Sample records for quantum yields range

  1. The dissociative recombination of O2(+) - The quantum yield of O(1S) and O(1D)

    NASA Technical Reports Server (NTRS)

    Abreu, V. J.; Solomon, S. C.; Sharp, W. E.; Hays, P. B.

    1983-01-01

    Data from the visible airglow experiment on the Atmosphere Explorer-E satellite have been used to determine the quantum yield of O(1S) and O(1D) from the dissociative recombination of O2(+). A range of values between 0.09 and 0.23 has been obtained for the quantum yield of O(1S). It is shown that the quantum yield of O(1S) depends on the ratio of electron density to atomic oxygen density. This suggests that the quantum yield of O(1S) may depend on the degree of vibrational excitation of the recombining O2(+). The quantum yield of O(1D) has been measured to be 1.23 + or - 0.42, with no dependence on the electron-oxygen ratio.

  2. Absolute quantum yield measurement of powder samples.

    PubMed

    Moreno, Luis A

    2012-05-12

    Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: 1. Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. 2. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. 3. Reference and Sample measurement using direct excitation and indirect excitation. 4. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct quantum yield calculation. 5. Corrected quantum yield calculation. 6. Chromaticity coordinates calculation using Report Generator program. The Hitachi F-7000 Quantum Yield Measurement System offer advantages for this application, as follows: High sensitivity (S/N ratio 800 or better RMS). Signal is the Raman band of water measured under the following conditions: Ex wavelength 350 nm, band pass Ex and Em 5 nm, response 2 sec), noise is measured at the maximum of the Raman peak. High sensitivity allows measurement of samples even with low quantum yield. Using this system we have measured quantum yields as low as 0.1 for a sample of salicylic acid and as high as 0.8 for a sample of magnesium tungstate. Highly accurate measurement with a dynamic range of 6 orders of magnitude allows for measurements of both sharp scattering peaks with high intensity, as well as broad fluorescence peaks of low intensity under the same conditions. High measuring throughput and reduced light exposure to the sample, due to a high scanning speed of up to 60,000 nm/minute and automatic shutter function. Measurement of quantum yield over a wide wavelength range from 240 to 800 nm. Accurate quantum yield measurements are the result of collecting instrument spectral response and integrating sphere correction factors before measuring the sample. Large selection of calculated parameters provided by dedicated and easy to use software. During this video we will measure sodium salicylate in powder form which is known to have a quantum yield value of 0.4 to 0.5.

  3. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.

    PubMed

    Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A

    2011-09-25

    Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.

  4. Fluorescence quantum yield of carbon dioxide for quantitative UV laser-induced fluorescence in high-pressure flames

    NASA Astrophysics Data System (ADS)

    Lee, T.; Bessler, W. G.; Yoo, J.; Schulz, C.; Jeffries, J. B.; Hanson, R. K.

    2008-11-01

    The fluorescence quantum yield for ultraviolet laser-induced fluorescence of CO2 is determined for selected excitation wavelengths in the range 215-250 nm. Wavelength-resolved laser-induced fluorescence (LIF) spectra of CO2, NO, and O2 are measured in the burned gases of a laminar CH4/air flame ( φ=0.9 and 1.1) at 20 bar with additional NO seeded into the flow. The fluorescence spectra are fit to determine the relative contribution of the three species to infer an estimate of fluorescence quantum yield for CO2 that ranges from 2-8×10-6 depending on temperature and excitation wavelength with an estimated uncertainty of ±0.5×10-6. The CO2 fluorescence signal increases linearly with gas pressure for flames with constant CO2 mole fraction for the 10 to 60 bar range, indicating that collisional quenching is not an important contributor to the CO2 fluorescence quantum yield. Spectral simulation calculations are used to choose two wavelengths for excitation of CO2, 239.34 and 242.14 nm, which minimize interference from LIF of NO and O2. Quantitative LIF images of CO2 are demonstrated using these two excitation wavelengths and the measured fluorescence quantum yield.

  5. Photogeneration of reactive transient species upon irradiation of natural water samples: Formation quantum yields in different spectral intervals, and implications for the photochemistry of surface waters.

    PubMed

    Marchisio, Andrea; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2015-04-15

    Chromophoric dissolved organic matter (CDOM) in surface waters is a photochemical source of several transient species such as CDOM triplet states ((3)CDOM*), singlet oxygen ((1)O2) and the hydroxyl radical (OH). By irradiation of lake water samples, it is shown here that the quantum yields for the formation of these transients by CDOM vary depending on the irradiation wavelength range, in the order UVB > UVA > blue. A possible explanation is that radiation at longer wavelengths is preferentially absorbed by the larger CDOM fractions, which show lesser photoactivity compared to smaller CDOM moieties. The quantum yield variations in different spectral ranges were definitely more marked for (3)CDOM* and OH compared to (1)O2. The decrease of the quantum yields with increasing wavelength has important implications for the photochemistry of surface waters, because long-wavelength radiation penetrates deeper in water columns compared to short-wavelength radiation. The average steady-state concentrations of the transients ((3)CDOM*, (1)O2 and OH) were modelled in water columns of different depths, based on the experimentally determined wavelength trends of the formation quantum yields. Important differences were found between such modelling results and those obtained in a wavelength-independent quantum yield scenario. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Photoactive High Explosives: Substituents Effects on Tetrazine Photochemistry and Photophysics

    DOE PAGES

    McGrane, Shawn David; Bolme, Cynthia Anne; Greenfield, Margo Torello; ...

    2016-01-21

    High explosives that are photoactive, i.e., can be initiated with light, offer significant advantages in reduced potential for accidental electrical initiation. In this study, we examined a series of structurally related tetrazine based photoactive high explosive materials to detail their photochemical and photophysical properties. Using photobleaching infrared absorption, we determined quantum yields of photochemistry for nanosecond pulsed excitation at 355 and 532 nm. Changes in mass spectrometry during laser irradiation in vacuum measured the evolution of gaseous products. Fluorescence spectra, quantum yields, and lifetimes were measured to observe radiative channels of energy decay that compete with photochemistry. For the 6more » materials studied, quantum yields of photochemistry ranged from <10 –5 to 0.03 and quantum yield of fluorescence ranged from <10 –3 to 0.33. In all cases, the photoexcitation nonradiatively relaxed primarily to heat, appropriate for supporting photothermal initiation processes. Lastly, the photochemistry observed was dominated by ring scission of the tetrazine, but there was evidence of more extensive multistep reactions as well.« less

  7. Aeronomical determinations of the quantum yields of O (1S) and O (1D) from dissociative recombination of O2(+)

    NASA Technical Reports Server (NTRS)

    Yee, Jeng-Hwa; Abreu, Vincent J.; Colwell, William B.

    1989-01-01

    Data from the visible-airglow experiment on the Atmosphere Explorer-E satellite have been used to determine the quantum yields of O (1S) and O (1D) from the dissociative recombination of O2(+) based on a constant total recombination rate from each vibrational level. A range of values between 0.05 and 0.18 has been obtained for the quantum yield of O (1S) and shows a positive correlation with the extent of the vibrational excitation of O2(+). The quantum yield of O (1D) has been measured to be 0.9 + or - 0.2, with no apparent dependence on the vibrational distribution of O2(+).

  8. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

    PubMed

    Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali

    2016-01-13

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.

  9. Terahertz cascades from nanoparticles

    NASA Astrophysics Data System (ADS)

    Arnardottir, K. B.; Liew, T. C. H.

    2018-05-01

    In this article we propose a system capable of terahertz (THz) radiation with quantum yield above unity. The system consists of nanoparticles where the material composition varies along the radial direction of each nanoparticle in such a way that a ladder of equidistant energy levels emerges. By then exciting the highest level of this ladder we produce multiple photons of the same frequency in the THz range. We demonstrate how we can calculate a continuous material composition profile that achieves a high quantum yield and then show that a more experimentally friendly design of a multishell nanoparticle can still result in a high quantum yield.

  10. Quantum Yields in Mixed-Conifer Forests and Ponderosa Pine Plantations

    NASA Astrophysics Data System (ADS)

    Wei, L.; Marshall, J. D.; Zhang, J.

    2008-12-01

    Most process-based physiological models require canopy quantum yield of photosynthesis as a starting point to simulate carbon sequestration and subsequently gross primary production (GPP). The quantum yield is a measure of photosynthetic efficiency expressed in moles of CO2 assimilated per mole of photons absorbed; the process is influenced by environmental factors. In the summer 2008, we measured quantum yields on both sun and shade leaves for four conifer species at five sites within Mica Creek Experimental Watershed (MCEW) in northern Idaho and one conifer species at three sites in northern California. The MCEW forest is typical of mixed conifer stands dominated by grand fir (Abies grandis (Douglas ex D. Don) Lindl.). In northern California, the three sites with contrasting site qualities are ponderosa pine (Pinus ponderosa C. Lawson var. ponderosa) plantations that were experimentally treated with vegetation control, fertilization, and a combination of both. We found that quantum yields in MCEW ranged from ~0.045 to ~0.075 mol CO2 per mol incident photon. However, there were no significant differences between canopy positions, or among sites or tree species. In northern California, the mean value of quantum yield of three sites was 0.051 mol CO2/mol incident photon. No significant difference in quantum yield was found between canopy positions, or among treatments or sites. The results suggest that these conifer species maintain relatively consistent quantum yield in both MCEW and northern California. This consistency simplifies the use of a process-based model to accurately predict forest productivity in these areas.

  11. Primary quantum yields of NO2 photodissociation

    NASA Technical Reports Server (NTRS)

    Gardner, Edward P.; Sperry, Paul D.; Calvert, Jack G.

    1987-01-01

    The quantum yields of formation of NO, O2, and NO2 loss are measured for NO2 vapor at low pressures (0.13-0.30 torr) irradiated at 334-405 nm wavelengths and temperature in the range 273-370 K in order to study the primary quantum efficiencies of NO2 photodecomposition. The temperature and wavelength dependences of the primary quantum efficiencies are examined. It is observed that the primary quantum efficiencies increase rapidly from near zero at 424 nm to near unity for excitation at wavelengths less than 394 nm. The theory of Pitts et al. (1964) that the energy deficiency for photodissociation of NO2 excited at wavelengths greater than 397.9 nm is due to the rotational and vibrational energy of the NO2 molecules is confirmed by the data. Values for the primary quantum yields of NO2 photodecomposition as a function of wavelength are presented.

  12. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites

    DOE PAGES

    Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin; ...

    2015-12-21

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less

  13. [Fluorescence spectra and quantum yield of TiO2 nanocrystals synthesized by alcohothermal method].

    PubMed

    Song, Cui-Hong; Li, Yan-Ting; Li, Jing; Wei, Yong-Ju; Hu, Yu-Zhu; Wei, Yu

    2008-01-01

    Fluorescence spectra and fluorescence quantum yield of TiO2 nanocrystals were studied. Using tetra n-butyl titanate as a starting material, a facile alcohothermal technique was used to synthesize TiO2 nanocrystals. As can be seen from the transmittance electron microscopy (TEM) image, TiO2 nanocrystals with a relatively uniform particle size distribution of < 10 nm are present in the transparent sol. The transparent sol presents a strong stable fluorescence emission with a maximum at 450 nm, which is greatly dependent on the size quantization effects, defect energy level and the surface state of TiO2 nanocrystals. The quantum yield (gamma) of TiO2 was determined by the relative comparison procedure, using freshly prepared analytical purity quinine sulfate in 0.05 mol x L(-1) H2SO4 as a relative quantum yield standard. The emission quantum yield of TiO2 nanocrystals prepared in alcoholic media was calculated to be about 0.20 at wavelengths ranging from 330 to 370 nm, which was much higher than the values reported in previous works. So, it is supposed that nano-TiO2 will be applied as a potential quantum dots fluorescence probe in biological analysis.

  14. AgCl-doped CdSe quantum dots with near-IR photoluminescence.

    PubMed

    Kotin, Pavel Aleksandrovich; Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich

    2017-01-01

    We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found.

  15. Quantum yield measurements of light-induced H₂ generation in a photosystem I-[FeFe]-H₂ase nanoconstruct.

    PubMed

    Applegate, Amanda M; Lubner, Carolyn E; Knörzer, Philipp; Happe, Thomas; Golbeck, John H

    2016-01-01

    The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSI(C13G)-1,8-octanedithiol-[FeFe]-H2ase(C97G) (PSI-H2ase) nanoconstruct. The theoretical quantum yield for the PSI-H2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI-H2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10-0.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7-10 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSI(C13G)-1,8-octanedithiol-PSIC13G (PSI-PSI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI-PSI conjugates as well as in producing PSI-H2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI-H2ase nanoconstructs from the unproductive PSI-PSI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI-H2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation.

  16. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions.

    PubMed

    Lin, Chen-Jui; Hsu, Chao-Sheng; Wang, Po-Yen; Lin, Yi-Liang; Lo, Yu-Shiu; Wu, Chien-Hou

    2014-05-19

    The photochemical redox reactions of Cu(II)/alanine complexes have been studied in deaerated solutions over an extensive range of pH, Cu(II) concentration, and alanine concentration. Under irradiation, the ligand-to-metal charge transfer results in the reduction of Cu(II) to Cu(I) and the concomitant oxidation of alanine, which produces ammonia and acetaldehyde. Molar absorptivities and quantum yields of photoproducts for Cu(II)/alanine complexes at 313 nm are characterized mainly with the equilibrium Cu(II) speciation where the presence of simultaneously existing Cu(II) species is taken into account. By applying regression analysis, individual Cu(I) quantum yields are determined to be 0.094 ± 0.014 for the 1:1 complex (CuL) and 0.064 ± 0.012 for the 1:2 complex (CuL2). Individual quantum yields of ammonia are 0.055 ± 0.007 for CuL and 0.036 ± 0.005 for CuL2. Individual quantum yields of acetaldehyde are 0.030 ± 0.007 for CuL and 0.024 ± 0.007 for CuL2. CuL always has larger quantum yields than CuL2, which can be attributed to the Cu(II) stabilizing effect of the second ligand. For both CuL and CuL2, the individual quantum yields of Cu(I), ammonia, and acetaldehyde are in the ratio of 1.8:1:0.7. A reaction mechanism for the formation of the observed photoproducts is proposed.

  17. Photo-kinetics of photoinduced transformation reaction of methylene green with titanium trichloride in different solvents

    NASA Astrophysics Data System (ADS)

    Nadeem, Syed Muhammad Saqib; Saeed, Rehana

    2017-08-01

    The photo-kinetics of photoinduced transformation reaction of methylene green and titanium trichloride was investigated in water and different aqueous-alcoholic solvents. The reaction is pseudo-first order, dependent only on the concentration of titanium trichloride at fixed concentration of methylene green. The effect of water and aqueous-alcoholic solvents was studied in the acidic range from 4 to 7. It was observed that the quantum yield (φ) of reaction increased with increase in polarity of the solvent. The quantum yield (φ) was high in acidic condition and decreased with further increase in acidity. The quantum yield (φ) increased sharply with increase in concentration of titanium trichloride while it almost remained unaffected by change in concentration of methylene green. The addition of ions increased the quantum yield (φ) of reaction. The increase in temperature decreased the rate and quantum yield (φ) of reaction. An electron transfer mechanism for the reaction has been proposed in accordance with the kinetics of reaction. The absence of any reaction intermediate was confirmed by spectroscopic investigations. Activation energy ( E a) was calculated by Arrhenius relation. Thermodynamic parameters such as activation energy ( E a), enthalpy change (Δ H), free energy change (Δ G) and entropy change (Δ S) were also evaluated.

  18. Aryl-modified graphene quantum dots with enhanced photoluminescence and improved pH tolerance

    NASA Astrophysics Data System (ADS)

    Luo, Peihui; Ji, Zhe; Li, Chun; Shi, Gaoquan

    2013-07-01

    Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed.Chemical modification is an important technique to modulate the chemical and optical properties of graphene quantum dots (GQDs). In this paper, we report a versatile diazonium chemistry method to graft aryl groups including phenyl, 4-carboxyphenyl, 4-sulfophenyl and 5-sulfonaphthyl to GQDs via Gomberg-Bachmann reaction. The aryl-modified GQDs are nanocrystals with lateral dimensions in the range of 2-4 nm and an average thickness lower than 1 nm. Upon chemical modification with aryl groups, the photoluminescence (PL) bands of GQDs were tuned in the range of 418 and 447 nm, and their fluorescence quantum yields (QYs) were increased for up to about 6 times. Furthermore, the aryl-modified GQDs exhibited stable PL (both intensity and peak position) in a wide pH window of 1-11. The mechanism of improving the PL properties of GQDs by aryl-modification was also discussed. Electronic supplementary information (ESI) available: Fluorescence quantum yield measurements, estimation of grafting ratio, TEM images, FTIR spectra, PL spectra and zeta potentials. See DOI: 10.1039/c3nr02156d

  19. Cross sections and quantum yields of the 3 micron emission for Er(3+) and Ho(3+) dopants in crystalsls

    NASA Astrophysics Data System (ADS)

    Payne, Stephen A.; Smith, Larry K.; Krupke, William F.

    1995-05-01

    The lifetime, quantum yields, and branching ratios for the 2.8 micron emissions of several Er-and Ho-doped fluorides and oxides were measured. Among the fluoride crystals examined, which included LiYF4, BaY2F8, LaF3, and KY3F10, only the Ho:LiFY4 systems showed any proof of nonradiative decay. Conversely, all the oxide crystals were affected by nonradiative processes, resulting in measured quantum yields ranging from 3.6% for Er:Y3Al5O12 to 62% for Er in Gd3Sc2Ga3O12. In addition, plots of the 2.8 micron emission cross sections for seven Er- and Ho-doped crystals were presented.

  20. Production of NO2 from Photolysis of Peroxyacetyl Nitrate

    NASA Technical Reports Server (NTRS)

    Mazely, Troy L.; Friedl, Randall R.; Sander, Stanley P.

    1965-01-01

    Peroxyacetyl nitrate (PAN) vapor was photolyzed at 248 nm, and the NO2 photoproduct was detected by laser-induced fluorescence. The quantum yield for the production of NO2 from PAN photolysis was determined by comparison to HNO3 photolysis data taken under identical experimental conditions. The average of data collected over a range of total pressures, precursor concentrations, and buffer gases was 0.83 +/- 0.09 for the NO2 quantum yield, where the statistical uncertainty is 2 standard deviations.

  1. Aqueous synthesis of high bright and tunable near-infrared AgInSe2-ZnSe quantum dots for bioimaging.

    PubMed

    Che, Dongchen; Zhu, Xiaoxu; Wang, Hongzhi; Duan, Yourong; Zhang, Qinghong; Li, Yaogang

    2016-02-01

    Efficient synthetic methods for near-infrared quantum dots with good biophysical properties as bioimaging agents are urgently required. In this work, a simple and fast synthesis of highly luminescent, near-infrared AgInSe2-ZnSe quantum dots (QDs) with tunable emissions in aqueous media is reported. This method avoids high temperature and pressure and organic solvents to directly generate water-dispersible AgInSe2-ZnSe QDs. The photoluminescence emission peak of the AgInSe2-ZnSe QDs ranged from 625 to 940nm, with quantum yields up to 31%. The AgInSe2-ZnSe QDs with high quantum yield, near-infrared and low cytotoxic could be used as good cell labels, showing great potential applications in bio-imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter-Fella, Carolin M.; Li, Yanbo; Amani, Matin

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH 3NH 3PbI 3-xBr x perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamicmore » range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ E g ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. (Figure Presented).« less

  3. Can time-dependent density functional theory predict intersystem crossing in organic chromophores? A case study on benzo(bis)-X-diazole based donor-acceptor-donor type molecules.

    PubMed

    Tam, Teck Lip Dexter; Lin, Ting Ting; Chua, Ming Hui

    2017-06-21

    Here we utilized new diagnostic tools in time-dependent density functional theory to explain the trend of intersystem crossing in benzo(bis)-X-diazole based donor-acceptor-donor type molecules. These molecules display a wide range of fluorescence quantum yields and triplet yields, making them excellent candidates for testing the validity of these diagnostic tools. We believe that these tools are cost-effective and can be applied to structurally similar organic chromophores to predict/explain the trends of intersystem crossing, and thus fluorescence quantum yields and triplet yields without the use of complex and expensive multireference configuration interaction or multireference pertubation theory methods.

  4. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana.

    PubMed

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII).

  5. Lunisolar tidal force and its relationship to chlorophyll fluorescence in Arabidopsis thaliana

    PubMed Central

    Fisahn, Joachim; Klingelé, Emile; Barlow, Peter

    2015-01-01

    The yield of chlorophyll fluorescence Ft was measured in leaves of Arabidopsis thaliana over periods of several days under conditions of continuous illumination (LL) without the application of saturating light pulses. After linearization of the time series of the chlorophyll fluorescence yield (ΔFt), oscillations became apparent with periodicities in the circatidal range. Alignments of these linearized time series ΔFt with the lunisolar tidal acceleration revealed high degrees of synchrony and phase congruence. Similar congruence with the lunisolar tide was obtained with the linearized quantum yield of PSII (ΔФII), recorded after application of saturating light pulses. These findings strongly suggest that there is an exogenous timekeeper which is a stimulus for the oscillations detected in both the linearized yield of chlorophyll fluorescence (ΔFt) and the linearized quantum yield of PSII (ΔФII). PMID:26376108

  6. Montelukast photodegradation: elucidation of Ф-order kinetics, determination of quantum yields and application to actinometry.

    PubMed

    Maafi, Mounir; Maafi, Wassila

    2014-08-25

    A recently developed Ф-order semi-emperical integrated rate-law for photoreversible AB(2Ф) reactions has been successfully applied to investigate Montelukast sodium (Monte) photodegradation kinetics in ethanol. The model equations also served to propose a new stepwise kinetic elucidation method valid for any AB(2Ф) system and its application to the determination of Monte's forward (Ф(λ(irr))(A-->B)) and reverse (Ф(λ(irr))(B-->A)) quantum yields at various irradiation wavelengths. It has been found that Ф(λ(irr))(A-->B) undergoes a 15-fold increase with wavelength between 220 and 360 nm, with the spectral section 250-360 nm representing Monte effective photodegradation causative range. The reverse quantum yield values were generally between 12 and 54% lower than those recorded for Ф(λ(irr))(A-->B), with the trans-isomer (Monte) converting almost completely to its cis-counterpart at high irradiation wavelengths. Furthermore, the potential use of Monte as an actinometer has been investigated, and an actinometric method was proposed. This study demonstrated the usefulness of Monte for monochromatic light actinometry for the dynamic range 258-380 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X. T.; Zhang, Y.; Liu, X. G., E-mail: liuxuguang@tyut.edu.cn

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation lightmore » source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.« less

  8. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.

    PubMed

    Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan

    2015-07-28

    Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals.

  9. A Phosphine-Free Route to Size-Adjustable CdSe and CdSe/CdS Core-Shell Quantum Dots for White-Light-Emitting Diodes.

    PubMed

    Zhang, Yugang; Li, Guopeng; Zhang, Ting; Song, Zihang; Wang, Hui; Zhang, Zhongping; Jiang, Yang

    2018-03-01

    The selenium dioxide was used as the precursor to synthesize wide-size-ranged CdSe quantum dots (2.4-5.7 nm) via hot-injection route. The CdSe quantum dots are featured with high crystalline, monodisperse, zinc blende structure and wide emission region (530-635 nm). In order to improve the stability and quantum yield, a phosphine-free single-molecular precursor approach is used to obtain CdSe/CdS core/shell quantum dots. The CdSe/CdS quantum dots are highly fluorescent with quantum yield up to 65%, and persist the good monodispersity and high crystallinity. Moreover, the quantum dots white light-emitting-diodes are fabricated by using the resultant red emission core/shell quantum dots and Y3Al5O12:Ce3+ yellow phosphors as color-conversion layers on a blue InGaN chip. The prepared light-emitting-diodes show good performance with CIE-1931 coordinated of (0.3583, 0.3349), an Ra of 92.9, and a Tc of 4410 K at 20 mA, which indicate that the combination of red-emission QDs and yellow phophors as a promising approach to obtain warm WLEDs with good color rendering.

  10. High quantum yield of the Egyptian blue family of infrared phosphors (MCuSi4O10, M = Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Berdahl, Paul; Boocock, Simon K.; Chan, George C.-Y.; Chen, Sharon S.; Levinson, Ronnen M.; Zalich, Michael A.

    2018-05-01

    The alkaline earth copper tetra-silicates, blue pigments, are interesting infrared phosphors. The Ca, Sr, and Ba variants fluoresce in the near-infrared (NIR) at 909, 914, and 948 nm, respectively, with spectral widths on the order of 120 nm. The highest quantum yield ϕ reported thus far is ca. 10%. We use temperature measurements in sunlight to determine this parameter. The yield depends on the pigment loading (mass per unit area) ω with values approaching 100% as ω → 0 for the Ca and Sr variants. Although maximum quantum yield occurs near ω = 0, maximum fluorescence occurs near ω = 70 g m-2, at which ϕ = 0.7. The better samples show fluorescence decay times in the range of 130 to 160 μs. The absorbing impurity CuO is often present. Good phosphor performance requires long fluorescence decay times and very low levels of parasitic absorption. The strong fluorescence enhances prospects for energy applications such as cooling of sunlit surfaces (to reduce air conditioning requirements) and luminescent solar concentrators.

  11. A study of Kapton degradation under simulated shuttle environment

    NASA Technical Reports Server (NTRS)

    Eck, T. G.; Hoffman, R. W.

    1986-01-01

    A system was developed which employs a source of low energy oxygen ion to simulate the shuttle low Earth orbit environment. This source, together with diagnostic tools including surface analysis ans mass spectroscopic capability, was used to measure the dependence of ion energy of the oxygen induced CO signals from pyrolytic graphite and Kapton. For graphite the CO signal was examined at energies ranging form 4.5 to 465 eV and for Kapton from 4.5 to 188 eV. While the relative quantum yields inferred from the data are reasonably precise, there are large uncertainties in the absolute yields because of the assumptions necessary to covert the measured signal strengths to quantum yields. These assumptions are discussed in detail.

  12. Ultra-broadband photodetectors based on epitaxial graphene quantum dots

    NASA Astrophysics Data System (ADS)

    El Fatimy, Abdel; Nath, Anindya; Kong, Byoung Don; Boyd, Anthony K.; Myers-Ward, Rachael L.; Daniels, Kevin M.; Jadidi, M. Mehdi; Murphy, Thomas E.; Gaskill, D. Kurt; Barbara, Paola

    2018-03-01

    Graphene is an ideal material for hot-electron bolometers due to its low heat capacity and weak electron-phonon coupling. Nanostructuring graphene with quantum-dot constrictions yields detectors of electromagnetic radiation with extraordinarily high intrinsic responsivity, higher than 1×109 V W-1 at 3 K. The sensing mechanism is bolometric in nature: the quantum confinement gap causes a strong dependence of the electrical resistance on the electron temperature. Here, we show that this quantum confinement gap does not impose a limitation on the photon energy for light detection and these quantum-dot bolometers work in a very broad spectral range, from terahertz through telecom to ultraviolet radiation, with responsivity independent of wavelength. We also measure the power dependence of the response. Although the responsivity decreases with increasing power, it stays higher than 1×108 V W-1 in a wide range of absorbed power, from 1 pW to 0.4 nW.

  13. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence.

    PubMed

    Diamond, Kevin R; Farrell, Thomas J; Patterson, Michael S

    2003-12-21

    Steady-state diffusion theory models of fluorescence in tissue have been investigated for recovering fluorophore concentrations and fluorescence quantum yield. Spatially resolved fluorescence, excitation and emission reflectance Carlo simulations, and measured using a multi-fibre probe on tissue-simulating phantoms containing either aluminium phthalocyanine tetrasulfonate (AlPcS4), Photofrin meso-tetra-(4-sulfonatophenyl)-porphine dihydrochloride The accuracy of the fluorophore concentration and fluorescence quantum yield recovered by three different models of spatially resolved fluorescence were compared. The models were based on: (a) weighted difference of the excitation and emission reflectance, (b) fluorescence due to a point excitation source or (c) fluorescence due to a pencil beam excitation source. When literature values for the fluorescence quantum yield were used for each of the fluorophores, the fluorophore absorption coefficient (and hence concentration) at the excitation wavelength (mu(a,x,f)) was recovered with a root-mean-square accuracy of 11.4% using the point source model of fluorescence and 8.0% using the more complicated pencil beam excitation model. The accuracy was calculated over a broad range of optical properties and fluorophore concentrations. The weighted difference of reflectance model performed poorly, with a root-mean-square error in concentration of about 50%. Monte Carlo simulations suggest that there are some situations where the weighted difference of reflectance is as accurate as the other two models, although this was not confirmed experimentally. Estimates of the fluorescence quantum yield in multiple scattering media were also made by determining mu(a,x,f) independently from the fitted absorption spectrum and applying the various diffusion theory models. The fluorescence quantum yields for AlPcS4 and TPPS4 were calculated to be 0.59 +/- 0.03 and 0.121 +/- 0.001 respectively using the point source model, and 0.63 +/- 0.03 and 0.129 +/- 0.002 using the pencil beam excitation model. These results are consistent with published values.

  14. High performance, low dissipation quantum cascade lasers across the mid-IR range.

    PubMed

    Bismuto, Alfredo; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Muller, Antoine

    2015-03-09

    In this work, we present the development of low consumption quantum cascade lasers across the mid-IR range. In particular, short cavity single-mode lasers with optimised facet reflectivities have been fabricated from 4.5 to 9.2 μm. Threshold dissipated powers as low as 0.5 W were obtained in continuous wave operation at room temperature. In addition, the beneficial impact of reducing chip length on laser mounting yield is discussed. High power single-mode lasers from the same processed wafers are also presented.

  15. Optical characterization of Nd (3+):AgBr.

    PubMed

    Bunimovich, D; Nagli, L; Katzir, A

    1997-10-20

    The luminescence of silver bromide crystals, doped with neodymium, was investigated over the visible and near-infrared spectral ranges. The emission, excitation, and absorption spectra were measured over a broad temperature range. The absolute luminescence quantum yield was estimated by comparing the luminescence with that of a neodymium-doped phosphate glass, for which the manufacturer gives a value of 0.4. The Judd-Ofelt analysis was applied to both materials, and transition rates, branching ratios, and quantum efficiencies were calculated for all the observed bands. Good agreement was obtained between theory and experiment.

  16. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  17. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots.

    PubMed

    Wu, Zhu Lian; Gao, Ming Xuan; Wang, Ting Ting; Wan, Xiao Yan; Zheng, Lin Ling; Huang, Cheng Zhi

    2014-04-07

    A general quantitative pH sensor for environmental and intracellular applications was developed by the facile hydrothermal preparation of dicyandiamide (DCD) N-doped high quantum yield (QY) graphene quantum dots (GQDs) using citric acid (CA) as the carbon source. The obtained N-doped GQDs have excellent photoluminesence (PL) properties with a relatively high QY of 36.5%, suggesting that N-doped chemistry could promote the QY of carbon nanomaterials. The possible mechanism for the formation of the GQDs involves the CA self-assembling into a nanosheet structure through intermolecular H-bonding at the initial stage of the reaction, and then the pure graphene core with many function groups formed through the dehydration between the carboxyl and hydroxyl of the intermolecules under hydrothermal conditions. These N-doped GQDs have low toxicity, and are photostable and pH-sensitive between 1.81 to 8.96, giving a general pH sensor with a wide range of applications from real water to intracellular contents.

  18. Relative quantum yield of I-asterisk(2P1/2) in the tunable laser UV photodissociation of i-C3F7I and n-C3F7I - Effect of temperature and exciplex emission

    NASA Technical Reports Server (NTRS)

    Smedley, J. E.; Leone, S. R.

    1983-01-01

    Wavelength-specific relative quantum yields of metastable I from pulsed laser photodissociation of i-C3F7I and n-C3F7I in the range 265-336 nm are determined by measuring the time-resolved infrared emission from the atomic I(P-2(1/2) P-2(3/2) transition. It is shown that although this yield appears to be unity from 265 to 298 nm, it decreases dramatically at longer wavelengths. Values are also reported for the enhancement of emission from metastable I due to exciplex formation at several temperatures. The exciplex formation emission increases linearly with parent gas pressure, but decreases with increasing temperature. Absorption spectra of i- and n-C3F7I between 303 and 497 K are presented, and the effect of temperature on the quantum yields at selected wavelengths greater than 300 nm, where increasing the temperature enhances the absorption considerably, are given. The results are discussed in regard to the development of solar-pumped iodine lasers.

  19. Transport properties of N2 gas at cryogenic temperatures. [computation of viscosity and thermal conductivity

    NASA Technical Reports Server (NTRS)

    Pearson, W. E.

    1974-01-01

    The viscosity and thermal conductivity of nitrogen gas for the temperature range 5 K - 135 K have been computed from the second Chapman-Enskog approximation. Quantum effects, which become appreciable at the lower temperatures, are included by utilizing collision integrals based on quantum theory. A Lennard-Jones (12-6) potential was assumed. The computations yield viscosities about 20 percent lower than those predicted for the high end of this temperature range by the method of corresponding states, but the agreement is excellent when the computed values are compared with existing experimental data.

  20. Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors

    NASA Astrophysics Data System (ADS)

    Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay

    2017-11-01

    Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α , the appropriate FRCG model has the effective range d =b2/N =α2/N , for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.

  1. Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.

    PubMed

    Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay

    2017-11-01

    Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.

  2. Photoproduction of hydrated electrons from natural organic solutes in aquatic environments

    USGS Publications Warehouse

    Zepp, R.G.; Braun, A.M.; Hoigne, J.; Leenheer, J.A.

    1987-01-01

    Laser flash photolysis was used to investigate the transients formed on absorption of 355-nm light by dissolved organic matter (DOM) from natural water bodies and from soil. Absorption spectra and quenching studies of the transients provided confirming evidence that hydrated electrons were formed by all of the DOM that were studied. The DOM from the Suwannee River in Georgia and from the Greifensee, a Swiss lake, exhibited great variability in light-absorbing properties. Despite this high variability in absorption coefficients, the primary quantum yields for electron ejection from the Greifensee and Suwannee DOM fell in a narrow range (0.005-0.008). Steady-state irradiations (355 nm) of the DOM with 2-chloroethanol (0.02 M) present as an electron scavenger produced chloride ions with quantum yields that were about 2 orders of magnitude lower than the primary quantum yields. This result indicates that most of the photoejected electrons recombine with cations before escaping into bulk solution. Irradiations of DOM solutions under sunlight (April, latitude 34?? N) photoproduced electrons at rates falling in the range of 0.2-0.4 ??mol/[(mg of DOC) h]. These results indicate that hydrated electrons can play a significant role in the environmental photoreduction of persistent, electronegative pollutants but may be relatively unimportant in the environmental production of hydrogen peroxide. ?? 1987 American Chemical Society.

  3. Mechanism for the Green Glow of the Upper Ionosphere

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1997-01-01

    The generation of the green line of atomic oxygen by dissociative recombination of 02 plus occurs by the capture of an electron into a repulsive state of 02 followed by dissociation along another state of a different electronic symmetry. The two states are coupled together by mixed symmetry Rydberg states. Quantum chemical calculations give a rate coefficient at room temperature of (0.39 (+ 0.31 or -0.19)) x 10 exp -8 cubic centimeters per second. The quantum yield of excited oxygen is within the range deduced from ground, rocket, and satellite observations. The rate coefficients and yields are needed in models of the optical emission, chemistry, and energy balance of planetary ionospheres.

  4. Free volume dependence of an ionic molecular rotor in Fluoroalkylphosphate (FAP) based ionic liquids

    NASA Astrophysics Data System (ADS)

    Singh, Prabhat K.; Mora, Aruna K.; Nath, Sukhendu

    2016-01-01

    The emission properties of Thioflavin-T (ThT), a cationic molecular rotor, have been investigated in two fluoroalkylphosphate ([FAP]) anion based ionic liquids, namely, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and 1-(2-hydroxyethyl)-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, over a wide temperature range. The micro-viscosities of ionic liquids around ThT, measured from the emission quantum yield, are found to be quite different from their bulk viscosities. The temperature dependence of the viscosity and the emission quantum yield reveals that, despite the very low shear viscosity of these ILs, the non-radiative torsional relaxation has a strong dependence on the free volume of these [FAP] anion based ILs.

  5. Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.

    PubMed

    Li, Qiang; Wei, Hong; Xu, Hongxing

    2015-12-09

    The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.

  6. The energy dependence of CO(v,J) produced from H2CO via the transition state, roaming, and triple fragmentation channels.

    PubMed

    Quinn, Mitchell S; Andrews, Duncan U; Nauta, Klaas; Jordan, Meredith J T; Kable, Scott H

    2017-07-07

    The dynamics of CO production from photolysis of H 2 CO have been explored over a 8000 cm -1 energy range (345 nm-266 nm). Two-dimensional ion imaging, which simultaneously measures the speed and angular momentum distribution of a photofragment, was used to characterise the distribution of rotational and translational energy and to quantify the branching fraction of roaming, transition state (TS), and triple fragmentation (3F) pathways. The rotational distribution for the TS channel broadens significantly with increasing energy, while the distribution is relatively constant for the roaming channel. The branching fraction from roaming is also relatively constant at 20% of the observed CO. Above the 3F threshold, roaming decreases in favour of triple fragmentation. Combining the present data with our previous study on the H-atom branching fractions and published quantum yields for radical and molecular channels, absolute quantum yields were determined for all five dissociation channels for the entire S 1 ←S 0 absorption band, covering almost 8000 cm -1 of excitation energy. The S 0 radical and TS molecular channels are the most important over this energy range. The absolute quantum yield of roaming is fairly constant ∼5% at all energies. The T 1 radical channel is important (20%-40%) between 1500 and 4000 cm -1 above the H + HCO threshold, but becomes unimportant at higher energy. Triple fragmentation increases rapidly above its threshold reaching a maximum of 5% of the total product yield at the highest energy.

  7. Quantum logic between remote quantum registers

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.

    2013-02-01

    We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.

  8. Absorption and emission behaviour of trans- p-coumaric acid in aqueous solutions and some organic solvents

    NASA Astrophysics Data System (ADS)

    Putschögl, M.; Zirak, P.; Penzkofer, A.

    2008-01-01

    The absorption and fluorescence behaviour of trans- p-coumaric acid ( trans-4-hydroxycinnamic acid) is investigated in buffered aqueous solution over a wide range from pH 1 to pH 12, in un-buffered water, and in some organic solvents. Absorption cross-section spectra, fluorescence quantum distributions, fluorescence quantum yields, and degrees of fluorescence polarisation are measured. p-Coumaric acid exists in different ionic forms in aqueous solution depending on the pH. There is an equilibrium between the neutral form ( p-CAH 2) and the single anionic form ( p-CAH -) at low pH (p Kna ≈ 4.9), and between the single anionic and the double anionic form ( p-CA 2-) at high pH (p Kaa ≈ 9.35). In the organic solvents studied trans- p-coumaric acid is dissolved in its neutral form. The fluorescence quantum yield of trans- p-coumaric acid in aqueous solution is ϕF ≈ 1.4 × 10 -4 for the neutral and the single anionic form, while it is ϕF ≈ 1.3 × 10 -3 for the double anionic form. For trans- p-coumaric acid in organic solvents fluorescence quantum yields in the range from 4.8 × 10 -5 (acetonitrile) to 1.5 × 10 -4 (glycerol) were measured. The fluorescence spectra are 7700-10,000 cm -1 Stokes shifted in aqueous solution, and 5400-8200 cm -1 Stokes shifted in the studied organic solvents. Decay paths responsible for the low fluorescence quantum yields are discussed (photo-isomerisation and internal conversion for p-CA 2-, solvent-assisted intra-molecular charge-transfer or ππ ∗ to nπ ∗ transfer and internal conversion for p-CAH 2 and p-CAH -). The solvent dependence of the first ππ ∗ electronic transition frequency and of the fluorescence Stokes shift of p-CAH 2 is discussed in terms of polar solute-solvent interaction effects. Thereby the ground-state and excite-state molecular dipole moments are extracted.

  9. Noise induced quantum effects in photosynthetic complexes

    NASA Astrophysics Data System (ADS)

    Dorfman, Konstantin; Voronine, Dmitri; Mukamel, Shaul; Scully, Marlan

    2012-02-01

    Recent progress in coherent multidimensional optical spectroscopy revealed effects of quantum coherence coupled to population leading to population oscillations as evidence of quantum transport. Their description requires reevaluation of the currently used methods and approximations. We identify couplings between coherences and populations as the noise-induced cross-terms in the master equation generated via Agarwal-Fano interference that have been shown earlier to enhance the quantum yield in a photocell. We investigated a broad range of typical parameter regimes, which may be applied to a variety of photosynthetic complexes. We demonstrate that quantum coherence may be induced in photosynthetic complexes under natural conditions of incoherent light from the sun. This demonstrates that a photosynthetic reaction center may be viewed as a biological quantum heat engine that transforms high-energy thermal photon radiation into low entropy electron flux.

  10. Spectroscopic investigation of alloyed quantum dot-based FRET to cresyl violet dye.

    PubMed

    Kotresh, M G; Adarsh, K S; Shivkumar, M A; Mulimani, B G; Savadatti, M I; Inamdar, S R

    2016-05-01

    Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size. The results show that quantum yield of the QDs increases with increase in the emission wavelength. The FRET parameters such as spectral overlap J(λ), Förster distance R0, intermolecular distance (r), rate of energy transfer k(T)(r), and transfer efficiency (E) are determined by employing both steady-state and time-resolved fluorescence spectroscopy. Additionally, dynamic quenching is noticed to occur in the present FRET system. Stern-Volmer (K(D)) and bimolecular quenching constants (k(q)) are determined from the Stern-Volmer plot. It is observed that the transfer efficiency follows a linear dependence on the spectral overlap and the quantum yield of the donor as predicted by the Förster theory upon changing the composition of the QD. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Josephson junction microwave amplifier in self-organized noise compression mode

    PubMed Central

    Lähteenmäki, Pasi; Vesterinen, Visa; Hassel, Juha; Seppä, Heikki; Hakonen, Pertti

    2012-01-01

    The fundamental noise limit of a phase-preserving amplifier at frequency is the standard quantum limit . In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction. Noise performance of our amplifier is limited by mixing of quantum noise from Josephson oscillation regime down to the signal frequency. Measurements yield nearly quantum-limited operation, at 2.8 GHz, owing to self-organization of the working point. Simulations describe the characteristics of our device well and indicate potential for wide bandwidth operation. PMID:22355788

  12. Protein-induced Photophysical Changes to the Amyloid Indicator Dye Thioflavin T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L Wolfe; M Calabrese; A Nath

    2011-12-31

    The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less

  13. Protein-induced photophysical changes to the amyloid indicator dye thioflavin T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Leslie S.; Calabrese, Matthew F.; Nath, Abhinav

    2010-10-04

    The small molecule thioflavin T (ThT) is a defining probe for the identification and mechanistic study of amyloid fiber formation. As such, ThT is fundamental to investigations of serious diseases such as Alzheimer's disease, Parkinson disease, and type II diabetes. For each disease, a different protein undergoes conformational conversion to a {beta}-sheet rich fiber. The fluorescence of ThT exhibits an increase in quantum yield upon binding these fibers. Despite its widespread use, the structural basis for binding specificity and for the changes to the photophysical properties of ThT remain poorly understood. Here, we report the co-crystal structures of ThT withmore » two alternative states of {beta}-2 microglobulin ({beta}2m); one monomeric, the other an amyloid-like oligomer. In the latter, the dye intercalates between {beta}-sheets orthogonal to the {beta}-strands. Importantly, the fluorophore is bound in such a manner that a photophysically relevant torsion is limited to a range of angles generally associated with low, not high, quantum yield. Quantum mechanical assessment of the fluorophore shows the electronic distribution to be strongly stabilized by aromatic interactions with the protein. Monomeric {beta}2m gives little increase in ThT fluorescence despite showing three fluorophores, at two binding sites, in configurations generally associated with high quantum yield. Our efforts fundamentally extend existing understanding about the origins of amyloid-induced photophysical changes. Specifically, the {beta}-sheet interface that characterizes amyloid acts both sterically and electronically to stabilize the fluorophore's ground state electronic distribution. By preventing the fluorophore from adopting its preferred excited state configuration, nonradiative relaxation pathways are minimized and quantum yield is increased.« less

  14. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xuedan; Diroll, Benjamin T.; Cho, Wooje

    Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g( 2)(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicatingmore » the importance of surface passivation on NPL emission quality. Second-order photon correlation (g( 2)(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. In conclusion, these findings reveal that by careful growth control and core–shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.« less

  15. Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-Two-Dimensional Core/Shell Nanoplatelets

    DOE PAGES

    Ma, Xuedan; Diroll, Benjamin T.; Cho, Wooje; ...

    2017-08-08

    Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g( 2)(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicatingmore » the importance of surface passivation on NPL emission quality. Second-order photon correlation (g( 2)(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. In conclusion, these findings reveal that by careful growth control and core–shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.« less

  16. Plasmonic enhancement of electroluminescence

    NASA Astrophysics Data System (ADS)

    Guzatov, D. V.; Gaponenko, S. V.; Demir, H. V.

    2018-01-01

    Here plasmonic effect specifically on electroluminescence (EL) is studied in terms of radiative and nonradiative decay rates for a dipole near a metal spherical nanoparticle (NP). Contribution from scattering is taken into account and is shown to play a decisive role in EL enhancement owing to pronounced size-dependent radiative decay enhancement and weak size effect on non-radiative counterpart. Unlike photoluminescence where local incident field factor mainly determines the enhancement possibility and level, EL enhancement is only possible by means of quantum yield rise, EL enhancement being feasible only for an intrinsic quantum yield Q0 < 1. The resulting plasmonic effect is independent of intrinsic emitter lifetime but is exclusively defined by the value of Q0, emission spectrum, NP diameter and emitter-metal spacing. For 0.1< Q0 < 0.25, Ag nanoparticles are shown to enhance LED/OLED intensity by several times over the whole visible whereas Au particles feature lower effect within the red-orange range only. Independently of positive effect on quantum yield, metal nanoparticles embedded in an electroluminescent device will improve its efficiency at high currents owing to enhanced overall recombination rate which will diminish manifestation of Auger processes. The latter are believed to be responsible for the known undesirable efficiency droop in semiconductor commercial quantum well based LEDs at higher current. For the same reason plasmonics can diminish quantum dot photodegradation from Auger process induced non-radiative recombination and photoionization thus opening a way to avoid negative Auger effects in emerging colloidal semiconductor LEDs.

  17. Viscosity and medium effects on the fluorescence and photochemical behaviour of some aryl chalcones

    NASA Astrophysics Data System (ADS)

    Ebeid, El-Zeiny M.; Abdel-Kader, Mahmood H.; Issa, Raafat M.; El-Daly, Samy A.

    1988-05-01

    The emission, excitation and absorption spectra toghether with the fluorescence and photochemical quantum yields of some chalcone derivatives have been studied in organic solvents and micellar and microemulsion media. Both 4-[2-(2-pyridyl)ethenyl] ( I) and 4-[2-(4-pyridyl)ethenyl ( II) chalcones show large positive solvatochromic effects. The fluorescence quantum yields increase substantially as the medium viscosity increases with a subsequent decrease in the photochemical quatum yield. Compounds I and II undergo excited-state molecular aggregation in concentrated solutions giving excimer-like emission that coincides with emission from crystalline samples. The enthalpies of photoassociation have been estimated. The chalcone derivative I acts as an efficient quencher of the fluorescence of the laser dye 1,4-bis (β-pyridyl-2-vinyl)benzene via a long-range mechanism. The excited-state lifetimes of both I and II are short and at 20°C their τ values are less than 800 ps.

  18. Production yield of rare-earth ions implanted into an optical crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornher, Thomas, E-mail: t.kornher@physik.uni-stuttgart.de; Xia, Kangwei; Kolesov, Roman

    2016-02-01

    Rare-earth (RE) ions doped into desired locations of optical crystals might enable a range of novel integrated photonic devices for quantum applications. With this aim, we have investigated the production yield of cerium and praseodymium by means of ion implantation. As a measure, the collected fluorescence intensity from both implanted samples and single centers was used. With a tailored annealing procedure for cerium, a yield up to 53% was estimated. Praseodymium yield amounts up to 91%. Such high implantation yield indicates a feasibility of creation of nanopatterned rare-earth doping and suggests strong potential of RE species for on-chip photonic devices.

  19. Absolute I(asterisk) quantum yields for the ICN A state by diode laser gain-vs-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.

  20. Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: self-quenching by photoactive energy traps

    NASA Astrophysics Data System (ADS)

    Ezquerra Riega, Sergio D.; Rodríguez, Hernán B.; San Román, Enrique

    2017-03-01

    The effect of dye concentration on the fluorescence,ΦF, and singlet molecular oxygen,ΦΔ, quantum yields of rose bengal loaded poly(2-hydroxyethyl methacrylate) thin films (∼200 nm thick) was investigated, with the aim of understanding the effect of molecular interactions on the photophysical properties of dyes in crowded constrained environments. Films were characterized by absorption and fluorescence spectroscopy, singlet molecular oxygen (1O2) production was quantified using a chemical monitor, and the triplet decay was determined by laser flash-photolysis. For the monomeric dilute dye, ΦF = 0.05 ± 0.01 and ΦΔ = 0.76 ± 0.14. The effect of humidity and the photostability of the dye were also investigated. Spectral changes in absorption and fluorescence in excess of 0.05 M and concentration self-quenching after 0.01 M are interpreted in the context of a quenching radius model. Calculations of energy migration and trapping rates were performed assuming random distribution of the dye. Best fits of fluorescence quantum yields with concentration are obtained in the whole concentration range with a quenching radius r Q = 1.5 nm, in the order of molecular dimensions. Agreement is obtained only if dimeric traps are considered photoactive, with an observed fluorescence quantum yield ratio ΦF,trap/ΦF,monomer ≈ 0.35. Fluorescent traps are capable of yielding triplet states and 1O2. Results show that the excited state generation efficiency, calculated as the product between the absorption factor and the fluorescence quantum yield, is maximized at around 0.15 M, a very high concentration for random dye distributions. Relevant information for the design of photoactive dyed coatings is provided.

  1. Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature.

    PubMed

    Huang, He; Susha, Andrei S; Kershaw, Stephen V; Hung, Tak Fu; Rogach, Andrey L

    2015-09-01

    Emission color controlled, high quantum yield CH 3 NH 3 PbBr 3 perovskite quantum dots are obtained by changing the temperature of a bad solvent during synthesis. The products for temperatures between 0 and 60 °C have good spectral purity with narrow emission line widths of 28-36 nm, high absolute emission quantum yields of 74% to 93%, and short radiative lifetimes of 13-27 ns.

  2. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.

    PubMed

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen

    2015-11-02

    Polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum communications, quantum computation and high precision quantum metrology. We report on the generation of a continuous-wave pumped 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer. Hong-Ou-Mandel (HOM) interference measurement yields signal and idler photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The source can be tuned over a broad range against temperature or pump power without loss of visibilities. This source will be used in our future experiments such as generation of orbital angular momentum entangled source at telecom wavelength for quantum frequency up-conversion, entanglement based quantum key distributions and many other quantum optics experiments at telecom wavelengths.

  3. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    PubMed

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  4. Loop Quantum Gravity.

    PubMed

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  5. Environment spectrum and coherence behaviours in a rare-earth doped crystal for quantum memory.

    PubMed

    Gong, Bo; Tu, Tao; Zhou, Zhong-Quan; Zhu, Xing-Yu; Li, Chuan-Feng; Guo, Guang-Can

    2017-12-21

    We theoretically investigate the dynamics of environment and coherence behaviours of the central ion in a quantum memory based on a rare-earth doped crystal. The interactions between the central ion and the bath spins suppress the flip-flop rate of the neighbour bath spins and yield a specific environment spectral density S(ω). Under dynamical decoupling pulses, this spectrum provides a general scaling for the coherence envelope and coherence time, which significantly extend over a range on an hour-long time scale. The characterized environment spectrum with ultra-long coherence time can be used to implement various quantum communication and information processing protocols.

  6. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    PubMed

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  7. Note: Measuring instrument of singlet oxygen quantum yield in photodynamic effects

    NASA Astrophysics Data System (ADS)

    Li, Zhongwei; Zhang, Pengwei; Zang, Lixin; Qin, Feng; Zhang, Zhiguo; Zhang, Hongli

    2017-06-01

    Using diphenylisobenzofuran (C20H14O) as a singlet oxygen (1O2) reporter, a comparison method, which can be used to measure the singlet oxygen quantum yield (ΦΔ) of the photosensitizer quantitatively, is presented in this paper. Based on this method, an automatic measuring instrument of singlet oxygen quantum yield is developed. The singlet oxygen quantum yield of the photosensitizer hermimether and aloe-emodin is measured. It is found that the measuring results are identical to the existing ones, which verifies the validity of the measuring instrument.

  8. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields, solvent-polarity- dependent fluorescence behavior, susceptibility to quenching by certain chemical species, and/or two-photon fluorescence, none of them has the combination of all of these attributes. Because the present dyes do have all of these attributes, they have potential utility as molecular probes in a variety of applications. Examples include (1) monitoring curing and deterioration of polymers; (2) monitoring protein expression; (3) high-throughput screening of drugs; (4) monitoring such chemical species as glucose, amines, amino acids, and metal ions; and (5) photodynamic therapy of cancers and other diseases.

  9. Fixed-node quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Anderson, James B.

    Quantum Monte Carlo methods cannot at present provide exact solutions of the Schrödinger equation for systems with more than a few electrons. But, quantum Monte Carlo calculations can provide very low energy, highly accurate solutions for many systems ranging up to several hundred electrons. These systems include atoms such as Be and Fe, molecules such as H2O, CH4, and HF, and condensed materials such as solid N2 and solid silicon. The quantum Monte Carlo predictions of their energies and structures may not be `exact', but they are the best available. Most of the Monte Carlo calculations for these systems have been carried out using approximately correct fixed nodal hypersurfaces and they have come to be known as `fixed-node quantum Monte Carlo' calculations. In this paper we review these `fixed node' calculations and the accuracies they yield.

  10. Temperature dependence of tris(2,2'-bipyridine) ruthenium (II) device characteristics

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Malliaras, George G.; Flores-Torres, Samuel; Abruña, Héctor D.; Chunwachirasiri, Withoon; Winokur, Michael J.

    2004-04-01

    We have investigated the temperature dependence of the current, radiance, and efficiency from electroluminescent devices based on [Ru(bpy)3]2+(PF6-)2, where bpy is 2,2'-bipyridine. We find that the current increases monotonically with temperature from 200 to 380 K, while the radiance reaches a maximum near room temperature. For temperatures greater than room temperature, an irreversible, current-induced degradation occurs with thermal cycling that diminishes both the radiance and the photoluminescence (PL) quantum yield, but does not affect the current. The temperature dependence of the external quantum efficiency is fully accounted for by the dependence of the PL quantum yield as measured from the emissive area of the device. This implies that the contacts remain ohmic throughout the temperature range investigated. The quenching of the PL with temperature was attributed to thermal activation to a nonradiative d-d transition. The temperature dependence of the current shows a complex behavior in which transport appears to be thermally activated, with distinct low-temperature and high-temperature regimes.

  11. Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.

  12. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Estimation of quantum yields of weak fluorescence from eosin Y dimers formed in aqueous solutions.

    PubMed

    Enoki, Masami; Katoh, Ryuzi

    2018-05-17

    We studied the weak fluorescence from the dimer of eosin Y (EY) in aqueous solutions. We used a newly developed ultrathin optical cell with a thickness ranging from of the order of microns to several hundreds of microns to successfully measure the fluorescence spectra of highly concentrated aqueous solutions of EY without artifacts caused by the reabsorption of fluorescence. The spectra we obtained were similar to the fluorescence spectrum of the EY monomer; almost no fluorescence was observed from the EY dimer. By a careful comparison of the spectra of solutions at low and high concentrations of EY, we succeeded in extracting the fluorescence spectrum of the EY dimer. The fluorescence quantum yield of the EY dimer was estimated to be 0.005.

  14. Gapped two-body Hamiltonian for continuous-variable quantum computation.

    PubMed

    Aolita, Leandro; Roncaglia, Augusto J; Ferraro, Alessandro; Acín, Antonio

    2011-03-04

    We introduce a family of Hamiltonian systems for measurement-based quantum computation with continuous variables. The Hamiltonians (i) are quadratic, and therefore two body, (ii) are of short range, (iii) are frustration-free, and (iv) possess a constant energy gap proportional to the squared inverse of the squeezing. Their ground states are the celebrated Gaussian graph states, which are universal resources for quantum computation in the limit of infinite squeezing. These Hamiltonians constitute the basic ingredient for the adiabatic preparation of graph states and thus open new venues for the physical realization of continuous-variable quantum computing beyond the standard optical approaches. We characterize the correlations in these systems at thermal equilibrium. In particular, we prove that the correlations across any multipartition are contained exactly in its boundary, automatically yielding a correlation area law.

  15. Degradation Mechanisms in Blue Phosphorescent Organic Light-Emitting Devices by Exciton-Polaron Interactions: Loss in Quantum Yield versus Loss in Charge Balance.

    PubMed

    Zhang, Yingjie; Aziz, Hany

    2017-01-11

    We study the relative importance of deterioration of material quantum yield and charge balance to the electroluminescence stability of PHOLEDs, with a special emphasis on blue devices. Investigations show that the quantum yields of both host and emitter in the emission layer degrade due to exciton-polaron interactions and that the deterioration in material quantum yield plays the primary role in device degradation under operation. On the other hand, the results show that the charge balance factor is also affected by exciton-polaron interactions but only plays a secondary role in determining device stability. Finally, we show that the degradation mechanisms in blue PHOLEDs are fundamentally the same as those in green PHOLEDs. The limited stability of the blue devices is a result of faster deterioration in the quantum yield of the emitter.

  16. Spin-chain model of a many-body quantum battery

    NASA Astrophysics Data System (ADS)

    Le, Thao P.; Levinsen, Jesper; Modi, Kavan; Parish, Meera M.; Pollock, Felix A.

    2018-02-01

    Recently, it has been shown that energy can be deposited on a collection of quantum systems at a rate that scales superextensively. Some of these schemes for quantum batteries rely on the use of global many-body interactions that take the batteries through a correlated shortcut in state space. Here we extend the notion of a quantum battery from a collection of a priori isolated systems to a many-body quantum system with intrinsic interactions. Specifically, we consider a one-dimensional spin chain with physically realistic two-body interactions. We find that the spin-spin interactions can yield an advantage in charging power over the noninteracting case and we demonstrate that this advantage can grow superextensively when the interactions are long ranged. However, we show that, unlike in previous work, this advantage is a mean-field interaction effect that does not involve correlations and that relies on the interactions being intrinsic to the battery.

  17. Photolysis of CH{sub 3}CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH{sub 3} and HCO radicals and H atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morajkar, Pranay; Schoemaecker, Coralie; Fittschen, Christa, E-mail: christa.fittschen@univ-lille1.fr

    2014-06-07

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH{sub 3}CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO{sub 2} radicals by reaction with O{sub 2}. The CH{sub 3} radical yield has been determined using the same technique following their conversion into CH{sub 3}O{sub 2}. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO{sub 2} profiles, obtained under various O{sub 2} concentrations, to a complex model, while the CH{submore » 3} yield has been determined relative to the CH{sub 3} yield from 248 nm photolysis of CH{sub 3}I. Time resolved HO{sub 2} profiles under very low O{sub 2} concentrations suggest that another unknown HO{sub 2} forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O{sub 2}. HO{sub 2} profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH{sub 3}CHO + hν{sub 248nm} → CH{sub 3}CHO{sup *}, CH{sub 3}CHO{sup *} → CH{sub 3} + HCO ϕ{sub 1a} = 0.125 ± 0.03, CH{sub 3}CHO{sup *} → CH{sub 3} + H + CO ϕ{sub 1e} = 0.205 ± 0.04, CH{sub 3}CHO{sup *}→{sup o{sub 2}}CH{sub 3}CO + HO{sub 2} ϕ{sub 1f} = 0.07 ± 0.01. The CH{sub 3}O{sub 2} quantum yield has been determined in separate experiments as ϕ{sub CH{sub 3}} = 0.33 ± 0.03 and is in excellent agreement with the CH{sub 3} yields derived from the HO{sub 2} measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH{sub 3}CHO. From arithmetic considerations taking into account the HO{sub 2} and CH{sub 3} measurements we deduce a remaining quantum yield for the molecular pathway: CH{sub 3}CHO{sup *} → CH{sub 4} + CO ϕ{sub 1b} = 0.6. All experiments can be consistently explained with absence of the formerly considered pathway: CH{sub 3}CHO{sup *} → CH{sub 3}CO + H ϕ{sub 1c} = 0.« less

  18. Fluorescence Quantum Yield Measurements of Fluorescent Proteins: A Laboratory Experiment for a Biochemistry or Molecular Biophysics Laboratory Course

    ERIC Educational Resources Information Center

    Wall, Kathryn P.; Dillon, Rebecca; Knowles, Michelle K.

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts…

  19. Simulation of a broadband nano-biosensor based on an onion-like quantum dot-quantum well structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Absalan, H; SalmanOgli, A; Rostami, R

    The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot-quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event ormore » a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 - 760 nm). (laser applications in biology and medicine)« less

  20. Converged three-dimensional quantum mechanical reaction probabilities for the F + H2 reaction on a potential energy surface with realistic entrance and exit channels and comparisons to results for three other surfaces

    NASA Technical Reports Server (NTRS)

    Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.

    1991-01-01

    Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.

  1. Spectroscopy characterization and quantum yield determination of quantum dots

    NASA Astrophysics Data System (ADS)

    Contreras Ortiz, S. N.; Mejía Ospino, E.; Cabanzo, R.

    2016-02-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habercorn, Lasse; Merkl, Jan-Philip; Kloust, Hauke Christian

    With the polymer encapsulation of quantum dots via seeded emulsion polymerization we present a powerful tool for the preparation of fluorescent nanoparticles with an extraordinary stability in aqueous solution. The method of the seeded emulsion polymerization allows a straightforward and simple in situ functionalization of the polymer shell under preserving the optical properties of the quantum dots. These requirements are inevitable for the application of semiconductor nanoparticles as markers for biomedical applications. Polymer encapsulated quantum dots have shown only a marginal loss of quantum yields when they were exposed to copper(II)-ions. Under normal conditions the quantum dots were totally quenchedmore » in presence of copper(II)-ions. Furthermore, a broad range of in situ functionalized polymer-coated quantum dots were obtained by addition of functional monomers or surfactants like fluorescent dye molecules, antibodies or specific DNA aptamers. Furthermore the emulsion polymerization can be used to prepare multifunctional hybrid systems, combining different nanoparticles within one construct without any adverse effect of the properties of the starting materials.{sup 1,2}.« less

  3. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis.

    PubMed

    Chastain, Daryl R; Snider, John L; Collins, Guy D; Perry, Calvin D; Whitaker, Jared; Byrd, Seth A

    2014-11-01

    Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from -0.31 to -0.95MPa, and ΨMD ranged from -1.02 to -2.67MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Cl2O photochemistry: ultraviolet/vis absorption spectrum temperature dependence and O(3P) quantum yield at 193 and 248 nm.

    PubMed

    Papanastasiou, Dimitrios K; Feierabend, Karl J; Burkholder, James B

    2011-05-28

    The photochemistry of Cl(2)O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O((3)P) atom quantum yield, Φ(Cl(2)O)(O)(λ), in its photolysis at 193 and 248 nm. The Cl(2)O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl(2)O absorption cross sections, σ(Cl(2)O)(λ,T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl(2)O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground (1)A(1) electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O((3)P) quantum yields in the photolysis of Cl(2)O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O((3)P) atoms. O((3)P) quantum yields were measured to be 0.85 ± 0.15 for 193 nm photolysis at 296 K and 0.20 ± 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N(2)). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl(2)O at 248 nm, as reported previously in Feierabend et al. [J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl(2) photodissociation channel, which indicates that O((3)P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 ± 0.1 at 248 nm. The results from this work are compared with previous studies where possible. © 2011 American Institute of Physics

  5. Fluorescence kinetics of emission from a small finite volume of a biological system

    NASA Astrophysics Data System (ADS)

    Dagen, A. J.; Alfano, R. R.; Zilinskas, B. A.; Swenberg, C. E.

    1985-07-01

    The fluorescence decay, apparent quantum yield and transmission from chromophores constrained to a microscopic volume using a single picosecond laser excitation were measured as a function of incident intensity. The β subunit of phycoeryhthrin aggregate isolated from the photosynthetic antenna system of Nostoc sp. was selected since it contains only four chromophores in a volume of less than 5.6×10 4 Å 3. The non-exponential fluorescence decay profiles were intensity independent for the intensity range studied (5 × 10 13 - 2 × 10 15 photon cm -2 per pulse). The apparent decrease in the relative fluorescence quantum yield and increase of the relative transmission with increasing excitation intensity is attributed to the combined effects of ground state depletion and upper excited state absorption. Evidence suggests that exciton annihilation is absent within isolated β subunits.

  6. Low cost and compact quantum key distribution

    NASA Astrophysics Data System (ADS)

    Duligall, J. L.; Godfrey, M. S.; Harrison, K. A.; Munro, W. J.; Rarity, J. G.

    2006-10-01

    We present the design of a novel free-space quantum cryptography system, complete with purpose-built software, that can operate in daylight conditions. The transmitter and receiver modules are built using inexpensive off-the-shelf components. Both modules are compact allowing the generation of renewed shared secrets on demand over a short range of a few metres. An analysis of the software is shown as well as results of error rates and therefore shared secret yields at varying background light levels. As the system is designed to eventually work in short-range consumer applications, we also present a use scenario where the consumer can regularly 'top up' a store of secrets for use in a variety of one-time-pad (OTP) and authentication protocols.

  7. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield.

    PubMed

    Liu, Feng; Zhang, Yaohong; Ding, Chao; Kobayashi, Syuusuke; Izuishi, Takuya; Nakazawa, Naoki; Toyoda, Taro; Ohta, Tsuyoshi; Hayase, Shuzi; Minemoto, Takashi; Yoshino, Kenji; Dai, Songyuan; Shen, Qing

    2017-10-24

    Perovskite quantum dots (QDs) as a new type of colloidal nanocrystals have gained significant attention for both fundamental research and commercial applications owing to their appealing optoelectronic properties and excellent chemical processability. For their wide range of potential applications, synthesizing colloidal QDs with high crystal quality is of crucial importance. However, like most common QD systems such as CdSe and PbS, those reported perovskite QDs still suffer from a certain density of trapping defects, giving rise to detrimental nonradiative recombination centers and thus quenching luminescence. In this paper, we show that a high room-temperature photoluminescence quantum yield of up to 100% can be obtained in CsPbI 3 perovskite QDs, signifying the achievement of almost complete elimination of the trapping defects. This is realized with our improved synthetic protocol that involves introducing organolead compound trioctylphosphine-PbI 2 (TOP-PbI 2 ) as the reactive precursor, which also leads to a significantly improved stability for the resulting CsPbI 3 QD solutions. Ultrafast kinetic analysis with time-resolved transient absorption spectroscopy evidence the negligible electron or hole-trapping pathways in our QDs, which explains such a high quantum efficiency. We expect the successful synthesis of the "ideal" perovskite QDs will exert profound influence on their applications to both QD-based light-harvesting and -emitting devices.

  8. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  9. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M.

    2015-04-15

    Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized bymore » separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.« less

  10. Quantum Yields of Soluble and Particulate Material in the Ocean

    DTIC Science & Technology

    1999-09-30

    and prospects. IEEE Transactions, 46(5): 825-829 In Press Moisan, T.A. & B.G. Mitchell UV Absorption by Mycosporine - like Amino Acids in Phaeocystis...were grown to evaluate the spectral quantum yield of in vivo chlorophyll a fluorescence. We determined that mycosporine amino acids with UV absorption...evaluate the role of photoprotective pigments, including mycosporine amino acids and the xanthophyll pigments in Phaeocystis, on the spectral quantum yield

  11. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals

    DOE PAGES

    Miller, Joseph B.; Van Sickle, Austin R.; Anthony, Rebecca J.; ...

    2012-07-18

    Here, we report on the quantum yield, photoluminescence (PL) lifetime and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from themore » fractions, and we use a combination of measurement, simulation and modeling to link this ‘brightening’ to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.« less

  12. Tuning Single Quantum Dot Emission with a Micromirror.

    PubMed

    Yuan, Gangcheng; Gómez, Daniel; Kirkwood, Nicholas; Mulvaney, Paul

    2018-02-14

    The photoluminescence of single quantum dots fluctuates between bright (on) and dark (off) states, also termed fluorescence intermittency or blinking. This blinking limits the performance of quantum dot-based devices such as light-emitting diodes and solar cells. However, the origins of the blinking remain unresolved. Here, we use a movable gold micromirror to determine both the quantum yield of the bright state and the orientation of the excited state dipole of single quantum dots. We observe that the quantum yield of the bright state is close to unity for these single QDs. Furthermore, we also study the effect of a micromirror on blinking, and then evaluate excitation efficiency, biexciton quantum yield, and detection efficiency. The mirror does not modify the off-time statistics, but it does change the density of optical states available to the quantum dot and hence the on times. The duration of the on times can be lengthened due to an increase in the radiative recombination rate.

  13. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble Phosphines.

    PubMed

    Marker, Sierra C; MacMillan, Samantha N; Zipfel, Warren R; Li, Zhi; Ford, Peter C; Wilson, Justin J

    2018-02-05

    Fifteen water-soluble rhenium compounds of the general formula [Re(CO) 3 (NN)(PR 3 )] + , where NN is a diimine ligand and PR 3 is 1,3,5-triaza-7-phosphaadamantane (PTA), tris(hydroxymethyl)phosphine (THP), or 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA), were synthesized and characterized by multinuclear NMR spectroscopy, IR spectroscopy, and X-ray crystallography. The complexes bearing the THP and DAPTA ligands exhibit triplet-based luminescence in air-equilibrated aqueous solutions with quantum yields ranging from 3.4 to 11.5%. Furthermore, the THP and DAPTA complexes undergo photosubstitution of a CO ligand upon irradiation with 365 nm light with quantum yields ranging from 1.1 to 5.5% and sensitize the formation of 1 O 2 with quantum yields as high as 70%. In contrast, all of the complexes bearing the PTA ligand are nonemissive and do not undergo photosubstitution upon irradiation with 365 nm light. These compounds were evaluated as photoactivated anticancer agents in human cervical (HeLa), ovarian (A2780), and cisplatin-resistant ovarian (A2780CP70) cancer cell lines. All of the complexes bearing THP and DAPTA exhibited a cytotoxic response upon irradiation with minimal toxicity in the absence of light. Notably, the complex with DAPTA and 1,10-phenanthroline gave rise to an IC 50 value of 6 μM in HeLa cells upon irradiation, rendering it the most phototoxic compound in this library. The nature of the photoinduced cytotoxicity of this compound was explored in further detail. These data indicate that the phototoxic response may result from the release of both CO and the rhenium-containing photoproduct, as well as the production of 1 O 2 .

  14. Analytical recursive method to ascertain multisite entanglement in doped quantum spin ladders

    NASA Astrophysics Data System (ADS)

    Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal

    2017-08-01

    We formulate an analytical recursive method to generate the wave function of doped short-range resonating valence bond (RVB) states as a tool to efficiently estimate multisite entanglement as well as other physical quantities in doped quantum spin ladders. We prove that doped RVB ladder states are always genuine multipartite entangled. Importantly, our results show that within specific doping concentration and model parameter regimes, the doped RVB state essentially characterizes the trends of genuine multiparty entanglement in the exact ground states of the Hubbard model with large on-site interactions, in the limit that yields the t -J Hamiltonian.

  15. Solvent Dependency in the Quantum Efficiency of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] Aniline Hydrochloride.

    PubMed

    Pathrose, Bini; Nampoori, V P N; Radhakrishnan, P; Sahira, H; Mujeeb, A

    2015-05-01

    In the present work dual beam thermal lens technique is used for studying the solvent dependency on the quantum efficiency of a novel dye used for biomedical applications. The role of solvent in the absolute fluorescence quantum yield of 4-[(4-Aminophenyl)-(4-imino-1-cyclohexa-2, 5- dienylidene) methyl] aniline hydrochloride is studied using thermal lens technique. It is observed that the variation in solvents and its concentration results considerable variations in the fluorescence quantum yield. These variations are due to the non-radiative relaxation of the absorbed energy and because of the different solvent properties. The highest quantum yield of the dye is observed in the polar protic solvent-water.

  16. In Search of the Perfect Photocage: Structure-Reactivity Relationships in meso-Methyl BODIPY Photoremovable Protecting Groups.

    PubMed

    Slanina, Tomáš; Shrestha, Pradeep; Palao, Eduardo; Kand, Dnyaneshwar; Peterson, Julie A; Dutton, Andrew S; Rubinstein, Naama; Weinstain, Roy; Winter, Arthur H; Klán, Petr

    2017-10-25

    A detailed investigation of the photophysical parameters and photochemical reactivity of meso-methyl BODIPY photoremovable protecting groups was accomplished through systematic variation of the leaving group (LG) and core substituents as well as substitutions at boron. Efficiencies of the LG release were evaluated using both steady-state and transient absorption spectroscopies as well as computational analyses to identify the optimal structural features. We find that the quantum yields for photorelease with this photocage are highly sensitive to substituent effects. In particular, we find that the quantum yields of photorelease are improved with derivatives with higher intersystem crossing quantum yields, which can be promoted by core heavy atoms. Moreover, release quantum yields are dramatically improved by boron alkylation, whereas alkylation in the meso-methyl position has no effect. Better LGs are released considerably more efficiently than poorer LGs. We find that these substituent effects are additive, for example, a 2,6-diiodo-B-dimethyl BODIPY photocage features quantum yields of 28% for the mediocre LG acetate and a 95% quantum yield of release for chloride. The high chemical and quantum yields combined with the outstanding absorption properties of BODIPY dyes lead to photocages with uncaging cross sections over 10 000 M -1 cm -1 , values that surpass cross sections of related photocages absorbing visible light. These new photocages, which absorb strongly near the second harmonic of an Nd:YAG laser (532 nm), hold promise for manipulating and interrogating biological and material systems with the high spatiotemporal control provided by pulsed laser irradiation, while avoiding the phototoxicity problems encountered with many UV-absorbing photocages. More generally, the insights gained from this structure-reactivity relationship may aid in the development of new highly efficient photoreactions.

  17. Secure self-calibrating quantum random-bit generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiorentino, M.; Santori, C.; Spillane, S. M.

    2007-03-15

    Random-bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require 'strong' RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random-bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographicmore » method to measure a lower bound on the 'min-entropy' of the system, and we employ this value to distill a truly random-bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled.« less

  18. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  19. Characterizing Chain Processes in Visible Light Photoredox Catalysis

    PubMed Central

    Cismesia, Megan A.

    2015-01-01

    The recognition that Ru(bpy)32+ andsimilar visible light absorbing transition metal complexes can be photocatalysts for a variety of synthetically useful organic reactions has resulted in a recent resurgence of interest in photoredox catalysis. However, many of the critical mechanistic aspects of this class of reactions remain poorly understood. In particular, the degree to which visible light photoredox reactions involve radical chain processes has been a point of some disagreement that has not been subjected to systematic analysis. We have now performed quantum yield measurements to demonstrate that threerepresentative, mechanistically distinct photoredox processes involve product-forming chain reactions. Moreover, we show that the combination of quantum yield and luminescence quenching experiments provides a rapid method to estimate the length of these chains. Together, these measurements constitute a robust, operationally facile strategy for characterizing chain processes in a wide range of visible light photoredox reactions. PMID:26668708

  20. Kinetics of bacterial fluorescence staining with 3,3'-diethylthiacyanine.

    PubMed

    Thomas, Marlon S; Nuñez, Vicente; Upadhyayula, Srigokul; Zielins, Elizabeth R; Bao, Duoduo; Vasquez, Jacob M; Bahmani, Baharak; Vullev, Valentine I

    2010-06-15

    For more than a century, colorimetric and fluorescence staining have been the foundation of a broad range of key bioanalytical techniques. The dynamics of such staining processes, however, still remains largely unexplored. We investigated the kinetics of fluorescence staining of two gram-negative and two gram-positive species with 3,3'-diethylthiacyanine (THIA) iodide. An increase in the THIA fluorescence quantum yield, induced by the bacterial dye uptake, was the principal reason for the observed emission enhancement. The fluorescence quantum yield of THIA depended on the media viscosity and not on the media polarity, which suggested that the microenvironment of the dye molecules taken up by the cells was restrictive. The kinetics of fluorescence staining did not manifest a statistically significant dependence neither on the dye concentration, nor on the cell count. In the presence of surfactant additives, however, the fluorescence-enhancement kinetic patterns manifested species specificity with statistically significant discernibility.

  1. A quantum protective mechanism in photosynthesis

    NASA Astrophysics Data System (ADS)

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-03-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.

  2. A quantum protective mechanism in photosynthesis.

    PubMed

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-03-03

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.

  3. Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation

    DOE PAGES

    Orfield, Noah J.; McBride, James R.; Wang, Feng; ...

    2016-02-05

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. In this paper, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking “giant” CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging,more » rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive “dark” fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be “dark”. Finally and therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.« less

  4. Photoacoustic and luminescence spectroscopy of benzil crystals

    NASA Astrophysics Data System (ADS)

    Bonno, B.; Laporte, J. L.; Rousset, Y.

    1991-06-01

    In the present work, both photoacoustic and luminescence techniques were employed to study molecular crystals. This paper presents an extension of the standard Rosencwaig-Gersho photoacoustic model to molecular crystals, which includes finite-deexcitation-time effects and excited-state populations. In the temperature range 100-300 K, the phosphorescence quantum yield and thermal diffusivity of benzil crystals were determined.

  5. Hydroxylated near-infrared BODIPY fluorophores as intracellular pH sensors

    PubMed Central

    Salim, Mohamed M.; Owens, Eric A.; Gao, Tielong; Lee, Jeong Heon; Hyun, Hoon; Choi, Hak Soo; Henary, Maged

    2015-01-01

    In this study, a series of new, highly sensitive BF2-chelated tetraarylazadipyrromethane dyes are synthesized and analyzed to be suitable as on/off photo-induced electron transfer modulated fluorescent sensors for determination of intracellular pH. The ethanolic solutions of the new indicators feature absorption maxima in the range of 696–700 nm and a fluorescence emission maximum at 720 nm. Molar absorptivity and fluorescence quantum yield data were determined for the studied set of aza-BODIPY indicators. These indicators have high molar absorption coefficients of ~80 000 M−1 cm−1 and quantum yields (up to 18%). Corresponding pKa values of indicators are determined from absorbance and fluorescence measurements and range from 9.1 to 10.8, depending on the selective positioning of electron-donating functionalities. The excellent photostability of the aza-BODIPY indicators makes them particularly suitable for long duration measurements. The in vitro cellular staining of living tissues in PC3 cells based on the isosbestic point at pH 7.8 and pH 9.3 has been employed which shows an increase in fluorescence intensity at 800 nm with increase in pH for certain compounds and fluorescence intensity decreases at 700 nm. Therefore, the new indicators are suitable for exploitation and adaptation in a diverse range of analytical applications. PMID:25105177

  6. CDOM Sources and Photobleaching Control Quantum Yields for Oceanic DMS Photolysis.

    PubMed

    Galí, Martí; Kieber, David J; Romera-Castillo, Cristina; Kinsey, Joanna D; Devred, Emmanuel; Pérez, Gonzalo L; Westby, George R; Marrasé, Cèlia; Babin, Marcel; Levasseur, Maurice; Duarte, Carlos M; Agustí, Susana; Simó, Rafel

    2016-12-20

    Photolysis is a major removal pathway for the biogenic gas dimethylsulfide (DMS) in the surface ocean. Here we tested the hypothesis that apparent quantum yields (AQY) for DMS photolysis varied according to the quantity and quality of its photosensitizers, chiefly chromophoric dissolved organic matter (CDOM) and nitrate. AQY compiled from the literature and unpublished studies ranged across 3 orders of magnitude at the 330 nm reference wavelength. The smallest AQY(330) were observed in coastal waters receiving major riverine inputs of terrestrial CDOM (0.06-0.5 m 3 (mol quanta) -1 ). In open-ocean waters, AQY(330) generally ranged between 1 and 10 m 3 (mol quanta) -1 . The largest AQY(330), up to 34 m 3 (mol quanta) -1 ), were seen in the Southern Ocean potentially associated with upwelling. Despite the large AQY variability, daily photolysis rate constants at the sea surface spanned a smaller range (0.04-3.7 d -1 ), mainly because of the inverse relationship between CDOM absorption and AQY. Comparison of AQY(330) with CDOM spectral signatures suggests there is an interplay between CDOM origin (terrestrial versus marine) and photobleaching that controls variations in AQYs, with a secondary role for nitrate. Our results can be used for regional or large-scale assessment of DMS photolysis rates in future studies.

  7. Top mass from asymptotic safety

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron

    2018-02-01

    We discover that asymptotically safe quantum gravity could predict the top-quark mass. For a broad range of microscopic gravitational couplings, quantum gravity could provide an ultraviolet completion for the Standard Model by triggering asymptotic freedom in the gauge couplings and bottom Yukawa and asymptotic safety in the top-Yukawa and Higgs-quartic coupling. We find that in a part of this range, a difference of the top and bottom mass of approximately 170GeV is generated and the Higgs mass is determined in terms of the top mass. Assuming no new physics below the Planck scale, we construct explicit Renormalization Group trajectories for Standard Model and gravitational couplings which link the transplanckian regime to the electroweak scale and yield a top pole mass of Mt,pole ≈ 171GeV.

  8. Molecular Structure and Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome MtrF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuer, Marian; Zarzycki, Piotr P.; Shi, Liang

    2012-12-01

    The free energy profile for electron flow through the bacterial deca-heme cytochrome MtrF has been computed using thermodynamic integration and classical molecular dynamics. The extensive calculations on two versions of the structure help validate the method and results, because differences in the profiles can be related to differences in the charged amino acids local to specific heme groups. First estimates of reorganization free energies λ yield a range consistent with expectations for partially solvent exposed cofactors, and reveal an activation energy range surmountable for electron flow. Future work will aim at increasing the accuracy of λ with polarizable force fieldmore » dynamics and quantum chemical energy gap calculations, as well as quantum chemical computation of electronic coupling matrix elements.« less

  9. The Broken Ring: Reduced Aromaticity in Lys-Trp Cations and High pH Tautomer Correlates with Lower Quantum Yield and Shorter Lifetimes

    PubMed Central

    2015-01-01

    Several nonradiative processes compete with tryptophan fluorescence emission. The difficulty in spectral interpretation lies in associating specific molecular environmental features with these processes and thereby utilizing the fluorescence spectral data to identify the local environment of tryptophan. Here, spectroscopic and molecular modeling study of Lys-Trp dipeptide charged species shows that backbone-ring interactions are undistinguished. Instead, quantum mechanical ground state isosurfaces reveal variations in indole π electron distribution and density that parallel charge (as a function of pK1, pK2, and pKR) on the backbone and residues. A pattern of aromaticity-associated quantum yield and fluorescence lifetime changes emerges. Where quantum yield is high, isosurfaces have a charge distribution similar to the highest occupied molecular orbital (HOMO) of indole, which is the dominant fluorescent ground state of the 1La transition dipole moment. Where quantum yield is low, isosurface charge distribution over the ring is uneven, diminished, and even found off ring. At pH 13, the indole amine is deprotonated, and Lys-Trp quantum yield is extremely low due to tautomer structure that concentrates charge on the indole amine; the isosurface charge distribution bears scant resemblance to the indole HOMO. Such greatly diminished fluorescence has been observed for proteins where the indole nitrogen is hydrogen bonded, lending credence to the association of aromaticity changes with diminished quantum yield in proteins as well. Thus tryptophan ground state isosurfaces are an indicator of indole aromaticity, signaling the partition of excitation energy between radiative and nonradiative processes. PMID:24882092

  10. Analytical Wave Functions for Ultracold Collisions.

    NASA Astrophysics Data System (ADS)

    Cavagnero, M. J.

    1998-05-01

    Secular perturbation theory of long-range interactions(M. J. Cavagnero, PRA 50) 2841, (1994). has been generalized to yield accurate wave functions for near threshold processes, including low-energy scattering processes of interest at ultracold temperatures. In particular, solutions of Schrödinger's equation have been obtained for motion in the combined r-6, r-8, and r-10 potentials appropriate for describing an utlracold collision of two neutral ground state atoms. Scattering lengths and effective ranges appropriate to such potentials are readily calculated at distances comparable to the LeRoy radius, where exchange forces can be neglected, thereby eliminating the need to integrate Schrödinger's equation to large internuclear distances. Our method yields accurate base pair solutions well beyond the energy range of effective range theories, making possible the application of multichannel quantum defect theory [MQDT] and R-matrix methods to the study of ultracold collisions.

  11. Intrinsic and Extrinsic Temperature-Dependency of Viscosity-Sensitive Fluorescent Molecular Rotors

    PubMed Central

    Howell, Sarah; Dakanali, Marianna; Theodorakis, Emmanuel A.; Haidekker, Mark A.

    2011-01-01

    Molecular rotors are a group of environment-sensitive fluorescent probes whose quantum yield depends on the ability to form twisted intramolecular chargetransfer (TICT) states. TICT formation is dominantly governed by the solvent's microviscosity, but polarity and the ability of the solvent to form hydrogen bonds play an additional role. The relationship between quantum yield ϕF and viscosity η is widely accepted as a power-law, ϕF = C · ηx. In this study, we isolated the direct influence of the temperature on the TICT formation rate by examining several molecular rotors in protic and aprotic solvents over a range of temperatures. Each solvent's viscosity was determined as a function of temperature and used in the above power-law to determine how the proportionality constant C varies with temperature. We found that the power-law relationship fully explains the variations of the measured steady-state intensity by temperature-induced variations of the solvent viscosity, and C can be assumed to be temperature-independent. The exponent x, however, was found to be significantly higher in aprotic solvents than in protic solvents. We conclude that the ability of the solvent to form hydrogen bonds has a major influence on the relationship between viscosity and quantum yield. To use molecular rotors for the quantitative determination of viscosity or microviscosity, the exponent x needs to be determined for each dye-solvent combination. PMID:21947609

  12. Photosensitized electron transfer processes in SiO2 colloids and sodium lauryl sulfate micellar systems: Correlation of quantum yields with interfacial surface potentials

    PubMed Central

    Laane, Colja; Willner, Itamar; Otvos, John W.; Calvin, Melvin

    1981-01-01

    The effectiveness of negatively charged colloidal SiO2 particles in controlling photosensitized electron transfer reactions has been studied and compared with that of the negatively charged sodium lauryl sulfate (NaLauSO4) micellar system. In particular, the photosensitized reduction of the zwitterionic electron acceptor propylviologen sulfonate (PVS0) with tris(2,2′-bipyridinium)ruthenium(II) [Ru(bipy)32+] as the sensitizer and triethanolamine as the electron donor is found to have a quantum yield of 0.033 for formation of the radical anion (PVS[unk]) in the SiO2 colloid compared with 0.005 in the homogeneous system and 0.0086 in a NaLauSO4 micellar solution. The higher quantum yields obtained with the SiO2 colloidal system are attributed to substantial stabilization against back reaction of the intermediate photoproducts—i.e., Ru(bipy)33+ and PVS[unk]—by electrostatic repulsion of the reduced electron acceptor from the negatively charged particle surface. The binding properties of the SiO2 particles and NaLauSO4 micelles were investigated by flow dialysis. The results show that the sensitizer binds to both interfaces and that the SiO2 interface is characterized by a much higher surface potential than the micellar interface (≈-170 mV vs. -85 mV). The effect of ionic strength on the surface potential was estimated from the Gouy-Chapman theory, and the measured quantum yields of photosensitized electron transfer were correlated with surface potential at different ionic strengths. This correlation shows that the quantum yield is not affected by surface potentials smaller than ≈-40 mV. At larger potentials, the quantum yield increases rapidly. The quantum yield obtained in the micellar system at different strengths fits nicely on the correlation curve for the colloid SiO2 system. These results indicate that the surface potential is the dominant factor in the quantum yield improvement for PVS0 reduction. PMID:16593095

  13. Size-controlled synthesis of ZnO quantum dots in microreactors

    NASA Astrophysics Data System (ADS)

    Schejn, Aleksandra; Frégnaux, Mathieu; Commenge, Jean-Marc; Balan, Lavinia; Falk, Laurent; Schneider, Raphaël

    2014-04-01

    In this paper, we report on a continuous-flow microreactor process to prepare ZnO quantum dots (QDs) with widely tunable particle size and photoluminescence emission wavelengths. X-ray diffraction, electron diffraction, UV-vis, photoluminescence and transmission electron microscopy measurements were used to characterize the synthesized ZnO QDs. By varying operating conditions (temperature, flow rate) or the capping ligand, ZnO QDs with diameters ranging from 3.6 to 5.2 nm and fluorescence maxima from 500 to 560 nm were prepared. Results obtained show that low reaction temperatures (20 or 35 °C), high flow rates and the use of propionic acid as a stabilizing agent are favorable for the production of ZnO QDs with high photoluminescence quantum yields (up to 30%).

  14. Cadmium-containing quantum dots: properties, applications, and toxicity.

    PubMed

    Mo, Dan; Hu, Liang; Zeng, Guangming; Chen, Guiqiu; Wan, Jia; Yu, Zhigang; Huang, Zhenzhen; He, Kai; Zhang, Chen; Cheng, Min

    2017-04-01

    The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.

  15. Electro Optical Properties of Copolymer Blends: Lasing, Electroluminescence and Photophysics

    DTIC Science & Technology

    2006-04-15

    conjugated main chain structures with high photoluminescent and electroluminescent quantum yields. The structures incorporated fluorene containing moieties...The systems studied focused on novel conjugated main chain structures with high photoluminescent and electroluminescent quantum yields. The structures...the quantum efficient fluorine group. The properties of segmented copolymers that incorporate fluorenes were compared to the homo-PPV type systems

  16. The aqueous photolysis of ethylene glycol adsorbed on geothite

    USGS Publications Warehouse

    Cunningham, Kirkwood M.; Goldberg, Marvin C.; Weiner, E.R.

    1985-01-01

    Suspensions of goethite (α-FeOOH) were photolyzed in aerated ethylene glycol-water solutions at pH 6.5, with ultraviolet light in the wavelength range300–400 nm. Under these conditions, formaldehyde and glycolaldehyde were detected as photoproducts. Quantum yields of formaldehyde production ranged from 1.9 7times; 10-5 to 2.9 × 10-4 over the ethylene glycol concentration range of 0.002-2.0 mol/ℓ, and gave evidence that the reaction occurred at the goethite surface. Quantum yields of glycolaldehyde were 20% less than those of formaldehyde, and displayed a concentration-dependent relationship with ethylene glycol similar to that of formaldehyde. Immediately after photolysis, Fe2+ was measured to be 4.6 × 10-7 mol/ℓ in an aerated suspension containing 1.3 mol/ℓ ethylene glycol, and 8.5 × 10-6 mol/ℓ in the corresponding deoxygenated suspension. Glycolaldehyde was not generated in the deoxygenated suspensions. These results are consistent with a mechanism involving the transfer of an electron from an adsorbed ethylene glycol molecule to an excited state of Fe3+ (Iron[III]) in the goethite lattice, to produce Fe2+ and an organic cation. In a series of reactions involving O2, FeOOH, and Fe2+, the organic cation decomposes to form formaldehyde and the intermediate radicals “OH and” CH2OH. OH reacts further with ethylene glycol in the presence of O2to yield glycolaldehyde. Aqueous photolysis of ethylene glycol sorbed onto goethite is typical of reactions that can occur in the aquatic environment.

  17. Defect induced photoluminescence in MoS2 quantum dots and effect of Eu3+/Tb3+ co-doping towards efficient white light emission

    NASA Astrophysics Data System (ADS)

    Haldar, Dhrubaa; Ghosh, Arnab; Bose, Saptasree; Mondal, Supriya; Ghorai, Uttam Kumar; Saha, Shyamal K.

    2018-05-01

    Intensive research has been carried out on optical properties of MoS2 quantum dots for versatile applications in photo catalytic, sensing and optoelectronic devices. However, white light generation from MoS2 quantum dots particularly using doping effect is relatively unexplored. Herein we report successful synthesis of Europium (Eu)/Terbium (Tb) co-doped MoS2 quantum dots to achieve white light for potential applications in optoelectronic devices. The dopant ions are introduced into the host lattice to retain the emission colors to cover the entire range of visible light of solar spectrum. Perfect white light (CIE = 0.31, 0.33) with high intensity (quantum yield = 28.29%) is achieved in these rare earth elements co-doped quantum dot system. A new peak is observed in the NIR region which is attributed to the defects present in MoS2 quantum dots. Temperature dependent study has been carried out to understand the origin of this new peak in the NIR region. It is seen that the 'S' defects in the QDs cause the appearance of this peak which shows a blue shift at higher temperature.

  18. A versatile method for the determination of photochemical quantum yields via online UV-Vis spectroscopy.

    PubMed

    Stadler, Eduard; Eibel, Anna; Fast, David; Freißmuth, Hilde; Holly, Christian; Wiech, Mathias; Moszner, Norbert; Gescheidt, Georg

    2018-05-16

    We have developed a simple method for determining the quantum yields of photo-induced reactions. Our setup features a fibre coupled UV-Vis spectrometer, LED irradiation sources, and a calibrated spectrophotometer for precise measurements of the LED photon flux. The initial slope in time-resolved absorbance profiles provides the quantum yield. We show the feasibility of our methodology for the kinetic analysis of photochemical reactions and quantum yield determination. The typical chemical actinometers, ferrioxalate and ortho-nitrobenzaldehyde, as well as riboflavin, a spiro-compound, phosphorus- and germanium-based photoinitiators for radical polymerizations and the frequently utilized photo-switch azobenzene serve as paradigms. The excellent agreement of our results with published data demonstrates the high potential of the proposed method as a convenient alternative to the time-consuming chemical actinometry.

  19. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    PubMed

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  20. The photolysis of chlorine in the presence of ozone, nitric acid and nitrogen dioxide

    NASA Technical Reports Server (NTRS)

    Stuper, W. W.

    1979-01-01

    The following three systems were investigated: the Cl2-O3 system, the Cl2-O2-NO system and the Cl2-NO2-M system. In the first system, the reaction between ClO and O3, the reaction between OClO and O3, and the mechanism of the Cl2-O3 system were studied. In the second system, the reaction between ClOO and NO was investigated. In the last system, the reaction between Cl and NO2 was investigated as well as the kinetics of the chemiluminescence of the Cl-NO2-O3 reaction. In the first system, Cl2 was photolyzed at 366 nm in the presence of O3 within the temperature range 254-297 K. O3 was removed with quantum yields of 5.8 + or - 0.5, 4.0 + or - 0.3, 2.9 + or - 0.3 and 1.9 + or - 0.2 at 297, 283, 273, and 252 K respectively, invariant to changes in the initial O3 or Cl2 concentration, the extent of conversion or the absorbed intensity, I sub a. The addition of nitrogen had no effect on -phi(03). The Cl2 removal quantum yields were 0.11 + or - 0.02 at 297 K for Cl2 conversions of about 30%, much higher than expected from mass balance considerations based on the initial quantum yield of 0.089 + or - 0.013 for OClO formation at 297 K. The final chlorine-containing product was Cl2O7. It was produced at least in part through the formation of OClO as an intermediate which was also observed with an initial quantum yield of phi sub i(OClO) = 2500 exp(-(3025 + or - 625)/T) independent of (O3) or I sub a.

  1. Polariton-Assisted Singlet Fission in Acene Aggregates.

    PubMed

    Martínez-Martínez, Luis A; Du, Matthew; F Ribeiro, Raphael; Kéna-Cohen, Stéphane; Yuen-Zhou, Joel

    2018-04-19

    Singlet fission is an important candidate to increase energy conversion efficiency in organic photovoltaics by providing a pathway to increase the quantum yield of excitons per photon absorbed in select materials. We investigate the dependence of exciton quantum yield for acenes in the strong light-matter interaction (polariton) regime, where the materials are embedded in optical microcavities. Starting from an open-quantum-systems approach, we build a kinetic model for time-evolution of species of interest in the presence of singlet quenchers and show that polaritons can decrease or increase exciton quantum yields compared to the cavity-free case. In particular, we find that hexacene, under the conditions of our model, can feature a higher yield than cavity-free pentacene when assisted by polaritonic effects. Similarly, we show that pentacene yield can be increased when assisted by polariton states. Finally, we address how various relaxation processes between bright and dark states in lossy microcavities affect polariton photochemistry. Our results also provide insights on how to choose microcavities to enhance similarly related chemical processes.

  2. Chlorophyll a + b content and chlorophyll fluorescence in avocado

    USDA-ARS?s Scientific Manuscript database

    One Tonnage (T) and one Simmonds (S) avocado tree and four TxS crosses were evaluated for differences in chlorophyll content and maximal quantum yield of photosystem II in sun and shade-type leaves. Total chlorophyll content by area (Chl a+bar) ranged from 981 mg m-2 in TxS240 to 4339 mg m-2 in Simm...

  3. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection.

    PubMed

    Li, Liang; Reiss, Peter

    2008-09-03

    InP/ZnS core/shell nanocrystals are prepared using a single-step heating-up method relying on the difference in reactivity of the applied InP and ZnS precursors. The obtained particles exhibit size-dependent emission in the range of 480-590 nm, a fluorescence quantum yield of 50-70%, and high photostability.

  4. Quantum Yield of Cyclobutane Pyrimidine Dimer Formation Via the Triplet Channel Determined by Photosensitization.

    PubMed

    Liu, Lizhe; Pilles, Bert M; Gontcharov, Julia; Bucher, Dominik B; Zinth, Wolfgang

    2016-01-21

    UV-induced formation of the cyclobutane pyrimidine dimer (CPD) lesion is investigated by stationary and time-resolved photosensitization experiments. The photosensitizer 2'-methoxyacetophenone with high intersystem crossing efficiency and large absorption cross-section in the UV-A range was used. A diffusion controlled reaction model is presented. Time-resolved experiments confirmed the validity of the reaction model and provided information on the dynamics of the triplet sensitization process. With a series of concentration dependent stationary illumination experiments, we determined the quantum efficiency for CPD formation from the triplet state of the thymine dinucleotide TpT to be 4 ± 0.2%.

  5. Light propagation and fluorescence quantum yields in liquid scintillators

    NASA Astrophysics Data System (ADS)

    Buck, C.; Gramlich, B.; Wagner, S.

    2015-09-01

    For the simulation of the scintillation and Cherenkov light propagation in large liquid scintillator detectors a detailed knowledge about the absorption and emission spectra of the scintillator molecules is mandatory. Furthermore reemission probabilities and quantum yields of the scintillator components influence the light propagation inside the liquid. Absorption and emission properties are presented for liquid scintillators using 2,5-Diphenyloxazole (PPO) and 4-bis-(2-Methylstyryl)benzene (bis-MSB) as primary and secondary wavelength shifter. New measurements of the quantum yields for various aromatic molecules are shown.

  6. Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2016-10-01

    We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.

  7. Intermediate quantum maps for quantum computation

    NASA Astrophysics Data System (ADS)

    Giraud, O.; Georgeot, B.

    2005-10-01

    We study quantum maps displaying spectral statistics intermediate between Poisson and Wigner-Dyson. It is shown that they can be simulated on a quantum computer with a small number of gates, and efficiently yield information about fidelity decay or spectral statistics. We study their matrix elements and entanglement production and show that they converge with time to distributions which differ from random matrix predictions. A randomized version of these maps can be implemented even more economically and yields pseudorandom operators with original properties, enabling, for example, one to produce fractal random vectors. These algorithms are within reach of present-day quantum computers.

  8. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes.

    PubMed

    Huang, Hailong; Zhao, Fangchao; Liu, Lige; Zhang, Feng; Wu, Xian-gang; Shi, Lijie; Zou, Bingsuo; Pei, Qibing; Zhong, Haizheng

    2015-12-30

    We report a facile nonaqueous emulsion synthesis of colloidal halide perovskite quantum dots by controlled addition of a demulsifier into an emulsion of precursors. The size of resulting CH3NH3PbBr3 quantum dots can be tuned from 2 to 8 nm by varying the amount of demulsifier. Moreover, this emulsion synthesis also allows the purification of these quantum dots by precipitation from the colloidal solution and obtains solid-state powder which can be redissolved for thin film coating and device fabrication. The photoluminescence quantum yields of the quantum dots is generally in the range of 80-92%, and can be well-preserved after purification (∼80%). Green light-emitting diodes fabricated comprising a spin-cast layer of the colloidal CH3NH3PbBr3 quantum dots exhibited maximum current efficiency of 4.5 cd/A, power efficiency of 3.5 lm/W, and external quantum efficiency of 1.1%. This provides an alternative route toward high efficient solution-processed perovskite-based light-emitting diodes. In addition, the emulsion synthesis is versatile and can be extended for the fabrication of inorganic halide perovskite colloidal CsPbBr3 nanocrystals.

  9. Quantum Yields of CAM Plants Measured by Photosynthetic O2 Exchange 1

    PubMed Central

    Adams, William W.; Nishida, Kojiro; Osmond, C. Barry

    1986-01-01

    The quantum yield of photosynthetic O2 exchange was measured in eight species of leaf succulents representative of both malic enzyme type and phosphoenolpyruvate carboxykinase type CAM plants. Measurements were made at 25°C and CO2 saturation using a leaf disc O2 electrode system, either during or after deacidification. The mean quantum yield was 0.095 ± 0.012 (sd) moles O2 per mole quanta, which compared with 0.094 ± 0.006 (sd) moles O2 per mole quanta for spinach leaf discs measured under the same conditions. There were no consistent differences in quantum yield between decarboxylation types or during different phases of CAM metabolism. On the basis of current notions of compartmentation of CAM biochemistry, our observations are interpreted to indicate that CO2 refixation is energetically independent of gluconeogenesis during deacidification. PMID:16664793

  10. Heterodiazocines: Synthesis and Photochromic Properties, Trans to Cis Switching within the Bio-optical Window.

    PubMed

    Hammerich, Melanie; Schütt, Christian; Stähler, Cosima; Lentes, Pascal; Röhricht, Fynn; Höppner, Ronja; Herges, Rainer

    2016-10-04

    Diazocines, bridged azobenzenes, exhibit superior photophysical properties compared to parent azobenzenes such as high switching efficiencies, quantum yields, and particularly switching wavelengths in the visible range. Synthesis, however, proceeds with low yields, and derivatives are difficult to prepare. We now present two heterodiazocines which are easier to synthesize, and the general procedures should also provide facile access to derivatives. Moreover, both compounds can be switched with light in the far-red (650 nm). Accessibility and photophysical properties make them ideal candidates for applications such as photoswitchable drugs and functional materials.

  11. Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices

    NASA Astrophysics Data System (ADS)

    Wang, Zhenguang; Susha, Andrei S.; Chen, Bingkun; Reckmeier, Claas; Tomanec, Ondrej; Zboril, Radek; Zhong, Haizheng; Rogach, Andrey L.

    2016-03-01

    Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92. Electronic supplementary information (ESI) available: The optical spectra of control experiments for Cu NC synthesis, optimization of the reaction conditions, and spectra for LEDs chips and blue LEDs. See DOI: 10.1039/c6nr00806b

  12. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way towardmore » the individual tracking of proteins of interest inside living yeast cells.« less

  13. Primary production estimates from recordings of solar-stimulated fluorescence in the equatorial Pacific at 150 deg W

    NASA Technical Reports Server (NTRS)

    Stegmann, P. M.; Lewis, M. R.; Davis, C. O.; Cullen, J. J.

    1992-01-01

    Biological, optical, and hydrographical data were collected on the WEC88 cruise along 150 deg W and during a 6-day time-series station on the equator during February/March 1988. This area was characterized by a subsurface chlorophyll maximum (SCM), located at 50-70 m depth at the equator and descending down to 120-125 m at the north and south end of the transect. Highest primary production rates were near-surface and confined to the equatorial region and stations between 7 deg and 11 deg N. To determine the relationship between solar-stimulated fluorescence (centered at 683 nm wavelength) and primary production, a production-fluorescence model based on phytoplankton physiology and marine optics is described. Results of model calculations predict that there is a linear relation between production and fluorescence. A comparison between morning and midday measurements of the production-fluorescence relation showed that there was some difference between the two, whereas evening measurements, on the other hand, were distinctly different from the morning/midday ones. This seems to suggest that diurnal variations contribute significantly to variability in the quantum yield of photochemical processes. The ratio of the quantum yield of photosynthesis to the quantum yield of fluorescence ranged between 0.24 and 0.44 molC/Ein for all stations. The highest value for this ratio occurred at the equatorial stations, indicating that latitudinal variability could have an effect on the production-fluorescence relation.

  14. Magneto-transport of an electron bilayer system in an undoped Si/SiGe double-quantum-well heterostructure

    DOE PAGES

    Laroche, Dominique; Huang, ShiHsien; Nielsen, Erik; ...

    2015-04-08

    We report the design, the fabrication, and the magneto-transport study of an electron bilayer system embedded in an undoped Si/SiGe double-quantum-well heterostructure. Additionally, the combined Hall densities (n Hall ) ranging from 2.6 × 10 10 cm -2 to 2.7 × 10 11 cm -2 were achieved, yielding a maximal combined Hall mobility (μ Hall ) of 7.7 × 10 5 cm 2/(V • s) at the highest density. Simultaneous electron population of both quantum wells is clearly observed through a Hall mobility drop as the Hall density is increased to n Hall > 3.3 × 10 10 cm -2,more » consistent with Schrödinger-Poisson simulations. Furthermore, the integer and fractional quantum Hall effects are observed in the device, and single-layer behavior is observed when both layers have comparable densities, either due to spontaneous interlayer coherence or to the symmetric-antisymmetric gap.« less

  15. Photolysis of rhodamine-WT dye

    USGS Publications Warehouse

    Tai, D.Y.; Rathbun, R.E.

    1988-01-01

    Photolysis of rhodamine-WT dye under natural sunlight conditions was determined by measuring the loss of fluorescence as a function of time. Rate coefficients at 30?? north latitude ranged from 4.77 x 10-2 day-1 for summer to 3.16 x 10-2 day-1 for winter. Experimental coefficients were in good agreement with values calculated using a laboratory-determined value of the quantum yield.

  16. Photoelectric Effect: Back to Basics.

    ERIC Educational Resources Information Center

    Powell, R. A.

    1978-01-01

    Presents a simplified theoretical analysis of the variation of quantum yield with photon energy in the photoelectric experiment. Describes a way to amplify the experiment and make it more instructive to advanced students through the measurement of quantum yield of a photo cell. (GA)

  17. DETERMINATION OF APPARENT QUANTUM YIELD SPECTRA FOR THE FORMATION OF BIOLOGICALLY LABILE PHOTOPRODUCTS

    EPA Science Inventory

    Quantum yield spectra for the photochemical formation of biologically labile photoproducts from dissolved organic matter (DOM) have not been available previously, although they would greatly facilitate attempts to model photoproduct formation rates across latitudinal, seasonal, a...

  18. Photophysics and catalysis of porphyrinoids

    NASA Astrophysics Data System (ADS)

    Aggarwal, Amit

    Organic nanoparticles (ONP) of metalloporphyrins can be versatile catalysts for the selective oxidation of alkenes and other hydrocarbons. Herein, we report the catalytic activity of ONP of 5,10,15,20-tetrakis-[4-(1'H,1'H,2'H,2'H-heptadecafluorodecane-1-thiol)-2,3,5,6-tetrafluorophenyl] porphyrinato iron(III), Fe(III)TPPF84, and 5,10,15,20-tetakis-(2,3,4,5,6-pentafluorophenyl) porphyrinato manganese(III), Mn(III)TPPF20, for cyclohexene oxidation using molecular oxygen as an oxidant in water under ambient conditions. Sequential dipping of indium-tin-oxide electrodes into solutions of tetra cationic porphyrins and tetra anionic polyoxometalates results in the controlled formation of nm thick films. The potential applications of these robust films on electrodes range from catalysts to sensors. This chapter focuses on the electrochemistry of the multilayered films where it is found that the oxidation and reduction potentials of each species remain largely the same as found in solution. Photophysical properties of Porphyrinoids bearing four rigid hydrogen bonding motifs on the meso positions, self-assembled into a cofacial cage with four complementary bis(decyl)melamine units in dry solvents are presented here. Self-assembly was investigated by NMR spectroscopy, dynamic light scattering, and atomic force microscopy. The phototphysical properties of the cage formation involve the measurement of their absorption and emission spectra and the fluorescence life time in dry THF. The hydrocarbon chains on the bis(decyl)melamine mediate the formation of nanofilms on surfaces as the solvent slowly evaporates. A systematic study of the photophysical properties of a series of porphyrinoids is presented. The role of the location of a heavy atom in shunting the excited state from the singlet to the triplet manifolds is compared for three cases. It is well known that Pt(II) metalloporphyrins do not fluoresce. For meso pyridyl porphyrins, the fluorescence quantum yield decreases as the number of coordinatively attached Pt(II) complexes increase from 0-4, but the tetracoordinated species retains about 30% of the fluorescence. Covalently attaching a heavy metal complex e.g. Pt(II) complex to the macrocycle by an organometalic bond at the peripheral meso position causes greater than a 20-fold decrease in fluorescence quantum yield and may enhance some internal conversion to the ground state. For comparison, the fluorescence quantum yield decreases somewhat as the number of pyridyl groups on the meso positions increase 0-4. We also evaluate the photophysical properties of a series of porphyrins with nitro groups on the beta pyrrole position and on the meso phenyl group, which also quenches the fluorescence. These studies bear on the use of metal ions to enhance the photophysical properties of these dyes as photodynamic therapeutics and for supramolecular systems, while the nitrated macrocycles have potential application in non linear optics. The photophysical properties of non-hydrolysable tetra- thioglycosylated conjugates of chlorin (CGlc4), isobacteriochlorin (IGlc4) and bacteriochlorin (BGlc4) and core F20 platforms are reported here. These studies involve the measurement of absorption and emission spectra, fluorescence quantum yield, singlet oxygen quantum yield, and singlet state life time in three different solvents: phosphate buffer saline (PBS), ethanol, and ethylacetate. Compared to the porphyrin in PBS, CGlc4 has a markedly greater absorbance of red light near 650 nm and a 6-fold increase in fluorescence quantum yield; whereas IGlc4 has broad Q bands and a 12-fold increase in fluorescence quantum yield. Since IGlc4 CGlc4 very slowly bleach, these properties may enable their use as fluorescent tags to track biological processes. BGlc4 has a similar fluorescence quantum yield to PGlc4, (<10%), but the lowest energy absorption/emission peaks of BGlc4 are considerably red shifted to near 730 nm with a nearly 50-fold greater absorbance, which may allow this conjugate to be an effective PDT agent. (Abstract shortened by UMI.)

  19. Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Ke; Verschuuren, Marc A.; Lozano, Gabriel

    2015-08-21

    Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurementsmore » reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.« less

  20. Spectroscopic and laser characterization of emerald. Final report, April 1983-April 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, S.T.; Chai, B.H.

    1986-08-01

    The spectroscopic characteristics and laser properties of emerald were investigated. The laser measurements showed that the emerald-laser tuning range was 720-842 nm and exhibited a high gain and high efficiency in the 760-790 nm range. Under a crystal growth development program, the laser loss was reduced from 11%/cm to 0.4%/cm. The limiting factor in the laser efficiency is the excited-state absorption (ESA). The ESA was measured by two methods: a laser-pumped single-pass gain method, which is generally applicable to all tunable laser materials, and a laser-pumped laser method. A 76% laser quantum yield was obtained in high-optical-quality emerald. The maximummore » yield is estimated to be 83%, based on the ESA measurements.« less

  1. Efficient Carrier Multiplication in Colloidal Silicon Nanorods

    DOE PAGES

    Stolle, Carl Jackson; Lu, Xiaotang; Yu, Yixuan; ...

    2017-08-01

    In this study, auger recombination lifetimes, absorption cross sections, and the quantum yields of carrier multiplication (CM), or multiexciton generation (MEG), were determined for solvent-dispersed silicon (Si) nanorods using transient absorption spectroscopy (TAS). Nanorods with an average diameter of 7.5 nm and aspect ratios of 6.1, 19.3, and 33.2 were examined. Colloidal Si nanocrystals of similar diameters were also studied for comparison. The nanocrystals and nanorods were passivated with organic ligands by hydrosilylation to prevent surface oxidation and limit the effects of surface trapping of photoexcited carriers. All samples used in the study exhibited relatively efficient photoluminescence. The Auger lifetimesmore » increased with nanorod length, and the nanorods exhibited higher CM quantum yield and efficiency than the nanocrystals with a similar band gap energy E g. Beyond a critical length, the CM quantum yield decreases. Finally, nanorods with the aspect ratio of 19.3 had the highest CM quantum yield of 1.6 ± 0.2 at 2.9E g, which corresponded to a multiexciton yield that was twice as high as observed for the spherical nanocrystals.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolle, Carl Jackson; Lu, Xiaotang; Yu, Yixuan

    In this study, auger recombination lifetimes, absorption cross sections, and the quantum yields of carrier multiplication (CM), or multiexciton generation (MEG), were determined for solvent-dispersed silicon (Si) nanorods using transient absorption spectroscopy (TAS). Nanorods with an average diameter of 7.5 nm and aspect ratios of 6.1, 19.3, and 33.2 were examined. Colloidal Si nanocrystals of similar diameters were also studied for comparison. The nanocrystals and nanorods were passivated with organic ligands by hydrosilylation to prevent surface oxidation and limit the effects of surface trapping of photoexcited carriers. All samples used in the study exhibited relatively efficient photoluminescence. The Auger lifetimesmore » increased with nanorod length, and the nanorods exhibited higher CM quantum yield and efficiency than the nanocrystals with a similar band gap energy E g. Beyond a critical length, the CM quantum yield decreases. Finally, nanorods with the aspect ratio of 19.3 had the highest CM quantum yield of 1.6 ± 0.2 at 2.9E g, which corresponded to a multiexciton yield that was twice as high as observed for the spherical nanocrystals.« less

  3. Single-mode light source fabrication based on colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Xu, Jianfeng; Chen, Bing; Baig, Sarfaraz; Wang, Michael R.

    2009-02-01

    There are huge market demands for innovative, cheap and efficient light sources, including light emitting devices, such as LEDs and lasers. However, the light source development in the visible spectral range encounters significant difficulties these years. The available visible wavelength LEDs or lasers are few, large and expensive. The main challenge lies at the lack of efficient light media. Semiconductor nanocrystal quantum dots (QDs) have recently commanded considerable attention. As a result of quantum confinement effect, the emission color of these QDs covers the whole visible spectral range and can be modified dramatically by simply changing their size. Such spectral tunability, together with large photoluminescence quantum yield and photostability, make QDs attractive for potential applications in a variety of light emitting technologies. However, there are still several technical problems that hinder their application as light sources. One main issue is how to fabricate these QDs into a solid state device while still retaining their original optical emission properties. A vacuum assisted micro-fluidic fabrication of guided wave devices has demonstrated low waveguide propagation loss, lower crosstalk, and improved waveguide structures. We report herein the combination of the excellent emission properties of QDs and novel vacuum assisted micro-fluidic photonic structure fabrication technique to realize single-mode efficient light sources.

  4. Depopulation of highly excited singlet states of DNA model compounds: quantum yields of 193 and 245 nm photoproducts of pyrimidine monomers and dinucleoside monophosphates.

    PubMed

    Gurzadyan, G G; Görner, H

    1996-02-01

    Formation of uracil and orotic acid photodimers, uridine and 5'-UMP photohydrates, TpT photodimers and (6-4)photoproducts, dCpT photohydrates and (6-4)photoproducts and UpU, CpC and CpU photohydrates were studied in neutral deoxygenated aqueous solution at room temperature upon irradiation at either 193 or 254 nm. The photoproducts were identified and quantified and the contribution from photoionization to substrate decomposition, using lambda irr = 193 nm, was separated. The ratio of the quantum yields of respective stable products, eta = phi 193/phi 254, is indicative of the yield of internal conversion from the second to the first excited singlet state, S2-->S1. For the observed photodimers eta decreases from 0.94 for uracil to 0.7 for TpT and further to 0.55 for orotic acid. For the (6-4)photoproducts of TpT and dCpT eta = 0.5-0.8 and for the photohydrates in the cases of UpU, CpC, CpU and dCpT eta ranges from 0.55 to 1.

  5. Effects of Bleaching by Nitrogen Deficiency on the Quantum Yield of Photosystem II in Synechocystis sp. PCC 6803 Revealed by Chl Fluorescence Measurements.

    PubMed

    Ogawa, Takako; Sonoike, Kintake

    2016-03-01

    Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Effects of solar radiation on the Patagonian macroalga Enteromorpha linza (L.) J. Agardh-Chlorophyceae.

    PubMed

    Häder, D P; Lebert, M; Helbling, E W

    2001-09-01

    The photosynthetic performance of Enteromorpha linza (L.) J. Agardh-Chlorophyceae was determined with a portable PAM instrument in situ and under seminatural radiation conditions in Patagonia, Argentina. Solar radiation was measured in parallel with a three-channel radiometer, ELDONET (Real Time Computer, Möhrendorf, Germany), in three wavelength ranges, UV-B (280-315 nm), UV-A (315-400 nm), and PAR (400-700 nm). The effective photosynthetic quantum yield decreased after 15-min exposure to solar radiation when the thalli were kept in a fixed position but recovered in the subsequent shade conditions within several hours. A 30-min exposure of free floating thalli, however, caused less photoinhibition. The photosynthetic quantum yield of E. linza was also followed over whole days under clear sky, partly cloudy and rainy conditions in a large reservoir of water (free floating thalli) and in situ (thalli growing in rock pools). Most of the observed effect was due to visible radiation; however, the UV wavelength range, and especially UV-B, caused a significant reduction of the photosynthetic quantum yield. Fluence rate response curves indicated that the species is a typical shade plant which showed non-photochemical quenching at intermediate and higher irradiances. This is a surprising result since these algae are found in the upper eulittoral where they are exposed to high irradiances. Obviously they utilize light only during periods of low irradiances (morning, evening, high tide) while they shut down the electron transport chain during intensive exposure. Fast induction and relaxation kinetics have been measured in these algae for the first time and indicated a rapid adaptation of the photosynthetic capacity to the changing light conditions as well as a fast decrease of PS II fluorescence upon exposure to solar radiation. There was a strong bleaching of chlorophyll due to exposure to solar radiation but less drastic bleaching of carotenoids.

  7. Highly luminescent and color-tunable salicylate ionic liquids

    DOE PAGES

    Campbell, Paul S.; Yang, Mei; Pitz, Demian; ...

    2014-03-11

    High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.

  8. High quantum-yield phosphors via quantum splitting and upconversion

    NASA Astrophysics Data System (ADS)

    Jeong, Joayoung

    The Gd3+ ion has been used to induce quantum splitting in luminescent materials by using cross-relaxation energy transfer (CRET). In Nd:LiGdF4, quantum splitting results from a two-step CRET between Gd3+ and Nd3+, first involving a transition 6G→6I on Gd3+ and an excitation within the 4f3 configuration of Nd3+ followed by a second CRET that brings Gd3+ to 6P7/2. The excited Nd3+ ion rapidly relaxes nonradiatively to the emitting 4F3/2. The excited Gd3+ ion then transfers its energy back to Nd3+, which gives rise to the second photon. The result is a quantum yield of 1.05 +/- 0.35 with emission in the NIR following excitation at 175 nm. GdF3:Pr3+, Eu 3+ also exhibits quantum splitting, but only at very low concentration of Pr3+ (0.3%) and Eu3+ (0.2%), resulting in a quantum yield of approximately 20% under 160-nm excitation. Host intrinsic emission via a self-trapped exciton (STE) was also examined as a means to sensitize Gd3+ emission. The material ScPO4:Gd 3+ exhibits a high absolute quantum yield of 0.9 +/- 0.2 under 170-nm excitation, demonstrating a potentially new and efficient pathway for exciting quantum splitting phosphors. Single crystals of the material GdZrF7 were grown, and its structure was established via single-crystal X-ray diffraction methods. Doped samples of GdZrF7:Yb3+, Er3+ exhibit bright up-conversion luminescence with light output that is up to twice that of a commercial material based on the host Gd2O2S. When doped with Eu3+, the fluoride also emits a nearly white color under vacuum ultraviolet excitation with an absolute quantum yield near 0.9. The new compound Gd4.67(SiO4)3S was synthesized and studied. The structure was established via single-crystal X-ray methods, and the luminescence of Tb3+ samples was investigated.

  9. A spectroscopic and computational study of Al(III) complexes in sodium cryolite melts: ionic composition in a wide range of cryolite ratios.

    PubMed

    Nazmutdinov, Renat R; Zinkicheva, Tamara T; Vassiliev, Sergey Yu; Glukhov, Dmitri V; Tsirlina, Galina A; Probst, Michael

    2010-04-01

    The structure of sodium cryolite melts was studied using Raman spectroscopy and quantum chemical calculations performed at the density functional theory level. The existence of bridged forms in the melts was argued first from the analysis of experimental Raman spectra. In the quantum chemical modelling emphasis was put on the construction of potential energy surfaces describing the formation/dissociation of certain complex species. Effects of the ionic environment were found to play a crucial role in the energetics of model processes. The structure of the simplest possible polymeric forms involving two Al centres linked through F atoms ("dimers") was thoroughly investigated. The calculated equilibrium constants and model Raman spectra yield additional evidence in favour of the dimers. This agrees with a self-consistent analysis of a series of Raman spectra for a wide range of the melt composition. Copyright 2010. Published by Elsevier B.V.

  10. Rydberg Dipole Antennas

    NASA Astrophysics Data System (ADS)

    Stack, Daniel; Rodenburg, Bradon; Pappas, Stephen; Su, Wangshen; St. John, Marc; Kunz, Paul; Simon, Matt; Gordon, Joshua; Holloway, Christopher

    2017-04-01

    Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. A useful tool to address this problem are highly-excited (Rydberg) neutral atoms which have very large electric-dipole moments and many dipole-allowed transitions in the range of 1-500 GHz. Using Rydberg states, it is possible to sensitively probe the electric field in this frequency range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This atom-light interaction can be modeled by the classical description of a harmonically bound electron. The classical damped, driven, coupled-oscillators model yields significant insights into the deep connections between classical and quantum physics. We will present a detailed experimental analysis of the noise processes in making such measurements in the laboratory and discuss the prospects for building a practical atomic microwave receiver.

  11. Biocompatible silicon quantum dots by ultrasound-induced solution route

    NASA Astrophysics Data System (ADS)

    Lee, Soojin; Cho, Woon-Jo

    2004-10-01

    The water-soluble silicon quantum dots (QDs) of average diameter ~3 nm were prepared in organic solvent by ultrasound-induced solution route. This speedy rout produces the silicon QDs in the size range from 2 nm to 4 nm at room temperature and ambient pressure. The product yield of QDs was estimated to be higher than 60 % based on the initial NaSi weight. The surfaces of QDs were terminated with organic molecules including biocompatible ending groups (hydroxyl, amine and carboxyl) during simple preparation. Covalent attached molecules were characterized by FT-IR spectroscopy. These water-soluble passivation of QDs has just a little effect on the optical properties of original QDs.

  12. Significant Quantum Effects in Hydrogen Activation

    DOE PAGES

    Kyriakou, Georgios; Davidson, Erlend R. M.; Peng, Guowen; ...

    2014-03-31

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature revealmore » completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H 2 up to ~190 K and for D 2 up to ~140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H 2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D 2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Here, examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.« less

  13. Optomechanical Control of Quantum Yield in Trans-Cis Ultrafast Photoisomerization of a Retinal Chromophore Model.

    PubMed

    Valentini, Alessio; Rivero, Daniel; Zapata, Felipe; García-Iriepa, Cristina; Marazzi, Marco; Palmeiro, Raúl; Fdez Galván, Ignacio; Sampedro, Diego; Olivucci, Massimo; Frutos, Luis Manuel

    2017-03-27

    The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans-to-cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    DOE PAGES

    D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less

  15. Highly luminescent S,N co-doped carbon quantum dots-sensitized chemiluminescence on luminol-H2 O2 system for the determination of ranitidine.

    PubMed

    Chen, Jianqiu; Shu, Juan; Chen, Jiao; Cao, Zhiran; Xiao, An; Yan, Zhengyu

    2017-05-01

    S,N co-doped carbon quantum dots (N,S-CQDs) with super high quantum yield (79%) were prepared by the hydrothermal method and characterized by transmission electron microscopy, photoluminescence, UV-Vis spectroscopy and Fourier transformed infrared spectroscopy. N,S-CQDs can enhance the chemiluminescence intensity of a luminol-H 2 O 2 system. The possible mechanism of the luminol-H 2 O 2 -(N,S-CQDs) was illustrated by using chemiluminescence, photoluminescence and ultraviolet analysis. Ranitidine can quench the chemiluminescence intensity of a luminol-H 2 O 2 -N,S-CQDs system. So, a novel flow-injection chemiluminescence method was designed to determine ranitidine within a linear range of 0.5-50 μg ml -1 and a detection limit of 0.12 μg ml -1 . The method shows promising application prospects. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less

  17. Versatile Tri(pyrazolyl)phosphanes as Phosphorus Precursors for the Synthesis of Highly Emitting InP/ZnS Quantum Dots.

    PubMed

    Panzer, René; Guhrenz, Chris; Haubold, Danny; Hübner, René; Gaponik, Nikolai; Eychmüller, Alexander; Weigand, Jan J

    2017-11-13

    Tri(pyrazolyl)phosphanes (5 R1,R2 ) are utilized as an alternative, cheap and low-toxic phosphorus source for the convenient synthesis of InP/ZnS quantum dots (QDs). From these precursors, remarkably long-term stable stock solutions (>6 months) of P(OLA) 3 (OLAH=oleylamine) are generated from which the respective pyrazoles are conveniently recovered. P(OLA) 3 acts simultaneously as phosphorus source and reducing agent in the synthesis of highly emitting InP/ZnS core/shell QDs. These QDs are characterized by a spectral range between 530-620 nm and photoluminescence quantum yields (PL QYs) between 51-62 %. A proof-of-concept white light-emitting diode (LED) applying the InP/ZnS QDs as a color-conversion layer was built to demonstrate their applicability and processibility. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optical Properties of CdSe/ZnS Nanocrystals

    PubMed Central

    Gaigalas, Adolfas K; DeRose, Paul; Wang, Lili; Zhang, Yu-Zhong

    2014-01-01

    Measurements are presented of the absorbance, fluorescence emission, fluorescence quantum yield, and fluorescence lifetime of CdSe/ZnS nanocrystals, also known as quantum dots (QDs). The study included three groups of nanocrystals whose surfaces were either passivated with organic molecules, modified further with carboxyl groups, or conjugated with CD14 mouse anti-human antibodies. The surface modifications had observable effects on the optical properties of the nanocrystals. The oscillator strength (OS) of the band edge transition was about 1.0 for the nanocrystals emitting at 565 nm, 605 nm, and 655 nm. The OS could not be determined for QDs with emission at 700 nm and 800 nm. The fluorescence lifetimes varied from 26 ns for nanocrystals emitting near 600 nm to 150 ns for nanocrystals emitting near 800 nm. The quantum yield ranged between 0.4 and 0.9 for the nanocrystals in this study. A brightness index (BI) was used to evaluate the suitability of the nanocrystal labels for flow cytometer measurements. Most QD labels are at least as bright as fluorescein for applications in flow cytometer assays with 488 nm excitation. For optimal brightness the QDs should be excited with 405 nm light. We observed a strong dependence of the QD absorbance at 250 nm on the surface modification of the QD. PMID:26601047

  19. Determination of Dacarbazine Φ-Order Photokinetics, Quantum Yields, and Potential for Actinometry.

    PubMed

    Maafi, Mounir; Lee, Lok-Yan

    2015-10-01

    The characterization of drugs' photodegradation kinetics is more accurately achieved by means of the recently developed Φ-order kinetics than by the zero-, first-, and/or second-order classical treatments. The photodegradation of anti-cancer dacarbazine (DBZ) in ethanol has been investigated and found to obey Φ-order kinetics when subjected to continuous and monochromatic irradiation of various wavelengths. Its photochemical efficiency was proven to be wavelength dependent in the 220-350 nm range, undergoing a 50-fold increase. Albeit this variation was well defined by a sigmoid pattern, the overall photoreactivity of DBZ was proven to depend also on the contributions of reactants and experimental attributes. The usefulness of DBZ to serve as a drug-actinometer has been investigated using the mathematical framework of Φ-order kinetics. It has been shown that DBZ in ethanol can represent a good candidate for reliable actinometry in the range 270-350 nm. A detailed and easy-to-implement procedure has been proposed for DBZ actinometry. This procedure could advantageously be implemented prior to the determination of the photodegradation quantum yields. This approach might be found useful for the development of many drug actinometers as alternatives to quinine hydrochloride. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Effect of site disorder on the ground state of a frustrated spin dimer quantum magnet

    NASA Astrophysics Data System (ADS)

    Hristov, Alexander; Shapiro, Maxwell; Lee, Minseong; Rodenbach, Linsey; Choi, Eun Sang; Park, Ju-Hyun; Munsie, Tim; Luke, Graeme; Fisher, Ian

    Ba3Mn2O8 is a geometrically frustrated spin dimer quantum magnet. Pairs of Mn 5+ (S = 1) ions are strongly coupled via antiferromagnetic exchange to yield a singlet ground state, with excited triplet and quintuplet states. Isovalent substitution of V5+ (S = 0) for Mn breaks dimers, resulting in unpaired S = 1 spins, the ground state of which is investigated here for compositions spanning the range 0 <= x <= 1 of Ba3(Mn1-xVx)2O8. From a theoretical perspective, for dimers occupying an unfrustrated bipartite lattice, such site disorder is anticipated to yield long range magnetism for unpaired Mn spins both in the dilute limit where x is small, a phenomena known as order-by-disorder, and in the proximity of x = 1 / 2 where the system is maximally disordered and close to a percolation threshold. In this frustrated system, however, our experiments find evidence of spin freezing for six compositions 0 . 05 <= x <= 0 . 85 . In this regime, we find entropy removed at an energy scale independent of the freezing temperature. We discuss the possibility of a spin-glass to random singlet transition for critical compositions in the two dilute limits x -> 0 and x -> 1 . NSF DMR-Award 1205165.

  1. Photophysical parameters and laser performance of 3-(4‧-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP): A new laser dye

    NASA Astrophysics Data System (ADS)

    El-Daly, S. A.; Gaber, M.; El-Sayed, Y. S.

    2009-09-01

    The spectral properties such as singlet absorption, molar absorptivity, emission spectra, fluorescence quantum yield and excited state lifetime of 3-(4'-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP) have been determined in different solvents. DMAFP dye exhibits a large red shift in both electronic absorption and emission spectra as the solvent polarity increases, indicating a large change in the dipole moment of molecules upon excitation. A crystalline solid of DMAFP gives an excimer like emission at 566 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B-type class of Steven's classification. The ground and excited state protonation constants of DMAFP are calculated and amounted to 1.71 and 8.3, respectively. DMAFP acts as a good laser dye upon pumping with nitrogen laser ( λex=337.1 nm) in chloroform, methylene chloride and dioxane and gives laser emission in the range 460-590 nm. The laser parameters such as the tuning range, gain coefficient ( α), emission cross section ( σ e) and half-life energy ( E1/2) are calculated. The photoreactivity and net photochemical quantum yield of DMAFP in chloromethane solvents are also studied.

  2. Synthesis and systematic evaluation of dark resonance energy transfer (DRET)-based library and its application in cell imaging.

    PubMed

    Su, Dongdong; Teoh, Chai Lean; Kang, Nam-Young; Yu, Xiaotong; Sahu, Srikanta; Chang, Young-Tae

    2015-03-01

    In this paper, we report a new strategy for constructing a dye library with large Stokes shifts. By coupling a dark donor with BODIPY acceptors of tunable high quantum yield, a novel dark resonance energy transfer (DRET)-based library, named BNM, has been synthesized. Upon excitation of the dark donor (BDN) at 490 nm, the absorbed energy is transferred to the acceptor (BDM) with high efficiency, which was tunable in a broad range from 557 nm to 716 nm, with a high quantum yield of up to 0.8. It is noteworthy to mention that the majority of the non-radiative energy loss of the donor was converted into the acceptor's fluorescence output with a minimum leak of donor emission. Fluorescence imaging tested in live cells showed that the BNM compounds are cell-permeable and can also be employed for live-cell imaging. This is a new library which can be excited through a dark donor allowing for strong fluorescence emission in a wide range of wavelengths. Thus, the BNM library is well suited for high-throughput screening or multiplex experiments in biological applications by using a single laser excitation source. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Energy-Cascaded Upconversion in an Organic Dye-Sensitized Core/Shell Fluoride Nanocrystal.

    PubMed

    Chen, Guanying; Damasco, Jossana; Qiu, Hailong; Shao, Wei; Ohulchanskyy, Tymish Y; Valiev, Rashid R; Wu, Xiang; Han, Gang; Wang, Yan; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2015-11-11

    Lanthanide-doped upconversion nanoparticles hold promises for bioimaging, solar cells, and volumetric displays. However, their emission brightness and excitation wavelength range are limited by the weak and narrowband absorption of lanthanide ions. Here, we introduce a concept of multistep cascade energy transfer, from broadly infrared-harvesting organic dyes to sensitizer ions in the shell of an epitaxially designed core/shell inorganic nanostructure, with a sequential nonradiative energy transfer to upconverting ion pairs in the core. We show that this concept, when implemented in a core-shell architecture with suppressed surface-related luminescence quenching, yields multiphoton (three-, four-, and five-photon) upconversion quantum efficiency as high as 19% (upconversion energy conversion efficiency of 9.3%, upconversion quantum yield of 4.8%), which is about ~100 times higher than typically reported efficiency of upconversion at 800 nm in lanthanide-based nanostructures, along with a broad spectral range (over 150 nm) of infrared excitation and a large absorption cross-section of 1.47 × 10(-14) cm(2) per single nanoparticle. These features enable unprecedented three-photon upconversion (visible by naked eye as blue light) of an incoherent infrared light excitation with a power density comparable to that of solar irradiation at the Earth surface, having implications for broad applications of these organic-inorganic core/shell nanostructures with energy-cascaded upconversion.

  4. Spectroscopic Characterization of Streptavidin Functionalized Quantum dots1

    PubMed Central

    Wu, Yang; Lopez, Gabriel P.; Sklar, Larry A.; Buranda, Tione

    2007-01-01

    The spectroscopic properties of quantum dots can be strongly influenced by the conditions of their synthesis. In this work we have characterized several spectroscopic properties of commercial, streptavidin functionalized quantum dots (QD525, lot#1005-0045 and QD585, Lot#0905-0031 from Invitrogen). This is the first step in the development of calibration beads, to be used in a generalizable quantification scheme of multiple fluorescent tags in flow cytometry or microscopy applications. We used light absorption, photoexcitation, and emission spectra, together with excited-state lifetime measurements to characterize their spectroscopic behavior, concentrating on the 400-500nm wavelength ranges that are important in biological applications. Our data show an anomalous dependence of emission spectrum, lifetimes, and quantum yield (QY) on excitation wavelength that is particularly pronounced in the QD525. For QD525, QY values ranged from 0.2 at 480nm excitation up to 0.4 at 450nm and down again to 0.15 at 350nm. For QD585, QY values were constant at 0.2 between 500nm and 400nm, but dropped to 0.1 at 350nm. We attribute the wavelength dependences to heterogeneity in size and surface defects in the QD525, consistent with characteristics previously described in the chemistry literature. The results are discussed in the context of bridging the gap between what is currently known in the physical chemistry literature of quantum dots, and the quantitative needs of assay development in biological applications. PMID:17368555

  5. Photosynthetic Physiological Response of Radix Isatidis (Isatis indigotica Fort.) Seedlings to Nicosulfuron

    PubMed Central

    Ning, Na; Wen, Yinyuan; Dong, Shuqi; Yin, Meiqiang; Guo, Meijun; Wang, Binqiang; Feng, Lei; Guo, Pingyi

    2014-01-01

    Radix Isatidis (Isatis indigotica Fort.) is one of the most important traditional Chinese medicine plants. However, there is no suitable herbicide used for weed control in Radix Isatidis field during postemergence stage. To explore the safety of sulfonylurea herbicide nicosulfuron on Radix Isatidis (Isatis indigotica Fort.) seedlings and the photosynthetic physiological response of the plant to the herbicide, biological mass, leaf area, photosynthetic pigment content, photosynthetic rate, chlorophyll fluorescence characteristics, and P700 parameters of Radix Isatidis seedlings were analyzed 10 d after nicosulfuron treatment at 5th leaf stage in this greenhouse research. The results showed that biological mass, total chlorophyll, chlorophyll a, and carotenoids content, photosynthetic rate, stomatal conductance, PS II maximum quantum yield, PS II effective quantum yield, PS II electron transport rate, photochemical quenching, maximal P700 change, photochemical quantum yield of PS I, and PS I electron transport rate decreased with increasing herbicide concentrations, whereas initial fluorescence, quantum yield of non-regulated energy dissipation in PS II and quantum yield of non-photochemical energy dissipation due to acceptor side limitation in PS I increased. It suggests that nicosulfuron ≥1 mg L−1 causes the damage of chloroplast, PS II and PS I structure. Electron transport limitations in PS I receptor side, and blocked dark reaction process may be the main cause of the significantly inhibited growth and decreased photosynthetic rate of Radix Isatidis seedlings. PMID:25165819

  6. Synthesis, characterization and photophysical-theoretical analysis of compounds A-π-D. 1. Effect of alkyl-phenyl substituted amines in photophysical properties

    NASA Astrophysics Data System (ADS)

    Ortega, E.; Montecinos, R.; Cattin, L.; Díaz, F. R.; del Valle, M. A.; Bernède, J. C.

    2017-08-01

    The study of new dipolar A-π-D molecules, which have an acceptor (A) and donor (D) charge joined by a conjugate bridge, have been an attention focus in the recent years due their different properties. In the current work, a molecular system has been modified in order to compare the effect on properties, such as quantum yield. Thus, two series were generated (alkyl- and alkoxy-substituted) to determine if molecules with tertiary asymmetric amines change their optical properties and whether quantum yield is affected. The different products have been characterized by several techniques such as UV-Vis spectrophotometry, elemental analysis, NMR, FT-IR, mass spectroscopy and fluorescence spectroscopy. Furthermore, their behavior in eight organic solvents, dichloromethane, tetrahydrofuran, ethyl acetate, 1,4-dioxane, acetone, acetonitrile, dimethylformamide and dimethylsulfoxide were experimentally and theoretically studied. The quantum yields were higher for the alkyl-substituted series. Theoretically, the dihedral angles formed between the tertiary amine and carbonyl group moieties have a correlation with quantum yield values, helping to explain why they are higher in non-polar solvents. Consequently, the maximum quantum yield was obtained with (E)-2-cyano-3-(5-((E)-2-(9,9-diethyl-7-(methyl(phenyl)amino)-9H-fluoren-2-yl) vinyl)thiophen-2-yl)acrylic acid (M8-1) in 1,4-dioxane, reaching 98.8%.

  7. Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law.

    PubMed

    Li, Qi; Luo, Tian-Yi; Zhou, Meng; Abroshan, Hadi; Huang, Jingchun; Kim, Hyung J; Rosi, Nathaniel L; Shao, Zhengzhong; Jin, Rongchao

    2016-09-27

    Silicon nanoparticles (NPs) have been widely accepted as an alternative material for typical quantum dots and commercial organic dyes in light-emitting and bioimaging applications owing to silicon's intrinsic merits of least toxicity, low cost, and high abundance. However, to date, how to improve Si nanoparticle photoluminescence (PL) performance (such as ultrahigh quantum yield, sharp emission peak, high stability) is still a major issue. Herein, we report surface nitrogen-capped Si NPs with PL quantum yield up to 90% and narrow PL bandwidth (full width at half-maximum (fwhm) ≈ 40 nm), which can compete with commercial dyes and typical quantum dots. Comprehensive studies have been conducted to unveil the influence of particle size, structure, and amount of surface ligand on the PL of Si NPs. Especially, a general ligand-structure-based PL energy law for surface nitrogen-capped Si NPs is identified in both experimental and theoretical analyses, and the underlying PL mechanisms are further discussed.

  8. Does photodissociation of molecular oxygen from myoglobin and hemoglobin yield singlet oxygen?

    PubMed

    Lepeshkevich, Sergei V; Stasheuski, Alexander S; Parkhats, Marina V; Galievsky, Victor A; Dzhagarov, Boris M

    2013-03-05

    Time-resolved luminescence measurements in the near-infrared region indicate that photodissociation of molecular oxygen from myoglobin and hemoglobin does not produce detectable quantities of singlet oxygen. A simple and highly sensitive method of luminescence quantification is developed and used to determine the upper limit for the quantum yield of singlet oxygen production. The proposed method was preliminarily evaluated using model data sets and confirmed with experimental data for aqueous solutions of 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin. A general procedure for error estimation is suggested. The method is shown to provide a determination of the integral luminescence intensity in a wide range of values even for kinetics with extremely low signal-to-noise ratio. The present experimental data do not deny the possibility of singlet oxygen generation during the photodissociation of molecular oxygen from myoglobin and hemoglobin. However, the photodissociation is not efficient to yield singlet oxygen escaped from the proteins into the surrounding medium. The upper limits for the quantum yields of singlet oxygen production in the surrounding medium after the photodissociation for oxyhemoglobin and oxymyoglobin do not exceed 3.4×10(-3) and 2.3×10(-3), respectively. On the average, no more than one molecule of singlet oxygen from every hundred photodissociated oxygen molecules can succeed in escaping from the protein matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Synthesis of Substituted 2,3,5,6-tetraarylbenzo(1,2-b:5,4-b')difurans

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Mahmoud; Auping, Judith V.; Meador, Michael A.

    1995-01-01

    A series of substituted 2,3,5,6-tetraarylbenzo(l,2-b:5,4-b')difurans 1 was synthesized. This synthesis is based upon the photocyclization of 2,5-dibenzoylresorcinol dibenzyl ethers to the corresponding tetrahydrobenzo(1,2-b:5,4-b')difurans. Treatment of the photoproducts with methanesulfonyl chloride in pyridine afforded 1 in overall yields ranging from 30-72%. A number of these compounds have high fluorescence quantum yields (of phi(sub f) = 0.76-0.90), and their fluorescence spectra exhibit large solvatochromic shifts. These compounds may be suitable for use as fluorescent probes.

  10. Do the cations in clay and the polymer matrix affect quantum dot fluorescent properties?

    PubMed

    Wei, Wenjun; Liu, Cui; Liu, Jiyan; Liu, Xueqing; Zou, Linling; Cai, Shaojun; Shi, Hong; Cao, Yuan-Cheng

    2016-06-01

    This paper studied the effects of cations and polymer matrix on the fluorescent properties of quantum dots (QDs). The results indicated that temperature has a greater impact on fluorescence intensity than clay cations (mainly K(+) and Na(+) ). Combined fluorescence lifetime and steady-state spectrometer tests showed that QD lifetimes all decreased when the cation concentration was increased, but the quantum yields were steady at various cation concentrations of 0, 0.05, 0.5 and 1 M. Poly(ethylene oxide) (PEO), poly(vinyl alcohol) (PVA) and diepoxy resin were used to study the effects of polymers on QD lifetime and quantum yield. The results showed that the lifetime for QDs 550 nm in PEO and PVA was 17.33 and 17.12 ns, respectively; for the epoxy resin, the lifetime was 0.74 ns, a sharp decrease from 24.47 ns. The quantum yield for QDs 550 nm changed from 34.22% to 7.45% and 7.81% in PEO and PVA, respectively; for the epoxy resin the quantum yield was 2.25%. QDs 580 nm and 620 nm showed the same results as QDs 550 nm. This study provides useful information on the design, synthesis and application of QDs-polymer luminescent materials. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1.

    PubMed

    Laisk, Agu; Oja, Vello; Eichelmann, Hillar; Dall'Osto, Luca

    2014-02-01

    The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  13. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing.

    PubMed

    Wu, Xu; Tian, Fei; Wang, Wenxue; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2013-08-21

    A facile bottom-up method for the synthesis of highly fluorescent graphene quantum dots (GQDs) has been developed using a one-step pyrolysis of a natural amino acid, L-glutamic acid, with the assistance of a simple heating mantle device. The developed GQDs showed strong blue, green and red luminescence under the irradiation of ultra-violet, blue and green light, respectively. Moreover, the GQDs emitted near-infrared (NIR) fluorescence in the range of 800-850 nm with the excitation-dependent manner. This NIR fluorescence has a large Stokes shift of 455 nm, providing significant advantage for sensitive determination and imaging of biological targets. The fluorescence properties of the GQDs, such as quantum yields, fluorescence life time, and photostability, were measured and the fluorescence quantum yield was as high as 54.5 %. The morphology and composites of the GQDs were characterized using TEM, SEM, EDS, and FT-IR. The feasibility of using the GQDs as a fluorescent biomarker was investigated through in vitro and in vivo fluorescence imaging. The results showed that the GQDs could be a promising candidate for bioimaging. Most importantly, compared to the traditional quantum dots (QDs), the GQDs is chemically inert. Thus, the potential toxicity of the intrinsic heavy metal in the traditional QDs would not be a concern for GQDs. In addition, the GQDs possessed an intrinsic peroxidase-like catalytic activity that was similar to the graphene sheets and carbon nanotubes. Coupled with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), the GQDs can be used for the sensitive detection of hydrogen peroxide with a limit of detection of 20 μM.

  14. SU-E-T-191: First Principle Calculation of Quantum Yield in Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abolfath, R; Guo, F; Chen, Z

    Purpose: We present a first-principle method to calculate the spin transfer efficiency in oxygen induced by any photon fields especially in MeV energy range. The optical pumping is mediated through photosensitizers, e.g., porphyrin and/or ensemble of quantum dots. Methods: Under normal conditions, oxygen molecules are in the relatively non-reactive triplet state. In the presence of certain photosensitizer compounds such as porphyrins, electromagnetic radiation of specific wavelengths can excite oxygen to highly reactive singlet state. With selective uptake of photosensitizers by certain malignant cells, photon irradiation of phosensitized tumors can lead to selective killing of cancer cells. This is the basismore » of photodynamic therapy (PDT). Despite several attempts, PDT has not been clinically successful except in limited superficial cancers. Many parameters such as photon energy, conjugation with quantum dots etc. can be potentially combined with PDT in order to extend the role of PDT in cancer management. The key quantity for this optimization is the spin transfer efficiency in oxygen by any photon field. The first principle calculation model presented here, is an attempt to fill this need. We employ stochastic density matrix description of the quantum jumps and the rate equation methods in quantum optics based on Markov/Poisson processes and calculate time evolution of the population of the optically pumped singlet oxygen. Results: The results demonstrate the feasibility of our model in showing the dependence of the optical yield in generating spin-singlet oxygen on the experimental conditions. The adjustable variables can be tuned to maximize the population of the singlet oxygen hence the efficacy of the photodynamic therapy. Conclusion: The present model can be employed to fit and analyze the experimental data and possibly to assist researchers in optimizing the experimental conditions in photodynamic therapy.« less

  15. Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing

    PubMed Central

    Wu, Xu; Tian, Fei; Wang, Wenxue; Chen, Jiao; Wu, Min; Zhao, Julia Xiaojun

    2013-01-01

    A facile bottom-up method for the synthesis of highly fluorescent graphene quantum dots (GQDs) has been developed using a one-step pyrolysis of a natural amino acid, L-glutamic acid, with the assistance of a simple heating mantle device. The developed GQDs showed strong blue, green and red luminescence under the irradiation of ultra-violet, blue and green light, respectively. Moreover, the GQDs emitted near-infrared (NIR) fluorescence in the range of 800–850 nm with the excitation-dependent manner. This NIR fluorescence has a large Stokes shift of 455 nm, providing significant advantage for sensitive determination and imaging of biological targets. The fluorescence properties of the GQDs, such as quantum yields, fluorescence life time, and photostability, were measured and the fluorescence quantum yield was as high as 54.5 %. The morphology and composites of the GQDs were characterized using TEM, SEM, EDS, and FT-IR. The feasibility of using the GQDs as a fluorescent biomarker was investigated through in vitro and in vivo fluorescence imaging. The results showed that the GQDs could be a promising candidate for bioimaging. Most importantly, compared to the traditional quantum dots (QDs), the GQDs is chemically inert. Thus, the potential toxicity of the intrinsic heavy metal in the traditional QDs would not be a concern for GQDs. In addition, the GQDs possessed an intrinsic peroxidase-like catalytic activity that was similar to the graphene sheets and carbon nanotubes. Coupled with 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), the GQDs can be used for the sensitive detection of hydrogen peroxide with a limit of detection of 20 μM. PMID:23997934

  16. Synthesis, linear and nonlinear optical properties of phosphonato-substituted bithiophenes derived from 2,2'-biphenol.

    PubMed

    Freeman, Jason L; Zhao, Qun; Zhang, Yuanli; Wang, Jianwei; Lawson, Christopher M; Gray, Gary M

    2013-10-21

    Two new series of phosphonato-substituted bithiophenes, BpP(X)(C4H2S)2H and BpP(X)(C4H2S)2P(X)Bp (Bp = 2,2'-C12H8O2, X = O, S, Se), have been synthesized and characterized using linear absorption and emission spectra, and third-order nonlinear absorption measurements at 430 nm with 27 ps laser pulses. The compounds were synthesized in three steps: (1) reacting lithiated bithiophene with (Et2N)2PCl; (2) reacting the product from the first step with biphenol; and (3) reacting the product from the second step with the appropriate chalcogen. The X-ray crystal structures of two of the compounds, BpP(O)(C4H2S)2P(O)Bp and BpP(Se)(C4H2S)2P(Se)Bp, are reported and show a number of intermolecular π-π interactions. The linear absorption spectra, emission spectra, and emission quantum yields show distinct trends with respect to the chalcogen and the number of phosphorus substituents attached to the 2,2'-bithiophene ring. The compounds show emission maxima at wavelengths ranging from 380-400 nm and, BpP(S)(C4H2S)2H shows a 23-fold increase in fluorescence quantum yield relative to that of 2,2'-bithiophene. Fluorescence lifetimes and radiative and non-radiative decay rate constants for the first singlet excited state have been extracted from the quantum yields using time-dependent DFT calculations. Nonlinear transmission measurements indicate that all of the compounds show nonlinear absorption at 430 nm with 27 ps laser pulses in spite of their low solubilities. Notably, the nonlinear absorption threshold of a 0.16 mol L(-1) CH2Cl2 solution of BpP(Se)(C4H2S)2H is 0.9 J cm(-2). The excellent emission quantum yields and good nonlinear absorptions make these compounds promising candidates for optical power limiting applications and as host materials for violet-blue organic light emitting diodes.

  17. Temperature and oxygen-concentration dependence of singlet oxygen production by RuPhen as induced by quasi-continuous excitation.

    PubMed

    Varchola, Jaroslav; Huntosova, Veronika; Jancura, Daniel; Wagnières, Georges; Miskovsky, Pavol; Bánó, Gregor

    2014-12-01

    Assessment of partial pressure of oxygen (pO2) by luminescence lifetime measurements of ruthenium coordination complexes has been studied intensively during the last few decades. RuPhen (dichlorotris(1,10-phenanthroline) ruthenium(ii) hydrate) is a water soluble molecule that has been tested previously for in vivo pO2 detection. In this work we intended to shed light on the production of singlet oxygen by RuPhen. The quantum yield of singlet oxygen production by RuPhen dissolved in 0.9% aqueous NaCl solution (pH = 6) was measured at physiological temperatures (285-310 K) and various concentrations of molecular oxygen. In order to minimize the bleaching of RuPhen, the samples were excited with low power (<2 mW) laser pulses (20 μs long), created by pulsing a cw laser beam with an acousto-optical modulator. We show that, whereas the RuPhen phosphorescence lifetime decreases rapidly with an increase of temperature (keeping the oxygenation level constant), the quantum yield of singlet oxygen production by RuPhen is almost identical in the temperature range of 285-310 K. For air-saturated conditions at 310 K the measured quantum yield is about 0.25. The depopulation rate constants of the RuPhen (3)MLCT (metal-to-ligand charge-transfer) state are determined in the absence and in the presence of oxygen. We determined that the excitation energy for the RuPhen (3)MLCT→d-d transition is 49 kJ mol(-1) in the 0.9% NaCl solution (pH = 6).

  18. (CH3)3COOH (tert-butyl hydroperoxide): OH reaction rate coefficients between 206 and 375 K and the OH photolysis quantum yield at 248 nm.

    PubMed

    Baasandorj, Munkhbayar; Papanastasiou, Dimitrios K; Talukdar, Ranajit K; Hasson, Alam S; Burkholder, James B

    2010-10-14

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (CH(3))(3)COOH (tert-butyl hydroperoxide) were measured as a function of temperature (206-375 K) and pressure (25-200 Torr (He, N(2))). Rate coefficients were measured under pseudo-first-order conditions using pulsed laser photolysis to produce OH and laser induced fluorescence (PLP-LIF) to measure the OH temporal profile. Two independent methods were used to determine the gas-phase infrared cross sections of (CH(3))(3)COOH, absolute pressure and chemical titration, that were used to determine the (CH(3))(3)COOH concentration in the LIF reactor. The temperature dependence of the rate coefficients is described, within the measurement precision, by the Arrhenius expression k(1)(T) = (7.0 ± 1.0) × 10(-13) exp[(485 ± 20)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (3.58 ± 0.54) × 10(-12) cm(3) molecule(-1) s(-1). The uncertainties are 2σ (95% confidence level) and include estimated systematic errors. UV absorption cross sections of (CH(3))(3)COOH were determined at 185, 214, 228, and 254 nm and over the wavelength range 210-300 nm. The OH quantum yield following the 248 nm pulsed laser photolysis of (CH(3))(3)COOH was measured relative to the OH quantum yields of H(2)O(2) and HNO(3) using PLP-LIF and found to be near unity.

  19. A comparison of quantum limited dose and noise equivalent dose

    NASA Astrophysics Data System (ADS)

    Job, Isaias D.; Boyce, Sarah J.; Petrillo, Michael J.; Zhou, Kungang

    2016-03-01

    Quantum-limited-dose (QLD) and noise-equivalent-dose (NED) are performance metrics often used interchangeably. Although the metrics are related, they are not equivalent unless the treatment of electronic noise is carefully considered. These metrics are increasingly important to properly characterize the low-dose performance of flat panel detectors (FPDs). A system can be said to be quantum-limited when the Signal-to-noise-ratio (SNR) is proportional to the square-root of x-ray exposure. Recent experiments utilizing three methods to determine the quantum-limited dose range yielded inconsistent results. To investigate the deviation in results, generalized analytical equations are developed to model the image processing and analysis of each method. We test the generalized expression for both radiographic and fluoroscopic detectors. The resulting analysis shows that total noise content of the images processed by each method are inherently different based on their readout scheme. Finally, it will be shown that the NED is equivalent to the instrumentation-noise-equivalent-exposure (INEE) and furthermore that the NED is derived from the quantum-noise-only method of determining QLD. Future investigations will measure quantum-limited performance of radiographic panels with a modified readout scheme to allow for noise improvements similar to measurements performed with fluoroscopic detectors.

  20. Quantum Criticality and Black Holes

    ScienceCinema

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2017-12-09

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  1. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.

    PubMed

    Zhang, Feng; Zhong, Haizheng; Chen, Cheng; Wu, Xian-gang; Hu, Xiangmin; Huang, Hailong; Han, Junbo; Zou, Bingsuo; Dong, Yuping

    2015-04-28

    Organometal halide perovskites are inexpensive materials with desirable characteristics of color-tunable and narrow-band emissions for lighting and display technology, but they suffer from low photoluminescence quantum yields at low excitation fluencies. Here we developed a ligand-assisted reprecipitation strategy to fabricate brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots with absolute quantum yield up to 70% at room temperature and low excitation fluencies. To illustrate the photoluminescence enhancements in these quantum dots, we conducted comprehensive composition and surface characterizations and determined the time- and temperature-dependent photoluminescence spectra. Comparisons between small-sized CH3NH3PbBr3 quantum dots (average diameter 3.3 nm) and corresponding micrometer-sized bulk particles (2-8 μm) suggest that the intense increased photoluminescence quantum yield originates from the increase of exciton binding energy due to size reduction as well as proper chemical passivations of the Br-rich surface. We further demonstrated wide-color gamut white-light-emitting diodes using green emissive CH3NH3PbBr3 quantum dots and red emissive K2SiF6:Mn(4+) as color converters, providing enhanced color quality for display technology. Moreover, colloidal CH3NH3PbX3 quantum dots are expected to exhibit interesting nanoscale excitonic properties and also have other potential applications in lasers, electroluminescence devices, and optical sensors.

  2. Structural Basis for Near Unity Quantum Yield Core/Shell Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, James; Treadway, Joe; Pennycook, Stephen J

    2006-01-01

    Aberration-corrected Z-contrast scanning transmission electron microscopy of core/shell nanocrystals shows clear correlations between structure and quantum efficiency. Uniform shell coverage is obtained only for a graded CdS/ZnS shell material and is found to be critical to achieving near 100% quantum yield. The sublattice sensitivity of the images confirms that preferential growth takes place on the anion-terminated surfaces. This explains the three-dimensional "nanobullet" shape observed in the case of core/shell nanorods.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Lin; Chen Yixin

    We show that no universal quantum cloning machine exists that can broadcast an arbitrary mixed qubit with a constant fidelity. Based on this result, we investigate the dependent quantum cloner in the sense that some parameter of the input qubit {rho}{sub s}({theta},{omega},{lambda}) is regarded as constant in the fidelity. For the case of constant {omega}, we establish the 1{yields}2 optimal symmetric dependent cloner with a fidelity 1/2. It is also shown that the 1{yields}M optimal quantum cloning machine for pure qubits is also optimal for mixed qubits, when {lambda} is the unique parameter in the fidelity. For general N{yields}M broadcastingmore » of mixed qubits, the situation is very different.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a device performing an unknown von Neumann measurement with a single use of the device. When the unknown device has to be used before the bipartite state to be measured is available we talk about 1{yields}2 learning of the measurement, otherwise the task is called 1{yields}2 cloning of a measurement. We perform the optimization for both learning and cloning for arbitrary dimension d of the Hilbert space. For 1{yields}2 cloning we also propose a simple quantum network that achieves the optimal fidelity.more » The optimal fidelity for 1{yields}2 learning just slightly outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and depending on the result suitably prepares the duplicate.« less

  5. Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer.

    PubMed

    Wang, Hai-Qiao; Li, Yong-Qiang; Wang, Jian-Hao; Xu, Qiao; Li, Xiu-Qing; Zhao, Yuan-Di

    2008-03-03

    The resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and quantum dots (QDs, emission at 593 nm) acceptors (CRET) was investigated. The resonance energy transfer efficiencies were compared while the oil soluble QDs, water soluble QDs (modified with thioglycolate) and QD-HRP conjugates were used as acceptor. The fluorescence of QD can be observed in the three cases, indicating that the CRET occurs while QD acceptor in different status was used. The highest CRET efficiency (10.7%) was obtained in the case of oil soluble QDs, and the lowest CRET efficiency (2.7%) was observed in the QD-HRP conjugates case. This result is coincident with the quantum yields of the acceptors (18.3% and 0.4%). The same result was observed in another similar set of experiment, in which the amphiphilic polymer modified QDs (emission at 675 nm) were used. It suggests that the quantum yield of the QD in different status is the crucial factor to the CRET efficiency. Furthermore, the multiplexed CRET between luminol donor and three different sizes QD acceptors was observed simultaneously. This work will offer useful support for improving the CRET studies based on quantum dots.

  6. Chemically Triggered Formation of Two-Dimensional Epitaxial Quantum Dot Superlattices.

    PubMed

    Walravens, Willem; De Roo, Jonathan; Drijvers, Emile; Ten Brinck, Stephanie; Solano, Eduardo; Dendooven, Jolien; Detavernier, Christophe; Infante, Ivan; Hens, Zeger

    2016-07-26

    Two dimensional superlattices of epitaxially connected quantum dots enable size-quantization effects to be combined with high charge carrier mobilities, an essential prerequisite for highly performing QD devices based on charge transport. Here, we demonstrate that surface active additives known to restore nanocrystal stoichiometry can trigger the formation of epitaxial superlattices of PbSe and PbS quantum dots. More specifically, we show that both chalcogen-adding (sodium sulfide) and lead oleate displacing (amines) additives induce small area epitaxial superlattices of PbSe quantum dots. In the latter case, the amine basicity is a sensitive handle to tune the superlattice symmetry, with strong and weak bases yielding pseudohexagonal or quasi-square lattices, respectively. Through density functional theory calculations and in situ titrations monitored by nuclear magnetic resonance spectroscopy, we link this observation to the concomitantly different coordination enthalpy and ligand displacement potency of the amine. Next to that, an initial ∼10% reduction of the initial ligand density prior to monolayer formation and addition of a mild, lead oleate displacing chemical trigger such as aniline proved key to induce square superlattices with long-range, square micrometer order; an effect that is the more pronounced the larger the quantum dots. Because the approach applies to PbS quantum dots as well, we conclude that it offers a reproducible and rational method for the formation of highly ordered epitaxial quantum dot superlattices.

  7. Triazatruxene: A Rigid Central Donor Unit for a D-A3 Thermally Activated Delayed Fluorescence Material Exhibiting Sub-Microsecond Reverse Intersystem Crossing and Unity Quantum Yield via Multiple Singlet-Triplet State Pairs.

    PubMed

    Dos Santos, Paloma L; Ward, Jonathan S; Congrave, Daniel G; Batsanov, Andrei S; Eng, Julien; Stacey, Jessica E; Penfold, Thomas J; Monkman, Andrew P; Bryce, Martin R

    2018-06-01

    By inverting the common structural motif of thermally activated delayed fluorescence materials to a rigid donor core and multiple peripheral acceptors, reverse intersystem crossing (rISC) rates are demonstrated in an organic material that enables utilization of triplet excited states at faster rates than Ir-based phosphorescent materials. A combination of the inverted structure and multiple donor-acceptor interactions yields up to 30 vibronically coupled singlet and triplet states within 0.2 eV that are involved in rISC. This gives a significant enhancement to the rISC rate, leading to delayed fluorescence decay times as low as 103.9 ns. This new material also has an emission quantum yield ≈1 and a very small singlet-triplet gap. This work shows that it is possible to achieve both high photoluminescence quantum yield and fast rISC in the same molecule. Green organic light-emitting diode devices with external quantum efficiency >30% are demonstrated at 76 cd m -2 .

  8. The Effect of Correlated Energetic Disorder on Charge Transport in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Allen, Jonathan; Röding, Sebastian; Cherqui, Charles; Dunlap, David

    2012-10-01

    In their 1995 paper describing a Monte Carlo simulation for dissociation of an electron-hole pair in the presence of Gaussian energetic disorder, Albrect and Bäassler reported a surprising result. They found that increasing the width σ of the energetic disorder increases the quantum yield φ. They attributed this behavior to the tendency for energy fluctuations to compete against the Coulombic pair attraction, driving the electron-hole pair apart at short distances where, without disorder, recombination would be almost certain. We have expanded upon this notion, and introduced spatial correlation into the energetic disorder. By correlating the energetic disorder, we have demonstrated even larger quantum yields in simulation, attributable to the tendency of correlation to drive the charges further apart spatially than merely random disorder. Our results generally support the findings of Greenham et al. in that a larger correlation radius gives a larger quantum yield. In addition to larger quantum yield, we believe that correlated disorder could be used to create pathways for charge transport within a material, allowing the charge carrier behavior to be tuned.

  9. Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission.

    PubMed

    Quan, Li Na; Zhao, Yongbiao; García de Arquer, F Pelayo; Sabatini, Randy; Walters, Grant; Voznyy, Oleksandr; Comin, Riccardo; Li, Yiying; Fan, James Z; Tan, Hairen; Pan, Jun; Yuan, Mingjian; Bakr, Osman M; Lu, Zhenghong; Kim, Dong Ha; Sargent, Edward H

    2017-06-14

    Organo-metal halide perovskites are a promising platform for optoelectronic applications in view of their excellent charge-transport and bandgap tunability. However, their low photoluminescence quantum efficiencies, especially in low-excitation regimes, limit their efficiency for light emission. Consequently, perovskite light-emitting devices are operated under high injection, a regime under which the materials have so far been unstable. Here we show that, by concentrating photoexcited states into a small subpopulation of radiative domains, one can achieve a high quantum yield, even at low excitation intensities. We tailor the composition of quasi-2D perovskites to direct the energy transfer into the lowest-bandgap minority phase and to do so faster than it is lost to nonradiative centers. The new material exhibits 60% photoluminescence quantum yield at excitation intensities as low as 1.8 mW/cm 2 , yielding a ratio of quantum yield to excitation intensity of 0.3 cm 2 /mW; this represents a decrease of 2 orders of magnitude in the excitation power required to reach high efficiency compared with the best prior reports. Using this strategy, we report light-emitting diodes with external quantum efficiencies of 7.4% and a high luminescence of 8400 cd/m 2 .

  10. Thermal baths as quantum resources: more friends than foes?

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analia

    2015-12-01

    In this article we argue that thermal reservoirs (baths) are potentially useful resources in processes involving atoms interacting with quantized electromagnetic fields and their applications to quantum technologies. One may try to suppress the bath effects by means of dynamical control, but such control does not always yield the desired results. We wish instead to take advantage of bath effects, that do not obliterate ‘quantumness’ in the system-bath compound. To this end, three possible approaches have been pursued by us. (i) Control of a quantum system faster than the correlation time of the bath to which it couples: such control allows us to reveal quasi-reversible/coherent dynamical phenomena of quantum open systems, manifest by the quantum Zeno or anti-Zeno effects (QZE or AZE, respectively). Dynamical control methods based on the QZE are aimed not only at protecting the quantumness of the system, but also diagnosing the bath spectra or transferring quantum information via noisy media. By contrast, AZE-based control is useful for fast cooling of thermalized quantum systems. (ii) Engineering the coupling of quantum systems to selected bath modes: this approach, based on field-atom coupling control in cavities, waveguides and photonic band structures, allows one to drastically enhance the strength and range of atom-atom coupling through the mediation of the selected bath modes. More dramatically, it allows us to achieve bath-induced entanglement that may appear paradoxical if one takes the conventional view that coupling to baths destroys quantumness. (iii) Engineering baths with appropriate non-flat spectra: this approach is a prerequisite for the construction of the simplest and most efficient quantum heat machines (engines and refrigerators). We may thus conclude that often thermal baths are ‘more friends than foes’ in quantum technologies.

  11. Dirac electrons in quantum rings

    NASA Astrophysics Data System (ADS)

    Gioia, L.; Zülicke, U.; Governale, M.; Winkler, R.

    2018-05-01

    We consider quantum rings realized in materials where the dynamics of charge carriers mimics that of two-dimensional (2D) Dirac electrons. A general theoretical description of the ring-subband structure is developed that applies to a range of currently available 2D systems, including graphene, transition-metal dichalcogenides, and narrow-gap semiconductor quantum wells. We employ the scattering-matrix approach to calculate the electronic two-terminal conductance through the ring and investigate how it is affected by Dirac-electron interference. The interplay of pseudospin chirality and hard-wall confinement is found to distinctly affect the geometric phase that is experimentally accessible in mesoscopic-conductance measurements. We derive an effective Hamiltonian for the azimuthal motion of charge carriers in the ring that yields deeper insight into the physical origin of the observed transport effects, including the unique behavior exhibited by the lowest ring subband in the normal and topological (i.e., band-inverted) regimes. Our paper provides a unified approach to characterizing confined Dirac electrons, which can be used to explore the design of valley- and spintronic devices based on quantum interference and the confinement-tunable geometric phase.

  12. Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties.

    PubMed

    Qian, Fang; Brewster, Megan; Lim, Sung K; Ling, Yichuan; Greene, Christopher; Laboutin, Oleg; Johnson, Jerry W; Gradečak, Silvija; Cao, Yu; Li, Yat

    2012-06-13

    We report the controlled synthesis of AlN/GaN multi-quantum well (MQW) radial nanowire heterostructures by metal-organic chemical vapor deposition. The structure consists of a single-crystal GaN nanowire core and an epitaxially grown (AlN/GaN)(m) (m = 3, 13) MQW shell. Optical excitation of individual MQW nanowires yielded strong, blue-shifted photoluminescence in the range 340-360 nm, with respect to the GaN near band-edge emission at 368.8 nm. Cathodoluminescence analysis on the cross-sectional MQW nanowire samples showed that the blue-shifted ultraviolet luminescence originated from the GaN quantum wells, while the defect-associated yellow luminescence was emitted from the GaN core. Computational simulation provided a quantitative analysis of the mini-band energies in the AlN/GaN superlattices and suggested the observed blue-shifted emission corresponds to the interband transitions between the second subbands of GaN, as a result of quantum confinement and strain effect in these AlN/GaN MQW nanowire structures.

  13. Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.

    PubMed

    Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-08

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  14. Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices

    NASA Astrophysics Data System (ADS)

    Al-Taie, H.; Smith, L. W.; Xu, B.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2013-06-01

    We present a multiplexing scheme for the measurement of large numbers of mesoscopic devices in cryogenic systems. The multiplexer is used to contact an array of 256 split gates on a GaAs/AlGaAs heterostructure, in which each split gate can be measured individually. The low-temperature conductance of split-gate devices is governed by quantum mechanics, leading to the appearance of conductance plateaux at intervals of 2e2/h. A fabrication-limited yield of 94% is achieved for the array, and a "quantum yield" is also defined, to account for disorder affecting the quantum behaviour of the devices. The quantum yield rose from 55% to 86% after illuminating the sample, explained by the corresponding increase in carrier density and mobility of the two-dimensional electron gas. The multiplexer is a scalable architecture, and can be extended to other forms of mesoscopic devices. It overcomes previous limits on the number of devices that can be fabricated on a single chip due to the number of electrical contacts available, without the need to alter existing experimental set ups.

  15. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  16. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model.

    PubMed

    Kroonblawd, Matthew P; Pietrucci, Fabio; Saitta, Antonino Marco; Goldman, Nir

    2018-04-10

    We demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTB model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol -1 .

  17. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model

    DOE PAGES

    Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco; ...

    2018-03-15

    Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less

  18. Generating Converged Accurate Free Energy Surfaces for Chemical Reactions with a Force-Matched Semiempirical Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroonblawd, Matthew P.; Pietrucci, Fabio; Saitta, Antonino Marco

    Here, we demonstrate the capability of creating robust density functional tight binding (DFTB) models for chemical reactivity in prebiotic mixtures through force matching to short time scale quantum free energy estimates. Molecular dynamics using density functional theory (DFT) is a highly accurate approach to generate free energy surfaces for chemical reactions, but the extreme computational cost often limits the time scales and range of thermodynamic states that can feasibly be studied. In contrast, DFTB is a semiempirical quantum method that affords up to a thousandfold reduction in cost and can recover DFT-level accuracy. Here, we show that a force-matched DFTBmore » model for aqueous glycine condensation reactions yields free energy surfaces that are consistent with experimental observations of reaction energetics. Convergence analysis reveals that multiple nanoseconds of combined trajectory are needed to reach a steady-fluctuating free energy estimate for glycine condensation. Predictive accuracy of force-matched DFTB is demonstrated by direct comparison to DFT, with the two approaches yielding surfaces with large regions that differ by only a few kcal mol –1.« less

  19. Organic photochemical storage of solar energy. Progress report, February 1, 1979-January 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, G. II

    1980-02-01

    Study of valence isomerization of organic compounds has focused on two mechanisms of photosensitization involving either electron donor-acceptor interaction or energy transfer. The quenching of fluorescent sensitizers by isomerizable substrates results in the formation of excited complexes. These sensitizer-substrate pairs are highly polarized, leading to changes in bond order for the substrates. For several substrates such as quadricyclene, hexamethyldewarbenzene, and a nonbornadiene derivative, this perturbation results in efficient valence isomerization. Isomerization observed on irradiation of charge transfer complexes of isomerizable substrates is consistent with a similar exciplex - template mechanism. The energy transfer mechanism of photosensitization has been studied bymore » measuring the temperature dependence of quantum yield for isomerization of dimethyl norbornadiene-2,3-dicarboxylate sensitized by benzanthrone. From temperature and quencher concentration profiles quenching constants have been obtained which are consistent with an endoergic triplet energy transfer mechanism. The thermal upconversion of the low energy triplet of benzanthrone results in a threefold increase in isomerization quantum yield over a 90/sup 0/ temperature range.« less

  20. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement.

    PubMed

    Wei, Zhangwen; Gu, Zhi-Yuan; Arvapally, Ravi K; Chen, Ying-Pin; McDougald, Roy N; Ivy, Joshua F; Yakovenko, Andrey A; Feng, Dawei; Omary, Mohammad A; Zhou, Hong-Cai

    2014-06-11

    We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal-organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 ± 0.5%) under Ar, representing ca. 3600 cm(-1) blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.

  1. The reaction of NH2 with NO2

    NASA Technical Reports Server (NTRS)

    Jayanty, R. K. M.; Simonaitis, R.; Heicklen, J.

    1976-01-01

    Ammonia (NH3) was photolyzed at 213.9 nm in the presence of NO2 at 25 C in order to study the reactions of NH2 with NO2. The products included NO, with a quantum yield of 1.0. The other measured products of the reaction were N2 and N2O with respective quantum yields of 0.94 plus or minus 0.10 and 0.3 in the presence of small amounts of He and 0.65 plus or minus 0.15 and 0.13 in the presence of a large excess of He. The quantum yield for NO2 consumption was 6.0 plus or minus 2.0 in the absence of He. These results are explained in terms of various reactions.

  2. Peptide-coated semiconductor quantum dots and their applications in biological imaging of single molecules in live cells and organisms

    NASA Astrophysics Data System (ADS)

    Pinaud, Fabien Florent

    2007-12-01

    A new surface chemistry has been developed for the solubilization and biofunctionalization of inorganic semiconductor nanocrystals fluorescent probes, also known as quantum dots. This chemistry is based on the surface coating of quantum dots with custom-designed polycysteine peptides and yields water-soluble, small, monodispersed and colloidally stable probes that remain bright and photostable in complex biological milieus. This peptide coating strategy was successfully tested on several types of core and core-shell quantum dots emitting from the visible (e.g. CdSe/ZnS) to the NIR spectrum range (e.g. CdTe/CdSe/ZnS). By taking advantage of the versatile physico-chemical properties of peptides, a peptide "toolkit" was designed and employed to impart several biological functions to individual quantum dots and control their biochemical activity at the nanometer scale. These biofunctionalized peptide-coated quantum dots were exploited in very diverse biological applications. Near-infrared emitting quantum dot probes were engineered with optimized blood circulation and biodistribution properties for in vivo animal imaging. Visible emitting quantum dots were used for single molecule tracking of raft-associated GPI-anchored proteins in live cells. This last application revealed the presence of discrete and non-caveolar lipid microdomains capable of impeding free lateral diffusions in the plasma membrane of Hela cells. Imaging and tracking of peptide-coated quantum dots provided the first direct evidence that microdomains having the composition and behavior expected for lipid rafts can induce molecular compartmentalization in the membrane of living cells.

  3. Near-infrared emission from mesoporous crystalline germanium

    NASA Astrophysics Data System (ADS)

    Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard

    2014-10-01

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  4. Long Wavelength Excitation of Europium Luminescence in Extended, Carboline-Based Cryptates.

    PubMed

    Dee, Carolin; Esteban-Gómez, David; Platas-Iglesias, Carlos; Seitz, Michael

    2018-06-05

    Two new β-carboline-based tris(biaryl) europium cryptates are introduced. The extended antenna moiety incorporated into the cryptand frameworks enables the sensitization of europium emission with excitation wavelengths well above 450 nm. In aqueous solution, the cryptates show great complex stability, luminescence lifetimes around 0.5 ms, and absolute quantum yields of ca. 3%. In addition, the europium luminescence shows a well-defined pH-dependence in the physiologically interesting pH range 7-9.

  5. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    PubMed

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

  6. Imaging of Biological Cells Using Luminescent Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Kravets, Vira; Almemar, Zamavang; Jiang, Ke; Culhane, Kyle; Machado, Rosa; Hagen, Guy; Kotko, Andriy; Dmytruk, Igor; Spendier, Kathrin; Pinchuk, Anatoliy

    2016-01-01

    The application of luminescent silver nanoparticles as imaging agents for neural stem and rat basophilic leukemia cells was demonstrated. The experimental size dependence of the extinction and emission spectra for silver nanoparticles were also studied. The nanoparticles were functionalized with fluorescent glycine dimers. Spectral position of the resonance extinction and photoluminescence emission for particles with average diameters ranging from 9 to 32 nm were examined. As the particle size increased, the spectral peaks for both extinction and the intrinsic emission of silver nanoparticles shifted to the red end of the spectrum. The intrinsic photoluminescence of the particles was orders of magnitude weaker and was spectrally separated from the photoluminescence of the glycine dimer ligands. The spectral position of the ligand emission was independent of the particle size; however, the quantum yield of the nanoparticle-ligand system was size-dependent. This was attributed to the enhancement of the ligand's emission caused by the local electric field strength's dependence on the particle size. The maximum quantum yield determined for the nanoparticle-ligand complex was (5.2 ± 0.1) %. The nanoparticles were able to penetrate cell membranes of rat basophilic leukemia and neural stem cells fixed with paraformaldehyde. Additionally, toxicity studies were performed. It was found that towards rat basophilic leukemia cells, luminescent silver nanoparticles had a toxic effect in the silver atom concentration range of 10-100 μM.

  7. A near-infrared fluorescent probe based on BODIPY derivative with high quantum yield for selective detection of exogenous and endogenous cysteine in biological samples.

    PubMed

    Li, Song-Jiao; Fu, Ya-Jun; Li, Chun-Yan; Li, Yong-Fei; Yi, Lan-Hua; Ou-Yang, Juan

    2017-11-22

    Cysteine (Cys) is involved in cellular growth and Cys deficiency is related with many diseases. So far, a number of fluorescent probes have been constructed for the detection of Cys successfully. However, the probes are difficult to discriminate Cys from Hcy and the emission wavelength of the probes is in ultraviolet or visible range. Herein, a NIR fluorescent probe named NIR-BODIPY-Ac is synthesized and used to detect Cys. The emission wavelength of the probe is at 708 nm that belongs to near-infrared (NIR) region by attaching indolium to BODIPY core, which is suitable for bioimaging in vivo. Moreover, the probe exhibits high fluorescence quantum yield (Φ = 0.51) after the addition of Cys and high sensitivity toward Cys with 81-fold fluorescence enhancement. The linear range of the probe for Cys covers from 0.2 to 30 μM with a detection limit of 0.05 μM. Furthermore, the probe shows high selectivity towards Cys owing to the fact that there is more fast reaction rate between the probe and Cys than that of Hcy. In particular, the NIR fluorescent probe is applied for the detection of exogenous and endogenous Cys in biological samples such as cell, tissue and mouse with satisfactory results. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Triplet-State Dissolved Organic Matter Quantum Yields and Lifetimes from Direct Observation of Aromatic Amine Oxidation.

    PubMed

    Schmitt, Markus; Erickson, Paul R; McNeill, Kristopher

    2017-11-21

    Excited triplet state chromophoric dissolved organic matter ( 3 CDOM*) is a short-lived mixture of excited-state species that plays important roles in aquatic photochemical processes. Unlike the study of the triplet states of well-defined molecules, which are amenable to transient absorbance spectroscopy, the study of 3 CDOM* is hampered by it being a complex mixture and its low average intersystem crossing quantum yield (Φ ISC ). This study is an alternative approach to investigating 3 CDOM* using transient absorption laser spectroscopy. The radical cation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), formed through oxidation by 3 CDOM*, was directly observable by transient absorption spectroscopy and was used to probe basic photophysical properties of 3 CDOM*. Quenching and control experiments verified that TMPD •+ was formed from 3 CDOM* under anoxic conditions. Model triplet sensitizers with a wide range of excited triplet state reduction potentials and CDOM oxidized TMPD at near diffusion-controlled rates. This gives support to the idea that a large cross-section of 3 CDOM* moieties are able to oxidize TMPD and that the complex mixture of 3 CDOM* can be simplified to a single signal. Using the TMPD •+ transient, the natural triplet lifetime and Φ ISC for different DOM isolates and natural waters were quantified; values ranged from 12 to 26 μs and 4.1-7.8%, respectively.

  9. Trapping time of excitons in Si nanocrystals embedded in a SiO2 matrix

    NASA Astrophysics Data System (ADS)

    de Jong, E. M. L. D.; de Boer, W. D. A. M.; Yassievich, I. N.; Gregorkiewicz, T.

    2017-05-01

    Silicon (Si) nanocrystals (NCs) are of great interest for many applications, ranging from photovoltaics to optoelectonics. The photoluminescence quantum yield of Si NCs dispersed in SiO2 is limited, suggesting the existence of very efficient processes of nonradiative recombination, among which the formation of a self-trapped exciton state on the surface of the NC. In order to improve the external quantum efficiency of these systems, the carrier relaxation and recombination need to be understood more thoroughly. For that purpose, we perform transient-induced absorption spectroscopy on Si NCs embedded in a SiO2 matrix over a broad probe range for NCs of average sizes from 2.5 to 5.5 nm. The self-trapping of free excitons on surface-related states is experimentally and theoretically discussed and found to be dependent on the NC size. These results offer more insight into the self-trapped exciton state and are important to increase the optical performance of Si NCs.

  10. Biologically labile photoproducts from riverine non-labile dissolved organic carbon in the coastal waters

    NASA Astrophysics Data System (ADS)

    Kasurinen, V.; Aarnos, H.; Vähätalo, A.

    2015-06-01

    In order to assess the production of biologically labile photoproducts (BLPs) from non-labile riverine dissolved organic carbon (DOC), we collected water samples from ten major rivers, removed labile DOC and mixed the residual non-labile DOC with artificial seawater for microbial and photochemical experiments. Bacteria grew on non-labile DOC with a growth efficiency of 11.5% (mean; range from 3.6 to 15.3%). Simulated solar radiation transformed a part of non-labile DOC into BLPs, which stimulated bacterial respiration and production, but did not change bacterial growth efficiency (BGE) compared to the non-irradiated dark controls. In the irradiated water samples, the amount of BLPs stimulating bacterial production depended on the photochemical bleaching of chromophoric dissolved organic matter (CDOM). The apparent quantum yields for BLPs supporting bacterial production ranged from 9.5 to 76 (mean 39) (μmol C mol photons-1) at 330 nm. The corresponding values for BLPs supporting bacterial respiration ranged from 57 to 1204 (mean 320) (μmol C mol photons-1). According to the calculations based on spectral apparent quantum yields and local solar radiation, the annual production of BLPs ranged from 21 (St. Lawrence) to 584 (Yangtze) mmol C m-2 yr-1 in the plumes of the examined rivers. Complete photobleaching of riverine CDOM in the coastal ocean was estimated to produce 10.7 Mt C BLPs yr-1 from the rivers examined in this study and globally 38 Mt yr-1 (15% of riverine DOC flux from all rivers), which support 4.1 Mt yr-1 of bacterial production and 33.9 Mt yr-1 bacterial respiration.

  11. Seasonal and spatial variabilities in the water chemistry of prairie pothole wetlands influence the photoproduction of reactive intermediates.

    PubMed

    McCabe, Andrew J; Arnold, William A

    2016-07-01

    The hydrology and water chemistry of prairie pothole wetlands vary spatially and temporally, on annual and decadal timescales. Pesticide contamination of wetlands arising from agricultural activities is a foremost concern. Photochemical reactions are important in the natural attenuation of pesticides and may be important in limiting ecological and human exposure. Little is known, however, about the variable influence of wetland water chemistry on indirect photochemistry. In this study, seasonal water samples were collected from seven sites throughout the prairie pothole region over three years to understand the spatiotemporal dynamics of reactive intermediate photoproduction. Samples were classified by the season in which they were collected (spring, summer, or fall) and the typical hydroperiod of the wetland surface water (temporary or semi-permanent). Under photostable conditions, steady-state concentrations and apparent quantum yields or quantum yield coefficients were measured for triplet excited states of dissolved organic matter, singlet oxygen, hydroxyl radical, and carbonate radical under simulated sunlight. Steady-state concentrations and quantum yields increased on average by 15% and 40% from spring to fall, respectively. Temporary wetlands had 40% higher steady-state concentrations of reactive intermediates than semi-permanent wetlands, but 50% lower quantum yields. Computed quantum yields for reactive intermediate formation were used to predict the indirect photochemical half-lives of seven pesticides in average temporary and semi-permanent prairie pothole wetlands. As a first approximation, the predictions agree to within two orders of magnitude of previously reported half-lives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Why is gas phase 2-nitrophenol photolysis a potentially important source of OH radicals in the polluted atmosphere?

    NASA Astrophysics Data System (ADS)

    Zhu, L.

    2017-12-01

    2-Nitrophenol is an important component of "brown carbon" in the atmosphere. The concentration of 2-nitrophenol is higher in polluted urban areas where there are increased emissions of aromatic hydrocarbons. To assess the air quality impacts of pollutant emissions, it is important to understand the oxidant formation potential of the emitted species. Photolysis is the dominant atmospheric removal process for 2-nitrophenol. Although photodissociation dynamics studies of 2-nitrophenol have reported OH formation at photolysis wavelengths of 266 nm, 355 nm, and over the 361-390 nm range, and HONO has been observed as a product from 2-nitrophenol photolysis in an environmental chamber, the lack of quantitative absorption cross section and product quantum yield information has prevented quantitative assessment of the extent of oxidant formation from the photolysis of 2-nitrophenol in the atmosphere. My group determined the gas phase absorption cross sections of 2-nitrophenol in the 295-400 nm region by using cavity ring-down spectroscopy. The OH, HONO, and NO2 formation channels following the gas phase photolysis of 2-nitrophenol at 308 and 351 nm were investigated. Direct NO2 formation was not observed. OH and HONO were direct products from the 2-nitrophenol photolysis, and their quantum yields were obtained. The sum of the OH and the HONO quantum yields was about unity at both photolysis wavelengths. The estimated photolysis rate constant of 2-nitrophenol was about twice that of NO2. I will discuss the importance of 2-nitrophenol gas phase photolysis as a potential source of OH and HONO in regions of high anthropogenic emissions.

  13. The Effect of Copper and Selenium Nanocarboxylates on Biomass Accumulation and Photosynthetic Energy Transduction Efficiency of the Green Algae Chlorella Vulgaris

    NASA Astrophysics Data System (ADS)

    Mykhaylenko, Natalia F.; Zolotareva, Elena K.

    2017-02-01

    Nanoaquachelates, the nanoparticles with the molecules of water and/or carboxylic acids as ligands, are used in many fields of biotechnology. Ultra-pure nanocarboxylates of microelements are the materials of spatial perspective. In the present work, the effects of copper and selenium nanoaquachelates carboxylated with citric acid on biomass accumulation of the green algae Chlorella vulgaris were examined. Besides, the efficiency of the reactions of the light stage of photosynthesis was estimated by measuring chlorophyll a fluorescence. The addition of 0.67-4 mg L-1 of Cu nanocarboxylates resulted in the increase in Chlorella biomass by ca. 20%; however, their concentrations ranging from 20 to 40 mg L-1 strongly inhibited algal growth after the 12th day of cultivation. Se nanocarboxylates at 0.4-4 mg L-1 concentrations also stimulated the growth of C. vulgaris, and the increase in biomass came up to 40-45%. The addition of Se nanocarboxylates at smaller concentrations (0.07 or 0.2 mg L-1) at first caused the retardation of culture growth, but that effect disappeared after 18-24 days of cultivation. The addition of 2-4 mg L-1 of Cu nanocarboxylates or 0.4-4 mg L-1 of Se nanocarboxylates caused the evident initial increase in such chlorophyll a fluorescence parameters as maximal quantum yield of photosystem II photochemistry ( F v/ F m) and the quantum yield of photosystem II photochemistry in the light-adapted state ( F v'/ F m'). Photochemical fluorescence quenching coefficients declined after 24 days of growth with Cu nanocarboxylates, but they increased after 6 days of the addition of 2 or 4 mg L-1 Se nanocarboxylates. Those alterations affected the overall quantum yield of the photosynthetic electron transport in photosystem II.

  14. Generalized Weyl-Wigner map and Vey quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dias, Nuno Costa; Prata, João Nuno

    2001-12-01

    The Weyl-Wigner map yields the entire structure of Moyal quantum mechanics directly from the standard operator formulation. The covariant generalization of Moyal theory, also known as Vey quantum mechanics, was presented in the literature many years ago. However, a derivation of the formalism directly from standard operator quantum mechanics, clarifying the relation between the two formulations, is still missing. In this article we present a covariant generalization of the Weyl order prescription and of the Weyl-Wigner map and use them to derive Vey quantum mechanics directly from the standard operator formulation. The procedure displays some interesting features: it yields all the key ingredients and provides a more straightforward interpretation of the Vey theory including a direct implementation of unitary operator transformations as phase space coordinate transformations in the Vey idiom. These features are illustrated through a simple example.

  15. Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I.

    PubMed

    Anmei, Su; Qingmei, Zhong; Yuye, Chen; Yilin, Wang

    2018-09-06

    Carbon quantum dots (CQDs) with quantum yield of 14% were successfully synthesized via a simple, low-cost, and green hydrothermal treatment using cigarette filters as carbon source for the first time. The obtained CQDs showed a strong emission at the wavelength of 465 nm, with an optimum excitation of 365 nm.Sudan I with maximum absorption wavelength at 477 nm could selectively quench the fluorescence of CQDs. Based on this principle, a fluorescence probe was developed for Sudan I determination. Furthermore, the quenching mechanism of the CQDs was elucidated. A linear relationship was found in the range of 2.40-104.0 μmol/L Sudan I with the detection limit (3σ/k) of 0.95 μmol/L. Satisfactory results were achieved when the method was submitted to the determination of Sudan I in food samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Toric-boson model: Toward a topological quantum memory at finite temperature

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Castelnovo, Claudio; Chamon, Claudio

    2009-06-01

    We discuss the existence of stable topological quantum memory at finite temperature. At stake here is the fundamental question of whether it is, in principle, possible to store quantum information for macroscopic times without the intervention from the external world, that is, without error correction. We study the toric code in two dimensions with an additional bosonic field that couples to the defects, in the presence of a generic environment at finite temperature: the toric-boson model. Although the coupling constants for the bare model are not finite in the thermodynamic limit, the model has a finite spectrum. We show that in the topological phase, there is a finite temperature below which open strings are confined and therefore the lifetime of the memory can be made arbitrarily (polynomially) long in system size. The interaction with the bosonic field yields a long-range attractive force between the end points of open strings but leaves closed strings and topological order intact.

  17. A hybrid plasmonic waveguide terahertz quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Degl'Innocenti, Riccardo; Shah, Yash D.; Wallis, Robert; Klimont, Adam; Ren, Yuan; Jessop, David S.; Beere, Harvey E.; Ritchie, David A.

    2015-02-01

    We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of these waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.

  18. A hybrid plasmonic waveguide terahertz quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degl'Innocenti, Riccardo, E-mail: rd448@cam.ac.uk; Shah, Yash D.; Wallis, Robert

    2015-02-23

    We present the realization of a quantum cascade laser emitting at around 2.85 THz, based on a hybrid plasmonic waveguide with a low refractive index dielectric cladding. This hybrid waveguide design allows the performance of a double-metal waveguide to be retained, while improving the emission far-field. A set of lasers based on the same active region material were fabricated with different metal layer thicknesses. A detailed characterization of the performance of these lasers revealed that there is an optimal trade-off that yields the best far-field emission and the maximum temperature of operation. By exploiting the pure plasmonic mode of thesemore » waveguides, the standard operation conditions of a double-metal quantum cascade laser were retrieved, such that the maximum operating temperature of these devices is not affected by the process. These results pave the way to realizing a class of integrated devices working in the terahertz range which could be further exploited to fabricate terahertz on-chip circuitry.« less

  19. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities

    DOE PAGES

    Luo, Yue; Ahmadi, Ehsaneh D.; Shayan, Kamran; ...

    2017-11-10

    Single-walled carbon nanotubes (SWCNTs) are promising absorbers and emitters to enable novel photonic applications and devices but are also known to suffer from low optical quantum yields. Here we demonstrate SWCNT excitons coupled to plasmonic nanocavity arrays reaching deeply into the Purcell regime with Purcell factors (F P) up to F P = 180 (average F P = 57), Purcell-enhanced quantum yields of 62% (average 42%), and a photon emission rate of 15 MHz into the first lens. The cavity coupling is quasi-deterministic since the photophysical properties of every SWCNT are enhanced by at least one order of magnitude. Furthermore,more » the measured ultra-narrow exciton linewidth (18 ueV) reaches the radiative lifetime limit, which is promising towards generation of transform-limited single photons. Furthermore, to demonstrate utility beyond quantum light sources we show that nanocavity-coupled SWCNTs perform as single-molecule thermometers detecting plasmonically induced heat at cryogenic temperatures in a unique interplay of excitons, phonons, and plasmons at the nanoscale.« less

  20. Quantum efficiency measurements of eROSITA pnCCDs

    NASA Astrophysics Data System (ADS)

    Ebermayer, Stefanie; Andritschke, Robert; Elbs, Johannes; Meidinger, Norbert; Strüder, Lothar; Hartmann, Robert; Gottwald, Alexander; Krumrey, Michael; Scholze, Frank

    2010-07-01

    For the eROSITA X-ray telescope, which is planned to be launched in 2012, detectors were developed and fabricated at the MPI Semiconductor Laboratory. The fully depleted, back-illuminated pnCCDs have an ultrathin pn-junction to improve the low-energy X-ray response function and quantum efficiency. The device thickness of 450 μm is fully sensitive to X-ray photons yielding high quantum efficiency of more than 90% at photon energies of 10 keV. An on-chip filter is deposited on top of the entrance window to suppress visible and UV light which would interfere with the X-ray observations. The pnCCD type developed for the eROSITA telescope was characterized in terms of quantum efficiency and spectral response function. The described measurements were performed in 2009 at the synchrotron radiation sources BESSY II and MLS as cooperation between the MPI Semiconductor Laboratory and the Physikalisch-Technische Bundesanstalt (PTB). Quantum efficiency measurements over a wide range of photon energies from 3 eV to 11 keV as well as spectral response measurements are presented. For X-ray energies from 3 keV to 10 keV the quantum efficiency of the CCD including on-chip filter is shown to be above 90% with an attenuation of visible light of more than five orders of magnitude. A detector response model is described and compared to the measurements.

  1. Quantum yield and rate constant of the singlet 1Δ g oxygen luminescence in an aqueous medium in the presence of nanoscale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Jarnikova, E. S.; Parkhats, M. V.; Stasheuski, A. S.; Lepeshkevich, S. V.; Dzhagarov, B. M.

    2017-04-01

    The quantum yields and lifetimes of photosensitized luminescence of the 1Δ g state of singlet oxygen in an aquatic media with a controlled concentration of dielectric anisotropy centers (polyethylene glycol) have been measured using the methods of laser fluorometry. It is established that the quantum yield and the rate constant ( k r ) of the a 1Δ g → X 3Σ g - luminescence of 1O2 increase as the polymer concentration increases. The effect is analyzed within a general approach involving a relationship between kr and dielectric properties of the medium and is explained by the increased density of photon states and the local field factor in the space around O2( a 1Δ g ).

  2. Accurate quantum yields by laser gain vs absorption spectroscopy - Investigation of Br/Br(asterisk) channels in photofragmentation of Br2 and IBr

    NASA Technical Reports Server (NTRS)

    Haugen, H. K.; Weitz, E.; Leone, S. R.

    1985-01-01

    Various techniques have been used to study photodissociation dynamics of the halogens and interhalogens. The quantum yields obtained by these techniques differ widely. The present investigation is concerned with a qualitatively new approach for obtaining highly accurate quantum yields for electronically excited states. This approach makes it possible to obtain an accuracy of 1 percent to 3 percent. It is shown that measurement of the initial transient gain/absorption vs the final absorption in a single time-resolved signal is a very accurate technique in the study of absolute branching fractions in photodissociation. The new technique is found to be insensitive to pulse and probe laser characteristics, molecular absorption cross sections, and absolute precursor density.

  3. Sample-averaged biexciton quantum yield measured by solution-phase photon correlation.

    PubMed

    Beyler, Andrew P; Bischof, Thomas S; Cui, Jian; Coropceanu, Igor; Harris, Daniel K; Bawendi, Moungi G

    2014-12-10

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.

  4. Direct and inverse reactions of LiH+ with He(1S) from quantum calculations: mechanisms and rates.

    PubMed

    Tacconi, M; Bovino, S; Gianturco, F A

    2012-01-14

    The gas-phase reaction of LiH(+) (X(2)Σ) with He((1)S) atoms, yielding Li(+)He with a small endothermicity for the rotovibrational ground state of the reagents, is analysed using the quantum reactive approach that employs the Negative Imaginary Potential (NIP) scheme discussed earlier in the literature. The dependence of low-T rates on the initial vibrational state of LiH(+) is analysed and the role of low-energy Feshbach resonances is also discussed. The inverse destruction reaction of LiHe(+), a markedly exothermic process, is also investigated and the rates are computed in the same range of temperatures. The possible roles of these reactions in early universe astrophysical networks, in He droplets environments or in cold traps are briefly discussed.

  5. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies

    DOE PAGES

    Bekenstein, Yehonadav; Koscher, Brent A.; Eaton, Samuel W.; ...

    2015-12-15

    Anisotropic colloidal quasi-two-dimensional nanoplates (NPLs) hold great promise as functional materials due to their combination of low dimensional optoelectronic properties and versatility through colloidal synthesis. Recently, lead-halide perovskites have emerged as important optoelectronic materials with excellent efficiencies in photovoltaic and light-emitting applications. Here we report the synthesis of quantum confined all inorganic cesium lead halide nanoplates in the perovskite crystal structure that are also highly luminescent (PLQY 84%). The controllable self-assembly of nanoplates either into stacked columnar phases or crystallographic-oriented thin-sheet structures is demonstrated. Furthermore, the broad accessible emission range, high native quantum yields, and ease of self-assembly make perovskitemore » NPLs an ideal platform for fundamental optoelectronic studies and the investigation of future devices.« less

  6. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.

    PubMed

    Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L

    2016-05-01

    A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.

  7. Water relation, leaf gas exchange and chlorophyll a fluorescence imaging of soybean leaves infected with Colletotrichum truncatum.

    PubMed

    Dias, Carla Silva; Araujo, Leonardo; Alves Chaves, Joicy Aparecida; DaMatta, Fábio M; Rodrigues, Fabrício A

    2018-06-01

    Considering the potential of anthracnose to decrease soybean yield and the need to gain more information regarding its effect on soybean physiology, the present study performed an in-depth analysis of the photosynthetic performance of soybean leaflets challenged with Colletotrichum truncatum by combining chlorophyll a fluorescence images with gas-exchange measurements and photosynthetic pigment pools. There were no significant differences between non-inoculated and inoculated plants in leaf water potential, apparent hydraulic conductance, net CO 2 assimilation rate, stomatal conductance to water vapor and transpiration rate. For internal CO 2 concentration, significant difference between non-inoculated and inoculated plants occurred only at 36 h after inoculation. Reductions in the values of the chlorophyll a fluorescence parameters [initial fluorescence (F 0 ), maximal fluorescence (F m ), maximal photosystem II quantum yield (F v /F m ), quantum yield of regulated energy dissipation (Y(NPQ))] and increases in effective PS II quantum yield (Y(II)), quantum yield of non-regulated energy dissipation Y(NO) and photochemical quenching coefficient (q P ) were noticed on the necrotic vein tissue in contrast to the surrounding leaf tissue. It appears that the impact of the infection by C. truncatum on the photosynthetic performance of the leaflets was minimal considering the preference of the fungus to colonize the veins. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Violet-to-Blue Gain and Lasing from Colloidal CdS Nanoplatelets: Low-Threshold Stimulated Emission Despite Low Photoluminescence Quantum Yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diroll, Benjamin T.; Talapin, Dmitri V.; Schaller, Richard D.

    Amplified spontaneous emission (ASE) and lasing from solution-processed materials are demonstrated in the challenging violet-to-blue (430–490 nm) spectral region for colloidal nanoplatelets of CdS and newly synthesized core/shell CdS/ZnS nanoplatelets. Despite modest band-edge photoluminescence quantum yields of 2% or less for single excitons, which we show results from hole trapping, the samples exhibit low ASE thresholds. Furthermore, four-monolayer CdS samples show ASE at shorter wavelengths than any reported film of colloidal quantum-confined material. This work underlines that low quantum yields for single excitons do not necessarily lead to a poor gain medium. The low ASE thresholds originate from negligible dispersionmore » in thickness, large absorption cross sections of 2.8 × 10–14 cm–2, and rather slow (150 to 300 ps) biexciton recombination. We show that under higher-fluence excitation, ASE can kinetically outcompete hole trapping. Using nanoplatelets as the gain medium, lasing is observed in a linear optical cavity. This work confirms the fundamental advantages of colloidal quantum well structures as gain media, even in the absence of high photoluminescence efficiency.« less

  9. Robust guaranteed-cost adaptive quantum phase estimation

    NASA Astrophysics Data System (ADS)

    Roy, Shibdas; Berry, Dominic W.; Petersen, Ian R.; Huntington, Elanor H.

    2017-05-01

    Quantum parameter estimation plays a key role in many fields like quantum computation, communication, and metrology. Optimal estimation allows one to achieve the most precise parameter estimates, but requires accurate knowledge of the model. Any inevitable uncertainty in the model parameters may heavily degrade the quality of the estimate. It is therefore desired to make the estimation process robust to such uncertainties. Robust estimation was previously studied for a varying phase, where the goal was to estimate the phase at some time in the past, using the measurement results from both before and after that time within a fixed time interval up to current time. Here, we consider a robust guaranteed-cost filter yielding robust estimates of a varying phase in real time, where the current phase is estimated using only past measurements. Our filter minimizes the largest (worst-case) variance in the allowable range of the uncertain model parameter(s) and this determines its guaranteed cost. It outperforms in the worst case the optimal Kalman filter designed for the model with no uncertainty, which corresponds to the center of the possible range of the uncertain parameter(s). Moreover, unlike the Kalman filter, our filter in the worst case always performs better than the best achievable variance for heterodyne measurements, which we consider as the tolerable threshold for our system. Furthermore, we consider effective quantum efficiency and effective noise power, and show that our filter provides the best results by these measures in the worst case.

  10. Inkjet printed fluorescent nanorod layers exhibit superior optical performance over quantum dots

    NASA Astrophysics Data System (ADS)

    Halivni, Shira; Shemesh, Shay; Waiskopf, Nir; Vinetsky, Yelena; Magdassi, Shlomo; Banin, Uri

    2015-11-01

    Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays.Semiconductor nanocrystals exhibit unique fluorescence properties which are tunable in size, shape and composition. The high quantum yield and enhanced stability have led to their use in biomedical imaging and flat panel displays. Here, semiconductor nanorod based inkjet inks are presented, overcoming limitations of the commonly reported quantum dots in printing applications. Fluorescent seeded nanorods were found to be outstanding candidates for fluorescent inks, due to their low particle-particle interactions and negligible self-absorption. This is manifested by insignificant emission shifts upon printing, even in highly concentrated printed layers and by maintenance of a high fluorescence quantum yield, unlike quantum dots which exhibit fluorescence wavelength shifts and quenching effects. This behavior results from the reduced absorption/emission overlap, accompanied by low energy transfer efficiencies between the nanorods as supported by steady state and time resolved fluorescence measurements. The new seeded nanorod inks enable patterning of thin fluorescent layers, for demanding light emission applications such as signage and displays. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06248a

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Kinetics and quantum yield of photoluminescence of EuFOD3 doped into a nanoporous glass with the help of supercritical CO2

    NASA Astrophysics Data System (ADS)

    Bagratashvili, V. N.; Gerasimova, V. I.; Gordienko, V. M.; Tsypina, S. I.; Chutko, E. A.

    2008-08-01

    The kinetics of photoluminescence of a EuFOD3 metalloorganic compound doped into a nanoporous Vycor glass by the method of supercritical fluid impregnation is studied. The lifetime of luminescence of EuFOD3 molecules in pores excited by an excimer XeCl laser was 40 μs, which is considerably smaller than this lifetime (150—890 μs) in solutions. The quantum yield of luminescence of EuFOD3 was estimate as ≈4×10-4.

  12. Label-free and non-contact optical biosensing of glucose with quantum dots.

    PubMed

    Khan, Saara A; Smith, Gennifer T; Seo, Felix; Ellerbee, Audrey K

    2015-02-15

    We present a label-free, optical sensor for biomedical applications based on changes in the visible photoluminescence (PL) of quantum dots in a thin polymer film. Using glucose as the target molecule, the screening of UV excitation due to pre-absorption by the product of an enzymatic assay leads to quenching of the PL of quantum dots (QDs) in a non-contact scheme. The irradiance changes in QD PL indicate quantitatively the level of glucose present. The non-contact nature of the assay prevents surface degradation of the QDs, which yields an efficient, waste-free, cost-effective, portable, and sustainable biosensor with attractive market features. The limit of detection of the demonstrated biosensor is ~3.5 µm, which is competitive with existing contact-based bioassays. In addition, the biosensor operates over the entire clinically relevant range of glucose concentrations of biological fluids including urine and whole blood. The comparable results achieved across a range of cost-affordable detectors, including a spectrophotometer, portable spectrometer, and iPhone camera, suggest that label-free and visible quantification of glucose with QD films can be applied to low-cost, point-of-care biomedical sensing as well as scientific applications in the laboratory for characterizing glucose or other analytes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. One-dimensional carrier confinement in “Giant” CdS/CdSe excitonic nanoshells

    DOE PAGES

    Razgoniaeva, Natalia; Moroz, Pavel; Yang, Mingrui; ...

    2017-05-23

    Here, the emerging generation of quantum dot optoelectronic devices offers an appealing prospect of a size-tunable band gap. The confinement-enabled control over electronic properties, however, requires nanoparticles to be sufficiently small, which leads to a large area of interparticle boundaries in a film. Such interfaces lead to a high density of surface traps which ultimately increase the electrical resistance of a solid. To address this issue, we have developed an inverse energy-gradient core/shell architecture supporting the quantum confinement in nanoparticles larger than the exciton Bohr radius. The assembly of such nanostructures exhibits a relatively low surface-to-volume ratio, which was manifestedmore » in this work through the enhanced conductance of solution-processed films. The reported core/shell geometry was realized by growing a narrow gap semiconductor layer (CdSe) on the surface of a wide-gap core material (CdS) promoting the localization of excitons in the shell domain, as was confirmed by ultrafast transient absorption and emission lifetime measurements. The band gap emission of fabricated nanoshells, ranging from 15 to 30 nm in diameter, has revealed a characteristic size-dependent behavior tunable via the shell thickness with associated quantum yields in the 4.4–16.0% range.« less

  14. One-dimensional carrier confinement in “Giant” CdS/CdSe excitonic nanoshells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razgoniaeva, Natalia; Moroz, Pavel; Yang, Mingrui

    Here, the emerging generation of quantum dot optoelectronic devices offers an appealing prospect of a size-tunable band gap. The confinement-enabled control over electronic properties, however, requires nanoparticles to be sufficiently small, which leads to a large area of interparticle boundaries in a film. Such interfaces lead to a high density of surface traps which ultimately increase the electrical resistance of a solid. To address this issue, we have developed an inverse energy-gradient core/shell architecture supporting the quantum confinement in nanoparticles larger than the exciton Bohr radius. The assembly of such nanostructures exhibits a relatively low surface-to-volume ratio, which was manifestedmore » in this work through the enhanced conductance of solution-processed films. The reported core/shell geometry was realized by growing a narrow gap semiconductor layer (CdSe) on the surface of a wide-gap core material (CdS) promoting the localization of excitons in the shell domain, as was confirmed by ultrafast transient absorption and emission lifetime measurements. The band gap emission of fabricated nanoshells, ranging from 15 to 30 nm in diameter, has revealed a characteristic size-dependent behavior tunable via the shell thickness with associated quantum yields in the 4.4–16.0% range.« less

  15. Broadband two-photon absorption cross sections of benzothiazole derivatives and benzobisthiazolium salts

    NASA Astrophysics Data System (ADS)

    Noskovičova, Eva; Lorenc, Dušan; Magdolen, Peter; Sigmundová, Ivica; Zahradník, Pavol; Velič, Dušan

    2018-05-01

    Two-photon absorption (TPA) cross sections of conjugated donor-π-acceptor dipolar structures containing benzothiazole or benzobisthiazolium moieties are determined in a broad spectral range from 700 nm to 1000 nm using two-photon induced fluorescence technique. The TPA cross section values range from 150 GM to 4600 GM. The largest values are observed in near-infrared region. The dipolar derivative of benzothiazole has the largest TPA cross section of 4600 GM at wavelength of 890 nm. A combination of the large TPA in the near-infrared region and the high emission quantum yield makes these compounds excellent candidates for two-photon fluorescence microscopy.

  16. Separation of photoactive conformers based on hindered diarylethenes: efficient modulation in photocyclization quantum yields.

    PubMed

    Li, Wenlong; Jiao, Changhong; Li, Xin; Xie, Yongshu; Nakatani, Keitaro; Tian, He; Zhu, Weihong

    2014-04-25

    Endowing both solvent independency and excellent thermal bistability, the benzobis(thiadiazole)-bridged diarylethene system provides an efficient approach to realize extremely high photocyclization quantum yields (Φo-c , up to 90.6 %) by both separating completely pure anti-parallel conformer and suppressing intramolecular charge transfer (ICT). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  18. Gamma emission of the atmosphere in the vicinity of the Earth. [28 keV to 4. 1 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golenetskii, S.V.; Gur'yan, Yu.A.; Il'inskii, V.N.

    1975-01-01

    The X-ray and ..gamma..-emissions of the earth's atmosphere were measured on Kosmos 461 in the range of 28 keV to 4.1 MeV. The energy spectrum of the emission was measured and the geomagnetic dependence of intensity in the continuous spectrum and in the 0.511-MeV line was determined. Measurements on Kosmos 135 yielded data on the height dependence of the atmospheric ..gamma..-quantum flux. 10 references.

  19. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    NASA Technical Reports Server (NTRS)

    Zhao, Z.; Stickel, R. E.; Wine, P. H.

    1995-01-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.

  20. Culture expansion of adipose derived stromal cells. A closed automated Quantum Cell Expansion System compared with manual flask-based culture.

    PubMed

    Haack-Sørensen, Mandana; Follin, Bjarke; Juhl, Morten; Brorsen, Sonja K; Søndergaard, Rebekka H; Kastrup, Jens; Ekblond, Annette

    2016-11-16

    Adipose derived stromal cells (ASCs) are a rich and convenient source of cells for clinical regenerative therapeutic approaches. However, applications of ASCs often require cell expansion to reach the needed dose. In this study, cultivation of ASCs from stromal vascular fraction (SVF) over two passages in the automated and functionally closed Quantum Cell Expansion System (Quantum system) is compared with traditional manual cultivation. Stromal vascular fraction was isolated from abdominal fat, suspended in α-MEM supplemented with 10% Fetal Bovine Serum and seeded into either T75 flasks or a Quantum system that had been coated with cryoprecipitate. The cultivation of ASCs from SVF was performed in 3 ways: flask to flask; flask to Quantum system; and Quantum system to Quantum system. In all cases, quality controls were conducted for sterility, mycoplasmas, and endotoxins, in addition to the assessment of cell counts, viability, immunophenotype, and differentiation potential. The viability of ASCs passage 0 (P0) and P1 was above 96%, regardless of cultivation in flasks or Quantum system. Expression of surface markers and differentiation potential was consistent with ISCT/IFATS standards for the ASC phenotype. Sterility, mycoplasma, and endotoxin tests were consistently negative. An average of 8.0 × 10 7 SVF cells loaded into a Quantum system yielded 8.96 × 10 7 ASCs P0, while 4.5 × 10 6 SVF cells seeded per T75 flask yielded an average of 2.37 × 10 6 ASCs-less than the number of SVF cells seeded. ASCs P1 expanded in the Quantum system demonstrated a population doubling (PD) around 2.2 regardless of whether P0 was previously cultured in flasks or Quantum, while ASCs P1 in flasks only reached a PD of 1.0. Manufacturing of ASCs in a Quantum system enhances ASC expansion rate and yield significantly relative to manual processing in T-flasks, while maintaining the purity and quality essential to safe and robust cell production. Notably, the use of the Quantum system entails significantly reduced working hours and thereby costs.

  1. Photophysical properties of blue – emitting silicon nanoparticles

    PubMed Central

    Portolés, Manuel J. Llansola; Nieto, Felipe Rodriguez; Soria, Delia B.; Amalvy, Javier I.; Peruzzo, Pablo J.; Mártire, Daniel O.; Kotler, Mónica; Holub, Oliver; Gonzalez, Mónica C.

    2012-01-01

    Silicon nanoparticles with strong blue photoluminescence were synthesized by electrochemical etching of silicon wafers and ultrasonically removed under N2 atmosphere in organic solvents to produce colloids. Thermal treatment leads to the formation of colloidal Si particles of 3 ± 1 nm diameter, which upon excitation with 340 – 380 nm light exhibited room temperature luminescence in the range from 400 to 500 nm. The emission and the one- and two-photon excitation spectra of the particles are not sensitive to surface functionalization with methyl 2-methylprop-2-enoate. However, the derivatized particles show higher emission quantum yields in air-saturated suspensions (44%) than the underivatized particles (27%), as well as higher stability of its dispersions. FTIR and XPS spectra indicate a significant surface oxidation of the particles. The Si:O:C ratio at the surface of the derivatized particles estimated from XPS is Si3O6(C5O2Hy)1, with y = 7 - 8. Vibronic spacing is observed in both the emission and excitation spectra. The information obtained from one-photon excitation experiments (emission and excitation spectra, photoluminescence quantum yields, luminescence decay lifetimes and anisotropy correlation lifetimes), as well as from two-photon excitation fluorescence correlation spectroscopy (brightness and diffusion coefficients) and TEM indicate that the blue-emitting particles are monodisperse and ball-shaped. Particle size clearly determines the emission and excitation spectral region, as expected from quantum confinement, but the presence and extent of Si-O species on the silicon networks seem crucial for determining the spectrum features and intensity of emission. The nanoparticles could hold great potential as quantum dots for applications as luminescence sensors in biology and environmental science. PMID:22866180

  2. Comparisons of Photosynthetic Responses of Xanthium strumarium and Helianthus annuus to Chronic and Acute Water Stress in Sun and Shade 1

    PubMed Central

    Ben, Gui-Ying; Osmond, C. Barry; Sharkey, Thomas D.

    1987-01-01

    We have examined the effects of mild, chronic water stress and acute water stress on two water stress sensitive plants, Xanthium strumarium and Helianthus annuus. Using a combination of the leaf disc O2 electrode to measure the light responses of photosynthesis and 77 K fluorescence to monitor damage to the primary photochemistry, we have found the following: (a) The CO2 saturated rate of photosynthesis at high light is the most water stress sensitive parameter measured. (b) The apparent quantum yield (moles O2 per mole photons) was slightly, if at all, affected by mild water stress (>−1.5 megapascals). (c) Severe water stress (<−1.5 megapascals) reduced the quantum yield of photosynthesis regardless of whether the stress was applied in sun or shade. The light independent reduction of quantum yield was not associated with a reduction in 77 K fluorescence (Fv/Fm) indicating that the quantum yield reduction was not the result of damage to primary photochemistry. (d) The diel fluctuation in 77 K fluorescence seen in sun-exposed control leaves was greatly exaggerated in water stressed leaves because of enhanced decline in 77 K fluorescence in the morning. The rate of recovery was similar in both control and water stressed leaves. Shaded leaves showed no change in 77 K fluorescence regardless of whether water stress was imposed or not. (e) The water stress sensitive plants used in these experiments did not recover from acute water stress severe enough to reduce the quantum yield or chronic water stress which lasted long enough that light dependent damage to primary photochemistry occurred. PMID:16665465

  3. Comparisons of Photosynthetic Responses of Xanthium strumarium and Helianthus annuus to Chronic and Acute Water Stress in Sun and Shade.

    PubMed

    Ben, G Y; Osmond, C B; Sharkey, T D

    1987-06-01

    We have examined the effects of mild, chronic water stress and acute water stress on two water stress sensitive plants, Xanthium strumarium and Helianthus annuus. Using a combination of the leaf disc O(2) electrode to measure the light responses of photosynthesis and 77 K fluorescence to monitor damage to the primary photochemistry, we have found the following: (a) The CO(2) saturated rate of photosynthesis at high light is the most water stress sensitive parameter measured. (b) The apparent quantum yield (moles O(2) per mole photons) was slightly, if at all, affected by mild water stress (>-1.5 megapascals). (c) Severe water stress (<-1.5 megapascals) reduced the quantum yield of photosynthesis regardless of whether the stress was applied in sun or shade. The light independent reduction of quantum yield was not associated with a reduction in 77 K fluorescence (F(v)/F(m)) indicating that the quantum yield reduction was not the result of damage to primary photochemistry. (d) The diel fluctuation in 77 K fluorescence seen in sun-exposed control leaves was greatly exaggerated in water stressed leaves because of enhanced decline in 77 K fluorescence in the morning. The rate of recovery was similar in both control and water stressed leaves. Shaded leaves showed no change in 77 K fluorescence regardless of whether water stress was imposed or not. (e) The water stress sensitive plants used in these experiments did not recover from acute water stress severe enough to reduce the quantum yield or chronic water stress which lasted long enough that light dependent damage to primary photochemistry occurred.

  4. Spatial and Time Coincidence Detection of the Decay Chain of Short-Lived Radioactive Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granja, Carlos; Jakubek, Jan; Platkevic, Michal

    The quantum counting position sensitive pixel detector Timepix with per-pixel energy and time resolution enables to detect radioactive ions and register the consecutive decay chain by simultaneous position-and time-correlation. This spatial and timing coincidence technique in the same sensor is demonstrated by the registration of the decay chain {sup 8}He{yields}{sup {beta} 8}Li and {sup 8}Li{yields}{sup {beta}-} {sup 8}Be{yields}{alpha}+{alpha} and by the measurement of the {beta} decay half-lives. Radioactive ions, selectively obtained from the Lohengrin fission fragment spectrometer installed at the High Flux Reactor of the ILL Grenoble, are delivered to the Timepix silicon sensor where decays of the implanted ionsmore » and daughter nuclei are registered and visualized. We measure decay lifetimes in the range {>=}{mu}s with precision limited just by counting statistics.« less

  5. Laser flash photolysis of ozone - O/1D/ quantum yields in the fall-off region 297-325 nm

    NASA Technical Reports Server (NTRS)

    Brock, J. C.; Watson, R. T.

    1980-01-01

    The wavelength dependence of the quantum yield for O(1D) production from ozone photolysis has been determined between 297.5 nm and 325 nm in order to resolve serious discrepancies among previous studies. The results of this investigation are compared to earlier work by calculating atmospheric production rate constants for O(1D). It is found that for the purpose of calculating this rate constant, there is now good agreement among three studies at 298 K. Furthermore, it appears that previous data on the temperature dependence of the O(1D) quantum yield fall-off is adequate for determining the vertical profile of the O(1D) production rate constant. Several experimental difficulties associated with using NO2(asterisk) chemiluminescence to monitor O(1D) have been identified.

  6. Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation

    DOE PAGES

    Beyler, Andrew P.; Bischof, Thomas S.; Cui, Jian; ...

    2014-11-19

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here in this study, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS andmore » InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals.« less

  7. Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106-295 nm

    NASA Technical Reports Server (NTRS)

    Suto, Masako; Wang, Xiuyan; Shan, Jun; Lee, L. C.

    1992-01-01

    Photoabsorption and fluorescence cross sections of benzene, (o-, m-, p-) xylenes, naphthalene, 1-methylnaphthalene, and 2-ethylnaphthalene in the gas phase are measured at 106-295 nm using synchrotron radiation as a light source. Fluorescences are observed from the photoexcitation of benzene and xylenes at 230-280 nm and from naphthalene and its derivatives at 190-295 nm. The absolute fluorescence cross section is determined by calibration with respect to the emission intensity of the NO(A-X) system, for which the fluorescence quantum yield is equal to 1. To cross-check the current calibration method, the quantum yield of the SO2(C-X) system at 220-230 nm was measured since it is about equal to 1. The current quantum-yield data are compared with previously published values measured by different methods.

  8. Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation

    PubMed Central

    Beyler, Andrew P.; Bischof, Thomas S.; Cui, Jian; Coropceanu, Igor; Harris, Daniel K.; Bawendi, Moungi G.

    2015-01-01

    The brightness of nanoscale optical materials such as semiconductor nanocrystals is currently limited in high excitation flux applications by inefficient multiexciton fluorescence. We have devised a solution-phase photon correlation measurement that can conveniently and reliably measure the average biexciton-to-exciton quantum yield ratio of an entire sample without user selection bias. This technique can be used to investigate the multiexciton recombination dynamics of a broad scope of synthetically underdeveloped materials, including those with low exciton quantum yields and poor fluorescence stability. Here, we have applied this method to measure weak biexciton fluorescence in samples of visible-emitting InP/ZnS and InAs/ZnS core/shell nanocrystals, and to demonstrate that a rapid CdS shell growth procedure can markedly increase the biexciton fluorescence of CdSe nanocrystals. PMID:25409496

  9. Excited-state properties of nucleic acid components

    NASA Astrophysics Data System (ADS)

    Salet, C.; Bensasson, R. V.; Becker, R. S.

    1981-12-01

    Measurements were made of the fluorescence and phosphorescence spectra and lifetimes, and also of the absorption spectra, lifetimes, extinction coefficients, and quantum yields of the T1 lower triplet states of thymine, uracil, their N, N'-dimethyl derivatives, thymidine, thymidine monophosphate, uridine, and uridine monophosphate in various solvents at 300 °K. The influence of the solvent on the quantum yield of the T1 state of nucleic acid components is discussed.

  10. Laboratory Measurements of Photolytic Parameters for Formaldehyde.

    DTIC Science & Technology

    1980-11-01

    dynamic dilution methods. Compressed air stored in steel cylinders, carefully selected to contain carbon monoxide and hydrogen at mixing ratios of...in air has been investi- gated in the laboratory at two temperatures: 300 and 220 K. Quantum yields for the formation of CO and H2 were determined at...procedures in the case of pure formaldehyde gave consistent results. (b) Quantum Yields Mixtures of formaldehyde in air were photolyzed in a

  11. Synthesis and characterization of near-infrared absorbing water soluble squaraines and study of their photodynamic effects in DLA live cells.

    PubMed

    Shafeekh, Kulathinte M; Soumya, Mohanannair S; Rahim, Moochikkadavath A; Abraham, Annie; Das, Suresh

    2014-01-01

    Here, we report the synthesis, photophysical properties and photodynamic effects in DLA live cells of three water soluble squaraine dyes, viz. bisbenzothiazolium squaraine dyes SQMI and SQDI with iodine in one and both benzothiazolium units, respectively, and an unsymmetrical squaraine dye ASQI containing iodinated benzothiazolium and aniline substituents. The diiodinated SQDI showed an anomalous trend in both fluorescence and triplet quantum yields over the monoiodinated SQMI, with SQDI showing higher fluorescence and lower triplet quantum yields compared to SQMI. Nanosecond laser flash photolysis of SQDI and SQMI indicated the formation of triplet excited states with quantum yield of 0.19 and 0.26, respectively. On photoirradiation, both the SQDI and SQMI generate singlet oxygen and it was observed that both dyes undergoing oxidation reactions with the singlet oxygen generated. ASQI which exhibited a lower triplet quantum yield of 0.06 was, however, stable and did not react with the singlet oxygen generated. In vitro cytotoxicity studies of these dyes in DLA live cells were performed using Trypan blue dye exclusion method and it reflect an order of cytotoxicity of SQDI>SQMI>ASQI. Intracellular generation of the ROS was confirmed by dichlorofluorescein assay after the in vitro PDT. © 2014 The American Society of Photobiology.

  12. Efficiencies of induction of DNA double strand breaks in solution by photoabsorption at phosphorus and platinum.

    PubMed

    Maeda, Munetoshi; Kobayashi, Katsumi; Hieda, Kotaro

    2004-01-01

    This paper aims at determining and comparing the cross sections and quantum yields for DNA strand break induction by the Auger effect at the K-shell of phosphorus and at the LIII-shell of platinum. Using synchrotron radiation, free and Pt-bound pBR322 plasmid DNA were irradiated in solution with monochromatic X-rays, the energies of which were 2.153 and 2.147 keV, corresponding to "on" and "below" the phosphorus K-shell photoabsorption, and 11.566 and 11.542 keV for "above" and "below" the L(III)-shell photoabsorption of platinum, respectively. To suppress indirect effects by hydroxyl radicals, DMSO (1M) was used as a scavenger. The inner-shell photoabsorption of phosphorus and of platinum significantly increased the induction of DNA double strand breaks (DSB), whereas it had little effect on single strand break (SSB) induction. The quantum yields for the induction of DSB were calculated to be 0.017 and 1.13, in the case of phosphorus and platinum, respectively. CONCLSIONS: The value of the quantum yield for the DSB induction of platinum was about 66-fold larger than that for the phosphorus. These results clearly demonstrate that the quantum yield of DSB depends upon the magnitude of the Auger cascade.

  13. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst.

    PubMed

    Gao, Honglin; Yan, Shicheng; Wang, Jiajia; Huang, Yu An; Wang, Peng; Li, Zhaosheng; Zou, Zhigang

    2013-11-07

    The development of efficient photocatalytic material for converting solar energy to hydrogen energy as viable alternatives to fossil-fuel technologies is expected to revolutionize energy shortage and environment issues. However, to date, the low quantum yield for solar hydrogen production over photocatalysts has hindered advances in the practical applications of photocatalysis. Here, we show that a carbon nitride intercalation compound (CNIC) synthesized by a simple molten salt route is an efficient polymer photocatalyst with a high quantum yield. We found that coordinating the alkali metals into the C-N plane of carbon nitride will induce the un-uniform spatial charge distribution. The electrons are confined in the intercalated region while the holes are in the far intercalated region, which promoted efficient separation of photogenerated carriers. The donor-type alkali metal ions coordinating into the nitrogen pots of carbon nitrides increase the free carrier concentration and lead to the formation of novel nonradiative paths. This should favor improved transport of the photogenerated electron and hole and decrease the electron-hole recombination rate. As a result, the CNIC exhibits a quantum yield as high as 21.2% under 420 nm light irradiation for solar hydrogen production. Such high quantum yield opens up new opportunities for using cheap semiconducting polymers as energy transducers.

  14. Intense visible emission from ZnO/PAAX (X = H or Na) nanocomposite synthesized via a simple and scalable sol-gel method

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Apostoluk, A.; Gautier, P.; Valette, A.; Omar, L.; Cornier, T.; Bluet, J. M.; Masenelli-Varlot, K.; Daniele, S.; Masenelli, B.

    2016-03-01

    Intense visible nano-emitters are key objects for many technologies such as single photon source, bio-labels or energy convertors. Chalcogenide nanocrystals have ruled this domain for several decades. However, there is a demand for cheaper and less toxic materials. In this scheme, ZnO nanoparticles have appeared as potential candidates. At the nanoscale, they exhibit crystalline defects which can generate intense visible emission. However, even though photoluminescence quantum yields as high as 60% have been reported, it still remains to get quantum yield of that order of magnitude which remains stable over a long period. In this purpose, we present hybrid ZnO/polyacrylic acid (PAAH) nanocomposites, obtained from the hydrolysis of diethylzinc in presence of PAAH, exhibiting quantum yield systematically larger than 20%. By optimizing the nature and properties of the polymeric acid, the quantum yield is increased up to 70% and remains stable over months. This enhancement is explained by a model based on the hybrid type II heterostructure formed by ZnO/PAAH. The addition of PAAX (X = H or Na) during the hydrolysis of ZnEt2 represents a cost effective method to synthesize scalable amounts of highly luminescent ZnO/PAAX nanocomposites.

  15. Faster search by lackadaisical quantum walk

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2018-03-01

    In the typical model, a discrete-time coined quantum walk searching the 2D grid for a marked vertex achieves a success probability of O(1/log N) in O(√{N log N}) steps, which with amplitude amplification yields an overall runtime of O(√{N} log N). We show that making the quantum walk lackadaisical or lazy by adding a self-loop of weight 4 / N to each vertex speeds up the search, causing the success probability to reach a constant near 1 in O(√{N log N}) steps, thus yielding an O(√{log N}) improvement over the typical, loopless algorithm. This improved runtime matches the best known quantum algorithms for this search problem. Our results are based on numerical simulations since the algorithm is not an instance of the abstract search algorithm.

  16. Electronic Structure, Dielectric Response, and Surface Charge Distribution of RGD (1FUV) Peptide

    PubMed Central

    Adhikari, Puja; Wen, Amy M.; French, Roger H.; Parsegian, V. Adrian; Steinmetz, Nicole F.; Podgornik, Rudolf; Ching, Wai-Yim

    2014-01-01

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor. PMID:25001596

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orfield, Noah J.; McBride, James R.; Wang, Feng

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. In this paper, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking “giant” CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging,more » rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive “dark” fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be “dark”. Finally and therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.« less

  18. Spectral and Temporal Properties of the Alpha and Beta Subunits and (alpha Beta) Monomer Isolated from Nostoc SP. Using Picosecond Laser Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Dagen, Aaron J.

    1985-12-01

    The fluorescence decay profiles, relative quantum yield and transmission of the (alpha), (beta) and ((alpha)(beta)) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated ((TURN)4 x 10('13) to (TURN)4 x 10('15) photons-cm('-2) per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the (alpha) subunit, 666 ps in the (beta) subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f(,(beta)) chromophore, an apparent result of aggregation effects.

  19. Spectral and temporal properties of the alpha and beta subunits and (alpha beta) monomer isolated from Nostoc sp. using picosecond laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Dagen, A. J.

    1985-12-01

    The fluorescence decay profiles, relative quantum yield and transmission of the alpha, beta and (alpha beta) complexes from phycoerythrin isolated from the photosynthetic antenna system of Nostoc sp. and measured by single picosecond laser spectroscopic techniques is studied. The fluorescence decay profiles of all three complexes are found to be intensity independent for the intensity range investigated (approx. 4x10 to the 13th power to 4x10 to the 15th power photons/sq cm per pulse). The apparent decrease in the relative quantum yield of all three complexes as intensity increases is offset by a corresponding increase in the relative transmission. This evidence, along with the intensity independent fluorescence kinetics, suggests that exciton annihilation is absent in these complexes. The decay profiles are fit to models assuming energy transfer amongst fluorescing chromophores. The intraprotein transfer rate is found to be 100 ps in the alpha subunit, 666 ps in the beta subunit. Constraining these rates to be identical in the monomer results in explaining the monomer kinetics by an increase in the nonradiative rate of the f beta chromophore, an apparent result of aggregation effects.

  20. Quantum Monte Carlo for atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, R.N.

    1989-11-01

    The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H{sub 2}, LiH, Li{sub 2}, and H{sub 2}O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li{sub 2}, and H{sub 2}O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations,more » the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions.« less

  1. Strongly Coupled Tin-Halide Perovskites to Modulate Light Emission: Tunable 550-640 nm Light Emission (FWHM 36-80 nm) with a Quantum Yield of up to 6.4.

    PubMed

    Chen, Min-Yi; Lin, Jin-Tai; Hsu, Chia-Shuo; Chang, Chung-Kai; Chiu, Ching-Wen; Chen, Hao Ming; Chou, Pi-Tai

    2018-05-01

    Colloidal perovskite quantum dots represent one of the most promising materials for applications in solar cells and photoluminescences. These devices require a low density of crystal defects and a high yield of photogenerated carriers, which are difficult to realize in tin-halide perovskite because of the intrinsic instability of tin during nucleation. Here, an enhancement in the luminescent property of tin-halide perovskite nanoplates (TPNPs) that are composed of strongly coupled layered structures with the chemical formula of PEA 2 SnX 4 (PEA = C 6 H 5 (CH 2 ) 2 NH 3 , X = Br, I) is reported. TPNPs (X = I) show an emission at a wavelength of 640 nm, with high quantum yield of 6.40 ± 0.14% and full width at half maximum (FWHM) as small as 36 nm. The presence of aliphatic carboxylic acid is found to play a key role in reducing the tin perovskite defect density, which significantly improves the emission intensity and stability of TPNPs. Upon mixing iodo- and bromo- precursors, the emission wavelength is successfully tuned from 640 nm (PEA 2 SnI 4 ) to 550 nm (PEA 2 SnBr 4 ), with a corresponding emission quantum yield and FWHM of 0.16-6.40% and 36-80 nm, respectively. The results demonstrate a major advance for the emission yield and tunability of tin-halide perovskites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Photoswitchable Fluorescent Diarylethene Derivatives with Thiophene 1,1-Dioxide Groups: Effect of Alkyl Substituents at the Reactive Carbons

    PubMed Central

    Sumi, Takaki; Irie, Masahiro

    2017-01-01

    Photoswitching and fluorescent properties of sulfone derivatives of 1,2-bis(2-alkyl-4-methyl-5-phenyl-3-thienyl)perfluorocyclopentene, 1–5, having methyl, ethyl, n-propyl, i-propyl, and i-butyl substituents at the reactive carbons (2- and 2′-positions) of the thiophene 1,1-dioxide rings were studied. Diarylethenes 1–5 underwent isomerization reactions between open-ring and closed-ring forms upon alternate irradiation with ultraviolet (UV) and visible light and showed fluorescence in the closed-ring forms. The alkyl substitution at the reactive carbons affects the fluorescent property of the closed-ring isomers. The closed-ring isomers 2b–5b with ethyl, n-propyl, i-propyl, and i-butyl substituents show higher fluorescence quantum yields than 1b with methyl substituents. In polar solvents, the fluorescence quantum yield of 1b markedly decreases, while 2b–5b maintain the relatively high fluorescence quantum yields. Although the cycloreversion quantum yields of the derivatives with methyl, ethyl, n-propyl, and i-propyl substituents are quite low and in the order of 10−5, introduction of i-butyl substituents was found to increase the yield up to the order of 10−3. These results indicate that appropriate alkyl substitution at the reactive carbons is indispensable for properly controlling the photoswitching and fluorescent properties of the photoswitchable fluorescent diarylethenes, which are potentially applicable to super-resolution fluorescence microscopies. PMID:28869489

  3. The photochemistry and kinetics of chlorine compounds important to stratospheric mid-latitude ozone destruction

    NASA Astrophysics Data System (ADS)

    Goldfarb, Leah

    1997-09-01

    The catalytic destruction of stratospheric ozone via chlorinated species was first proposed in the 1970's. Since that time a decline in column ozone abundance in the polar regions as well as at mid-latitudes has been observed. Much of this reduction has been attributed to the increases in anthropogenic chlorine compounds such as CFCs. This study summarizes experimental results obtained using pulsed-photolysis resonance fluorescence and pulsed- photolysis long-path absorption methods to study processes important to chlorine-catalyzed ozone destruction: the quantum yields of the products in the dissociation of ClONO2 and the reactions of free radicals with ClONO2 and ClO. The quantum yields for the production of O, Cl and ClO from ClONO2 were studied at specific laser wavelengths (193, 222, 248, and 308 nm). Cl and ClO yields were comparable at nearly all the wavelengths, expect for 193 nm, where the O atom yield was appreciable. The yields at 308 nm (a wavelength available in the stratosphere) were 0.64 ± 0.17 for Cl, 0.37 ± 0.18 for ClO and <0.05 for O. The rate coefficients of O and Cl atoms with ClONO2 were measured over a wide range of temperatures, and the NO3 product yield for the former reaction, previously unreported, was determined to be ~1. The kinetics of the reaction of O atoms with ClO were measured using a new experimental system built specifically to investigate such radical-radical reactions. A slight negative temperature dependence (E/B = -90 ± 30) was observed over the temperature range (227-363 K). From the measured Arrhenius equation the rate constant at 240 K is 4.1 × 10-11 cm3molecule-1s-1 which is in excellent agreement (l.4% greater) with the currently recommended value. This observation is significant, since this reaction is the rate limiting the dominate chlorine catalytic cycle that destroys O3 near 40 km. To analyze the implications of the kinetic and photochemical information from this work, a box model was constructed. The vertical profile of ozone concentrations and loss rates calculated by this simple model compare well with atmospheric measurements and calculations.

  4. Analytical pair correlations in ideal quantum gases: temperature-dependent bunching and antibunching.

    PubMed

    Bosse, J; Pathak, K N; Singh, G S

    2011-10-01

    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T

  5. Absorption and emission spectroscopic characterisation of combined wildtype LOV1-LOV2 domain of phot from Chlamydomonas reinhardtii.

    PubMed

    Song, S-H; Dick, B; Zirak, P; Penzkofer, A; Schiereis, T; Hegemann, P

    2005-10-03

    An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.

  6. Satellite-Based Quantum Communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard J; Nordholt, Jane E; McCabe, Kevin P

    2010-09-20

    Single-photon quantum communications (QC) offers the attractive feature of 'future proof', forward security rooted in the laws of quantum physics. Ground based quantum key distribution (QKD) experiments in optical fiber have attained transmission ranges in excess of 200km, but for larger distances we proposed a methodology for satellite-based QC. Over the past decade we have devised solutions to the technical challenges to satellite-to-ground QC, and we now have a clear concept for how space-based QC could be performed and potentially utilized within a trusted QKD network architecture. Functioning as a trusted QKD node, a QC satellite ('QC-sat') could deliver secretmore » keys to the key stores of ground-based trusted QKD network nodes, to each of which multiple users are connected by optical fiber or free-space QC. A QC-sat could thereby extend quantum-secured connectivity to geographically disjoint domains, separated by continental or inter-continental distances. In this paper we describe our system concept that makes QC feasible with low-earth orbit (LEO) QC-sats (200-km-2,000-km altitude orbits), and the results of link modeling of expected performance. Using the architecture that we have developed, LEO satellite-to-ground QKD will be feasible with secret bit yields of several hundred 256-bit AES keys per contact. With multiple ground sites separated by {approx} 100km, mitigation of cloudiness over any single ground site would be possible, potentially allowing multiple contact opportunities each day. The essential next step is an experimental QC-sat. A number of LEO-platforms would be suitable, ranging from a dedicated, three-axis stabilized small satellite, to a secondary experiment on an imaging satellite. to the ISS. With one or more QC-sats, low-latency quantum-secured communications could then be provided to ground-based users on a global scale. Air-to-ground QC would also be possible.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mthethwa, T.P.; Moloto, M.J., E-mail: mmoloto@uj.ac.za; De Vries, A.

    Graphical abstract: SEM images of CdS/PMMA showing coiling as loading of CdS nanoparticles is increased. Thermal stability is increased with increase in %loading of both CdS and CdSe nanoparticles. Research highlights: {yields} TOPO-capped CdS and HDA-capped CdSe nanoparticles were synthesized and fully characterized. {yields} The nanoparticles were mixed with the polymer, PMMA using electrospinning technique using 2, 5 and 10% weight loadings. {yields} The mixture was spun to produce fibres with optical and thermal properties showing significant change and also the increase in loading causing bending or spiraling. {yields} Both TEM images for nanoparticles and SEM for fibres shows themore » morphology and sizes of the particles. -- Abstract: Electrospinning technique was used to fabricate poly(methyl methacrylate) (PMMA) fibres incorporating CdS and CdSe quantum dots (nanoparticles). Different nanoparticle loadings (2, 5 and 10 wt% with respect to PMMA) were used and the effect of the quantum dots on the properties of the fibres was studied. The optical properties of the hybrid composite fibres were investigated by photoluminescence and UV-vis spectrophotometry. Scanning electron microscopy (SEM), X-ray diffraction and FTIR spectrophotometry were also used to investigate the morphology and structure of the fibres. The optical studies showed that the size-tunable optical properties can be achieved in the polymer fibres by addition of quantum dots. SEM images showed that the morphologies of the fibres were dependent on the added amounts of quantum dots. A spiral type of morphology was observed with an increase in the concentration of CdS and CdSe nanoparticles. Less beaded structures and bigger diameter fibres were obtained at higher quantum dot concentrations. X-ray diffractometry detected the amorphous peaks of the polymer and even after the quantum dots were added and the FTIR analysis shows that there was no considerable interaction between the quantum dots and the polymer fibres at low concentration of quantum dots however at higher concentrations some interactions were observed which shows that QDs were present on the surfaces of the fibres.« less

  8. A synchronous game for binary constraint systems

    NASA Astrophysics Data System (ADS)

    Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher

    2018-03-01

    Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.

  9. Raising yield potential in wheat: increasing photosynthesis capacity and efficiency

    USDA-ARS?s Scientific Manuscript database

    Increasing wheat yields to help to ensure food security is a major challenge. Meeting this challenge requires a quantum improvement in the yield potential of wheat. Past increases in yield potential have largely resulted from improvements in harvest index not through increased biomass. Further large...

  10. Correlation complementarity yields bell monogamy relations.

    PubMed

    Kurzyński, P; Paterek, T; Ramanathan, R; Laskowski, W; Kaszlikowski, D

    2011-05-06

    We present a method to derive Bell monogamy relations by connecting the complementarity principle with quantum nonlocality. The resulting monogamy relations are stronger than those obtained from the no-signaling principle alone. In many cases, they yield tight quantum bounds on the amount of violation of single and multiple qubit correlation Bell inequalities. In contrast with the two-qubit case, a rich structure of possible violation patterns is shown to exist in the multipartite scenario.

  11. The effect of axial ligands on the quantum yield of singlet oxygen of new silicon phthalocyanine

    NASA Astrophysics Data System (ADS)

    Lv, Huafei; Zhang, Xuemei; Yu, Xinxin; Pan, Sujuan; Xie, Shusen; Yang, Hongqin; Peng, Yiru

    2016-10-01

    The singlet oxygen (1O2) production abilitity is an important factor to assess their potential as effective of photosensitizers. In this paper, the 1O2 production rate, production rate constant and quantum yield of silicon(IV) phthalocyanine axially bearing 1-3 generation dendritic substituents were evaluated by a high performance liquid chromatographic method. The results show that the 1O2 production rate and production rate constant of these compounds increase gradually with dendritic generations increase. And the 1O2 quantum yield of silicon(IV) phthalocyanine with first generation dendritic ligand was the highest. This may be due to the isolation effect of the dendritic ligands on the phthalocyanine core. The parameters of the observed 1O2 production properties will provide valuable data for these dendrimer phthalocyanines as promising photosensitizer in PDT application.

  12. Photochemical studies of a fluorescent chlorophyll catabolite--source of bright blue fluorescence in plant tissue and efficient sensitizer of singlet oxygen.

    PubMed

    Jockusch, Steffen; Turro, Nicholas J; Banala, Srinivas; Kräutler, Bernhard

    2014-02-01

    Fluorescent chlorophyll catabolites (FCCs) are fleeting intermediates of chlorophyll breakdown, which is seen as an enzyme controlled detoxification process of the chlorophylls in plants. However, some plants accumulate large amounts of persistent FCCs, such as in senescent leaves and in peels of yellow bananas. The photophysical properties of such a persistent FCC (Me-sFCC) were investigated in detail. FCCs absorb in the near UV spectral region and show blue fluorescence (max at 437 nm). The Me-sFCC fluorescence had a quantum yield of 0.21 (lifetime 1.6 ns). Photoexcited Me-sFCC intersystem crosses into the triplet state (quantum yield 0.6) and generates efficiently singlet oxygen (quantum yield 0.59). The efficient generation of singlet oxygen makes fluorescent chlorophyll catabolites phototoxic, but might also be useful as a (stress) signal and for defense of the plant tissue against infection by pathogens.

  13. Short-Term Flooding Effects on Gas Exchange and Quantum Yield of Rabbiteye Blueberry (Vaccinium ashei Reade) 1

    PubMed Central

    Davies, Frederick S.; Flore, James A.

    1986-01-01

    Roots of 1.5-year-old `Woodard' rabbiteye blueberry plants (Vaccinium ashei Reade) were flooded in containers or maintained at container capacity over a 5-day period. Carbon assimilation, and stomatal and residual conductances were monitored on one fully expanded shoot/plant using an open flow gas analysis system. Quantum yield was calculated from light response curves. Carbon assimilation and quantum yield of flooded plants decreased to 64 and 41% of control values, respectively, after 1 day of flooding and continued decreasing to 38 and 27% after 4 days. Stomatal and residual conductances to CO2 also decreased after 1 day of flooding compared with those of unflooded plants with residual conductance severely limiting carbon assimilation after 4 days of flooding. Stomatal opening occurred in 75 to 90 minutes and rate of opening was unaffected by flooding. PMID:16664791

  14. Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2016-09-01

    We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.

  15. Photodegradation of Dechlorane Plus in n-nonane under the irradiation of xenon lamp.

    PubMed

    Wang, Siwen; Huang, Jun; Yang, Yang; Yu, Gang; Deng, Shubo; Wang, Bin

    2013-09-15

    Photodegradation has been regarded as the main mechanism for the removal of many halogenated organic pollutants in the environment. The photodegradation of Dechlorane Plus (DP), an emerging contaminant taken worldwide concerns in recent years, was investigated under the irradiation of a xenon lamp. Rapid photodegradation was found under the irradiation of 200-750 nm light, while the degradation became much slower when the range of light wavelength changed to 280-750 nm. DP degradation followed the pseudo first-order kinetics. The quantum yields of 200-280 nm (UV-C) were about 2-3 orders of magnitude higher than 280-320 nm, and no yields can be detected in 320-750 nm range, in an agreement with the changing photodegradation rates with wavelength. The photodegradation products were identified as lower chlorinated DPs, implicating a mechanism of reductive dechlorination. No photoisomerization or solvent adducts were observed, and the difference of photodegradation rate between syn- and anti-DP isomers was negligible. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Fundamental Quantum 1/F Noise in Ultrasmall Semiconductor Devices and Their Optimal Design Principles

    DTIC Science & Technology

    1988-05-31

    Hooge parameter. 2. 1 / f Noise of the Recombination Current Generated in the Depletion Region The quantum i/ f ...theory. There are two forms of quantum 11f noise . In the first place C~ and Cn4 p n to quantum 1 / f noise theory. This would yield Hooge parameters S...Fundamental Quantum 1 / f Noise in Ultrasmall S~ iodcrD’vesadOtm.Dsgn P in. 12. PERSONAL AUTHOR(S) Handel, Peter H. (Princioal investiaat r) 13a. TYPE

  17. Proceedings of the Quantum Computation for Physical Modeling Workshop 2004. Held in North Falmouth, MA on 12-15 September 2004

    DTIC Science & Technology

    2005-10-01

    late the difficulty of some basic 1-bit and n-bit quantum and classical operations in an simple unconstrained scenario. KEY WORDS: Time evolution... quantum circuit and design are presented for an optimized entangling probe attacking the BB84 Protocol of quantum key distribution (QKD) and yielding...unambiguous, at least some of the time. It follows that the BB84 (Bennett-Brassard 1984) proto- col of quantum key distribution has a vulnerability similar to

  18. Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918.

    PubMed

    Sandana Mala, John Geraldine; Rose, Chellan

    2014-01-20

    Microbial synthesis of nanoparticles is a green route towards ecofriendly measures to overcome the toxicity and non-applicability of nanomaterials in clinical uses obtained by conventional physical and chemical approaches. Nanoparticles in the quantum regime have remarkable characteristics with excellent applicability in bioimaging. Yeasts have been commercially exploited for several industrial applications. ZnS nanoparticles as semiconductor quantum dots have mostly been synthesized by bacterial species. Here in, we have attempted to produce ZnS nanoparticles in quantum regime by Saccharomyces cerevisiae MTCC 2918 fungus and characterize its size and spectroscopic properties. Intracellular ZnS nanoparticles were produced by a facile procedure and freeze thaw extraction using 1mM zinc sulfate. The ZnS nanoparticles showed surface plasmon resonance band at 302.57nm. The ZnS nanoparticles were in low yield and in the size range of 30-40nm. Powder XRD analysis revealed that the nanoparticles were in the sphalerite phase. Photoluminescence spectra excited at 280nm and 325nm revealed quantum confinement effects. This suggests that yeasts have inherent sulfate metabolizing systems and are capable fungal sources to assimilate sulfate. Further insights are required to identify the transport/reducing processes that may have caused the synthesis of ZnS nanoparticles such as an oxidoreductase enzyme-mediated mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin

    PubMed Central

    2011-01-01

    Semiconductor nanoparticles (quantum dots) are promising fluorescent markers, but it is very little known about interaction of quantum dots with biological molecules. In this study, interaction of CdTe quantum dots coated with thioglycolic acid (TGA) with bovine serum albumin was investigated. Steady state spectroscopy, atomic force microscopy, electron microscopy and dynamic light scattering methods were used. It was explored how bovine serum albumin affects stability and spectral properties of quantum dots in aqueous media. CdTe–TGA quantum dots in aqueous solution appeared to be not stable and precipitated. Interaction with bovine serum albumin significantly enhanced stability and photoluminescence quantum yield of quantum dots and prevented quantum dots from aggregating. PMID:27502633

  20. New evidence for primordial action site of Fluazifop-P-butyl on Acanthospermum hispidum seedlings: From the effects on chlorophyll fluorescence characteristics and histological observation.

    PubMed

    Shang, Yuhong; Yang, Congjun; Liu, Zhihang; Song, Jiqing; Li, Pingliang; Li, Lingxu; Zhou, Fei; Xin, Hua; Wan, Fanghao; Matsumoto, Hiroshi; Luo, Xiaoyong

    2017-10-01

    Acanthospermum hispidum DC, an Asteraceae weed species, was very susceptible to fluazifop-P-butyl, but tolerant to other aryloxyphenoxypropionate herbicides, such as haloxyfop-P-methyl. However, other Asteraceae weeds including Bidens pilosa were all tolerant to fluazifop-P-butyl. Membrane lipid peroxidation by increasing the levels of reactive oxygen species (ROS) was proposed as an action mechanism of fluazifop-P-butyl in A. hispidum. To further clarify the primordial action site of fluazifop-P-butyl in this species, the effects on chlorophyll fluorescence characteristics and cytohistology of apical meristems were studied. Chlorophyll fluorescence characteristics (CFC) in sensitive A. hispidum seedlings were markedly affected by 10μM fluazifop-P-butyl, with the dark fluorescence yield (Fo), maximal fluorescence yield (Fm), maximal PS II quantum yield (Fv/Fm), effective photosystem II (PS II) quantum yield [Y(II)], and quantum yield of regulated energy dissipation [Y(NPQ)] declining, quantum yield of nonregulated energy dissipation [Y(NO)] rising, but these measures were not affected in Bidens pilosa. The effects of fluazifop-P-butyl on chlorophyll fluorescence properties were observed on the growing point before the mature leaves by about 4-6h. Haloxyfop-P-methyl, a control herbicide, had no effects on CFC of either A. hispidum or B. pilosa. In addition, damage to apical meristem cells of A. hispidum was observed at 6 HAT prior to changes in chlorophyll fluorescence parameters suggesting that the primary action site of fluazifop-P-butyl in this species is in the apical meristem and the effects on CFC may be the results of secondary action. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Quantum coherence effects in natural light-induced processes: cis-trans photoisomerization of model retinal under incoherent excitation.

    PubMed

    Tscherbul, Timur V; Brumer, Paul

    2015-12-14

    We present a theoretical study of quantum coherence effects in the primary cis-trans photoisomerization of retinal in rhodopsin induced by incoherent solar light. Using the partial secular Bloch-Redfield quantum master equation approach based on a two-state two-mode linear vibronic coupling model of the retinal chromophore [S. Hahn and G. Stock, J. Phys. Chem. B, 2000, 104, 1146-1149], we show that a sudden turn-on of incoherent pumping can generate substantial Fano coherences among the excited states of retinal. These coherences are the most pronounced in the regime where the matrix elements of the transition dipole moment between the ground and excited eigenstates are parallel to one another. We show that even when the transition dipole moments are perpendicular (implying the absence of light-induced Fano coherence) a small amount of excited-state coherence is still generated due to the coupling to intramolecular vibrational modes and the protein environment, causing depopulation of the excited eigenstates. The overall effect of the coherences on the steady-state population and on the photoproduct quantum yield is shown to be small; however we observe a significant transient effect on the formation of the trans photoproduct, enhancing the photoreaction quantum yield by ∼11% at 200 fs. These calculations suggest that coupling to intramolecular vibrational modes and the protein environment play an important role in photoreaction dynamics, suppressing oscillations in the quantum yield associated with Fano interference.

  2. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals.

    PubMed

    Zhang, Chengxi; Luan, Weiling; Yin, Yuhang; Yang, Fuqian

    2017-01-01

    Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX 3 , X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19-35 nm, high fluorescence quantum yield of 47.8-90.55%, and photoluminescence emission in the range of 450-700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices.

  3. PTFE-based microreactor system for the continuous synthesis of full-visible-spectrum emitting cesium lead halide perovskite nanocrystals

    PubMed Central

    Zhang, Chengxi; Yin, Yuhang

    2017-01-01

    Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX3, X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19–35 nm, high fluorescence quantum yield of 47.8–90.55%, and photoluminescence emission in the range of 450–700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices. PMID:29259867

  4. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa

    USGS Publications Warehouse

    Piniak, G.A.; Brown, E.K.

    2009-01-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa - a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F v/Fm), higher light- adapted effective quantum yield (??F/F'm), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat - temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in Fv/Fm between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. ?? 2009 Marine Biological Laboratory.

  5. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc).

    PubMed

    Tekdaş, Duygu Aydın; Durmuş, Mahmut; Yanık, Hülya; Ahsen, Vefa

    2012-07-01

    Thiol stabilized CdTe quantum dot (QD) nanoparticles were synthesized in aqueous phase and were used as energy donors to tetra-triethyleneoxythia substituted aluminum, gallium and indium phthalocyanines through fluorescence resonance energy transfer (FRET). Energy transfer occurred from the QDs to phthalocyanines upon photoexcitation of the QDs. An enhancement in efficiency of energy transfer with the nature of the carboxylic thiol stabilizer on the QDs was observed. As a result of the nanoparticle and the phthalocyanine mixing, the photoluminescence efficiency of the phthalocyanine moieties in the mixtures does not strictly follow the quantum yields of the bare phthalocyanines. The photochemistry study of phthalocyanines in the presence of the QDs revealed high singlet oxygen quantum yield, hence the possibility of using QDs in combination with phthalocyanines as photosensitizers in photodynamic therapy of cancer. The fluorescence of the CdTe quantum dots-phthalocyanine conjugates (QDs-Pc) were effectively quenched by addition of 1,4-benzoquinone. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    PubMed Central

    Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk

    2017-01-01

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors. PMID:28548097

  7. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE PAGES

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael; ...

    2017-05-26

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  8. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroder, Tim; Trusheim, Matthew E.; Walsh, Michael

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ~32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ~2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ~51 GHz andmore » close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ~1.4 times the natural linewidth. Furthermore, this method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors.« less

  9. Long-lived and Well-resolved Mn2+ Ion Emissions in CuInS-ZnS Quantum Dots

    PubMed Central

    Cao, Sheng; Li, Chengming; Wang, Lin; Shang, Minghui; Wei, Guodong; Zheng, Jinju; Yang, Weiyou

    2014-01-01

    CuInS2 (CIS) quantum dots (QDs) have tunable photoluminescence (PL) behaviors in the visible and near infrared spectral range with markedly lower toxicity than the cadmium-based counterparts, making them very promising applications in light emitting and solar harvesting. However, there still remain material- and fabrication- related obstacles in realizing the high-performance CIS-based QDs with well-resolved Mn2+ d-d emission, long emission lifetimes as well as high efficiencies. Here, we demonstrate the growth of high-quality Mn2+-doped CuInS-ZnS (CIS-ZnS) QDs based on a multi-step hot-injection strategy. The resultant QDs exhibit a well-resolved Mn2+ d-d emission with a high PL quantum yield (QY) up to 66% and an extremely long excited state lifetime up to ~3.78 ms, which is nearly two times longer than the longest one of “green” QDs ever reported. It is promising that the synthesized Mn2+-doped CIS-ZnS QDs might open new doors for their practical applications in bioimaging and opto/electronic devices. PMID:25515207

  10. Topics in Complexity: From Physical to Life Science Systems

    NASA Astrophysics Data System (ADS)

    Charry, Pedro David Manrique

    Complexity seeks to unwrap the mechanisms responsible for collective phenomena across the physical, biological, chemical, economic and social sciences. This thesis investigates real-world complex dynamical systems ranging from the quantum/natural domain to the social domain. The following novel understandings are developed concerning these systems' out-of-equilibrium and nonlinear behavior. Standard quantum techniques show divergent outcomes when a quantum system comprising more than one subunit is far from thermodynamic equilibrium. Abnormal photon inter-arrival times help fulfill the metabolic needs of a terrestrial photosynthetic bacterium. Spatial correlations within incident light can act as a driving mechanism for an organism's adaptation toward more ordered structures. The group dynamics of non-identical objects, whose assembly rules depend on mutual heterogeneity, yield rich transition dynamics between isolation and cohesion, with the cohesion regime reproducing a particular universal pattern commonly found in many real-world systems. Analyses of covert networks reveal collective gender superiority in the connectivity that provides benefits for system robustness and survival. Nodal migration in a network generates complex contagion profiles that lie beyond traditional approaches and yet resemble many modern-day outbreaks.

  11. Research of green emitting rare-earth doped materials as potential quantum-cutter

    NASA Astrophysics Data System (ADS)

    Moine, Bernard; Beauzamy, Lena; Gredin, Patrick; Wallez, Gilles; Labeguerie, Jessica

    2008-03-01

    Because the energy of vacuum ultraviolet (VUV) photons emitted by xenon plasma discharge is more than twice that of visible photons, quantum cutting appears to be a promising process in rare-earth doped materials in order to obtain efficient phosphors for mercury free lighting devices as well as for plasma display panels. With an aim of application, it is important to take into account the emitting color of the developed new phosphors. Most of the time, this leads to use systems with at least two kinds of rare earth ions: one of them playing the role of energy sensitizer, and the other one being in charge of emitting the light of the suitable color. We focus our attention on green rare-earth doped materials. In order to get very efficient phosphors, it is not only necessary to get the highest possible quantum yield, but also to have a material characterized by a strong absorption in the VUV range. Borate and fluoride matrices doped with Dy 3+/Tb 3+ couples of ions are selected according to the position of the 5d band of dysprosium as green emitters.

  12. Non-blinking (Zn)CuInS/ZnS Quantum Dots Prepared by In Situ Interfacial Alloying Approach

    PubMed Central

    Zhang, Aidi; Dong, Chaoqing; Li, Liang; Yin, Jinjin; Liu, Heng; Huang, Xiangyi; Ren, Jicun

    2015-01-01

    Semiconductor quantum dots (QDs) are very important optical nanomaterials with a wide range of potential applications. However, blinking behavior of single QD is an intrinsic drawback for some biological and photoelectric applications based on single-particle emission. Herein we present a rational strategy for fabrication of non-blinking (Zn)CuInS/ZnS QDs in organic phase through in situ interfacial alloying approach. This new strategy includes three steps: synthesis of CuInS QDs, eliminating the interior traps of QDs by forming graded (Zn)CuInS alloyed QDs, modifying the surface traps of QDs by introducing ZnS shells onto (Zn)CuInS QDs using alkylthiols as sulfur source and surface ligands. The suppressed blinking mechanism was mainly attributed to modifying QDs traps from interior to exterior via a step-by-step modification. Non-blinking QDs show high quantum yield, symmetric emission spectra and excellent crystallinity, and will enable applications from biology to optoelectronics that were previously hindered by blinking behavior of traditional QDs. PMID:26458511

  13. Effect of Nitrogen Doping Level on the Performance of N-Doped Carbon Quantum Dot/TiO2 Composites for Photocatalytic Hydrogen Evolution.

    PubMed

    Shi, Run; Li, Zi; Yu, Huijun; Shang, Lu; Zhou, Chao; Waterhouse, Geoffrey I N; Wu, Li-Zhu; Zhang, Tierui

    2017-11-23

    Carbon quantum dots (CQDs) have attracted widespread interest for photocatalytic applications, owing to their low cost and excellent electron donor/acceptor properties. However, their advancement as visible-light photosensitizers in CQDs/semiconductor nanocomposites is currently impaired by their poor quantum yields (QYs). Herein, we describe the successful fabrication of a series of nitrogen-doped CQDs (NCDs) with N/C atomic ratios ranging from 0.14-0.30. NCDs with the highest N-doping level afforded a remarkable external QY of 66.8 % at 360 nm, and outstanding electron transfer properties and photosensitization efficiencies when physically adsorbed on P25 TiO 2 . A NCDs/P25-TiO 2 hybrid demonstrated excellent performance for hydrogen evolution in aqueous methanol under both UV and visible-light illumination relative to pristine P25 TiO 2 . Controlled nitrogen doping of CQDs therefore represents a very effective strategy for optimizing the performance of CQDs/semiconductor hybrid photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Use of the fluorescence quantum yield for the determination of the number-average molecular weight of polymers of epicatechin with 4β→8 interflavin bonds

    Treesearch

    D. Cho; W.L. Mattice; L.J. Porter; Richard W. Hemingway

    1989-01-01

    Excitation at 280 nm produces a structureless emission band with a maximum at 321-324 nm for dilute solutions of catechin, epicatechin, and their oligomers in l,4-dioxane or water. The fluorescence quantum yield, Q, has been measured in these two solvents for five dimers, a trimer, a tetramer, a pentamer, a hexamer, and a polymer in which the monomer...

  15. Photoisomerization of alfa calcidol by a sensitized quantum chain reaction.

    PubMed

    Estruch, Gastón A; Aramendía, Pedro F

    2012-01-01

    The production of vitamin D3 is a pharmaceutically relevant process, producing high added-value products. Precursors are extracts from vegetal origin but bearing mainly an E geometry in the 5,6 double bond. The synthesis of vitamin D3 (5-E-α-calcidol) with the correct Z stereochemistry in the 5,6 double bond from the E isomer using anthracene and triethylamine (TEA) as the sensitizer system was studied from the kinetic and mechanistic point of view. The sensitized isomerization of E-calcidol by irradiation of anthracene takes place only in deoxygenated solution and yields the Z isomer in ca 5% yield in the photostationary state. When TEA is added to the system, the E-Z reaction is not inhibited by oxygen any more, the quantum yield of photoisomerization to the Z isomer grows linearly with the concentration of E-calcidol, while conversions higher than 95% to the Z isomer are reached in the photostationary state and E-Z quantum yields as high as 45 at [E-calcidol] = 25 mM are reached. If TEA is replaced by 1,4-diazabicyclo[2.2.2]octane, the reaction rate drops to one-third at the same amine concentration. The observations can be explained by a quantum chain reaction mechanism. The high conversion achieved eliminates the need of isomer separation. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  16. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM)more » spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.« less

  17. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols.

    PubMed

    Lee, Hyun Ji Julie; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A

    2013-06-04

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines, and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of water-soluble SOA generated from two monoterpenes, limonene and α-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ∼100 ppb ammonia in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (∼0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for λexcitation = 420 ± 50 nm and λemission = 475 ± 38 nm. The window of the strongest fluorescence shifted to λexcitation = 320 ± 25 nm and λemission = 425 ± 38 nm for the α-pinene-derived SOA. Both regions overlap with the EEM spectra of some of the fluorophores found in primary biological aerosols. Despite the low quantum yield, the aged SOA particles may have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  18. Synthesis of Nitrogen- and Chlorine-Doped Graphene Quantum Dots for Cancer Cell Imaging.

    PubMed

    Nafiujjaman, Md; Joon, Hwang; Kwak, Kwang Soo; Lee, Yong-Kyu

    2018-06-01

    In this study, we synthesized high quantum yield nitrogen and chlorine-doped graphene quantum dots (Cl-GQDs-N) for cancer cell imaging using simple and high production yield hydrothermal method from low-cost fructose. Prepared Cl-GQDs-N are about 30 nm in diameter and these Cl-GQDs-N display powerful blue color photoluminescence under the 365 nm UV lamp. We have further investigated their optical performances under various conditions. In vitro study shows no toxicity effect in normal and cancer cells treated with Cl-GQDs-N. Finally, we believe that our synthesized Cl-GQDs-N will bring more application opportunities in the field of bioimaging, optoelectronics and beyond.

  19. State-selected chemical reaction dynamics at the S matrix level - Final-state specificities of near-threshold processes at low and high energies

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Truhlar, Donald G.; Schwenke, David W.

    1992-01-01

    State-to-state reaction probabilities are found to be highly final-state specific at state-selected threshold energies for the reactions O + H2 yield OH + H and H + H2 yield H2 + H. The study includes initial rotational states with quantum numbers 0-15, and the specificity is especially dramatic for the more highly rotationally excited reactants. The analysis is based on accurate quantum mechanical reactive scattering calculations. Final-state specificity is shown in general to increase with the rotational quantum number of the reactant diatom, and the trends are confirmed for both zero and nonzero values of the total angular momentum.

  20. Near-Unity Quantum Yields of Biexciton Emission from CdSe=CdS Nanocrystals Measured Using Single-Particle Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Young-Shin; Malko, Anton V.; Vela, Javier

    2011-05-03

    Biexciton photoluminescence (PL) quantum yields (Q 2X) of individual CdSe/CdS core-shell nanocrystal quantum dots with various shell thicknesses are derived from independent PL saturation and two-photon correlation measurements. We observe a near-unity Q{sub 2X} for some nanocrystals with an ultrathick 19-monolayer shell. High Q 2X’s are, however, not universal and vary widely among nominally identical nanocrystals indicating a significant dependence of Q 2X upon subtle structural differences. Interestingly, our measurements indicate that high Q 2X’s are not required to achieve complete suppression of PL intensity fluctuations in individual nanocrystals.

  1. Stable CdS QDs with intense broadband photoluminescence and high quantum yields

    NASA Astrophysics Data System (ADS)

    Mandal, Abhijit; Saha, Jony; De, Goutam

    2011-11-01

    Aqueous synthesis of CdS quantum dots (QDs) using thiolactic acid (TLA) as a capping agent was reported. These QDs exhibited excellent colloidal and photostability over a span of 2 years and showed intense broadband and almost white photoluminescence suitable for solid state lighting devices. The photoluminescence (PL) property of the aqueous CdS QDs is optimized by adjusting various processing parameters. The highest quantum yield (QY) achieved for TLA capped CdS QDs of average size 3.5 nm was ˜50%. Luminescence lifetime measurements of CdS-TLA QDs indicated longer lifetimes and a larger contribution of the surface-related emission, indicating removal of quenching defects.

  2. Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.; Carruthers, George R.

    1989-01-01

    In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.

  3. Origin of high photoconductive gain in fully transparent heterojunction nanocrystalline oxide image sensors and interconnects.

    PubMed

    Jeon, Sanghun; Song, Ihun; Lee, Sungsik; Ryu, Byungki; Ahn, Seung-Eon; Lee, Eunha; Kim, Young; Nathan, Arokia; Robertson, John; Chung, U-In

    2014-11-05

    A technique for invisible image capture using a photosensor array based on transparent conducting oxide semiconductor thin-film transistors and transparent interconnection technologies is presented. A transparent conducting layer is employed for the sensor electrodes as well as interconnection in the array, providing about 80% transmittance at visible-light wavelengths. The phototransistor is a Hf-In-Zn-O/In-Zn-O heterostructure yielding a high quantum-efficiency in the visible range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units.

    PubMed

    Neumann, Miguel G; Schmitt, Carla C; Ferreira, Giovana C; Corrêa, Ivo C

    2006-06-01

    To evaluate the efficiency of the photopolymerization of dental resins it is necessary to know to what extent the light emitted by the light curing units is absorbed by the photoinitiators. On the other hand, the efficiency of the absorbed photons to produce species that launch the polymerization process is also of paramount importance. Therefore, the previously determined PAE (photon absorption efficiency) is used in conjunction with the polymerization quantum yields for the photoinitiators, in order to be able to compare the total process on an equivalent basis. This parameter can be used to identify the best performance for the photochemical process with specific photoinitiators. The efficiency of LED (Ultrablue IS) and QTH (Optilux 401) lamps were tested comparing their performances with the photoinitiators camphorquinone (CQ); phenylpropanedione (PPD); monoacylphosphine oxide (Lucirin TPO); and bisacylphosphine oxide (Irgacure 819). The extent of photopolymerization per absorbed photon was determined from the polymerization quantum yields obtained by using the photoinitiators to polymerize methyl methacrylate, and afterwards combined with the previously determined PAEs. Although CQ presents a rather low polymerization quantum yield, its photopolymerization efficiency is practically the highest when irradiated with the Ultrablue LED. On the other hand, Lucirin is much more efficient than the other photoinitiators when irradiated with a QTH lamp, due to its high quantum yield and the overlap between its absorption spectrum and the output of the visible lamp light. Difference in photopolymerization efficiencies arise when combinations of photoinitiators are used, and when LED sources are used in preference to QTH. Mechanistic understanding is essential to optimal initiator formulation.

  5. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    PubMed

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  6. Photochemical processes on Titan: Irradiation of mixtures of gases that simulate Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Tran, Buu N.; Joseph, Jeffrey C.; Force, Michael; Briggs, Robert G.; Vuitton, Veronique; Ferris, James P.

    2005-09-01

    Photochemical reaction pathways in Titan's atmosphere were investigated by irradiation of the individual components and the mixture containing nitrogen, methane, hydrogen, acetylene, ethylene, and cyanoacetylene. The quantum yields for the loss of the reactants and the formation of products were determined. Photolysis of ethylene yields mainly saturated compounds (ethane, propane, and butane) while photolysis of acetylene yields the same saturated compounds as well as ethylene and diacetylene. Irradiation of cyanoacetylene yields mainly hydrogen cyanide and small amounts of acetonitrile. When an amount of methane corresponding to its mixing ratio on Titan was added to these mixtures the quantum yields for the loss of reactants decreased and the quantum yields for hydrocarbon formation increased indicative of a hydrogen atom abstraction from methane by the photochemically generated radicals. GC/MS analysis of the products formed by irradiation of mixtures of all these gases generated over 120 compounds which were mainly aliphatic hydrocarbons containing double and triple bonds along with much smaller amounts of aromatic compounds like benzene, toluene and phenylacetylene. The reaction pathways were investigated by the use of 13C acetylene in these gas mixtures. No polycyclic aromatic compounds were detected. Vapor pressures of these compounds under conditions present in Titan's atmosphere were calculated. The low molecular weight compounds likely to be present in the atmosphere and aerosols of Titan as a result of photochemical processes are proposed.

  7. [Effects of light intensity on growth and photosynthetic characteristics of Tulipa edulis].

    PubMed

    Xu, Hongjian; Zhu, Zaibiao; Guo, Qiaosheng; Wu, Zhengjun; Ma, Hongliang; Miao, Yuanyuan

    2012-02-01

    Present study was conducted to explore the growth and photosynthetic characteristics of Tulipa edulis under different light conditions (23%, 45%, 63%, 78%, 100% of full sunlight) and to determine the optimum light intensity for growth of T. edulis. The leaf area and biomass indicators as well as reproductive characteristics were measured. The photosynthetic basic parameters and light response curve were determined by a LI-6400XT portable photosynthesis system, and the light response curve characteristic parameters was determined. Additionally, chlorophyll fluorescence parameters were determined by assorted fluorescence leaf chamber of LI-6400XT. The lowest biomass yield was observed in the 23% and 100% of full sunlight treatments while the highest value was found under the 78% of full sunlight conditions. With the reduction of light availability, the success rate of sexual reproduction, light saturation point (LSP) and light compensation point (LCP) reduced, while apparent quantum yield (AQY) increased. 23% and 45% of full sunlight treatments led to lower photosynthesis rate (Pn) and higher apparent quantum yield (AQY) in comparison with other treatents. The highest photosynthesis rate was observed in the 78% and 100% of full sunlight treatments. In addition, 78% of full sunlight treatments led to highest Fv/Fm, Fv'/Fm', PhiPS II, ETR, and qP. T. edulis was able to adapt in a wide range of light intensity, and 78% of full sunlinght was the most suitable light condition for growth of T. edulis.

  8. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-01

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using ‘greener’ chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50-75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 103 mA cm-2 and 17.7 mW cm-2 at 8 V it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.

  9. Anomalous negative magnetoresistance of two-dimensional electrons

    NASA Astrophysics Data System (ADS)

    Kanter, Jesse; Vitkalov, Sergey; Bykov, A. A.

    2018-05-01

    Effects of temperature T (6-18 K) and variable in situ static disorder on dissipative resistance of two-dimensional electrons are investigated in GaAs quantum wells placed in a perpendicular magnetic-field B⊥. Quantum contributions to the magnetoresistance, leading to quantum positive magnetoresistance (QPMR), are separated by application of an in-plane magnetic field. QPMR decreases considerably with both the temperature and the static disorder and is in good quantitative agreement with theory. The remaining resistance R decreases with the magnetic field exhibiting an anomalous polynomial dependence on B⊥:[R (B⊥) -R (0 ) ] =A (T ,τq) B⊥η where the power is η ≈1.5 ±0.1 in a broad range of temperatures and disorder. The disorder is characterized by electron quantum lifetime τq. The scaling factor A (T ,τq) ˜[κ(τq) +β (τq) T2] -1 depends significantly on both τq and T where the first term κ ˜τq-1/2 decreases with τq. The second term is proportional to the square of the temperature and diverges with increasing static disorder. Above a critical disorder the anomalous magnetoresistance is absent, and only a positive magnetoresistance, exhibiting no distinct polynomial behavior with the magnetic field, is observed. The presented model accounts memory effects and yields η = 3/2.

  10. Anomalous quantum critical spin dynamics in YFe2Al10

    NASA Astrophysics Data System (ADS)

    Huang, K.; Tan, C.; Zhang, J.; Ding, Z.; MacLaughlin, D. E.; Bernal, O. O.; Ho, P.-C.; Baines, C.; Wu, L. S.; Aronson, M. C.; Shu, L.

    2018-04-01

    We report results of a muon spin relaxation (μ SR ) study of YFe2Al10 , a quasi-two-dimensional (2D) nearly ferromagnetic metal in which unconventional quantum critical behavior is observed. No static Fe2 + magnetism, with or without long-range order, is found down to 19 mK. The dynamic muon spin relaxation rate λ exhibits power-law divergences in temperature and magnetic field, the latter for fields that are too weak to affect the electronic spin dynamics directly. We attribute this to the proportionality of λ (ωμ,T ) to the dynamic structure factor S (ωμ,T ) , where ωμ≈105-107s-1 is the muon Zeeman frequency. These results suggest critical divergences of S (ωμ,T ) in both temperature and frequency. Power-law scaling and a 2D dissipative quantum XY model both yield forms for S (ω ,T ) that agree with neutron scattering data (ω ≈1012s-1 ). Extrapolation to μ SR frequencies agrees semiquantitatively with the observed temperature dependence of λ (ωμ,T ) , but predicts frequency independence for ωμ≪T , in extreme disagreement with experiment. We conclude that the quantum critical spin dynamics of YFe2Al10 is not well understood at low frequencies.

  11. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  12. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  13. Near infrared emission of TbAG:Ce3+,Yb3+ phosphor for solar cell applications

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Yadav, P. J.; Pathak, A. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Luminescent materials doped with rare earth ions are used for many devices such as optical amplifiers in telecommunication, phosphors for white light emitting diodes (LEDs), displays, and so on. Recently, they also have attracted a great interest for photovoltaic applications to improve solar cell efficiency by modifying solar spectrum. Crystal silicon (c-Si) solar cells most effectively convert photons of energy close to the semiconductor band gap. The mis-match between the incident solar spectrum and the spectral response of solar cells is one of the main reasons to limit the cell efficiency. The efficiency limit of the c-Si has been estimated to be 29% by Shockley and Queisser. However, this limit is estimated to be improved up to 38.4% by modifying the solar spectrum by a quantum cutting (down converting) phosphor which converts one photon of high energy into two photons of lower energy. The phenomenon such as the quantum cutting or the down conversion of rare earth ions have been investigated since Dexter reported the possibility of a luminescent quantum yield greater than unity in 1957. In the past, the quantum cutting from a vacuum ultraviolet photon to visible photons for Pr3+, Gd3+,Gd3+-Eu3+, and Er3+-Tb3+ had been studied. Recently, a new quantum cutting phenomenon from visible photon shorter than 500 nm to two infrared photons for Tb3+-Yb3+, Pr3+-Yb3+, and Tm3+-Yb3+ has been reported. The Yb3+ ion is suitable as an acceptor and emitter because luminescent quantum efficiency of Yb3+ is close to 100% and the energy of the only excited level of Yb3+ (1.2 eV) is roughly in accordance with the band gap of Si (1.1 eV). In addition, the Ce3+-doped Tb3Al5O12 (TbAG), used as a phosphor for white LED, has broad absorption bands in the range of 300-500 nm due to strong ligand field and high luminescent quantum efficiency. Therefore, the Ce3+ ions in the TbAG can be suitable as an excellent sensitizing donor for down conversion materials of Si solar cells. In this paper, Ce3+ -Yb3+-codoped TbAG ceramics were prepared and the energy transfer (ET) including down conversion mechanism in Ce3+ - Yb3+ codoped TbAG ceramics have been evaluated by the photoluminescence (PL), the photoluminescence excitation (PLE), the lifetime and the quantum yield (QY), which was measured directly using an integrating sphere.

  14. Can we Predict Quantum Yields Using Excited State Density Functional Theory for New Families of Fluorescent Dyes?

    NASA Astrophysics Data System (ADS)

    Kohn, Alexander W.; Lin, Zhou; Shepherd, James J.; Van Voorhis, Troy

    2016-06-01

    For a fluorescent dye, the quantum yield characterizes the efficiency of energy transfer from the absorbed light to the emitted fluorescence. In the screening among potential families of dyes, those with higher quantum yields are expected to have more advantages. From the perspective of theoreticians, an efficient prediction of the quantum yield using a universal excited state electronic structure theory is in demand but still challenging. The most representative examples for such excited state theory include time-dependent density functional theory (TDDFT) and restricted open-shell Kohn-Sham (ROKS). In the present study, we explore the possibility of predicting the quantum yields for conventional and new families of organic dyes using a combination of TDDFT and ROKS. We focus on radiative (kr) and nonradiative (knr) rates for the decay of the first singlet excited state (S_1) into the ground state (S_0) in accordance with Kasha's rule. M. Kasha, Discuss. Faraday Soc., 9, 14 (1950). For each dye compound, kr is calculated with the S_1-S_0 energy gap and transition dipole moment obtained using ROKS and TDDFT respectively at the relaxed S_1 geometry. Our predicted kr agrees well with the experimental value, so long as the order of energy levels is correctly predicted. Evaluation of knr is less straightforward as multiple processes are involved. Our study focuses on the S_1-T_1 intersystem crossing (ISC) and the S_1-S_0 internal conversion (IC): we investigate the properties that allow us to model the knr value using a Marcus-like expression, such as the Stokes shift, the reorganization energy, and the S_1-T_1 and S_1-S_0 energy gaps. Taking these factors into consideration, we compare our results with those obtained using the actual Marcus theory and provide explanation for discrepancy. T. Kowalczyk, T. Tsuchimochi, L. Top, P.-T. Chen, and T. Van Voorhis, J. Chem. Phys., 138, 164101 (2013). M. Kasha, Discuss. Faraday Soc., 9, 14 (1950).

  15. Effects of surface and interface traps on exciton and multi-exciton dynamics in core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Bozio, Renato; Righetto, Marcello; Minotto, Alessandro

    2017-08-01

    Exciton interactions and dynamics are the most important factors determining the exceptional photophysical properties of semiconductor quantum dots (QDs). In particular, best performances have been obtained for ingeniously engineered core/shell QDs. We have studied two factors entering in the exciton decay dynamics with adverse effects for the luminescence efficiency: exciton trapping at surface and interface traps, and non-radiative Auger recombination in QDs carrying either net charges or multiple excitons. In this work, we present a detailed study into the optical absorption, fluorescence dynamics and quantum yield, as well as ultrafast transient absorption properties of CdSe/CdS, CdSe/Cd0.5Zn0.5S, and CdSe/ZnS QDs as a function of shell thickness. It turns out that de-trapping processes play a pivotal role in determining steady state emission properties. By studying the excitation dependent photoluminescence quantum yields (PLQY) in different CdSe/CdxZn1-xS (x = 0, 0.5, 1) QDs, we demonstrate the different role played by hot and cold carrier trapping rates in determining fluorescence quantum yields. Finally, the use of global analysis allows us untangling the complex ultrafast transient absorption signals. Smoothing of interface potential, together with effective surface passivation, appear to be crucial factors in slowing down both Auger-based and exciton trapping recombination processes.

  16. Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots.

    PubMed

    Tshangana, Charmaine; Nyokong, Tebello

    2015-01-01

    L-Glutathione (GSH) capped core CdSe (2.3 nm) and core shell CdSe@ZnS quantum dots (QDs) (3.0 nm and 3.5 nm) were coordinated to gallium octacarboxy phthalocyanine (ClGaPc(COOH)8) to form ClGaPc(COOH)8-QDs conjugates. An efficient transfer of energy from the QDs to the Pcs was demonstrated through Förster resonance energy transfer (FRET), the FRET efficiencies in all cases was above 50%. The photophysical parameters (triplet state and fluorescence quantum yields and lifetimes) were also determined for the conjugates. There was a decrease in the fluorescence lifetimes of ClGaPc(COOH)8 in the presence of all the QDs, due to the heavy atom effect. The triplet quantum yields increased in the conjugates. The lifetimes also became longer for the conjugates compared to Pc alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Near-unity quantum yields from chloride treated CdTe colloidal quantum dots

    DOE PAGES

    Page, Robert C.; Espinobarro-Velazquez, Daniel; Leontiadou, Marina A.; ...

    2014-10-27

    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. We find thismore » process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours.« less

  18. Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas

    DOEpatents

    Mulhollan, Gregory A; Bierman, John C

    2012-10-30

    A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.

  19. Quantum walk on a chimera graph

    NASA Astrophysics Data System (ADS)

    Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.

    2018-05-01

    We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.

  20. Cs4PbBr6/CsPbBr3 Perovskite Composites with Near-Unity Luminescence Quantum Yield: Large-Scale Synthesis, Luminescence and Formation Mechanism, and White Light-Emitting Diode Application.

    PubMed

    Chen, Ya-Meng; Zhou, Yang; Zhao, Qing; Zhang, Jun-Ying; Ma, Ju-Ping; Xuan, Tong-Tong; Guo, Shao-Qiang; Yong, Zi-Jun; Wang, Jing; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Sun, Hong-Tao

    2018-05-09

    All-inorganic perovskites have emerged as a new class of phosphor materials owing to their outstanding optical properties. Zero-dimensional inorganic perovskites, in particular the Cs 4 PbBr 6 -related systems, are inspiring intensive research owing to the high photoluminescence quantum yield (PLQY) and good stability. However, synthesizing such perovskites with high PLQYs through an environment-friendly, cost-effective, scalable, and high-yield approach remains challenging, and their luminescence mechanisms has been elusive. Here, we report a simple, scalable, room-temperature self-assembly strategy for the synthesis of Cs 4 PbBr 6 /CsPbBr 3 perovskite composites with near-unity PLQY (95%), high product yield (71%), and good stability using low-cost, low-toxicity chemicals as precursors. A broad range of experimental and theoretical characterizations suggest that the high-efficiency PL originates from CsPbBr 3 nanocrystals well passivated by the zero-dimensional Cs 4 PbBr 6 matrix that forms based on a dissolution-crystallization process. These findings underscore the importance in accurately identifying the phase purity of zero-dimensional perovskites by synchrotron X-ray technique to gain deep insights into the structure-property relationship. Additionally, we demonstrate that green-emitting Cs 4 PbBr 6 /CsPbBr 3 , combined with red-emitting K 2 SiF 6 :Mn 4+ , can be used for the construction of WLEDs. Our work may pave the way for the use of such composite perovskites as highly luminescent emitters in various applications such as lighting, displays, and other optoelectronic and photonic devices.

  1. A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition

    NASA Astrophysics Data System (ADS)

    Seth, Sudipta; Samanta, Anunay

    2016-11-01

    A facile and highly reproducible room temperature, open atmosphere synthesis of cesium lead halide perovskite nanocrystals of six different morphologies is reported just by varying the solvent, ligand and reaction time. Sequential evolution of the quantum dots, nanoplates and nanobars in one medium and nanocubes, nanorods and nanowires in another medium is demonstrated. These perovskite nanoparticles are shown to be of excellent crystalline quality with high fluorescence quantum yield. A mechanism of the formation of nanoparticles of different shapes and sizes is proposed. Considering the key role of morphology in nanotechnology, this simple method of fabrication of a wide range of high quality nanocrystals of different shapes and sizes of all-inorganic lead halide perovskites, whose potential is already demonstrated in light emitting and photovoltaic applications, is likely to help widening the scope and utility of these materials in optoelectronic devices.

  2. Aharonov-Bohm oscillations, quantum decoherence and amplitude modulation in mesoscopic InGaAs/InAlAs rings.

    PubMed

    Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B

    2013-10-30

    Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.

  3. Thermal expansion in dispersion-bound molecular crystals

    DOE PAGES

    Ko, Hsin -Yu; DiStasio, Robert A.; Santra, Biswajit; ...

    2018-05-18

    In this paper, we explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with ab initio molecular dynamics yields cell parameters accurate to within 2% of experiment for a set of pyridinelike molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I (≈ 40% more than classical thermalmore » expansion at 153 K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. Finally, when predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and more sophisticated density functional approximations improve the accuracy of the theoretical model.« less

  4. Thermal expansion in dispersion-bound molecular crystals

    NASA Astrophysics Data System (ADS)

    Ko, Hsin-Yu; DiStasio, Robert A.; Santra, Biswajit; Car, Roberto

    2018-05-01

    We explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with ab initio molecular dynamics yields cell parameters accurate to within 2 % of experiment for a set of pyridinelike molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I (≈40 % more than classical thermal expansion at 153 K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. When predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and more sophisticated density functional approximations improve the accuracy of the theoretical model.

  5. Flexible White Light Emitting Diodes Based on Nitride Nanowires and Nanophosphors

    PubMed Central

    2016-01-01

    We report the first demonstration of flexible white phosphor-converted light emitting diodes (LEDs) based on p–n junction core/shell nitride nanowires. GaN nanowires containing seven radial In0.2Ga0.8N/GaN quantum wells were grown by metal–organic chemical vapor deposition on a sapphire substrate by a catalyst-free approach. To fabricate the flexible LED, the nanowires are embedded into a phosphor-doped polymer matrix, peeled off from the growth substrate, and contacted using a flexible and transparent silver nanowire mesh. The electroluminescence of a flexible device presents a cool-white color with a spectral distribution covering a broad spectral range from 400 to 700 nm. Mechanical bending stress down to a curvature radius of 5 mm does not yield any degradation of the LED performance. The maximal measured external quantum efficiency of the white LED is 9.3%, and the wall plug efficiency is 2.4%. PMID:27331079

  6. Thermal expansion in dispersion-bound molecular crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, Hsin -Yu; DiStasio, Robert A.; Santra, Biswajit

    In this paper, we explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with ab initio molecular dynamics yields cell parameters accurate to within 2% of experiment for a set of pyridinelike molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I (≈ 40% more than classical thermalmore » expansion at 153 K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. Finally, when predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and more sophisticated density functional approximations improve the accuracy of the theoretical model.« less

  7. Convenient determination of luminescence quantum yield using a combined electronic absorption and emission spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, John; Mishra, Ashok Kumar

    2016-01-15

    It is possible to measure luminescence quantum yield in a facile way, by designing an optical spectrometer capable of obtaining electronic absorption as well as luminescence spectra, with a setup that uses the same light source and detector for both the spectral measurements. Employment of a single light source and single detector enables use of the same correction factor profile for spectral corrections. A suitable instrumental scaling factor is used for adjusting spectral losses.

  8. Wakimoto realization of drinfeld current for the elliptic quantum algebra U{sub q,p}( widehat(sl{sub 3}) )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, T., E-mail: kojima@math.cst.nihon-u.ac.j

    2010-02-15

    We study a free field realization of the elliptic quantum algebra U{sub q,p}( widehat(sl{sub 3}) ) for arbitrary level k. We give the free field realization of elliptic analog of Drinfeld current associated with U{sub q,p}( widehat(sl{sub 3}) ) for arbitrary level k. In the limit p {yields} 0, q {yields} 1 our realization reproduces Wakimoto realization for the affine Lie algebra ( widehat(sl{sub 3}) ) .

  9. Hybrid Molecule-Nanocrystal Photon Upconversion Across the Visible and Near-Infrared

    DTIC Science & Technology

    2015-07-10

    applications in solar energy, biological imaging , and data storage. In this Letter, CdSe and PbSe semiconductor nanocrystals are combined with molecular...Goldschmidt, J. C. Absolute Upconversion Quantum Yield of β-NaYF4 Doped with Er3+ and External Quantum Efficiency of Upconverter Solar Cell Devices...C. Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell . Science 2011, 334, 1530−1533. (37) Choi, J.-H

  10. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications

    NASA Astrophysics Data System (ADS)

    Regulacio, Michelle D.; Win, Khin Yin; Lo, Seong Loong; Zhang, Shuang-Yuan; Zhang, Xinhai; Wang, Shu; Han, Ming-Yong; Zheng, Yuangang

    2013-02-01

    Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated.Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated. Electronic supplementary information (ESI) available: Quantum yields, EDX spectrum and photoluminescence decay curves. See DOI: 10.1039/c3nr34159c

  11. Measurement of Quantum Yield, Quantum Requirement, and Energetic Efficiency of the O2-Evolving System of Photosynthesis by a Simple Dye Reaction

    NASA Astrophysics Data System (ADS)

    Ros Barcelò, A.; Zapata, J. M.

    1996-11-01

    Photosynthesis is the conversion of absorbed radiant energy from sunlight into various forms of chemical energy by the chloroplasts of higher green plants. The overall process of photosynthesis consists of the oxidation of water (with the release of O2 as a product) and the reduction of CO2 to form carbohydrates. In the test tube electrons produced by the photolytic cleavage of H2) may be deviated from their true acceptor by inserting a suitable dye in the electron chain; i.e.; 2,6-dichlorophenol indophenol (DCPIP) (E'o = + 0.217 V), which is blue in the oxidized quinone form and which becomes colorless when reduced to the phenolic form. This dye-electrom acceptor also has the advantage that it accepts electroms directly from the quinone (Qa) electron-acceptor of the photosystem II< the reaction center associated with the O2-evolving (or water-slplitting) system. Based in the bleaching of DCPIP by illuminated spinach leaf chloroplasts, a classroom laboratory protocol has been developed to determine the quantum yield (QY = micromol O2 s-1 / micromol photons s-1, the quantum requirement (1/QY) and the energetic efficiency (f = chemical energy stored / light energy supplied) of the O2-evolving system of photosynthesis. Although values for the quantum yield, the quantum requirement and the energetic efficiency calculated in the classroom laboratory differ widely from those expected theoretically, these calculations are useful for illustrating the transformation of light energy into chemical energy by the chloroplasts of green plants.

  12. Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation.

    PubMed

    Liu, Chao; Li, Zhou; Hajagos, Tibor Jacob; Kishpaugh, David; Chen, Dustin Yuan; Pei, Qibing

    2017-06-27

    Spectroscopic gamma-photon detection has widespread applications for research, defense, and medical purposes. However, current commercial detectors are either prohibitively expensive for wide deployment or incapable of producing the characteristic gamma photopeak. Here we report the synthesis of transparent, ultra-high-loading (up to 60 wt %) Cd x Zn 1-x S/ZnS core/shell quantum dot/polymer nanocomposite monoliths for gamma scintillation by in situ copolymerization of the partially methacrylate-functionalized quantum dots in a monomer solution. The efficient Förster resonance energy transfer of the high-atomic-number quantum dots to lower-band-gap organic dyes enables the extraction of quantum-dot-borne excitons for photon production, resolving the problem of severe light yield deterioration found in previous nanoparticle-loaded scintillators. As a result, the nanocomposite scintillator exhibited simultaneous improvements in both light yield (visible photons produced per MeV of gamma-photon energy) and gamma attenuation. With these enhancements, a 662 keV Cs-137 gamma photopeak with 9.8% resolution has been detected using a 60 wt % quantum-dot nanocomposite scintillator, demonstrating the potential of such a nanocomposite system in the development of high-performance low-cost spectroscopic gamma detectors.

  13. Development of a high-voltage waveguide photodetector comprised of Schottky diodes and based on the Ge-Si structure with Ge quantum dots for portable thermophotovoltaic converters

    NASA Astrophysics Data System (ADS)

    Pakhanov, N. A.; Pchelyakov, O. P.; Yakimov, A. I.; Voitsekhovskii, A. V.

    2017-03-01

    This paper demontstrates the possibility of developing a high-voltage waveguide photodetector comprised of Schottky diodes and based on a Au/Ge — Si structure with Ge quantum dots pseudomorphic to a silicon matrix, which ensures an increase in the external quantum yield and open-circuit voltage. It is shown on this photodetector that there is a great increase and broadening in sensitivity up to λ = 2.1 μm, which coincides with the main radiation range of a black (gray) body at the emitter temperatures from 1200 to 1700 °C, practically used in thermophotovoltaic converters. This state of the ensemble of Ge quantum dots by means of molecular beam epitaxy can be obtained only under the condition of low growth temperature (250-300 °C). It is established that, below the Si absorption edge, photoresponse on the photodetectors under consideration is determined by two main mechanisms: absorption on the ensemble of Ge quantum dots and Fowler emission. It is shown by the analysis of the Raman scattering spectra on the optical photons of Ge-Si structures that the quantum efficiency of photodetectors based on them in the first case is due to the degree of nonuniform stress relaxation in the array of Ge quantum dots. The photoresponse directly associated with the Ge quantum dots is manifested on Schottky diodes with a superthin intermediate oxide layer SiO2, which eliminates the second mechanism. In further development, the proposed photodetector architecture with pseudomorphic Ge quantum dots can be used both for portable thermophotovoltaic converters and fiber-optic data transmission systems at wavelengths corresponding to basic telecommunication standards (λ = 0.85, 1.3 and 1.55, 1.3, and 1.55 μm) on the basis of silicon technologies.

  14. Homeotropic alignment and Förster resonance energy transfer: The way to a brighter luminescent solar concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J.

    2014-11-07

    We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is notmore » a hindrance for this design.« less

  15. Water catalysis and anticatalysis in photochemical reactions: observation of a delayed threshold effect in the reaction quantum yield.

    PubMed

    Kramer, Zeb C; Takahashi, Kaito; Skodje, Rex T

    2010-11-03

    The possible catalysis of photochemical reactions by water molecules is considered. Using theoretical simulations, we investigate the HF-elimination reaction of fluoromethanol in small water clusters initiated by the overtone excitation of the hydroxyl group. The reaction occurs in competition with the process of water evaporation that dissipates the excitation and quenches the reaction. Although the transition state barrier is stabilized by over 20 kcal/mol through hydrogen bonding with water, the quantum yield versus energy shows a pronounced delayed threshold that effectively eliminates the catalytic effect. It is concluded that the quantum chemistry calculations of barrier lowering are not sufficient to infer water catalysis in some photochemical reactions, which instead require dynamical modeling.

  16. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    NASA Astrophysics Data System (ADS)

    Szuchmacher Blum, Amy; Soto, Carissa M.; Wilson, Charmaine D.; Whitley, Jessica L.; Moore, Martin H.; Sapsford, Kim E.; Lin, Tianwei; Chatterji, Anju; Johnson, John E.; Ratna, Banahalli R.

    2006-10-01

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot protein assemblies were studied in detail. The IgG QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV QD complexes have a local concentration of quantum dots greater than 3000 nmol ml-1, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  17. Bifunctional Diaminoterephthalate Fluorescent Dye as Probe for Cross-Linking Proteins.

    PubMed

    Wallisch, Melanie; Sulmann, Stefan; Koch, Karl-Wilhelm; Christoffers, Jens

    2017-05-11

    Diaminoterephthalates are fluorescent dyes and define scaffolds, which can be orthogonally functionalized at their two carboxylate residues with functional residues bearing task specific reactive groups. The synthesis of monofunctionalized dyes with thiol groups for surface binding, an azide for click chemistry, and a biotinoylated congener for streptavidin binding is reported. Two bifunctionalized dyes were prepared: One with an azide for click chemistry and a biotin for streptavidin binding, the other with a maleimide for reaction with thiol and a cyclooctyne moiety for ligation with copper-free click chemistry. In general, the compounds are red to orange, fluorescent materials with an absorption at about 450 nm and an emission at 560 nm with quantum yields between 2-41 %. Of particular interest is the maleimide-functionalized compound, which shows low fluorescence quantum yield (2 %) by itself. After addition of a thiol, the fluorescence is "turned on"; quantum yield 41 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    PubMed Central

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; Ma, Zhuoran; Zhang, Zhe; Zhu, Shoujun; Wang, Joy; Lozano, Alexander X.; Fan, Quli; Chew, Leila; Zhu, Mark; Cheng, Kai; Hong, Xuechuan; Dai, Hongjie; Cheng, Zhen

    2017-01-01

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with >1,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. Here, we report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for the fastest video-rate imaging in the second NIR window with ∼50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. In addition, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body. PMID:28524850

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filip, Radim; Marek, Petr; Fiurasek, Jaromir

    We analyze a reversibility of optimal Gaussian 1{yields}2 quantum cloning of a coherent state using only local operations on the clones and classical communication between them and propose a feasible experimental test of this feature. Performing Bell-type homodyne measurement on one clone and anticlone, an arbitrary unknown input state (not only a coherent state) can be restored in the other clone by applying appropriate local unitary displacement operation. We generalize this concept to a partial reversal of the cloning using only local operations and classical communication (LOCC) and we show that this procedure converts the symmetric cloner to an asymmetricmore » cloner. Further, we discuss a distributed LOCC reversal in optimal 1{yields}M Gaussian cloning of coherent states which transforms it to optimal 1{yields}M{sup '} cloning for M{sup '}

  20. Calculated quantum yield of photosynthesis of phytoplankton in the Marine Light-Mixed Layers (59 deg N, 21 deg W)

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Lee, Z. P.; Marra, John; Steward, R. G.; Perry, M. J.

    1995-01-01

    The quantum yield of photosynthesis (mol C/mol photons) was calculated at six depths for the waters of the Marine Light-Mixed Layer (MLML) cruise of May 1991. As there were photosynthetically available radiation (PAR) but no spectral irradiance measurements for the primary production incubations, three ways are presented here for the calculation of the absorbed photons (AP) by phytoplankton for the purpose of calculating phi. The first is based on a simple, nonspectral model; the second is based on a nonlinear regression using measured PAR values with depth; and the third is derived through remote sensing measurements. We show that the results of phi calculated using the nonlinear regreesion method and those using remote sensing are in good agreement with each other, and are consistent with the reported values of other studies. In deep waters, however, the simple nonspectral model may cause quantum yield values much higher than theoretically possible.

  1. Photosensitized electron transport across lipid vesicle walls: Enhancement of quantum yield by ionophores and transmembrane potentials

    PubMed Central

    Laane, Colja; Ford, William E.; Otvos, John W.; Calvin, Melvin

    1981-01-01

    The photosensitized reduction of heptylviologen in the bulk aqueous phase of phosphatidylcholine vesicles containing EDTA inside and a membrane-bound tris(2,2′-bipyridine)ruthenium(2+) derivative is enhanced by a factor of 6.5 by the addition of valinomycin in the presence of K+. A 3-fold stimulation by gramicidin and carbonyl cyanide m-chlorophenylhydrazone is observed. The results suggest that, under these conditions, the rate of photoinduced electron transfer across vesicle walls in the absence of ion carriers is limited by cotransport of cations. The rate of electron transfer across vesicle walls could be influenced further by generating transmembrane potentials with K+ gradients in the presence of valinomycin. When vesicles are made with transmembrane potentials, interior more negative, the quantum yield of heptylviologen reduction is doubled, and, conversely, when vesicles are made with transmembrane potentials, interior more positive, the quantum yield is decreased and approaches the value found in the absence of valinomycin. PMID:16593002

  2. Synthesis and spectroscopic properties of some new difluoroboron bis-β-diketonate derivatives.

    PubMed

    Pi, Yan; Wang, Dun-Jia; Liu, Hua; Hu, Yan-Jun; Wei, Xian-Hong; Zheng, Jing

    2014-10-15

    Six new bis-β-diketones (RCOCH2CO-C7H7N-COCH2COR) were synthesized from 3,5-diacetyl-2,6-dimethylpyridine via Claisen condensation with the corresponding esters, and then reacted with boron trifluoride etherate to afford difluoroboron bis-β-diketonate derivatives. Their spectroscopic properties were investigated by UV-vis, FTIR, (1)H NMR and fluorescence spectroscopic techniques. It was found that these boron complexes exhibited violet or blue fluorescence emission at 422-445nm and possessed high extinction coefficients. The results indicate that the extending π-conjugation can increase the fluorescence intensity and quantum yield for these boron complexes. Especially, the compound 2b displayed the stronger fluorescence intensity and the highest fluorescence quantum yield (Φu=0.94) in these boron compounds. However, compounds 2c and 2d had the lower fluorescence intensity and quantum yield as a result of the heavy atom effect of the chlorine atom in the molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis and spectroscopic properties of some new difluoroboron bis-β-diketonate derivatives

    NASA Astrophysics Data System (ADS)

    Pi, Yan; Wang, Dun-Jia; Liu, Hua; Hu, Yan-Jun; Wei, Xian-Hong; Zheng, Jing

    2014-10-01

    Six new bis-β-diketones (RCOCH2CO-C7H7N-COCH2COR) were synthesized from 3,5-diacetyl-2,6-dimethylpyridine via Claisen condensation with the corresponding esters, and then reacted with boron trifluoride etherate to afford difluoroboron bis-β-diketonate derivatives. Their spectroscopic properties were investigated by UV-vis, FTIR, 1H NMR and fluorescence spectroscopic techniques. It was found that these boron complexes exhibited violet or blue fluorescence emission at 422-445 nm and possessed high extinction coefficients. The results indicate that the extending π-conjugation can increase the fluorescence intensity and quantum yield for these boron complexes. Especially, the compound 2b displayed the stronger fluorescence intensity and the highest fluorescence quantum yield (Φu = 0.94) in these boron compounds. However, compounds 2c and 2d had the lower fluorescence intensity and quantum yield as a result of the heavy atom effect of the chlorine atom in the molecules.

  4. Determination of apparent quantum yield spectra of DMS photo-degradation in an in situ iron-induced Northeast Pacific Ocean bloom

    NASA Astrophysics Data System (ADS)

    Bouillon, René-Christian; Miller, William L.

    2004-03-01

    The wavelength dependence of the photochemical removal efficiency for DMS was studied for samples from an iron-induced bloom in the Northeastern Pacific Ocean. In July 2002, a 64 km2 patch of ocean was iron-fertilized near Ocean Station Papa (50°12'N 144°45'W). Only small changes in pseudo-first-order apparent quantum yield (AQY*DMS(λ)) were observed outside the iron-patch. However, inside the patch, AQY*DMS(λ) decreased considerably over the two weeks following the initial iron injection. A positive strong correlation was found between pseudo-first-order apparent quantum yield determined at 330 nm (AQY*DMS(330 nm)) and NO3- concentrations. We propose that NO3--photolysis has a substantial influence on DMS photo-degradation rates in oceanic waters. This finding demonstrates that in addition to control DMS production, marine phytoplankton could indirectly influence the DMS photochemical loss rate via its control on NO3- distribution.

  5. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less

  6. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging

    DOE PAGES

    Antaris, Alexander L.; Chen, Hao; Diao, Shuo; ...

    2017-05-19

    Fluorescence imaging in the second near-infrared window (NIR-II) allows visualization of deep anatomical features with an unprecedented degree of clarity. NIR-II fluorophores draw from a broad spectrum of materials spanning semiconducting nanomaterials to organic molecular dyes, yet unfortunately all water-soluble organic molecules with 41,000 nm emission suffer from low quantum yields that have limited temporal resolution and penetration depth. We report tailoring the supramolecular assemblies of protein complexes with a sulfonated NIR-II organic dye (CH-4T) to produce a brilliant 110-fold increase in fluorescence, resulting in the highest quantum yield molecular fluorophore thus far. The bright molecular complex allowed for themore » fastest video-rate imaging in the second NIR window with B50-fold reduced exposure times at a fast 50 frames-per-second (FPS) capable of resolving mouse cardiac cycles. Additionally, we demonstrate that the NIR-II molecular complexes are superior to clinically approved ICG for lymph node imaging deep within the mouse body.« less

  7. [Optical and spectral parameters in Ce3+ -doped gadolinium gallium aluminum garnet glass-ceramics].

    PubMed

    Gong, Hua; Zhao, Xin; Yu, Xiao-bo; Setsuhisa, Tanabe; Lin, Hai

    2010-01-01

    The crystalline phases of Ce3+ -doped gadolinium gallium aluminum garnet (GGAG) glass-ceramics were investigated by X-ray diffraction, and the fluorescence spectra were recorded under the pumping of blue light-emitting diode (LED) using an integrating sphere of 10-inch in diameter, which connected to a CCD detector. The spectral power distribution of the glass-ceramics was obtained from the measured spectra first, and then the quantum yield was derived based on the photon distribution. The quantum yield of Ce3+ emission in GGAG glass-ceramics is 29.2%, meanwhile, the color coordinates and the correlated color temperature (CCT) of combined white light were proved to be x = 0.319, y = 0.349 and 6086 K, respectively. Although the quantum yield is a little smaller than the value in Ce3+ -doped YAG glass-ceramics, the CCT of the combined white light is much smaller than that in the latter. The optical behavior of GGAG glass-ceramics provides new vision for developing comfortable LED lighting devices.

  8. Excitonic Emission of Monolayer Semiconductors Near-Field Coupled to High-Q Microresonators

    NASA Astrophysics Data System (ADS)

    Javerzac-Galy, Clément; Kumar, Anshuman; Schilling, Ryan D.; Piro, Nicolas; Khorasani, Sina; Barbone, Matteo; Goykhman, Ilya; Khurgin, Jacob B.; Ferrari, Andrea C.; Kippenberg, Tobias J.

    2018-05-01

    We present quantum yield measurements of single layer $\\textrm{WSe}_2$ (1L-$\\textrm{WSe}_2$) integrated with high-Q ($Q>10^6$) optical microdisk cavities, using an efficient ($\\eta>$90%) near-field coupling scheme based on a tapered optical fiber. Coupling of the excitonic emission is achieved by placing 1L-WSe$_2$ to the evanescent cavity field. This preserves the microresonator high intrinsic quality factor ($Q>10^6$) below the bandgap of 1L-WSe$_2$. The nonlinear excitation power dependence of the cavity quantum yield is in agreement with an exciton-exciton annihilation model. The cavity quantum yield is $\\textrm{QY}_\\textrm{c}\\sim10^{-3}$, consistent with operation in the \\textit{broad emitter} regime (i.e. the emission lifetime of 1L-WSe$_2$ is significantly shorter than the bare cavity decay time). This scheme can serve as a precise measurement tool for the excitonic emission of layered materials into cavity modes, for both in plane and out of plane excitation.

  9. Predicting fluorescence quantum yield for anisole at elevated temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Tran, K. H.; Morin, C.; Bonnety, J.; Legros, G.; Guibert, P.

    2017-07-01

    Aromatic molecules are promising candidates for using as a fluorescent tracer for gas-phase scalar parameter diagnostics in a drastic environment like engines. Along with anisole turning out an excellent temperature tracer by Planar Laser-Induced Fluorescence (PLIF) diagnostics in Rapid Compression Machine (RCM), its fluorescence signal evolution versus pressure and temperature variation in a high-pressure and high-temperature cell have been reported in our recent paper on Applied Phys. B by Tran et al. Parallel to this experimental study, a photophysical model to determine anisole Fluorescence Quantum Yield (FQY) is delivered in this paper. The key to development of the model is the identification of pressure, temperature, and ambient gases, where the FQY is dominated by certain processes of the model (quenching effect, vibrational relaxation, etc.). In addition to optimization of the vibrational relaxation energy cascade coefficient and the collision probability with oxygen, the non-radiative pathways are mainly discussed. The common non-radiative rate (intersystem crossing and internal conversion) is simulated in parametric form as a function of excess vibrational energy, derived from the data acquired at different pressures and temperatures from the literature. A new non-radiative rate, namely, the equivalent Intramolecular Vibrational Redistribution or Randomization (IVR) rate, is proposed to characterize anisole deactivated processes. The new model exhibits satisfactory results which are validated against experimental measurements of fluorescence signal induced at a wavelength of 266 nm in a cell with different bath gases (N2, CO2, Ar and O2), a pressure range from 0.2 to 4 MPa, and a temperature range from 473 to 873 K.

  10. Sunlight photolysis of benzotriazoles - Identification of transformation products and pathways.

    PubMed

    Weidauer, Cindy; Davis, Caroline; Raeke, Julia; Seiwert, Bettina; Reemtsma, Thorsten

    2016-07-01

    Benzotriazoles (BTs) are widely used corrosion inhibitors, incompletely removed in municipal wastewater treatment. The photochemical fate of the three BTs 1H-benzotriazole (1H-BT), 4-methyl-1H-benzotriazole (4Me-BT) and 5-methyl-1H-benzotriazole (5Me-BT) and of three microbial metabolites, was studied under simulated sunlight (290-800 nm) at neutral pH in aqueous solution for 24 h. The half-life, the quantum yield and the reaction rate were determined and a total of 36 photolysis products were detected and identified using liquid chromatography-high resolution-mass spectrometry. The half-lives of all six BTs were in the range of 6-24 h under the experimental conditions. Though the quantum yields were comparatively low (0.0007-0.0021), the environmental half-lives ranged from 2.4 to 8 d, suggesting that sunlight photolysis is still a relevant degradation process of BTs in surface waters. The photolysis pathway of 1H-BT under simulated sunlight differed from that suggested for UV-radiation, in that aminophenol is formed directly rather than via aniline. Similar pathways were found for the other BTs, except for 4-hydroxy-1H-benzotriazole (4OH-BT). Most identified transformation products of the BTs showed a high reactivity and appear not to persist in the environment. Upon co-photolysis of BTs with dissolved organic matter (DOM), however, series of reaction products were determined by Fourier transform - ion cyclotron resonance - mass spectrometry (FTICR-MS) which are formed by reaction of photolysis intermediates of the BTs with DOM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Oligofluorenes as polymeric model compounds for providing insight into the triplets of ketone and ketylimine derivatives.

    PubMed

    Robert, Patricia; Bolduc, Andréanne; Skene, W G

    2012-09-20

    A series of oligofluorenes ranging between one and three repeating units were prepared as structurally well-defined representative models of polyfluorenes. The photophysics of the oligofluorene models were investigated both by laser flash photolysis and steady-state fluorescence. The effects of the ketone and ketylimine functional groups in the 9-position on the photophysical properties, notably the triplet quantum yield (Φ(TT)) by intersystem crossing and the absolute fluorescence quantum yields (Φ(fl)), were investigated. The singlet depletion method was used to determine both the Φ(TT) and molar absorption coefficients of the observed triplets (ε(TT)). Meanwhile, the absolute Φ(fl) were determined using an integrating sphere. It was found that both the ketone and ketylimine substituents and the degree of oligomerization contributed to quenching the oligofluorene fluorescence. For example, the Φ(fl) was quenched 5-fold with the ketylimine and ketone substituents for the bifluorenyl derivatives compared to their corresponding 9,9-dihexyl bifluorenyl counterparts. Meanwhile, the Φ(fl) quenching increased 14 times with the trifluorenyl ketone and ketylimine derivatives. Measured Φ(TT) values ranged between 22 and 43% for the difluorenyl derivatives with ε(TT) on the order of 13 000 cm(-1) M(-1). The Φ(TT) decreased to <10% concomitant with doubling of the ε(TT) when the degree of oligomerization was increased to 3. A new fluorescence emission at 545 nm formed at low temperatures for the ketone and ketylimine oligofluorene derivatives. The emission intensity was dependent on the temperature, and it disappeared at room temperature.

  12. Synthesis and characterization of high quantum yield and oscillator strength 6-chloro-2-(4-cynophenyl)-4-phenyl quinoline (cl-CN-DPQ) organic phosphor for solid-state lighting.

    PubMed

    Ghate, Minakshi; Dahule, H K; Thejo Kalyani, N; Dhoble, S J

    2018-03-01

    A novel blue luminescent 6-chloro-2-(4-cynophenyl) substituted diphenyl quinoline (Cl-CN DPQ) organic phosphor has been synthesized by the acid-catalyzed Friedlander reaction and then characterized to confirm structural, optical and thermal properties. Structural properties of Cl-CN-DPQ were analyzed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction technique (XRD) and scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) spectroscopy. FTIR spectra confirmed the presence of different functional groups and bond stretching. 1 H-NMR and 13 C-NMR confirmed the formation of an organic Cl-CN-DPQ compound. X-ray diffraction study provided its crystalline nature. The surface morphology of Cl-CN-DPQ was analyzed by SEM, while EDAX spectroscopy revealed the elemental analysis. Differential thermal analysis (TGA/DTA) disclosed its thermal stability up to 250°C. The optical properties of Cl-CN-DPQ were investigated by UV-vis absorption and photoluminescence (PL) measurements. Cl-CN-DPQ exhibits intense blue emission at 434 nm in a solid-state crystalline powder with CIE co-ordinates (0.157, 0.027), when excited at 373 nm. Cl-CN-DPQ shows remarkable Stokes shift in the range 14800-5100 cm -1 , which is the characteristic feature of intense light emission. A narrow full width at half-maximum (FWHM) value of PL spectra in the range 42-48 nm was observed. Oscillator strength, energy band gap, quantum yield, and fluorescence energy yield were also examined using UV-vis absorption and photoluminescence spectra. These results prove its applications towards developing organic luminescence devices and displays, organic phosphor-based solar cells and displays, organic lasers, chemical sensors and many more. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Hydroxyl Radical Fluorescence and Quantum Yield Following Lyman-α Photoexcitation of Water Vapor in a Room Temperature Cell and Cooled in a Supersonic Expansion.

    PubMed

    Young, Justin W; Booth, Ryan S; Vogelhuber, Kristen M; Stearns, Jaime A; Annesley, Christopher J

    2018-06-28

    Photoexcitation of water by Lyman-α (121.6 nm) induces a dissociation reaction that produces OH(A 2 Σ + ) + H. Despite this reaction being part of numerous studies, a combined understanding of the product and fluorescence yields is still lacking. Here, the rotational and vibrational distributions of OH(A) are determined from dispersed fluorescence following photoexcitation of both room-temperature and jet-cooled water vapor, for the first time in the same experiment. This work compares new data of state-resolved fluorescence with literature molecular branching ratios and brings previous studies into agreement through careful consideration of OH(A) fluorescent and predissociation lifetimes and confirms a fluorescent quantum yield of 8%. Comparison of the room-temperature and jet-cooled OH(A) populations indicate the temperature of H 2 O prior to excitation has subtle effects on the OH(A) population distribution, such as altering the rotational distribution in the ν' = 0 population and affecting the population in the ν' = 1 state. These results indicate jet-cooled water vapor may have a 1% higher fluorescence quantum yield compared to room-temperature water vapor.

  14. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.

    PubMed

    Sheaff, Chrystal N; Eastwood, Delyle; Wai, Chien M

    2007-01-01

    The detection of explosive material is at the forefront of current analytical problems. A detection method is desired that is not restricted to detecting only explosive materials, but is also capable of identifying the origin and type of explosive. It is essential that a detection method have the selectivity to distinguish among compounds in a mixture of explosives. The nitro compounds found in explosives have low fluorescent yields or are considered to be non-fluorescent; however, after reduction, the amino compounds exhibit relatively high fluorescence. We discuss how to increase selectivity of explosive detection using fluorescence; this includes synchronous luminescence and derivative spectroscopy with appropriate smoothing. By implementing synchronous luminescence and derivative spectroscopy, we were able to resolve the reduction products of one major TNT-based explosive compound, 2,4-diaminotoluene, and the reduction products of other minor TNT-based explosives in a mixture. We also report for the first time the quantum yields of these important compounds. Relative quantum yields are useful in establishing relative fluorescence intensities and are an important spectroscopic measurement of molecules. Our approach allows for rapid, sensitive, and selective detection with the discrimination necessary to distinguish among various explosives.

  15. Augmented Quantum Yield of a 2D Monolayer Photodetector by Surface Plasmon Coupling.

    PubMed

    Bang, Seungho; Duong, Ngoc Thanh; Lee, Jubok; Cho, Yoo Hyun; Oh, Hye Min; Kim, Hyun; Yun, Seok Joon; Park, Chulho; Kwon, Min-Ki; Kim, Ja-Yeon; Kim, Jeongyong; Jeong, Mun Seok

    2018-04-11

    Monolayer (1L) transition metal dichalcogenides (TMDCs) are promising materials for nanoscale optoelectronic devices because of their direct band gap and wide absorption range (ultraviolet to infrared). However, 1L-TMDCs cannot be easily utilized for practical optoelectronic device applications (e.g., photodetectors, solar cells, and light-emitting diodes) because of their extremely low optical quantum yields (QYs). In this investigation, a high-gain 1L-MoS 2 photodetector was successfully realized, based on the surface plasmon (SP) of the Ag nanowire (NW) network. Through systematic optical characterization of the hybrid structure consisting of a 1L-MoS 2 and the Ag NW network, it was determined that a strong SP and strain relaxation effect influenced a greatly enhanced optical QY. The photoluminescence (PL) emission was drastically increased by a factor of 560, and the main peak was shifted to the neutral exciton of 1L-MoS 2 . Consequently, the overall photocurrent of the hybrid 1L-MoS 2 photodetector was observed to be 250 times better than that of the pristine 1L-MoS 2 photodetector. In addition, the photoresponsivity and photodetectivity of the hybrid photodetector were effectively improved by a factor of ∼1000. This study provides a new approach for realizing highly efficient optoelectronic devices based on TMDCs.

  16. Predicting apparent singlet oxygen quantum yields of dissolved black carbon and humic substances using spectroscopic indices.

    PubMed

    Du, Ziyan; He, Yingsheng; Fan, Jianing; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Qu, Xiaolei; Kong, Ao; Zhu, Dongqiang

    2018-03-01

    Dissolved black carbon (DBC) is ubiquitous in aquatic systems, being an important subgroup of the dissolved organic matter (DOM) pool. Nevertheless, its aquatic photoactivity remains largely unknown. In this study, a range of spectroscopic indices of DBC and humic substance (HS) samples were determined using UV-Vis spectroscopy, fluorescence spectroscopy, and proton nuclear magnetic resonance. DBC can be readily differentiated from HS using spectroscopic indices. It has lower average molecular weight, but higher aromaticity and lignin content. The apparent singlet oxygen quantum yield (Φ singlet oxygen ) of DBC under simulated sunlight varies from 3.46% to 6.13%, significantly higher than HS, 1.26%-3.57%, suggesting that DBC is the more photoactive component in the DOM pool. Despite drastically different formation processes and structural properties, the Φ singlet oxygen of DBC and HS can be well predicted by the same simple linear regression models using optical indices including spectral slope coefficient (S 275-295 ) and absorbance ratio (E 2 /E 3 ) which are proxies for the abundance of singlet oxygen sensitizers and for the significance of intramolecular charge transfer interactions. The regression models can be potentially used to assess the photoactivity of DOM at large scales with in situ water spectrophotometry or satellite remote sensing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A Brown Mesoporous TiO2-x /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H2 Evolution.

    PubMed

    Xing, Mingyang; Zhang, Jinlong; Qiu, Bocheng; Tian, Baozhu; Anpo, Masakazu; Che, Michel

    2015-04-24

    A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen-doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2 /MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high-concentration F doping and the synergistic effect between lattice Ti(3+)-F and surface Ti(3+)-F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as-prepared F-doped composite is an ideal solar light-driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Experimental implementation of local adiabatic evolution algorithms by an NMR quantum information processor.

    PubMed

    Mitra, Avik; Ghosh, Arindam; Das, Ranabir; Patel, Apoorva; Kumar, Anil

    2005-12-01

    Quantum adiabatic algorithm is a method of solving computational problems by evolving the ground state of a slowly varying Hamiltonian. The technique uses evolution of the ground state of a slowly varying Hamiltonian to reach the required output state. In some cases, such as the adiabatic versions of Grover's search algorithm and Deutsch-Jozsa algorithm, applying the global adiabatic evolution yields a complexity similar to their classical algorithms. However, using the local adiabatic evolution, the algorithms given by J. Roland and N.J. Cerf for Grover's search [J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A 65 (2002) 042308] and by Saurya Das, Randy Kobes, and Gabor Kunstatter for the Deutsch-Jozsa algorithm [S. Das, R. Kobes, G. Kunstatter, Adiabatic quantum computation and Deutsh's algorithm, Phys. Rev. A 65 (2002) 062301], yield a complexity of order N (where N=2(n) and n is the number of qubits). In this paper, we report the experimental implementation of these local adiabatic evolution algorithms on a 2-qubit quantum information processor, by Nuclear Magnetic Resonance.

  19. Observable measure of quantum coherence in finite dimensional systems.

    PubMed

    Girolami, Davide

    2014-10-24

    Quantum coherence is the key resource for quantum technology, with applications in quantum optics, information processing, metrology, and cryptography. Yet, there is no universally efficient method for quantifying coherence either in theoretical or in experimental practice. I introduce a framework for measuring quantum coherence in finite dimensional systems. I define a theoretical measure which satisfies the reliability criteria established in the context of quantum resource theories. Then, I present an experimental scheme implementable with current technology which evaluates the quantum coherence of an unknown state of a d-dimensional system by performing two programmable measurements on an ancillary qubit, in place of the O(d2) direct measurements required by full state reconstruction. The result yields a benchmark for monitoring quantum effects in complex systems, e.g., certifying nonclassicality in quantum protocols and probing the quantum behavior of biological complexes.

  20. Primary photophysical properties of moxifloxacin--a fluoroquinolone antibiotic.

    PubMed

    Lorenzo, Fernando; Navaratnam, Suppiah; Edge, Ruth; Allen, Norman S

    2008-01-01

    The photophysical properties of the fluoroquinolone antibiotic moxifloxacin (MOX) were investigated in aqueous media. MOX in water, at pH 7.4, shows two intense absorption bands at 287 and 338 nm (epsilon = 44,000 and 17,000 dm(3) mol(-1) cm(-1), respectively). The absorption and emission properties of MOX are pH-dependent, pK(a) values for the protonation equilibria of both the ground (6.1 and 9.6) and excited singlet states (6.8 and 9.1) of MOX were determined spectroscopically. MOX fluoresces weakly, the quantum yield for fluorescence emission being maximum (0.07) at pH 8. Phosphorescence from the excited triplet state in frozen ethanol solution has a quantum yield of 0.046. Laser flash photolysis and pulse radiolysis studies have been carried out to characterize the transient species of MOX in aqueous solution. On laser excitation, MOX undergoes monophotonic photoionization with a quantum yield of 0.14. This leads to the formation of a long-lived cation radical whose absorption is maximum at 470 nm (epsilon(470) = 3400 dm(3) mol(-1) cm(-1)). The photoionization process releases hydrated electron which rapidly reacts (k = 2.8 x 10(10) dm(3) mol(-1) s(-1)) with ground state MOX, yielding a long-lived anion radical with maximum absorption at 390 nm (epsilon(390) = 2400 dm(3) mol(-1) cm(-1)). The cation radical of MOX is able to oxidize protein components tryptophan and tyrosine. The bimolecular rate constants for these reactions are 2.3 x 10(8) dm(3) mol(-1) s(-1) and 1.3 x 10(8) dm(3) mol(-1) s(-1), respectively. Singlet oxygen sensitized by the MOX triplet state was also detected only in oxygen-saturated D(2)O solutions, with a quantum yield of 0.075.

  1. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals.

    PubMed

    Gresback, Ryan; Hue, Ryan; Gladfelter, Wayne L; Kortshagen, Uwe R

    2011-01-12

    Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs.

  2. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    PubMed Central

    2011-01-01

    Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs. PMID:21711589

  3. Combined plasma gas-phase synthesis and colloidal processing of InP/ZnS core/shell nanocrystals

    NASA Astrophysics Data System (ADS)

    Gresback, Ryan; Hue, Ryan; Gladfelter, Wayne L.; Kortshagen, Uwe R.

    2011-12-01

    Indium phosphide nanocrystals (InP NCs) with diameters ranging from 2 to 5 nm were synthesized with a scalable, flow-through, nonthermal plasma process at a rate ranging from 10 to 40 mg/h. The NC size is controlled through the plasma operating parameters, with the residence time of the gas in the plasma region strongly influencing the NC size. The NC size distribution is narrow with the standard deviation being less than 20% of the mean NC size. Zinc sulfide (ZnS) shells were grown around the plasma-synthesized InP NCs in a liquid phase reaction. Photoluminescence with quantum yields as high as 15% were observed for the InP/ZnS core-shell NCs.

  4. Higher biomolecules yield in phytoplankton under copper exposure.

    PubMed

    Silva, Jaqueline Carmo; Echeveste, Pedro; Lombardi, Ana Teresa

    2018-05-30

    Copper is an important metal for industry, and its toxic threshold in natural ecosystems has increased since the industrial revolution. As an essential nutrient, it is required in minute amounts, being toxic in slightly increased concentrations, causing great biochemical transformation in microalgae. This study aimed at investigating the physiology of Scenedesmus quadricauda, a cosmopolitan species, exposed to copper concentrations including those that trigger intracellular biochemical modifications. The Cu exposure concentrations tested ranged from 0.1 to 25 µM, thus including environmentally important levels. Microalgae cultures were kept under controlled environmental conditions and monitored daily for cell density, in vivo chlorophyll a, and photosynthetic quantum yield (Φ M ). After 24 h growth, free Cu 2+ ions were determined, and after 96 h, cellular Cu concentration, total carbohydrates, proteins, lipids, and cell volume were determined. The results showed that both free Cu 2+ ions and cellular Cu increased with Cu increase in culture medium. Microalgae cell abundance and in vivo chlorophyll a were mostly affected at 2.5 µM Cu exposure (3.8 pg Cu cell -1 ) and above. Approximately 31% decrease of photosynthetic quantum yield was obtained at the highest Cu exposure concentration (25 µM; 25 pg Cu cell -1 ) in comparison with the control. However, at environmentally relevant copper concentrations (0.5 µM Cu; 0.4 pg Cu cell -1 ) cell volume increased in comparison with the control. Considering biomolecules accumulation per unit cell volume, the highest carbohydrates and proteins yield was obtained at 1.0 µM Cu (1.1 pg Cu cell -1 ), while for lipids higher Cu was necessary (2.5 µM Cu; 3.8 pg Cu cell -1 ). This study is a contribution to the understanding of the effects of environmentally significant copper concentrations in the physiology of S. quadricauda, as well as to biotechnological approach to increase biomolecule yield in microalgae production. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors.

    PubMed

    Lei, Weiwei; Portehault, David; Dimova, Rumiana; Antonietti, Markus

    2011-05-11

    A simple, high yield, chemical process is developed to fabricate layered h-BN nanosheets and BCNO nanoparticles with a diameter of ca. 5 nm at 700 °C. The use of the eutectic LiCl/KCl salt melt medium enhances the kinetics of the reaction between sodium borohydride and urea or guanidine as well as the dispersion of the nanoparticles in water. The carbon content can be tuned from 0 to 50 mol % by adjusting the reactant ratio, thus providing precise control of the light emission of the particles in the range 440-528 nm while reaching a quantum yield of 26%. Because of their green synthesis, low toxicity, small size, and stability against aggregation in water, the as-obtained photoluminescent BCNO nanoparticles show promise for diagnostics and optoelectronics. © 2011 American Chemical Society

  6. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  7. Quantum random access memory.

    PubMed

    Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo

    2008-04-25

    A random access memory (RAM) uses n bits to randomly address N=2(n) distinct memory cells. A quantum random access memory (QRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(logN) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust QRAM algorithm, as it in general requires entanglement among exponentially less gates, and leads to an exponential decrease in the power needed for addressing. A quantum optical implementation is presented.

  8. Graph C ∗-algebras and Z2-quotients of quantum spheres

    NASA Astrophysics Data System (ADS)

    Hajac, Piotr M.; Matthes, Rainer; Szymański, Wojciech

    2003-06-01

    We consider two Z2-actions on the Podleś generic quantum spheres. They yield, as noncommutative quotient spaces, the Klimek-Lesmewski q-disc and the quantum real projective space, respectively. The C ∗-algebas of all these quantum spaces are described as graph C ∗-algebras. The K-groups of the thus presented C ∗-algebras are then easily determined from the general theory of graph C ∗-algebas. For the quantum real projective space, we also recall the classification of the classes of irreducible ∗-representations of its algebra and give a linear basis for this algebra.

  9. The relation between the quantum discord and quantum teleportation: The physical interpretation of the transition point between different quantum discord decay regimes

    NASA Astrophysics Data System (ADS)

    Roszak, K.; Cywiński, Ł.

    2015-10-01

    We study quantum teleportation via Bell-diagonal mixed states of two qubits in the context of the intrinsic properties of the quantum discord. We show that when the quantum-correlated state of the two qubits is used for quantum teleportation, the character of the teleportation efficiency changes substantially depending on the Bell-diagonal-state parameters, which can be seen when the worst-case-scenario or best-case-scenario fidelity is studied. Depending on the parameter range, one of two types of single-qubit states is hardest/easiest to teleport. The transition between these two parameter ranges coincides exactly with the transition between the range of classical correlation decay and quantum correlation decay characteristic for the evolution of the quantum discord. The correspondence provides a physical interpretation for the prominent feature of the decay of the quantum discord.

  10. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans.

    PubMed

    Falkowski, Paul G; Lin, Hanzhi; Gorbunov, Maxim Y

    2017-09-26

    Constraining photosynthetic energy conversion efficiency in nature is challenging. In principle, two yield measurements must be made simultaneously: photochemistry, fluorescence and/or thermal dissipation. We constructed two different, extremely sensitive and precise active fluorometers: one measures the quantum yield of photochemistry from changes in variable fluorescence, the other measures fluorescence lifetimes in the picosecond time domain. By deploying the pair of instruments on eight transoceanic cruises over six years, we obtained over 200 000 measurements of fluorescence yields and lifetimes from surface waters in five ocean basins. Our results revealed that the average quantum yield of photochemistry was approximately 0.35 while the average quantum yield of fluorescence was approximately 0.07. Thus, closure on the energy budget suggests that, on average, approximately 58% of the photons absorbed by phytoplankton in the world oceans are dissipated as heat. This extraordinary inefficiency is associated with the paucity of nutrients in the upper ocean, especially dissolved inorganic nitrogen and iron. Our results strongly suggest that, in nature, most of the time, most of the phytoplankton community operates at approximately half of its maximal photosynthetic energy conversion efficiency because nutrients limit the synthesis or function of essential components in the photosynthetic apparatus.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  11. Core/Shell NaGdF4:Nd3+/NaGdF4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications

    PubMed Central

    Chen, Guanying; Ohulchanskyy, Tymish Y.; Liu, Sha; Law, Wing-Cheung; Wu, Fang; Swihart, Mark T.; Ågren, Hans; Prasad, Paras N.

    2012-01-01

    We have synthesized core/shell NaGdF4:Nd3+/NaGdF4 nanocrystals with an average size of 15 nm and exceptionally high photoluminescence (PL) quantum yield. When excited at 740 nm, the nanocrystals manifest spectrally distinguished, near infrared to near infrared (NIR-to-NIR) downconversion PL peaked at ~900, ~1050, and ~1300 nm. The absolute quantum yield of NIR-to-NIR PL reached 40% for core-shell nanoparticles dispersed in hexane. Time-resolved PL measurements revealed that this high quantum yield was achieved through suppression of nonradiative recombination originating from surface states and cross relaxations between dopants. NaGdF4:Nd3+/NaGdF4 nanocrystals, synthesized in organic media, were further converted to be water-dispersible by eliminating the capping ligand of oleic acid. NIR-to-NIR PL bioimaging was demonstrated both in vitro and in vivo through visualization of the NIR-to-NIR PL at ~900 nm under incoherent lamp light excitation. The fact that both excitation and the PL of these nanocrystals are in the biological window of optical transparency, combined with their high quantum efficiency, spectral sharpness and photostability, makes these nanocrystals extremely promising as optical biomaging probes. PMID:22401578

  12. Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory

    NASA Technical Reports Server (NTRS)

    Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.

    1990-01-01

    New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.

  13. Photodynamic activity of pyropheophorbide methyl ester and pyropheophorbide a in dimethylformamide solution.

    PubMed

    Al-Omari, Saleh; Ali, Ahmad

    2009-03-01

    Comparative spectroscopic study including the photosensitizers of pyropheophorbide methyl ester (PPME) and pyropheophorbide a (PPa) was performed to study their photodynamic activity. The investigated photosensitizers in a homogeneous system of dimethylformamide (DMF) are not photostable upon irradiation. The photobleaching efficiency of PPa is higher than that of PPME. Combining these results with the data obtained by measuring the singlet oxygen quantum yield and the hydroxyl group generation, it was revealed that the photobleaching efficiency could be correlated with the singlet oxygen quantum yield and the hydroxyl group production of the photosensitizer.

  14. Lanthanide complexes with 2-(tosylamino)benzylidene-N-benzoylhydrazone, which exhibit high NIR emission.

    PubMed

    Utochnikova, V V; Kovalenko, A D; Burlov, A S; Marciniak, L; Ananyev, I V; Kalyakina, A S; Kurchavov, N A; Kuzmina, N P

    2015-07-28

    New NIR emitting materials were found among the lanthanide complexes with 2-(tosylamino)benzylidene-N-benzoylhydrazone. Complexes of Nd(3+), Er(3+) and Yb(3+), as well as Eu(3+), Gd(3+) and Lu(3+), were synthesized for the first time. Owing to the absence of vibration quenching the ytterbium complex was found to exhibit a photoluminescence quantum yield of 1.4%. Since the sensitization efficiency was calculated to be 55%, the losses in the quantum yield are probably due to Yb-Yb resonant energy transfer.

  15. Tunable UV Laser Photolysis of NF2: Quantum Yield for NF(a1 delta) Production.

    DTIC Science & Technology

    1988-05-25

    UV Laser Photolysis of NF2: Quantum Yield for NF(a A) Production ’v0 LR. F. HEIDNER, H . HELVAJIAN , 4and J. B. KOFFEND Aerophysics Laboratory...experiments, the chemistry of NF2 with various hydrocarbons has been studied. It has also been shown that the addition-elimination reaction between H and NF2...COMPLI R LEN SP, 3 ,HAND L BE AM~ H O [ I , , i 1 CAIHOC IAM COOLED GaAs CAPACITANCE PHOTOTUIBE MANOMETER _ LENS /’~ ~L + . ANMEE _.... BANDPASS FILTER

  16. Loop-quantum-gravity vertex amplitude.

    PubMed

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  17. Interpretation of quantum yields exceeding unity in photoelectrochemical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szklarczyk, M.; Allen, R.E.

    1986-10-20

    In photoelectrochemical systems involving light shining on a semiconductor interfaced with an electrolyte, the quantum yield as a function of photon frequency ..nu.. is observed to exhibit a peak at h..nu..roughly-equal2E/sub g/, where E/sub g/ is the band gap of the semiconductor. The maximum in this peak is sometimes found to exceed unity. We provide an interpretation involving surface states and inelastic electron-electron scattering. The theory indicates that the effect should be observable for p-type semiconductors, but not n-type.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damtie, Fikeraddis A., E-mail: Fikeraddis.Damtie@teorfys.lu.se; Wacker, Andreas, E-mail: Andreas.Wacker@fysik.lu.se; Karki, Khadga J., E-mail: Khadga.Karki@chemphys.lu.se

    Multiple exciton generation (MEG) is a process in which more than one electron hole pair is generated per absorbed photon. It allows us to increase the efficiency of solar energy harvesting. Experimental studies have shown the multiple exciton generation yield of 1.2 in isolated colloidal quantum dots. However real photoelectric devices require the extraction of electron hole pairs to electric contacts. We provide a systematic study of the corresponding quantum coherent processes including extraction and injection and show that a proper design of extraction and injection rates enhances the yield significantly up to values around 1.6.

  19. Extending Bell's beables to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories

    NASA Astrophysics Data System (ADS)

    Lorenzen, F.; de Ponte, M. A.; Moussa, M. H. Y.

    2009-09-01

    In this paper, employing the Itô stochastic Schrödinger equation, we extend Bell’s beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm’s causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm’s causal dynamics regarding stationary states in quantum mechanics.

  20. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes.

    PubMed

    Pan, Jun; Shang, Yuequn; Yin, Jun; De Bastiani, Michele; Peng, Wei; Dursun, Ibrahim; Sinatra, Lutfan; El-Zohry, Ahmed M; Hedhili, Mohamed N; Emwas, Abdul-Hamid; Mohammed, Omar F; Ning, Zhijun; Bakr, Osman M

    2018-01-17

    Although halide perovskite nanocrystals (NCs) are promising materials for optoelectronic devices, they suffer severely from chemical and phase instabilities. Moreover, the common capping ligands like oleic acid and oleylamine that encapsulate the NCs will form an insulating layer, precluding their utility in optoelectronic devices. To overcome these limitations, we develop a postsynthesis passivation process for CsPbI 3 NCs by using a bidentate ligand, namely 2,2'-iminodibenzoic acid. Our passivated NCs exhibit narrow red photoluminescence with exceptional quantum yield (close to unity) and substantially improved stability. The passivated NCs enabled us to realize red light-emitting diodes (LEDs) with 5.02% external quantum efficiency and 748 cd/m 2 luminance, surpassing by far LEDs made from the nonpassivated NCs.

  1. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots

    PubMed Central

    2017-01-01

    Copper indium sulfide (CIS) quantum dots (QDs) are attractive as labels for biomedical imaging, since they have large absorption coefficients across a broad spectral range, size- and composition-tunable photoluminescence from the visible to the near-infrared, and low toxicity. However, the application of NIR-emitting CIS QDs is still hindered by large size and shape dispersions and low photoluminescence quantum yields (PLQYs). In this work, we develop an efficient pathway to synthesize highly luminescent NIR-emitting wurtzite CIS/ZnS QDs, starting from template Cu2-xS nanocrystals (NCs), which are converted by topotactic partial Cu+ for In3+ exchange into CIS NCs. These NCs are subsequently used as cores for the overgrowth of ZnS shells (≤1 nm thick). The CIS/ZnS core/shell QDs exhibit PL tunability from the first to the second NIR window (750–1100 nm), with PLQYs ranging from 75% (at 820 nm) to 25% (at 1050 nm), and can be readily transferred to water upon exchange of the native ligands for mercaptoundecanoic acid. The resulting water-dispersible CIS/ZnS QDs possess good colloidal stability over at least 6 months and PLQYs ranging from 39% (at 820 nm) to 6% (at 1050 nm). These PLQYs are superior to those of commonly available water-soluble NIR-fluorophores (dyes and QDs), making the hydrophilic CIS/ZnS QDs developed in this work promising candidates for further application as NIR emitters in bioimaging. The hydrophobic CIS/ZnS QDs obtained immediately after the ZnS shelling are also attractive as fluorophores in luminescent solar concentrators. PMID:28638177

  2. Quantum dots as optical labels for ultrasensitive detection of polyphenols.

    PubMed

    Akshath, Uchangi Satyaprasad; Shubha, Likitha R; Bhatt, Praveena; Thakur, Munna Singh

    2014-07-15

    Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for a healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, "turn-off" fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 µg to 1 ng/mL. Also, quenching of the photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at a sensitive level based on the charge transfer mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Two-dimensional Yukawa interactions from nonlocal Proca quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Alves, Van Sérgio; Macrı, Tommaso; Magalhães, Gabriel C.; Marino, E. C.; Nascimento, Leandro O.

    2018-05-01

    We derive two versions of an effective model to describe dynamical effects of the Yukawa interaction among Dirac electrons in the plane. Such short-range interaction is obtained by introducing a mass term for the intermediate particle, which may be either scalar or an abelian gauge field, both of them in (3 +1 ) dimensions. Thereafter, we consider that the fermionic matter field propagates only in (2 +1 ) dimensions, whereas the bosonic field is free to propagate out of the plane. Within these assumptions, we apply a mechanism for dimensional reduction, which yields an effective model in (2 +1 ) dimensions. In particular, for the gauge-field case, we use the Stueckelberg mechanism in order to preserve gauge invariance. We refer to this version as nonlocal-Proca quantum electrodynamics (NPQED). For both scalar and gauge cases, the effective models reproduce the usual Yukawa interaction in the static limit. By means of perturbation theory at one loop, we calculate the mass renormalization of the Dirac field. Our model is a generalization of Pseudo quantum electrodynamics (PQED), which is a gauge-field model that provides a Coulomb interaction for two-dimensional electrons. Possibilities of application to Fermi-Bose mixtures in mixed dimensions, using cold atoms, are briefly discussed.

  4. Nanostructured organosilicon luminophores and their application in highly efficient plastic scintillators

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Sergei A.; Surin, Nikolay M.; Borshchev, Oleg V.; Luponosov, Yuriy N.; Akimov, Dmitry Y.; Alexandrov, Ivan S.; Burenkov, Alexander A.; Kovalenko, Alexey G.; Stekhanov, Viktor N.; Kleymyuk, Elena A.; Gritsenko, Oleg T.; Cherkaev, Georgiy V.; Kechek'yan, Alexander S.; Serenko, Olga A.; Muzafarov, Aziz M.

    2014-10-01

    Organic luminophores are widely used in various optoelectronic devices, which serve for photonics, nuclear and particle physics, quantum electronics, medical diagnostics and many other fields of science and technology. Improving their spectral-luminescent characteristics for particular technical requirements of the devices is a challenging task. Here we show a new concept to universal solution of this problem by creation of nanostructured organosilicon luminophores (NOLs), which are a particular type of dendritic molecular antennas. They combine the best properties of organic luminophores and inorganic quantum dots: high absorption cross-section, excellent photoluminescence quantum yield, fast luminescence decay time and good processability. A NOL consists of two types of covalently bonded via silicon atoms organic luminophores with efficient Förster energy transfer between them. Using NOLs in plastic scintillators, widely utilized for radiation detection and in elementary particles discoveries, led to a breakthrough in their efficiency, which combines both high light output and fast decay time. Moreover, for the first time plastic scintillators, which emit light in the desired wavelength region ranging from 370 to 700 nm, have been created. We anticipate further applications of NOLs as working elements of pulsed dye lasers in photonics, optoelectronics and as fluorescent labels in biology and medical diagnostics.

  5. Compact Biocompatible Quantum Dots Functionalized for Cellular Imaging

    PubMed Central

    Liu, Wenhao; Howarth, Mark; Greytak, Andrew B.; Zheng, Yi; Nocera, Daniel G.; Ting, Alice Y.; Bawendi, Moungi G.

    2009-01-01

    We present a family of water-soluble quantum dots (QDs) that exhibit low nonspecific binding to cells, small hydrodynamic diameter, tunable surface charge, high quantum yield, and good solution stability across a wide pH range. These QDs are amenable to covalent modification via simple carbodiimide coupling chemistry, which is achieved by functionalizing the surface of QDs with a new class of heterobifunctional ligands incorporating dihydrolipoic acid, a short poly(ethylene glycol) (PEG) spacer, and an amine or carboxylate terminus. The covalent attachment of molecules is demonstrated by appending a rhodamine dye to form a QD-dye conjugate exhibiting fluorescence resonance energy transfer (FRET). High-affinity labeling is demonstrated by covalent attachment of streptavidin, thus enabling the tracking of biotinylated epidermal growth factor (EGF) bound to EGF receptor on live cells. In addition, QDs solubilized with the heterobifunctional ligands retain their metal-affinity driven conjugation chemistry with polyhistidine-tagged proteins. This dual functionality is demonstrated by simultaneous covalent attachment of a rhodamine FRET acceptor and binding of polyhistidine-tagged streptavidin on the same nanocrystal to create a targeted QD, which exhibits dual-wavelength emission. Such emission properties could serve as the basis for ratiometric sensing of the cellular receptor’s local chemical environment. PMID:18177042

  6. Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor

    NASA Astrophysics Data System (ADS)

    Ratnesh, Ratneshwar Kumar; Singh Mehata, Mohan

    2018-07-01

    We have prepared stable colloidal CdTe and CdTe/ZnS core–shell quantum dots (QDs) using hot injection chemical route. The developed CdTe QDs emit tunable single and dual photoluminescence (PL) bands, originating from the direct band edge and the surface state of QDs, as evident by the steady-state and time-resolved spectroscopy. The developed CdTe and CdTe/ZnS QDs act as optical sensors for the detection of metal ions (e.g., Fe2+ and Pb2+) in the feed water. The PL quenching in the presence of analytes has been examined by both the steady-state and time-resolved PL spectroscopy. The linear Stern–Volmer (S–V) plots obtained for PL intensity and lifetime as a function of metal ion concentration demonstrates the diffusion-mediated collisional quenching as a dominant mechanism together with the possibility of fluorescence resonance energy transfer. Thus, the prepared core and core–shell QDs which cover a broad spectral range of white light with high quantum yield (QY) are highly sensitive to the detection of metal ions in feed water and are also important for biological applications (Ratnesh and Mehata 2017 Spectrochim. Acta A: Mol. Biomol. Spectro. 179 201–10).

  7. Stability of polymer encapsulated quantum dots in cell culture media

    NASA Astrophysics Data System (ADS)

    Ojea-Jiménez, I.; Piella, J.; Nguyen, T.-L.; Bestetti, A.; Ryan, A. D.; Puntes, V.

    2013-04-01

    The unique optical properties of Quantum Dots have attracted a great interest to use these nanomaterials in diverse biological applications. The synthesis of QDs by methods from the literature permits one to obtain nanocrystals coated by hydrophobic alkyl coordinating ligands and soluble in most of the cases in organic solvents. The ideal biocompatible QD must be homogeneously dispersed and colloidally stable in aqueous solvents, exhibit pH and salt stability, show low levels of nonspecific binding to biological components, maintain a high quantum yield, and have a small hydrodynamic diameter. Polymer encapsulation represents an excellent scaffold on which to build additional biological function, allowing for a wide range of grafting approaches for biological ligands. As these QD are functionalized with poly(ethylene)glycol (PEG) derivatives on their surface, they show long term stability without any significant change in the optical properties, and they are also highly stable in the most common buffer solutions such as Phosphate Buffer Saline (PBS) or borate. However, as biological studies are normally done in more complex biological media which contain a mixture of amino acids, salts, glucose and vitamins, it is essential to determine the stability of our synthesized QDs under these conditions before tackling biological studies.

  8. Development of a Photoemission Surface for 1.06 Micron Wavelength

    DOT National Transportation Integrated Search

    1973-02-01

    Development of a negative affirmity photoemitter with 10% quantum effieciency at the Nd3+ laser wavelengths near 1.06 microns. : Observed quantum yield of 7.55% (electrons per incident photon - 11% per absorbed photon) at 1.06 microns, from an InGaAs...

  9. Photogeneration of H2O2 in Water-Swollen SPEEK/PVA Polymer Films.

    PubMed

    Lockhart, PaviElle; Little, Brian K; Slaten, B L; Mills, G

    2016-06-09

    Efficient reduction of O2 took place via illumination with 350 nm photons of cross-linked films containing a blend of sulfonated poly(ether etherketone) and poly(vinyl alcohol) in contact with air-saturated aqueous solutions. Swelling of the solid macromolecular matrices in H2O enabled O2 diffusion into the films and also continuous extraction of the photogenerated H2O2, which was the basis for a method that allowed quantification of the product. Peroxide formed with similar efficiencies in films containing sulfonated polyketones prepared from different precursors and the initial photochemical process was found to be the rate-determining step. Generation of H2O2 was most proficient in the range of 4.9 ≤ pH ≤ 8 with a quantum yield of 0.2, which was 10 times higher than the efficiencies determined for solutions of the polymer blend. Increases in temperature as well as [O2] in solution were factors that enhanced the H2O2 generation. H2O2 quantum yields as high as 0.6 were achieved in H2O/CH3CN mixtures with low water concentrations, but peroxide no longer formed when film swelling was suppressed. A mechanism involving reduction of O2 by photogenerated α-hydroxy radicals from the polyketone in competition with second-order radical decay processes explains the kinetic features. Higher yields result from the films because cross-links present in them hinder diffusion of the radicals, limiting their decay and enhancing the oxygen reduction pathway.

  10. Tunable Optical Properties and Increased Thermal Quenching in the Blue-Emitting Phosphor Series: Ba 2 (Y 1–x Lu x ) 5 B 5 O 17 :Ce 3+ ( x = 0–1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermus, Martin; Phan, Phu-Cuong; Duke, Anna C.

    The preparation of cerium-substituted barium lutetium borate, Ba2Lu5B5O17:Ce3+, is achieved using high temperature solid state synthesis. This compound crystallizes in the Ba2Y5B5O17-type structure and shows an efficient blue emission (λmax = 447 nm) when excited by UV-light (λex = 340 nm) with a photoluminescent quantum yield near 90%, a fast luminescence decay time (<40 ns), and a thermal quenching temperature of 452 K. Further, preparing a solid solution following Ba2(Y1–xLux)5B5O17:Ce3+ (x = 0, 0.25, 0.50, 0.75, 1) confirms that all compounds are isostructural and follow Vegard’s law. Substituting Y3+ for Lu3+ yields a nearly constant emission spectrum that blue-shifts bymore » only 9 nm and has a consistent luminescence lifetime across the range prepared. The photoluminescent quantum yield (PLQY) and thermal quenching (T50) of the solid solution, however, are dramatically impacted by the composition, with the PLQY decreasing to ≈70% and the T50 dropping 49 K going from x = 1 to x = 0. These significant changes in the optical properties likely stem from enhanced structural rigidity as the larger, more polarizable Y3+ is substituted for the smaller, harder Lu3+ cation. These results highlight the importance of optimizing chemical bonding to improve a phosphor’s optical properties.« less

  11. Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states

    NASA Astrophysics Data System (ADS)

    Girolami, Davide; Paternostro, Mauro; Adesso, Gerardo

    2011-09-01

    The state disturbance induced by locally measuring a quantum system yields a signature of nonclassical correlations beyond entanglement. Here, we present a detailed study of such correlations for two-qubit mixed states. To overcome the asymmetry of quantum discord and the unfaithfulness of measurement-induced disturbance (severely overestimating quantum correlations), we propose an ameliorated measurement-induced disturbance as nonclassicality indicator, optimized over joint local measurements, and we derive its closed expression for relevant two-qubit states. We study its analytical relation with discord, and characterize the maximally quantum-correlated mixed states, that simultaneously extremize both quantifiers at given von Neumann entropy: among all two-qubit states, these states possess the most robust quantum correlations against noise.

  12. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants.

    PubMed

    Chakravarty, Disha; Erande, Manisha B; Late, Dattatray J

    2015-10-01

    We report investigations on the use of graphene quantum dots for growth enhancement in coriander (Coriandrum sativam L.) and garlic (Allium sativum) plants. The as-received seeds of coriander and garlic were treated with 0.2 mg mL(-1) of graphene quantum dots for 3 h before planting. Graphene quantum dots enhanced the growth rate in coriander and garlic plants, including leaves, roots, shoots, flowers and fruits, when the seeds were treated with graphene quantum dots. Our investigations open up the opportunity to use graphene quantum dots as plant growth regulators that can be used in a variety of other food plants for high yield. © 2015 Society of Chemical Industry.

  13. Nonlinear quantum Rabi model in trapped ions

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique

    2018-02-01

    We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.

  14. The effect of annulation of benzene rings on the photophysics and electronic structure of tetraazachlorin molecules

    NASA Astrophysics Data System (ADS)

    Pershukevich, P. P.; Volkovich, D. I.; Gladkov, L. L.; Dudkin, S. V.; Kuzmitsky, V. A.; Makarova, E. A.; Solovyev, K. N.

    2017-10-01

    The photophysics and electronic structure of tribenzotetraazachlorins (H2, Zn, and Mg), which are novel analogues of phtalocyanines, have been studied experimentally and theoretically. At 293 K, the electronic absorption, fluorescence, and fluorescence excitation spectra are recorded and the fluorescence quantum yield and lifetime, as well as the quantum yield of singlet oxygen generation, are measured; at 77 K, the fluorescence, fluorescence excitation, and fluorescence polarization spectra are recorded and the fluorescence lifetime values are measured. The dependences of the absorption spectra and photophysical parameters on the structure variation are analyzed in detail. Quantum-chemical calculations of the electronic structure and absorption spectra of tribenzotetraazachlorins (H2, Mg) are performed using the INDO/Sm method (modified INDO/S method) based on molecular-geometry optimization by the DFT PBE/TZVP method. The results of quantum-chemical calculations of the electronic absorption spectra are in very good agreement with the experimental data for the transitions to two lower electronic states.

  15. Colloidal Spherical Quantum Wells with Near-Unity Photoluminescence Quantum Yield and Suppressed Blinking.

    PubMed

    Jeong, Byeong Guk; Park, Young-Shin; Chang, Jun Hyuk; Cho, Ikjun; Kim, Jai Kyeong; Kim, Heesuk; Char, Kookheon; Cho, Jinhan; Klimov, Victor I; Park, Philip; Lee, Doh C; Bae, Wan Ki

    2016-10-02

    Thick inorganic shell endows colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited, due to low photoluminescence quantum yield (PL QY  60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ~ 100% PL QY for SQW NCs with thick CdS shell (≥ 5 nm). High PL QY of thick-shell SQW NCs are preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.

  16. Phase transfer of 1- and 2-dimensional Cd-based nanocrystals

    NASA Astrophysics Data System (ADS)

    Kodanek, Torben; Banbela, Hadeel M.; Naskar, Suraj; Adel, Patrick; Bigall, Nadja C.; Dorfs, Dirk

    2015-11-01

    In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment. The influence of the tips of the nanorods on the luminescence is, however, insignificant. Accordingly, different ligands yield optimum results for different nanoparticle samples, mainly depending on the inorganic passivation of the respective samples. In case of CdSe@CdS nanorods, the highest emission intensities have been obtained by using short-chain ligands for the transfer preserving more than 50% of the pristine quantum yield of the hydrophobic nanorods. As opposed to this, the best possible quantum efficiency for the CdSe@CdS/ZnS nanorods has been achieved via MUA. The gained knowledge could be applied to transfer for the first time 2-dimensional CdSe-CdS core-crown nanoplatelets into water while preserving significant photoluminescence (up to 12% quantum efficiency).In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment. The influence of the tips of the nanorods on the luminescence is, however, insignificant. Accordingly, different ligands yield optimum results for different nanoparticle samples, mainly depending on the inorganic passivation of the respective samples. In case of CdSe@CdS nanorods, the highest emission intensities have been obtained by using short-chain ligands for the transfer preserving more than 50% of the pristine quantum yield of the hydrophobic nanorods. As opposed to this, the best possible quantum efficiency for the CdSe@CdS/ZnS nanorods has been achieved via MUA. The gained knowledge could be applied to transfer for the first time 2-dimensional CdSe-CdS core-crown nanoplatelets into water while preserving significant photoluminescence (up to 12% quantum efficiency). Electronic supplementary information (ESI) available: Further TEM images, further extinction spectra, particle size distribution and discussion about optical properties of the hydrophobic nanostructures. See DOI: 10.1039/c5nr06221g

  17. Observables, measurements and phase operators from a Bohmian perspective

    NASA Technical Reports Server (NTRS)

    Daumer, Martin; Goldstein, Sheldon

    1993-01-01

    Bohmian mechanics is a deterministic theory of point particles in motion. While avoiding all the paradoxes of nonrelativistic quantum mechanics, it yields the quantum formalism itself--especially the role of self-adjoint operators--as a macroscopic measurement formalism. As an 'application' it is shown that much of the confusion connected with the phase operator for the electromagnetic field arises from a misunderstanding of the role of operators in quantum theory.

  18. General Relativity without paradigm of space-time covariance, and resolution of the problem of time

    NASA Astrophysics Data System (ADS)

    Soo, Chopin; Yu, Hoi-Lai

    2014-01-01

    The framework of a theory of gravity from the quantum to the classical regime is presented. The paradigm shift from full space-time covariance to spatial diffeomorphism invariance, together with clean decomposition of the canonical structure, yield transparent physical dynamics and a resolution of the problem of time. The deep divide between quantum mechanics and conventional canonical formulations of quantum gravity is overcome with a Schrödinger equation for quantum geometrodynamics that describes evolution in intrinsic time. Unitary time development with gauge-invariant temporal ordering is also viable. All Kuchar observables become physical; and classical space-time, with direct correlation between its proper times and intrinsic time intervals, emerges from constructive interference. The framework not only yields a physical Hamiltonian for Einstein's theory, but also prompts natural extensions and improvements towards a well behaved quantum theory of gravity. It is a consistent canonical scheme to discuss Horava-Lifshitz theories with intrinsic time evolution, and of the many possible alternatives that respect 3-covariance (rather than the more restrictive 4-covariance of Einstein's theory), Horava's "detailed balance" form of the Hamiltonian constraint is essentially pinned down by this framework. Issues in quantum gravity that depend on radiative corrections and the rigorous definition and regularization of the Hamiltonian operator are not addressed in this work.

  19. Tuning Optoelectronic Properties of the Graphene-Based Quantum Dots C16- xSi xH10 Family.

    PubMed

    Ramadan, F-Z; Ouarrad, H; Drissi, L B

    2018-06-07

    The electronic and optical properties of graphene-based quantum dots (QDs) are investigated using DFT and many-body perturbation theory. Formation energy, hardeness and electrophilicity show that all structures, from pyrene to silicene QD passing through 15 CSi QD configurations, are energetically and chemically stable. It is also found that they are reactive which implies their favorable character for the possible electronic transport and conductivity. The electronic and optical properties are very sensitive to the number and position of the substituted silicon atoms as well as the directions of the light polarization. Moreover, quantum confinement effects make the exciton binding energy of CSi quantum dots larger than those of their higher dimensional allotropes such as silicene, graphene, and SiC sheet and nanotube. It is also higher those of other shapes of quantum dots like hexagonal graphene QDs and can be tailored from the ultraviolet region to the visible one. The values of the singlet-triplet splitting determined for the X- and Y-light polarized indicate that all configurations have a high fluorescence quantum yield compared to the yield of typical semiconductors, which makes them very promising for various applications such as the light-emitting diode material and nanomedicine.

  20. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX₃, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut.

    PubMed

    Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I; Krieg, Franziska; Caputo, Riccarda; Hendon, Christopher H; Yang, Ruo Xi; Walsh, Aron; Kovalenko, Maksym V

    2015-06-10

    Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We have synthesized monodisperse colloidal nanocubes (4-15 nm edge lengths) of fully inorganic cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I or mixed halide systems Cl/Br and Br/I) using inexpensive commercial precursors. Through compositional modulations and quantum size-effects, the bandgap energies and emission spectra are readily tunable over the entire visible spectral region of 410-700 nm. The photoluminescence of CsPbX3 nanocrystals is characterized by narrow emission line-widths of 12-42 nm, wide color gamut covering up to 140% of the NTSC color standard, high quantum yields of up to 90%, and radiative lifetimes in the range of 1-29 ns. The compelling combination of enhanced optical properties and chemical robustness makes CsPbX3 nanocrystals appealing for optoelectronic applications, particularly for blue and green spectral regions (410-530 nm), where typical metal chalcogenide-based quantum dots suffer from photodegradation.

  1. Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory

    NASA Astrophysics Data System (ADS)

    Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara

    2018-05-01

    We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.

  2. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meusinger, Carl; Johnson, Matthew S.; Berhanu, Tesfaye A.

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently amore » result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.« less

  3. Ferritin-Templated Quantum-Dots for Quantum Logic Gates

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Kim, Jae-Woo; Chu, Sang-Hyon; Park, Yeonjoon; King, Glen C.; Lillehei, Peter T.; Kim, Seon-Jeong; Elliott, James R.

    2005-01-01

    Quantum logic gates (QLGs) or other logic systems are based on quantum-dots (QD) with a stringent requirement of size uniformity. The QD are widely known building units for QLGs. The size control of QD is a critical issue in quantum-dot fabrication. The work presented here offers a new method to develop quantum-dots using a bio-template, called ferritin, that ensures QD production in uniform size of nano-scale proportion. The bio-template for uniform yield of QD is based on a ferritin protein that allows reconstitution of core material through the reduction and chelation processes. One of the biggest challenges for developing QLG is the requirement of ordered and uniform size of QD for arrays on a substrate with nanometer precision. The QD development by bio-template includes the electrochemical/chemical reconsitution of ferritins with different core materials, such as iron, cobalt, manganese, platinum, and nickel. The other bio-template method used in our laboratory is dendrimers, precisely defined chemical structures. With ferritin-templated QD, we fabricated the heptagonshaped patterned array via direct nano manipulation of the ferritin molecules with a tip of atomic force microscope (AFM). We also designed various nanofabrication methods of QD arrays using a wide range manipulation techniques. The precise control of the ferritin-templated QD for a patterned arrangement are offered by various methods, such as a site-specific immobilization of thiolated ferritins through local oxidation using the AFM tip, ferritin arrays induced by gold nanoparticle manipulation, thiolated ferritin positioning by shaving method, etc. In the signal measurements, the current-voltage curve is obtained by measuring the current through the ferritin, between the tip and the substrate for potential sweeping or at constant potential. The measured resistance near zero bias was 1.8 teraohm for single holoferritin and 5.7 teraohm for single apoferritin, respectively.

  4. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.

    PubMed

    Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E

    2005-07-25

    Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.

  5. "Evaluations" of Observables Versus Measurements in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Sestito, Angela

    2016-03-01

    In Quantum Physics there are circumstances where the direct measurement of a given observable encounters difficulties; in some of these cases, however, its value can be "evaluated", i.e. it can be inferred by measuring another observable characterized by perfect correlation with the observable of interest. Though an evaluation is often interpreted as a measurement of the evaluated observable, we prove that the two concepts cannot be identified in Quantum Physics, because the identification yields contradictions. Then, we establish the conceptual status of evaluations in Quantum Theory and how they are related to measurements.

  6. Divide and conquer approach to quantum Hamiltonian simulation

    NASA Astrophysics Data System (ADS)

    Hadfield, Stuart; Papageorgiou, Anargyros

    2018-04-01

    We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.

  7. Quantum scattering studies of spin-orbit effects in the Cl({sup 2}P) + HCl {yields} ClH + Cl({sup 2}P) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schatz, G.C.; McCabe, P.; Connor, J.N.L.

    1998-07-01

    The authors present quantum scattering calculations for the Cl + HCl {yields} ClH + Cl reaction in which they include the three electronic states that correlate asymptotically to the ground state of Cl({sup 2}P) + HCl(X{sup 1}{Sigma}{sup +}). The potential surfaces and couplings are taken from the recent work of C.S. Maierle, G.C. Schatz, M.S. Gordon, P. McCabe and J.N.L. Connor, J. Chem. Soc. Farad. Trans. (1997). They are based on extensive ab initio calculations for geometries in the vicinity of the lowest energy saddle point, and on an electrostatic expansion (plus empirical dispersion and repulsion) for long range geometriesmore » including the van der Waals wells. Spin-orbit coupling has been included using a spin-orbit coupling parameter {lambda} that is assumed to be independent of nuclear geometry, and Coriolis interactions are incorporated accurately. The scattering calculations use a hyperspherical coordinate coupled channel method in full dimensionality. AJ-shifting approximation is employed to convert cumulative reaction probabilities for total angular momentum quantum number J = 1/2 into state selected and thermal rate coefficients. Two issues have been studied: (a) the influence of the magnitude of {lambda} on the fine-structure resolved cumulative probabilities and rate coefficients (the authors consider {lambda}`s that vary from 0 to {+-}100% of the true Cl value), and (b) the transition state resonance spectrum, and its variation with {lambda} and with other parameters in the calculations. Cl + HCl is a simple hydrogen transfer reaction which serves as a canonical model both for heavy-light-heavy atom reactions, and for the reactions of halogen atoms with closed shell molecules.« less

  8. Compact quantum dot-antibody conjugates for FRET immunoassays with subnanomolar detection limits.

    PubMed

    Mattera, Lucia; Bhuckory, Shashi; Wegner, K David; Qiu, Xue; Agnese, Fabio; Lincheneau, Christophe; Senden, Tim; Djurado, David; Charbonnière, Loïc J; Hildebrandt, Niko; Reiss, Peter

    2016-06-07

    A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter <13 nm, PL quantum yield up to 66% at 705 nm, and colloidal stability of several months in various buffers. They were applied as FRET acceptors in homogeneous, time-gated immunoassays using Tb-antibodies as FRET donors, both coupled by an immunological sandwich complex between the two antibodies and a PSA (prostate specific antigen) biomarker. The advantages of the compact surface coating for FRET could be demonstrated by an 6.2 and 2.5 fold improvement of the limit of detection (LOD) for PSA compared to commercially available hydrophilic QDs emitting at 605 and 705 nm, respectively. While the commercial QDs contain identical inorganic cores responsible for their fluorescence, they are coated with a comparably thick amphiphilic polymer layer leading to much larger hydrodynamic diameters (>26 nm without biomolecules). The LODs of 0.8 and 3.7 ng mL(-1) obtained in 50 μL serum samples are below the clinical cut-off level of PSA (4 ng mL(-1)) and demonstrate their direct applicability in clinical diagnostics.

  9. The {sup 2}P{sub 1/2} {yields} {sup 2}P{sub 3/2} laser transition in atomic iodine and the problem of search for signals from extraterrestrial intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutaev, Yu F; Mankevich, S K; Nosach, O Yu

    2007-07-31

    It is proposed to search for signals from extraterrestrial intelligence (ETI) at a wavelength of 1.315 {mu}m of the laser {sup 2}P{sub 1/2} {yields} {sup 2}P{sub 3/2} transition in the atomic iodine, which can be used for this purpose as the natural frequency reference. The search at this wavelength is promising because active quantum filters (AQFs) with the quantum sensitivity limit have been developed for this wavelength, which are capable of receiving laser signals, consisting of only a few photons, against the background of emission from a star under study. In addition, high-power iodine lasers emitting diffraction-limited radiation at 1.315more » {mu}m have been created, which highly developed ETI also can have. If a ETI sends in our direction a diffraction-limited 10-ns, 1-kJ laser pulse with the beam diameter of 10 m, a receiver with an AQF mounted on a ten-meter extra-atmospheric optical telescope can detect this signal at a distance of up to 300 light years, irrespective of the ETI position on the celestial sphere. The realisation of the projects for manufacturing optical telescopes of diameter 30 m will increase the research range up to 2700 light years. A weak absorption of the 1.315-{mu}m radiation in the Earth atmosphere (the signal is attenuated by less than 20%) allows the search for ETI signals by using ground telescopes equipped with adaptive optical systems. (laser applications and other topics in quantum electronics)« less

  10. A self-assembly aptasensor based on thick-shell quantum dots for sensing of ochratoxin A

    NASA Astrophysics Data System (ADS)

    Chu, Xianfeng; Dou, Xiaowen; Liang, Ruizheng; Li, Menghua; Kong, Weijun; Yang, Xihui; Luo, Jiaoyang; Yang, Meihua; Zhao, Ming

    2016-02-01

    A novel self-assembling aptasensor was fabricated by precisely attaching three phosphorothioate-modified capture aptamers onto a single thick-shell quantum dot in a controllable manner for monitoring of ochratoxin A (OTA), a poisonous contaminant widespread in foodstuffs. Herein, CdSe/CdS QDs coated in ten layer CdS shells were synthesized using a continual precursor injection method. Analysis of the prepared CdSe/CdS QDs showed a zinc-blende structure, high photoluminescence quantum yields (>80%), and a photoemission peak with a narrow full-width at half-maximum (about 29 nm), all qualities that render them as a superior choice for optical applications. By adjusting the number of phosphorothioate bases in the anchor domain, the tunable-valency aptasensor was able to self-assemble. In the sensing strategy, the thick-shell quantum dot was provided as an acceptor while OTA itself was used as a donor. In the presence of OTA, the capture aptamers drive the aptasensor function into a measurable signal through a fluorescence resonance energy transfer (FRET) system. The newly developed aptasensor had a detection limit as low as 0.5 ng mL-1, with a linear concentration in the range of 1 to 30 ng mL-1, and therefore meets the requirements for rapid, effective, and anti-interference sensors for real-world applications. Moreover, the high quality thick-shell QDs provide an ideal alternative for highly sensitive imaging and intensive illumination in the fields of biotechnology and bioengineering.A novel self-assembling aptasensor was fabricated by precisely attaching three phosphorothioate-modified capture aptamers onto a single thick-shell quantum dot in a controllable manner for monitoring of ochratoxin A (OTA), a poisonous contaminant widespread in foodstuffs. Herein, CdSe/CdS QDs coated in ten layer CdS shells were synthesized using a continual precursor injection method. Analysis of the prepared CdSe/CdS QDs showed a zinc-blende structure, high photoluminescence quantum yields (>80%), and a photoemission peak with a narrow full-width at half-maximum (about 29 nm), all qualities that render them as a superior choice for optical applications. By adjusting the number of phosphorothioate bases in the anchor domain, the tunable-valency aptasensor was able to self-assemble. In the sensing strategy, the thick-shell quantum dot was provided as an acceptor while OTA itself was used as a donor. In the presence of OTA, the capture aptamers drive the aptasensor function into a measurable signal through a fluorescence resonance energy transfer (FRET) system. The newly developed aptasensor had a detection limit as low as 0.5 ng mL-1, with a linear concentration in the range of 1 to 30 ng mL-1, and therefore meets the requirements for rapid, effective, and anti-interference sensors for real-world applications. Moreover, the high quality thick-shell QDs provide an ideal alternative for highly sensitive imaging and intensive illumination in the fields of biotechnology and bioengineering. Electronic supplementary information (ESI) available: Table S1. See DOI: 10.1039/c5nr08284f

  11. Quantum confinement effects across two-dimensional planes in MoS{sub 2} quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Z. X.; Liu, L. Z.; Wu, H. Y.

    2015-06-08

    The low quantum yield (∼10{sup −5}) has restricted practical use of photoluminescence (PL) from MoS{sub 2} composed of a few layers, but the quantum confinement effects across two-dimensional planes are believed to be able to boost the PL intensity. In this work, PL from 2 to 9 nm MoS{sub 2} quantum dots (QDs) is excluded from the solvent and the absorption and PL spectra are shown to be consistent with the size distribution. PL from MoS{sub 2} QDs is also found to be sensitive to aggregation due to the size effect.

  12. Coherent quantum dynamics of a superconducting flux qubit.

    PubMed

    Chiorescu, I; Nakamura, Y; Harmans, C J P M; Mooij, J E

    2003-03-21

    We have observed coherent time evolution between two quantum states of a superconducting flux qubit comprising three Josephson junctions in a loop. The superposition of the two states carrying opposite macroscopic persistent currents is manipulated by resonant microwave pulses. Readout by means of switching-event measurement with an attached superconducting quantum interference device revealed quantum-state oscillations with high fidelity. Under strong microwave driving, it was possible to induce hundreds of coherent oscillations. Pulsed operations on this first sample yielded a relaxation time of 900 nanoseconds and a free-induction dephasing time of 20 nanoseconds. These results are promising for future solid-state quantum computing.

  13. Investigations of quantum pendulum dynamics in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  14. Quantum non-Gaussianity and quantification of nonclassicality

    NASA Astrophysics Data System (ADS)

    Kühn, B.; Vogel, W.

    2018-05-01

    The algebraic quantification of nonclassicality, which naturally arises from the quantum superposition principle, is related to properties of regular nonclassicality quasiprobabilities. The latter are obtained by non-Gaussian filtering of the Glauber-Sudarshan P function. They yield lower bounds for the degree of nonclassicality. We also derive bounds for convex combinations of Gaussian states for certifying quantum non-Gaussianity directly from the experimentally accessible nonclassicality quasiprobabilities. Other quantum-state representations, such as s -parametrized quasiprobabilities, insufficiently indicate or even fail to directly uncover detailed information on the properties of quantum states. As an example, our approach is applied to multi-photon-added squeezed vacuum states.

  15. Experimental demonstration of a quantum annealing algorithm for the traveling salesman problem in a nuclear-magnetic-resonance quantum simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Hongwei; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031; Kong Xi

    The method of quantum annealing (QA) is a promising way for solving many optimization problems in both classical and quantum information theory. The main advantage of this approach, compared with the gate model, is the robustness of the operations against errors originated from both external controls and the environment. In this work, we succeed in demonstrating experimentally an application of the method of QA to a simplified version of the traveling salesman problem by simulating the corresponding Schroedinger evolution with a NMR quantum simulator. The experimental results unambiguously yielded the optimal traveling route, in good agreement with the theoretical prediction.

  16. Complementarity of quantum discord and classically accessible information

    DOE PAGES

    Zwolak, Michael P.; Zurek, Wojciech H.

    2013-05-20

    The sum of the Holevo quantity (that bounds the capacity of quantum channels to transmit classical information about an observable) and the quantum discord (a measure of the quantumness of correlations of that observable) yields an observable-independent total given by the quantum mutual information. This split naturally delineates information about quantum systems accessible to observers – information that is redundantly transmitted by the environment – while showing that it is maximized for the quasi-classical pointer observable. Other observables are accessible only via correlations with the pointer observable. In addition, we prove an anti-symmetry property relating accessible information and discord. Itmore » shows that information becomes objective – accessible to many observers – only as quantum information is relegated to correlations with the global environment, and, therefore, locally inaccessible. Lastly, the resulting complementarity explains why, in a quantum Universe, we perceive objective classical reality while flagrantly quantum superpositions are out of reach.« less

  17. Decoherence and dissipation for a quantum system coupled to a local environment

    NASA Technical Reports Server (NTRS)

    Gallis, Michael R.

    1994-01-01

    Decoherence and dissipation in quantum systems has been studied extensively in the context of Quantum Brownian Motion. Effective decoherence in coarse grained quantum systems has been a central issue in recent efforts by Zurek and by Hartle and Gell-Mann to address the Quantum Measurement Problem. Although these models can yield very general classical phenomenology, they are incapable of reproducing relevant characteristics expected of a local environment on a quantum system, such as the characteristic dependence of decoherence on environment spatial correlations. I discuss the characteristics of Quantum Brownian Motion in a local environment by examining aspects of first principle calculations and by the construction of phenomenological models. Effective quantum Langevin equations and master equations are presented in a variety of representations. Comparisons are made with standard results such as the Caldeira-Leggett master equation.

  18. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.

    PubMed

    Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob

    2015-09-18

    Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications. Copyright © 2015, American Association for the Advancement of Science.

  19. Quantum information processing in the radical-pair mechanism: Haberkorn's theory violates the Ozawa entropy bound

    NASA Astrophysics Data System (ADS)

    Mouloudakis, K.; Kominis, I. K.

    2017-02-01

    Radical-ion-pair reactions, central for understanding the avian magnetic compass and spin transport in photosynthetic reaction centers, were recently shown to be a fruitful paradigm of the new synthesis of quantum information science with biological processes. We show here that the master equation so far constituting the theoretical foundation of spin chemistry violates fundamental bounds for the entropy of quantum systems, in particular the Ozawa bound. In contrast, a recently developed theory based on quantum measurements, quantum coherence measures, and quantum retrodiction, thus exemplifying the paradigm of quantum biology, satisfies the Ozawa bound as well as the Lanford-Robinson bound on information extraction. By considering Groenewold's information, the quantum information extracted during the reaction, we reproduce the known and unravel other magnetic-field effects not conveyed by reaction yields.

  20. Optical and Photophysical Investigation of (2E)-1-(2,5-Dimethylfuran-3-Yl)-3-(9-Ethyl-9H-Carbazol-3-Yl)Prop-2-en-1-One (DEPO) by Spectrofluorometer in Organized Medium.

    PubMed

    Asiri, Abdullah M; Al-Dies, Al-Anood M; Khan, Salman A

    2017-07-01

    (2E)-1-(2,5-dimethylfuran-3-yl)-3-(9-ethyl-9H-carbazol-3-yl)prop-2-en-1-one (DEPO) was prepared by the reaction of 9-ethyl-9H-carbazole-3-carbaldehyde with 1-(2,5-dimethylfuran-3-yl)ethanone under microwave irradiation. The structure of DEPO was established experimentally by EI-MS, FT-IR, 1 H and 13 C NMR spectral studies. Electronic absorption and emission spectra of DEPO were studied in different solvents on the basis of polarities, and the obtain data were used to determine the solvatochromic properties such as extinction coefficient, oscillator strength, transition dipole moment, stokes shift, fluorescence quantum yield and photochemical quantum yield. Photochemical quantum yield (Φ c ) of DEPO dye was determined in different solvent. The dye comparatively photostable in DMSO but undergoes photodecomposition in chloro methane solvents. The DEPO dye may be use as probe or quencher to determine critical micelle concentration (CMC) of cetyltri methyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS).

  1. Characterization of cap-shaped silver particles for surface-enhanced fluorescence effects.

    PubMed

    Yamaguchi, Tetsuji; Kaya, Takatoshi; Takei, Hiroyuki

    2007-05-15

    Surface-enhanced fluorescence has potentially many desirable properties as an analytical method for medical diagnostics, but the effect observed so far is rather modest and only in conjunction with fluorophores with low quantum yields. Coupled with the fact that preparation of suitable surfaces at low costs has been difficult, this has limited its utilities. Here we report a novel method for forming uniform and reproducible surfaces with respectable enhancement ratios even for high-quantum-yield fluorophores. Formation of dense surface-adsorbed latex spheres on a flat surface via partial aggregation, followed by evaporation of silver, results in a film consisting of cap-shaped silver particles at high densities. Binding of fluorescence biomolecules, either through physisorption or antigen-antibody reaction, was performed, and enhancements close to 50 have been observed with fluorophores such as R-phycoerythrin and Alexa 546-labeled, bovine serum albumin, both of which have quantum yields around 0.8. We attribute this to the unique shape of the silver particle and the presence of abundant gaps among adjacent particles at high densities. The effectiveness of the new surface is also demonstrated with IL-6 sandwich assays.

  2. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    PubMed

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb 2+ ) with trivalent antimony (Sb 3+ ) to synthesize stable and brightly luminescent Cs 3 Sb 2 Br 9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs 3 Sb 2 X 9 ) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  3. Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis.

    PubMed

    Dai, Shu-Wen; Hsu, Bo-Wei; Chen, Chien-Yu; Lee, Chia-An; Liu, Hsiao-Yun; Wang, Hsiao-Fang; Huang, Yu-Ching; Wu, Tien-Lin; Manikandan, Arumugam; Ho, Rong-Ming; Tsao, Cheng-Si; Cheng, Chien-Hong; Chueh, Yu-Lun; Lin, Hao-Wu

    2018-02-01

    In this study, a novel perovskite quantum dot (QD) spray-synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic-shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid-state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD-LED (ccQD-LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W -1 , and extraordinary forward-direction luminescence of 8 500 000 cd m -2 . The conceptual ccQD-OLED hybrid display also successfully demonstrates high-definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives-P3 color gamut. These very-stable, ultra-bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Green, Rapid, and Universal Preparation Approach of Graphene Quantum Dots under Ultraviolet Irradiation.

    PubMed

    Zhu, Jinli; Tang, Yanfeng; Wang, Gang; Mao, Jiarong; Liu, Zhiduo; Sun, Tongming; Wang, Miao; Chen, Da; Yang, Yucheng; Li, Jipeng; Deng, Yuan; Yang, Siwei

    2017-04-26

    It is of great significance and importance to explore a mild, clean, and highly efficient universal approach for the synthesis of graphene quantum dots. Herein, we introduced a new green, rapid, and universal preparation approach for graphene quantum dots via the free-radical polymerization of oxygen-containing aromatic compounds under ultraviolet irradiation. This approach had a high yield (86%), and the byproducts are only H 2 O and CO 2 . The obtained graphene quantum dots were well-crystallized and showed remarkable optical and biological properties. The colorful, different-sized graphene quantum dots can be used in fluorescent bioimaging in vitro and in vivo. This approach is suitable not only for the preparation of graphene quantum dots but also for heteroatom-doped graphene quantum dots.

  5. Photophysical Properties and Singlet Oxygen Generation Efficiencies of Water-Soluble Fullerene Nanoparticles

    PubMed Central

    Stasheuski, Alexander S; Galievsky, Victor A; Stupak, Alexander P; Dzhagarov, Boris M; Choi, Mi Jin; Chung, Bong Hyun; Jeong, Jin Young

    2014-01-01

    As various fullerene derivatives have been developed, it is necessary to explore their photophysical properties for potential use in photoelectronics and medicine. Here, we address the photophysical properties of newly synthesized water-soluble fullerene-based nanoparticles and polyhydroxylated fullerene as a representative water-soluble fullerene derivative. They show broad emission band arising from a wide-range of excitation energies. It is attributed to the optical transitions from disorder-induced states, which decay in the nanosecond time range. We determine the kinetic properties of the singlet oxygen (1O2) luminescence generated by the fullerene nanoparticles and polyhydroxylated fullerene to consider the potential as photodynamic agents. Triplet state decay of the nanoparticles was longer than 1O2 lifetime in water. Singlet oxygen quantum yield of a series of the fullerene nanoparticles is comparably higher ranging from 0.15 to 0.2 than that of polyhydroxylated fullerene, which is about 0.06. PMID:24893622

  6. Quantum-capacity-approaching codes for the detected-jump channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng

    2010-12-15

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasuresmore » and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.« less

  7. Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement.

    PubMed

    Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang

    2016-12-07

    Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.

  8. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang

    2008-06-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  9. BODIPY star-shaped molecules as solid state colour converters for visible light communications

    NASA Astrophysics Data System (ADS)

    Vithanage, D. A.; Manousiadis, P. P.; Sajjad, M. T.; Rajbhandari, S.; Chun, H.; Orofino, C.; Cortizo-Lacalle, D.; Kanibolotsky, A. L.; Faulkner, G.; Findlay, N. J.; O'Brien, D. C.; Skabara, P. J.; Samuel, I. D. W.; Turnbull, G. A.

    2016-07-01

    In this paper, we study a family of solid-state, organic semiconductors for visible light communications. The star-shaped molecules have a boron-dipyrromethene (BODIPY) core with a range of side arm lengths which control the photophysical properties. The molecules emit red light with photoluminescence quantum yields ranging from 22% to 56%. Thin films of the most promising BODIPY molecules were used as a red colour converter for visible light communications. The film enabled colour conversion with a modulation bandwidth of 73 MHz, which is 16 times higher than that of a typical phosphor used in LED lighting systems. A data rate of 370 Mbit/s was demonstrated using On-Off keying modulation in a free space link with a distance of ˜15 cm.

  10. Photocatalysis using a Wide Range of the Visible Light Spectrum: Hydrogen Evolution from Doped AgGaS2.

    PubMed

    Yamato, Kohei; Iwase, Akihide; Kudo, Akihiko

    2015-09-07

    Doping of nickel into AgGaS2 yields a new absorption band, at a wavelength longer than the intrinsic absorption band of the AgGaS2 host. The doped nickel forms an electron donor level in a forbidden band of AgGaS2 . The nickel-doped AgGaS2 with rhodium co-catalyst shows photocatalytic activity for sacrificial H2 evolution under the light of up to 760 nm due to the transition from the electron donor level consisting of Ni(2+) to the conduction band of AgGaS2 . Apparent quantum yields for the sacrificial H2 evolution at 540-620 nm are about 1 %. Moreover, the nickel-doped AgGa0.75 In0.25 S2 also responds to near-IR light, up to 900 nm. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.

    PubMed

    Wen, Qiannan; Kershaw, Stephen V; Kalytchuk, Sergii; Zhovtiuk, Olga; Reckmeier, Claas; Vasilevskiy, Mikhail I; Rogach, Andrey L

    2016-04-26

    We have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots that were initially grown in H2O. When the solvent is replaced by D2O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by developing quantitative models for the nonradiative recombination via (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent. We conclude that channel (i) is more important than (ii) for HgTe dots in either solution. When some of these modes are removed from the relevant spectral range by the H2O to D2O replacement, the polaron effect becomes weaker and the nonradiative lifetime increases. Comparisons with CdTe quantum dots (QDs) served as a reference where the resonant energy loss (ii) a priori was not a factor, also confirmed by our experiments. The solvent exchange (H2O to D2O), however, is found to slightly increase the overall quantum yield of CdTe samples, probably by increasing the fraction of bright dots in the ensemble. The fundamental study reported here can serve as the foundation for the design and optimization principles of narrow bandgap quantum dots aimed at applications in long wavelength colloidal materials for infrared light emitting diodes and photodetectors.

  12. Efficient quantum computing using coherent photon conversion.

    PubMed

    Langford, N K; Ramelow, S; Prevedel, R; Munro, W J; Milburn, G J; Zeilinger, A

    2011-10-12

    Single photons are excellent quantum information carriers: they were used in the earliest demonstrations of entanglement and in the production of the highest-quality entanglement reported so far. However, current schemes for preparing, processing and measuring them are inefficient. For example, down-conversion provides heralded, but randomly timed, single photons, and linear optics gates are inherently probabilistic. Here we introduce a deterministic process--coherent photon conversion (CPC)--that provides a new way to generate and process complex, multiquanta states for photonic quantum information applications. The technique uses classically pumped nonlinearities to induce coherent oscillations between orthogonal states of multiple quantum excitations. One example of CPC, based on a pumped four-wave-mixing interaction, is shown to yield a single, versatile process that provides a full set of photonic quantum processing tools. This set satisfies the DiVincenzo criteria for a scalable quantum computing architecture, including deterministic multiqubit entanglement gates (based on a novel form of photon-photon interaction), high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection. It can also be used to produce heralded multiphoton entanglement, create optically switchable quantum circuits and implement an improved form of down-conversion with reduced higher-order effects. Such tools are valuable building blocks for many quantum-enabled technologies. Finally, using photonic crystal fibres we experimentally demonstrate quantum correlations arising from a four-colour nonlinear process suitable for CPC and use these measurements to study the feasibility of reaching the deterministic regime with current technology. Our scheme, which is based on interacting bosonic fields, is not restricted to optical systems but could also be implemented in optomechanical, electromechanical and superconducting systems with extremely strong intrinsic nonlinearities. Furthermore, exploiting higher-order nonlinearities with multiple pump fields yields a mechanism for multiparty mediation of the complex, coherent dynamics.

  13. A molecular-field approximation for quantum crystals. Ph.D. Thesis; [considering ground state properties

    NASA Technical Reports Server (NTRS)

    Danilowicz, R.

    1973-01-01

    Ground-state properties of quantum crystals have received considerable attention from both theorists and experimentalists. The theoretical results have varied widely with the Monte Carlo calculations being the most successful. The molecular field approximation yields ground-state properties which agree closely with the Monte Carlo results. This approach evaluates the dynamical behavior of each pair of molecules in the molecular field of the other N-2 molecules. In addition to predicting ground-state properties that agree well with experiment, this approach yields data on the relative importance of interactions of different nearest neighbor pairs.

  14. Optical study of HgCdTe infrared photodetectors using internal photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lao, Yan-Feng; Unil Perera, A. G., E-mail: uperera@gsu.edu; Wijewarnasuriya, Priyalal S.

    2014-03-31

    We report a study of internal photoemission spectroscopy (IPE) applied to a n-type Hg{sub 1−x}Cd{sub x}Te/Hg{sub 1−y}Cd{sub y}Te heterojunction. An exponential line-shape of the absorption tail in HgCdTe is identified by IPE fittings of the near-threshold quantum yield spectra. The reduction of quantum yield (at higher photon energy) below the fitting value is explained as a result of carrier-phonon scatterings. In addition, the obtained bias independence of the IPE threshold indicates a negligible electron barrier at the heterojunction interface.

  15. pHP-Tethered N-Acyl Carbamate: A Photocage for Nicotinamide.

    PubMed

    Salahi, Farbod; Purohit, Vatsal; Ferraudi, Guillermo; Stauffacher, Cynthia; Wiest, Olaf; Helquist, Paul

    2018-05-04

    The synthesis of a new photocaged nicotinamide having an N-acyl carbamate linker and a p-hydroxyphenacyl (pHP) chromophore is described. The photophysical and photochemical studies showed an absorption maximum at λ = 330 nm and a quantum yield for release of 11% that are dependent upon both pH and solvent. While the acyl carbamate releases nicotinamide efficiently, a simpler amide linker was inert to photocleavage. This photocaged nicotinamide has significant advantages with respect to quantum yield, absorbance wavelength, rate of release, and solubility that make it the first practical example of a photocaged amide.

  16. Determination of absolute chemiluminescence quantum yields for reactions of bis-(pentachlorophenyl) oxalate, hydrogen peroxide and fluorescent compounds.

    PubMed

    Catherall, C L; Palmer, T F; Cundall, R B

    1989-01-01

    Absolute chemiluminescence quantum yields (phi CL) for reactions of bis-(pentachlorophenyl) oxalate (PCPO), hydrogen peroxide (H2O2) and 9:10 diphenyl anthracene (DPA) have been determined. A fully corrected chemiluminescence monitoring spectrometer was calibrated for spectral sensitivity using the chemiluminescence of the bis-(pentachlorophenyl) oxalate system as a liquid light source, the total photon output of which had previously been determined by chemical actinometry. At high (PCPO)/(H2O2) ratios phi CL was found to be independent of PCPO and H2O2 concentrations.

  17. Dilepton production from hot hadronic matter in nonequilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenke, B.; Greiner, C.

    2006-03-15

    The influence of time-dependent medium modifications of low-mass vector mesons on dilepton production is investigated within a nonequilibrium quantum field-theoretical description on the basis of the Kadanoff-Baym equations. Time scales for the adaption of the spectral properties to changing self-energies are given, and, under use of a model for the fireball evolution, nonequilibrium dilepton yields from the decay of {rho} and {omega} mesons are calculated. In a comparison of these yields, those from calculations that assume instantaneous (Markovian) adaption to the changing-medium quantum-mechanical memory effects turn out to be important.

  18. Do genotypic differences in thermotolerance plasticity correspond with water-induced differences in yield and photosynthetic stability for field-grown upland cotton?

    USDA-ARS?s Scientific Manuscript database

    To determine if cultivar differences in thermotolerance plasticity of photosystem II promote yield or photosynthetic stability when variability in both parameters is water-induced, the temperature response of maximum quantum yield of photosystem II (Fv/Fm) was evaluated for two cotton cultivars (FM ...

  19. Revisiting the quantum Szilard engine with fully quantum considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hai; School of Information and Electronics Engineering, Shandong Institute of Business and Technology, Yantai 264000; Zou, Jian, E-mail: zoujian@bit.edu.cn

    2012-12-15

    By considering level shifting during the insertion process we revisit the quantum Szilard engine (QSZE) with fully quantum consideration. We derive the general expressions of the heat absorbed from thermal bath and the total work done to the environment by the system in a cycle with two different cyclic strategies. We find that only the quantum information contributes to the absorbed heat, and the classical information acts like a feedback controller and has no direct effect on the absorbed heat. This is the first demonstration of the different effects of quantum information and classical information for extracting heat from themore » bath in the QSZE. Moreover, when the well width L{yields}{infinity} or the temperature of the bath T{yields}{infinity} the QSZE reduces to the classical Szilard engine (CSZE), and the total work satisfies the relation W{sub tot}=k{sub B}Tln2 as obtained by Sang Wook Kim et al. [S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106 (2011) 070401] for one particle case. - Highlights: Black-Right-Pointing-Pointer For the first time analyze the QSZE by considering energy level shifts. Black-Right-Pointing-Pointer Find different roles played by classical and quantum information in the QSZE. Black-Right-Pointing-Pointer The amount of work extracted depends on the cyclic strategies of the QSZE. Black-Right-Pointing-Pointer Verify that the QSZE will reduce to the CSZE in the classical limits.« less

  20. Dynamical importance of van der Waals saddle and excited potential surface in C(1D)+D2 complex-forming reaction

    PubMed Central

    Shen, Zhitao; Ma, Haitao; Zhang, Chunfang; Fu, Mingkai; Wu, Yanan; Bian, Wensheng; Cao, Jianwei

    2017-01-01

    Encouraged by recent advances in revealing significant effects of van der Waals wells on reaction dynamics, many people assume that van der Waals wells are inevitable in chemical reactions. Here we find that the weak long-range forces cause van der Waals saddles in the prototypical C(1D)+D2 complex-forming reaction that have very different dynamical effects from van der Waals wells at low collision energies. Accurate quantum dynamics calculations on our highly accurate ab initio potential energy surfaces with van der Waals saddles yield cross-sections in close agreement with crossed-beam experiments, whereas the same calculations on an earlier surface with van der Waals wells produce much smaller cross-sections at low energies. Further trajectory calculations reveal that the van der Waals saddle leads to a torsion then sideways insertion reaction mechanism, whereas the well suppresses reactivity. Quantum diffraction oscillations and sharp resonances are also predicted based on our ground- and excited-state potential energy surfaces. PMID:28094253

  1. On-chip detection of non-classical light by scalable integration of single-photon detectors

    PubMed Central

    Najafi, Faraz; Mower, Jacob; Harris, Nicholas C.; Bellei, Francesco; Dane, Andrew; Lee, Catherine; Hu, Xiaolong; Kharel, Prashanta; Marsili, Francesco; Assefa, Solomon; Berggren, Karl K.; Englund, Dirk

    2015-01-01

    Photonic-integrated circuits have emerged as a scalable platform for complex quantum systems. A central goal is to integrate single-photon detectors to reduce optical losses, latency and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps jitter and nanosecond-scale reset time. However, while single detectors have been incorporated into individual waveguides, the system detection efficiency of multiple SNSPDs in one photonic circuit—required for scalable quantum photonic circuits—has been limited to <0.2%. Here we introduce a micrometer-scale flip-chip process that enables scalable integration of SNSPDs on a range of photonic circuits. Ten low-jitter detectors are integrated on one circuit with 100% device yield. With an average system detection efficiency beyond 10%, and estimated on-chip detection efficiency of 14–52% for four detectors operated simultaneously, we demonstrate, to the best of our knowledge, the first on-chip photon correlation measurements of non-classical light. PMID:25575346

  2. Sol-Gel Chemistry for Carbon Dots.

    PubMed

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A filterless, visible-blind, narrow-band, and near-infrared photodetector with a gain

    NASA Astrophysics Data System (ADS)

    Shen, Liang; Zhang, Yang; Bai, Yang; Zheng, Xiaopeng; Wang, Qi; Huang, Jinsong

    2016-06-01

    In many applications of near-infrared (NIR) light detection, a band-pass filter is needed to exclude the noise caused by visible light. Here, we demonstrate a filterless, visible-blind, narrow-band NIR photodetector with a full-width at half-maximum of <50 nm for the response spectrum. These devices have a thick (>4 μm) nanocomposite absorbing layers made of polymer-fullerene:lead sulfide (PbS) quantum dots (QDs). The PbS QDs yield a photoconductive gain due to their hole-trapping effect, which effectively enhances both the responsivity and the visible rejection ratio of the external quantum efficiency by >10 fold compared to those without PbS QDs. Encouragingly, the inclusion of the PbS QDs does not increase the device noise. We directly measured a noise equivalent power (NEP) of 6.1 pW cm-2 at 890 nm, and a large linear dynamic range (LDR) over 11 orders of magnitude. The highly sensitive visible-blind NIR narrow-band photodetectors may find applications in biomedical engineering.

  4. One-step instant synthesis of protein-conjugated quantum dots at room temperature.

    PubMed

    He, Xuewen; Gao, Li; Ma, Nan

    2013-10-02

    We present a new general facile strategy for the preparation of protein-functionalized QDs in a single step at ambient conditions. We demonstrated that highly luminescent red to near-infrared (NIR) protein-functionalized QDs could be synthesized at room temperature in one second through a one-pot reaction that proceeds in aqueous solution. Herein protein-functionalized QDs were successfully constructed for a variety of proteins with a wide range of molecular weights and isoelectric points. The as-prepared protein-conjugated QDs exhibited high quantum yield, high photostabiliy and colloidal stability, and high functionalization efficiency. Importantly, the proteins attached to the QDs maintain their biological activities and are capable of catalyzing reactions and biotargeting. In particular, the as-prepared transferrin-QDs could be used to label cancer cells with high specificity. Moreover, we demonstrated that this synthetic strategy could be extended to prepare QDs functionalized with folic acids and peptides, which were also successfully applied to cancer cell imaging.

  5. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: analytical applications and optimization using response surface methodology.

    PubMed

    Barati, Ali; Shamsipur, Mojtaba; Arkan, Elham; Hosseinzadeh, Leila; Abdollahi, Hamid

    2015-02-01

    Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg(2+) ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight. Copyright © 2014. Published by Elsevier B.V.

  6. Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas.

    PubMed

    Vietz, Carolin; Kaminska, Izabela; Sanz Paz, Maria; Tinnefeld, Philip; Acuna, Guillermo P

    2017-05-23

    Plasmonic structures are known to affect the fluorescence properties of dyes placed in close proximity. This effect has been exploited in combination with single-molecule techniques for several applications in the field of biosensing. Among these plasmonic structures, top-down zero-mode waveguides stand out due to their broadband capabilities. In contrast, optical antennas based on gold nanostructures exhibit fluorescence enhancement on a narrow fraction of the visible spectrum typically restricted to the red to near-infrared region. In this contribution, we exploit the DNA origami technique to self-assemble optical antennas based on large (80 nm) silver nanoparticles. We have studied the performance of these antennas with far- and near-field simulations and characterized them experimentally with single-molecule fluorescence measurements. We demonstrate that silver-based optical antennas can yield a fluorescence enhancement of more than 2 orders of magnitude throughout the visible spectral range for high intrinsic quantum yield dyes. Additionally, a comparison between the performance of gold and silver-based antennas is included. The results indicate that silver-based antennas strongly outperform their gold counterparts in the blue and green ranges and exhibit marginal differences in the red range. These characteristics render silver-based optical antennas ready for applications involving several fluorescently labeled species across the visible spectrum.

  7. Exposure Range For Cine Radiographic Procedures

    NASA Astrophysics Data System (ADS)

    Moore, Robert J.

    1980-08-01

    Based on the author's experience, state-of-the-art cine radiographic equipment of the type used in modern cardiovascular laboratories for selective coronary arteriography must perform at well-defined levels to produce cine images with acceptable quantum mottle, contrast, and detail, as judged by consensus of across section of American cardiologists/radiologists experienced in viewing such images. Accordingly, a "standard" undertable state-of-the-art cine radiographic imaging system is postulated to answer the question of what patient exposure range is necessary to obtain cine images of acceptable quality. It is shown that such a standard system would be expected to produce a 'tabletop exposure of about 25 milliRoentgens per frame for the "standard" adult patient, plus-or-minus 33% for accept-able variation of system parameters. This means that for cine radiography at 60 frames per second (30 frames per second) the exposure rate range based on this model is 60 to 120 Roentgens per minute (30 to 60 Roentgens per minute). The author contends that studies at exposure levels below these will yield cine images of questionable diagnostic value; studies at exposure levels above these may yield cine images of excellent visual quality but having little additional diagnostic value, at the expense of added patient/personnel radiation exposure and added x-ray tube heat loading.

  8. Programmable Quantum Photonic Processor Using Silicon Photonics

    DTIC Science & Technology

    2017-04-01

    quantum information processing and quantum sensing, ranging from linear optics quantum computing and quantum simulation to quantum ...transformers have driven experimental and theoretical advances in quantum simulation, cluster-state quantum computing , all-optical quantum repeaters...neuromorphic computing , and other applications. In addition, we developed new schemes for ballistic quantum computation , new methods for

  9. Photoinhibition in common atlantic macroalgae measured on site in Gran Canaria

    NASA Astrophysics Data System (ADS)

    Häder, D.-P.; Porst, M.; Lebert, M.

    2001-03-01

    The photosynthetic quantum yield was analysed in four common atlantic macroalgae, the Rhodophytes Gelidium arbuscula and Halopithys incurvus and the Phaeophytes Halopteris scoparia and Lobophora variegata in Gran Canaria, Canary Islands at their growth site. The fluorescence parameters were measured using a portable pulse amplitude modulated (PAM) fluorometer (PAM 2000) instrument and a diving PAM under water without removing the thalli from their growth sites. Solar radiation was monitored continuously above and under water during the whole experimental period using two three-channel dosimeters (European light dosimeter network; ELDONET) (Real Time Computer, Möhrendorf, Germany). These instruments measure solar radiation in three wavelength ranges, ultraviolet (UV)-A, UV-B and photosynthetic active radiation (PAR). In all four algae the effective photosynthetic quantum yield decreased significantly from the optimal values measured after dark adaptation due to exposure to 15 min solar radiation, but at least partially recovered subsequently in the shade within several hours. Increasing the exposure period to 30 min intensified the photoinhibition. In some algae no recovery was observed after this treatment and in others no significant recovery could be detected. Exposure to unfiltered solar radiation caused a significantly higher photoinhibition than PAR-only radiation or PAR plus UV-A. A substantial inhibition was found in all algae at their growth sites in the water column when the sun was at high angles, as measured with the diving PAM.

  10. Integrated semiconductor quantum dot scintillation detector: Ultimate limit for speed and light yield

    DOE PAGES

    Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; ...

    2016-03-30

    Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 10 15 cm -3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication ofmore » a semiconductor scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm 3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.« less

  11. High Color Rendering Index White-Light Emission from UV-Driven LEDs Based on Single Luminescent Materials: Two-Dimensional Perovskites (C6H5C2H4NH3)2PbBr xCl4- x.

    PubMed

    Yang, Shuming; Lin, Zhenghuan; Wang, Jingwei; Chen, Yunxiang; Liu, Zhengde; Yang, E; Zhang, Jian; Ling, Qidan

    2018-05-09

    Two-dimensional (2D) white-light-emitting hybrid perovskites (WHPs) are promising active materials for single-component white-light-emitting diodes (WLEDs) driven by UV. However, the reported WHPs exhibit low quantum yields (≤9%) and low color rendering index (CRI) values less than 85, which does not satisfy the demand of solid-state lighting applications. In this work, we report a series of mixed-halide 2D layered WHPs (C 6 H 5 C 2 H 4 NH 3 ) 2 PbBr x Cl 4- x (0 < x < 4) obtained from the phenethylammonium cation. Unlike the reported WHPs including (C 6 H 5 C 2 H 4 NH 3 ) 2 PbCl 4 , the mixed-halide perovskites display morphology-dependent white emission for the different extents of self-absorption. Additionally, the amount of Br has a huge influence on the photophysical properties of mixed-halide WHPs. With the increasing content of Br, the quantum yields of WHPs increase gradually from 0.2 to 16.9%, accompanied by tunable color temperatures ranging from 4000 K ("warm" white light) to 7000 K ("cold" white light). When applied to the WLEDs, the mixed-halide perovskite powders exhibit tunable white electroluminescent emission with very high CRI of 87-91.

  12. Photophysical and Photochemical Properties of Naturally Occurring normelinonine F and Melinonine F Alkaloids and Structurally Related N(2)- and/or N(9)-methyl-β-carboline Derivatives.

    PubMed

    Rasse-Suriani, Federico A O; García-Einschlag, Fernando S; Rafti, Matías; Schmidt De León, Tobías; David Gara, Pedro M; Erra-Balsells, Rosa; Cabrerizo, Franco M

    2018-01-01

    In the present work, we have synthesized and fully characterized the photophysical and photochemical properties of a selected group of N-methyl-β-carboline derivatives (9-methyl-β-carbolines and iodine salts of 2-methyl- and 2,9-dimethyl-β-carbolinium) in aqueous solutions, in the pH range 4.0-14.5. Moreover, despite the quite extensive studies reported in the literature regarding the overall photophysical behavior of N-unsubstituted βCs, this work constitutes the first full and unambiguous characterization of anionic species of N-unsubstituted βCs (norharmane, harmane and harmine), present in aqueous solution under highly alkaline conditions (pH > 13.0). Acid dissociation constants (K a ), thermal stabilities, room temperature UV-visible absorption and fluorescence emission and excitation spectra, fluorescence quantum yields (Ф F ) and fluorescence lifetimes (τ F ), as well as quantum yields of singlet oxygen production (Ф Δ ) have been measured for all the studied compounds. Furthermore, for the first time to our knowledge, chemometric techniques (MCR-ALS and PARAFAC) were applied on these systems, providing relevant information about the equilibria and species involved. The impact of all the foregoing observations on the biological role, as well as the potential biotechnological applications of these compounds, is discussed. © 2017 The American Society of Photobiology.

  13. On the minimum quantum requirement of photosynthesis.

    PubMed

    Zeinalov, Yuzeir

    2009-01-01

    An analysis of the shape of photosynthetic light curves is presented and the existence of the initial non-linear part is shown as a consequence of the operation of the non-cooperative (Kok's) mechanism of oxygen evolution or the effect of dark respiration. The effect of nonlinearity on the quantum efficiency (yield) and quantum requirement is reconsidered. The essential conclusions are: 1) The non-linearity of the light curves cannot be compensated using suspensions of algae or chloroplasts with high (>1.0) optical density or absorbance. 2) The values of the maxima of the quantum efficiency curves or the values of the minima of the quantum requirement curves cannot be used for estimation of the exact value of the maximum quantum efficiency and the minimum quantum requirement. The estimation of the maximum quantum efficiency or the minimum quantum requirement should be performed only after extrapolation of the linear part at higher light intensities of the quantum requirement curves to "0" light intensity.

  14. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    PubMed

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  15. Quantum and classical noise in practical quantum-cryptography systems based on polarization-entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelletto, S.; Degiovanni, I.P.; Rastello, M.L.

    2003-02-01

    Quantum-cryptography key distribution (QCKD) experiments have been recently reported using polarization-entangled photons. However, in any practical realization, quantum systems suffer from either unwanted or induced interactions with the environment and the quantum measurement system, showing up as quantum and, ultimately, statistical noise. In this paper, we investigate how an ideal polarization entanglement in spontaneous parametric down-conversion (SPDC) suffers quantum noise in its practical implementation as a secure quantum system, yielding errors in the transmitted bit sequence. Since all SPDC-based QCKD schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we bundle up themore » overall quantum and statistical noise in an exhaustive model to calculate the accidental coincidences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of performances and advantages of different systems.« less

  16. Nonlocal interferometry with macroscopic coherent states and its application to quantum communications

    NASA Astrophysics Data System (ADS)

    Kirby, Brian

    Macroscopic quantum effects are of fundamental interest because they help us to understand the quantum-classical boundary, and may also have important practical applications in long-range quantum communications. Specifically we analyze a macroscopic generalization of the Franson interferometer, where violations of Bell's inequality can be observed using phase entangled coherent states created using weak nonlinearities. Furthermore we want to understand how these states, and other macroscopic quantum states, can be applied to secure quantum communications. We find that Bell's inequality can be violated at ranges of roughly 400 km in optical fiber when various unambiguous state discrimination techniques are applied. In addition Monte Carlo simulations suggest that quantum communications schemes based on macroscopic quantum states and random unitary transformations can be potentially secure at long distances. Lastly, we calculate the feasibility of creating the weak nonlinearity needed for the experimental realization of these proposals using metastable xenon in a high finesse cavity. This research suggests that quantum states created using macroscopic coherent states and weak nonlinearities may be a realistic path towards the realization of secure long-range quantum communications.

  17. Quantum walled Brauer algebra: commuting families, Baxterization, and representations

    NASA Astrophysics Data System (ADS)

    Semikhatov, A. M.; Tipunin, I. Yu

    2017-02-01

    For the quantum walled Brauer algebra, we construct its Specht modules and (for generic parameters of the algebra) seminormal modules. The latter construction yields the spectrum of a commuting family of Jucys-Murphy elements. We also propose a Baxterization prescription; it involves representing the quantum walled Brauer algebra in terms of morphisms in a braided monoidal category and introducing parameters into these morphisms, which allows constructing a ‘universal transfer matrix’ that generates commuting elements of the algebra.

  18. Quantum communication complexity using the quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Anwer, Hammad; Hameedi, Alley; Bourennane, Mohamed

    2015-07-01

    The quantum Zeno effect (QZE) is the phenomenon in which the unitary evolution of a quantum state is suppressed, e.g., due to frequent measurements. Here, we investigate the use of the QZE in a class of communication complexity problems (CCPs). Quantum entanglement is known to solve certain CCPs beyond classical constraints. However, recent developments have yielded CCPs for which superclassical results can be obtained using only communication of a single d -level quantum state (qudit) as a resource. In the class of CCPs considered here, we show quantum reduction of complexity in three ways: using (i) entanglement and the QZE, (ii) a single qudit and the QZE, and (iii) a single qudit. We have performed a proof of concept experimental demonstrations of three party CCP protocol based on single-qubit communication with and without QZE.

  19. Time-bin entangled photons from a quantum dot

    PubMed Central

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S.; Weihs, Gregor

    2014-01-01

    Long distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single photon pairs is required. Here, we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter. PMID:24968024

  20. Time-bin entangled photons from a quantum dot.

    PubMed

    Jayakumar, Harishankar; Predojević, Ana; Kauten, Thomas; Huber, Tobias; Solomon, Glenn S; Weihs, Gregor

    2014-06-26

    Long-distance quantum communication is one of the prime goals in the field of quantum information science. With information encoded in the quantum state of photons, existing telecommunication fibre networks can be effectively used as a transport medium. To achieve this goal, a source of robust entangled single-photon pairs is required. Here we report the realization of a source of time-bin entangled photon pairs utilizing the biexciton-exciton cascade in a III/V self-assembled quantum dot. We analyse the generated photon pairs by an inherently phase-stable interferometry technique, facilitating uninterrupted long integration times. We confirm the entanglement by performing quantum state tomography of the emitted photons, which yields a fidelity of 0.69(3) and a concurrence of 0.41(6) for our realization of time-energy entanglement from a single quantum emitter.

  1. Quantum versus classical dynamics in the optical centrifuge

    NASA Astrophysics Data System (ADS)

    Armon, Tsafrir; Friedland, Lazar

    2017-09-01

    The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.

  2. Measurements of observables replaced by “evaluations” in Quantum Theory

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Sestito, Angela

    2015-07-01

    In quantum physics there are circumstances where the direct measurement of particular observables encounters difficulties; in some of these cases, however, its value can be evaluated, i.e. it can be inferred by measuring another observable characterized by perfect correlation with the observable of interest. Though an evaluation is often interpreted as a measurement of the evaluated observable, we prove that the two concepts cannot be identified in quantum physics, because the identification yields contradictions. Then, we establish the conceptual status of evaluations in Quantum Theory and the role can be ascribed to them.

  3. Fluorescent porous silicon biological probes with high quantum efficiency and stability.

    PubMed

    Tu, Chang-Ching; Chou, Ying-Nien; Hung, Hsiang-Chieh; Wu, Jingda; Jiang, Shaoyi; Lin, Lih Y

    2014-12-01

    We demonstrate porous silicon biological probes as a stable and non-toxic alternative to organic dyes or cadmium-containing quantum dots for imaging and sensing applications. The fluorescent silicon quantum dots which are embedded on the porous silicon surface are passivated with carboxyl-terminated ligands through stable Si-C covalent bonds. The porous silicon bio-probes have shown photoluminescence quantum yield around 50% under near-UV excitation, with high photochemical and thermal stability. The bio-probes can be efficiently conjugated with antibodies, which is confirmed by a standard enzyme-linked immunosorbent assay (ELISA) method.

  4. Multi-functional quantum router using hybrid opto-electromechanics

    NASA Astrophysics Data System (ADS)

    Ma, Peng-Cheng; Yan, Lei-Lei; Chen, Gui-Bin; Li, Xiao-Wei; Liu, Shu-Jing; Zhan, You-Bang

    2018-03-01

    Quantum routers engineered with multiple frequency bands play a key role in quantum networks. We propose an experimentally accessible scheme for a multi-functional quantum router, using photon-phonon conversion in a hybrid opto-electromechanical system. Our proposed device functions as a bidirectional, tunable multi-channel quantum router, and demonstrates the possibility to route single optical photons bidirectionally and simultaneously to three different output ports, by adjusting the microwave power. Further, the device also behaves as an interswitching unit for microwave and optical photons, yielding probabilistic routing of microwave (optical) signals to optical (microwave) outports. With respect to potential application, we verify the insignificant influence from vacuum and thermal noises in the performance of the router under cryogenic conditions.

  5. Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.

    PubMed

    Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán

    2014-03-11

    While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.

  6. Crassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifolia, and other rainforest species from Australia.

    PubMed

    Winter, K; Osmond, C B; Hubick, K T

    1986-01-01

    Crassulacean acid metabolism (CAM) was studied in a tropical epiphytic fern, Pyrrosia longifolia, from a fully sun-exposed and from a very shaded site in Northern Queensland, Australia. Measurements of instantaneous net CO 2 exchange showed carbon gain via CO 2 dark fixation with some net CO 2 uptake also occuring during late afternoon, in both sun and shade fronds. Maximum rates of net CO 2 uptake and the nocturnal increase in titratable acidity were lower in shade than in sun fronds. δ 13 C values of sun and shade fronds were not significantly different, and ranged between-14 and-15‰ suggesting that, in the long term, carbon gain was mainly via CO 2 dark fixation. Sun fronds had a higher light compensation point of photosynthesis than shade fronds but the same quantum yield. Yet there was no acclimation of photosynthetic O 2 evolution, (measured at 5% CO 2 ) in sun and shade fronds and photosynthesis saturated at between 200 and 400 μmol quanta m -2 s -1 . Use of higher light intensities for photosynthesis of sun fronds was probably precluded by low nutrient availability. Total nitrogen was less than 1% of dry weight in fully expanded sun and shade fronds. Exposure of shade fronds to full sunlight for 6 h led to a 60% decline in the quantum yield of photosynthesis and to a decline in variable fluorescence measured at room temperature. Photoinhibition by high light was also observed in Hoya nicholsoniae, a rainforest climber growing in deep shade. This species also exhibited CAM as demonstrated by nocturnal net CO 2 uptake, nocturnal acidification and a δ 13 C value of-14‰. Photosynthetic O 2 evolution in this species was saturated at 2.5% of full sunlight. Two species of Dendrobium (Orchidaceae) from sun-exposed sites, one species exhibiting CAM and the other one exhibiting net CO 2 uptake exclusively during daytime via conventional C 3 photosynthesis, showed similar light response curves and the same quantum yield for photosynthetic O 2 evolution.

  7. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission

    NASA Astrophysics Data System (ADS)

    Sun, Xiangcheng; Brückner, Christian; Lei, Yu

    2015-10-01

    Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications.Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications. Electronic supplementary information (ESI) available: Detailed experimental section, XRD, FTIR, explosive sensing and the applications results. See DOI: 10.1039/c5nr05549k

  8. Mapping quantum yield for (Fe-Zn-Sn-Ti)Ox photoabsorbers using a high throughput photoelectrochemical screening system.

    PubMed

    Xiang, Chengxiang; Haber, Joel; Marcin, Martin; Mitrovic, Slobodan; Jin, Jian; Gregoire, John M

    2014-03-10

    Combinatorial synthesis and screening of light absorbers are critical to material discoveries for photovoltaic and photoelectrochemical applications. One of the most effective ways to evaluate the energy-conversion properties of a semiconducting light absorber is to form an asymmetric junction and investigate the photogeneration, transport and recombination processes at the semiconductor interface. This standard photoelectrochemical measurement is readily made on a semiconductor sample with a back-side metallic contact (working electrode) and front-side solution contact. In a typical combinatorial material library, each sample shares a common back contact, requiring novel instrumentation to provide spatially resolved and thus sample-resolved measurements. We developed a multiplexing counter electrode with a thin layer assembly, in which a rectifying semiconductor/liquid junction was formed and the short-circuit photocurrent was measured under chopped illumination for each sample in a material library. The multiplexing counter electrode assembly demonstrated a photocurrent sensitivity of sub-10 μA cm(-2) with an external quantum yield sensitivity of 0.5% for each semiconductor sample under a monochromatic ultraviolet illumination source. The combination of cell architecture and multiplexing allows high-throughput modes of operation, including both fast-serial and parallel measurements. To demonstrate the performance of the instrument, the external quantum yields of 1819 different compositions from a pseudoquaternary metal oxide library, (Fe-Zn-Sn-Ti)Ox, at 385 nm were collected in scanning serial mode with a throughput of as fast as 1 s per sample. Preliminary screening results identified a promising ternary composition region centered at Fe0.894Sn0.103Ti0.0034Ox, with an external quantum yield of 6.7% at 385 nm.

  9. Photochemical properties of squarylium cyanine dyes.

    PubMed

    Ferreira, D P; Conceição, D S; Ferreira, V R A; Graça, V C; Santos, P F; Vieira Ferreira, L F

    2013-11-01

    This study presents several new squarylium dyes derived from benzothiazole and benzoselenazole with several structural variations, namely the nature of the heteroaromatic ring and the length of the N,N'-dialkyl groups. Before being investigated in connection with their effect on living cells and/or tissues, these novel compounds were characterized, namely with respect to the determination of their main photophysical parameters. Therefore, a study of the ground state absorption, fluorescence emission (quantum yields and lifetimes) and singlet oxygen generation quantum yields was performed for all the compounds synthesized in order to evaluate their efficiency as photosensitizers. An increase of the alkyl chain length from ethyl to hexyl did not produce a clear change in the fluorescence quantum yields, showing no influence on the photoisomerization process. Heavy atom inclusion (Se instead of S) enhanced the singlet oxygen generation efficiency and decreased the intensity of the fluorescence emission. The external heavy atom effect (I(-) as a counterion instead of CF3SO3(-)) produced a significant increase in the singlet oxygen formation quantum yield (about 20%). Transient absorption studies in aerated and oxygen free samples revealed that the photoisomerization process, which could compete with the triplet state formation for all dyes in solution, is a negligible pathway for the excited state deactivation, in accordance with the rigidity introduced by the squaric ring into the polymethine chain of the dye, both in chloroform and ethanol. However, in the case of the chloroform solution a new transient was detected in air equilibrated solutions, resulting from a reaction of the excited squarylium dye in the singlet state with CHCl3˙, and assigned to the radical cation (SQ(+)˙) of the dye.

  10. Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies.

    PubMed

    Escorihuela, Jorge; Das, Anita; Looijen, Wilhelmus J E; van Delft, Floris L; Aquino, Adelia J A; Lischka, Hans; Zuilhof, Han

    2018-01-05

    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne-1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH ⧧ ) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH ⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3-8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches.

  11. Kinetics of the Strain-Promoted Oxidation-Controlled Cycloalkyne-1,2-quinone Cycloaddition: Experimental and Theoretical Studies

    PubMed Central

    2017-01-01

    Stimulated by its success in both bioconjugation and surface modification, we studied the strain-promoted oxidation-controlled cycloalkyne–1,2-quinone cycloaddition (SPOCQ) in three ways. First, the second-order rate constants and activation parameters (ΔH⧧) were determined of various cyclooctynes reacting with 4-tert-butyl-1,2-quinone in a SPOCQ reaction, yielding values for ΔH⧧ of 4.5, 7.3, and 12.1 kcal/mol, for bicyclo[6.1.0]non-4-yne (BCN), cyclooctyne (OCT), and dibenzoazacyclooctyne (DIBAC), respectively. Second, their reaction paths were investigated in detail by a range of quantum mechanical calculations. Single-configuration theoretical methods, like various DFT and a range of MP2-based methods, typically overestimate this barrier by 3–8 kcal/mol (after inclusion of zero-point energy, thermal, and solvation corrections), whereas MP2 itself underestimates the barrier significantly. Only dispersion-corrected DFT methods like B97D (yielding 4.9, 6.4, and 12.1 kcal/mol for these three reactions) and high-level CCSD(T) and multireference multiconfiguration AQCC ab initio approaches (both yielding 8.2 kcal/mol for BCN) give good approximations of experimental data. Finally, the multireference methods show that the radical character in the TS is rather small, thus rationalizing the use of single-reference methods like B97D and SCS-MP2 as intrinsically valid approaches. PMID:29260879

  12. Single photon emission from plasma treated 2D hexagonal boron nitride.

    PubMed

    Xu, Zai-Quan; Elbadawi, Christopher; Tran, Toan Trong; Kianinia, Mehran; Li, Xiuling; Liu, Daobin; Hoffman, Timothy B; Nguyen, Minh; Kim, Sejeong; Edgar, James H; Wu, Xiaojun; Song, Li; Ali, Sajid; Ford, Mike; Toth, Milos; Aharonovich, Igor

    2018-05-03

    Artificial atomic systems in solids are becoming increasingly important building blocks in quantum information processing and scalable quantum nanophotonic networks. Amongst numerous candidates, 2D hexagonal boron nitride has recently emerged as a promising platform hosting single photon emitters. Here, we report a number of robust plasma and thermal annealing methods for fabrication of emitters in tape-exfoliated hexagonal boron nitride (hBN) crystals. A two-step process comprising Ar plasma etching and subsequent annealing in Ar is highly robust, and yields an eight-fold increase in the concentration of emitters in hBN. The initial plasma-etching step generates emitters that suffer from blinking and bleaching, whereas the two-step process yields emitters that are photostable at room temperature with emission wavelengths greater than ∼700 nm. Density functional theory modeling suggests that the emitters might be associated with defect complexes that contain oxygen. This is further confirmed by generating the emitters via annealing hBN in air. Our findings advance the present understanding of the structure of quantum emitters in hBN and enhance the nanofabrication toolkit needed to realize integrated quantum nanophotonic circuits.

  13. Room temperature synthesis of pH-switchable polyaniline quantum dots as a turn-on fluorescent probe for acidic biotarget labeling.

    PubMed

    Liu, Yanfeng; Ding, Yin; Gou, Huilin; Huang, Xin; Zhang, Guiyang; Zhang, Qi; Liu, Yunzhong; Meng, Zhen; Xi, Kai; Jia, Xudong

    2018-04-05

    The synthesis of well-defined light-element-derived quantum dots (LEQDs) with advanced optical properties under mild conditions is highly desirable yet challenging. Here, a polyaniline (PANI) structure is introduced into carbon-rich LEQDs to yield well-defined, fluorescent polyaniline quantum dots (PAQDs), PAQD24, through a one-pot room temperature reaction. The mild synthetic conditions effectively minimize the defects introduced during the conventional synthesis and endow PAQD24 with desirable optical properties, including a narrow emission band (full width at half maximum = 55 nm), an optimal quantum yield of 32.5% and two-photon fluorescence. Furthermore, the bandgap of PAQD24 is highly sensitive toward pH variations in the near-neutral region, due to the proton doping and dedoping of the PANI structure. Such unique properties together with its fine bio-compatibility enable the application of this material as a turn-on fluorescent probe for the labeling of acidic biotargets from sub-cellular to organ levels, providing potential applications in diagnosis and surgery guidance for certain diseases.

  14. A quantum inspired model of radar range and range-rate measurements with applications to weak value measurements

    NASA Astrophysics Data System (ADS)

    Escalante, George

    2017-05-01

    Weak Value Measurements (WVMs) with pre- and post-selected quantum mechanical ensembles were proposed by Aharonov, Albert, and Vaidman in 1988 and have found numerous applications in both theoretical and applied physics. In the field of precision metrology, WVM techniques have been demonstrated and proven valuable as a means to shift, amplify, and detect signals and to make precise measurements of small effects in both quantum and classical systems, including: particle spin, the Spin-Hall effect of light, optical beam deflections, frequency shifts, field gradients, and many others. In principal, WVM amplification techniques are also possible in radar and could be a valuable tool for precision measurements. However, relatively limited research has been done in this area. This article presents a quantum-inspired model of radar range and range-rate measurements of arbitrary strength, including standard and pre- and post-selected measurements. The model is used to extend WVM amplification theory to radar, with the receive filter performing the post-selection role. It is shown that the description of range and range-rate measurements based on the quantum-mechanical measurement model and formalism produces the same results as the conventional approach used in radar based on signal processing and filtering of the reflected signal at the radar receiver. Numerical simulation results using simple point scatterrer configurations are presented, applying the quantum-inspired model of radar range and range-rate measurements that occur in the weak measurement regime. Potential applications and benefits of the quantum inspired approach to radar measurements are presented, including improved range and Doppler measurement resolution.

  15. Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects

    DOE PAGES

    He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.; ...

    2017-09-28

    Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less

  16. Low-Temperature Single Carbon Nanotube Spectroscopy of sp 3 Quantum Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xiaowei; Gifford, Brendan J.; Hartmann, Nicolai F.

    Aiming to unravel the relationship between chemical configuration and electronic structure of sp3 defects of aryl-functionalized (6,5) single-walled carbon nanotubes (SWCNTs), we perform low-temperature single nanotube photoluminescence (PL) spectroscopy studies and correlate our observations with quantum chemistry simulations. Here, we observe sharp emission peaks from individual defect sites that are spread over an extremely broad, 1000-1350 nm, spectral range. Our simulations allow us to attribute this spectral diversity to the occurrence of six chemically and energetically distinct defect states resulting from topological variation in the chemical binding configuration of the monovalent aryl groups. Both PL emission efficiency and spectral linemore » width of the defect states are strongly influenced by the local dielectric environment. Wrapping the SWCNT with a polyfluorene polymer provides the best isolation from the environment and yields the brightest emission with near-resolution limited spectral line width of 270 ueV, as well as spectrally resolved emission wings associated with localized acoustic phonons. Pump-dependent studies further revealed that the defect states are capable of emitting single, sharp, isolated PL peaks over 3 orders of magnitude increase in pump power, a key characteristic of two-level systems and an important prerequisite for single-photon emission with high purity. Our findings point to the tremendous potential of sp3 defects in development of room temperature quantum light sources capable of operating at telecommunication wavelengths as the emission of the defect states can readily be extended to this range via use of larger diameter SWCNTs.« less

  17. A new method of creating high intensity neutron source

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Yoshimi, A.; Yoshimura, M.

    We propose a new scheme of producing an intense neutron beam whose yields may exceed those of the existing facilities by a few to several orders of magnitude in the sub-eV region. This scheme employs a MeV gamma beam extracted from circulating quantum ions, which has been recently proposed. The gamma beam is directed to a deuteron target and the photo-disintegration process generates a neutron beam. The calculated neutron energy spectrum is nearly flat down to the neV range, and thus there exists a possibility to utilize a good quality of neutrons especially in sub-eV energy region without using a moderator.

  18. Bulky Counterions: Enhancing the Two-Photon Excited Fluorescence of Gold Nanoclusters.

    PubMed

    Bertorelle, Franck; Moulin, Christophe; Soleilhac, Antonin; Comby-Zerbino, Clothilde; Dugourd, Philippe; Russier-Antoine, Isabelle; Brevet, Pierre-François; Antoine, Rodolphe

    2018-01-19

    Increasing fluorescence quantum yields of ligand-protected gold nanoclusters has attracted wide research interest. The strategy consisting in using bulky counterions has been found to dramatically enhance the fluorescence. In this Communication, we push forward this concept to the nonlinear optical regime. We show that by an appropriate choice of bulky counterions and of solvent, a 30-fold increase in two-photon excited fluorescence (TPEF) signal at ≈600 nm for gold nanoclusters can be obtained. This would correspond to a TPEF cross-section in the range of 0.1 to 1 GM. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dissipative nonlinear waves in a gravitating quantum fluid

    NASA Astrophysics Data System (ADS)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2018-02-01

    Nonlinear wave propagation is studied in a dissipative, self-gravitating Bose-Einstein condensate, starting from the Gross-Pitaevskii equation. In the absence of an exact analytical result, approximate methods like the linear analysis and perturbative approach are applied. The linear dispersion relation puts a restriction on the permissible range of the dissipation parameter. The waves get damped due to dissipation. The small amplitude analysis using reductive perturbation technique is found to yield a modified form of KdV equation, which is solved both analytically as well as numerically. Interestingly, the analytical and numerical plots match excellently with each other, in the realm of weak dissipation.

  20. Estimation of the quantum efficiency of the photodissociation of HbO2 and HbCO

    NASA Astrophysics Data System (ADS)

    Gisbrecht, A. I.; Mamilov, S. A.; Esman, S. S.; Asimov, M. M.

    2016-01-01

    The paper presents our results on the study of the efficiency of inter-fractional changes in hemoglobin molecules depending on the laser radiation parameters. The evaluation of the quantum efficiency of light interaction in vivo with oxyhemoglobin (HbO2) and carboxyhemoglobin (HbCO) in the blood at wavelengths for 525 and 605 nm is presented. The photodissociation yield of 11% for HbO2 and 79% for HbCO are measured at the wavelength of 525 nm and 10 % for HbO2 and 76 % for HbCO at a wavelength of 605 nm. Thus, the quantum yield of photodissociation of the HbCO is considerably higher, which ensures high efficiency of photodecomposition of the HbCO in the blood. The obtained results can be used in the clinical phototherapy practice for effective treatment of CO poisoning.

  1. An insight into non-emissive excited states in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Hu, Zhongjian; Willard, Adam P.; Ono, Robert J.; Bielawski, Christopher W.; Rossky, Peter J.; vanden Bout, David A.

    2015-09-01

    Conjugated polymers in the solid state usually exhibit low fluorescence quantum yields, which limit their applications in many areas such as light-emitting diodes. Despite considerable research efforts, the underlying mechanism still remains controversial and elusive. Here, the nature and properties of excited states in the archetypal polythiophene are investigated via aggregates suspended in solvents with different dielectric constants (ε). In relatively polar solvents (ε>~ 3), the aggregates exhibit a low fluorescence quantum yield (QY) of 2-5%, similar to bulk films, however, in relatively nonpolar solvents (ε<~ 3) they demonstrate much higher fluorescence QY up to 20-30%. A series of mixed quantum-classical atomistic simulations illustrate that dielectric induced stabilization of nonradiative charge-transfer (CT) type states can lead to similar drastic reduction in fluorescence QY as seen experimentally. Fluorescence lifetime measurement reveals that the CT-type states exist as a competitive channel of the formation of emissive exciton-type states.

  2. Near-threshold harmonics from a femtosecond enhancement cavity-based EUV source: effects of multiple quantum pathways on spatial profile and yield.

    PubMed

    Hammond, T J; Mills, Arthur K; Jones, David J

    2011-12-05

    We investigate the photon flux and far-field spatial profiles for near-threshold harmonics produced with a 66 MHz femtosecond enhancement cavity-based EUV source operating in the tight-focus regime. The effects of multiple quantum pathways in the far-field spatial profile and harmonic yield show a strong dependence on gas jet dynamics, particularly nozzle diameter and position. This simple system, consisting of only a 700 mW Ti:Sapphire oscillator and an enhancement cavity produces harmonics up to 20 eV with an estimated 30-100 μW of power (intracavity) and > 1μW (measured) of power spectrally-resolved and out-coupled from the cavity. While this power is already suitable for applications, a quantum mechanical model of the system indicates substantial improvements should be possible with technical upgrades.

  3. Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control.

    PubMed

    Naghiloo, M; Jordan, A N; Murch, K W

    2017-11-03

    Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.

  4. Coined quantum walks on weighted graphs

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2017-11-01

    We define a discrete-time, coined quantum walk on weighted graphs that is inspired by Szegedy’s quantum walk. Using this, we prove that many lackadaisical quantum walks, where each vertex has l integer self-loops, can be generalized to a quantum walk where each vertex has a single self-loop of real-valued weight l. We apply this real-valued lackadaisical quantum walk to two problems. First, we analyze it on the line or one-dimensional lattice, showing that it is exactly equivalent to a continuous deformation of the three-state Grover walk with faster ballistic dispersion. Second, we generalize Grover’s algorithm, or search on the complete graph, to have a weighted self-loop at each vertex, yielding an improved success probability when l < 3 + 2\\sqrt{2} ≈ 5.828 .

  5. Quantum plasmonic sensing

    DOE PAGES

    Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.

    2015-11-04

    Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmore » a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.« less

  6. Analysis of Photosystem I Donor and Acceptor Sides with a New Type of Online-Deconvoluting Kinetic LED-Array Spectrophotometer.

    PubMed

    Schreiber, Ulrich; Klughammer, Christof

    2016-07-01

    The newly developed Dual/KLAS-NIR spectrophotometer, technical details of which were reported very recently, is used in measuring redox changes of P700, plastocyanin (PC) and ferredoxin (Fd) in intact leaves of Hedera helix, Taxus baccata and Brassica napus An overview of various light-/dark-induced changes of deconvoluted P700 + , PC + and Fd - signals is presented demonstrating the wealth of novel information and the consistency of the obtained results. Fd - changes are particularly large after dark adaptation. PC oxidation precedes P700 oxidation during dark-light induction and in steady-state light response curves. Fd reoxidation during induction correlates with the secondary decline of simultaneously measured fluorescence yield, both of which are eliminated by removal of O 2 By determination of 100% redox changes, relative contents of PC/P700 and Fd/P700 can be assessed, which show considerable variations between different leaves, with a trend to higher values in sun leaves. Based on deconvoluted P700 + signals, the complementary quantum yields of PSI, Y(I) (photochemical energy use), Y(ND) (non-photochemical loss due to oxidized primary donor) and Y(NA) (non-photochemical loss due to reduced acceptor) are determined as a function of light intensity and compared with the corresponding complementary quantum yields of PSII, Y(II) (photochemical energy use), Y(NPQ) (regulated non-photochemical loss) and Y(NO) (non-regulated non-photochemical loss). The ratio Y(I)/Y(II) increases with increasing intensities. In the low intensity range, a two-step increase of PC + is indicative of heterogeneous PC pools. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Photophysical parameters and fluorescence quenching of 7-diethylaminocoumarin (DEAC) laser dye

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.; Obaid, A. Y.; El-Daly, S. A.

    2011-10-01

    The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 2×10 -3 mol dm -3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser ( λex=337.1 nm). The laser parameters such as tuning range, gain coefficient ( α), emission cross section ( σe), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl 4 at a wavelength of 366 nm. The values of photochemical yield ( ϕc) and rate constant ( k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH 3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.

  8. Biosynthesis of fluorescent CdS nanocrystals with semiconductor properties: Comparison of microbial and plant production systems.

    PubMed

    Al-Shalabi, Zahwa; Doran, Pauline M

    2016-04-10

    This study investigated fission yeast (Schizosaccharomyces pombe) and hairy roots of tomato (Solanum lycopersicum) as in vitro production vehicles for biological synthesis of CdS quantum dots. Cd added during the mid-growth phase of the cultures was detoxified within the biomass into inorganic sulphide-containing complexes with the quantum confinement properties of semiconductor nanocrystals. Significant differences were found between the two host systems in terms of nanoparticle production kinetics, yield and quality. The much slower growth rate of hairy roots compared with yeast is a disadvantage for commercial scaled-up production. Nanoparticle extraction from the biomass was less effective for the roots: 19% of the Cd present in the hairy roots was recovered after extraction compared with 34% for the yeast. The overall yield of CdS quantum dots was also lower for the roots: relative to the amount of Cd taken up into the biomass, 8.5% was recovered in yeast gel filtration fractions exhibiting quantum dot properties whereas the result for hairy roots was only 0.99%. Yeast-produced CdS crystallites were somewhat smaller with diameters of approximately 2-6 nm compared with those of 4-10nm obtained from the roots. The average ratio of inorganic sulphide to Cd for the purified and size-fractionated particles was 0.44 for the yeast and 1.6 for the hairy roots. Despite the limitations associated with hairy roots in terms of culture kinetics and product yield, this system produced CdS nanoparticles with enhanced photostability and 3.7-13-fold higher fluorescence quantum efficiency compared with those generated by yeast. This work demonstrates that the choice of cellular host can have a significant effect on nanoparticle functional properties as well as on the bioprocessing aspects of biological quantum dot synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Principle of minimal work fluctuations.

    PubMed

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  10. Comparison of femtosecond laser and continuous wave UV sources for protein-nucleic acid crosslinking.

    PubMed

    Fecko, Christopher J; Munson, Katherine M; Saunders, Abbie; Sun, Guangxing; Begley, Tadhg P; Lis, John T; Webb, Watt W

    2007-01-01

    Crosslinking proteins to the nucleic acids they bind affords stable access to otherwise transient regulatory interactions. Photochemical crosslinking provides an attractive alternative to formaldehyde-based protocols, but irradiation with conventional UV sources typically yields inadequate product amounts. Crosslinking with pulsed UV lasers has been heralded as a revolutionary technique to increase photochemical yield, but this method had only been tested on a few protein-nucleic acid complexes. To test the generality of the yield enhancement, we have investigated the benefits of using approximately 150 fs UV pulses to crosslink TATA-binding protein, glucocorticoid receptor and heat shock factor to oligonucleotides in vitro. For these proteins, we find that the quantum yields (and saturating yields) for forming crosslinks using the high-peak intensity femtosecond laser do not improve on those obtained with low-intensity continuous wave (CW) UV sources. The photodamage to the oligonucleotides and proteins also has comparable quantum yields. Measurements of the photochemical reaction yields of several small molecules selected to model the crosslinking reactions also exhibit nearly linear dependences on UV intensity instead of the previously predicted quadratic dependence. Unfortunately, these results disprove earlier assertions that femtosecond pulsed laser sources provide significant advantages over CW radiation for protein-nucleic acid crosslinking.

  11. Impact of Mono-Fluorination on the Photophysics of the Flavin Chromophore.

    PubMed

    Reiffers, Anna; Torres Ziegenbein, Christian; Engelhardt, Alyn; Kühnemuth, Ralf; Gilch, Peter; Czekelius, Constantin

    2018-03-31

    Three mono-fluorinated derivatives of the flavin core system 10-methyl-isoalloxazine (MIA) were synthesized. Aqueous solutions of these compounds were characterized by steady-state and time-resolved spectroscopy. The positions for the fluorination (6, 7 and 8) were motivated by the nodal structure of the frontier orbitals of MIA. In comparison with MIA, the fluorination results in bathochromic (6F- and 7F-MIA) and hypsochromic (8F-MIA) shifts of the adiabatic excitation energy of the lowest allowed transition. Shifts of up to ~500 cm -1 were observed. These spectroscopic shifts go along with changes in fluorescence quantum yields and lifetimes. In addition, triplet yields are affected. For 7F-MIA, a 50% increase in the fluorescence quantum yield as well as a 50% decrease in triplet yield is observed rendering the compound interesting for fluorescence applications. The measured effects are discussed in terms of qualitative perturbation theory. © 2018 The American Society of Photobiology.

  12. Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics

    PubMed Central

    Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas

    2016-01-01

    A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu3+ phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu3+ showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu3+ doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu3+ phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour. PMID:27180941

  13. Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu(3+) phosphors and ceramics.

    PubMed

    Janulevicius, Matas; Marmokas, Paulius; Misevicius, Martynas; Grigorjevaite, Julija; Mikoliunaite, Lina; Sakirzanovas, Simas; Katelnikovas, Arturas

    2016-05-16

    A good LED phosphor must possess strong enough absorption, high quantum yields, colour purity, and quenching temperatures. Our synthesized Y2Mo4O15:Eu(3+) phosphors possess all of these properties. Excitation of these materials with near-UV or blue radiation yields bright red emission and the colour coordinates are relatively stable upon temperature increase. Furthermore, samples doped with 50% Eu(3+) showed quantum yields up to 85%, what is suitable for commercial application. Temperature dependent emission spectra revealed that heavily Eu(3+) doped phosphors possess stable emission up to 400 K and lose half of the efficiency only at 515 K. In addition, ceramic disks of Y2Mo4O15:75%Eu(3+) phosphor with thickness of 0.71 and 0.98 mm were prepared and it turned out that they efficiently convert radiation of 375 and 400 nm LEDs to the red light, whereas combination with 455 nm LED yields purple colour.

  14. Efficient hybrid-symbolic methods for quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Zhang, Wenxing

    2015-06-01

    We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.

  15. Orbital Picture of Ionization and Its Breakdown in Nanoarrays of Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bâldea, Ioan; Cederbaum, Lorenz S.

    2002-09-01

    We present exact numerical results indicating that ionization could be a useful tool to study electron correlations in artificial molecules and nanoarrays of metallic quantum dots. For nanorings consisting of Ag quantum dots of the type already fabricated, we demonstrate that the molecular orbital picture breaks down even for lowest energy ionization processes, in contrast to ordinary molecules. Our ionization results yield a transition point between localization and delocalization regimes in good agreement with various experimental data.

  16. Quantum trajectories for high-order-harmonic generation from multiple rescattering events in the long-wavelength regime

    NASA Astrophysics Data System (ADS)

    He, Lixin; Li, Yang; Wang, Zhe; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang

    2014-05-01

    We have performed the quantum trajectory analysis for high-order-harmonic generation (HHG) with different driving laser wavelengths. By defining the ratio of HHG yields of the Nth and first rescattering events (YN/Y1), we quantitatively evaluate the HHG contributions from multiple rescatterings. The results show that the HHG yield ratio increases gradually with the increase of the laser wavelength, which demonstrates that high-order rescatterings provide ascendent contributions to HHG at longer wavelength. By calculating the classical electron trajectories, we find significant differences exist in the electron behaviors between the first and high-order rescatterings. Further investigations have demonstrated that the increasing HHG yield ratio is mainly attributed to the relatively smaller contributions from the short path of the first electron rescattering at longer laser wavelength.

  17. pH-Induced transformation of ligated Au25 to brighter Au23 nanoclusters.

    PubMed

    Waszkielewicz, Magdalena; Olesiak-Banska, Joanna; Comby-Zerbino, Clothilde; Bertorelle, Franck; Dagany, Xavier; Bansal, Ashu K; Sajjad, Muhammad T; Samuel, Ifor D W; Sanader, Zeljka; Rozycka, Miroslawa; Wojtas, Magdalena; Matczyszyn, Katarzyna; Bonacic-Koutecky, Vlasta; Antoine, Rodolphe; Ozyhar, Andrzej; Samoc, Marek

    2018-05-01

    Thiolate-protected gold nanoclusters have recently attracted considerable attention due to their size-dependent luminescence characterized by a long lifetime and large Stokes shift. However, the optimization of nanocluster properties such as the luminescence quantum yield is still a challenge. We report here the transformation of Au25Capt18 (Capt labels captopril) nanoclusters occurring at low pH and yielding a product with a much increased luminescence quantum yield which we have identified as Au23Capt17. We applied a simple method of treatment with HCl to accomplish this transformation and we characterized the absorption and emission of the newly created ligated nanoclusters as well as their morphology. Based on DFT calculations we show which Au nanocluster size transformations can lead to highly luminescent species such as Au23Capt17.

  18. Mysteries of TOPSe revealed: insights into quantum dot nucleation.

    PubMed

    Evans, Christopher M; Evans, Meagan E; Krauss, Todd D

    2010-08-18

    We have investigated the reaction mechanism responsible for QD nucleation using optical absorption and nuclear magnetic resonance spectroscopies. For typical II-VI and IV-VI quantum dot (QD) syntheses, pure tertiary phosphine selenide sources (e.g., trioctylphosphine selenide (TOPSe)) were surprisingly found to be unreactive with metal carboxylates and incapable of yielding QDs. Rather, small quantities of secondary phosphines, which are impurities in tertiary phosphines, are entirely responsible for the nucleation of QDs; their low concentrations account for poor synthetic conversion yields. QD yields increase to nearly quantitative levels when replacing TOPSe with a stoiciometric amount of a secondary phosphine chalcogenide such as diphenylphosphine selenide. Based on our observations, we have proposed potential monomer identities, reaction pathways, and transition states and believe this mechanism to be universal to all II-VI and IV-VI QDs synthesized using phosphine based methods.

  19. Mysteries of TOPSe Revealed: Insights into Quantum Dot Nucleation

    PubMed Central

    Evans, Christopher M.; Evans, Meagan E.

    2010-01-01

    We have investigated the reaction mechanism responsible for QD nucleation using optical absorption and nuclear magnetic resonance spectroscopies. For typical II-VI and IV-VI quantum dot (QD) syntheses, pure tertiary phosphine selenide sources (e.g. trioctylphosphine selenide (TOPSe)) were surprisingly found to be unreactive with metal carboxylates and incapable of yielding QDs. Rather, small quantities of secondary phosphines, which are impurities in tertiary phosphines, are entirely responsible for the nucleation of QDs; their low concentrations account for poor synthetic conversion yields. QD yields increase to nearly quantitative levels when replacing TOPSe with a stoiciometric amount of a secondary phosphine chalcogenide such as diphenylphosphine selenide. Based on our observations, we have proposed potential monomer identities, reaction pathways and transition states, and believe this mechanism to be universal to all II-VI and IV-VI QDs synthesized using phosphine based methods. PMID:20698646

  20. Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application

    NASA Astrophysics Data System (ADS)

    Samuel, Boni; Mathew, S.; Anand, V. R.; Correya, Adrine Antony; Nampoori, V. P. N.; Mujeeb, A.

    2018-02-01

    This paper reports, broadband photoluminescence from CdSe quantum dots (QDs) under the excitation of 403 nm using fluorimeter and 403 nm CW laser excitation. The broad spectrum obtained from the colloidal quantum dots was ranges from 450 nm to 800 nm. The broadness of the spectra was attributed to the merging of band edge and defect driven emissions from the QDs. Six different sizes of particles were prepared via kinetic growth method by using CdO and elemental Se as sources of Cd and Se respectively. The particle sizes were measured from TEM images. The size dependent effect on broad emission was also studied and the defect state emission was found to be predominant in very small QDs. The defect driven emission was also observed to be redshifted, similar to the band edge emission, due to quantum confinement effect. The emission corresponding to different laser power was also studied and a linear relation was obtained. In order to study the colour characteristics of the emission, CIE chromaticity coordinate, CRI and CCT of the prepared samples were measured. It is observed that, these values were tunable by the addition of suitable intensity of blue light from the excitation source to yield white light of various colour temperatures. The broad photoluminescence spectrum of the QDs, were compared with that of a commercially available white LED. It was found that the prepared QDs are good alternatives for the phosphor in phosphor converted white LEDs, to provide good spectral tunability.

Top