a relevant non-zero transmission is still found. The transmission probability and the conductance show a strong dependence on the width of the output channel for small distances between the wires.

  6. Plasma arc torch with coaxial wire feed

    DOEpatents

    Hooper, Frederick M

    2002-01-01

    A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

  7. Californium Recovery from Palladium Wire

    SciTech Connect

    Burns, Jon D.

    2014-08-01

    The recovery of 252Cf from palladium-252Cf cermet wires was investigated to determine the feasibility of implementing it into the cermet wire production operation at Oak Ridge National Laboratory’s Radiochemical Engineering Development Center. The dissolution of Pd wire in 8 M HNO3 and trace amounts of HCl was studied at both ambient and elevated temperatures. These studies showed that it took days to dissolve the wire at ambient temperature and only 2 hours at 60°C. Adjusting the ratio of the volume of solvent to the mass of the wire segment showed little change in the kinetics of dissolution, which ranged from 0.176 mL/mg down to 0.019 mL/mg. A successful chromatographic separation of 153Gd, a surrogate for 252Cf, from Pd was demonstrated using AG 50x8 cation exchange resin with a bed volume of 0.5 mL and an internal diameter of 0.8 cm.

  8. Theoretic analysis on electric conductance of nano-wire transistors

    NASA Astrophysics Data System (ADS)

    Tsai, N.-C.; Chiang, Y.-R.; Hsu, S.-L.

    2010-01-01

    By employing the commercial software nanoMos and Vienna ab Initio Simulation Package ( VASP), the performance of nano-wire field-effect transistors is investigated. In this paper, the Density-Gradient Model (DG Model) is used to describe the carrier transport behavior of the nano-wire transistor under quantum effects. The analysis of the drain current with respect to channel length, body dielectric constant and gate contact work function is presented. In addition, Fermi energy and DOS (Density of State) are introduced to explore the relative stability of carrier transport and electrical conductance for the silicon crystal with dopants. Finally, how the roughness of the surface of the silicon-based crystal is affected by dopants and their allocation can be illuminated by a few broken bonds between atoms near the skin of the crystal.

  9. Infrared spectral marker bands characterizing a transient water wire inside a hydrophobic membrane protein

    SciTech Connect

    Wolf, Steffen; Gerwert, Klaus; Freier, Erik; Cui, Qiang

    2014-12-14

    Proton conduction along protein-bound “water wires” is an essential feature in membrane proteins. Here, we analyze in detail a transient water wire, which conducts protons via a hydrophobic barrier within a membrane protein to create a proton gradient. It is formed only for a millisecond out of three water molecules distributed at inactive positions in a polar environment in the ground state. The movement into a hydrophobic environment causes characteristic shifts of the water bands reflecting their different chemical properties. These band shifts are identified by time-resolved Fourier Transform Infrared difference spectroscopy and analyzed by biomolecular Quantum Mechanical/Molecular Mechanical simulations. A non-hydrogen bonded (“dangling”) O–H stretching vibration band and a broad continuum absorbance caused by a combined vibration along the water wire are identified as characteristic marker bands of such water wires in a hydrophobic environment. The results provide a basic understanding of water wires in hydrophobic environments.

  10. Conductance decay of a surface hydrogen tunneling junction fabricated along a Si(001)- (2×1) -H atomic wire

    NASA Astrophysics Data System (ADS)

    Kawai, Hiroyo; Yeo, Yong Kiat; Saeys, Mark; Joachim, Christian

    2010-05-01

    On a Si(001)- (2×1) -H substrate, electrons tunneling through hydrogen atomic junctions fabricated between two surface dangling-bond (DB) wires are theoretically investigated using the elastic-scattering quantum-chemistry method. The surface states introduced in the Si band gap by removing H atoms from a Si(001)- (2×1) -H surface were calculated and also analyzed using a simple tight-binding model. The two-channel surface conductance of a DB wire results from a combination of through-space and through-lattice electronic couplings between DB states. The conductance of the DB wire-H-junction-DB wire structure decreases exponentially with the length of H junction with an inverse decay rate ranging from 0.20 to 0.23Å-1 , depending on the energy. When the DB wire-H-junction-DB wire structure is contacted by Au nanoelectrodes, the transmission resonances corresponding to the DB wire states split, demonstrating a coupling of the DB wires through short surface hydrogen atomic junctions. This splitting decreases with the length of H junction between the DB wires with an inverse decay length ranging from 0.22 to 0.44Å-1 , indicating that such an atomic scale surface tunneling junction is not a very good insulator.

  11. Quantitative assessment of tension in wires of fine-wire external fixators.

    PubMed

    Dong, Yin; Saleh, Micheal; Yang, Lang

    2005-01-01

    Fine-wire fixators are widely used in fracture management. Stable fixation requires the wires maintaining tension throughout the treatment. Clinical experience indicates that wire site complications relate to wire tension. However, there lacks a method to assess wire tension quantitatively in the clinic. The objective of this study was to develop a quantitative assessment method for in situ wire tension and to investigate the factors that influence the assessment. An apparatus was developed based on a linear variable differential transformer (LVDT) displacement transducer that measured the deflection of the testing wire with respect to a parallel reference wire when a constant transverse force of 30N was applied to the testing wire. The wire deflection measured was correlated with the wire tension measured by the force transducer. The experiment was performed under different conditions to assess the effect of bone-clamp distance, reference wire tension, number of wires, and fracture stiffness. The results showed that there was a significant and negative correlation between wire tension and deflection and the bone-clamp distance was the most important factor that affected the wire tension-deflection relationship. The assessment method makes it possible to investigate the relationship between wire tension and wire site complications in the clinic.

  12. Twist knot cerclage wire: the appropriate wire tension for knot construction and fracture stability.

    PubMed

    Harnroongroj, Thossart

    1998-09-01

    OBJECTIVE: The aim was to find the best wire tension in order to permit a reliable first twist and simultaneously provide the best stability of fracture fixation from the twist knot cerclage wire. DESIGN: Wires at different distal tensions, looped around the fracture, were measured during twist and compared with the yield strength of the wire. Then, the fracture stability of the twist knot cerclage wire was determined from the pull-out strength. METHODS: In order to measure wire tension during twist knot construction, an instrument was designed using the tension load cell of a universal testing machine, a 15 degrees oblique osteotomy femoral shaft and 1.25 mm diameter wire. A wire tensioner and a pair of extraction grips were then used for measuring the pull-out strength of the cerclage wire fixation. RESULT: Three wire tensions (160, 200 and 240 N) were used as looped wire for the first twist knot construction. The 200 N tension cerclage wire provided the best fracture stability. CONCLUSION: It was found that 200 N was the best wire tension for the construction of a twist knot cerclage wire. RELEVANCE: When a cerclage wire is twisted at a femoral shaft using 1.25 mm diameter wire, a wire tension of 200 N should be used to achieve a reliable first twist and the best stability of fracture fixation.

  13. Plasma spraying with wire feedstock

    SciTech Connect

    Scholl, M.

    1994-12-31

    Plasma spraying has been limited to using powder feedstocks for a number of reasons. One limitation has been the low energy output of conventional plasma guns. The advent of high energy plasma spraying (HEPS) devices and the associated technology has effectively removed this functional limitation. With HEPS, the combination of high gas velocities and high thermal plasma temperatures coupled with a large exit gas volume enables wire and rod feedstocks to be effectively utilized. Rather than a bulk melting mechanism, a model based on ablation phenomena is considered. The paper examines an analysis of melting phenomena and presents a simple model for molten droplet formation for plasma spraying using wire feedstocks.

  14. Wire Detection Algorithms for Navigation

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Camps, Octavia I.

    2002-01-01

    In this research we addressed the problem of obstacle detection for low altitude rotorcraft flight. In particular, the problem of detecting thin wires in the presence of image clutter and noise was studied. Wires present a serious hazard to rotorcrafts. Since they are very thin, their detection early enough so that the pilot has enough time to take evasive action is difficult, as their images can be less than one or two pixels wide. Two approaches were explored for this purpose. The first approach involved a technique for sub-pixel edge detection and subsequent post processing, in order to reduce the false alarms. After reviewing the line detection literature, an algorithm for sub-pixel edge detection proposed by Steger was identified as having good potential to solve the considered task. The algorithm was tested using a set of images synthetically generated by combining real outdoor images with computer generated wire images. The performance of the algorithm was evaluated both, at the pixel and the wire levels. It was observed that the algorithm performs well, provided that the wires are not too thin (or distant) and that some post processing is performed to remove false alarms due to clutter. The second approach involved the use of an example-based learning scheme namely, Support Vector Machines. The purpose of this approach was to explore the feasibility of an example-based learning based approach for the task of detecting wires from their images. Support Vector Machines (SVMs) have emerged as a promising pattern classification tool and have been used in various applications. It was found that this approach is not suitable for very thin wires and of course, not suitable at all for sub-pixel thick wires. High dimensionality of the data as such does not present a major problem for SVMs. However it is desirable to have a large number of training examples especially for high dimensional data. The main difficulty in using SVMs (or any other example-based learning

  15. Designing potentials by sculpturing wires

    SciTech Connect

    Della Pietra, Leonardo; Aigner, Simon; Groth, Soenke; Hagen, Christoph von; Schmiedmayer, Joerg; Bar-Joseph, Israel; Lezec, Henri J.

    2007-06-15

    Magnetic trapping potentials for atoms on atom chips are determined by the current flow in the chip wires. By modifying the shape of the conductor we can realize specialized current flow patterns and therefore microdesign the trapping potentials. We have demonstrated this by nano-machining an atom chip using the focused ion beam technique. We built a trap, a barrier, and using a Bose-Einstein Condensate as a probe we showed that by polishing the conductor edge the potential roughness on the selected wire can be reduced. Furthermore, we give different other designs and discuss the creation of a one-dimensional magnetic lattice on an atom chip.

  16. Evaluation of high temperature stranded hookup wire

    NASA Technical Reports Server (NTRS)

    Donnelly, J. H.; Moore, H. J., Jr.

    1967-01-01

    Tests are performed on wire and insulation materials to determine selection for electronic space assemblies. Wire characteristics of tensile strength, flexibility, conductivity, and general workability are tested. Knowledge of the advantages and limitations of these materials should prevent overspecification.

  17. Electrical wire insulation and electromagnetic coil

    DOEpatents

    Bich, George J.; Gupta, Tapan K.

    1984-01-01

    An electromagnetic coil for high temperature and high radiation application in which glass is used to insulate the electrical wire. A process for applying the insulation to the wire is disclosed which results in improved insulation properties.

  18. Wire Capture Programs for Macintosh and IBM.

    ERIC Educational Resources Information Center

    Wiley, Gale

    1989-01-01

    Discusses wire capture programs (computer programs which gather and process wire services such as the Associated Press or United Press) for computer labs in journalism departments. Describes details of such programs for Macintosh, IBM, and IBM clones. (SR)

  19. Quality control of microelectronic wire bonds

    NASA Technical Reports Server (NTRS)

    Thiel, R. A.; Schmidt, G. D.

    1975-01-01

    Report evaluates ultrasonic bonding of small-diameter aluminum wire joined to ceramic substrates metalized with thin-film and thick-film gold. Quick testing technique for nondestructive location of poor wire bonds is also presented.

  20. New insulation constructions for aerospace wiring applications

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1994-01-01

    Outlined in this presentation is the background to insulation constructions for aerospace wiring applications, the Air Force wiring policy, the purpose and contract requirements of new insulation constructions, the test plan, and the test results.

  1. Extremely sub-wavelength THz metal-dielectric wire microcavities.

    PubMed

    Feuillet-Palma, Cheryl; Todorov, Yanko; Steed, Robert; Vasanelli, Angela; Biasiol, Giorgio; Sorba, Lucia; Sirtori, Carlo

    2012-12-17

    We demonstrate minimal volume wire THz metal-dielectric micro-cavities, in which all but one dimension have been reduced to highly sub-wavelength values. The smallest cavity features an effective volume of 0.4 µm(3), which is ~5.10(-7) times the volume defined by the resonant vacuum wavelength (λ = 94 µm) to the cube. When combined with a doped multi-quantum well structure, such micro-cavities enter the ultra-strong light matter coupling regime, even if the total number of electrons participating to the coupling is only in the order of 10(4), thus much less than in previous studies.

  2. Further Studies Of Hot-Wire Anemometry

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert; Logan, Pamela; Bershader, Daniel

    1990-01-01

    Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Represents extension of work described in "Hot-Wire Anemometry Versus Laser-Induced Fluorescence" (ARC-11802). Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF).

  3. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  4. NEMA wire and cable standards development programs

    NASA Technical Reports Server (NTRS)

    Baird, Robert W.

    1994-01-01

    The National Electrical Manufacturers Association (NEMA) is the nation's largest trade association for manufacturers of electrical equipment. Its member companies produce components, end-use equipment and systems for the generation, transmission, distribution, control and use of electricity. The wire and cable division is presented in 6 sections: building wire and cable, fabricated conductors, flexible cords, high performance wire and cable, magnet wire, and power and control cable. Participating companies are listed.

  5. Life prediction of aging aircraft wiring systems

    NASA Technical Reports Server (NTRS)

    Slenski, George

    1995-01-01

    The program goal is to develop a computerized life prediction model capable of identifying present aging progress and predicting end of life for aircraft wiring. A summary is given in viewgraph format of progress made on phase 1 objectives, which were to identify critical aircraft wiring problems; relate most common failures identified to the wire mechanism causing the failure; assess wiring requirments, materials, and stress environment for fighter aircraft; and demonstrate the feasibility of a time-temperature-environment model.

  6. Moving Large Wiring-Harness Boards

    NASA Technical Reports Server (NTRS)

    Shepherd, Samuel D.; Gurman, Isaac

    1990-01-01

    Carrier for wiring-harness fabrication boards enables lone operator to move board easily and safely. Holds harness while operator fabricating, while being stored, and being transported to equipment frame for mounting. When positioned for assembly of wiring harness, board and carrier give operator easy and convenient access to wires and cables, when positioned for transfer of wiring harness to or from storage area, carrier holds board securely while moved by one person.

  7. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  8. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  9. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  10. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  11. 30 CFR 75.906 - Trailing cables for mobile equipment, ground wires, and ground check wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Trailing cables for mobile equipment, ground wires, and ground check wires. 75.906 Section 75.906 Mineral Resources MINE SAFETY AND HEALTH..., ground wires, and ground check wires. Trailing cables for mobile equipment shall contain one or...

  12. Space Wire Upper Layer Protocols

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn; Schnurr, Richard; Gilley, Daniel; Parkes, Steve

    2004-01-01

    This viewgraph presentation addresses efforts to provide a streamlined approach for developing SpaceWire Upper layer protocols which allows industry to drive standardized communication solutions for real projects. The presentation proposes a simple packet header that will allow flexibility in implementing a diverse range of protocols.

  13. Flexible substrate for printed wiring

    NASA Technical Reports Server (NTRS)

    Asakura, M.; Yabe, K.; Tanaka, H.; Soda, A.

    1982-01-01

    A very flexible substrate for printed wiring is disclosed which is composed of a blend of phenoxy resin-polyisocyanate-brominated epoxy resin in which the equivalent ration of the functional groups is hydroxyl grouped: isocyanate group: epoxy group = 1:0.2 to 2:0.5 to 3. The product has outstanding solder resistance and is applied to metal without using adhesives.

  14. Transport Through Carbon Nanotube Wires

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  15. Health care's 100 most wired.

    PubMed

    Solovy, A; Serb, C

    1999-02-01

    They're wired all right, and America's 100 most techno-savvy hospitals and health systems share one more thing: a commitment to using technology to link with employees, patients, suppliers, and insurers. "We want to be a health care travel agency for our community," says one chief information officer. "And we see Internet technology as a key."

  16. Ultrasonic Calibration Wire Test Phantom

    SciTech Connect

    Lehman, S K; Fisher, K A; Werve, M; Chambers, D H

    2004-09-24

    We designed and built a phantom consisting of vertical wires maintained under tension to be used as an ultrasonic test, calibration, and reconstruction object for the Lawrence Livermore National Laboratory annular array scanner. We provide a description of the phantom, present example data sets, preliminary reconstructions, example metadata, and MATLAB codes to read the data.

  17. Fabrication of tungsten wire needles

    SciTech Connect

    Roder, A.

    1983-02-01

    Fine point needles for field emissoin are conventionally produced by electrolytically or chemically etching tungsten wire. Points formed in this manner have a typical tip radius of about 0.5 microns and a cone angle of some 30 degrees. The construction of needle matrix detector chambers has created a need for tungsten needles whose specifications are: 20 mil tungsten wire, 1.5 inch total length, 3 mm-long taper (resulting in a cone angle of about 5 degrees), and 25 micron-radius point (similar to that found on sewing needles). In the process described here for producing such needles, tungsten wire, immersed in a NaOH solution and in the presence of an electrode, is connected first to an ac voltage and then to a dc supply, to form a taper and a point on the end of the wire immersed in the solution. The process parameters described here are for needles that will meet the above specifications. Possible variations will be discussed under each approprite heading.

  18. Plated wire random access memories

    NASA Technical Reports Server (NTRS)

    Gouldin, L. D.

    1975-01-01

    A program was conducted to construct 4096-work by 18-bit random access, NDRO-plated wire memory units. The memory units were subjected to comprehensive functional and environmental tests at the end-item level to verify comformance with the specified requirements. A technical description of the unit is given, along with acceptance test data sheets.

  19. Vocational Preparation Curriculum: Electrical Wiring.

    ERIC Educational Resources Information Center

    Usoro, Hogan

    This document is a curriculum guide for instructors teaching vocational preparation for electrical wiring to special needs students. The purpose of the curriculum guide is to provide minimum skills for disadvantaged and handicapped students entering the mainstream; to supplement vocational skills of those students already in a regular training…

  20. (Almost) naked quantum criticality with non-Fermi liquid behavior at the onset of inhomogeneous Larkin-Ovchinikov superfluidity in two dimensions

    NASA Astrophysics Data System (ADS)

    Strack, Philipp; Piazza, Francesco

    2015-03-01

    We present a renormalization group analysis for the non-Fermi liquid behavior and quantum criticality arising in coupled quantum wires of attractively interacting fermions with spin imbalance in two spatial dimensions.

  1. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit....

  2. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit....

  3. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guy wires. 57.12047 Section 57.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.12047 Guy wires. Guy wires of poles supporting high-voltage transmission lines shall meet...

  4. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Guy wires. 57.12047 Section 57.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.12047 Guy wires. Guy wires of poles supporting high-voltage transmission lines shall meet...

  5. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit....

  6. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Guy wires. 57.12047 Section 57.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.12047 Guy wires. Guy wires of poles supporting high-voltage transmission lines shall meet...

  7. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit....

  8. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  9. 75 FR 4584 - Wire Decking From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-28

    ... COMMISSION Wire Decking From China AGENCY: United States International Trade Commission. ACTION: Scheduling... retarded, by reason of subsidized and less-than-fair-value imports from China of wire decking, provided for... Commerce has defined the subject merchandise as ``welded-wire rack decking, which is also known as,...

  10. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  11. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  12. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  13. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Guy wires. 57.12047 Section 57.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.12047 Guy wires. Guy wires of poles supporting high-voltage transmission lines shall meet...

  14. 30 CFR 57.12047 - Guy wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Guy wires. 57.12047 Section 57.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Underground § 57.12047 Guy wires. Guy wires of poles supporting high-voltage transmission lines shall meet...

  15. 47 CFR 32.2431 - Aerial wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Aerial wire. 32.2431 Section 32.2431... FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2431 Aerial wire. (a) This account shall include the original cost of bare line wire and other material used in...

  16. 49 CFR 236.838 - Wire, shunt.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Wire, shunt. 236.838 Section 236.838 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Wire, shunt. A wire forming part of a shunt circuit....

  17. Home and School Technology: Wired versus Wireless.

    ERIC Educational Resources Information Center

    Van Horn, Royal

    2001-01-01

    Presents results of informal research on smart homes and appliances, structured home wiring, whole-house audio/video distribution, hybrid cable, and wireless networks. Computer network wiring is tricky to install unless all-in-one jacketed cable is used. Wireless phones help installers avoid pre-wiring problems in homes and schools. (MLH)

  18. Frequency response in short thermocouple wires

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Meeks, E. L.; Ma, J.; Fralick, G. C.

    1992-01-01

    Theoretical expressions are derived for the steady state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for a nonuniform wire with unequal material properties and wire diameters across the junction. The amplitude ratio at low frequency omega approaches 0 agrees with the results of Scadron and Warshawsky (1952) for a steady state temperature distribution. Moreover, the frequency response for a nonuniform wire in the limit of infinite length l approaches infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties. Theoretical expressions are also derived for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire and a two material wire with unequal material properties across the junction. For the case of a one material supported wire, an exact solution is derived which compares favorably with an approximate expression that only matches temperatures at the support junction. Moreover, for the case of a two material supported wire, an analytical expression is derived that closely correlates numerical results. Experimental measurements are made for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 pct. with the theoretical predictions of Forney and Fralick (1991). This is accomplished by choosing a natural frequency omega sub n for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at

  19. Wire rope and method of making same

    SciTech Connect

    Verreet, R.

    1984-06-19

    A wire rope, particularly a non-twistable wire rope, wherein an annulus of outer strands surrounds a wire rope center with a central strand and one or more annuli of neighboring strands surrounding the central strand. The wires of the strands in the center do not intersect each other. The entire center or at least some of its strands are densified prior to or during application of the outer strands. Alternatively, or in addition to such densification, at least some strands of the center are assembled of wires having an other than circular outline to thereby reduce the combined cross-sectional area of voids in the center.

  20. Emittance growth due to Tevatron flying wires

    SciTech Connect

    Syphers, M; Eddy, Nathan

    2004-06-01

    During Tevatron injection, Flying Wires have been used to measure the transverse beam size after each transfer from the Main Injector in order to deduce the transverse emittances of the proton and antiproton beams. This amounts to 36 + 9 = 45 flies of each of 3 wire systems, with an individual wire passing through each beam bunch twice during a single ''fly''. below they estimate the emittance growth induced by the interaction of the wires with the particles during these measurements. Changes of emittance from Flying Wire measurements conducted during three recent stores are compared with the estimations.

  1. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Tagging of wires and interference of wires or tags... SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.76 Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise...

  2. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Tagging of wires and interference of wires or tags... SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.76 Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise...

  3. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved...

  4. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved...

  5. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved...

  6. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved...

  7. 49 CFR 236.76 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Tagging of wires and interference of wires or tags... SYSTEMS, DEVICES, AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.76 Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise...

  8. 30 CFR 75.1003-1 - Other requirements for guarding of trolley wires and trolley feeder wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wires and trolley feeder wires. 75.1003-1 Section 75.1003-1 Mineral Resources MINE SAFETY AND HEALTH... Trolley Wires and Trolley Feeder Wires § 75.1003-1 Other requirements for guarding of trolley wires and trolley feeder wires. Adequate precaution shall be taken to insure that equipment being moved...

  9. Manifestations of quantum phase transitions in transport through nanosystems

    SciTech Connect

    Pustilnik, Michael

    2014-08-28

    The award led to several important new results in theory of interacting low-dimensional systems. The results are relevant for both traditional condensed matter systems, such as quantum wires and quantum spin chains, and for the relatively new field of ultra-cold atomic gases.

  10. Energy transfer in hybrid systems quantum dot-plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Chaplik, A. V.

    2016-06-01

    Radiationless relaxation in hybrid systems quantum dot (QD)-plasmonic nanostructure is considered. For the system QD-2D plasma the relaxation rate extremely steeply depends on the radius of quantum dot while in the pair QD-cylindrical wire contacting each other this dependence is logarithmic weak.

  11. SpaceWire Data Handling Demonstration System

    NASA Astrophysics Data System (ADS)

    Mills, S.; Parkes, S. M.; O'Gribin, N.

    2007-08-01

    The SpaceWire standard was published in 2003 with the aim of providing a standard for onboard communications, defining the physical and data link layers of an interconnection, in order to improve reusability, reliability and to reduce the cost of mission development. The many benefits which it provides mean that it has already been used in a number of missions, both in Europe and throughout the world. Recent work by the SpaceWire community has included the development of higher level protocols for SpaceWire, such as the Remote Memory Access Protocol (RMAP) which can be used for many purposes, including the configuration of SpaceWire devices. Although SpaceWire has become very popular, the various ways in which it can be used are still being discovered, as are the most efficient ways to use it. At the same time, some in the space industry are not even aware of SpaceWire's existence. This paper describes the SpaceWire Data Handling Demonstration System that has been developed by the University of Dundee. This system simulates an onboard data handling network based on SpaceWire. It uses RMAP for all communication, and so demonstrates how SpaceWire and standardised higher level protocols can be used onboard a spacecraft. The system is not only a good advert for those who are unfamiliar with the benefits of SpaceWire, it is also a useful tool for those using SpaceWire to test ideas.

  12. Electron phase coherence in mesoscopic normal metal wires

    NASA Astrophysics Data System (ADS)

    Trionfi, Aaron James

    Corrections to the classically predicted electrical conductivity in normal metals arise due to the quantum mechanical properties of the conduction electrons. These corrections provide multiple experimental tests of the conduction electrons' quantum phase coherence. I consider if independent measurements of the phase coherence via different corrections are quantitatively consistent, particularly in systems with spin-orbit or magnetic impurity scattering. More precisely, do independent quantum corrections to the classically predicted conductivity depend identically on the ubiquitous dephasing mechanisms in normal metals? I have inferred the coherence lengths from the weak localization magnetoresistance, magnetic field-dependence of time-dependent universal conductance fluctuations, and magnetic field-dependent universal conductance fluctuations, three observable quantum corrections, in quasi one- and two-dimensional AuPd wires and quasi-1D Ag and Au wires between 2 and 20 K. While the coherence lengths inferred from weak localization and time-dependent universal conductance fluctuations are in excellent quantitative agreement in AuPd, the strong quantitative agreement is apparently lost below a critical temperature in both Ag and Au. Such a disagreement is inconsistent with current theory and must be explained. I developed a hypothesis attributing the coherence length discrepancy seen in Ag and Au to a crossover from the saturated to unsaturated time-dependent conductance fluctuation regime. Two experimental tests were then employed to test this hypothesis. One test examined the effects of a changing spin-flip scattering rate in Au while the second examined how passivation of the two level systems responsible for time-dependent conductance fluctuations at the surface of a Au nanowire affects the inferred coherence lengths. The results of the two tests strongly indicate that the observed disagreement in Au (and likely Ag) is indeed due to a crossover from saturated to

  13. Wire Crimp Connectors Verification using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Perey, Daniel F.; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp connections is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp connector and wire is shown to correlate with the results of a destructive pull test, which previously has been used to assess crimp wire junction quality. Various crimp junction pathologies (missing wire strands, incorrect wire gauge, incomplete wire insertion in connector) are ultrasonically tested, and their results are correlated with pull tests. Results show that the ultrasonic measurement technique consistently (as evidenced with pull-testing data) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying the technique while wire crimps are installed is also presented.

  14. NASA wiring for space applications program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman

    1995-01-01

    An overview of the NASA Wiring for Space Applications Program and its relationship to NASA's space technology enterprise is given in viewgraph format. The mission of the space technology enterprise is to pioneer, with industry, the development and use of space technology to secure national economic competitiveness, promote industrial growth, and to support space missions. The objectives of the NASA Wiring for Space Applications Program is to improve the safety, performance, and reliability of wiring systems for space applications and to develop improved wiring technologies for NASA flight programs and commercial applications. Wiring system failures in space and commercial applications have shown the need for arc track resistant wiring constructions. A matrix of tests performed versus wiring constructions is presented. Preliminary data indicate the performance of the Tensolite and Filotex hybrid constructions are the best of the various candidates.

  15. Designer quantum materials

    NASA Astrophysics Data System (ADS)

    Srinivasa, Vanita

    Spin-based quantum information processing relies on the ability to identify and coherently manipulate quantum bits (qubits) existing in nature in the form of spin-½ particles such as electrons. The work described in this thesis is based on an alternative perspective: that these spin-½ objects, together with their interactions, can be regarded as building blocks of a variety of "designer quantum materials" with features not present for isolated single spins. Theoretical proposals are presented for two classes of spin-based designer quantum materials relevant for quantum information transport and manipulation. The first class of materials involves spin-½ networks coupled by spatially-varying exchange interactions, in which moving domain walls can produce topologically-stable "flying spin qubits," and pairs of domain walls can be used to generate and transport Einstein-Podolsky-Rosen pairs of entangled qubits. The effective exchange between two domain-wall qubits can be tuned by adjusting the positions of the domain walls and can be ferromagnetic even when all spin-spin couplings are antiferromagnetic. The second class of designer quantum materials consists of electron spins in quantum wires with spatially-varying spin-orbit coupling. The presence of the spin-orbit interaction introduces pseudo-Zeeman couplings of the electron spins to effective magnetic fields and further enhances the building-block toolset: by periodically modulating this spin-orbit coupling in space, it is possible to create the spatial analogue of spin resonance, without the need for any real magnetic fields. The mapping of time-dependent operations onto a spatial axis suggests a new mode for quantum information processing in which gate operations are encoded into the band structure of the material.

  16. Time Dependent Universal Conductance Fluctuations In AuPd, Ag, And Au Wires

    NASA Astrophysics Data System (ADS)

    Trionfi, A.; Lee, S.; Natelson, D.

    2006-09-01

    Quantum transport phenomena allow experimental determinations of the phase coherence information in metals. We report quantitative comparisons of inferred coherence lengths from independent measurements of the weak localization magnetoresistance and time-dependent universal conductance fluctuations' magnetic field dependence. Strong agreement is observed in both quasi-2D and quasi-1D AuPd samples. However, quantitative agreement is not seen in quasi-1D Ag wires below 10 K and quasi-1D Au wires below 14 K. A possible explanation for this disagreement will be discussed. Attempts to produce changes in the coherence length in Au by annealing have also been made and results will be reported.

  17. Conductance of Tomonaga-Luttinger liquid wires and junctions with resistances

    NASA Astrophysics Data System (ADS)

    Sen, Diptiman; Soori, Abhiram

    2011-03-01

    We study the effect that resistive regions have on the conductance of a quantum wire with interacting electrons which is connected to Fermi liquid leads. Using the bosonization formalism and a Rayleigh dissipation function to model the power dissipation, we use Green's function techniques to derive the DC conductance. The resistive regions are generally found to lead to incoherent transport. For a single wire, we find that the resistance adds in series to the contact resistance of e2 / h for spinless electrons, and the total resistance is independent of the Luttinger parameter KW of the wire. We numerically solve the bosonic equations to illustrate what happens when a charge density pulse is incident on the wire; the results depend on the parameters of the resistive and interaction regions in interesting ways. For a junction of Tomonaga-Luttinger liquid wires, we use a dissipationless current splitting matrix to model the junction. For a three-wire junction, there are two families of such matrices; we find that the conductance matrix depends on KW for one family but is independent of KW for the other family.

  18. Conductance of Tomonaga-Luttinger liquid wires and junctions with resistances

    NASA Astrophysics Data System (ADS)

    Soori, Abhiram; Sen, Diptiman

    2011-03-01

    We study the effect that resistive regions have on the conductance of a quantum wire with interacting electrons which is connected to Fermi liquid leads. Using the bosonization formalism and a Rayleigh dissipation function to model the power dissipation, we use both scattering theory and Green's function techniques to derive the DC conductance. The resistive regions are generally found to lead to incoherent transport. For a single wire, we find that the resistance adds in series to the contact resistance of h/e2 for spinless electrons, and the total resistance is independent of the Luttinger parameter KW of the wire. We numerically solve the bosonic equations to illustrate what happens when a charge density pulse is incident on the wire; the results depend on the parameters of the resistive and interacting regions in interesting ways. For a junction of Tomonaga-Luttinger liquid wires, we use a dissipationless current splitting matrix to model the junction. For a junction of three wires connected to Fermi liquid leads, there are two families of such matrices; we find that the conductance matrix generally depends on KW for one family but is independent of KW for the other family, regardless of the resistances present in the system.

  19. Sintered wire cesium dispenser photocathode

    DOEpatents

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  20. Single-Layer Wire Routing.

    DTIC Science & Technology

    1987-08-01

    Theorem: (Ascoli’s Theorem) Let f be an equicontinuous family of functions from a separable space X to a metric space Y. Let (f,) be a sequence in 4o... separable : A separable space is one that has a countable dense subset. settle: Section 8A defines for each suitably restricted sketch a family of...a four-year study on the general problem of wire routing under separation and homotopy constraints. Originally intended as a master’s thesis, the

  1. Reduced-Wiring Tactile Sensor

    NASA Technical Reports Server (NTRS)

    Ohm, Timothy R.

    1991-01-01

    Proposed tactile sensor on robot finger puts out multiplexed analog signals transmitted to control computer on fewer wires than needed to transmit equivalent digital signals. Analog output represents data on contact area of object being gripped, on position of object, and on direction and rate of slippage if any. Consists of chains of normally open switches and resistors on surface of finger. Each resistance double preceding resistance in each chain. Constant-current sources supply power to chains.

  2. SpaceWire Satellite Usage

    DTIC Science & Technology

    2013-03-01

    Figure 1. SpaceWire Topologies 309 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...RS422 Hosted Payload data interface Joint  Architeccture  Standards Sandia,  LANL control interface; backplane sRIO, PCIe Common standards for joint

  3. Analysis of Conical Wire Array Z-Pinch Stability with a Center Wire

    SciTech Connect

    Martinez, D.; Presura, R.; Wright, S.; Plechaty, C.; Neff, S.; Wanex, L.; Ampleford, D. J.

    2009-01-21

    Adding a center wire on the axis of a conical wire array produces conditions suitable for studying shear flow stabilization of the Z-pinch. The conical wire array produces and axial plasma flow while the center wire introduces a radial variation of the axial velocity. Experiments of this array configuration were preformed on the 1 MA Zebra Z-pinch generator and showed stabilization of the kink instability when a center wire was present. Comparison with equivalent cylindrical wire arrays indicates that the shear flow stabilization plays a role in the stabilization of the kink instability.

  4. Method and apparatus for laying wire arrays

    DOEpatents

    Horowitz, Seymour M.; Nesbitt, Dale D.

    1986-01-01

    Wire arrays (11) having a continuous wire (12) which is formed into a predetermined pattern and adhered to a backing material or substrate (13) are fabricated by applying adhesive material (16a, 16b) along opposite edge portions (17, 18) of the substrate, positioning a row of winding spools (21) along each of the edge portions and repeatedly extending the wire between and around successive spools at the opposite edge portions. The wound wire is then traveled along each spool toward the substrate and into contact with the adhesive. The spools are then removed and a coating of hardenable material (54) is applied to secure the wound wire to the substrate. Tension in the wire is relieved prior to contact of the wire with the adhesive and a small amount of slack is introduced into the wire before the final coating step. Mechanism (32) is provided for lifting the spools away from the substrate without disturbing the wound wire. The method and apparatus enable manufacture of precisely configured wire arrays without complex or costly equipment and do not require structural alterations in the substrate for the purpose of accommodating to fabrication equipment.

  5. A Vibrating Wire System For Quadrupole Fiducialization

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  6. Phosphorus in antique iron music wire.

    PubMed

    Goodway, M

    1987-05-22

    Harpsichords and other wire-strung musical instruments were made with longer strings about the beginning of the 17th century. This change required stronger music wire. Although these changes coincided with the introduction of the first mass-produced steel (iron alloyed with carbon), carbon was not found in samples of antique iron harpsichord wire. The wire contained an amount of phosphorus sufficient to have impeded its conversion to steel, and may have been drawn from iron rejected for this purpose. The method used to select pig iron for wire drawing ensured the highest possible phosphorus content at a time when its presence in iron was unsuspected. Phosphorus as an alloying element has had the reputation for making steel brittle when worked cold. Nevertheless, in replicating the antique wire, it was found that lowcarbon iron that contained 0.16 percent phosphorus was easily drawn to appropriate gauges and strengths for restringing antique harpsichords.

  7. Tensile deformation of NiTi wires.

    PubMed

    Gall, Ken; Tyber, Jeff; Brice, Valerie; Frick, Carl P; Maier, Hans J; Morgan, Neil

    2005-12-15

    We examine the structure and properties of cold drawn Ti-50.1 at % Ni and Ti-50.9 at % Ni shape memory alloy wires. Wires with both compositions possess a strong <111> fiber texture in the wire drawing direction, a grain size on the order of micrometers, and a high dislocation density. The more Ni rich wires contain fine second phase precipitates, while the wires with lower Ni content are relatively free of precipitates. The wire stress-strain response depends strongly on composition through operant deformation mechanisms, and cannot be explained based solely on measured differences in the transformation temperatures. We provide fundamental connections between the material structure, deformation mechanisms, and resulting stress-strain responses. The results help clarify some inconsistencies and common misconceptions in the literature. Ramifications on materials selection and design for emerging biomedical applications of NiTi shape memory alloys are discussed.

  8. Wire codes, magnetic fields, and childhood cancer

    SciTech Connect

    Kheifets, L.I.; Kavet, R.; Sussman, S.S.

    1997-05-01

    Childhood cancer has been modestly associated with wire codes, an exposure surrogate for power frequency magnetic fields, but less consistently with measured fields. The authors analyzed data on the population distribution of wire codes and their relationship with several measured magnetic field metrics. In a given geographic area, there is a marked trend for decreased prevalence from low to high wire code categories, but there are differences between areas. For average measured fields, there is a positive relationship between the mean of the distributions and wire codes but a large overlap among the categories. Better discrimination is obtained for the extremes of the measurement values when comparing the highest and the lowest wire code categories. Instability of measurements, intermittent fields, or other exposure conditions do not appear to provide a viable explanation for the differences between wire codes and magnetic fields with respect to the strength and consistency of their respective association with childhood cancer.

  9. Effluent Based Characterization of Aerospace Wiring

    NASA Astrophysics Data System (ADS)

    Cramer, K. Elliott; Yost, William T.; Perey, Daniel F.

    2004-02-01

    This paper discusses a wire insulation characterization method under development, which identifies the relative molecular weight and binding energy of effluents given off during wire heating and is aimed at nondestructively assessing wire insulation degradation. An overview of how this technique can be used to monitor wire insulation emissions is presented. A series of measurements made on wire specimens (MIL-W-22759/11-20) with polytetraflouroethylene (PTFE or Teflon®) insulation is presented. A change of up to 55% in the emission concentration of a particular effluent was observed by repeated heating the wire specimens. Temperature measurements of the conductor and insulation were correlated to effluent emission concentrations. A basis for the changes in effluent concentration is also presented and leads to a determination of binding energies and associated time constants.

  10. Nondestructive Evaluation of Aircraft and Spacecraft Wiring

    NASA Technical Reports Server (NTRS)

    White, John E.; Tucholski, Edward J.; Green, Robert E., Jr.

    2004-01-01

    Spacecraft, and especially aircraft, often fry well past their original design lives and, therefore, the need to develop nondestructive evaluation procedures for inspection of vital structures in these craft is extremely important. One of the more recent problems is the degradation of wiring and wiring insulation. The present paper describes several nondestructive characterization methods which afford the possibility to detect wiring and insulation degradation in-situ prior to major problems with the safety of aircraft and spacecraft.

  11. Wire Whip Keeps Spray Nozzle Clean

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1982-01-01

    Air-turbine-driven wire whip is clamped near spray-gun mount. When spray gun is installed, wire whip is in position to remove foam buildup from nozzle face. Two lengths of wire 1 to 2 inches long and about 0.03 inch in thickness are used. Foam spray would be prevented from accumulating on nozzle face by increasing purge flow and cutting vortex-generating grooves inside cap and on nozzle flats.

  12. Wrapped Wire Detects Rupture Of Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Hunt, James B.

    1990-01-01

    Simple, inexpensive technique helps protect against damage caused by continuing operation of equipment after rupture or burnout of pressure vessel. Wire wrapped over area on outside of vessel where breakthrough most likely. If wall breaks or burns, so does wire. Current passing through wire ceases, triggering cutoff mechanism stopping flow in vessel to prevent further damage. Applied in other situations in which pipes or vessels fail due to overpressure, overheating, or corrosion.

  13. Space Shuttle Columbia Aging Wiring Failure Analysis

    NASA Technical Reports Server (NTRS)

    McDaniels, Steven J.

    2005-01-01

    A Space Shuttle Columbia main engine controller 14 AWG wire short circuited during the launch of STS-93. Post-flight examination divulged that the wire had electrically arced against the head of a nearby bolt. More extensive inspection revealed additional damage to the subject wire, and to other wires as well from the mid-body of Columbia. The shorted wire was to have been constructed from nickel-plated copper conductors surrounded by the polyimide insulation Kapton, top-coated with an aromatic polyimide resin. The wires were analyzed via scanning electron microscope (SEM), energy dispersive X-Ray spectroscopy (EDX), and electron spectroscopy for chemical analysis (ESCA); differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were performed on the polyimide. Exemplar testing under laboratory conditions was performed to replicate the mechanical damage characteristics evident on the failed wires. The exemplar testing included a step test, where, as the name implies, a person stepped on a simulated wire bundle that rested upon a bolt head. Likewise, a shear test that forced a bolt head and a torque tip against a wire was performed to attempt to damage the insulation and conductor. Additionally, a vibration test was performed to determine if a wire bundle would abrade when vibrated against the head of a bolt. Also, an abrasion test was undertaken to determine if the polyimide of the wire could be damaged by rubbing against convolex helical tubing. Finally, an impact test was performed to ascertain if the use of the tubing would protect the wire from the strike of a foreign object.

  14. Evaluating Extinction Values using Wire Impactor Data

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of the study was to compare the extinctions calculated from data obtained with the Ames Wire Impactor to extinctions measured with the SAGE H satellite system. The comparison was intended to serve as a validation of the extinctions obtained using the wire impactor data. It was felt that if the extinctions obtained by the two diverse methods agreed well, it would be an indication that the number densities measured on the wires were correct.

  15. Development of the Axial Instability in Low Wire Number Wire Array Z-Pinches

    SciTech Connect

    Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.; Douglass, J. D.; Greenly, J. B.; Martin, M. R.; McBride, R. D.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.; Hall, G. N.

    2009-01-21

    We are investigating the development of the axial instability, a modulation of the size of the coronal plasma that develops around each wire in wire-array Z-pinches. The modulation is a result of nonuniform ablation of material from the relatively cold wire core. It has long been known that the wavelength of this modulation is constant late in time and, since it is unique to different materials, it has come to be known as the fundamental mode. In these experiments we imaged individual wires with laser shadowgraphy early in time primarily in low wire number, large wire diameter aluminum arrays for ease of viewing. We Observe the development of this modulation from the time of initiation of coronal plasma, obtaining its dominant wavelength and amplitude growth as a function of time. We also studied the instability on coiled wires, which modify the wire ablation mechanism and completely suppress the fundamental mode[Hall2008]. time is discussed.

  16. Adjustable Bracket For Entry Of Welding Wire

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.

    1993-01-01

    Wire-entry bracket on welding torch in robotic welding system provides for adjustment of angle of entry of welding wire over range of plus or minus 30 degrees from nominal entry angle. Wire positioned so it does not hide weld joint in view of through-the-torch computer-vision system part of robot-controlling and -monitoring system. Swiveling bracket also used on nonvision torch on which wire-feed-through tube interferes with workpiece. Angle simply changed to one giving sufficient clearance.

  17. Superconducting-wire fabrication. Final report

    SciTech Connect

    Glad, W.E.; Chase, G.G.

    1990-05-01

    Experiments were done leading to the fabrication of high-temperature superconducting composite wire. Bulk superconductor was characterized by using optical microscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. The chemical compatibility of superconducting materials with a number of metal sheathing candidates was tested, with silver offering the best compatibility. Wire was fabricated by drawing 0.250-inch-diameter silver tubing packed with superconducting powder. Single core wires were drawn to 0.037-inch diameter. The best critical current performance (660 A/cm2) for leaded bismuth 2-2-2-3 material was achieved by flattening single-core wire before heat treatment.

  18. Wondering PTCA Wire: Retrieval by Tangling Technique.

    PubMed

    Sinha, Santosh Kumar; Verma, Chandra Mohan; Krishna, Vinay; Thakur, Ramesh; Kumar, Prakash; Goel, Amit; Kumar, Ashutosh; Razi, Mahmadulla

    2015-04-01

    A 38-year-old man underwent coronary angiography in our institution due to acute myocardial infarction as part of pharmaco-invasive strategy following thrombolysis. The patient showed total occlusion of mid left anterior descending (LAD) artery which was tortuous and calcified. The planned treatment was percutaneous coronary intervention (PCI) of culprit artery with wire being "jailed" in obtuse marginal branch of left circumflex artery (LCX) as left main was short and because of lesion characteristics. After successful stent implantation in the LAD, the "jailed" wire fractured as guiding catheter got deeply intubated as stent was being deployed in LAD. Initially, two balance middle weight (BMW) wires were used to retrieve but failed. Wire was wondering as it moved to proximal LCX, left main, partly into aortic sinus, sometimes proximal LAD and finally to LCX again during retrieval. Then it was decided to use tangling technique with the help of three BMW wires acting as rescue wires. The proximal ends of all three wires were inserted together in a torque device which were firmly screwed and rotated 40 - 50 times in circular pattern. During this rotational motion, the broken segment was tangled within these rescue wires and all four wires were removed together.

  19. Quantitative Inspection of Broken Wire in Wire Ropes: Method and Apparatus.

    PubMed

    Hongjian, Xue; Kechong, Yang; Shuzi, Yang

    1996-01-01

    This article introduces a complete system for automatic inspection of broken wire in wire ropes. The development of this technique is reviewed. It is followed by a description of the hardware and software of the apparatus. The hardware uses magnetic concentrators and Hall-effect sensors. Signal analysis is based on wavelet processing. Quantitative identification of broken wire in wire ropes is based on a pattern recognition approach of the neural network.

  20. Effect of an Axial Wire on Conical Wire Array Z-Pinch Radiation

    SciTech Connect

    Presura, R.; Martinez, D.; Wright, S.; Plechaty, C.; Neff, S.; Wanex, L.; Ampleford, D. J.

    2009-01-21

    Adding a wire on the axis of wire arrays significantly affects the x-ray emission of the conical arrays, and much less that of the cylindrical ones. The radiation of the conical wire arrays increases with the thickness of the central wire, surpassing that of the equivalent cylindrical arrays. Significant energy is emitted early on, around the time of the conical shock formation, before the pinch stagnation.

  1. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators....

  2. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators....

  3. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators....

  4. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators....

  5. 30 CFR 77.1430 - Wire ropes; scope.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Wire ropes; scope. 77.1430 Section 77.1430... Hoisting Wire Ropes § 77.1430 Wire ropes; scope. (a) Sections 77.1431 through 77.1438 apply to wire ropes.... (b) These standards do not apply to wire ropes used for elevators....

  6. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...

  7. Processing A Printed Wiring Board By Single Bath Electrodeposition

    DOEpatents

    Meltzer, Michael P.; Steffani, Christopher P.; Gonfiotti, Ray A.

    2003-04-15

    A method of processing a printed wiring board by single bath electrodeposition. Initial processing steps are implemented on the printed wiring board. Copper is plated on the printed wiring board from a bath containing nickel and copper. Nickel is plated on the printed wiring board from the bath containing nickel and copper and final processing steps are implemented on the printed wiring board.

  8. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...

  9. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Disposition of home run wiring. 76.804 Section... MULTICHANNEL VIDEO AND CABLE TELEVISION SERVICE Cable Inside Wiring § 76.804 Disposition of home run wiring. (a) Building-by-building disposition of home run wiring. (1) Where an MVPD owns the home run wiring in an...

  10. 47 CFR 76.802 - Disposition of cable home wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... purchase the wiring at the replacement cost, and the subscriber declines. If the subscriber declines to purchase the cable home wiring, the cable system operator must then remove the cable home wiring within... cable home wiring unless: it gives the subscriber the opportunity to purchase the wiring at...

  11. Transport Through Carbon Nanotube Wires

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Yan, Jerry (Technical Monitor)

    2000-01-01

    This viewgraph presentation gives an overview of the the current carrying capacity of nanotube wires. Information is given on the motivation for the research, models and assumptions, Bragg reflection and Zener tunneling effects, and the influence of defects. Results show that dI/dv versus V does not increase in a manner commensurate with the increase in the number of subbands; in small diameter nanotubes, Zener tunneling is ineffective; Zener tunneling contributes to current with increase in nanotube diameter; and the increase in dI/dV with bias is much smaller than the increase in the number of subbands.

  12. Growth of Quantum Wires on Step-Bunched Substrate

    SciTech Connect

    Liu, Feng

    2005-02-01

    This proposal initiates a combined theoretical and experimental multidisciplinary research effort to explore a novel approach for growing metallic and magnetic nanowires on step-bunched semiconductor and dielectric substrates, and to lay the groundwork for understanding the growth mechanisms and the electronic, electrical, and magnetic properties of metallic and magnetic nanowires. The research will focus on four topics: (1) fundamental studies of step bunching and self-organization in a strained thin film for creating step-bunched substrates. (2) Interaction between metal adatoms (Al,Cu, and Ni) and semiconductor (Si and SiGe) and dielectric (CaF2) surface steps. (3) growth and characterization of metallic and magnetic nanowires on step-bunched templates. (4) fabrication of superlattices of nanowires by growing multilayer films. We propose to attack these problems at both a microscopic and macroscopic level, using state-of-the-art theoretical and experimental techniques. Multiscale (electronic-atomic-continuum) theories will be applied to investigate growth mechanisms of nanowires: mesoscopic modeling and simulation of step flow growth of strained thin films, in particular, step bunching and self-organization will be carried out within the framework of continuum linear elastic theory; atomistic calculation of interaction between metal adatoms and semiconductor and dielectric surface steps will be done by large-scale computations using first-principles total-energy methods. In parallel, thin films and nanowires will be grown by molecular beam epitaxy (MBE), and the resultant structure and morphology will be characterized at the atomic level up to micrometer range, using a combination of different surface/interface probes, including scanning tunneling microscopy (STM, atomic resolution), atomic force microscopy (AFM, nanometer resolution), low-energy electron microscopy (LEEM, micrometer resolution), reflectance high-energy electron diffraction (RHEED), and x-ray diffraction. Finally, the electronic, electrical, and magnetic properties of the thin films and nanowires will be explored by both theory and experiment.

  13. Direct imaging of quantum wires nucleated at diatomic steps

    SciTech Connect

    Molina, S. I.; Varela, M.; Sales, D. L.; Ben, T.; Pizarro, J.; Galindo, P. L.; Fuster, D.; Gonzalez, Y.; Gonzalez, L.; Pennycook, S. J.

    2007-10-01

    Atomic steps at growth surfaces are important heterogeneous sources for nucleation of epitaxial nano-objects. In the presence of misfit strain, we show that the nucleation process takes place preferentially at the upper terrace of the step as a result of the local stress relaxation. Evidence for strain-induced nucleation comes from the direct observation by postgrowth, atomic resolution, Z-contrast imaging of an InAs-rich region in a nanowire located on the upper terrace surface of an interfacial diatomic step.

  14. Wired.

    ERIC Educational Resources Information Center

    Conklin, Aaron R.

    1998-01-01

    Discusses technology's impact on scoreboard design: the development of the light-emitting diode (LED) display. How the LED system works is explained, as are the advantages and disadvantages of LED compared with incandescent lamp boards. Final comments address deciding on materials for scoreboard casings. (GR)

  15. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of...

  16. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of...

  17. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of...

  18. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... Testing Maintenance Standards § 234.241 Protection of insulated wire; splice in underground...

  19. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of...

  20. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... Testing Maintenance Standards § 234.241 Protection of insulated wire; splice in underground...

  1. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of...

  2. 49 CFR 234.241 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Protection of insulated wire; splice in underground wire. 234.241 Section 234.241 Transportation Other Regulations Relating to Transportation... Testing Maintenance Standards § 234.241 Protection of insulated wire; splice in underground...

  3. Evaluation of electrical conductivity and equations of state of non-ideal plasma through microsecond timescale underwater electrical wire explosion

    SciTech Connect

    Sheftman, D.; Krasik, Ya. E.

    2011-09-15

    Experimental and simulation results of underwater electrical Cu, Al, and W wire explosions in the microsecond timescale are presented. It was shown that the electrical conductivity results for Cu and Al agree well with modified Lee-More and quantum molecular dynamic models for temperatures above 10 kK. The equation of state (EOS) values based on SESAME tables for Cu and Al were slightly modified for intermediate temperatures in order to obtain fitting between experimental and simulated exploding wire radial expansion. Also, it was shown that the electrical conductivity results and the EOS evaluation differ significantly from the results obtained in nanosecond timescale experiments. Finally, it was found that underwater electrical W wire explosion is characterized by the appearance of non-uniformities along the z-axis of the wire. This phenomena adds uncertainty to the possibility of applying this type of experiments for evaluation of the electrical conductivity and EOS of W.

  4. Evaluation of electrical conductivity and equations of state of non-ideal plasma through microsecond timescale underwater electrical wire explosion

    NASA Astrophysics Data System (ADS)

    Sheftman, D.; Krasik, Ya. E.

    2011-09-01

    Experimental and simulation results of underwater electrical Cu, Al, and W wire explosions in the microsecond timescale are presented. It was shown that the electrical conductivity results for Cu and Al agree well with modified Lee-More and quantum molecular dynamic models for temperatures above 10 kK. The equation of state (EOS) values based on SESAME tables for Cu and Al were slightly modified for intermediate temperatures in order to obtain fitting between experimental and simulated exploding wire radial expansion. Also, it was shown that the electrical conductivity results and the EOS evaluation differ significantly from the results obtained in nanosecond timescale experiments. Finally, it was found that underwater electrical W wire explosion is characterized by the appearance of non-uniformities along the z-axis of the wire. This phenomena adds uncertainty to the possibility of applying this type of experiments for evaluation of the electrical conductivity and EOS of W.

  5. Categorical quantum mechanics II: Classical-quantum interaction

    NASA Astrophysics Data System (ADS)

    Coecke, Bob; Kissinger, Aleks

    2016-08-01

    This is the second part of a three-part overview, in which we derive the category-theoretic backbone of quantum theory from a process ontology, treating quantum theory as a theory of systems, processes and their interactions. In this part, we focus on classical-quantum interaction. Classical and quantum systems are treated as distinct types, of which the respective behavioral properties are specified in terms of processes and their compositions. In particular, classicality is witnessed by ‘spiders’ which fuse together whenever they connect. We define mixedness and show that pure processes are extremal in the space of all processes, and we define entanglement and show that quantum theory indeed exhibits entanglement. We discuss the classification of tripartite qubit entanglement and show that both the GHZ-state and the W-state come from spider-like families of processes, which differ only in how they behave when they are connected by two or more wires. We define measurements and provide fully comprehensive descriptions of several quantum protocols involving classical data flow. Finally, we give a notion of ‘genuine quantumness’, from which special processes called ‘phase spiders’ arise, and get a first glimpse of quantum nonlocality.

  6. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Tagging of wires and interference of wires or tags..., and Testing Maintenance Standards § 234.239 Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so marked that it can be identified at...

  7. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Tagging of wires and interference of wires or tags..., and Testing Maintenance Standards § 234.239 Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so marked that it can be identified at...

  8. 49 CFR 234.239 - Tagging of wires and interference of wires or tags with signal apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Tagging of wires and interference of wires or tags..., and Testing Maintenance Standards § 234.239 Tagging of wires and interference of wires or tags with signal apparatus. Each wire shall be tagged or otherwise so marked that it can be identified at...

  9. Tuning a Tetrahertz Wire Laser

    NASA Technical Reports Server (NTRS)

    Qin, Qi; Williams, Benjamin S.; Kumar, Sushil; Reno, John L.; Hu, Qing

    2009-01-01

    Tunable terahertz lasers are desirable in applications in sensing and spectroscopy because many biochemical species have strong spectral fingerprints at terahertz frequencies. Conventionally, the frequency of a laser is tuned in a similar manner to a stringed musical instrument, in which pitch is varied by changing the length of the string (the longitudinal component of the wave vector) and/ or its tension (the refractive index). However, such methods are difficult to implement in terahertz semiconductor lasers because of their poor outcoupling efficiencies. Here, we demonstrate a novel tuning mechanism based on a unique 'wire laser' device for which the transverse dimension w is much much less than lambda. Placing a movable object close to the wire laser manipulates a large fraction of the waveguided mode propagating outside the cavity, thereby tuning its resonant frequency. Continuous single-mode redshift and blueshift tuning is demonstrated for the same device by using either a dielectric or metallic movable object. In combination, this enables a frequency tuning of approximately equal to 137 GHz (3.6%) from a single laser device at approximately equal to 3.8 THz.

  10. Tuning a terahertz wire laser

    NASA Astrophysics Data System (ADS)

    Qin, Qi; Williams, Benjamin S.; Kumar, Sushil; Reno, John L.; Hu, Qing

    2009-12-01

    Tunable terahertz lasers are desirable in applications in sensing and spectroscopy because many biochemical species have strong spectral fingerprints at terahertz frequencies. Conventionally, the frequency of a laser is tuned in a similar manner to a stringed musical instrument, in which pitch is varied by changing the length of the string (the longitudinal component of the wave vector) and/or its tension (the refractive index). However, such methods are difficult to implement in terahertz semiconductor lasers because of their poor outcoupling efficiencies. Here, we demonstrate a novel tuning mechanism based on a unique `wire laser' device for which the transverse dimension w is <<λ. Placing a movable object close to the wire laser manipulates a large fraction of the waveguided mode propagating outside the cavity, thereby tuning its resonant frequency. Continuous single-mode redshift and blueshift tuning is demonstrated for the same device by using either a dielectric or metallic movable object. In combination, this enables a frequency tuning of ~137 GHz (3.6%) from a single laser device at ~3.8 THz.

  11. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... wiring. The incumbent provider that has elected to abandon its home run wiring may remove its amplifiers... amplifiers or other active devices used in the wiring if an equivalent replacement can easily be...

  12. 47 CFR 76.804 - Disposition of home run wiring.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... wiring. The incumbent provider that has elected to abandon its home run wiring may remove its amplifiers... amplifiers or other active devices used in the wiring if an equivalent replacement can easily be...

  13. VIEW WESTLEFTNO 1 WIRE MILL BUILDING 4 (1871) RIGHTNO 3 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW WEST-LEFT-NO 1 WIRE MILL BUILDING 4 (1871) RIGHT-NO 3 WIRE MILL BUILDING 9 (1876) - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  14. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  15. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  16. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  17. VIEW NORTHEASTLEFTBUILDING 9 NO 3 WIRE MILL (1876) RIGHTBUILDING 4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW NORTHEAST-LEFT-BUILDING 9 NO 3 WIRE MILL (1876) RIGHT-BUILDING 4 NO 1 WIRE MILL (1871) - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  18. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  19. 30 CFR 57.14160 - Mantrip trolley wire hazards underground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mantrip trolley wire hazards underground. 57... wire hazards underground. Mantrips shall be covered if there is danger of persons contacting the trolley wire....

  20. Stiffness Corrections for the Vibration Frequency of a Stretched Wire

    ERIC Educational Resources Information Center

    Hornung, H. G.; Durie, M. J.

    1977-01-01

    Discusses the need of introducing corrections due to wire stiffness arising from end constraints and wire axis distribution curvature in the measurement of ac electrical frequency by exciting transverse standing waves in a stretched steel wire. (SL)

  1. Wiring harnesses documented by punched-card technique

    NASA Technical Reports Server (NTRS)

    Hicks, W. W.; Kloezeman, W. G.

    1970-01-01

    Cards representing a connector are punched, sorted, and then used to printout wiring documentation for that connector. When wiring changes are made, new cards are punched and the wiring documentation is reprinted to reflect the latest configuration.

  2. Improved Superconducting Wire for Wind Generators: Superconducting Wires for Direct-Drive Wind Generators

    SciTech Connect

    2012-01-01

    REACT Project: Brookhaven National Laboratory will develop a low-cost superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. Brookhaven National Laboratory will develop a high-performance superconducting wire that can handle significantly more electrical current, and will demonstrate an advanced manufacturing process that has the potential to yield a several-fold reduction in wire costs while using a using negligible amount of rare earth material. This design has the potential to make a wind turbine generator lighter, more powerful, and more efficient, particularly for offshore applications.

  3. Quantum-size effects in the titanosilicate molecular sieve

    NASA Astrophysics Data System (ADS)

    Borello, Enzo; Lamberti, Carlo; Bordiga, Silvia; Zecchina, Adriano; Areán, Carlos Otero

    1997-10-01

    The recently synthesized Engelhard titanosilicate (ETS-10) represents a material which contains in the structure well defined atomic ⋯O-Ti-O-Ti-O⋯ quantum wires embedded in a highly insulating siliceous matrix. We report and discuss the UV-Vis spectrum of this material and compare the experimentally determined optical band gap with the results predicted by simple modeling of a titanium oxide semiconductor wire unidimensionally confined by an infinite potential barrier.

  4. Realizing Controllable Quantum States

    NASA Astrophysics Data System (ADS)

    Takayanagi, Hideaki; Nitta, Junsaku

    1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara

  5. Lansce Wire Scanning Diagnostics Device Mechanical Design

    SciTech Connect

    Rodriguez Esparza, Sergio; Batygin, Yuri K.; Gilpatrick, John D.; Gruchalla, Michael E.; Maestas, Alfred J.; Pillai, Chandra; Raybun, Joseph L.; Sattler, F. D.; Sedillo, James Daniel; Smith, Brian G.

    2011-01-01

    The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second, third, and fourth wire scanner prototypes being developed. Prototypes 2 and 3 belong to a different section of the particle accelerator and therefore have slightly different design specifications. Prototype 4 is a modification of a previously used wire scanner in our facility. Lastly, the paper concludes with a plan for future work on the wire scanner development.

  6. Flywheel system using wire-wound rotor

    DOEpatents

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  7. Add-On Shielding for Unshielded Wire

    NASA Technical Reports Server (NTRS)

    Koenig, J. C.; Billitti, J. W.; Tallon, J. M.

    1983-01-01

    Fabrication sequence used to produce compact shields slipped into place from free ends of wires already soldered into connectors at other ends. Single shields are formed into harnesses by connecting grounding jumpers. Technique is especially useful for small diameter wire attached to microminiature connectors.

  8. Microfabricated wire arrays for Z-pinch.

    SciTech Connect

    Spahn, Olga Blum; Rowen, Adam M.; Cich, Michael Joseph; Peake, Gregory Merwin; Arrington, Christian L.; Nash, Thomas J.; Klem, John Frederick; Romero, Dustin Heinz

    2008-10-01

    Microfabrication methods have been applied to the fabrication of wire arrays suitable for use in Z. Self-curling GaAs/AlGaAs supports were fabricated as an initial route to make small wire arrays (4mm diameter). A strain relief structure that could be integrated with the wire was designed to allow displacements of the anode/cathode connections in Z. Electroplated gold wire arrays with integrated anode/cathode bus connections were found to be sufficiently robust to allow direct handling. Platinum and copper plating processes were also investigated. A process to fabricate wire arrays on any substrate with wire thickness up to 35 microns was developed. Methods to handle and mount these arrays were developed. Fabrication of wire arrays of 20mm diameter was demonstrated, and the path to 40mm array fabrication is clear. With some final investment to show array mounting into Z hardware, the entire process to produce a microfabricated wire array will have been demonstrated.

  9. Twisted Pair Of Insulated Wires Senses Moisture

    NASA Technical Reports Server (NTRS)

    Laue, Eric G.; Stephens, James B.

    1989-01-01

    Sensitivity of electronic moisture sensor to low levels of moisture increased by new electrode configuration. Moisture-sensing circuit described in "Low-Cost Humidity Sensor" (NPO-16544). New twisted pair of wires takes place of flat-plate capacitor in circuit. Configuration allows for thermal expansion and contraction of polymer while maintaining nearly constant area of contact between polymer and wires.

  10. Diamond-Coated Wire-Feeding Nozzle

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Hard vacuum-deposited film improves nozzle properties. Tip and bore surfaces of proposed nozzle for feeding wire for gas/tungsten arc welding coated with film of synthetic diamond. Film gives nozzle following advantages: lower friction, thermal conductivity, less wear, electrical isolation of wire from nozzle, and high resistance to corrosion.

  11. Wire ageing with the TEA photocathode

    SciTech Connect

    Va`vra, J.

    1996-06-01

    Recently several RICH protypes successfully tested a gaseous TEA photocathode. However, its wire ageing behavior is unknown. In principle, TEA is a more strongly bonded molecule than TMAE, and, as a result, one would expect better wire ageing behavior. This paper explores this question.

  12. LANSCE-R WIRE-SCANNER SYSTEM

    SciTech Connect

    Gruchalla, Michael E.

    2011-01-01

    The National Instruments cRIO platform is used for the new LANSCE-R wire-scanner systems. All wire-scanner electronics are integrated into a single BiRa BiRIO 4U cRIO chassis specifically designed for the cRIO crate and all interface electronics. The BiRIO chassis, actuator and LabVIEW VIs provide a complete wire-scanner system integrated with EPICS. The new wire-scanner chassis includes an 8-slot cRIO crate with Virtex-5 LX 110 FPGA and Power-PC real-time controller, the LANL-developed cRIO 2-axis wire-sensor analog interface module (AFE), NI9222 cRIO 4-channel 16-bit digitizer, cRIO resolver demodulator, cRIO event receiver, front-panel touch panel display, motor driver, and all necessary software, interface wiring, connectors and ancillary components. This wirescanner system provides a complete, turn-key, 2-axis wire-scanner system including 2-channel low-noise sensewire interface with variable DC wire bias and wireintegrity monitor, 16-bit signal digitizers, actuator motor drive and control, actuator position sensing, limit-switch interfaces, event receiver, LabVIEW and EPICS interface, and both remote operation and full stand-alone operation using the touch panel.

  13. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.

    1979-12-19

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  14. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  15. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  16. Hot-wire anemometer for spirography.

    PubMed

    Plakk, P; Liik, P; Kingisepp, P H

    1998-01-01

    The use of a constant temperature hot-wire anemometer flow sensor for spirography is reported. The construction, operating principles and calibration procedure of the apparatus are described, and temperature compensation method is discussed. Frequency response is studied. It is shown that this hot-wire flow transducer satisfies common demands with respect to accuracy, response time and temperature variations.

  17. 30 CFR 56.12047 - Guy wires.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Guy wires. 56.12047 Section 56.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56.12047 Guy wires....

  18. 30 CFR 56.12047 - Guy wires.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Guy wires. 56.12047 Section 56.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56.12047 Guy wires....

  19. 30 CFR 56.12047 - Guy wires.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Guy wires. 56.12047 Section 56.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56.12047 Guy wires....

  20. 30 CFR 56.12047 - Guy wires.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Guy wires. 56.12047 Section 56.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56.12047 Guy wires....

  1. 30 CFR 56.12047 - Guy wires.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Guy wires. 56.12047 Section 56.12047 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Electricity § 56.12047 Guy wires....

  2. Abstract Sculptures: Wire and Plaster Cloth Creations.

    ERIC Educational Resources Information Center

    Hiller, Peter

    2001-01-01

    Presents a three-dimensional art project for middle-school students in which they create sculptures of plaster cloth and wire. The introduction explains that they learn about Alexander Calder, a master of using wire in art. Discusses how to make the sculptures. (CMK)

  3. Glidden's Patent Application for Barbed Wire.

    ERIC Educational Resources Information Center

    Ray, Emily; Schamel, Wynell

    1997-01-01

    Describes a series of teaching activities to be used in conjunction with a reproduction of Joseph Glidden's patent for barbed wire fencing. These include document analysis, creative interpretation, and personal experience. Presents a brief history of the social and economic effects of the introduction of barbed wire to the West. (MJP)

  4. Wire-Guide Manipulator For Automated Welding

    NASA Technical Reports Server (NTRS)

    Morris, Tim; White, Kevin; Gordon, Steve; Emerich, Dave; Richardson, Dave; Faulkner, Mike; Stafford, Dave; Mccutcheon, Kim; Neal, Ken; Milly, Pete

    1994-01-01

    Compact motor drive positions guide for welding filler wire. Drive part of automated wire feeder in partly or fully automated welding system. Drive unit contains three parallel subunits. Rotations of lead screws in three subunits coordinated to obtain desired motions in three degrees of freedom. Suitable for both variable-polarity plasma arc welding and gas/tungsten arc welding.

  5. Welding torch and wire feed manipulator

    NASA Technical Reports Server (NTRS)

    Williams, R. T.

    1967-01-01

    Welding torch and wire feed manipulator increase capability for performing automatic welding operations. The manipulator rotates on its horizontal axis to avoid obstacles as they approach the torch. The initial individual attitudes of the torch and wire guide are set with respect to the general configuration of the part.

  6. MSFC inspections of installed polyimide wire

    NASA Technical Reports Server (NTRS)

    Landers, Joe C.

    1994-01-01

    An alert was issued because of the arc-tracking possibilities of installed polyimide wire harnesses. MSFC undertook a program to try to enhance the safety and reliability of these harnesses. Photographs are presented showing the need for inspections of installed wiring harnesses.

  7. The aging of wire chambers filled with dimethyl ether: wire and construction materials and freon impurities

    NASA Astrophysics Data System (ADS)

    Jibaly, Mohammed; Majewski, Stan; Chrusch, Peter; Wojcik, Randolph; Sauli, Fabio; Gaudaen, Jan

    1989-11-01

    This is a complete summary of our study of the aging of different types of wire chambers, with a variety of construction materials and wires, filled with dimethyl ether (DME) of varying degrees of purity. The resistive Nicotin and Stablohm wires were corroded by DME, producing fast aging. The moderately resistive stainless steel wires were able to withstand extended irradiation (up to 1 C/cm) in high-purity DME without any apparent damage; and gold-plated tungsten and molybdenum wires exhibited a comparable behavior. Many construction materials were tested and recommendations are thus reached as to what kinds of materials are safe in building DME-operated wire chambers. Among many different Freon and hydrocarbon impurities detected in DME by means of gas chromatography (GC), Freon-11 was found to be mostly responsible for the aging, even with noncorrosive stainless steel or gold-plated wires. The availability and feasibility of obtaining Freon-free DME is reported as well.

  8. Method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, John D.; Gibson, Edwin D.; Finnemore, Douglas K.; Ostenson, Jerome E.; Schmidt, Frederick A.; Owen, Charles V.

    1985-08-06

    An improved method of preparing composite multifilament superconducting wire of Nb.sub.3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb.sub.3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  9. Improved method of preparing composite superconducting wire

    DOEpatents

    Verhoeven, J.D.; Gibson, E.D.; Finnemore, D.K.; Ostenson, J.E.; Schmidt, F.A.; Owen, C.V.

    1979-10-17

    An improved method of preparing composite multifilament superconducting wire of Nb/sub 3/Sn in a copper matrix eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb/sub 3/Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting.

  10. Wiring Damage Analyses for STS OV-103

    NASA Technical Reports Server (NTRS)

    Thomas, Walter, III

    2006-01-01

    This study investigated the Shuttle Program s belief that Space Transportation System (STS) wiring damage occurrences are random, that is, a constant occurrence rate. Using Problem Reporting and Corrective Action (PRACA)-derived data for STS Space Shuttle OV-103, wiring damage was observed to increase over the vehicle s life. Causal factors could include wiring physical deterioration, maintenance and inspection induced damage, and inspection process changes resulting in more damage events being reported. Induced damage effects cannot be resolved with existent data. Growth analysis (using Crow-AMSAA, or CA) resolved maintenance/inspection effects (e.g., heightened awareness) on all wire damages and indicated an overall increase since Challenger Return-to-Flight (RTF). An increasing failure or occurrence rate per flight cycle was seen for each wire damage mode; these (individual) rates were not affected by inspection process effects, within statistical error.

  11. Development and Manufacture of Bi-2223 Wires

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shin-Ichi

    This chapter reviews Ag-sheathed (Bi, Pb)2Sr2Ca2Cu3Ox (Bi-2223) wire made by the powder-in-tube technique (PIT). The currently leading high-temperature superconductors (HTS) wire technology for practical use is Bi-2223 wire, made by the controlled over-pressure (CT-OP) sintering process. The CT-OP process uses pressures up to 30MPa during heat treatment. The technique densifies the Bi-2223 filaments and enhances the uniformity of the electrical and mechanical performance in the Bi-2223 wire. Today, Bi-2223 wires are used in most HTS applications, such as power cables, many kinds of magnets, and motors for ship propulsion and electric vehicles.

  12. Wire and Cable Cold Bending Test

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony

    2010-01-01

    One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.

  13. Measurement of wire diameter by optical diffraction

    NASA Astrophysics Data System (ADS)

    Khodier, Soraya A.

    2004-02-01

    A combined interference and diffraction pattern, in the form of equidistant interference fringes, resulting from illuminating a vertical metallic wire by a laser beam is analyzed to measure the diameter of four standard wires. The diameters range from 170 to 450 μm. It is found that the error in the diameter measurements increases for small metallic wires and for small distances between the wire and the screen due to scattering effects. The intensity of the incident laser beam was controlled by a pair of sheet polaroids to minimize the scattered radiation. The used technique is highly sensitive, but requires controlled environmental conditions and absence of vibration effects. The expanded uncertainty for k=2 is calculated and found to decrease from U(D)=±1.45 μm for the wire of nominal diameter 170 μm to ±0.57 μm for the diameter 450 μm.

  14. Entropy Flow in Near-Critical Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Friedan, Daniel

    2017-03-01

    Near-critical quantum circuits close to equilibrium are ideal physical systems for asymptotically large-scale quantum computers, because their low energy collective excitations evolve reversibly, effectively isolated from microscopic environmental fluctuations by the renormalization group. Entropy flows in near-critical quantum circuits near equilibrium as a locally conserved quantum current, obeying circuit laws analogous to the electric circuit laws. These "Kirchhoff laws" for entropy flow are the fundamental design constraints for asymptotically large-scale quantum computers. A quantum circuit made from a near-critical system (of conventional type) is described by a relativistic 1+1 dimensional relativistic quantum field theory on the circuit. The quantum entropy current near equilibrium is just the energy current divided by the temperature. The universal properties of the energy-momentum tensor constrain the entropy flow characteristics of the circuit components: the entropic conductivity of the quantum wires and the entropic admittance of the quantum circuit junctions. For example, near-critical quantum wires are always resistanceless inductors for entropy. A universal formula is derived for the entropic conductivity: σ S(ω ) = iv2 S/ω T , where ω is the frequency, T the temperature, {S the equilibrium entropy density and v the velocity of "light". The thermal conductivity is Re(Tσ S(ω ))=π v2 S δ (ω ) . The thermal Drude weight is, universally, v2S . This gives a way to measure the entropy density directly.

  15. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, Douglas K.; Miller, Theodore A.; Ostenson, Jerome E.; Schwartzkopf, Louis A.; Sanders, Steven C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  16. Single wire drift chamber design

    SciTech Connect

    Krider, J.

    1987-03-30

    This report summarizes the design and prototype tests of single wire drift chambers to be used in Fermilab test beam lines. The goal is to build simple, reliable detectors which require a minimum of electronics. Spatial resolution should match the 300 ..mu..m rms resolution of the 1 mm proportional chambers that they will replace. The detectors will be used in beams with particle rates up to 20 KHz. Single track efficiency should be at least 99%. The first application will be in the MT beamline, which has been designed for calibration of CDF detectors. A set of four x-y modules will be used to track and measure the momentum of beam particles.

  17. In Situ Electrochemical Deposition of Microscopic Wires

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Myung, Nosang; Vasquez, Richard

    2005-01-01

    A method of fabrication of wires having micron and submicron dimensions is built around electrochemical deposition of the wires in their final positions between electrodes in integrated circuits or other devices in which the wires are to be used. Heretofore, nanowires have been fabricated by a variety of techniques characterized by low degrees of controllability and low throughput rates, and it has been necessary to align and electrically connect the wires in their final positions by use of sophisticated equipment in expensive and tedious post-growth assembly processes. The present method is more economical, offers higher yields, enables control of wire widths, and eliminates the need for post-growth assembly. The wires fabricated by this method could be used as simple electrical conductors or as transducers in sensors. Depending upon electrodeposition conditions and the compositions of the electroplating solutions in specific applications, the wires could be made of metals, alloys, metal oxides, semiconductors, or electrically conductive polymers. In this method, one uses fabrication processes that are standard in the semiconductor industry. These include cleaning, dry etching, low-pressure chemical vapor deposition, lithography, dielectric deposition, electron-beam lithography, and metallization processes as well as the electrochemical deposition process used to form the wires. In a typical case of fabrication of a circuit that includes electrodes between which microscopic wires are to be formed on a silicon substrate, the fabrication processes follow a standard sequence until just before the fabrication of the microscopic wires. Then, by use of a thermal SiO-deposition technique, the electrodes and the substrate surface areas in the gaps between them are covered with SiO. Next, the SiO is electron-beam patterned, then reactive-ion etched to form channels having specified widths (typically about 1 m or less) that define the widths of the wires to be formed. Drops

  18. Length dependence of electron transport through molecular wires--a first principles perspective.

    PubMed

    Khoo, Khoong Hong; Chen, Yifeng; Li, Suchun; Quek, Su Ying

    2015-01-07

    One-dimensional wires constitute a fundamental building block in nanoscale electronics. However, truly one-dimensional metallic wires do not exist due to Peierls distortion. Molecular wires come close to being stable one-dimensional wires, but are typically semiconductors, with charge transport occurring via tunneling or thermally-activated hopping. In this review, we discuss electron transport through molecular wires, from a theoretical, quantum mechanical perspective based on first principles. We focus specifically on the off-resonant tunneling regime, applicable to shorter molecular wires (<∼4-5 nm) where quantum mechanics dictates electron transport. Here, conductance decays exponentially with the wire length, with an exponential decay constant, beta, that is independent of temperature. Different levels of first principles theory are discussed, starting with the computational workhorse - density functional theory (DFT), and moving on to many-electron GW methods as well as GW-inspired DFT + Sigma calculations. These different levels of theory are applied in two major computational frameworks - complex band structure (CBS) calculations to estimate the tunneling decay constant, beta, and Landauer-Buttiker transport calculations that consider explicitly the effects of contact geometry, and compute the transmission spectra directly. In general, for the same level of theory, the Landauer-Buttiker calculations give more quantitative values of beta than the CBS calculations. However, the CBS calculations have a long history and are particularly useful for quick estimates of beta. Comparing different levels of theory, it is clear that GW and DFT + Sigma calculations give significantly improved agreement with experiment compared to DFT, especially for the conductance values. Quantitative agreement can also be obtained for the Seebeck coefficient - another independent probe of electron transport. This excellent agreement provides confirmative evidence of off

  19. Development of a precision wire feeder for small-diameter wire

    SciTech Connect

    Brandon, E.D.

    1995-03-01

    At Sandia National Laboratories in Albuquerque, the author designed and fabricated a precision wire feeder to be used with high energy density (electron beam and laser beam) welding for weld joints where filler wire might be needed to fill a gap or to adjust the chemical composition so that a crack-free weld could be made. The wire feeder incorporates a 25,000 step-per-revolution motor to power a urethane-coated drive roll. A microprocessor-based controller provides precise control of the motor and allows both continuous and pulsed feeding of the wire. A unidirectional 0.75-in.-dia ball bearing is used to press the wire against the drive roll. A slight constant backward tension is maintained on the wire spool by a Bodine torque motor. A Teflon tube is used to guide the wire from the drive roll to the vicinity of the weld, where a hypodermic needle is used to aim the wire into the weld pool. The operation of the wire feeder was demonstrated by feeding a 10-mil-dia, Type 304 stainless steel wire into a variety of CO{sub 2} laser beam welds. The resulting welds are smooth and continuous, and the welds are considered to be completely satisfactory for a variety of applications.

  20. Wire Crimp Termination Verification Using Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Perey, Daniel F.; Cramer, K. Elliott; Yost, William T.

    2007-01-01

    The development of a new ultrasonic measurement technique to quantitatively assess wire crimp terminations is discussed. The amplitude change of a compressional ultrasonic wave propagating through the junction of a crimp termination and wire is shown to correlate with the results of a destructive pull test, which is a standard for assessing crimp wire junction quality. Various crimp junction pathologies such as undercrimping, missing wire strands, incomplete wire insertion, partial insulation removal, and incorrect wire gauge are ultrasonically tested, and their results are correlated with pull tests. Results show that the nondestructive ultrasonic measurement technique consistently (as evidenced with destructive testing) predicts good crimps when ultrasonic transmission is above a certain threshold amplitude level. A physics-based model, solved by finite element analysis, describes the compressional ultrasonic wave propagation through the junction during the crimping process. This model is in agreement within 6% of the ultrasonic measurements. A prototype instrument for applying this technique while wire crimps are installed is also presented. The instrument is based on a two-jaw type crimp tool suitable for butt-splice type connections. Finally, an approach for application to multipin indenter type crimps will be discussed.