Sample records for quantum-mechanical systems wavefunction

  1. Application of high level wavefunction methods in quantum mechanics/molecular mechanics hybrid schemes.

    PubMed

    Mata, Ricardo A

    2010-05-21

    In this Perspective, several developments in the field of quantum mechanics/molecular mechanics (QM/MM) approaches are reviewed. Emphasis is placed on the use of correlated wavefunction theory and new state of the art methods for the treatment of large quantum systems. Until recently, computational chemistry approaches to large/complex chemical problems have seldom been considered as tools for quantitative predictions. However, due to the tremendous development of computational resources and new quantum chemical methods, it is nowadays possible to describe the electronic structure of biomolecules at levels of theory which a decade ago were only possible for system sizes of up to 20 atoms. These advances are here outlined in the context of QM/MM. The article concludes with a short outlook on upcoming developments and possible bottlenecks for future applications.

  2. What Density Functional Theory could do for Quantum Information

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann

    2015-03-01

    The Hohenberg-Kohn theorem of Density Functional Theory (DFT), and extensions thereof, tells us that all properties of a system of electrons can be determined through their density, which uniquely determines the many-body wave-function. Given access to the appropriate, universal, functionals of the density we would, in theory, be able to determine all observables of any electronic system, without explicit reference to the wave-function. On the other hand, the wave-function is at the core of Quantum Information (QI), with the wave-function of a set of qubits being the central computational resource in a quantum computer. While there is seemingly little overlap between DFT and QI, reliance upon observables form a key connection. Though the time-evolution of the wave-function and associated phase information is fundamental to quantum computation, the initial and final states of a quantum computer are characterized by observables of the system. While observables can be extracted directly from a system's wave-function, DFT tells us that we may be able to intuit a method for extracting them from its density. In this talk, I will review the fundamentals of DFT and how these principles connect to the world of QI. This will range from DFT's utility in the engineering of physical qubits, to the possibility of using it to efficiently (but approximately) simulate Hamiltonians at the logical level. The apparent paradox of describing algorithms based on the quantum mechanical many-body wave-function with a DFT-like theory based on observables will remain a focus throughout. The ultimate goal of this talk is to initiate a dialog about what DFT could do for QI, in theory and in practice. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Quantum Teleportation and Grover's Algorithm Without the Wavefunction

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2017-02-01

    In the same way as the quantum no-cloning theorem and quantum key distribution in two preceding papers, entanglement-assisted quantum teleportation and Grover's search algorithm are generalized by transferring them to an abstract setting, including usual quantum mechanics as a special case. This again shows that a much more general and abstract access to these quantum mechanical features is possible than commonly thought. A non-classical extension of conditional probability and, particularly, a very special type of state-independent conditional probability are used instead of Hilbert spaces and wavefunctions.

  4. Emergent quantum mechanics without wavefunctions

    NASA Astrophysics Data System (ADS)

    Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G.

    2016-03-01

    We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques.

  5. Generalized description of few-electron quantum dots at zero and nonzero magnetic fields

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2007-01-01

    We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.

  6. Entangled quantum electronic wavefunctions of the Mn₄CaO₅ cluster in photosystem II.

    PubMed

    Kurashige, Yuki; Chan, Garnet Kin-Lic; Yanai, Takeshi

    2013-08-01

    It is a long-standing goal to understand the reaction mechanisms of catalytic metalloenzymes at an entangled many-electron level, but this is hampered by the exponential complexity of quantum mechanics. Here, by exploiting the special structure of physical quantum states and using the density matrix renormalization group, we compute near-exact many-electron wavefunctions of the Mn4CaO5 cluster of photosystem II, with more than 1 × 10(18) quantum degrees of freedom. This is the first treatment of photosystem II beyond the single-electron picture of density functional theory. Our calculations support recent modifications to the structure determined by X-ray crystallography. We further identify multiple low-lying energy surfaces associated with the structural distortion seen using X-ray crystallography, highlighting multistate reactivity in the chemistry of the cluster. Direct determination of Mn spin-projections from our wavefunctions suggests that current candidates that have been recently distinguished using parameterized spin models should be reassessed. Through entanglement maps, we reveal rich information contained in the wavefunctions on bonding changes in the cycle.

  7. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. II. Application of the local basis equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    The application of the local basis equation (Ferenczy and Adams, J. Chem. Phys. 2009, 130, 134108) in mixed quantum mechanics/molecular mechanics (QM/MM) and quantum mechanics/quantum mechanics (QM/QM) methods is investigated. This equation is suitable to derive local basis nonorthogonal orbitals that minimize the energy of the system and it exhibits good convergence properties in a self-consistent field solution. These features make the equation appropriate to be used in mixed QM/MM and QM/QM methods to optimize orbitals in the field of frozen localized orbitals connecting the subsystems. Calculations performed for several properties in divers systems show that the method is robust with various choices of the frozen orbitals and frontier atom properties. With appropriate basis set assignment, it gives results equivalent with those of a related approach [G. G. Ferenczy previous paper in this issue] using the Huzinaga equation. Thus, the local basis equation can be used in mixed QM/MM methods with small size quantum subsystems to calculate properties in good agreement with reference Hartree-Fock-Roothaan results. It is shown that bond charges are not necessary when the local basis equation is applied, although they are required for the self-consistent field solution of the Huzinaga equation based method. Conversely, the deformation of the wave-function near to the boundary is observed without bond charges and this has a significant effect on deprotonation energies but a less pronounced effect when the total charge of the system is conserved. The local basis equation can also be used to define a two layer quantum system with nonorthogonal localized orbitals surrounding the central delocalized quantum subsystem. Copyright © 2013 Wiley Periodicals, Inc.

  8. Calculation of wave-functions with frozen orbitals in mixed quantum mechanics/molecular mechanics methods. Part I. Application of the Huzinaga equation.

    PubMed

    Ferenczy, György G

    2013-04-05

    Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods. Copyright © 2012 Wiley Periodicals, Inc.

  9. Quantum mechanics without potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhaidari, A. D., E-mail: haidari@sctp.org.sa; Ismail, M. E. H.

    2015-07-15

    In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which ismore » written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.« less

  10. Tensor Network Wavefunctions for Topological Phases

    NASA Astrophysics Data System (ADS)

    Ware, Brayden Alexander

    The combination of quantum effects and interactions in quantum many-body systems can result in exotic phases with fundamentally entangled ground state wavefunctions--topological phases. Topological phases come in two types, both of which will be studied in this thesis. In topologically ordered phases, the pattern of entanglement in the ground state wavefunction encodes the statistics of exotic emergent excitations, a universal indicator of a phase that is robust to all types of perturbations. In symmetry protected topological phases, the entanglement instead encodes a universal response of the system to symmetry defects, an indicator that is robust only to perturbations respecting the protecting symmetry. Finding and creating these phases in physical systems is a motivating challenge that tests all aspects--analytical, numerical, and experimental--of our understanding of the quantum many-body problem. Nearly three decades ago, the creation of simple ansatz wavefunctions--such as the Laughlin fractional quantum hall state, the AKLT state, and the resonating valence bond state--spurred analytical understanding of both the role of entanglement in topological physics and physical mechanisms by which it can arise. However, quantitative understanding of the relevant phase diagrams is still challenging. For this purpose, tensor networks provide a toolbox for systematically improving wavefunction ansatz while still capturing the relevant entanglement properties. In this thesis, we use the tools of entanglement and tensor networks to analyze ansatz states for several proposed new phases. In the first part, we study a featureless phase of bosons on the honeycomb lattice and argue that this phase can be topologically protected under any one of several distinct subsets of the crystalline lattice symmetries. We discuss methods of detecting such phases with entanglement and without. In the second part, we consider the problem of constructing fixed-point wavefunctions for intrinsically fermionic topological phases, i.e. topological phases contructed out of fermions with a nontrivial response to fermion parity defects. A zero correlation length wavefunction and a commuting projector Hamiltonian that realizes this wavefunction as its ground state are constructed. Using an appropriate generalization of the minimally entangled states method for extraction of topological order from the ground states on a torus to the intrinsically fermionic case, we fully characterize the corresponding topological order as Ising x (px - ipy). We argue that this phase can be captured using fermionic tensor networks, expanding the applicability of tensor network methods.

  11. Particles, Waves, and the Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Christoudouleas, N. D.

    1975-01-01

    Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

  12. Probing spontaneous wave-function collapse with entangled levitating nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Tiancai; Li, Jie

    2017-01-01

    Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.

  13. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clay, Raymond C.; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550; Morales, Miguel A., E-mail: moralessilva2@llnl.gov

    2015-06-21

    Multideterminant wavefunctions, while having a long history in quantum chemistry, are increasingly being used in highly accurate quantum Monte Carlo calculations. Since the accuracy of QMC is ultimately limited by the quality of the trial wavefunction, multi-Slater determinants wavefunctions offer an attractive alternative to Slater-Jastrow and more sophisticated wavefunction ansatz for several reasons. They can be efficiently calculated, straightforwardly optimized, and systematically improved by increasing the number of included determinants. In spite of their potential, however, the convergence properties of multi-Slater determinant wavefunctions with respect to orbital set choice and excited determinant selection are poorly understood, which hinders the applicationmore » of these wavefunctions to large systems and solids. In this paper, by performing QMC calculations on the equilibrium and stretched carbon dimer, we find that convergence of the recovered correlation energy with respect to number of determinants can depend quite strongly on basis set and determinant selection methods, especially where there is strong correlation. We demonstrate that properly chosen orbital sets and determinant selection techniques from quantum chemistry methods can dramatically reduce the required number of determinants (and thus the computational cost) to reach a given accuracy, which we argue shows clear need for an automatic QMC-only method for selecting determinants and generating optimal orbital sets.« less

  14. Quantum tomography of a molecular bond in ice.

    PubMed

    Goldschleger, I U; Golschleger, I U; van Staveren, M N; Apkarian, V Ara

    2013-07-21

    We present the moving picture of a molecular bond, in phase-space, in real-time, at resolution limited by quantum uncertainty. The images are tomographically reconstructed Wigner distribution functions (WDF) obtained from four-wave mixing measurements on Br2-doped ice. The WDF completely characterizes the dissipative quantum evolution of the system, which despite coupling to the environment retains quantum coherence, as evidenced by its persistent negative Wigner hole. The spectral decomposition of the WDF allows a direct visualization of wavefunctions and spatiotemporal coherences of the system and the system-bath interaction. The measurements vividly illustrate nonclassical wave mechanics in a many-body system, in ordinary condensed matter.

  15. Wronskian Method for Bound States

    ERIC Educational Resources Information Center

    Fernandez, Francisco M.

    2011-01-01

    We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…

  16. Quantum Crystallography: Density Matrix-Density Functional Theory and the X-Ray Diffraction Experiment

    NASA Astrophysics Data System (ADS)

    Soirat, Arnaud J. A.

    Density Matrix Theory is a Quantum Mechanical formalism in which the wavefunction is eliminated and its role taken over by reduced density matrices. The interest of this is that, it allows one, in principle, to calculate any electronic property of a physical system, without having to solve the Schrodinger equation, using only two entities much simpler than an N-body wavefunction: first and second -order reduced density matrices. In practice, though, this very promising possibility faces the tremendous theoretical problem of N-representability, which has been solved for the former, but, until now, voids any hope of theoretically determining the latter. However, it has been shown that single determinant reduced density matrices of any order may be recovered from coherent X-ray diffraction data, if one provides a proper Quantum Mechanical description of the Crystallography experiment. A deeper investigation of this method is the purpose of this work, where we, first, further study the calculation of X-ray reduced density matrices N-representable by a single Slater determinant. In this context, we independently derive necessary and sufficient conditions for the uniqueness of the method. We then show how to account for electron correlation in this model. For the first time, indeed, we derive highly accurate, yet practical, density matrices approximately N-representable by correlated-determinant wavefunctions. The interest of such a result lies in the Quantum Mechanical validity of these density matrices, their property of being entirely obtainable from X-ray coherent diffraction data, their very high accuracy conferred by this known property of the N-representing wavefunction, as well as their definition as explicit functionals of the density. All of these properties are finally used in both a theoretical and a numerical application: in the former, we show that these density matrices may be used in the context of Density Functional Theory to highly accurately determine the unknown HK functional, associated with the theorem of Hohenberg and Kohn. The latter is provided by the calculation of helium correlation energy, where we test approximating the second-order density function by the leading term of its McLaurin's series expansion.

  17. Quantum mechanical tunneling in the automerization of cyclobutadiene

    NASA Astrophysics Data System (ADS)

    Schoonmaker, R.; Lancaster, T.; Clark, S. J.

    2018-03-01

    Cyclobutadiene has a four-membered carbon ring with two double bonds, but this highly strained molecular configuration is almost square and, via a coordinated motion, the nuclei quantum mechanically tunnels through the high-energy square state to a configuration equivalent to the initial configuration under a 90° rotation. This results in a square ground state, comprising a superposition of two molecular configurations, that is driven by quantum tunneling. Using a quantum mechanical model, and an effective nuclear potential from density functional theory, we calculate the vibrational energy spectrum and the accompanying wavefunctions. We use the wavefunctions to identify the motions of the molecule and detail how different motions can enhance or suppress the tunneling rate. This is relevant for kinematics of tunneling-driven reactions, and we discuss these implications. We are also able to provide a qualitative account of how the molecule will respond to an external perturbation and how this may enhance or suppress infra-red-active vibrational transitions.

  18. Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Alexander J.; Center for Nonlinear Studies; Gorshkov, Vyacheslav N.

    2014-11-14

    Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantummore » mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement.« less

  19. Topological triplon modes and bound states in a Shastry-Sutherland magnet

    NASA Astrophysics Data System (ADS)

    McClarty, P. A.; Krüger, F.; Guidi, T.; Parker, S. F.; Refson, K.; Parker, A. W.; Prabhakaran, D.; Coldea, R.

    2017-08-01

    The twin discoveries of the quantum Hall effect, in the 1980s, and of topological band insulators, in the 2000s, were landmarks in physics that enriched our view of the electronic properties of solids. In a nutshell, these discoveries have taught us that quantum mechanical wavefunctions in crystalline solids may carry nontrivial topological invariants which have ramifications for the observable physics. One of the side effects of the recent topological insulator revolution has been that such physics is much more widespread than was appreciated ten years ago. For example, while topological insulators were originally studied in the context of electron wavefunctions, recent work has initiated a hunt for topological insulators in bosonic systems: in photonic crystals, in the vibrational modes of crystals, and in the excitations of ordered magnets. Using inelastic neutron scattering along with theoretical calculations, we demonstrate that, in a weak magnetic field, the dimerized quantum magnet SrCu2(BO3)2 is a bosonic topological insulator with topologically protected chiral edge modes of triplon excitations.

  20. Nine formulations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Styer, Daniel F.; Balkin, Miranda S.; Becker, Kathryn M.; Burns, Matthew R.; Dudley, Christopher E.; Forth, Scott T.; Gaumer, Jeremy S.; Kramer, Mark A.; Oertel, David C.; Park, Leonard H.; Rinkoski, Marie T.; Smith, Clait T.; Wotherspoon, Timothy D.

    2002-03-01

    Nine formulations of nonrelativistic quantum mechanics are reviewed. These are the wavefunction, matrix, path integral, phase space, density matrix, second quantization, variational, pilot wave, and Hamilton-Jacobi formulations. Also mentioned are the many-worlds and transactional interpretations. The various formulations differ dramatically in mathematical and conceptual overview, yet each one makes identical predictions for all experimental results.

  1. Aspects of perturbation theory in quantum mechanics: The BenderWuMATHEMATICA® package

    NASA Astrophysics Data System (ADS)

    Sulejmanpasic, Tin; Ünsal, Mithat

    2018-07-01

    We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu,and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use MATHEMATICA® package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 s, and 250 orders in 1-2 h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the package may be used as a teaching tool, providing an effective bridge between perturbation theory and non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion relation acquires a geometric character, and has a structure which allows parallelization to computer clusters.

  2. Variational and perturbative formulations of quantum mechanical/molecular mechanical free energy with mean-field embedding and its analytical gradients.

    PubMed

    Yamamoto, Takeshi

    2008-12-28

    Conventional quantum chemical solvation theories are based on the mean-field embedding approximation. That is, the electronic wavefunction is calculated in the presence of the mean field of the environment. In this paper a direct quantum mechanical/molecular mechanical (QM/MM) analog of such a mean-field theory is formulated based on variational and perturbative frameworks. In the variational framework, an appropriate QM/MM free energy functional is defined and is minimized in terms of the trial wavefunction that best approximates the true QM wavefunction in a statistically averaged sense. Analytical free energy gradient is obtained, which takes the form of the gradient of effective QM energy calculated in the averaged MM potential. In the perturbative framework, the above variational procedure is shown to be equivalent to the first-order expansion of the QM energy (in the exact free energy expression) about the self-consistent reference field. This helps understand the relation between the variational procedure and the exact QM/MM free energy as well as existing QM/MM theories. Based on this, several ways are discussed for evaluating non-mean-field effects (i.e., statistical fluctuations of the QM wavefunction) that are neglected in the mean-field calculation. As an illustration, the method is applied to an S(N)2 Menshutkin reaction in water, NH(3)+CH(3)Cl-->NH(3)CH(3) (+)+Cl(-), for which free energy profiles are obtained at the Hartree-Fock, MP2, B3LYP, and BHHLYP levels by integrating the free energy gradient. Non-mean-field effects are evaluated to be <0.5 kcal/mol using a Gaussian fluctuation model for the environment, which suggests that those effects are rather small for the present reaction in water.

  3. Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Wu, Cong-Jun; Ian, Mondragon-Shem; Zhou, Xiang-Fa

    2011-09-01

    According to the “no-node" theorem, the many-body ground state wavefunctions of conventional Bose—Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree—Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the “order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.

  4. Self-energy renormalization for inhomogeneous nonequilibrium systems and field expansion via complete set of time-dependent wavefunctions

    NASA Astrophysics Data System (ADS)

    Kuwahara, Y.; Nakamura, Y.; Yamanaka, Y.

    2018-04-01

    The way to determine the renormalized energy of inhomogeneous systems of a quantum field under an external potential is established for both equilibrium and nonequilibrium scenarios based on thermo field dynamics. The key step is to find an extension of the on-shell concept valid in homogeneous case. In the nonequilibrium case, we expand the field operator by time-dependent wavefunctions that are solutions of the appropriately chosen differential equation, synchronizing with temporal change of thermal situation, and the quantum transport equation is derived from the renormalization procedure. Through numerical calculations of a triple-well model with a reservoir, we show that the number distribution and the time-dependent wavefunctions are relaxed consistently to the correct equilibrium forms at the long-term limit.

  5. Vibronic Transitions in the X-Sr Series (X=Li, Na, K, Rb): on the Accuracy of Nuclear Wavefunctions Derived from Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Pototschnig, Johann V.; Hauser, Andreas W.; Ernst, Wolfgang E.

    2016-06-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. The preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. On the theoretical side, highly accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. Particularly problematic is the correct description of potential features at large intermolecular distances. Franck-Condon overlap integrals for nuclear wavefunctions in barely bound vibrational states are extremely sensitive to inaccuracies of the potential at long range. In this study, we compare the predictions of common, wavefunction-based ab initio techniques for a known de-excitation mechanism in alkali-alkaline earth dimers. It is the aim to analyze the predictive power of these methods for a preliminary evaluation of potential cooling mechanisms in heteronuclear open shell systems which offer the experimentalist an electric as well as a magnetic handle for manipulation. The series of X-Sr molecules, with X = Li, Na, K and Rb, has been chosen for a direct comparison. Quantum degenerate mixtures of Rb and Sr have already been produced, making this combination very promising for the production of ultracold molecules. B. Pasquiou, A. Bayerle, S. M. Tzanova, S. Stellmer, J. Szczepkowski, M. Parigger, R. Grimm, and F. Schreck, Phys. Rev. A, 2013, 88, 023601

  6. The physics of quantum materials

    NASA Astrophysics Data System (ADS)

    Keimer, B.; Moore, J. E.

    2017-11-01

    The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons interact at a fundamental level. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, in recent years there has been growing interest in material systems where quantum effects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical effects fundamentally alter properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such as ferromagnetism.

  7. Topological Triplon Modes and Bound States in a Shastry-Sutherland Magnet

    NASA Astrophysics Data System (ADS)

    McClarty, Paul; Kruger, Frank; Guidi, Tatiana; Parker, Stewart; Refson, Keith; Parker, Tony; Prabhakaran, Dharmalingam; Coldea, Radu

    The twin discoveries of the quantum Hall effect, in the 1980's, and of topoogical band insulators, in the 2000's, were landmarks in physics that enriched our view of the electronic properties of solids. In a nutshell, these discoveries have taught us that quantum mechanical wavefunctions in crystalline solids may carry nontrivial topological invariants which have ramifications for the observable physics. One of the side effects of the recent topological insulator revolution has been that such physics is much more widespread than was appreciated ten years ago. For example, while topological insulators were originally studied in the context of electron wavefunctions, recent work has led to proposals of topological insulators in bosonic systems: in photonic crystals, in the vibrational modes of crystals, and in the excitations of ordered magnets. Using inelastic neutron scattering along with theoretical calculations we demonstrate that, in a weak magnetic field, the dimerized quantum magnet SrCu2(BO3)2 is a bosonic topological insulator with nonzero Chern number in the triplon bands and topologically protected chiral edge excitations.

  8. A signed particle formulation of non-relativistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg

    2015-09-15

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussedmore » and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.« less

  9. Destructive interferences results in bosons anti bunching: refining Feynman's argument

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'el

    2014-09-01

    The effect of boson bunching is frequently mentioned and discussed in the literature. This effect is the manifestation of bosons tendency to "travel" in clusters. One of the core arguments for boson bunching was formulated by Feynman in his well-known lecture series and has been frequently used ever since. By comparing the scattering probabilities of two bosons and of two distinguishable particles, he concluded: "We have the result that it is twice as likely to find two identical Bose particles scattered into the same state as you would calculate assuming the particles were different" [R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Quantum mechanics (Addison-Wesley, 1965)]. This argument was rooted in the scientific community (see for example [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977); W. Pauli, Exclusion Principle and Quantum Mechanics, Nobel Lecture (1946)]), however, while this sentence is completely valid, as is proved in [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977)], it is not a synonym of bunching. In fact, as it is shown in this paper, wherever one of the wavefunctions has a zero, bosons can anti-bunch and fermions can bunch. It should be stressed that zeros in the wavefunctions are ubiquitous in Quantum Mechanics and therefore the effect should be common. Several scenarios are suggested to witness the effect.

  10. The oscillator model for the Lie superalgebra sh(2|2) and Charlier polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarov, E. I.; Van der Jeugt, J.

    2013-10-15

    We investigate an algebraic model for the quantum oscillator based upon the Lie superalgebra sh(2|2), known as the Heisenberg–Weyl superalgebra or “the algebra of supersymmetric quantum mechanics,” and its Fock representation. The model offers some freedom in the choice of a position and a momentum operator, leading to a free model parameter γ. Using the technique of Jacobi matrices, we determine the spectrum of the position operator, and show that its wavefunctions are related to Charlier polynomials C{sub n} with parameter γ{sup 2}. Some properties of these wavefunctions are discussed, as well as some other properties of the current oscillatormore » model.« less

  11. Partial Measurements and the Realization of Quantum-Mechanical Counterfactuals

    NASA Astrophysics Data System (ADS)

    Paraoanu, G. S.

    2011-07-01

    We propose partial measurements as a conceptual tool to understand how to operate with counterfactual claims in quantum physics. Indeed, unlike standard von Neumann measurements, partial measurements can be reversed probabilistically. We first analyze the consequences of this rather unusual feature for the principle of superposition, for the complementarity principle, and for the issue of hidden variables. Then we move on to exploring non-local contexts, by reformulating the EPR paradox, the quantum teleportation experiment, and the entanglement-swapping protocol for the situation in which one uses partial measurements followed by their stochastic reversal. This leads to a number of counter-intuitive results, which are shown to be resolved if we give up the idea of attributing reality to the wavefunction of a single quantum system.

  12. Determination of many-electron basis functions for a quantum Hall ground state using Schur polynomials

    NASA Astrophysics Data System (ADS)

    Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik

    2018-03-01

    A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.

  13. How quantum are non-negative wavefunctions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, M. B.

    2016-01-15

    We consider wavefunctions which are non-negative in some tensor product basis. We study what possible teleportation can occur in such wavefunctions, giving a complete answer in some cases (when one system is a qubit) and partial answers elsewhere. We use this to show that a one-dimensional wavefunction which is non-negative and has zero correlation length can be written in a “coherent Gibbs state” form, as explained later. We conjecture that such holds in higher dimensions. Additionally, some results are provided on possible teleportation in general wavefunctions, explaining how Schmidt coefficients before measurement limit the possible Schmidt coefficients after measurement, andmore » on the absence of a “generalized area law” [D. Aharonov et al., in Proceedings of Foundations of Computer Science (FOCS) (IEEE, 2014), p. 246; e-print arXiv.org:1410.0951] even for Hamiltonians with no sign problem. One of the motivations for this work is an attempt to prove a conjecture about ground state wavefunctions which have an “intrinsic” sign problem that cannot be removed by any quantum circuit. We show a weaker version of this, showing that the sign problem is intrinsic for commuting Hamiltonians in the same phase as the double semion model under the technical assumption that TQO-2 holds [S. Bravyi et al., J. Math. Phys. 51, 093512 (2010)].« less

  14. The path integral on the Poincaré upper half plane and for Liouville quantum mechanics

    NASA Astrophysics Data System (ADS)

    Grosche, C.; Steiner, F.

    1987-08-01

    We present a rigorous path integral treatment of free motion on the Poincaré upper half plane. The Poincaré upper half plane, as a riemannian manifold, has recently become important in string theory and in the theory of quantum chaos. The calculation is done by a time-transformation and the use of the canonical method for determining quantum corrections to the classical lagrangian. Furthermore, we shall show that the same method also works for Liouville quantum mechanics. In both cases, the energy spectrum and the normalized wavefunctions are determined.

  15. Deterministic Impulsive Vacuum Foundations for Quantum-Mechanical Wavefunctions

    NASA Astrophysics Data System (ADS)

    Valentine, John S.

    2013-09-01

    By assuming that a fermion de-constitutes immediately at source, that its constituents, as bosons, propagate uniformly as scalar vacuum terms with phase (radial) symmetry, and that fermions are unique solutions for specific phase conditions, we find a model that self-quantizes matter from continuous waves, unifying bosons and fermion ontologies in a single basis, in a constitution-invariant process. Vacuum energy has a wavefunction context, as a mass-energy term that enables wave collapse and increases its amplitude, with gravitational field as the gradient of the flux density. Gravitational and charge-based force effects emerge as statistics without special treatment. Confinement, entanglement, vacuum statistics, forces, and wavefunction terms emerge from the model's deterministic foundations.

  16. A study of density effects in plasmas using analytical approximations for the self-consistent potential

    NASA Astrophysics Data System (ADS)

    Poirier, M.

    2015-06-01

    Density effects in ionized matter require particular attention since they modify energies, wavefunctions and transition rates with respect to the isolated-ion situation. The approach chosen in this paper is based on the ion-sphere model involving a Thomas-Fermi-like description for free electrons, the bound electrons being described by a full quantum mechanical formalism. This permits to deal with plasmas out of thermal local equilibrium, assuming only a Maxwell distribution for free electrons. For H-like ions, such a theory provides simple and rather accurate analytical approximations for the potential created by free electrons. Emphasis is put on the plasma potential rather than on the electron density, since the energies and wavefunctions depend directly on this potential. Beyond the uniform electron gas model, temperature effects may be analyzed. In the case of H-like ions, this formalism provides analytical perturbative expressions for the energies, wavefunctions and transition rates. Explicit expressions are given in the case of maximum orbital quantum number, and compare satisfactorily with results from a direct integration of the radial Schrödinger equation. Some formulas for lower orbital quantum numbers are also proposed.

  17. Perturbation expansions of stochastic wavefunctions for open quantum systems

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2017-11-01

    Based on the stochastic unravelling of the reduced density operator in the Feynman path integral formalism for an open quantum system in touch with harmonic environments, a new non-Markovian stochastic Schrödinger equation (NMSSE) has been established that allows for the systematic perturbation expansion in the system-bath coupling to arbitrary order. This NMSSE can be transformed in a facile manner into the other two NMSSEs, i.e., non-Markovian quantum state diffusion and time-dependent wavepacket diffusion method. Benchmarked by numerically exact results, we have conducted a comparative study of the proposed method in its lowest order approximation, with perturbative quantum master equations in the symmetric spin-boson model and the realistic Fenna-Matthews-Olson complex. It is found that our method outperforms the second-order time-convolutionless quantum master equation in the whole parameter regime and even far better than the fourth-order in the slow bath and high temperature cases. Besides, the method is applicable on an equal footing for any kind of spectral density function and is expected to be a powerful tool to explore the quantum dynamics of large-scale systems, benefiting from the wavefunction framework and the time-local appearance within a single stochastic trajectory.

  18. Quasiparticle Aggregation in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-10-10

    Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like electrons confined to the lowest landau level, and can do everything electrons can do, including condense into second generation Fractional Quantum Hall ground states. I review in this paper the reasoning leading to variational wavefunctions for ground state and quasiparticles in the 1/3 effect. I then show how two-quasiparticle eigenstates are uniquely determined from symmetry, and how this leads in a natural way to variational wavefunctions for composite states which have the correct densities (2/5, 2/7, ...). I show in the process that the boson, anyon and fermion representations for the quasiparticles used by Haldane, Halperin, and me are all equivalent. I demonstrate a simple way to derive Halperin`s multiple-valued quasiparticle wavefunction from the correct single-valued electron wavefunction. (auth)

  19. Excitons in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-09-01

    Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.

  20. Monte Carlo wave-function description of losses in a one-dimensional Bose gas and cooling to the ground state by quantum feedback

    NASA Astrophysics Data System (ADS)

    Schemmer, M.; Johnson, A.; Photopoulos, R.; Bouchoule, I.

    2017-04-01

    The effect of atom losses on a homogeneous one-dimensional Bose gas lying within the quasicondensate regime is investigated using a Monte Carlo wave-function approach. The evolution of the system is calculated, conditioned by the loss sequence, namely, the times of individual losses and the position of the removed atoms. We describe the gas within the linearized Bogoliubov approach. For each mode, we find that, for a given quantum trajectory, the state of the system converges towards a coherent state, i.e., the ground state, displaced in phase space. We show that, provided losses are recorded with a temporal and spatially resolved detector, quantum feedback can be implemented and cooling to the ground state of one or several modes can be realized.

  1. Ultrafast dynamics of many-body processes and fundamental quantum mechanical phenomena in semiconductors

    PubMed Central

    Chemla, Daniel S.; Shah, Jagdeep

    2000-01-01

    The large dielectric constant and small effective mass in a semiconductor allows a description of its electronic states in terms of envelope wavefunctions whose energy, time, and length scales are mesoscopic, i.e., halfway between those of atomic and those of condensed matter systems. This property makes it possible to demonstrate and investigate many quantum mechanical, many-body, and quantum kinetic phenomena with tabletop experiments that would be nearly impossible in other systems. This, along with the ability to custom-design semiconductor nanostructures, makes semiconductors an ideal laboratory for experimental investigations. We present an overview of some of the most exciting results obtained in semiconductors in recent years using the technique of ultrafast nonlinear optical spectrocopy. These results show that Coulomb correlation plays a major role in semiconductors and makes them behave more like a strongly interacting system than like an atomic system. The results provide insights into the physics of strongly interacting systems that are relevant to other condensed matter systems, but not easily accessible in other materials. PMID:10716981

  2. Quantum mechanical streamlines. I - Square potential barrier

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  3. Kinetic energy partition method applied to ground state helium-like atoms.

    PubMed

    Chen, Yu-Hsin; Chao, Sheng D

    2017-03-28

    We have used the recently developed kinetic energy partition (KEP) method to solve the quantum eigenvalue problems for helium-like atoms and obtain precise ground state energies and wave-functions. The key to treating properly the electron-electron (repulsive) Coulomb potential energies for the KEP method to be applied is to introduce a "negative mass" term into the partitioned kinetic energy. A Hartree-like product wave-function from the subsystem wave-functions is used to form the initial trial function, and the variational search for the optimized adiabatic parameters leads to a precise ground state energy. This new approach sheds new light on the all-important problem of solving many-electron Schrödinger equations and hopefully opens a new way to predictive quantum chemistry. The results presented here give very promising evidence that an effective one-electron model can be used to represent a many-electron system, in the spirit of density functional theory.

  4. Geometric reduction of dynamical nonlocality in nanoscale quantum circuits.

    PubMed

    Strambini, E; Makarenko, K S; Abulizi, G; de Jong, M P; van der Wiel, W G

    2016-01-06

    Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young's double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.

  5. Spectra, current flow, and wave-function morphology in a model PT -symmetric quantum dot with external interactions

    NASA Astrophysics Data System (ADS)

    Tellander, Felix; Berggren, Karl-Fredrik

    2017-04-01

    In this paper we use numerical simulations to study a two-dimensional (2D) quantum dot (cavity) with two leads for passing currents (electrons, photons, etc.) through the system. By introducing an imaginary potential in each lead the system is made symmetric under parity-time inversion (PT symmetric). This system is experimentally realizable in the form of, e.g., quantum dots in low-dimensional semiconductors, optical and electromagnetic cavities, and other classical wave analogs. The computational model introduced here for studying spectra, exceptional points (EPs), wave-function symmetries and morphology, and current flow includes thousands of interacting states. This supplements previous analytic studies of few interacting states by providing more detail and higher resolution. The Hamiltonian describing the system is non-Hermitian; thus, the eigenvalues are, in general, complex. The structure of the wave functions and probability current densities are studied in detail at and in between EPs. The statistics for EPs is evaluated, and reasons for a gradual dynamical crossover are identified.

  6. On the geometrization of quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavernelli, Ivano, E-mail: ita@zurich.ibm.com

    Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave–particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie–Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is inducedmore » by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space–time, as it is the case for gravitation in the general relativity.« less

  7. Non-polynomial extensions of solvable potentials à la Abraham-Moses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odake, Satoru; Sasaki, Ryu; Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan

    2013-10-15

    Abraham-Moses transformations, besides Darboux transformations, are well-known procedures to generate extensions of solvable potentials in one-dimensional quantum mechanics. Here we present the explicit forms of infinitely many seed solutions for adding eigenstates at arbitrary real energy through the Abraham-Moses transformations for typical solvable potentials, e.g., the radial oscillator, the Darboux-Pöschl-Teller, and some others. These seed solutions are simple generalisations of the virtual state wavefunctions, which are obtained from the eigenfunctions by discrete symmetries of the potentials. The virtual state wavefunctions have been an essential ingredient for constructing multi-indexed Laguerre and Jacobi polynomials through multiple Darboux-Crum transformations. In contrast to themore » Darboux transformations, the virtual state wavefunctions generate non-polynomial extensions of solvable potentials through the Abraham-Moses transformations.« less

  8. HYDROGEN BONDING IN THE METHANOL DIMER

    USDA-ARS?s Scientific Manuscript database

    In this work, two methanol molecules are placed in different arrangements to study hydrogen bonding in carbohydrate materials such as cellulose. Energy was calculated as a function of both hydrogen bond length and angle over wide ranges, using quantum mechanics (QM). The QM wavefunctions are analyze...

  9. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    PubMed Central

    Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D.; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10−5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers PMID:22355607

  10. Molecular processors: from qubits to fuzzy logic.

    PubMed

    Gentili, Pier Luigi

    2011-03-14

    Single molecules or their assemblies are information processing devices. Herein it is demonstrated how it is possible to process different types of logic through molecules. As long as decoherent effects are maintained far away from a pure quantum mechanical system, quantum logic can be processed. If the collapse of superimposed or entangled wavefunctions is unavoidable, molecules can still be used to process either crisp (binary or multi-valued) or fuzzy logic. The way for implementing fuzzy inference engines is declared and it is supported by the examples of molecular fuzzy logic systems devised so far. Fuzzy logic is drawing attention in the field of artificial intelligence, because it models human reasoning quite well. This ability may be due to some structural analogies between a fuzzy logic system and the human nervous system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. On the Time-Dependent Analysis of Gamow Decay

    ERIC Educational Resources Information Center

    Durr, Detlef; Grummt, Robert; Kolb, Martin

    2011-01-01

    Gamow's explanation of the exponential decay law uses complex "eigenvalues" and exponentially growing "eigenfunctions". This raises the question, how Gamow's description fits into the quantum mechanical description of nature, which is based on real eigenvalues and square integrable wavefunctions. Observing that the time evolution of any…

  12. Quantum mechanical probability current as electromagnetic 4-current from topological EM fields

    NASA Astrophysics Data System (ADS)

    van der Mark, Martin B.

    2015-09-01

    Starting from a complex 4-potential A = αdβ we show that the 4-current density in electromagnetism and the probability current density in relativistic quantum mechanics are of identical form. With the Dirac-Clifford algebra Cl1,3 as mathematical basis, the given 4-potential allows topological solutions of the fields, quite similar to Bateman's construction, but with a double field solution that was overlooked previously. A more general nullvector condition is found and wave-functions of charged and neutral particles appear as topological configurations of the electromagnetic fields.

  13. Quantum key distribution without the wavefunction

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    A well-known feature of quantum mechanics is the secure exchange of secret bit strings which can then be used as keys to encrypt messages transmitted over any classical communication channel. It is demonstrated that this quantum key distribution allows a much more general and abstract access than commonly thought. The results include some generalizations of the Hilbert space version of quantum key distribution, but are based upon a general nonclassical extension of conditional probability. A special state-independent conditional probability is identified as origin of the superior security of quantum key distribution; this is a purely algebraic property of the quantum logic and represents the transition probability between the outcomes of two consecutive quantum measurements.

  14. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  15. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE PAGES

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; ...

    2016-08-09

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stetsko, M. M., E-mail: mstetsko@gmail.com, E-mail: mykola@ktf.franko.lviv.ua

    Three dimensional Dirac oscillator was considered in space with deformed commutation relations known as Snyder-de Sitter algebra. Snyder-de Sitter commutation relations give rise to appearance of minimal uncertainties in position as well as in momentum. To derive energy spectrum and wavefunctions of the Dirac oscillator, supersymmetric quantum mechanics and shape invariance technique were applied.

  17. Incorporating nuclear vibrational energies into the "atom in molecules" analysis: An analytical study

    NASA Astrophysics Data System (ADS)

    Gharabaghi, Masumeh; Shahbazian, Shant

    2017-04-01

    The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.

  18. Incorporating nuclear vibrational energies into the "atom in molecules" analysis: An analytical study.

    PubMed

    Gharabaghi, Masumeh; Shahbazian, Shant

    2017-04-21

    The quantum theory of atoms in molecules (QTAIM) is based on the clamped nucleus paradigm and solely working with the electronic wavefunctions, so does not include nuclear vibrations in the AIM analysis. On the other hand, the recently extended version of the QTAIM, called the multi-component QTAIM (MC-QTAIM), incorporates both electrons and quantum nuclei, i.e., those nuclei treated as quantum waves instead of clamped point charges, into the AIM analysis using non-adiabatic wavefunctions. Thus, the MC-QTAIM is the natural framework to incorporate the role of nuclear vibrations into the AIM analysis. In this study, within the context of the MC-QTAIM, the formalism of including nuclear vibrational energy in the atomic basin energy is developed in detail and its contribution is derived analytically using the recently proposed non-adiabatic Hartree product nuclear wavefunction. It is demonstrated that within the context of this wavefunction, the quantum nuclei may be conceived pseudo-adiabatically as quantum oscillators and both isotropic harmonic and anisotropic anharmonic oscillator models are used to compute the zero-point nuclear vibrational energy contribution to the basin energies explicitly. Inspired by the results gained within the context of the MC-QTAIM analysis, a heuristic approach is proposed within the context of the QTAIM to include nuclear vibrational energy in the basin energy from the vibrational wavefunction derived adiabatically. The explicit calculation of the basin contribution of the zero-point vibrational energy using the uncoupled harmonic oscillator model leads to results consistent with those derived from the MC-QTAIM.

  19. Using Q-Chem on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    initio quantum chemistry package with special strengths in excited state methods, non-adiabatic coupling , solvation models, explicitly correlated wavefunction methods, and cutting-edge DFT. Running Q-Chem on

  20. Current matrix element in HAL QCD's wavefunction-equivalent potential method

    NASA Astrophysics Data System (ADS)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-04-01

    We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.

  1. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    NASA Astrophysics Data System (ADS)

    Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert; Rybak, Leonid; Levin, Liat; Amitay, Zohar; Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P.

    2013-10-01

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  2. A non-symmetric Yang-Baxter algebra for the quantum nonlinear Schrödinger model

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2013-06-01

    We study certain non-symmetric wavefunctions associated with the quantum nonlinear Schrödinger model, introduced by Komori and Hikami using Gutkin’s propagation operator, which involves representations of the degenerate affine Hecke algebra. We highlight how these functions can be generated using a vertex-type operator formalism similar to the recursion defining the symmetric (Bethe) wavefunction in the quantum inverse scattering method. Furthermore, some of the commutation relations encoded in the Yang-Baxter equation for the relevant monodromy matrix are generalized to the non-symmetric case.

  3. Quantum tunneling of electron snake states in an inhomogeneous magnetic field.

    PubMed

    Hoodbhoy, Pervez

    2018-05-10

    In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z   =  0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.

  4. Quantum tunneling of electron snake states in an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Hoodbhoy, Pervez

    2018-05-01

    In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z   =  0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.

  5. Coherent exciton-vibrational dynamics and energy transfer in conjugated organics

    DOE PAGES

    Nelson, Tammie R.; Ondarse-Alvarez, Dianelys; Oldani, Nicolas; ...

    2018-06-13

    Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble ofmore » trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.« less

  6. Coherent exciton-vibrational dynamics and energy transfer in conjugated organics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Tammie R.; Ondarse-Alvarez, Dianelys; Oldani, Nicolas

    Coherence, signifying concurrent electron-vibrational dynamics in complex natural and man-made systems, is currently a subject of intense study. Understanding this phenomenon is important when designing carrier transport in optoelectronic materials. Here, excited state dynamics simulations reveal a ubiquitous pattern in the evolution of photoexcitations for a broad range of molecular systems. Symmetries of the wavefunctions define a specific form of the non-adiabatic coupling that drives quantum transitions between excited states, leading to a collective asymmetric vibrational excitation coupled to the electronic system. This promotes periodic oscillatory evolution of the wavefunctions, preserving specific phase and amplitude relations across the ensemble ofmore » trajectories. The simple model proposed here explains the appearance of coherent exciton-vibrational dynamics due to non-adiabatic transitions, which is universal across multiple molecular systems. The observed relationships between electronic wavefunctions and the resulting functionalities allows us to understand, and potentially manipulate, excited state dynamics and energy transfer in molecular materials.« less

  7. Modulating optical polarization properties of Al-rich AlGaN/AlN quantum well by controlling wavefunction overlap

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Yu, T. J.; Lu, H. M.; Yuan, G. C.; Shen, B.; Zhang, G. Y.

    2013-10-01

    Using modified k.p perturbation method, the optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) are studied. It is found that change of wavefunction overlaps between conduction band and valance subbands of heavy hole, light hole, and crystal-field split off hole is different. Such difference leads to the overturn of polarization degree and modulates optical polarization properties as well width and strain vary. This prompts that changing wavefunction overlaps of electron and hole can lead to a way to modulate optical polarization properties of Al-rich AlGaN/AlN QWs, on no condition that valence band order changes.

  8. C++QEDv2 Milestone 10: A C++/Python application-programming framework for simulating open quantum dynamics

    NASA Astrophysics Data System (ADS)

    Sandner, Raimar; Vukics, András

    2014-09-01

    The v2 Milestone 10 release of C++QED is primarily a feature release, which also corrects some problems of the previous release, especially as regards the build system. The adoption of C++11 features has led to many simplifications in the codebase. A full doxygen-based API manual [1] is now provided together with updated user guides. A largely automated, versatile new testsuite directed both towards computational and physics features allows for quickly spotting arising errors. The states of trajectories are now savable and recoverable with full binary precision, allowing for trajectory continuation regardless of evolution method (single/ensemble Monte Carlo wave-function or Master equation trajectory). As the main new feature, the framework now presents Python bindings to the highest-level programming interface, so that actual simulations for given composite quantum systems can now be performed from Python. Catalogue identifier: AELU_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELU_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 492422 No. of bytes in distributed program, including test data, etc.: 8070987 Distribution format: tar.gz Programming language: C++/Python. Computer: i386-i686, x86 64. Operating system: In principle cross-platform, as yet tested only on UNIX-like systems (including Mac OS X). RAM: The framework itself takes about 60MB, which is fully shared. The additional memory taken by the program which defines the actual physical system (script) is typically less than 1MB. The memory storing the actual data scales with the system dimension for state-vector manipulations, and the square of the dimension for density-operator manipulations. This might easily be GBs, and often the memory of the machine limits the size of the simulated system. Classification: 4.3, 4.13, 6.2. External routines: Boost C++ libraries, GNU Scientific Library, Blitz++, FLENS, NumPy, SciPy Catalogue identifier of previous version: AELU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1381 Does the new version supersede the previous version?: Yes Nature of problem: Definition of (open) composite quantum systems out of elementary building blocks [2,3]. Manipulation of such systems, with emphasis on dynamical simulations such as Master-equation evolution [4] and Monte Carlo wave-function simulation [5]. Solution method: Master equation, Monte Carlo wave-function method Reasons for new version: The new version is mainly a feature release, but it does correct some problems of the previous version, especially as regards the build system. Summary of revisions: We give an example for a typical Python script implementing the ring-cavity system presented in Sec. 3.3 of Ref. [2]: Restrictions: Total dimensionality of the system. Master equation-few thousands. Monte Carlo wave-function trajectory-several millions. Unusual features: Because of the heavy use of compile-time algorithms, compilation of programs written in the framework may take a long time and much memory (up to several GBs). Additional comments: The framework is not a program, but provides and implements an application-programming interface for developing simulations in the indicated problem domain. We use several C++11 features which limits the range of supported compilers (g++ 4.7, clang++ 3.1) Documentation, http://cppqed.sourceforge.net/ Running time: Depending on the magnitude of the problem, can vary from a few seconds to weeks. References: [1] Entry point: http://cppqed.sf.net [2] A. Vukics, C++QEDv2: The multi-array concept and compile-time algorithms in the definition of composite quantum systems, Comp. Phys. Comm. 183(2012)1381. [3] A. Vukics, H. Ritsch, C++QED: an object-oriented framework for wave-function simulations of cavity QED systems, Eur. Phys. J. D 44 (2007) 585. [4] H. J. Carmichael, An Open Systems Approach to Quantum Optics, Springer, 1993. [5] J. Dalibard, Y. Castin, K. Molmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68 (1992) 580.

  9. The Shannon entropy information for mixed Manning Rosen potential in D-dimensional Schrodinger equation

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Nur Pratiwi, Beta; Arya Nugraha, Dewanta

    2017-01-01

    D dimensional Schrodinger equation for the mixed Manning Rosen potential was investigated using supersymmetric quantum mechanics. We obtained the energy eigenvalues from radial part solution and wavefunctions in radial and angular parts solution. From the lowest radial wavefunctions, we evaluated the Shannon entropy information using Matlab software. Based on the entropy densities demonstrated graphically, we obtained that the wave of position information entropy density moves right when the value of potential parameter q increases, while its wave moves left with the increase of parameter α. The wave of momentum information entropy densities were expressed in graphs. We observe that its amplitude increase with increasing parameter q and α

  10. Quantum computing without wavefunctions: time-dependent density functional theory for universal quantum computation.

    PubMed

    Tempel, David G; Aspuru-Guzik, Alán

    2012-01-01

    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.

  11. Equivalences of the multi-indexed orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odake, Satoru

    2014-01-15

    Multi-indexed orthogonal polynomials describe eigenfunctions of exactly solvable shape-invariant quantum mechanical systems in one dimension obtained by the method of virtual states deletion. Multi-indexed orthogonal polynomials are labeled by a set of degrees of polynomial parts of virtual state wavefunctions. For multi-indexed orthogonal polynomials of Laguerre, Jacobi, Wilson, and Askey-Wilson types, two different index sets may give equivalent multi-indexed orthogonal polynomials. We clarify these equivalences. Multi-indexed orthogonal polynomials with both type I and II indices are proportional to those of type I indices only (or type II indices only) with shifted parameters.

  12. Handshake electron transfer from hydrogen Rydberg atoms incident at a series of metallic thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbard, J. A.; Softley, T. P.

    2016-06-21

    Thin metallic films have a 1D quantum well along the surface normal direction, which yields particle-in-a-box style electronic quantum states. However the quantum well is not infinitely deep and the wavefunctions of these states penetrate outside the surface where the electron is bound by its own image-charge attraction. Therefore a series of discrete, vacant states reach out from the thin film into the vacuum increasing the probability of electron transfer from an external atom or molecule to the thin film, especially for the resonant case where the quantum well energy matches that of the atom. We show that “handshake” electronmore » transfer from a highly excited Rydberg atom to these thin-film states is experimentally measurable. Thicker films have a wider 1D box, changing the energetic distribution and image-state contribution to the thin film wavefunctions, resulting in more resonances. Calculations successfully predict the number of resonances and the nature of the thin-film wavefunctions for a given film thickness.« less

  13. Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives.

    PubMed

    Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír

    2012-05-21

    In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.

  14. Renormalizing the Kinetic Energy Operator in Elementary Quantum Mechanics

    ERIC Educational Resources Information Center

    Coutinho, F. A. B.; Amaku, M.

    2009-01-01

    In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly…

  15. Symmetric functions and wavefunctions of XXZ-type six-vertex models and elliptic Felderhof models by Izergin-Korepin analysis

    NASA Astrophysics Data System (ADS)

    Motegi, Kohei

    2018-05-01

    We present a method to analyze the wavefunctions of six-vertex models by extending the Izergin-Korepin analysis originally developed for domain wall boundary partition functions. First, we apply the method to the case of the basic wavefunctions of the XXZ-type six-vertex model. By giving the Izergin-Korepin characterization of the wavefunctions, we show that these wavefunctions can be expressed as multiparameter deformations of the quantum group deformed Grothendieck polynomials. As a second example, we show that the Izergin-Korepin analysis is effective for analysis of the wavefunctions for a triangular boundary and present the explicit forms of the symmetric functions representing these wavefunctions. As a third example, we apply the method to the elliptic Felderhof model which is a face-type version and an elliptic extension of the trigonometric Felderhof model. We show that the wavefunctions can be expressed as one-parameter deformations of an elliptic analog of the Vandermonde determinant and elliptic symmetric functions.

  16. Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Nowara, Ewa; Johnson, Bruce

    2015-03-01

    The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.

  17. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction.

    PubMed

    Granovsky, Alexander A

    2015-12-21

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  18. Communication: An efficient approach to compute state-specific nuclear gradients for a generic state-averaged multi-configuration self consistent field wavefunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com

    We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.

  19. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We calculate the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t =0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. The solution describes the non-equilibrium steady state of the system. We use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, yielding the I-V characteristic. The calculation is non-perturbative and exact. Research supported by NSF Grant DMR 1410583.

  20. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.

  1. Quantum Foundations of Quantum Information

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert

    2009-03-01

    The main foundational issue for quantum information is: What is quantum information about? What does it refer to? Classical information typically refers to physical properties, and since classical is a subset of quantum information (assuming the world is quantum mechanical), quantum information should--and, it will be argued, does--refer to quantum physical properties represented by projectors on appropriate subspaces of a quantum Hilbert space. All sorts of microscopic and macroscopic properties, not just measurement outcomes, can be represented in this way, and are thus a proper subject of quantum information. The Stern-Gerlach experiment illustrates this. When properties are compatible, which is to say their projectors commute, Shannon's classical information theory based on statistical correlations extends without difficulty or change to the quantum case. When projectors do not commute, giving rise to characteristic quantum effects, a foundation for the subject can still be constructed by replacing the ``measurement and wave-function collapse'' found in textbooks--an efficient calculational tool, but one giving rise to numerous conceptual difficulties--with a fully consistent and paradox free stochastic formulation of standard quantum mechanics. This formulation is particularly helpful in that it contains no nonlocal superluminal influences; the reason the latter carry no information is that they do not exist.

  2. Spectral sum rules and magneto-roton as emergent graviton in fractional quantum Hall effect

    DOE PAGES

    Golkar, Siavash; Nguyen, Dung X.; Son, Dam T.

    2016-01-05

    Here, we consider gapped fractional quantum Hall states on the lowest Landau level when the Coulomb energy is much smaller than the cyclotron energy. We introduce two spectral densities, ρ T(ω) andmore » $$\\bar{p}$$ T(ω), which are proportional to the probabilities of absorption of circularly polarized gravitons by the quantum Hall system. We prove three sum rules relating these spectral densities with the shift S, the q 4 coefficient of the static structure factor S 4, and the high-frequency shear modulus of the ground state μ ∞, which is precisely defined. We confirm an inequality, first suggested by Haldane, that S 4 is bounded from below by |S–1|/8. The Laughlin wavefunction saturates this bound, which we argue to imply that systems with ground state wavefunctions close to Laughlin’s absorb gravitons of predominantly one circular polarization. We consider a nonlinear model where the sum rules are saturated by a single magneto-roton mode. In this model, the magneto-roton arises from the mixing between oscillations of an internal metric and the hydrodynamic motion. Implications for experiments are briefly discussed.« less

  3. Images in quantum entanglement

    NASA Astrophysics Data System (ADS)

    Bowden, G. J.

    2009-08-01

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction ΨO plus a portion of its own inverse image. Bell states can be defined in this way: \\Psi = 1/\\sqrt 2 (\\Psi _O \\pm \\Psi _I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν12, ν13, ν23, ν123 and phi123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α1, β1), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  4. The "Forgotten" Pseudomomenta and Gauge Changes in Generalized Landau Level Problems: Spatially Nonuniform Magnetic and Temporally Varying Electric Fields

    NASA Astrophysics Data System (ADS)

    Konstantinou, Georgios; Moulopoulos, Konstantinos

    2017-05-01

    By perceiving gauge invariance as an analytical tool in order to get insight into the states of the "generalized Landau problem" (a charged quantum particle moving inside a magnetic, and possibly electric field), and motivated by an early article that correctly warns against a naive use of gauge transformation procedures in the usual Landau problem (i.e. with the magnetic field being static and uniform), we first show how to bypass the complications pointed out in that article by solving the problem in full generality through gauge transformation techniques in a more appropriate manner. Our solution provides in simple and closed analytical forms all Landau Level-wavefunctions without the need to specify a particular vector potential. This we do by proper handling of the so-called pseudomomentum ěc {{K}} (or of a quantity that we term pseudo-angular momentum L z ), a method that is crucially different from the old warning argument, but also from standard treatments in textbooks and in research literature (where the usual Landau-wavefunctions are employed - labeled with canonical momenta quantum numbers). Most importantly, we go further by showing that a similar procedure can be followed in the more difficult case of spatially-nonuniform magnetic fields: in such case we define ěc {{K}} and L z as plausible generalizations of the previous ordinary case, namely as appropriate line integrals of the inhomogeneous magnetic field - our method providing closed analytical expressions for all stationary state wavefunctions in an easy manner and in a broad set of geometries and gauges. It can thus be viewed as complementary to the few existing works on inhomogeneous magnetic fields, that have so far mostly focused on determining the energy eigenvalues rather than the corresponding eigenkets (on which they have claimed that, even in the simplest cases, it is not possible to obtain in closed form the associated wavefunctions). The analytical forms derived here for these wavefunctions enable us to also provide explicit Berry's phase calculations and a quick study of their connection to probability currents and to some recent interesting issues in elementary Quantum Mechanics and Condensed Matter Physics. As an added feature, we also show how the possible presence of an additional electric field can be treated through a further generalization of pseudomomenta and their proper handling.

  5. Stochastic multi-reference perturbation theory with application to the linearized coupled cluster method

    NASA Astrophysics Data System (ADS)

    Jeanmairet, Guillaume; Sharma, Sandeep; Alavi, Ali

    2017-01-01

    In this article we report a stochastic evaluation of the recently proposed multireference linearized coupled cluster theory [S. Sharma and A. Alavi, J. Chem. Phys. 143, 102815 (2015)]. In this method, both the zeroth-order and first-order wavefunctions are sampled stochastically by propagating simultaneously two populations of signed walkers. The sampling of the zeroth-order wavefunction follows a set of stochastic processes identical to the one used in the full configuration interaction quantum Monte Carlo (FCIQMC) method. To sample the first-order wavefunction, the usual FCIQMC algorithm is augmented with a source term that spawns walkers in the sampled first-order wavefunction from the zeroth-order wavefunction. The second-order energy is also computed stochastically but requires no additional overhead outside of the added cost of sampling the first-order wavefunction. This fully stochastic method opens up the possibility of simultaneously treating large active spaces to account for static correlation and recovering the dynamical correlation using perturbation theory. The method is used to study a few benchmark systems including the carbon dimer and aromatic molecules. We have computed the singlet-triplet gaps of benzene and m-xylylene. For m-xylylene, which has proved difficult for standard complete active space self consistent field theory with perturbative correction, we find the singlet-triplet gap to be in good agreement with the experimental values.

  6. Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Ming; Poirier, Bill

    2016-03-01

    In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schrödinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature—suggesting a “many interacting worlds” interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive and well-localized everywhere, and its spatial integral is conserved over time—in any inertial frame. Finally, the ensemble-averaged wavepacket motion is along a straight line path through spacetime. In this manner, the pathologies of the wave-based relativistic quantum theory, as applied to wavepacket propagation, are avoided.

  7. Quantum Monte Carlo studies of solvated systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Kathleen; Letchworth Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2011-03-01

    Solvation qualitatively alters the energetics of diverse processes from protein folding to reactions on catalytic surfaces. An explicit description of the solvent in quantum-mechanical calculations requires both a large number of electrons and exploration of a large number of configurations in the phase space of the solvent. These problems can be circumvented by including the effects of solvent through a rigorous classical density-functional description of the liquid environment, thereby yielding free energies and thermodynamic averages directly, while eliminating the need for explicit consideration of the solvent electrons. We have implemented and tested this approach within the CASINO Quantum Monte Carlo code. Our method is suitable for calculations in any basis within CASINO, including b-spline and plane wave trial wavefunctions, and is equally applicable to molecules, surfaces, and crystals. For our preliminary test calculations, we use a simplified description of the solvent in terms of an isodensity continuum dielectric solvation approach, though the method is fully compatible with more reliable descriptions of the solvent we shall employ in the future.

  8. Observation of topologically protected bound states in photonic quantum walks.

    PubMed

    Kitagawa, Takuya; Broome, Matthew A; Fedrizzi, Alessandro; Rudner, Mark S; Berg, Erez; Kassal, Ivan; Aspuru-Guzik, Alán; Demler, Eugene; White, Andrew G

    2012-06-06

    Topological phases exhibit some of the most striking phenomena in modern physics. Much of the rich behaviour of quantum Hall systems, topological insulators, and topological superconductors can be traced to the existence of robust bound states at interfaces between different topological phases. This robustness has applications in metrology and holds promise for future uses in quantum computing. Engineered quantum systems--notably in photonics, where wavefunctions can be observed directly--provide versatile platforms for creating and probing a variety of topological phases. Here we use photonic quantum walks to observe bound states between systems with different bulk topological properties and demonstrate their robustness to perturbations--a signature of topological protection. Although such bound states are usually discussed for static (time-independent) systems, here we demonstrate their existence in an explicitly time-dependent situation. Moreover, we discover a new phenomenon: a topologically protected pair of bound states unique to periodically driven systems.

  9. Hamiltonian dynamics of a quantum of space: hidden symmetries and spectrum of the volume operator, and discrete orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Marinelli, Dimitri; Marzuoli, Annalisa

    2013-05-01

    The action of the quantum mechanical volume operator, introduced in connection with a symmetric representation of the three-body problem and recently recognized to play a fundamental role in discretized quantum gravity models, can be given as a second-order difference equation which, by a complex phase change, we turn into a discrete Schrödinger-like equation. The introduction of discrete potential-like functions reveals the surprising crucial role here of hidden symmetries, first discovered by Regge for the quantum mechanical 6j symbols; insight is provided into the underlying geometric features. The spectrum and wavefunctions of the volume operator are discussed from the viewpoint of the Hamiltonian evolution of an elementary ‘quantum of space’, and a transparent asymptotic picture of the semiclassical and classical regimes emerges. The definition of coordinates adapted to the Regge symmetry is exploited for the construction of a novel set of discrete orthogonal polynomials, characterizing the oscillatory components of torsion-like modes.

  10. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  11. ORBKIT: A modular python toolbox for cross-platform postprocessing of quantum chemical wavefunction data.

    PubMed

    Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe; Paulus, Beate; Hege, Hans-Christian; Schild, Axel

    2016-06-15

    ORBKIT is a toolbox for postprocessing electronic structure calculations based on a highly modular and portable Python architecture. The program allows computing a multitude of electronic properties of molecular systems on arbitrary spatial grids from the basis set representation of its electronic wavefunction, as well as several grid-independent properties. The required data can be extracted directly from the standard output of a large number of quantum chemistry programs. ORBKIT can be used as a standalone program to determine standard quantities, for example, the electron density, molecular orbitals, and derivatives thereof. The cornerstone of ORBKIT is its modular structure. The existing basic functions can be arranged in an individual way and can be easily extended by user-written modules to determine any other derived quantity. ORBKIT offers multiple output formats that can be processed by common visualization tools (VMD, Molden, etc.). Additionally, ORBKIT possesses routines to order molecular orbitals computed at different nuclear configurations according to their electronic character and to interpolate the wavefunction between these configurations. The program is open-source under GNU-LGPLv3 license and freely available at https://github.com/orbkit/orbkit/. This article provides an overview of ORBKIT with particular focus on its capabilities and applicability, and includes several example calculations. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Quantum Theories of Self-Localization

    NASA Astrophysics Data System (ADS)

    Bernstein, Lisa Joan

    In the classical dynamics of coupled oscillator systems, nonlinearity leads to the existence of stable solutions in which energy remains localized for all time. Here the quantum-mechanical counterpart of classical self-localization is investigated in the context of two model systems. For these quantum models, the terms corresponding to classical nonlinearities modify a subset of the stationary quantum states to be particularly suited to the creation of nonstationary wavepackets that localize energy for long times. The first model considered here is the Quantized Discrete Self-Trapping model (QDST), a system of anharmonic oscillators with linear dispersive coupling used to model local modes of vibration in polyatomic molecules. A simple formula is derived for a particular symmetry class of QDST systems which gives an analytic connection between quantum self-localization and classical local modes. This formula is also shown to be useful in the interpretation of the vibrational spectra of some molecules. The second model studied is the Frohlich/Einstein Dimer (FED), a two-site system of anharmonically coupled oscillators based on the Frohlich Hamiltonian and motivated by the theory of Davydov solitons in biological protein. The Born-Oppenheimer perturbation method is used to obtain approximate stationary state wavefunctions with error estimates for the FED at the first excited level. A second approach is used to reduce the first excited level FED eigenvalue problem to a system of ordinary differential equations. A simple theory of low-energy self-localization in the FED is discussed. The quantum theories of self-localization in the intrinsic QDST model and the extrinsic FED model are compared.

  13. Fractional excitations in the square-lattice quantum antiferromagnet

    DOE PAGES

    Dalla Piazza, Bastien; Mourigal, M.; Christensen, N. B.; ...

    2014-12-15

    Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). Here, we use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experimentsmore » reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Lastly, our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.« less

  14. Quantum mechanical wavefunction: visualization at undergraduate level

    NASA Astrophysics Data System (ADS)

    Chhabra, Mahima; Das, Ritwick

    2017-01-01

    Quantum mechanics (QM) forms the most crucial ingredient of modern-era physical science curricula at undergraduate level. The abstract ideas involved in QM related concepts pose a challenge towards appropriate visualization as a consequence of their counter-intuitive nature and lack of experiment-assisted visualization tools. At the heart of the quantum mechanical formulation lies the concept of ‘wavefunction’, which forms the basis for understanding the behavior of physical systems. At undergraduate level, the concept of ‘wavefunction’ is introduced in an abstract framework using mathematical tools and therefore opens up an enormous scope for alternative conceptions and erroneous visualization. The present work is an attempt towards exploring the visualization models constructed by undergraduate students for appreciating the concept of ‘wavefunction’. We present a qualitative analysis of the data obtained from administering a questionnaire containing four visualization based questions on the topic of ‘wavefunction’ to a group of ten undergraduate-level students at an institute in India which excels in teaching and research of basic sciences. Based on the written responses, all ten students were interviewed in detail to unravel the exact areas of difficulty in visualization of ‘wavefunction’. The outcome of present study not only reveals the gray areas in students’ conceptualization, but also provides a plausible route to address the issues at the pedagogical level within the classroom.

  15. Bose-Einstein Condensates in 1D Optical Lattices: Nonlinearity and Wannier-Stark Spectra

    NASA Astrophysics Data System (ADS)

    Arimondo, Ennio; Ciampini, Donatella; Morsch, Oliver

    The development of powerful laser cooling and trapping techniques has made possible the controlled realization of dense and cold gaseous samples, thus opening the way for investigations in the ultracold temperature regimes not accessible with conventional techniques. A Bose-Einstein condensate (BEC) represents a peculiar gaseous state where all the particles reside in the same quantum mechanical state. Therefore BECs exhibit quantum mechanical phe-nomena on a macroscopic scale with a single quantum mechanical wavefunction describing the external degrees of freedom. That control of the external degrees of freedom is combined with a precise control of the internal degrees. The BEC investigation has become a very active area of research in contem-porary physics. The BEC study encompasses different subfields of physics, i.e., atomic and molecular physics, quantum optics, laser spectroscopy, solid state physics. Atomic physics and laser spectroscopy provide the methods for creating and manipulating the atomic and molecular BECs. However owing to the interactions between the particles composing the condensate and to the configuration of the external potential, concepts and methods from solid state physics are extensively used for BEC description.

  16. Vector-valued Jack polynomials and wavefunctions on the torus

    NASA Astrophysics Data System (ADS)

    Dunkl, Charles F.

    2017-06-01

    The Hamiltonian of the quantum Calogero-Sutherland model of N identical particles on the circle with 1/r 2 interactions has eigenfunctions consisting of Jack polynomials times the base state. By use of the generalized Jack polynomials taking values in modules of the symmetric group and the matrix solution of a system of linear differential equations one constructs novel eigenfunctions of the Hamiltonian. Like the usual wavefunctions each eigenfunction determines a symmetric probability density on the N-torus. The construction applies to any irreducible representation of the symmetric group. The methods depend on the theory of generalized Jack polynomials due to Griffeth, and the Yang-Baxter graph approach of Luque and the author.

  17. The variational method in quantum mechanics: an elementary introduction

    NASA Astrophysics Data System (ADS)

    Borghi, Riccardo

    2018-05-01

    Variational methods in quantum mechanics are customarily presented as invaluable techniques to find approximate estimates of ground state energies. In the present paper a short catalogue of different celebrated potential distributions (both 1D and 3D), for which an exact and complete (energy and wavefunction) ground state determination can be achieved in an elementary way, is illustrated. No previous knowledge of calculus of variations is required. Rather, in all presented cases the exact energy functional minimization is achieved by using only a couple of simple mathematical tricks: ‘completion of square’ and integration by parts. This makes our approach particularly suitable for undergraduates. Moreover, the key role played by particle localization is emphasized through the entire analysis. This gentle introduction to the variational method could also be potentially attractive for more expert students as a possible elementary route toward a rather advanced topic on quantum mechanics: the factorization method. Such an unexpected connection is outlined in the final part of the paper.

  18. Method for discovering relationships in data by dynamic quantum clustering

    DOEpatents

    Weinstein, Marvin; Horn, David

    2017-05-09

    Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.

  19. Method for discovering relationships in data by dynamic quantum clustering

    DOEpatents

    Weinstein, Marvin; Horn, David

    2014-10-28

    Data clustering is provided according to a dynamical framework based on quantum mechanical time evolution of states corresponding to data points. To expedite computations, we can approximate the time-dependent Hamiltonian formalism by a truncated calculation within a set of Gaussian wave-functions (coherent states) centered around the original points. This allows for analytic evaluation of the time evolution of all such states, opening up the possibility of exploration of relationships among data-points through observation of varying dynamical-distances among points and convergence of points into clusters. This formalism may be further supplemented by preprocessing, such as dimensional reduction through singular value decomposition and/or feature filtering.

  20. Optical Properties of a Quantum Dot-Ring System Grown Using Droplet Epitaxy.

    PubMed

    Linares-García, Gabriel; Meza-Montes, Lilia; Stinaff, Eric; Alsolamy, S M; Ware, M E; Mazur, Y I; Wang, Z M; Lee, Jihoon; Salamo, G J

    2016-12-01

    Electronic and optical properties of InAs/GaAs nanostructures grown by the droplet epitaxy method are studied. Carrier states were determined by k · p theory including effects of strain and In gradient concentration for a model geometry. Wavefunctions are highly localized in the dots. Coulomb and exchange interactions are studied and we found the system is in the strong confinement regime. Microphotoluminescence spectra and lifetimes were calculated and compared with measurements performed on a set of quantum rings in a single sample. Some features of spectra are in good agreement.

  1. Imaging the He2 quantum halo state using a free electron laser

    PubMed Central

    Zeller, Stefan; Kunitski, Maksim; Voigtsberger, Jörg; Kalinin, Anton; Schottelius, Alexander; Schober, Carl; Waitz, Markus; Sann, Hendrik; Hartung, Alexander; Bauer, Tobias; Pitzer, Martin; Trinter, Florian; Goihl, Christoph; Janke, Christian; Richter, Martin; Kastirke, Gregor; Weller, Miriam; Czasch, Achim; Kitzler, Markus; Braune, Markus; Grisenti, Robert E.; Schmidt, Lothar Ph. H.; Schöffler, Markus S.; Williams, Joshua B.; Jahnke, Till; Dörner, Reinhard

    2016-01-01

    Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this “tunneling region,” the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2’s binding energy of 151.9±13.3 neV, which is in agreement with most recent calculations. PMID:27930299

  2. Quantum scar and breakdown of universality in graphene: A theoretical insight

    NASA Astrophysics Data System (ADS)

    Iyakutti, Kombiah; Rajeswarapalanichamy, Ratnavelu; Surya, Velappa Jayaraman; Kawazoe, Yoshiyuki

    2017-12-01

    Graphene has brought forward a lot of new physics. One of them is the emergence of massless Dirac fermions in addition to the electrons and these features are new to physics. In this theoretical study, the signatures for quantum scar and the breakdown of universality in graphene are investigated with reference to the presence of these two types of fermions. Taking the graphene quantum dot (QD) potential as the confining potential, the radial part of Dirac equations are solved numerically. Concentrations of the two component eigen-wavefunctions about classical periodic orbits emerge as the signatures for the quantum scar. The sudden variations, in the ratio of the radial wave-functions (large and small components), R(g/f), with mass ratio κ are the signatures for breakdown of universality in graphene. The breakdown of universality occurs for the states k = -1 and k = 1, and the state k = -1 is more susceptible to the breakdown of universality.

  3. Cold chemistry with cold molecules

    NASA Astrophysics Data System (ADS)

    Shagam, Yuval

    Low temperature chemistry has been predicted to be dominated by quantum effects, such as shape resonances, where colliding particles exhibit wave-like behavior and tunnel through potential barriers. Observation of these quantum effects provides valuable insight into the microscopic mechanism that governs scattering processes. Our recent advances in the control of neutral supersonic molecular beams, namely merged beam experiments, have enabled continuous tuning of collision energies from the classical regime at room temperature down to 0.01 kelvin, where a quantum description of the dynamics is necessary. I will discuss our use of this technique to study how the dynamics change when molecules participate in collisions, demonstrating the crucial role the molecular quantum rotor plays. We have found that at low temperatures rotational state of the molecule can strongly affect collision dynamics considerably changing reaction rates, due to the different symmetries of the molecular wavefunction.

  4. Wavefunctions, quantum diffusion, and scaling exponents in golden-mean quasiperiodic tilings.

    PubMed

    Thiem, Stefanie; Schreiber, Michael

    2013-02-20

    We study the properties of wavefunctions and the wavepacket dynamics in quasiperiodic tight-binding models in one, two, and three dimensions. The atoms in the one-dimensional quasiperiodic chains are coupled by weak and strong bonds aligned according to the Fibonacci sequence. The associated d-dimensional quasiperiodic tilings are constructed from the direct product of d such chains, which yields either the hypercubic tiling or the labyrinth tiling. This approach allows us to consider fairly large systems numerically. We show that the wavefunctions of the system are multifractal and that their properties can be related to the structure of the system in the regime of strong quasiperiodic modulation by a renormalization group (RG) approach. We also study the dynamics of wavepackets to get information about the electronic transport properties. In particular, we investigate the scaling behaviour of the return probability of the wavepacket with time. Applying again the RG approach we show that in the regime of strong quasiperiodic modulation the return probability is governed by the underlying quasiperiodic structure. Further, we also discuss lower bounds for the scaling exponent of the width of the wavepacket and propose a modified lower bound for the absolute continuous regime.

  5. A fragmentation-based approach for evaluating the intra-chain excitonic couplings in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Ma, Haibo

    2017-07-01

    For computing the intra-chain excitonic couplings in polymeric systems, here we propose a new fragmentation approach. A comparison for the energetic and spatial properties of the low-lying excited states in PPV between our scheme and full quantum chemical calculations, reveals that our scheme can nicely reproduce full quantum chemical results in weakly coupled systems. Further wavefunction analysis indicate that improved description for strongly coupled system can be achieved by the inclusion of the higher excited states within each fragments. Our proposed scheme is helpful for building the bridge linking the phenomenological descriptions of excitons and microscopic modeling for realistic polymers.

  6. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus

    2017-12-01

    Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.

  7. All optical quantum control of a spin-quantum state and ultrafast transduction into an electric current.

    PubMed

    Müller, K; Kaldewey, T; Ripszam, R; Wildmann, J S; Bechtold, A; Bichler, M; Koblmüller, G; Abstreiter, G; Finley, J J

    2013-01-01

    The ability to control and exploit quantum coherence and entanglement drives research across many fields ranging from ultra-cold quantum gases to spin systems in condensed matter. Transcending different physical systems, optical approaches have proven themselves to be particularly powerful, since they profit from the established toolbox of quantum optical techniques, are state-selective, contact-less and can be extremely fast. Here, we demonstrate how a precisely timed sequence of monochromatic ultrafast (~ 2-5 ps) optical pulses, with a well defined polarisation can be used to prepare arbitrary superpositions of exciton spin states in a semiconductor quantum dot, achieve ultrafast control of the spin-wavefunction without an applied magnetic field and make high fidelity read-out the quantum state in an arbitrary basis simply by detecting a strong (~ 2-10 pA) electric current flowing in an external circuit. The results obtained show that the combined quantum state preparation, control and read-out can be performed with a near-unity (≥97%) fidelity.

  8. Properties of Nonabelian Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Simon, Steven H.

    2004-03-01

    The quantum statistics of particles refers to the behavior of a multiparticle wavefunction under adiabatic interchange of two identical particles. While a three dimensional world affords the possibilities of Bosons or Fermions, the two dimensional world has more exotic possibilities such as Fractional and Nonabelian statistics (J. Frölich, in ``Nonperturbative Quantum Field Theory", ed, G. t'Hooft. 1988). The latter is perhaps the most interesting where the wavefunction obeys a ``nonabelian'' representation of the braid group - meaning that braiding A around B then B around C is not the same as braiding B around C then A around B. This property enables one to think about using these exotic systems for robust topological quantum computation (M. Freedman, A. Kitaev, et al, Bull Am Math Soc 40, 31 (2003)). Surprisingly, it is thought that quasiparticles excitations with such nonabelian statistics may actually exist in certain quantum Hall states that have already been observed. The most likely such candidate is the quantum Hall ν=5/2 state(R. L. Willett et al, Phys. Rev. Lett. 59, 1776-1779 (1987)), thought to be a so-called Moore-Read Pfaffian state(G. Moore and N. Read, Nucl Phys. B360 362 (1991)), which can be thought of as a p-wave paired superconducting state of composite fermions(M. Greiter, X. G. Wen, and F. Wilczek, PRL 66, 3205 (1991)). Using this superconducting analogy, we use a Chern-Simons field theory approach to make a number of predictions as to what experimental signatures one should expect for this state if it really is this Moore-Read state(K. Foster, N. Bonesteel, and S. H. Simon, PRL 91 046804 (2003)). We will then discuss how the nonabelian statistics can be explored in detail using a quantum monte-carlo approach (Y. Tserkovnyak and S. H. Simon, PRL 90 106802 (2003)), (I. Finkler, Y. Tserkovnyak, and S. H. Simon, work in progress.) that allows one to explicitly drag one particle around another and observe the change in the wavefunctions. Unfortunately, it turns out that the Moore-Read state is not suited for topological quantum computationfootnote[3]M. Freedman, A. Kitaev, et al, Bull Am Math Soc 40, 31 (2003). so we will turn our attention to more the so-called parafermionic states(E. Rezayi and N. Read, Phys. Rev. B 59, 8084-8092 (1999).) which may also exist in nature.

  9. A complex guided spectral transform Lanczos method for studying quantum resonance states

    DOE PAGES

    Yu, Hua-Gen

    2014-12-28

    A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the originalmore » Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.« less

  10. Two-Photon Quantum Entanglement from Type-II Spontaneous Parametric Down-Conversion

    NASA Astrophysics Data System (ADS)

    Pittman, Todd Butler

    The concept of two (or more) particle entanglement lies at the heart of many fascinating questions concerning the foundations of quantum mechanics. The counterintuitive nonlocal behavior of entangled states led Einstein, Podolsky, and Rosen (EPR) to ask their famous 1935 question, "Can quantum mechanical description of reality be considered complete?". Although the debate has been raging on for more than 60 years, there is still no absolutely conclusive answer to this question. For if entangled states exist and can be observed, then accepting quantum mechanics as a complete theory requires a drastic overhaul of one's physical intuition with regards to the common sense notions of locality and reality put forth by EPR. Contained herein are the results of research investigating various non-classical features of the two-photon entangled states produced in Type-II Spontaneous Parametric Down -Conversion (SPDC). Through a series of experiments we have manifest the nonlocal nature of the quantum mechanical "two-photon effective wavefunction" (or Biphoton) realized by certain photon-counting coincidence measurements performed on these states. In particular, we examine a special double entanglement, in which the states are seen to be simultaneously entangled in both spin and space-time variables. The observed phenomena based on this double entanglement lead to many interesting results which defy classical explanation, but are well described within the framework of quantum mechanics. The implications provide a unique perspective concerning the nature of the photon, and the concept of quantum entanglement.

  11. Self-organised fractional quantisation in a hole quantum wire

    NASA Astrophysics Data System (ADS)

    Gul, Y.; Holmes, S. N.; Myronov, M.; Kumar, S.; Pepper, M.

    2018-03-01

    We have investigated hole transport in quantum wires formed by electrostatic confinement in strained germanium two-dimensional layers. The ballistic conductance characteristics show the regular staircase of quantum levels with plateaux at n2e 2/h, where n is an integer, e is the fundamental unit of charge and h is Planck’s constant. However as the carrier concentration is reduced, the quantised levels show a behaviour that is indicative of the formation of a zig-zag structure and new quantised plateaux appear at low temperatures. In units of 2e 2/h the new quantised levels correspond to values of n  =  1/4 reducing to 1/8 in the presence of a strong parallel magnetic field which lifts the spin degeneracy but does not quantise the wavefunction. A further plateau is observed corresponding to n  =  1/32 which does not change in the presence of a parallel magnetic field. These values indicate that the system is behaving as if charge was fractionalised with values e/2 and e/4, possible mechanisms are discussed.

  12. Simulation of quantum dynamics with integrated photonics

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-12-01

    In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.

  13. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Wesley D.; Schaefer, Henry F.

    The research program supported by this DOE grant carried out both methodological development and computational applications of first-principles theoretical chemistry based on quantum mechanical wavefunctions, as directed toward understanding and harnessing the fundamental chemical physics of combustion. To build and refine the world’s database of thermochemistry, spectroscopy, and chemical kinetics, predictive and definitive computational methods are needed that push the envelope of modern electronic structure theory. The application of such methods has been made to gain comprehensive knowledge of the paradigmatic reaction networks by which the n- and i-propyl, t-butyl, and n-butyl radicals are oxidized by O 2. Numerous ROOmore » and QOOH intermediates in these R + O 2 reaction systems have been characterized along with the interconnecting isomerization transition states and the barriers leading to fragmentation. Other combustion-related intermediates have also been studied, including methylsulfinyl radical, cyclobutylidene, and radicals derived from acetaldehyde and vinyl alcohol. Theoretical advances have been achieved and made available to the scientific community by implementation into PSI4, an open-source electronic structure computer package emphasizing automation, advanced libraries, and interoperability. We have pursued the development of universal explicitly correlated methods applicable to general electronic wavefunctions, as well as a framework that allows multideterminant reference functions to be expressed as a single determinant from quasiparticle operators. Finally, a rigorous analytical tool for correlated wavefunctions has been created to elucidate dispersion interactions, which play essential roles in many areas of chemistry, but whose effects are often masked and enigmatic. Our research decomposes and analyzes the coupled-cluster electron correlation energy in molecular systems as a function of interelectronic distance. Concepts are emerging that can be used to explain the influence of dispersion on the thermochemistry of large hydrocarbons, including fuels important to combustion technologies.« less

  14. Full-dimensional quantum mechanics calculations for the spectroscopic characterization of the isomerization transition states of HOCO/DOCO systems.

    PubMed

    Ma, Dandan; Ren, Haisheng; Ma, Jianyi

    2018-02-14

    Full-dimensional quantum mechanics calculations were performed to determine the vibrational energy levels of HOCO and DOCO based on an accurate potential energy surface. Almost all of the vibrational energy levels up to 3500 cm -1 from the vibrational ground state were assigned, and the calculated energy levels in this work are well in agreement with the reported results by Bowman. The corresponding full dimensional wavefunctions present some special features. When the energy level approaches the barrier height, the trans-HOCO and cis-HOCO states strongly couple through tunneling interactions, and the tunneling interaction and Fermi resonance were observed in the DOCO system. The energy level patterns of trans-HOCO, cis-HOCO and trans-DOCO provide a reasonable fitted barrier height using the fitting formula of Field et al., however, a discrepancy exists for the cis-DOCO species which is considered as a random event. Our full-dimensional calculations give positive evidence for the accuracy of the spectroscopic characterization model of the isomerization transition state reported by Field et al., which was developed from one-dimensional model systems. Furthermore, the special case of cis-DOCO in this work means that the isotopic substitution can solve the problem of the accidental failure of Field's spectroscopic characterization model.

  15. Correlated random walks induced by dynamical wavefunction collapse

    NASA Astrophysics Data System (ADS)

    Bedingham, Daniel

    2015-03-01

    Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.

  16. Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm

    NASA Astrophysics Data System (ADS)

    Gubernatis, James

    2014-03-01

    A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.

  17. The second hyperpolarizability of systems described by the space-fractional Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Nottage, Onassis; Kounta, Moussa

    2018-01-01

    The static second hyperpolarizability is derived from the space-fractional Schrödinger equation in the particle-centric view. The Thomas-Reiche-Kuhn sum rule matrix elements and the three-level ansatz determines the maximum second hyperpolarizability for a space-fractional quantum system. The total oscillator strength is shown to decrease as the space-fractional parameter α decreases, which reduces the optical response of a quantum system in the presence of an external field. This damped response is caused by the wavefunction dependent position and momentum commutation relation. Although the maximum response is damped, we show that the one-dimensional quantum harmonic oscillator is no longer a linear system for α ≠ 1, where the second hyperpolarizability becomes negative before ultimately damping to zero at the lower fractional limit of α → 1 / 2.

  18. An information theory model for dissipation in open quantum systems

    NASA Astrophysics Data System (ADS)

    Rogers, David M.

    2017-08-01

    This work presents a general model for open quantum systems using an information game along the lines of Jaynes’ original work. It is shown how an energy based reweighting of propagators provides a novel moment generating function at each time point in the process. Derivatives of the generating function give moments of the time derivatives of observables. Aside from the mathematically helpful properties, the ansatz reproduces key physics of stochastic quantum processes. At high temperature, the average density matrix follows the Caldeira-Leggett equation. Its associated Langevin equation clearly demonstrates the emergence of dissipation and decoherence time scales, as well as an additional diffusion due to quantum confinement. A consistent interpretation of these results is that decoherence and wavefunction collapse during measurement are directly related to the degree of environmental noise, and thus occur because of subjective uncertainty of an observer.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curchod, Basile F. E.; Agostini, Federica, E-mail: agostini@mpi-halle.mpg.de; Gross, E. K. U.

    Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface—the exact surface on which the nuclear dynamics takes place. We use a one-dimensional exactly solvable model to reproduce different conditions for quantum interferences, whose characteristic features already appear in one-dimension. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrastmore » to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics one of the exact nuclear probability densities.« less

  20. High-efficiency wavefunction updates for large scale Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kent, Paul; McDaniel, Tyler; Li, Ying Wai; D'Azevedo, Ed

    Within ab intio Quantum Monte Carlo (QMC) simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunctions. The evaluation of each Monte Carlo move requires finding the determinant of a dense matrix, which is traditionally iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. For calculations with thousands of electrons, this operation dominates the execution profile. We propose a novel rank- k delayed update scheme. This strategy enables probability evaluation for multiple successive Monte Carlo moves, with application of accepted moves to the matrices delayed until after a predetermined number of moves, k. Accepted events grouped in this manner are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency. This procedure does not change the underlying Monte Carlo sampling or the sampling efficiency. For large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude speedups can be obtained on both multi-core CPU and on GPUs, making this algorithm highly advantageous for current petascale and future exascale computations.

  1. Symmetric Topological Phases and Tensor Network States

    NASA Astrophysics Data System (ADS)

    Jiang, Shenghan

    Classification and simulation of quantum phases are one of main themes in condensed matter physics. Quantum phases can be distinguished by their symmetrical and topological properties. The interplay between symmetry and topology in condensed matter physics often leads to exotic quantum phases and rich phase diagrams. Famous examples include quantum Hall phases, spin liquids and topological insulators. In this thesis, I present our works toward a more systematically understanding of symmetric topological quantum phases in bosonic systems. In the absence of global symmetries, gapped quantum phases are characterized by topological orders. Topological orders in 2+1D are well studied, while a systematically understanding of topological orders in 3+1D is still lacking. By studying a family of exact solvable models, we find at least some topological orders in 3+1D can be distinguished by braiding phases of loop excitations. In the presence of both global symmetries and topological orders, the interplay between them leads to new phases termed as symmetry enriched topological (SET) phases. We develop a framework to classify a large class of SET phases using tensor networks. For each tensor class, we can write down generic variational wavefunctions. We apply our method to study gapped spin liquids on the kagome lattice, which can be viewed as SET phases of on-site symmetries as well as lattice symmetries. In the absence of topological order, symmetry could protect different topological phases, which are often referred to as symmetry protected topological (SPT) phases. We present systematic constructions of tensor network wavefunctions for bosonic symmetry protected topological (SPT) phases respecting both onsite and spatial symmetries.

  2. Quantum Zeno Effect in the Measurement Problem

    NASA Technical Reports Server (NTRS)

    Namiki, Mikio; Pasaczio, Saverio

    1996-01-01

    Critically analyzing the so-called quantum Zeno effect in the measurement problem, we show that observation of this effect does not necessarily mean experimental evidence for the naive notion of wave-function collapse by measurement (the simple projection rule). We also examine what kind of limitation the uncertainty relation and others impose on the observation of the quantum Zeno effect.

  3. Electronic and optical properties of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems

    NASA Astrophysics Data System (ADS)

    Amini, M.; Soleimani, M.; Ehsani, M. H.

    2017-12-01

    We numerically investigated the optical rectification coefficients (ORCs), transmission coefficient, energy levels and corresponding eigen-functions of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems (FO-MQWs) in the presence of an external electric field. In our calculations, two different methods, including transfer matrix and finite-difference have been used. It has been illustrated that with three types of the FO-MQWs, presented here, localization of the wave-function in any position of the structure is possible. Therefore, managing the electron distribution within the system is easier now. Finally, using the presented structures we could tune the position and amplitude of the ORCs.

  4. Logarithmic entanglement lightcone in many-body localized systems

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Li, Xiaopeng; Pixley, J. H.; Wu, Yang-Le; Das Sarma, S.

    2017-01-01

    We theoretically study the response of a many-body localized system to a local quench from a quantum information perspective. We find that the local quench triggers entanglement growth throughout the whole system, giving rise to a logarithmic lightcone. This saturates the modified Lieb-Robinson bound for quantum information propagation in many-body localized systems previously conjectured based on the existence of local integrals of motion. In addition, near the localization-delocalization transition, we find that the final states after the local quench exhibit volume-law entanglement. We also show that the local quench induces a deterministic orthogonality catastrophe for highly excited eigenstates, where the typical wave-function overlap between the pre- and postquench eigenstates decays exponentially with the system size.

  5. Computational studies of model disordered and strongly correlated electronic systems

    NASA Astrophysics Data System (ADS)

    Johri, Sonika

    The theory of non-interacting electrons in perfect crystals was completed soon after the advent of quantum mechanics. Though capable of describing electron behaviour in most simple solid state physics systems, this approach falls woefully short of describing condensed matter systems of interest today, and designing the quantum devices of the future. The reason is that nature is never free of disorder, and emergent properties arising from interactions can be clearly seen in the pure, low-dimensional materials that can be engineered today. In this thesis, I address some salient problems in disordered and correlated electronic systems using modern numerical techniques like sparse matrix diagonalization, density matrix renormalization group (DMRG), and large disorder renormalization group (LDRG) methods. The pioneering work of P. W. Anderson, in 1958, led to an understanding of how an electron can stop diffusing and become localized in a region of space when a crystal is sufficiently disordered. Thus disorder can lead to metal-insulator transitions, for instance, in doped semiconductors. Theoretical research on the Anderson disorder model since then has mostly focused on the localization-delocalization phase transition. The localized phase in itself was not thought to exhibit any interesting physics. Our work has uncovered a new singularity in the disorder-averaged inverse participation ratio of wavefunctions within the localized phase, arising from resonant states. The effects of system size, dimension and disorder distribution on the singularity have been studied. A novel wavefunction-based LDRG technique has been designed for the Anderson model which captures the singular behaviour. While localization is well established for a single electron in a disordered potential, the situation is less clear in the case of many interacting particles. Most studies of a many-body localized phase are restricted to a system which is isolated from its environment. Such a condition cannot be achieved perfectly in experiments. A chapter of this thesis is devoted to studying signatures of incomplete localization in a disordered system with interacting particles which is coupled to a bath. . Strongly interacting particles can also give rise to topological phases of matter that have exotic emergent properties, such as quasiparticles with fractional charges and anyonic, or perhaps even non-Abelian statistics. In addition to their intrinsic novelty, these particles (e.g. Majorana fermions) may be the building blocks of future quantum computers. The third part of my thesis focuses on the best experimentally known realizations of such systems - the fractional quantum Hall effect (FQHE) which occurs in two-dimensional electron gases in a strong perpendicular magnetic field. It has been observed in systems such as semiconductor heterostructures and, more recently, graphene. I have developed software for exact diagonalization of the many-body FQHE problem on the surface of a cylinder, a hitherto unstudied type of geometry. This geometry turns out to be optimal for the DMRG algorithm. Using this new geometry, I have studied properties of various fractionally-filled states, computing the overlap between exact ground states and model wavefunctions, their edge excitations, and entanglement spectra. I have calculated the sizes and tunneling amplitudes of quasiparticles, information which is needed to design the interferometers used to experimentally measure their Aharanov-Bohm phase. I have also designed numerical probes of the recently discovered geometric degree of freedom of FQHE states.

  6. Imaging the He2 quantum halo state using a free electron laser

    NASA Astrophysics Data System (ADS)

    Zeller, Stefan; Kunitski, Maksim; Voigtsberger, Jörg; Kalinin, Anton; Schottelius, Alexander; Schober, Carl; Waitz, Markus; Sann, Hendrik; Hartung, Alexander; Bauer, Tobias; Pitzer, Martin; Trinter, Florian; Goihl, Christoph; Janke, Christian; Richter, Martin; Kastirke, Gregor; Weller, Miriam; Czasch, Achim; Kitzler, Markus; Braune, Markus; Grisenti, Robert E.; Schöllkopf, Wieland; Schmidt, Lothar Ph. H.; Schöffler, Markus S.; Williams, Joshua B.; Jahnke, Till; Dörner, Reinhard

    2016-12-01

    Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this “tunneling region,” the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2’s binding energy of 151.9±13.3151.9±13.3 neV, which is in agreement with most recent calculations.

  7. Single-photon test of hyper-complex quantum theories using a metamaterial.

    PubMed

    Procopio, Lorenzo M; Rozema, Lee A; Wong, Zi Jing; Hamel, Deny R; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.

  8. Picosecond timing resolution detection of ggr-photons utilizing microchannel-plate detectors: experimental tests of quantum nonlocality and photon localization

    NASA Astrophysics Data System (ADS)

    Irby, Victor D.

    2004-09-01

    The concept and subsequent experimental verification of the proportionality between pulse amplitude and detector transit time for microchannel-plate detectors is presented. This discovery has led to considerable improvement in the overall timing resolution for detection of high-energy ggr-photons. Utilizing a 22Na positron source, a full width half maximum (FWHM) timing resolution of 138 ps has been achieved. This FWHM includes detector transit-time spread for both chevron-stack-type detectors, timing spread due to uncertainties in annihilation location, all electronic uncertainty and any remaining quantum mechanical uncertainty. The first measurement of the minimum quantum uncertainty in the time interval between detection of the two annihilation photons is reported. The experimental results give strong evidence against instantaneous spatial localization of ggr-photons due to measurement-induced nonlocal quantum wavefunction collapse. The experimental results are also the first that imply momentum is conserved only after the quantum uncertainty in time has elapsed (Yukawa H 1935 Proc. Phys. Math. Soc. Japan 17 48).

  9. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  10. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE PAGES

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; ...

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  11. Single-photon test of hyper-complex quantum theories using a metamaterial

    PubMed Central

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; Hamel, Deny R.; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-01-01

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories. PMID:28429711

  12. Emergent Irreversibility and Entanglement Spectrum Statistics

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio; Hamma, Alioscia; Mucciolo, Eduardo R.

    2014-06-01

    We study the problem of irreversibility when the dynamical evolution of a many-body system is described by a stochastic quantum circuit. Such evolution is more general than a Hamiltonian one, and since energy levels are not well defined, the well-established connection between the statistical fluctuations of the energy spectrum and irreversibility cannot be made. We show that the entanglement spectrum provides a more general connection. Irreversibility is marked by a failure of a disentangling algorithm and is preceded by the appearance of Wigner-Dyson statistical fluctuations in the entanglement spectrum. This analysis can be done at the wave-function level and offers an alternative route to study quantum chaos and quantum integrability.

  13. Electromagnetically induced transparency in a multilayered spherical quantum dot with hydrogenic impurity

    NASA Astrophysics Data System (ADS)

    Pavlović, Vladan; Šušnjar, Marko; Petrović, Katarina; Stevanović, Ljiljana

    2018-04-01

    In this paper the effects of size, hydrostatic pressure and temperature on electromagnetically induced transparency, as well as on absorption and the dispersion properties of multilayered spherical quantum dot with hydrogenic impurity are theoretically investigated. Energy eigenvalues and wavefunctions of quantum systems in three-level and four-level configurations are calculated using the shooting method, while optical properties are obtained using the density matrix formalism and master equations. It is shown that peaks of the optical properties experience a blue-shift with increasing hydrostatic pressure and red-shift with increasing temperature. The changes of optical properties as a consequence of changes in barrier wells widths are non-monotonic, and these changes are discussed in detail.

  14. Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects

    NASA Astrophysics Data System (ADS)

    Duque, C. M.; Acosta, Ruben E.; Morales, A. L.; Mora-Ramos, M. E.; Restrepo, R. L.; Ojeda, J. H.; Kasapoglu, E.; Duque, C. A.

    2016-10-01

    The electron states in a two-dimensional quantum dot ring are calculated in the presence of a donor impurity atom under the effective mass and parabolic band approximations. The effect of an externally applied electric field is also taken into account. The wavefunctions are obtained via the exact diagonalization of the problem Hamiltonian using a 2D expansion within the adiabatic approximation. The impurity-related optical response is analyzed via the optical absorption, relative refractive index change and the second harmonics generation. The dependencies of the electron states and these optical coefficients with the changes in the configuration of the quantum ring system are discussed in detail.

  15. Time-invariant PT product and phase locking in PT -symmetric lattice models

    NASA Astrophysics Data System (ADS)

    Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.

    2018-01-01

    Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.

  16. Optical Radiation from Integer Quantum Hall States in Dirac Materials

    NASA Astrophysics Data System (ADS)

    Gullans, Michael; Taylor, Jacob; Ghaemi, Pouyan; Hafezi, Mohammad

    Quantum Hall systems exhibit topologically protected edge states, which can have a macroscopic spatial extent. Such edge states provide a unique opportunity to study a quantum emitter whose size far exceeds the wavelength of emitted light. To better understand this limit, we theoretically characterize the optical radiation from integer quantum Hall states in two-dimensional Dirac materials. We show that the scattered light from the bulk reflects the spatial profile of the wavefunctions, enabling spatial imaging of the disorder landscape. We find that the radiation from the edge states are characterized by the presence of large multipole moments in the far-field. This multipole radiation arises from the transfer of angular momentum from the electrons into the scattered light, enabling the generation of coherent light with high orbital angular momentum.

  17. Quantifying and tuning entanglement for quantum systems

    NASA Astrophysics Data System (ADS)

    Xu, Qing

    A 2D Ising model with transverse field on a triangular lattice is studied using exact diagonalization. The quantum entanglement of the system is quantified by the entanglement of formation. The ground state property of the system is studied and the quantified entanglement is shown to be closely related to the ground state wavefunction while the singularity in the entanglement as a function of the transverse field is a reasonable indicator of the quantum phase transition. In order to tune the entanglement, one can either include an impurity in the otherwise homogeneous system whose strength is tunable, or one can vary the external transverse field as a tuner. The latter kind of tuning involves complicated dynamical properties of the system. From the study of the dynamics on a comparatively smaller system, we provide ways to tune the entanglement without triggering any decoherence. The finite temperature effect is also discussed. Besides showing above physical results, the realization of the trace-minimization method in our system is provided; the scalability of such method to larger systems is argued.

  18. Computation of energy states of hydrogenic quantum dot with two-electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakar, Y., E-mail: yuyakar@yahoo.com; Özmen, A., E-mail: aozmen@selcuk.edu.tr; Çakır, B., E-mail: bcakir@selcuk.edu.tr

    2016-03-25

    In this study we have investigated the electronic structure of the hydrogenic quantum dot with two electrons inside an impenetrable potential surface. The energy eigenvalues and wavefunctions of the ground and excited states of spherical quantum dot have been calculated by using the Quantum Genetic Algorithm (QGA) and Hartree-Fock Roothaan (HFR) method, and the energies are investigated as a function of dot radius. The results show that as dot radius increases, the energy of quantum dot decreases.

  19. Phase transition kinetics for a Bose Einstein condensate in a periodically driven band system

    NASA Astrophysics Data System (ADS)

    Michon, E.; Cabrera-Gutiérrez, C.; Fortun, A.; Berger, M.; Arnal, M.; Brunaud, V.; Billy, J.; Petitjean, C.; Schlagheck, P.; Guéry-Odelin, D.

    2018-05-01

    The dynamical transition of an atomic Bose–Einstein condensate from a spatially periodic state to a staggered state with alternating sign in its wavefunction is experimentally studied using a one-dimensional phase modulated optical lattice. We observe the crossover from quantum to thermal fluctuations as the triggering mechanism for the nucleation of staggered states. In good quantitative agreement with numerical simulations based on the truncated Wigner method, we experimentally investigate how the nucleation time varies with the renormalized tunneling rate, the atomic density, and the driving frequency. The effective inverted energy band in the driven lattice is identified as the key ingredient which explains the emergence of gap solitons as observed in numerics and the possibility to nucleate staggered states from interband excitations as reported experimentally.

  20. Quantum probabilities from quantum entanglement: experimentally unpacking the Born rule

    DOE PAGES

    Harris, Jérémie; Bouchard, Frédéric; Santamato, Enrico; ...

    2016-05-11

    The Born rule, a foundational axiom used to deduce probabilities of events from wavefunctions, is indispensable in the everyday practice of quantum physics. It is also key in the quest to reconcile the ostensibly inconsistent laws of the quantum and classical realms, as it confers physical significance to reduced density matrices, the essential tools of decoherence theory. Following Bohr's Copenhagen interpretation, textbooks postulate the Born rule outright. But, recent attempts to derive it from other quantum principles have been successful, holding promise for simplifying and clarifying the quantum foundational bedrock. Moreover, a major family of derivations is based on envariance,more » a recently discovered symmetry of entangled quantum states. Here, we identify and experimentally test three premises central to these envariance-based derivations, thus demonstrating, in the microworld, the symmetries from which the Born rule is derived. Furthermore, we demonstrate envariance in a purely local quantum system, showing its independence from relativistic causality.« less

  1. C++QEDv2: The multi-array concept and compile-time algorithms in the definition of composite quantum systems

    NASA Astrophysics Data System (ADS)

    Vukics, András

    2012-06-01

    C++QED is a versatile framework for simulating open quantum dynamics. It allows to build arbitrarily complex quantum systems from elementary free subsystems and interactions, and simulate their time evolution with the available time-evolution drivers. Through this framework, we introduce a design which should be generic for high-level representations of composite quantum systems. It relies heavily on the object-oriented and generic programming paradigms on one hand, and on the other hand, compile-time algorithms, in particular C++ template-metaprogramming techniques. The core of the design is the data structure which represents the state vectors of composite quantum systems. This data structure models the multi-array concept. The use of template metaprogramming is not only crucial to the design, but with its use all computations pertaining to the layout of the simulated system can be shifted to compile time, hence cutting on runtime. Program summaryProgram title: C++QED Catalogue identifier: AELU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:http://cpc.cs.qub.ac.uk/licence/aelu_v1_0.html. The C++QED package contains other software packages, Blitz, Boost and FLENS, all of which may be distributed freely but have individual license requirements. Please see individual packages for license conditions. No. of lines in distributed program, including test data, etc.: 597 974 No. of bytes in distributed program, including test data, etc.: 4 874 839 Distribution format: tar.gz Programming language: C++ Computer: i386-i686, x86_64 Operating system: In principle cross-platform, as yet tested only on UNIX-like systems (including Mac OS X). RAM: The framework itself takes about 60 MB, which is fully shared. The additional memory taken by the program which defines the actual physical system (script) is typically less than 1 MB. The memory storing the actual data scales with the system dimension for state-vector manipulations, and the square of the dimension for density-operator manipulations. This might easily be GBs, and often the memory of the machine limits the size of the simulated system. Classification: 4.3, 4.13, 6.2, 20 External routines: Boost C++ libraries (http://www.boost.org/), GNU Scientific Library (http://www.gnu.org/software/gsl/), Blitz++ (http://www.oonumerics.org/blitz/), Linear Algebra Package - Flexible Library for Efficient Numerical Solutions (http://flens.sourceforge.net/). Nature of problem: Definition of (open) composite quantum systems out of elementary building blocks [1]. Manipulation of such systems, with emphasis on dynamical simulations such as Master-equation evolution [2] and Monte Carlo wave-function simulation [3]. Solution method: Master equation, Monte Carlo wave-function method. Restrictions: Total dimensionality of the system. Master equation - few thousands. Monte Carlo wave-function trajectory - several millions. Unusual features: Because of the heavy use of compile-time algorithms, compilation of programs written in the framework may take a long time and much memory (up to several GBs). Additional comments: The framework is not a program, but provides and implements an application-programming interface for developing simulations in the indicated problem domain. Supplementary information: http://cppqed.sourceforge.net/. Running time: Depending on the magnitude of the problem, can vary from a few seconds to weeks.

  2. Terahertz Quantum Cascade Structures Using Step Wells And Longitudinal Optical-Phonon Scattering

    DTIC Science & Technology

    2009-06-01

    emit many photons, which allows for differential quantum efficiencies greater than unity and hence higher power output. QCLs have been successfully...maintained. The step in the well allows for high injection efficiency due to the spatial separation of the wavefunctions. A step quantum well, in which at...III.D.34), the photon density is determined to be ( )thiphotonphoton IILeAn − Γ = ητ (III.D.35) where the internal quantum efficiency

  3. A tractable prescription for large-scale free flight expansion of wavefunctions

    NASA Astrophysics Data System (ADS)

    Deuar, P.

    2016-11-01

    A numerical recipe is given for obtaining the density image of an initially compact quantum mechanical wavefunction that has expanded by a large but finite factor under free flight. The recipe given avoids the memory storage problems that plague this type of calculation by reducing the problem to the sum of a number of fast Fourier transforms carried out on the relatively small initial lattice. The final expanded state is given exactly on a coarser magnified grid with the same number of points as the initial state. An important application of this technique is the simulation of measured time-of-flight images in ultracold atom experiments, especially when the initial clouds contain superfluid defects. It is shown that such a finite-time expansion, rather than a far-field approximation is essential to correctly predict images of defect-laden clouds, even for long flight times. Examples shown are: an expanding quasicondensate with soliton defects and a matter-wave interferometer in 3D.

  4. Predictions of the quantum landscape multiverse

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2017-02-01

    The 2015 Planck data release has placed tight constraints on the class of inflationary models allowed. The current best fit region favors concave downwards inflationary potentials, since they produce a suppressed tensor to scalar index ratio r. Concave downward potentials have a negative curvature {{V}\\prime \\prime} , therefore a tachyonic mass square that drives fluctuations. Furthermore, their use can become problematic if the field rolls in a part of the potential away from the extrema, since the semiclassical approximation of quantum cosmology, used for deriving the most probable wavefunction of the universe from the landscape and for addressing the quantum to classical transition, breaks down away from the steepest descent region. We here propose a way of dealing with such potentials by inverting the metric signature and solving for the wavefunction of the universe in the Euclidean sector. This method allows us to extend our theory of the origin of the universe from a quantum multiverse, to a more general class of concave inflationary potentials where a straightforward application of the semiclassical approximation fails. The work here completes the derivation of modifications to the Newtonian potential and to the inflationary potential, which originate from the quantum entanglement of our universe with all others in the quantum landscape multiverse, leading to predictions of observational signatures for both types of inflationary models, concave and convex potentials.

  5. Topics in quantum chaos

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew Noble

    2002-09-01

    In this dissertation, we study the quantum mechanics of classically chaotic dynamical systems. We begin by considering the decoherence effects a quantum chaotic system has on a simple quantum few state system. Typical time evolution of a quantum system whose classical limit is chaotic generates structures in phase space whose size is much smaller than Planck's constant. A naive application of Heisenberg's uncertainty principle indicates that these structures are not physically relevant. However, if we take the quantum chaotic system in question to be an environment which interacts with a simple two state quantum system (qubit), we show that these small phase-space structures cause the qubit to generically lose quantum coherence if and only if the environment has many degrees of freedom, such as a dilute gas. This implies that many-body environments may be crucial for the phenomenon of quantum decoherence. Next, we turn to an analysis of statistical properties of time correlation functions and matrix elements of quantum chaotic systems. A semiclassical evaluation of matrix elements of an operator indicates that the dominant contribution will be related to a classical time correlation function over the energy surface. For a highly chaotic class of dynamics, these correlation functions may be decomposed into sums of Ruelle resonances, which control exponential decay to the ergodic distribution. The theory is illustrated both numerically and theoretically on the Baker map. For this system, we are able to isolate individual Ruelle modes. We further consider dynamical systems whose approach to ergodicity is given by a power law rather than an exponential in time. We propose a billiard with diffusive boundary conditions, whose classical solution may be calculated analytically. We go on to compare the exact solution with an approximation scheme, as well calculate asympotic corrections. Quantum spectral statistics are calculated assuming the validity of the Again, Altshuler and Andreev ansatz. We find singular behavior of the two point spectral correlator in the limit of small spacing. Finally, we analyse the effect that slow decay to ergodicity has on the structure of the quantum propagator, as well as wavefunction localization. We introduce a statistical quantum description of systems that are composed of both an orderly region and a random region. By averaging over the random region only, we find that measures of localization in momentum space semiclassically diverge with the dimension of the Hilbert space. We illustrate this numerically with quantum maps and suggest various other systems where this behavior should be important.

  6. Quantum field between moving mirrors: A three dimensional example

    NASA Technical Reports Server (NTRS)

    Hacyan, S.; Jauregui, Roco; Villarreal, Carlos

    1995-01-01

    The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.

  7. Vortex knots in tangled quantum eigenfunctions

    PubMed Central

    Taylor, Alexander J.; Dennis, Mark R.

    2016-01-01

    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here, we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic three-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex three-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose–Einstein condensates. PMID:27468801

  8. Applying Quantum Monte Carlo to the Electronic Structure Problem

    NASA Astrophysics Data System (ADS)

    Powell, Andrew D.; Dawes, Richard

    2016-06-01

    Two distinct types of Quantum Monte Carlo (QMC) calculations are applied to electronic structure problems such as calculating potential energy curves and producing benchmark values for reaction barriers. First, Variational and Diffusion Monte Carlo (VMC and DMC) methods using a trial wavefunction subject to the fixed node approximation were tested using the CASINO code.[1] Next, Full Configuration Interaction Quantum Monte Carlo (FCIQMC), along with its initiator extension (i-FCIQMC) were tested using the NECI code.[2] FCIQMC seeks the FCI energy for a specific basis set. At a reduced cost, the efficient i-FCIQMC method can be applied to systems in which the standard FCIQMC approach proves to be too costly. Since all of these methods are statistical approaches, uncertainties (error-bars) are introduced for each calculated energy. This study tests the performance of the methods relative to traditional quantum chemistry for some benchmark systems. References: [1] R. J. Needs et al., J. Phys.: Condensed Matter 22, 023201 (2010). [2] G. H. Booth et al., J. Chem. Phys. 131, 054106 (2009).

  9. Anomalous time delays and quantum weak measurements in optical micro-resonators

    PubMed Central

    Asano, M.; Bliokh, K. Y.; Bliokh, Y. P.; Kofman, A. G.; Ikuta, R.; Yamamoto, T.; Kivshar, Y. S.; Yang, L.; Imoto, N.; Özdemir, Ş.K.; Nori, F.

    2016-01-01

    Quantum weak measurements, wavepacket shifts and optical vortices are universal wave phenomena, which originate from fine interference of multiple plane waves. These effects have attracted considerable attention in both classical and quantum wave systems. Here we report on a phenomenon that brings together all the above topics in a simple one-dimensional scalar wave system. We consider inelastic scattering of Gaussian wave packets with parameters close to a zero of the complex scattering coefficient. We demonstrate that the scattered wave packets experience anomalously large time and frequency shifts in such near-zero scattering. These shifts reveal close analogies with the Goos–Hänchen beam shifts and quantum weak measurements of the momentum in a vortex wavefunction. We verify our general theory by an optical experiment using the near-zero transmission (near-critical coupling) of Gaussian pulses propagating through a nano-fibre with a side-coupled toroidal micro-resonator. Measurements demonstrate the amplification of the time delays from the typical inverse-resonator-linewidth scale to the pulse-duration scale. PMID:27841269

  10. Quantum centipedes: collective dynamics of interacting quantum walkers

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.; Luck, J. M.; Mallick, K.

    2016-08-01

    We consider the quantum centipede made of N fermionic quantum walkers on the one-dimensional lattice interacting by means of the simplest of all hard-bound constraints: the distance between two consecutive fermions is either one or two lattice spacings. This composite quantum walker spreads ballistically, just as the simple quantum walk. However, because of the interactions between the internal degrees of freedom, the distribution of its center-of-mass velocity displays numerous ballistic fronts in the long-time limit, corresponding to singularities in the empirical velocity distribution. The spectrum of the centipede and the corresponding group velocities are analyzed by direct means for the first few values of N. Some analytical results are obtained for arbitrary N by exploiting an exact mapping of the problem onto a free-fermion system. We thus derive the maximal velocity describing the ballistic spreading of the two extremal fronts of the centipede wavefunction, including its non-trivial value in the large-N limit.

  11. Anyonic braiding in optical lattices

    PubMed Central

    Zhang, Chuanwei; Scarola, V. W.; Tewari, Sumanta; Das Sarma, S.

    2007-01-01

    Topological quantum states of matter, both Abelian and non-Abelian, are characterized by excitations whose wavefunctions undergo nontrivial statistical transformations as one excitation is moved (braided) around another. Topological quantum computation proposes to use the topological protection and the braiding statistics of a non-Abelian topological state to perform quantum computation. The enormous technological prospect of topological quantum computation provides new motivation for experimentally observing a topological state. Here, we explicitly work out a realistic experimental scheme to create and braid the Abelian topological excitations in the Kitaev model built on a tunable robust system, a cold atom optical lattice. We also demonstrate how to detect the key feature of these excitations: their braiding statistics. Observation of this statistics would directly establish the existence of anyons, quantum particles that are neither fermions nor bosons. In addition to establishing topological matter, the experimental scheme we develop here can also be adapted to a non-Abelian topological state, supported by the same Kitaev model but in a different parameter regime, to eventually build topologically protected quantum gates. PMID:18000038

  12. A knotted complex scalar field for any knot

    NASA Astrophysics Data System (ADS)

    Bode, Benjamin; Dennis, Mark

    Three-dimensional field configurations where a privileged defect line is knotted or linked have experienced an upsurge in interest, with examples including fluid mechanics, quantum wavefunctions, optics, liquid crystals and skyrmions. We describe a constructive algorithm to write down complex scalar functions of three-dimensional real space with knotted nodal lines, using trigonometric parametrizations of braids. The construction is most natural for the family of lemniscate knots which generalizes the torus knot and figure-8 knot, but generalizes to any knot or link. The specific forms of these functions allow various topological quantities associated with the field to be chosen, such as the helicity of a knotted flow field. We will describe some applications to physical systems such as those listed above. This work was supported by the Leverhulme Trust Programme Grant ''Scientific Properties of Complex Knots''.

  13. A Path Integral Approach to Option Pricing with Stochastic Volatility: Some Exact Results

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    1997-12-01

    The Black-Scholes formula for pricing options on stocks and other securities has been generalized by Merton and Garman to the case when stock volatility is stochastic. The derivation of the price of a security derivative with stochastic volatility is reviewed starting from the first principles of finance. The equation of Merton and Garman is then recast using the path integration technique of theoretical physics. The price of the stock option is shown to be the analogue of the Schrödinger wavefunction of quantum mechanics and the exact Hamiltonian and Lagrangian of the system is obtained. The results of Hull and White are generalized to the case when stock price and volatility have non-zero correlation. Some exact results for pricing stock options for the general correlated case are derived.

  14. A design strategy for achieving more than 90% of the overlap integral of electron and hole wavefunctions in high-AlN-mole-fraction Al x Ga1- x N multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kojima, Kazunobu; Furusawa, Kentaro; Yamazaki, Yoshiki; Miyake, Hideto; Hiramatsu, Kazumasa; Chichibu, Shigefusa F.

    2017-01-01

    A strategy for increasing the square of an overlap integral of electron and hole wavefunctions (I 2) in polar c-plane Al x Ga1- x N multiple quantum wells (MQWs) is proposed. By applying quadratic modulation to AlN mole fractions along the c-axis, local bandgap energies and concentrations of immobile charges induced by polarization discontinuity are simultaneously controlled throughout the MQW structure, and optimized band profiles are eventually achieved. The I 2 value can be substantially increased to 94% when the well width (L w) is smaller than 4.0 nm. In addition, I 2 greater than 80% is predicted even for thick MQWs with L w of 10 nm.

  15. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  16. Classical analogous of quantum cosmological perfect fluid models

    NASA Astrophysics Data System (ADS)

    Batista, A. B.; Fabris, J. C.; Gonçalves, S. V. B.; Tossa, J.

    2001-05-01

    Quantization in the minisuperspace of a gravity system coupled to a perfect fluid, leads to a solvable model which implies singularity free solutions through the construction of a superposition of the wavefunctions. We show that such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid with an equation of state pQ= ρQ is present. This leads to speculate on the true nature of this quantization procedure. A perturbative analysis of the classical system reveals the condition for the stability of the classical system in terms of the existence of an anti-gravity phase.

  17. Singular Atom Optics with Spinor BECs

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Bigelow, Nicholas P.

    2015-05-01

    We create and study singular spin textures in pseudo-spin-1/2 BECs. A series of two-photon Raman interactions allows us to not only engineer the spinor wavefunction but also perform the equivalent of atomic polarimetry on the BEC. Adapting techniques from optical polarimetry, we can image two-dimensional maps of the atomic Stokes parameters, thereby fully reconstructing the atomic wavefunction. In a spin-1/2 system, we can represent the local spin superposition with ellipses in a Cartesian basis. The patterns that emerge from the major axes of the ellipses provide fingerprints of the singularities that enable us to classify them as lemons, stars, saddles, or spirals similar to classification schemes for singularities in singular optics, condensed matter, and liquid crystals. These techniques may facilitate the study of geometric Gouy phases in matter waves as well as provide an avenue for utilizing topological structures as quantum gates.

  18. Wave-function description of conductance mapping for a quantum Hall electron interferometer

    NASA Astrophysics Data System (ADS)

    Kolasiński, K.; Szafran, B.

    2014-04-01

    Scanning gate microscopy of quantum point contacts (QPC) in the integer quantum Hall regime is considered in terms of the scattering wave functions with a finite-difference implementation of the quantum transmitting boundary approach. Conductance (G) maps for a clean QPC as well as for a system including an antidot within the QPC constriction are evaluated. The steplike locally flat G maps for clean QPCs turn into circular resonances that are reentrant in an external magnetic field when the antidot is introduced to the constriction. The current circulation around the antidot and the spacing of the resonances at the magnetic field scale react to the probe approaching the QPC. The calculated G maps with a rigid but soft antidot potential reproduce the features detected recently in the electron interferometer [F. Martins et al., Sci. Rep. 3, 1416 (2013), 10.1038/srep01416].

  19. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

    NASA Astrophysics Data System (ADS)

    Kim, Jeongnim; Baczewski, Andrew D.; Beaudet, Todd D.; Benali, Anouar; Chandler Bennett, M.; Berrill, Mark A.; Blunt, Nick S.; Josué Landinez Borda, Edgar; Casula, Michele; Ceperley, David M.; Chiesa, Simone; Clark, Bryan K.; Clay, Raymond C., III; Delaney, Kris T.; Dewing, Mark; Esler, Kenneth P.; Hao, Hongxia; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M. Graham; Luo, Ye; Malone, Fionn D.; Martin, Richard M.; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A.; Mitas, Lubos; Morales, Miguel A.; Neuscamman, Eric; Parker, William D.; Pineda Flores, Sergio D.; Romero, Nichols A.; Rubenstein, Brenda M.; Shea, Jacqueline A. R.; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F.; Townsend, Joshua P.; Tubman, Norm M.; Van Der Goetz, Brett; Vincent, Jordan E.; ChangMo Yang, D.; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-01

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater–Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program’s capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  20. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids.

    PubMed

    Kim, Jeongnim; Baczewski, Andrew T; Beaudet, Todd D; Benali, Anouar; Bennett, M Chandler; Berrill, Mark A; Blunt, Nick S; Borda, Edgar Josué Landinez; Casula, Michele; Ceperley, David M; Chiesa, Simone; Clark, Bryan K; Clay, Raymond C; Delaney, Kris T; Dewing, Mark; Esler, Kenneth P; Hao, Hongxia; Heinonen, Olle; Kent, Paul R C; Krogel, Jaron T; Kylänpää, Ilkka; Li, Ying Wai; Lopez, M Graham; Luo, Ye; Malone, Fionn D; Martin, Richard M; Mathuriya, Amrita; McMinis, Jeremy; Melton, Cody A; Mitas, Lubos; Morales, Miguel A; Neuscamman, Eric; Parker, William D; Pineda Flores, Sergio D; Romero, Nichols A; Rubenstein, Brenda M; Shea, Jacqueline A R; Shin, Hyeondeok; Shulenburger, Luke; Tillack, Andreas F; Townsend, Joshua P; Tubman, Norm M; Van Der Goetz, Brett; Vincent, Jordan E; Yang, D ChangMo; Yang, Yubo; Zhang, Shuai; Zhao, Luning

    2018-05-16

    QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.

  1. Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Umari, Paolo

    2006-03-01

    We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).

  2. Counting nodal domains on surfaces of revolution

    NASA Astrophysics Data System (ADS)

    Karageorge, Panos D.; Smilansky, Uzy

    2008-05-01

    We consider eigenfunctions of the Laplace-Beltrami operator on special surfaces of revolution. For this separable system, the nodal domains of the (real) eigenfunctions form a checkerboard pattern, and their number νn is proportional to the product of the angular and the 'surface' quantum numbers. Arranging the wavefunctions by increasing values of the Laplace-Beltrami spectrum, we obtain the nodal sequence, whose statistical properties we study. In particular, we investigate the distribution of the normalized counts \\frac{\

  3. The unique world of the Everett version of quantum theory

    NASA Astrophysics Data System (ADS)

    Squires, Euan J.

    1988-03-01

    We ask whether the basic Everett assumption, that there are no changes of the wavefunction other than those given by the Schrödinger equation, is compatible with experience. We conclude that it is, provided we allow the world of observation to be partially a creation of consciousness. The model suggests the possible existence of quantum paranormal effects.

  4. Continuous time quantum random walks in free space

    NASA Astrophysics Data System (ADS)

    Eichelkraut, Toni; Vetter, Christian; Perez-Leija, Armando; Christodoulides, Demetrios; Szameit, Alexander

    2014-05-01

    We show theoretically and experimentally that two-dimensional continuous time coherent random walks are possible in free space, that is, in the absence of any external potential, by properly tailoring the associated initial wave function. These effects are experimentally demonstrated using classical paraxial light. Evidently, the usage of classical beams to explore the dynamics of point-like quantum particles is possible since both phenomena are mathematically equivalent. This in turn makes our approach suitable for the realization of random walks using different quantum particles, including electrons and photons. To study the spatial evolution of a wavefunction theoretically, we consider the one-dimensional paraxial wave equation (i∂z +1/2 ∂x2) Ψ = 0 . Starting with the initially localized wavefunction Ψ (x , 0) = exp [ -x2 / 2σ2 ] J0 (αx) , one can show that the evolution of such Gaussian-apodized Bessel envelopes within a region of validity resembles the probability pattern of a quantum walker traversing a uniform lattice. In order to generate the desired input-field in our experimental setting we shape the amplitude and phase of a collimated light beam originating from a classical HeNe-Laser (633 nm) utilizing a spatial light modulator.

  5. On the measurement of time for the quantum harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1992-01-01

    A generalization of previous treatments of quantum phase is presented. Restrictions on the class of realizable phase statistics are thereby removed; thus, permitting 'phase wavefunction collapse' (and other advantages). This is accomplished by exciting the auxiliary mode of the measurement apparatus in a time-reversed fashion. The mathematical properties of this auxiliary mode are studied in the hope that they will lead to an identification of a physical apparatus which can realize the quantum phase measurement.

  6. Black Hole Entropy Calculated via Wavefunction Approximations on a Schwarzschild Spacetime

    DTIC Science & Technology

    2015-05-18

    dimension of μA is kg2m2s−2 which is the expected dimension . The μ2B has an extra unit of length in the numerator but is also divided by another factor...phenomena. The two ideas were General Relativity (GR) and Quantum Mechanics (QM). General relativity describes physics on large scales with masses the size...operator ̂L = ̂r × ̂p. These operators can be written in three dimensions in a compact way by using the del operator4 ∇ = ∂xî+ ∂y ĵ + ∂zk̂, ̂p

  7. A review of progress in the physics of open quantum systems: theory and experiment.

    PubMed

    Rotter, I; Bird, J P

    2015-11-01

    This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q   +   P   =   1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In addition to discussing experiments on mesoscopic quantum point contacts that provide evidence of the environmentally-mediated coupling of quantum states, we also review manifestations of DPTs in mesoscopic devices and other systems. These experiments include observations of resonance-trapping behavior in microwave cavities and open quantum dots, phase lapses in tunneling through single-electron transistors, and spin swapping in atomic ensembles. Other possible manifestations of this phenomenon are presented, including various superradiant phenomena in low-dimensional semiconductors. From these discussions a generic picture of OQSs emerges in which the environmentally-mediated coupling between different quantum states plays a critical role in governing the system behavior. The ability to control or manipulate this interaction may even lead to new applications in photonics and electronics.

  8. Quantum Monte Carlo with very large multideterminant wavefunctions.

    PubMed

    Scemama, Anthony; Applencourt, Thomas; Giner, Emmanuel; Caffarel, Michel

    2016-07-01

    An algorithm to compute efficiently the first two derivatives of (very) large multideterminant wavefunctions for quantum Monte Carlo calculations is presented. The calculation of determinants and their derivatives is performed using the Sherman-Morrison formula for updating the inverse Slater matrix. An improved implementation based on the reduction of the number of column substitutions and on a very efficient implementation of the calculation of the scalar products involved is presented. It is emphasized that multideterminant expansions contain in general a large number of identical spin-specific determinants: for typical configuration interaction-type wavefunctions the number of unique spin-specific determinants Ndetσ ( σ=↑,↓) with a non-negligible weight in the expansion is of order O(Ndet). We show that a careful implementation of the calculation of the Ndet -dependent contributions can make this step negligible enough so that in practice the algorithm scales as the total number of unique spin-specific determinants,  Ndet↑+Ndet↓, over a wide range of total number of determinants (here, Ndet up to about one million), thus greatly reducing the total computational cost. Finally, a new truncation scheme for the multideterminant expansion is proposed so that larger expansions can be considered without increasing the computational time. The algorithm is illustrated with all-electron fixed-node diffusion Monte Carlo calculations of the total energy of the chlorine atom. Calculations using a trial wavefunction including about 750,000 determinants with a computational increase of ∼400 compared to a single-determinant calculation are shown to be feasible. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Cybernetic systems based on inductive logic

    NASA Astrophysics Data System (ADS)

    Fry, Robert L.

    2001-05-01

    Recent work in the area of inductive logic suggests that cybernetics might be quantified and reduced to engineering practice. If so, then there are considerable implications for engineering, science, and other fields. This paper attempts to capture the essential ideas of cybernetics cast in the light of inductive logic. The described inductive logic extends conventional logic by adding a conjugate logical domain of questions to the logical domain of assertions intrinsic to Boolean Algebra with which most are familiar. This was first posited and developed by Richard Cox. Interestingly enough, these two logical domains, one of questions and the other of assertions, only exist relative to one another with each possessing natural measures of entropy and probability, respectively. Examples are given that highlight the utility of cybernetic approaches to neuroscience, algorithm design, system engineering, and the design and understanding of defensive and offensive systems. For example, the application of cybernetic approaches to defense systems suggests that these systems possess a wavefunction which like quantum mechanics, collapses when we ``look'' through the eyes of the system sensors such as radars and optical sensors. .

  10. Complex Instruction Set Quantum Computing

    NASA Astrophysics Data System (ADS)

    Sanders, G. D.; Kim, K. W.; Holton, W. C.

    1998-03-01

    In proposed quantum computers, electromagnetic pulses are used to implement logic gates on quantum bits (qubits). Gates are unitary transformations applied to coherent qubit wavefunctions and a universal computer can be created using a minimal set of gates. By applying many elementary gates in sequence, desired quantum computations can be performed. This reduced instruction set approach to quantum computing (RISC QC) is characterized by serial application of a few basic pulse shapes and a long coherence time. However, the unitary matrix of the overall computation is ultimately a unitary matrix of the same size as any of the elementary matrices. This suggests that we might replace a sequence of reduced instructions with a single complex instruction using an optimally taylored pulse. We refer to this approach as complex instruction set quantum computing (CISC QC). One trades the requirement for long coherence times for the ability to design and generate potentially more complex pulses. We consider a model system of coupled qubits interacting through nearest neighbor coupling and show that CISC QC can reduce the time required to perform quantum computations.

  11. Gravity at a Quantum Condensate

    NASA Astrophysics Data System (ADS)

    Atanasov, Victor

    2017-07-01

    Provided a quantum superconducting condensate is allowed to occupy a curved hyper-plane of space-time, a geometric potential from the kinetic term arises. An energy conservation relation involving the geometric field at every material point in the superconductor can be demonstrated. The induced three-dimensional scalar curvature is directly related to the wavefunction/order parameter of the quantum condensate thus pointing the way to a possible experimental procedure to artificially induce curvature of space-time via change in the electric/probability current density.

  12. Experimental linear-optics simulation of ground-state of an Ising spin chain.

    PubMed

    Xue, Peng; Zhan, Xian; Bian, Zhihao

    2017-05-19

    We experimentally demonstrate a photonic quantum simulator: by using a two-spin Ising chain (an isolated dimer) as an example, we encode the wavefunction of the ground state with a pair of entangled photons. The effect of magnetic fields, leading to a critical modification of the correlation between two spins, can be simulated by just local operations. With the ratio of simulated magnetic fields and coupling strength increasing, the ground state of the system changes from a product state to an entangled state and back to another product state. The simulated ground states can be distinguished and the transformations between them can be observed by measuring correlations between photons. This simulation of the Ising model with linear quantum optics opens the door to the future studies which connect quantum information and condensed matter physics.

  13. Dynamics of photoionization from molecular electronic wavepacket states in intense pulse laser fields: A nonadiabatic electron wavepacket study.

    PubMed

    Matsuoka, Takahide; Takatsuka, Kazuo

    2017-04-07

    A theory for dynamics of molecular photoionization from nonadiabatic electron wavepackets driven by intense pulse lasers is proposed. Time evolution of photoelectron distribution is evaluated in terms of out-going electron flux (current of the probability density of electrons) that has kinetic energy high enough to recede from the molecular system. The relevant electron flux is in turn evaluated with the complex-valued electronic wavefunctions that are time evolved in nonadiabatic electron wavepacket dynamics in laser fields. To uniquely rebuild such wavefunctions with its electronic population being lost by ionization, we adopt the complex-valued natural orbitals emerging from the electron density as building blocks of the total wavefunction. The method has been implemented into a quantum chemistry code, which is based on configuration state mixing for polyatomic molecules. Some of the practical aspects needed for its application will be presented. As a first illustrative example, we show the results of hydrogen molecule and its isotope substitutes (HD and DD), which are photoionized by a two-cycle pulse laser. Photon emission spectrum associated with above threshold ionization is also shown. Another example is taken from photoionization dynamics from an excited state of a water molecule. Qualitatively significant effects of nonadiabatic interaction on the photoelectron spectrum are demonstrated.

  14. Intramolecular symmetry-adapted perturbation theory with a single-determinant wavefunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorczak, Ewa; Prlj, Antonio; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch

    2015-12-14

    We introduce an intramolecular energy decomposition scheme for analyzing non-covalent interactions within molecules in the spirit of symmetry-adapted perturbation theory (SAPT). The proposed intra-SAPT approach is based upon the Chemical Hamiltonian of Mayer [Int. J. Quantum Chem. 23(2), 341–363 (1983)] and the recently introduced zeroth-order wavefunction [J. F. Gonthier and C. Corminboeuf, J. Chem. Phys. 140(15), 154107 (2014)]. The scheme decomposes the interaction energy between weakly bound fragments located within the same molecule into physically meaningful components, i.e., electrostatic-exchange, induction, and dispersion. Here, we discuss the key steps of the approach and demonstrate that a single-determinant wavefunction can already delivermore » a detailed and insightful description of a wide range of intramolecular non-covalent phenomena such as hydrogen bonds, dihydrogen contacts, and π − π stacking interactions. Intra-SAPT is also used to shed the light on competing intra- and intermolecular interactions.« less

  15. Stochastic wave-function simulation of irreversible emission processes for open quantum systems in a non-Markovian environment

    NASA Astrophysics Data System (ADS)

    Polyakov, Evgeny A.; Rubtsov, Alexey N.

    2018-02-01

    When conducting the numerical simulation of quantum transport, the main obstacle is a rapid growth of the dimension of entangled Hilbert subspace. The Quantum Monte Carlo simulation techniques, while being capable of treating the problems of high dimension, are hindered by the so-called "sign problem". In the quantum transport, we have fundamental asymmetry between the processes of emission and absorption of environment excitations: the emitted excitations are rapidly and irreversibly scattered away. Whereas only a small part of these excitations is absorbed back by the open subsystem, thus exercising the non-Markovian self-action of the subsystem onto itself. We were able to devise a method for the exact simulation of the dominant quantum emission processes, while taking into account the small backaction effects in an approximate self-consistent way. Such an approach allows us to efficiently conduct simulations of real-time dynamics of small quantum subsystems immersed in non-Markovian bath for large times, reaching the quasistationary regime. As an example we calculate the spatial quench dynamics of Kondo cloud for a bozonized Kodno impurity model.

  16. Block-localized wavefunction (BLW) method at the density functional theory (DFT) level.

    PubMed

    Mo, Yirong; Song, Lingchun; Lin, Yuchun

    2007-08-30

    The block-localized wavefunction (BLW) approach is an ab initio valence bond (VB) method incorporating the efficiency of molecular orbital (MO) theory. It can generate the wavefunction for a resonance structure or diabatic state self-consistently by partitioning the overall electrons and primitive orbitals into several subgroups and expanding each block-localized molecular orbital in only one subspace. Although block-localized molecular orbitals in the same subspace are constrained to be orthogonal (a feature of MO theory), orbitals between different subspaces are generally nonorthogonal (a feature of VB theory). The BLW method is particularly useful in the quantification of the electron delocalization (resonance) effect within a molecule and the charge-transfer effect between molecules. In this paper, we extend the BLW method to the density functional theory (DFT) level and implement the BLW-DFT method to the quantum mechanical software GAMESS. Test applications to the pi conjugation in the planar allyl radical and ions with the basis sets of 6-31G(d), 6-31+G(d), 6-311+G(d,p), and cc-pVTZ show that the basis set dependency is insignificant. In addition, the BLW-DFT method can also be used to elucidate the nature of intermolecular interactions. Examples of pi-cation interactions and solute-solvent interactions will be presented and discussed. By expressing each diabatic state with one BLW, the BLW method can be further used to study chemical reactions and electron-transfer processes whose potential energy surfaces are typically described by two or more diabatic states.

  17. Final Scientific/Technical Report (DE-FG02-05ER46201)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Car, Roberto

    The research supported by this grant focused on the quantum mechanical theory of the electrons in materials and molecules. Progress was made in dealing with electronic correlation effects in the ground state energy of molecular systems, and with topological concepts to classify the electronic state of molecules and materials, including excitation and transport properties. The physical and chemical properties of molecules and materials derive from their electronic structure, but the latter cannot be calculated exactly even with the most powerful computers because the computational cost of solving the exact equations of quantum mechanics increases exponentially with the number of electrons.more » The exponential cost originates from the correlations among the electrons that repel each other via Coulombic forces. In this project we have developed a new functional approximation for the ground state electronic energy that includes explicitly, and in a controllable way, the effects of the interelectronic correlations. In addition we have further developed topological concepts for classifying the electronic states of periodic ring molecules and solids. Topological concepts are very powerful because they allow us to predict subtle properties of materials and molecules using very general geometrical properties of the electron wavefunctions that do not depend on the quantitative details of the electronic interactions, which are very difficult to calculate with high accuracy. The development of a new class of controlled functional approximations for the ground state energy of molecules and materials was the main goal of the project. It has been fulfilled with the formulation of the occupation-probabilities natural orbital functional theory (OP-NOFT). This approach introduces new theoretical concepts but practical application has proved to be harder than anticipated. So far it has been utilized only at its lowest level of approximation in the context of relatively small molecules (with up to 16 atoms). The study of topological properties of the electron wavefunctions in materials was not proposed in the original proposal but was prompted during the funding period by our interaction with leading experimental groups in materials chemistry and physics at Princeton University.« less

  18. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo.

    PubMed

    Overy, Catherine; Booth, George H; Blunt, N S; Shepherd, James J; Cleland, Deidre; Alavi, Ali

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.

  19. Studying topology and dynamical phase transitions with ultracold quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved state tomography from which we obtain the Berry curvature and Chern number. Furthermore, we study the time-evolution of the many-body wavefunction after a sudden quench of the lattce parameters and observe the appearance, movement, and annihilation of vortices in reciprocal space. We identify their number as a dynamical topological order parameter, which suddenly changes its value at critical times. Our measurements constitute the first observation of a so called dynamical topological phase transition`, which we show to be a fruitful concept for the understanding of quantum dynamics far from equilibrium

  20. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overy, Catherine; Blunt, N. S.; Shepherd, James J.

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamicmore » itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.« less

  1. Embedding beyond electrostatics-The role of wave function confinement.

    PubMed

    Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna; Solanko, Lukasz M; Wüstner, Daniel; Kongsted, Jacob

    2016-09-14

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π(∗) transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.

  2. Quantum Monte Carlo: Faster, More Reliable, And More Accurate

    NASA Astrophysics Data System (ADS)

    Anderson, Amos Gerald

    2010-06-01

    The Schrodinger Equation has been available for about 83 years, but today, we still strain to apply it accurately to molecules of interest. The difficulty is not theoretical in nature, but practical, since we're held back by lack of sufficient computing power. Consequently, effort is applied to find acceptable approximations to facilitate real time solutions. In the meantime, computer technology has begun rapidly advancing and changing the way we think about efficient algorithms. For those who can reorganize their formulas to take advantage of these changes and thereby lift some approximations, incredible new opportunities await. Over the last decade, we've seen the emergence of a new kind of computer processor, the graphics card. Designed to accelerate computer games by optimizing quantity instead of quality in processor, they have become of sufficient quality to be useful to some scientists. In this thesis, we explore the first known use of a graphics card to computational chemistry by rewriting our Quantum Monte Carlo software into the requisite "data parallel" formalism. We find that notwithstanding precision considerations, we are able to speed up our software by about a factor of 6. The success of a Quantum Monte Carlo calculation depends on more than just processing power. It also requires the scientist to carefully design the trial wavefunction used to guide simulated electrons. We have studied the use of Generalized Valence Bond wavefunctions to simply, and yet effectively, captured the essential static correlation in atoms and molecules. Furthermore, we have developed significantly improved two particle correlation functions, designed with both flexibility and simplicity considerations, representing an effective and reliable way to add the necessary dynamic correlation. Lastly, we present our method for stabilizing the statistical nature of the calculation, by manipulating configuration weights, thus facilitating efficient and robust calculations. Our combination of Generalized Valence Bond wavefunctions, improved correlation functions, and stabilized weighting techniques for calculations run on graphics cards, represents a new way for using Quantum Monte Carlo to study arbitrarily sized molecules.

  3. Emergent irreversibility and entanglement spectrum statistics

    NASA Astrophysics Data System (ADS)

    Mucciolo, Eduardo; Chamon, Claudio; Hamma, Alioscia

    2014-03-01

    We study the problem of irreversibility when the dynamical evolution of a many-body system is described by a stochastic quantum circuit. Such evolution is more general than Hamitonian, and since energy levels are not well defined, the well-established connection between the statistical fluctuations of the energy spectrum and irreversibility cannot be made. We show that the entanglement spectrum provides a more general connection. Irreversibility is marked by a failure of a disentangling algorithm and is preceded by the appearance of Wigner-Dyson statistical fluctuations in the entanglement spectrum. This analysis can be done at the wavefunction level and offers a new route to study quantum chaos and quantum integrability. We acknowledge financial support from the U.S. National Science Foundation through grants CCF 1116590 and CCF 1117241, from the National Basic Research Program of China through grants 2011CBA00300 and 2011CBA00301, and from the National Natural Science Fo.

  4. Identifying strongly correlated elements of a moderately correlated wavefunction in URu2Si2 with resonant inelastic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Wray, L. Andrew; He, Haowei; Miao, Lin; Denlinger, Jonathan; Chuang, Yi-De; Yang, Wanli; Butch, Nicholas; Maple, Brian; Gray, Alexander; Dürr, Herman

    The RIXS technique is best known for significant breakthroughs in the investigation of strongly correlated materials such as cuprates. However, the rapid advancement of RIXS spectrographs has made it increasingly attractive to apply the technique to a broad range of quantum materials outside of this comfort zone. This talk will review lessons learned from our recent measurements on material systems that feature a balance of correlated and itinerant physics, focusing on the hidden order compound URu2Si2, and touching on VO2 and Prussian blue analogue battery electrodes. RIXS spectra are found to reveal essential features defining low energy degrees of freedom in these moderately correlated wavefunctions. In the case of URu2Si2, we show that a principal energy gap defining strong correlations is fragile, and can be melted via modest chemical doping. Work at NYU was supported by the MRSEC Program of the National Science Foundation under Award Number DMR-1420073.

  5. Single-Particle Quantum Dynamics in a Magnetic Lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venturini, Marco

    2001-02-01

    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  6. Modeling, Simulation, and Analysis of Quantum Transport.

    DTIC Science & Technology

    1991-03-15

    mode operation is important to prevent standby power dissipation in circuits. The relevant struc- ture consists of a quantum well one half of which...is intentionally doped while the other half is left undoped. In the absence of any external electric field, electrons mostly reside in the doped half ...electron wavefunction to the undoped half in which the mobility is much higher because of the absence of in-situ impurity scatterir". Consequently the

  7. Optical Pulse Interactions in Nonlinear Excited State Materials

    DTIC Science & Technology

    2008-07-14

    described below. 2.5 Overview of Semiconductor Quantum Dot A quantum dot (QD) is a quasi -zero-dimensional object where the carrier movement is...a particle of mass M (e.g., an electron) having a potential energy can be described by a wavefunction that satisfies the following Schrödinger...dot (QD) is a quasi -zero-dimensional object where the carrier movement is restricted in three dimensions. The bulk crystalline structure of the

  8. Sculpting oscillators with light within a nonlinear quantum fluid

    NASA Astrophysics Data System (ADS)

    Tosi, G.; Christmann, G.; Berloff, N. G.; Tsotsis, P.; Gao, T.; Hatzopoulos, Z.; Savvidis, P. G.; Baumberg, J. J.

    2012-03-01

    Seeing macroscopic quantum states directly remains an elusive goal. Particles with boson symmetry can condense into quantum fluids, producing rich physical phenomena as well as proven potential for interferometric devices. However, direct imaging of such quantum states is only fleetingly possible in high-vacuum ultracold atomic condensates, and not in superconductors. Recent condensation of solid-state polariton quasiparticles, built from mixing semiconductor excitons with microcavity photons, offers monolithic devices capable of supporting room-temperature quantum states that exhibit superfluid behaviour. Here we use microcavities on a semiconductor chip supporting two-dimensional polariton condensates to directly visualize the formation of a spontaneously oscillating quantum fluid. This system is created on the fly by injecting polaritons at two or more spatially separated pump spots. Although oscillating at tunable THz frequencies, a simple optical microscope can be used to directly image their stable archetypal quantum oscillator wavefunctions in real space. The self-repulsion of polaritons provides a solid-state quasiparticle that is so nonlinear as to modify its own potential. Interference in time and space reveals the condensate wavepackets arise from non-equilibrium solitons. Control of such polariton-condensate wavepackets demonstrates great potential for integrated semiconductor-based condensate devices.

  9. An open library of relativistic core electron density function for the QTAIM analysis with pseudopotentials.

    PubMed

    Zou, Wenli; Cai, Ziyu; Wang, Jiankang; Xin, Kunyu

    2018-04-29

    Based on two-component relativistic atomic calculations, a free electron density function (EDF) library has been developed for nearly all the known ECPs of the elements Li (Z = 3) up to Ubn (Z = 120), which can be interfaced into modern quantum chemistry programs to save the .wfx wavefunction file. The applicability of this EDF library is demonstrated by the analyses of the quantum theory of atoms in molecules (QTAIM) and other real space functions on HeCuF, PtO42+, OgF 4 , and TlCl 3 (DMSO) 2 . When a large-core ECP is used, it shows that the corrections by EDF may significantly improve the properties of some density-derived real space functions, but they are invalid for the wavefunction-depending real space functions. To classify different chemical bonds and especially some nonclassical interactions, a list of universal criteria has also been proposed. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. On the quantization of the massless Bateman system

    NASA Astrophysics Data System (ADS)

    Takahashi, K.

    2018-03-01

    The so-called Bateman system for the damped harmonic oscillator is reduced to a genuine dual dissipation system (DDS) by setting the mass to zero. We explore herein the condition under which the canonical quantization of the DDS is consistently performed. The roles of the observable and auxiliary coordinates are discriminated. The results show that the complete and orthogonal Fock space of states can be constructed on the stable vacuum if an anti-Hermite representation of the canonical Hamiltonian is adopted. The amplitude of the one-particle wavefunction is consistent with the classical solution. The fields can be quantized as bosonic or fermionic. For bosonic systems, the quantum fluctuation of the field is directly associated with the dissipation rate.

  11. On the self-interference in electron scattering: Copenhagen, Bohmian and geometrical interpretations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano

    2018-06-01

    Self-interference embodies the essence of the particle-wave formulation of quantum mechanics (QM). According to the Copenhagen interpretation of QM, self-interference by a double-slit requires a large transverse coherence of the incident wavepacket such that it covers the separation between the slits. Bohmian dynamics provides a first step in the separation of the particle-wave character of matter by introducing deterministic trajectories guided by a pilot wave that follows the time-dependent Schrödinger equation. In this work, I present a new description of the phenomenon of self-interference using the geometrical formulation of QM introduced in Tavernelli (2016). In particular, this formalism removes the need for the concept of wavefunction collapse in the interpretation of the act of measurement i.e., the emergence of the classical world. The three QM formulations (Schrödinger, Bohmian, and geometrical) are applied to the description of the scattering of a free electron by a hydrogen atom and a double-slit. The corresponding interpretations of self-interference are compared and discussed.

  12. Symmetry breaking and the geometry of reduced density matrices

    NASA Astrophysics Data System (ADS)

    Zauner, V.; Draxler, D.; Vanderstraeten, L.; Haegeman, J.; Verstraete, F.

    2016-11-01

    The concept of symmetry breaking and the emergence of corresponding local order parameters constitute the pillars of modern day many body physics. We demonstrate that the existence of symmetry breaking is a consequence of the geometric structure of the convex set of reduced density matrices of all possible many body wavefunctions. The surfaces of these convex bodies exhibit non-analyticities, which signal the emergence of symmetry breaking and of an associated order parameter and also show different characteristics for different types of phase transitions. We illustrate this with three paradigmatic examples of many body systems exhibiting symmetry breaking: the quantum Ising model, the classical q-state Potts model in two-dimensions at finite temperature and the ideal Bose gas in three-dimensions at finite temperature. This state based viewpoint on phase transitions provides a unique novel tool for studying exotic many body phenomena in quantum and classical systems.

  13. Short-time quantum dynamics of sharp boundaries potentials

    NASA Astrophysics Data System (ADS)

    Granot, Er'el; Marchewka, Avi

    2015-02-01

    Despite the high prevalence of singular potential in general, and rectangular potentials in particular, in applied scattering models, to date little is known about their short time effects. The reason is that singular potentials cause a mixture of complicated local as well as non-local effects. The object of this work is to derive a generic method to calculate analytically the short-time impact of any singular potential. In this paper it is shown that the scattering of a smooth wavefunction on a singular potential is totally equivalent, in the short-time regime, to the free propagation of a singular wavefunction. However, the latter problem was totally addressed analytically in Ref. [7]. Therefore, this equivalency can be utilized in solving analytically the short time dynamics of any smooth wavefunction at the presence of a singular potentials. In particular, with this method the short-time dynamics of any problem where a sharp boundaries potential (e.g., a rectangular barrier) is turned on instantaneously can easily be solved analytically.

  14. Wavefunction Collapse via a Nonlocal Relativistic Variational Principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Alan K.

    2012-06-18

    Since the origin of quantum theory in the 1920's, some of its practitioners (and founders) have been troubled by some of its features, including indeterminacy, nonlocality and entanglement. The 'collapse' process described in the Copenhagen Interpretation is suspect for several reasons, and the act of 'measurement,' which is supposed to delimit its regime of validity, has never been unambiguously defined. In recent decades, nonlocality and entanglement have been studied energetically, both theoretically and experimentally, and the theory has been reinterpreted in imaginative ways, but many mysteries remain. We propose that it is necessary to replace the theory by one thatmore » is explicitly nonlinear and nonlocal, and does not distinguish between measurement and non-measurement regimes. We have constructed such a theory, for which the phase of the wavefunction plays the role of a hidden variable via the process of zitterbewegung. To capture this effect, the theory must be relativistic, even when describing nonrelativistic phenomena. It is formulated as a variational principle, in which Nature attempts to minimize the sum of two spacetime integrals. The first integral tends to drive the solution toward a solution of the standard quantum mechanical wave equation, and also enforces the Born rule of outcome probabilities. The second integral drives the collapse process. We demonstrate that the new theory correctly predicts the possible outcomes of the electron two-slit experiment, including the infamous 'delayed-choice' variant. We observe that it appears to resolve some long-standing mysteries, but introduces new ones, including possible retrocausality (a cause later than its effect). It is not clear whether the new theory is deterministic.« less

  15. TOPICAL REVIEW: Knot theory and a physical state of quantum gravity

    NASA Astrophysics Data System (ADS)

    Liko, Tomás; Kauffman, Louis H.

    2006-02-01

    We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity.

  16. Path integral molecular dynamic simulation of flexible molecular systems in their ground state: Application to the water dimer

    NASA Astrophysics Data System (ADS)

    Schmidt, Matthew; Roy, Pierre-Nicholas

    2018-03-01

    We extend the Langevin equation Path Integral Ground State (LePIGS), a ground state quantum molecular dynamics method, to simulate flexible molecular systems and calculate both energetic and structural properties. We test the approach with the H2O and D2O monomers and dimers. We systematically optimize all simulation parameters and use a unity trial wavefunction. We report ground state energies, dissociation energies, and structural properties using three different water models, two of which are empirically based, q-TIP4P/F and q-SPC/Fw, and one which is ab initio, MB-pol. We demonstrate that our energies calculated from LePIGS can be merged seamlessly with low temperature path integral molecular dynamics calculations and note the similarities between the two methods. We also benchmark our energies against previous diffusion Monte Carlo calculations using the same potentials and compare to experimental results. We further demonstrate that accurate vibrational energies of the H2O and D2O monomer can be calculated from imaginary time correlation functions generated from the LePIGS simulations using solely the unity trial wavefunction.

  17. Transport through an impurity tunnel coupled to a Si/SiGe quantum dot

    DOE PAGES

    Foote, Ryan H.; Ward, Daniel R.; Prance, J. R.; ...

    2015-09-11

    Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here in this paper, we report the characterization of a quantum dot coupled to a localized electronic state and present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through the device enable the determination that the most likely location of the localized state is consistent with a location in the quantum well near the edge of the quantum dot. Finally, our results aremore » consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.« less

  18. Multicomponent density functional theory embedding formulation.

    PubMed

    Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon

    2016-07-28

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.

  19. Multicomponent density functional theory embedding formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.

    Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less

  20. Independent bases on the spatial wavefunction of four-identical-particle systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Shuyuan; Deng, Zhixuan; Chen, Hong

    2013-12-15

    We construct the independent bases on the spatial wavefunction of four-identical-particle systems classified under the rotational group SO(3) and the permutation group S{sub 4} with the usage of transformation coefficients that relate wavefunctions described in one set of internal coordinates with those in another. The basis functions for N⩽ 2 are presented in the explicit expressions based on the harmonic oscillator model. Such independent bases are supposed to play a key role in the construction of the wavefunctions of the five-quark states and the variation calculation of four-body systems. Our prescription avoids the spurious states and can be programmed formore » arbitrary N.« less

  1. Quantum quench of Kondo correlations in optical absorption.

    PubMed

    Latta, C; Haupt, F; Hanl, M; Weichselbaum, A; Claassen, M; Wuester, W; Fallahi, P; Faelt, S; Glazman, L; von Delft, J; Türeci, H E; Imamoglu, A

    2011-06-29

    The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.

  2. Four-parameter potential box with inverse square singular boundaries

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.; Taiwo, T. J.

    2018-03-01

    Using the Tridiagonal Representation Approach (TRA), we obtain solutions (energy spectrum and corresponding wavefunctions) for a four-parameter potential box with inverse square singularity at the boundaries. It could be utilized in physical applications to replace the widely used one-parameter infinite square potential well (ISPW). The four parameters of the potential provide an added flexibility over the one-parameter ISPW to control the physical features of the system. The two potential parameters that give the singularity strength at the boundaries are naturally constrained to avoid the inherent quantum anomalies associated with the inverse square potential.

  3. Interstate vibronic coupling constants between electronic excited states for complex molecules

    NASA Astrophysics Data System (ADS)

    Fumanal, Maria; Plasser, Felix; Mai, Sebastian; Daniel, Chantal; Gindensperger, Etienne

    2018-03-01

    In the construction of diabatic vibronic Hamiltonians for quantum dynamics in the excited-state manifold of molecules, the coupling constants are often extracted solely from information on the excited-state energies. Here, a new protocol is applied to get access to the interstate vibronic coupling constants at the time-dependent density functional theory level through the overlap integrals between excited-state adiabatic auxiliary wavefunctions. We discuss the advantages of such method and its potential for future applications to address complex systems, in particular, those where multiple electronic states are energetically closely lying and interact. We apply the protocol to the study of prototype rhenium carbonyl complexes [Re(CO)3(N,N)(L)]n+ for which non-adiabatic quantum dynamics within the linear vibronic coupling model and including spin-orbit coupling have been reported recently.

  4. Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles

    NASA Astrophysics Data System (ADS)

    Anastopoulos, C.; Hu, B. L.

    2018-02-01

    We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.

  5. Atomistic analysis of valley-orbit hybrid states and inter-dot tunnel rates in a Si double quantum dot

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Rahman, Rajib; Klimeck, Gerhard

    2014-03-01

    Silicon quantum dots are promising candidates for solid-state quantum computing due to the long spin coherence times in silicon, arising from small spin-orbit interaction and a nearly spin free host lattice. However, the conduction band valley degeneracy adds an additional degree of freedom to the electronic structure, complicating the encoding and operation of qubits. Although the valley and the orbital indices can be uniquely identified in an ideal silicon quantum dot, atomic-scale disorder mixes valley and orbital states in realistic dots. Such valley-orbit hybridization, strongly influences the inter-dot tunnel rates.Using a full-band atomistic tight-binding method, we analyze the effect of atomic-scale interface disorder in a silicon double quantum dot. Fourier transform of the tight-binding wavefunctions helps to analyze the effect of disorder on valley-orbit hybridization. We also calculate and compare inter-dot inter-valley and intra-valley tunneling, in the presence of realistic disorder, such as interface tilt, surface roughness, alloy disorder, and interface charges. The method provides a useful way to compute electronic states in realistically disordered systems without any posteriori fitting parameters.

  6. Matter-wave diffraction approaching limits predicted by Feynman path integrals for multipath interference

    NASA Astrophysics Data System (ADS)

    Barnea, A. Ronny; Cheshnovsky, Ori; Even, Uzi

    2018-02-01

    Interference experiments have been paramount in our understanding of quantum mechanics and are frequently the basis of testing the superposition principle in the framework of quantum theory. In recent years, several studies have challenged the nature of wave-function interference from the perspective of Born's rule—namely, the manifestation of so-called high-order interference terms in a superposition generated by diffraction of the wave functions. Here we present an experimental test of multipath interference in the diffraction of metastable helium atoms, with large-number counting statistics, comparable to photon-based experiments. We use a variation of the original triple-slit experiment and accurate single-event counting techniques to provide a new experimental bound of 2.9 ×10-5 on the statistical deviation from the commonly approximated null third-order interference term in Born's rule for matter waves. Our value is on the order of the maximal contribution predicted for multipath trajectories by Feynman path integrals.

  7. Long-range p-d exchange interaction in a ferromagnet-semiconductor hybrid structure

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.; Salewski, M.; Akimov, I. A.; Sapega, V. F.; Langer, L.; Kalitukha, I. V.; Debus, J.; Dzhioev, R. I.; Yakovlev, D. R.; Müller, D.; Schröder, C.; Hövel, H.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Kusrayev, Yu. G.; Bayer, M.

    2016-01-01

    Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such a control an interaction between the components needs to be established. For coupling the magnetic properties, an exchange interaction has to be implemented which typically depends on wavefunction overlap and is therefore short-ranged, so that it may be compromised across the hybrid interface. Here we study a hybrid structure consisting of a ferromagnetic Co layer and a semiconducting CdTe quantum well, separated by a thin (Cd, Mg)Te barrier. In contrast to the expected p-d exchange that decreases exponentially with the wavefunction overlap of quantum well holes and magnetic atoms, we find a long-ranged, robust coupling that does not vary with barrier width up to more than 30 nm. We suggest that the resulting spin polarization of acceptor-bound holes is induced by an effective p-d exchange that is mediated by elliptically polarized phonons.

  8. Time as an Observable in Nonrelativistic Quantum Mechanics

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    2003-01-01

    The argument follows from the viewpoint that quantum mechanics is taken not in the usual form involving vectors and linear operators in Hilbert spaces, but as a boundary value problem for a special class of partial differential equations-in the present work, the nonrelativistic Schrodinger equation for motion of a structureless particle in four- dimensional space-time in the presence of a potential energy distribution that can be time-as well as space-dependent. The domain of interest is taken to be one of two semi-infinite boxes, one bounded by two t=constant planes and the other by two t=constant planes. Each gives rise to a characteristic boundary value problem: one in which the initial, input values on one t=constant wall are given, with zero asymptotic wavefunction values in all spatial directions, the output being the values on the second t=constant wall; the second with certain input values given on both z=constant walls, with zero asymptotic values in all directions involving time and the other spatial coordinates, the output being the complementary values on the z=constant walls. The first problem corresponds to ordinary quantum mechanics; the second, to a fully time-dependent version of a problem normally considered only for the steady state (time-independent Schrodinger equation). The second problem is formulated in detail. A conserved indefinite metric is associated with space-like propagation, where the sign of the norm of a unidirectional state corresponds to its spatial direction of travel.

  9. Can quantum probes satisfy the weak equivalence principle?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seveso, Luigi, E-mail: luigi.seveso@unimi.it; Paris, Matteo G.A.; INFN, Sezione di Milano, I-20133 Milano

    We address the question whether quantum probes in a gravitational field can be considered as test particles obeying the weak equivalence principle (WEP). A formulation of the WEP is proposed which applies also in the quantum regime, while maintaining the physical content of its classical counterpart. Such formulation requires the introduction of a gravitational field not to modify the Fisher information about the mass of a freely-falling probe, extractable through measurements of its position. We discover that, while in a uniform field quantum probes satisfy our formulation of the WEP exactly, gravity gradients can encode nontrivial information about the particle’smore » mass in its wavefunction, leading to violations of the WEP. - Highlights: • Can quantum probes under gravity be approximated as test-bodies? • A formulation of the weak equivalence principle for quantum probes is proposed. • Quantum probes are found to violate it as a matter of principle.« less

  10. Heating of trapped ultracold atoms by collapse dynamics

    NASA Astrophysics Data System (ADS)

    Laloë, Franck; Mullin, William J.; Pearle, Philip

    2014-11-01

    The continuous spontaneous localization (CSL) theory alters the Schrödinger equation. It describes wave-function collapse as a dynamical process instead of an ill-defined postulate, thereby providing macroscopic uniqueness and solving the so-called measurement problem of standard quantum theory. CSL contains a parameter λ giving the collapse rate of an isolated nucleon in a superposition of two spatially separated states and, more generally, characterizing the collapse time for any physical situation. CSL is experimentally testable, since it predicts some behavior different from that predicted by standard quantum theory. One example is the narrowing of wave functions, which results in energy imparted to particles. Here we consider energy given to trapped ultracold atoms. Since these are the coldest samples under experimental investigation, it is worth inquiring how they are affected by the CSL heating mechanism. We examine the CSL heating of a Bose-Einstein condensate (BEC) in contact with its thermal cloud. Of course, other mechanisms also provide heat and also particle loss. From varied data on optically trapped cesium BECs, we present an energy audit for known heating and loss mechanisms. The result provides an upper limit on CSL heating and thereby an upper limit on the parameter λ . We obtain λ ≲1 (±1 ) ×10-7 s-1.

  11. Steering Quantum States Towards Classical Bohr-Like Orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, F. B.; Reinhold, Carlos O; Yoshida, S.

    2010-01-01

    This article furnishes an introduction to the properties of time-dependent electronic wavefunctions in atoms and to physics at the interface between the quantum and classical worlds. We describe how, almost 100 years after the introduction of the Bohr model of the atom, it is now possible using pulsed electric fields to create in the laboratory localized wavepackets in high-n (n ~ 300) Rydberg atoms that travel in near-circular Bohr-like orbits mimicking the behavior of a classical electron. The control protocols employed are explained with the aid of quantum and classical dynamics. Remarkably, while many aspects of the underlying behavior canmore » be described using classical arguments, even at n ~ 300 purely quantum effects such as revivals can be seen.« less

  12. Quantum group symmetry of the quantum Hall effect on non-flat surfaces

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Shafei Deh Abad, A.

    1996-02-01

    After showing that the magnetic translation operators are not the symmetries of the quantum Hall effect (QHE) on non-flat surfaces, we show that another set of operators which leads to the quantum group symmetries for some of these surfaces exists. As a first example we show that the su(2) symmetry of the QHE on a sphere leads to 0305-4470/29/3/010/img6(2) algebra in the equator. We explain this result by a contraction of su(2). Second, with the help of the symmetry operators of QHE on the Poincaré upper half plane, we will show that the ground-state wavefunctions form a representation of the 0305-4470/29/3/010/img6(2) algebra.

  13. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Al-composition graded quantum wells

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Zhang, Yu; Xu, Fujun; Ding, Gege; Liu, Yuhang

    2018-06-01

    Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with step-like and Al-composition graded quantum wells have been investigated. The simulation results show that compared to DUV-LEDs with the conventional AlGaN multiple quantum wells (MQWs) structure, the light output power (LOP) and efficiency droop of DUV-LEDs with the Al-composition graded wells were remarkably improved. The key factor accounting for the improved performance is ascribed to the better modulation of carrier distribution in the quantum wells to increase the overlap between electron and hole wavefunctions, which contributes to more efficient recombination of electrons and holes, and thereby a significant enhancement in the LOP.

  14. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

    NASA Astrophysics Data System (ADS)

    Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-08-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  15. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories.

    PubMed

    Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-01-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  16. Ultra-fast relaxation, decoherence, and localization of photoexcited states in π-conjugated polymers

    NASA Astrophysics Data System (ADS)

    Mannouch, Jonathan R.; Barford, William; Al-Assam, Sarah

    2018-01-01

    The exciton relaxation dynamics of photoexcited electronic states in poly(p-phenylenevinylene) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanically. The Frenkel-Holstein Hamiltonian is used to describe the strong exciton-phonon coupling present in the system, while external damping of the internal nuclear degrees of freedom is accounted for by a Lindblad master equation. Numerically, the dynamics are computed using the time evolving block decimation and quantum jump trajectory techniques. The values of the model parameters physically relevant to polymer systems naturally lead to a separation of time scales, with the ultra-fast dynamics corresponding to energy transfer from the exciton to the internal phonon modes (i.e., the C-C bond oscillations), while the longer time dynamics correspond to damping of these phonon modes by the external dissipation. Associated with these time scales, we investigate the following processes that are indicative of the system relaxing onto the emissive chromophores of the polymer: (1) Exciton-polaron formation occurs on an ultra-fast time scale, with the associated exciton-phonon correlations present within half a vibrational time period of the C-C bond oscillations. (2) Exciton decoherence is driven by the decay in the vibrational overlaps associated with exciton-polaron formation, occurring on the same time scale. (3) Exciton density localization is driven by the external dissipation, arising from "wavefunction collapse" occurring as a result of the system-environment interactions. Finally, we show how fluorescence anisotropy measurements can be used to investigate the exciton decoherence process during the relaxation dynamics.

  17. Quantum Mechanics and the Principle of Least Radix Economy

    NASA Astrophysics Data System (ADS)

    Garcia-Morales, Vladimir

    2015-03-01

    A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and it is used to derive the Schrödinger and Dirac equations and the breaking of the commutativity of spacetime geometry. The formulation provides an explanation of how determinism and random statistical behavior coexist in spacetime and a framework is developed that allows dynamical processes to be formulated in terms of chains of digits. These methods lead to a new (pre-geometrical) foundation for Lorentz transformations and special relativity. The Parker-Rhodes combinatorial hierarchy is encompassed within our approach and this leads to an estimate of the interaction strength of the electromagnetic and gravitational forces that agrees with the experimental values to an error of less than one thousandth. Finally, it is shown how the principle of least-radix economy naturally gives rise to Boltzmann's principle of classical statistical thermodynamics. A new expression for a general (path-dependent) nonequilibrium entropy is proposed satisfying the Second Law of Thermodynamics.

  18. Algebraic function operator expectation value based quantum eigenstate determination: A case of twisted or bent Hamiltonian, or, a spatially univariate quantum system on a curved space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baykara, N. A.

    Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraicmore » equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.« less

  19. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    PubMed

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  20. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus

    2015-05-01

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  1. Accurate calculation of the geometric measure of entanglement for multipartite quantum states

    NASA Astrophysics Data System (ADS)

    Teng, Peiyuan

    2017-07-01

    This article proposes an efficient way of calculating the geometric measure of entanglement using tensor decomposition methods. The connection between these two concepts is explored using the tensor representation of the wavefunction. Numerical examples are benchmarked and compared. Furthermore, we search for highly entangled qubit states to show the applicability of this method.

  2. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  3. Superconducting quantum circuits theory and application

    NASA Astrophysics Data System (ADS)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons states. The model and toolbox are engineered with a superconducting quantum circuit where two superconducting resonators are coupled via the UQDP circuit. Using fourth order perturbation theory one can realize a complete set of quantum operations between these two photon modes. This helps open a new field to treat photon modes as qubits. Additional, a three-wave mixing scheme using phase qubits permits one to engineer the coupling Hamiltonian using a phase qubit as a tunable coupler. Along with Feynman's idea using quantum to simulate quantum, superconducting quantum simulators have been studied intensively recently. Taking the advantage of mesoscopic size of superconducting circuit and local tunability, we came out the idea to simulate quantum phase transition due to disorder. Our first paper was to propose a superconducting quantum simulator of Bose-Hubbard model to do site-wise manipulation and observe Mott-insulator to superfluid phase transition. The side-band cooling of an array of superconducting resonators is solved after the paper was published. In light of the developed technology in manipulating quantum information with superconducting circuit, one can couple other quantum oscillator system to superconducting resonators in order manipulation of its quantum states or parametric amplification of weak quantum signal. A theory that works for different coupling schemes has been studied in chapter 5. This will be a platform for further research.

  4. Interpreting angular momentum transfer between electromagnetic multipoles using vector spherical harmonics.

    PubMed

    Grinter, Roger; Jones, Garth A

    2018-02-01

    The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.

  5. Quantum Measurement and Initial Conditions

    NASA Astrophysics Data System (ADS)

    Stoica, Ovidiu Cristinel

    2016-03-01

    Quantum measurement finds the observed system in a collapsed state, rather than in the state predicted by the Schrödinger equation. Yet there is a relatively spread opinion that the wavefunction collapse can be explained by unitary evolution (for instance in the decoherence approach, if we take into account the environment). In this article it is proven a mathematical result which severely restricts the initial conditions for which measurements have definite outcomes, if pure unitary evolution is assumed. This no-go theorem remains true even if we take the environment into account. The result does not forbid a unitary description of the measurement process, it only shows that such a description is possible only for very restricted initial conditions. The existence of such restrictions of the initial conditions can be understood in the four-dimensional block universe perspective, as a requirement of global self-consistency of the solutions of the Schrödinger equation.

  6. Quantum chemical approach for positron annihilation spectra of atoms and molecules beyond plane-wave approximation

    NASA Astrophysics Data System (ADS)

    Ikabata, Yasuhiro; Aiba, Risa; Iwanade, Toru; Nishizawa, Hiroaki; Wang, Feng; Nakai, Hiromi

    2018-05-01

    We report theoretical calculations of positron-electron annihilation spectra of noble gas atoms and small molecules using the nuclear orbital plus molecular orbital method. Instead of a nuclear wavefunction, the positronic wavefunction is obtained as the solution of the coupled Hartree-Fock or Kohn-Sham equation for a positron and the electrons. The molecular field is included in the positronic Fock operator, which allows an appropriate treatment of the positron-molecule repulsion. The present treatment succeeds in reproducing the Doppler shift, i.e., full width at half maximum (FWHM) of experimentally measured annihilation (γ-ray) spectra for molecules with a mean absolute error less than 10%. The numerical results indicate that the interpretation of the FWHM in terms of a specific molecular orbital is not appropriate.

  7. Strain-induced fundamental optical transition in (In,Ga)As/GaP quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, C., E-mail: cedric.robert@insa-rennes.fr, E-mail: cedric.robert@tyndall.ie; Pedesseau, L.; Cornet, C.

    The nature of the ground optical transition in an (In,Ga)As/GaP quantum dot is thoroughly investigated through a million atoms supercell tight-binding simulation. Precise quantum dot morphology is deduced from previously reported scanning-tunneling-microscopy images. The strain field is calculated with the valence force field method and has a strong influence on the confinement potentials, principally, for the conduction band states. Indeed, the wavefunction of the ground electron state is spatially confined in the GaP matrix, close to the dot apex, in a large tensile strain region, having mainly Xz character. Photoluminescence experiments under hydrostatic pressure strongly support the theoretical conclusions.

  8. Theory of complicated liquids. Investigation of liquids, solvents and solvent effects with modern theoretical methods

    NASA Astrophysics Data System (ADS)

    Kirchner, Barbara

    2007-03-01

    It is the aim of this work to elucidate the usefulness and feasibility of the first-principles approach and to extend it to the regime of liquid molecular substances of complex structure. Physical and thermodynamic properties of complicated liquids are investigated by means of Car-Parrinello molecular dynamics (CPMD) and also with static quantum chemical methods. The connection between the dynamic and static approach is given by the quantum cluster equilibrium (QCE) theory. Since the QCE theory is not yet well established, a new implementation in the MD post-processing program P EACEMAKER is presented. It can be shown that it is by far more important to include cooperative effects rather than to concentrate the effort on the inclusion of weak dispersion forces not present in current density functionals. Traditionally, investigations of complicated liquids were also undertaken with the tools of simple liquids, because for some problems the size of the system does not allow for a more accurate description. Although linear-scaling techniques are simplifications from the point of view of quantum chemistry, they might be severe improvements when compared to traditional molecular dynamics simulations. For the interpretation of the liquid state the introduction of local properties is inevitable. New methods are presented for the calculation of local dipole moments and for the estimation of hydrogen bond energies in quantum mechanically nondecomposable systems. The latter also allows for the detection of hydrogen bonds in simulations through a wavefunction-based criterion instead of one which is solely grounded on the geometric structure of the atomic nuclei involved. The article then discusses prominent liquids which show properties that are not yet understood. Another part of the work analyzes the effect of solvent molecules on solutes and their reactions in the solvent. Finaly, neoteric solvents, such as ionic liquids are discussed.

  9. Quantum noise in a transversely-pumped-cavity Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Nagy, Dávid; Kónya, Gábor; Domokos, Peter; Szirmai, Gergely

    2018-06-01

    We investigate the quantum measurement noise effects on the dynamics of an atomic Bose lattice gas inside an optical resonator. We describe the dynamics by means of a hybrid model consisting of a Bose-Hubbard Hamiltonian for the atoms and a Heisenberg-Langevin equation for the lossy cavity-field mode. We assume that the atoms are prepared initially in the ground state of the lattice Hamiltonian and then start to interact with the cavity mode. We show that the cavity-field fluctuations originating from the dissipative outcoupling of photons from the resonator lead to vastly different effects in the different possible ground-state phases, i.e., the superfluid, the supersolid, the Mott and charge-density-wave phases. In the former two phases with the presence of a superfluid wavefunction, the quantum measurement noise appears as a driving term leading to depletion of the ground state. The timescale for the system to leave the ground state is presented in a simple analytical form. For the latter two incompressible phases, the quantum noise results in the fluctuation of the chemical potential. We derive an analytical expression for the corresponding broadening of the quasiparticle resonances.

  10. Interpretation of Quantum Mechanics. A view of our universe

    NASA Astrophysics Data System (ADS)

    Lindgren, Ingvar

    2009-10-01

    The interpretation of quantum mechanics has been disputed ever since the advent of the theory in the 1920's. Famous are the discussions over long time between Einstein and Bohr. Einstein refused to accept the so-called Copenhagen interpretation, where the wave function collapses at a measurement and where the outcome of the measurement is essentially accidental (``God does not play dice''). Alternative interpretations have appeared, but the Copenhagen school has dominated the thoughts throughout the decades. One interesting interpretation was formulated in 1957 by Hugh Everett at Princeton, a student of John Wheeler, which abandons the wave-function collapse. In this model the universe is governed entirely by the Schrödinger equation, which does not allow for any collapse. In Everett's model after a measurement the wave function is separated into different branches that do not interact. This model was left unnoticed for long time until Bryce DeWitt took it up in 1970 and termed it ``Many-Worlds Interpretation'', a term that in some sense is misleading. Everett's model is incomplete, and it was later supplemented by the theory of decoherence, which explains how the different branches decouple as a result of the interaction with the environment. This extended model has in recent years gained increased respect, and some believe that it is the only model made available so far that is fully consistent with quantum mechanics. This interpretation can also shed some light on the development of the universe and, in particular, on the so-called Anthropic principle, which puts human beings at the center of the development.

  11. The time-resolved photoelectron spectrum of toluene using a perturbation theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richings, Gareth W.; Worth, Graham A., E-mail: g.a.worth@bham.ac.uk

    A theoretical study of the intra-molecular vibrational-energy redistribution of toluene using time-resolved photo-electron spectra calculated using nuclear quantum dynamics and a simple, two-mode model is presented. Calculations have been carried out using the multi-configuration time-dependent Hartree method, using three levels of approximation for the calculation of the spectra. The first is a full quantum dynamics simulation with a discretisation of the continuum wavefunction of the ejected electron, whilst the second uses first-order perturbation theory to calculate the wavefunction of the ion. Both methods rely on the explicit inclusion of both the pump and probe laser pulses. The third method includesmore » only the pump pulse and generates the photo-electron spectrum by projection of the pumped wavepacket onto the ion potential energy surface, followed by evaluation of the Fourier transform of the autocorrelation function of the subsequently propagated wavepacket. The calculations performed have been used to study the periodic population flow between the 6a and 10b16b modes in the S{sub 1} excited state, and compared to recent experimental data. We obtain results in excellent agreement with the experiment and note the efficiency of the perturbation method.« less

  12. Temperature dependent empirical pseudopotential theory for self-assembled quantum dots.

    PubMed

    Wang, Jianping; Gong, Ming; Guo, Guang-Can; He, Lixin

    2012-11-28

    We develop a temperature dependent empirical pseudopotential theory to study the electronic and optical properties of self-assembled quantum dots (QDs) at finite temperature. The theory takes the effects of both lattice expansion and lattice vibration into account. We apply the theory to InAs/GaAs QDs. For the unstrained InAs/GaAs heterostructure, the conduction band offset increases whereas the valence band offset decreases with increasing temperature, and there is a type-I to type-II transition at approximately 135 K. Yet, for InAs/GaAs QDs, the holes are still localized in the QDs even at room temperature, because the large lattice mismatch between InAs and GaAs greatly enhances the valence band offset. The single-particle energy levels in the QDs show a strong temperature dependence due to the change of confinement potentials. Because of the changes of the band offsets, the electron wavefunctions confined in QDs increase by about 1-5%, whereas the hole wavefunctions decrease by about 30-40% when the temperature increases from 0 to 300 K. The calculated recombination energies of excitons, biexcitons and charged excitons show red shifts with increasing temperature which are in excellent agreement with available experimental data.

  13. Support for the existence of invertible maps between electronic densities and non-analytic 1-body external potentials in non-relativistic time-dependent quantum mechanics

    NASA Astrophysics Data System (ADS)

    Mosquera, Martín A.

    2017-10-01

    Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.

  14. A time-frequency approach for the analysis of normal and arrhythmia cardiac signals.

    PubMed

    Mahmoud, Seedahmed S; Fang, Qiang; Davidović, Dragomir M; Cosic, Irena

    2006-01-01

    Previously, electrocardiogram (ECG) signals have been analyzed in either a time-indexed or spectral form. The reality, is that the ECG and all other biological signals belong to the family of multicomponent nonstationary signals. Due to this reason, the use of time-frequency analysis can be unavoidable for these signals. The Husimi and Wigner distributions are normally used in quantum mechanics for phase space representations of the wavefunction. In this paper, we introduce the Husimi distribution (HD) to analyze the normal and abnormal ECG signals in time-frequency domain. The abnormal cardiac signal was taken from a patient with supraventricular arrhythmia. Simulation results show that the HD has a good performance in the analysis of the ECG signals comparing with the Wigner-Ville distribution (WVD).

  15. Spinfoam cosmology with the proper vertex amplitude

    NASA Astrophysics Data System (ADS)

    Vilensky, Ilya

    2017-11-01

    The proper vertex amplitude is derived from the Engle-Pereira-Rovelli-Livine vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics. We investigate the effects of dynamical selection on long-range correlations.

  16. Novel Quantum Criticality in Two Dimensional Topological Phase transitions

    PubMed Central

    Cho, Gil Young; Moon, Eun-Gook

    2016-01-01

    Topological quantum phase transitions intrinsically intertwine self-similarity and topology of many-electron wave-functions, and divining them is one of the most significant ways to advance understanding in condensed matter physics. Our focus is to investigate an unconventional class of the transitions between insulators and Dirac semimetals whose description is beyond conventional pseudo relativistic Dirac Hamiltonian. At the transition without the long-range Coulomb interaction, the electronic energy dispersion along one direction behaves like a relativistic particle, linear in momentum, but along the other direction it behaves like a non-relativistic particle, quadratic in momentum. Various physical systems ranging from TiO2-VO2 heterostructure to organic material α-(BEDT-TTF)2I3 under pressure have been proposed to have such anisotropic dispersion relation. Here, we discover a novel quantum criticality at the phase transition by incorporating the long range Coulomb interaction. Unique interplay between the Coulomb interaction and electronic critical modes enforces not only the anisotropic renormalization of the Coulomb interaction but also marginally modified electronic excitation. In connection with experiments, we investigate several striking effects in physical observables of our novel criticality. PMID:26791803

  17. Redshift of the light emission from highly strained In0.3Ga0.7As/GaAs quantum wells by dipole δ doping

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Wang, S.-M.; Wang, X.-D.; Larsson, A.

    2005-08-01

    We have studied theoretically the energy band structures and optical properties of highly strained dipole δ-doped In0.3Ga0.7As/GaAs single quantum wells. Including dopant diffusion effect, strain in the quantum well, spin-orbital interactions, and many-body effects, the self-consistent calculations of the eight-band k •p model and the Poisson equation show that the dipole δ doping induces an electric field across the In0.3Ga0.7As quantum well by the Stark effect so that both the interband transition energy and the wave-function overlap between the ground-state electrons and holes are reduced. Applying an external bias across the quantum well partially cancels the built-in electric field and reduces the wavelength redshift. The calculated material gain peak is close to the experimental lasing wavelength.

  18. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Fu, Xi; Zhou, Guang-Hui

    2009-02-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density js,xiT and js,yiT (i = x, y, z). We find that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level as js,xxT and js,yyT. We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  19. Weak values of a quantum observable and the cross-Wigner distribution.

    PubMed

    de Gosson, Maurice A; de Gosson, Serge M

    2012-01-09

    We study the weak values of a quantum observable from the point of view of the Wigner formalism. The main actor here is the cross-Wigner transform of two functions, which is in disguise the cross-ambiguity function familiar from radar theory and time-frequency analysis. It allows us to express weak values using a complex probability distribution. We suggest that our approach seems to confirm that the weak value of an observable is, as conjectured by several authors, due to the interference of two wavefunctions, one coming from the past, and the other from the future.

  20. Exciton binding energy in GaAsBiN spherical quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    Das, Subhasis; Dhar, S.

    2017-03-01

    The ground state exciton binding energies (EBE) of heavy hole excitons in GaAs1-x-yBixNy - GaAs spherical quantum dots (QD) are calculated using a variational approach under 1s hydrogenic wavefunctions within the framework of effective mass approximation. Both the nitrogen and the bismuth content in the material are found to affect the binding energy, in particular for larger nitrogen content and lower dot radii. Calculations also show that the ground state exciton binding energies of heavy holes increase more at smaller dot sizes as compared to that for the light hole excitons.

  1. Electron-vibration entanglement in the Born-Oppenheimer description of chemical reactions and spectroscopy.

    PubMed

    McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R

    2015-10-14

    Entanglement is sometimes regarded as the quintessential measure of the quantum nature of a system and its significance for the understanding of coupled electronic and vibrational motions in molecules has been conjectured. Previously, we considered the entanglement developed in a spatially localized diabatic basis representation of the electronic states, considering design rules for qubits in a low-temperature chemical quantum computer. We extend this to consider the entanglement developed during high-energy processes. We also consider the entanglement developed using adiabatic electronic basis, providing a novel way for interpreting effects of the breakdown of the Born-Oppenheimer (BO) approximation. We consider: (i) BO entanglement in the ground-state wavefunction relevant to equilibrium thermodynamics, (ii) BO entanglement associated with low-energy wavefunctions relevant to infrared and tunneling spectroscopies, (iii) BO entanglement in high-energy eigenfunctions relevant to chemical reaction processes, and (iv) BO entanglement developed during reactive wavepacket dynamics. A two-state single-mode diabatic model descriptive of a wide range of chemical phenomena is used for this purpose. The entanglement developed by BO breakdown correlates simply with the diameter of the cusp introduced by the BO approximation, and a hierarchy appears between the various BO-breakdown correction terms, with the first-derivative correction being more important than the second-derivative correction which is more important than the diagonal correction. This simplicity is in contrast to the complexity of BO-breakdown effects on thermodynamic, spectroscopic, and kinetic properties. Further, processes poorly treated at the BO level that appear adequately treated using the Born-Huang adiabatic approximation are found to have properties that can only be described using a non-adiabatic description. For the entanglement developed between diabatic electronic states and the nuclear motion, qualitatively differently behavior is found compared to traditional properties of the density matrix and hence entanglement provides new information about system properties. For chemical reactions, this type of entanglement simply builds up as the transition-state region is crossed. It is robust to small changes in parameter values and is therefore more attractive for making quantum qubits than is the related fragile ground-state entanglement, provided that coherent motion at the transition state can be sustained.

  2. Theoretical Study of the Electronic Spectra of a Polycyclic Aromatic Hydrocarbon, Naphthalene, and its Derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping; Salama, Farid; Loew, Gilda H.

    1993-01-01

    In order to preselect possible candidates for the origin of diffuse interstellar bands observed, semiempirical quantum mechanical method INDO/S was applied to the optical spectra of neutral, cationic, and anionic states of naphthalene and its hydrogen abstraction and addition derivatives. Comparison with experiment shows that the spectra of naphthalene and its ions were reliably predicted. The configuration interaction calculations with single-electron excitations provided reasonable excited state wavefunctions compared to ab initio calculations that included higher excitations. The degree of similarity of the predicted spectra of the hydrogen abstraction and derivatives to those of naphthalene and ions depends largely on the similarity of the it electron configurations. For the hydrogen addition derivatives, very little resemblance of the predicted spectra to naphthalene was found because of the disruption of the aromatic conjugation system. The relevance of these calculations to astrophysical issues is discussed within the context of these polycyclic aromatic hydrocarbon models. Comparing the calculated electronic energies to the Diffuse Interstellar Bands (DIBs), a list of possible candidates of naphthalene derivatives is established which provides selected candidates for a definitive test through laboratory studies.

  3. Photoluminescence Intermittency and Photo-Bleaching of Single Colloidal Quantum Dot.

    PubMed

    Qin, Haiyan; Meng, Renyang; Wang, Na; Peng, Xiaogang

    2017-04-01

    Photoluminescence (PL) blinking of single colloidal quantum dot (QD)-PL intensity switching between different brightness states under constant excitation-and photo-bleaching are roadblocks for most applications of QDs. This progress report shall treat PL blinking and photo-bleaching both as photochemical events, namely, PL blinking as reversible and photo-bleaching being irreversible ones. Most studies on single-molecule spectroscopy of QDs in literature are related to PL blinking, which invites us to concentrate our discussions on the PL blinking, including its brief history in 20 years, analysis methods, competitive mechanisms and different strategies to battle it. In terms of suppression of the PL blinking, wavefunction confinement-confining photo-generated electron and hole within the core and inner portion of the shell of a core/shell QD-demonstrates significant advantages. This strategy yields nearly non-blinking QDs with their emission peaks covering most part of the visible window. As expected, the resulting QDs from this new strategy also show substantially improved anti-bleaching features. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C 2 H 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    Here, we report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2H 3. The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2H 3. All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Our results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from thatmore » of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. Additionally, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2H 3 without the requirement of explicit wavefunctions.« less

  5. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C2H3.

    PubMed

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    2017-06-14

    We report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2 H 3 . The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2 H 3 . All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from that of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2 H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. In addition, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2 H 3 without the requirement of explicit wavefunctions.

  6. A rigorous full-dimensional quantum dynamics study of tunneling splitting of rovibrational states of vinyl radical C 2 H 3

    DOE PAGES

    Yu, Hua-Gen; Song, Hongwei; Yang, Minghui

    2017-06-12

    Here, we report a rigorous quantum mechanical study of the rovibrational energy levels of vinyl radical C 2H 3. The calculations are carried out using a real two-component multi-layer Lanczos algorithm in a set of orthogonal polyspherical coordinates based on a recently developed accurate ab initio potential energy surface of C 2H 3. All well converged 158 vibrational bands up to 3200 cm -1 are determined, together with a comparison to previous calculations and experimental results. Our results show a remarkable multi-dimensional tunneling effect on the vibrational spectra of the radical. The vibrational tunneling splitting is substantially different from thatmore » of previous reduced dimensional calculations. The rotational constants of the fundamental vibrational bands of C 2H 3 are also given. It was found that the rovibrational states are strongly coupled, especially among those bending vibrational modes. Additionally, the perturbative iteration approach of Gruebele has been extended to assign the rovibrational energy levels of C 2H 3 without the requirement of explicit wavefunctions.« less

  7. Real-space finite-difference approach for multi-body systems: path-integral renormalization group method and direct energy minimization method.

    PubMed

    Sasaki, Akira; Kojo, Masashi; Hirose, Kikuji; Goto, Hidekazu

    2011-11-02

    The path-integral renormalization group and direct energy minimization method of practical first-principles electronic structure calculations for multi-body systems within the framework of the real-space finite-difference scheme are introduced. These two methods can handle higher dimensional systems with consideration of the correlation effect. Furthermore, they can be easily extended to the multicomponent quantum systems which contain more than two kinds of quantum particles. The key to the present methods is employing linear combinations of nonorthogonal Slater determinants (SDs) as multi-body wavefunctions. As one of the noticeable results, the same accuracy as the variational Monte Carlo method is achieved with a few SDs. This enables us to study the entire ground state consisting of electrons and nuclei without the need to use the Born-Oppenheimer approximation. Recent activities on methodological developments aiming towards practical calculations such as the implementation of auxiliary field for Coulombic interaction, the treatment of the kinetic operator in imaginary-time evolutions, the time-saving double-grid technique for bare-Coulomb atomic potentials and the optimization scheme for minimizing the total-energy functional are also introduced. As test examples, the total energy of the hydrogen molecule, the atomic configuration of the methylene and the electronic structures of two-dimensional quantum dots are calculated, and the accuracy, availability and possibility of the present methods are demonstrated.

  8. Quantum logic using correlated one-dimensional quantum walks

    NASA Astrophysics Data System (ADS)

    Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk

    2018-01-01

    Quantum Walks are unitary processes describing the evolution of an initially localized wavefunction on a lattice potential. The complexity of the dynamics increases significantly when several indistinguishable quantum walkers propagate on the same lattice simultaneously, as these develop non-trivial spatial correlations that depend on the particle's quantum statistics, mutual interactions, initial positions, and the lattice potential. We show that even in the simplest case of a quantum walk on a one dimensional graph, these correlations can be shaped to yield a complete set of compact quantum logic operations. We provide detailed recipes for implementing quantum logic on one-dimensional quantum walks in two general cases. For non-interacting bosons—such as photons in waveguide lattices—we find high-fidelity probabilistic quantum gates that could be integrated into linear optics quantum computation schemes. For interacting quantum-walkers on a one-dimensional lattice—a situation that has recently been demonstrated using ultra-cold atoms—we find deterministic logic operations that are universal for quantum information processing. The suggested implementation requires minimal resources and a level of control that is within reach using recently demonstrated techniques. Further work is required to address error-correction.

  9. A proposal for the experimental detection of CSL induced random walk

    PubMed Central

    Bera, Sayantani; Motwani, Bhawna; Singh, Tejinder P.; Ulbricht, Hendrik

    2015-01-01

    Continuous Spontaneous Localization (CSL) is one possible explanation for dynamically induced collapse of the wave-function during a quantum measurement. The collapse is mediated by a stochastic non-linear modification of the Schrödinger equation. A consequence of the CSL mechanism is an extremely tiny violation of energy-momentum conservation, which can, in principle, be detected in the laboratory via the random diffusion of a particle induced by the stochastic collapse mechanism. In a paper in 2003, Collett and Pearle investigated the translational CSL diffusion of a sphere, and the rotational CSL diffusion of a disc, and showed that this effect dominates over the ambient environmental noise at low temperatures and extremely low pressures (about ten-thousandth of a pico-Torr). In the present paper, we revisit their analysis and argue that this stringent condition on pressure can be relaxed, and that the CSL effect can be seen at the pressure of about a pico-Torr. A similar analysis is provided for diffusion produced by gravity-induced decoherence, where the effect is typically much weaker than CSL. We also discuss the CSL induced random displacement of a quantum oscillator. Lastly, we propose possible experimental set-ups justifying that CSL diffusion is indeed measurable with the current technology. PMID:25563619

  10. The degenerate parametric oscillator and Ince's equation

    NASA Astrophysics Data System (ADS)

    Cordero-Soto, Ricardo; Suslov, Sergei K.

    2011-01-01

    We construct Green's function for the quantum degenerate parametric oscillator in the coordinate representation in terms of standard solutions of Ince's equation in a framework of a general approach to variable quadratic Hamiltonians. Exact time-dependent wavefunctions and their connections with dynamical invariants and SU(1, 1) group are also discussed. An extension to the degenerate parametric oscillator with time-dependent amplitude and phase is also mentioned.

  11. Solution of the Quantum Harmonic Oscillator Plus a Delta-Function Potential at the Origin: The "Oddness" of Its Even-Parity Solutions

    ERIC Educational Resources Information Center

    Viana-Gomes, J.; Peres, N. M. R.

    2011-01-01

    We derive the energy levels associated with the even-parity wavefunctions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the…

  12. Multipoint entanglement in disordered systems

    NASA Astrophysics Data System (ADS)

    Magán, Javier M.; Paganelli, Simone; Oganesyan, Vadim

    2017-02-01

    We develop an approach to characterize excited states of disordered many-body systems using spatially resolved structures of entanglement. We show that the behavior of the mutual information (MI) between two parties of a many-body system can signal a qualitative difference between thermal and localized phases - MI is finite in insulators while it approaches zero in the thermodynamic limit in the ergodic phase. Related quantities, such as the recently introduced Codification Volume (CV), are shown to be suitable to quantify the correlation length of the system. These ideas are illustrated using prototypical non-interacting wavefunctions of localized and extended particles and then applied to characterize states of strongly excited interacting spin chains. We especially focus on evolution of spatial structure of quantum information between high temperature diffusive and many-body localized (MBL) phases believed to exist in these models. We study MI as a function of disorder strength both averaged over the eigenstates and in time-evolved product states drawn from continuously deformed family of initial states realizable experimentally. As expected, spectral and time-evolved averages coincide inside the ergodic phase and differ significantly outside. We also highlight dispersion among the initial states within the localized phase - some of these show considerable generation and delocalization of quantum information.

  13. Temperature dependent electron delocalization in CdSe/CdS type-I core-shell systems: An insight from scanning tunneling spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Biswajit; Chakrabarti, Sudipto; Pal, Amlan J., E-mail: sspajp@iacs.res.in

    2016-03-14

    Core-shell nanocrystals having a type-I band-alignment confine charge carriers to the core. In this work, we choose CdSe/CdS core-shell nano-heterostructures that evidence confinement of holes only. Such a selective confinement occurs in the core-shell nanocrystals due to a low energy-offset of conduction band (CB) edges resulting in delocalization of electrons and thus a decrease in the conduction band-edge. Since the delocalization occurs through a thermal assistance, we study temperature dependence of selective delocalization process through scanning tunneling spectroscopy. From the density of states (DOS), we observe that the electrons are confined to the core at low temperatures. Above a certainmore » temperature, they become delocalized up to the shell leading to a decrease in the CB of the core-shell system due to widening of quantum confinement effect. With holes remaining confined to the core due to a large offset in the valence band (VB), we record the topography of the core-shell nanocrystals by probing their CB and VB edges separately. The topographies recorded at different temperatures representing wave-functions of electrons and holes corresponded to the results obtained from the DOS spectra. The results evidence temperature-dependent wave-function delocalization of one-type of carriers up to the shell layer in core-shell nano-heterostructures.« less

  14. Communication: A new ab initio potential energy surface for HCl-H2O, diffusion Monte Carlo calculations of D0 and a delocalized zero-point wavefunction.

    PubMed

    Mancini, John S; Bowman, Joel M

    2013-03-28

    We report a global, full-dimensional, ab initio potential energy surface describing the HCl-H2O dimer. The potential is constructed from a permutationally invariant fit, using Morse-like variables, to over 44,000 CCSD(T)-F12b∕aug-cc-pVTZ energies. The surface describes the complex and dissociated monomers with a total RMS fitting error of 24 cm(-1). The normal modes of the minima, low-energy saddle point and separated monomers, the double minimum isomerization pathway and electronic dissociation energy are accurately described by the surface. Rigorous quantum mechanical diffusion Monte Carlo (DMC) calculations are performed to determine the zero-point energy and wavefunction of the complex and the separated fragments. The calculated zero-point energies together with a De value calculated from CCSD(T) with a complete basis set extrapolation gives a D0 value of 1348 ± 3 cm(-1), in good agreement with the recent experimentally reported value of 1334 ± 10 cm(-1) [B. E. Casterline, A. K. Mollner, L. C. Ch'ng, and H. Reisler, J. Phys. Chem. A 114, 9774 (2010)]. Examination of the DMC wavefunction allows for confident characterization of the zero-point geometry to be dominant at the C(2v) double-well saddle point and not the C(s) global minimum. Additional support for the delocalized zero-point geometry is given by numerical solutions to the 1D Schrödinger equation along the imaginary-frequency out-of-plane bending mode, where the zero-point energy is calculated to be 52 cm(-1) above the isomerization barrier. The D0 of the fully deuterated isotopologue is calculated to be 1476 ± 3 cm(-1), which we hope will stand as a benchmark for future experimental work.

  15. Influence of Internal Electric Field on the Recombination Dynamics of Localized Excitons in an InGaN Double-Quantum-Well Laser Diode Wafer Operated at 450 nm

    NASA Astrophysics Data System (ADS)

    Onuma, Takeyoshi; Chichibu, Shigefusa F.; Aoyama, Toyomi; Nakajima, Kiyomi; Ahmet, Parhat; Azuhata, Takashi; Chikyow, Toyohiro; Sota, Takayuki; Nagahama, Shin-ichi; Mukai, Takashi

    2003-12-01

    Optical and structural properties of an InGaN double-quantum-well (DQW) laser diode (LD) wafer that lased at 450 nm were investigated to discuss an enormous impact of a polarization-induced electric field on the recombination dynamics in InGaN quantum structures. The quantum-well (QW) structure was shown to have the well thickness as thin as approximately 1 nm and InN molar fraction x of approximately 14%. The gross effective electric field in the QW (FQW) was estimated to be 490 kV/cm from the Franz-Keldysh oscillation (FKO) period in the electroreflectance (ER) spectrum, implying that an internal piezoelectric field (Fpiz) of approximately 1.4 MV/cm was cancelled by the pn junction built-in field (Fbi) and Coulomb screening due to carriers in the DQW. The magnitude of FQW can be further weakened by applying reverse bias (VR) on the junction; the decrease in the photoluminescence (PL) lifetime at low temperature measured under VR was explained to be due to a recovery of electron-hole wavefunction overlap for small VR (|VR|<4 V), and due mainly to the tunneling escape of carriers through the barriers for larger VR. By applying an appropriate VR smaller than 4 V, electron-hole wavefunction overlap, which had been separated vertically along the c-axis due to quantum-confined Stark effect, could be partially recovered, and then the time-resolved PL signals exhibited a less-pronounced stretched exponential decay, giving a scaling parameter (β) of 0.85 and effective in-plane localization depth (E0) of 40-50 meV for the spontaneous emission. These values were closer to those of much homogeneous QWs compared to those reported previously for InGaN QWs having similar InN molar fractions. The use of very thin QWs is considered to bring easier Coulomb screening of FQW and population inversion under high excitation conditions.

  16. Natural occupation numbers: when do they vanish?

    PubMed

    Giesbertz, K J H; van Leeuwen, R

    2013-09-14

    The non-vanishing of the natural orbital (NO) occupation numbers of the one-particle density matrix of many-body systems has important consequences for the existence of a density matrix-potential mapping for nonlocal potentials in reduced density matrix functional theory and for the validity of the extended Koopmans' theorem. On the basis of Weyl's theorem we give a connection between the differentiability properties of the ground state wavefunction and the rate at which the natural occupations approach zero when ordered as a descending series. We show, in particular, that the presence of a Coulomb cusp in the wavefunction leads, in general, to a power law decay of the natural occupations, whereas infinitely differentiable wavefunctions typically have natural occupations that decay exponentially. We analyze for a number of explicit examples of two-particle systems that in case the wavefunction is non-analytic at its spatial diagonal (for instance, due to the presence of a Coulomb cusp) the natural orbital occupations are non-vanishing. We further derive a more general criterium for the non-vanishing of NO occupations for two-particle wavefunctions with a certain separability structure. On the basis of this criterium we show that for a two-particle system of harmonically confined electrons with a Coulombic interaction (the so-called Hookium) the natural orbital occupations never vanish.

  17. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    PubMed

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.

  18. Quantum-size-induced phase transitions in quantum dots: Indirect-band gap GaAs nanostructures

    NASA Astrophysics Data System (ADS)

    Zunger, Alex; Luo, Jun-Wei; Franceschetti, Alberto

    2008-03-01

    Quantum nanostructures are often advertised as having stronger absorption than the bulk material from which they are made, to the potential benefit of nanotechnology. However, nanostructures made of direct gap materials such as GaAs can convert to indirect-gap, weakly-aborbing systems when the quantum size becomes small. This is the case for spherical GaAs dots of radius 15 å or less (about 1000 atoms) embedded in a wide-gap matrix. The nature of the transition: γ-to-X or γ-to-L is however, controversial. The distinction can not be made on the basis of electronic structure techniques that misrepresent the magnitude of the various competing effective mass tensors (e.g, LDA or GGA) or wavefunction coupling (e.g, tight-binding). Using a carefully fit screened pseudopotential method we show that the transition occurs from γ to X, and, more importantly, that the transition involves a finite V (γ-X) interband coupling, manifested as an ``anti-crossing'' between the confined electron states of GaAs as the dot size crosses 15 å. The physics of this reciprocal-space γ-X transition, as well as the real-space (type II) transition in GaAs/AlGaAs will be briefly discussed.

  19. Entangling two transportable neutral atoms via local spin exchange.

    PubMed

    Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-11-12

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  20. Electronic properties of quasi one-dimensional quantum wire models under equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions in the presence of an in-plane magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, E.; Micu, C.; Racolta, D.

    In this paper one deals with the theoretical derivation of energy bands and of related wavefunctions characterizing quasi 1D semiconductor heterostructures, such as InAs quantum wire models. Such models get characterized this time by equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions of dimensionless magnitude a under the influence of in-plane magnetic fields of magnitude B. We found that the orientations of the field can be selected by virtue of symmetry requirements. For this purpose one resorts to spin conservations, but alternative conditions providing sensible simplifications of the energy-band formula can be reasonably accounted for. Besides the wavenumbermore » k relying on the 1D electron, one deals with the spin-like s=±1 factors in the front of the square root term of the energy. Having obtained the spinorial wavefunction, opens the way to the derivation of spin precession effects. For this purpose one resorts to the projections of the wavenumber operator on complementary spin states. Such projections are responsible for related displacements proceeding along the Ox-axis. This results in a 2D rotation matrix providing both the precession angle as well as the precession axis.« less

  1. Jack Polynomials as Fractional Quantum Hall States and the Betti Numbers of the ( k + 1)-Equals Ideal

    NASA Astrophysics Data System (ADS)

    Zamaere, Christine Berkesch; Griffeth, Stephen; Sam, Steven V.

    2014-08-01

    We show that for Jack parameter α = -( k + 1)/( r - 1), certain Jack polynomials studied by Feigin-Jimbo-Miwa-Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laughlin and Read-Rezayi. In fact, along these lines we prove several vanishing theorems known as clustering properties for Jack polynomials in the mathematical physics literature, special cases of which had previously been conjectured by Bernevig and Haldane. Motivated by the method of proof, which in the case r = 2 identifies the span of the relevant Jack polynomials with the S n -invariant part of a unitary representation of the rational Cherednik algebra, we conjecture that unitary representations of the type A Cherednik algebra have graded minimal free resolutions of Bernstein-Gelfand-Gelfand type; we prove this for the ideal of the ( k + 1)-equals arrangement in the case when the number of coordinates n is at most 2 k + 1. In general, our conjecture predicts the graded S n -equivariant Betti numbers of the ideal of the ( k + 1)-equals arrangement with no restriction on the number of ambient dimensions.

  2. Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk

    NASA Astrophysics Data System (ADS)

    Oukerroum, A.; El-Yadri, M.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.; Sadoqi, M.; Long, G.

    2018-01-01

    In this paper, we report a study of the effect of a lateral electric field on a quantum-confined exciton in a thin PbS quantum disk. Our approach was performed in the framework of the effective mass theory and adiabatic approximation. The ground state energy and the stark shift were determined by using a variational method with an adequate trial wavefunction, by investigating a 2D oscillator strength under simultaneous consideration of the geometrical confinement and the electric field strength. Our results showed a strong dependence of the exciton binding and the Stark shift on the disk dimensions in both axial and longitudinal directions. On the other hand, our results also showed that the Stark shift’s dependence on the electric field is not purely quadratic but the linear contribution is also important and cannot be neglected, especially when the confinement gets weaker.

  3. LETTER TO THE EDITOR: The quantum Knizhnik Zamolodchikov equation, generalized Razumov Stroganov sum rules and extended Joseph polynomials

    NASA Astrophysics Data System (ADS)

    Di Francesco, P.; Zinn-Justin, P.

    2005-12-01

    We prove higher rank analogues of the Razumov Stroganov sum rule for the ground state of the O(1) loop model on a semi-infinite cylinder: we show that a weighted sum of components of the ground state of the Ak-1 IRF model yields integers that generalize the numbers of alternating sign matrices. This is done by constructing minimal polynomial solutions of the level 1 U_q(\\widehat{\\frak{sl}(k)}) quantum Knizhnik Zamolodchikov equations, which may also be interpreted as quantum incompressible q-deformations of quantum Hall effect wavefunctions at filling fraction ν = k. In addition to the generalized Razumov Stroganov point q = -eiπ/k+1, another combinatorially interesting point is reached in the rational limit q → -1, where we identify the solution with extended Joseph polynomials associated with the geometry of upper triangular matrices with vanishing kth power.

  4. Topological Phase Transitions in Line-nodal Superconductors

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Han, Sangeun; Moon, Eun-Gook

    Fathoming interplay between symmetry and topology of many-electron wave-functions deepens our understanding in quantum nature of many particle systems. Topology often protects zero-energy excitation, and in a certain class, symmetry is intrinsically tied to the topological protection. Namely, unless symmetry is broken, topological nature is intact. We study one specific case of such class, symmetry-protected line-nodal superconductors in three spatial dimensions (3d). Mismatch between phase spaces of order parameter fluctuation and line-nodal fermion excitation induces an exotic universality class in a drastic contrast to one of the conventional ϕ4 theory in 3d. Hyper-scaling violation and relativistic dynamic scaling with unusually large quantum critical region are main characteristics, and their implication in experiments is discussed. For example, continuous phase transition out of line-nodal superconductors has a linear phase boundary in a temperature-tuning parameter phase-diagram. This work was supported by the Brain Korea 21 PLUS Project of Korea Government and KAIST start-up funding.

  5. Evidence for intertwined superfluid and density wave order in two dimensional 4He

    NASA Astrophysics Data System (ADS)

    Saunders, John

    2015-03-01

    We report the identification of a new state of quantum matter with intertwined superfluid and density wave order in a system of two dimensional bosons subject to a triangular lattice potential. Using a torsional oscillator we have measured the response of the second atomic layer of 4He adsorbed on the surface of graphite over a wide temperature range down to 2 mK. Superfluidity is observed over a narrow range of film densities, emerging suddenly and collapsing towards a quantum critical point, near to layer completion where a Mott insulating phase is predicted to form. The unusual temperature dependence of the superfluid density in the T --> 0 limit and the absence of a clear superfluid onset temperature are explained, self-consistently, by an ansatz for the excitation spectrum, reflecting density wave order, and a quasi-condensate wavefunction breaking both gauge and translational symmetry. In collaboration with Jan Nyeki, Anastasia Phillis, Andrew Ho, Derek Lee, Piers Coleman, Jeevak Parpia, Brian Cowan. Supported by EPSRC (U.K) EP/H048375/1.

  6. Linear response and Berry curvature in two-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Bradlyn, Barry J.

    In this thesis we examine the viscous and thermal transport properties of chiral topological phases, and their relationship to topological invariants. We start by developing a Kubo formalism for calculating the frequency dependent viscosity tensor of a general quantum system, both with and without a uniform external magnetic field. The importance of contact terms is emphasized. We apply this formalism to the study of integer and fractional quantum Hall states, as well as p + ip paired superfluids, and verify the relationship between the Hall viscosity and the mean orbital spin density. We also elucidate the connection between our Kubo formulas and prior adiabatic transport calculations of the Hall viscosity. Additionally, we derive a general relationship between the frequency dependent viscosity and conductivity tensors for Galilean-invariant systems. We comment on the implications of this relationship towards the measurement of Hall viscosity in solid-state systems. To address the question of thermal transport, we first review the standard Kubo formalism of Luttinger for computing thermoelectric coefficients. We apply this to the specific case of non-interacting electrons in the integer quantum Hall regime, paying careful attention to the roles of bulk and edge effects. In order to generalize our discussion to interacting systems, we construct a low-energy effective action for a two-dimensional non-relativistic topological phase of matter in a continuum, which completely describes all of its bulk thermoelectric and visco-elastic properties in the limit of low frequencies, long distances, and zero temperature, without assuming either Lorentz or Galilean invariance, by coupling the microscopic degrees of freedom to the background spacetime geometry. We derive the most general form of a local bulk induced action to first order in derivatives of the background fields, from which thermodynamic and transport properties can be obtained. We show that the gapped bulk cannot contribute to low-temperature thermoelectric transport other than the ordinary Hall conductivity; the other thermoelectric effects (if they occur) are thus purely edge effects. The stress response to time-dependent strains is given by the Hall viscosity, which is robust against perturbations and related to the spin current. Finally, we address the issue of calculating the topological central charge from bulk wavefunctions for a topological phase. Using the form of the topological terms in the induced action, we show that we can calculate the various coefficients of these terms as Berry curvatures associated to certain metric and electromagnetic vector potential perturbations. We carry out this computation explicitly for quantum Hall trial wavefunctions that can be represented as conformal blocks in a chiral conformal field theory (CFT). These calculations make use of the gauge and gravitational anomalies in the underlying chiral CFT.

  7. The Light-Front Schrödinger Equation and Determination of the Perturbative QCD Scale from Color Confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; de Teramond, Guy F.; Deur, Alexandre P.

    2015-09-01

    The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic andmore » dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. We also show how the mass scale κ underlying confinement and hadron masses determines the scale Λ {ovr MS} controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The result is an effective coupling defined at all momenta. The predicted value Λ {ovr MS}=0.328±0.034 GeV is in agreement with the world average 0.339±0.010 GeV. The analysis applies to any renormalization scheme.« less

  8. Electron Dynamics in Finite Quantum Systems

    NASA Astrophysics Data System (ADS)

    McDonald, Christopher R.

    The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to investigate a wide variety of problems that cannot be currently treated by any other method. Finally, the time it takes for an electron to tunnel from a bound state is investigated; a definition of the tunnel time is established and the Keldysh time is connected to the wavefunction dynamics.

  9. Embedded correlated wavefunction schemes: theory and applications.

    PubMed

    Libisch, Florian; Huang, Chen; Carter, Emily A

    2014-09-16

    Conspectus Ab initio modeling of matter has become a pillar of chemical research: with ever-increasing computational power, simulations can be used to accurately predict, for example, chemical reaction rates, electronic and mechanical properties of materials, and dynamical properties of liquids. Many competing quantum mechanical methods have been developed over the years that vary in computational cost, accuracy, and scalability: density functional theory (DFT), the workhorse of solid-state electronic structure calculations, features a good compromise between accuracy and speed. However, approximate exchange-correlation functionals limit DFT's ability to treat certain phenomena or states of matter, such as charge-transfer processes or strongly correlated materials. Furthermore, conventional DFT is purely a ground-state theory: electronic excitations are beyond its scope. Excitations in molecules are routinely calculated using time-dependent DFT linear response; however applications to condensed matter are still limited. By contrast, many-electron wavefunction methods aim for a very accurate treatment of electronic exchange and correlation. Unfortunately, the associated computational cost renders treatment of more than a handful of heavy atoms challenging. On the other side of the accuracy spectrum, parametrized approaches like tight-binding can treat millions of atoms. In view of the different (dis-)advantages of each method, the simulation of complex systems seems to force a compromise: one is limited to the most accurate method that can still handle the problem size. For many interesting problems, however, compromise proves insufficient. A possible solution is to break up the system into manageable subsystems that may be treated by different computational methods. The interaction between subsystems may be handled by an embedding formalism. In this Account, we review embedded correlated wavefunction (CW) approaches and some applications. We first discuss our density functional embedding theory, which is formally exact. We show how to determine the embedding potential, which replaces the interaction between subsystems, at the DFT level. CW calculations are performed using a fixed embedding potential, that is, a non-self-consistent embedding scheme. We demonstrate this embedding theory for two challenging electron transfer phenomena: (1) initial oxidation of an aluminum surface and (2) hot-electron-mediated dissociation of hydrogen molecules on a gold surface. In both cases, the interaction between gas molecules and metal surfaces were treated by sophisticated CW techniques, with the remainder of the extended metal surface being treated by DFT. Our embedding approach overcomes the limitations of conventional Kohn-Sham DFT in describing charge transfer, multiconfigurational character, and excited states. From these embedding simulations, we gained important insights into fundamental processes that are crucial aspects of fuel cell catalysis (i.e., O2 reduction at metal surfaces) and plasmon-mediated photocatalysis by metal nanoparticles. Moreover, our findings agree very well with experimental observations, while offering new views into the chemistry. We finally discuss our recently formulated potential-functional embedding theory that provides a seamless, first-principles way to include back-action onto the environment from the embedded region.

  10. Simplicity and complexity

    NASA Astrophysics Data System (ADS)

    Crutchfield, James; Wiesner, Karoline

    2010-02-01

    Is anything ever simple? When confronted with a complicated system, scientists typically strive to identify underlying simplicity, which we articulate as natural laws and fundamental principles. This simplicity is what makes nature appear so organized. Atomic physics, for example, approached a solid theoretical foundation when Niels Bohr uncovered the organization of electronic energy levels, which only later were redescribed as quantum wavefunctions. Charles Darwin's revolutionary idea about the "origin" of species emerged by mapping how species are organized and discovering why they came to be that way. And James Watson and Francis Crick's interpretation of DNA diffraction spectra was a discovery of the structural organization of genetic information - it was neither about the molecule's disorder (thermodynamic entropy) nor about the statistical randomness of its base-pair sequences.

  11. Exciton confinement in strain-engineered metamorphic InAs/I nxG a1 -xAs quantum dots

    NASA Astrophysics Data System (ADS)

    Khattak, S. A.; Hayne, M.; Huang, J.; Vanacken, J.; Moshchalkov, V. V.; Seravalli, L.; Trevisi, G.; Frigeri, P.

    2017-11-01

    We report a comprehensive study of exciton confinement in self-assembled InAs quantum dots (QDs) in strain-engineered metamorphic I nxG a1 -xAs confining layers on GaAs using low-temperature magnetophotoluminescence. As the lattice mismatch (strain) between QDs and confining layers (CLs) increases from 4.8% to 5.7% the reduced mass of the exciton increases, but saturates at higher mismatches. At low QD-CL mismatch there is clear evidence of spillover of the exciton wave function due to small localization energies. This is suppressed as the In content x in the CLs decreases (mismatch and localization energy increasing). The combined effects of low effective mass and wave-function spillover at high x result in a diamagnetic shift coefficient that is an order of magnitude larger than for samples where In content in the barrier is low (mismatch is high and localization energy is large). Finally, an anomalously small measured Bohr radius in samples with the highest x is attributed to a combination of thermalization due to low localization energy, and its enhancement with magnetic field, a mechanism which results in small dots in the ensemble dominating the measured Bohr radius.

  12. Inclusion of trial functions in the Langevin equation path integral ground state method: Application to parahydrogen clusters and their isotopologues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Matthew; Constable, Steve; Ing, Christopher

    2014-06-21

    We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψ{sub T}, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen formore » cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 − 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.« less

  13. A modified Stern-Gerlach experiment using a quantum two-state magnetic field

    NASA Astrophysics Data System (ADS)

    Daghigh, Ramin G.; Green, Michael D.; West, Christopher J.

    2018-06-01

    The Stern-Gerlach experiment has played an important role in our understanding of quantum behavior. We propose and analyze a modified version of this experiment where the magnetic field of the detector is in a quantum superposition, which may be experimentally realized using a superconducting flux qubit. We show that if incident spin-1/2 particles couple with the two-state magnetic field, a discrete target distribution results that resembles the distribution in the classical Stern-Gerlach experiment. As an application of the general result, we compute the distribution for a Gaussian waveform of the incident fermion. This analysis allows us to demonstrate theoretically: (1) the quantization of the intrinsic angular momentum of a spin-1/2 particle, and (2) a correlation between EPR pairs leading to nonlocality, without necessarily collapsing the particle's spin wavefunction.

  14. Influence of nuclear exchange on nonadiabatic electron processes in H(+)+H2 collisions.

    PubMed

    Errea, L F; Illescas, Clara; Macías, A; Méndez, L; Pons, B; Rabadán, I; Riera, A

    2010-12-28

    H(+)+H(2) collisions are studied by means of a semiclassical approach that explicitly accounts for nuclear rearrangement channels in nonadiabatic electron processes. A set of classical trajectories is used to describe the nuclear motion, while the electronic degrees of freedom are treated quantum mechanically in terms of a three-state expansion of the collision wavefunction. We describe electron capture and vibrational excitation, which can also involve nuclear exchange and dissociation, in the E = 2-1000 eV impact energy range. We compare dynamical results obtained with two parametrizations of the potential energy surface of H(3)(+) ground electronic state. Total cross sections for E > 10 eV agree with previous results using a vibronic close-coupling expansion, and with experimental data for E < 10 eV. Additionally, some prototypical features of both nuclear and electron dynamics at low E are discussed.

  15. Extending Romanovski polynomials in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quesne, C.

    2013-12-15

    Some extensions of the (third-class) Romanovski polynomials (also called Romanovski/pseudo-Jacobi polynomials), which appear in bound-state wavefunctions of rationally extended Scarf II and Rosen-Morse I potentials, are considered. For the former potentials, the generalized polynomials satisfy a finite orthogonality relation, while for the latter an infinite set of relations among polynomials with degree-dependent parameters is obtained. Both types of relations are counterparts of those known for conventional polynomials. In the absence of any direct information on the zeros of the Romanovski polynomials present in denominators, the regularity of the constructed potentials is checked by taking advantage of the disconjugacy properties ofmore » second-order differential equations of Schrödinger type. It is also shown that on going from Scarf I to Scarf II or from Rosen-Morse II to Rosen-Morse I potentials, the variety of rational extensions is narrowed down from types I, II, and III to type III only.« less

  16. Exotic looped trajectories of photons in three-slit interference

    PubMed Central

    Magaña-Loaiza, Omar S; De Leon, Israel; Mirhosseini, Mohammad; Fickler, Robert; Safari, Akbar; Mick, Uwe; McIntyre, Brian; Banzer, Peter; Rodenburg, Brandon; Leuchs, Gerd; Boyd, Robert W.

    2016-01-01

    The validity of the superposition principle and of Born's rule are well-accepted tenants of quantum mechanics. Surprisingly, it has been predicted that the intensity pattern formed in a three-slit experiment is seemingly in contradiction with the most conventional form of the superposition principle when exotic looped trajectories are taken into account. However, the probability of observing such paths is typically very small, thus rendering them extremely difficult to measure. Here we confirm the validity of Born's rule and present the first experimental observation of exotic trajectories as additional paths for the light by directly measuring their contribution to the formation of optical interference fringes. We accomplish this by enhancing the electromagnetic near-fields in the vicinity of the slits through the excitation of surface plasmons. This process increases the probability of occurrence of these exotic trajectories, demonstrating that they are related to the near-field component of the photon's wavefunction. PMID:28008907

  17. Exotic looped trajectories of photons in three-slit interference.

    PubMed

    Magaña-Loaiza, Omar S; De Leon, Israel; Mirhosseini, Mohammad; Fickler, Robert; Safari, Akbar; Mick, Uwe; McIntyre, Brian; Banzer, Peter; Rodenburg, Brandon; Leuchs, Gerd; Boyd, Robert W

    2016-12-23

    The validity of the superposition principle and of Born's rule are well-accepted tenants of quantum mechanics. Surprisingly, it has been predicted that the intensity pattern formed in a three-slit experiment is seemingly in contradiction with the most conventional form of the superposition principle when exotic looped trajectories are taken into account. However, the probability of observing such paths is typically very small, thus rendering them extremely difficult to measure. Here we confirm the validity of Born's rule and present the first experimental observation of exotic trajectories as additional paths for the light by directly measuring their contribution to the formation of optical interference fringes. We accomplish this by enhancing the electromagnetic near-fields in the vicinity of the slits through the excitation of surface plasmons. This process increases the probability of occurrence of these exotic trajectories, demonstrating that they are related to the near-field component of the photon's wavefunction.

  18. QPROP: A Schrödinger-solver for intense laser atom interaction

    NASA Astrophysics Data System (ADS)

    Bauer, Dieter; Koval, Peter

    2006-03-01

    The QPROP package is presented. QPROP has been developed to study laser-atom interaction in the nonperturbative regime where nonlinear phenomena such as above-threshold ionization, high order harmonic generation, and dynamic stabilization are known to occur. In the nonrelativistic regime and within the single active electron approximation, these phenomena can be studied with QPROP in the most rigorous way by solving the time-dependent Schrödinger equation in three spatial dimensions. Because QPROP is optimized for the study of quantum systems that are spherically symmetric in their initial, unperturbed configuration, all wavefunctions are expanded in spherical harmonics. Time-propagation of the wavefunctions is performed using a split-operator approach. Photoelectron spectra are calculated employing a window-operator technique. Besides the solution of the time-dependent Schrödinger equation in single active electron approximation, QPROP allows to study many-electron systems via the solution of the time-dependent Kohn-Sham equations. Program summaryProgram title:QPROP Catalogue number:ADXB Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXB Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer on which program has been tested:PC Pentium IV, Athlon Operating system:Linux Program language used:C++ Memory required to execute with typical data:Memory requirements depend on the number of propagated orbitals and on the size of the orbitals. For instance, time-propagation of a hydrogenic wavefunction in the perturbative regime requires about 64 KB RAM (4 radial orbitals with 1000 grid points). Propagation in the strongly nonperturbative regime providing energy spectra up to high energies may need 60 radial orbitals, each with 30000 grid points, i.e. about 30 MB. Examples are given in the article. No. of bits in a word:Real and complex valued numbers of double precision are used No. of lines in distributed program, including test data, etc.:69 995 No. of bytes in distributed program, including test data, etc.: 2 927 567 Peripheral used:Disk for input-output, terminal for interaction with the user CPU time required to execute test data:Execution time depends on the size of the propagated orbitals and the number of time-steps Distribution format:tar.gz Nature of the physical problem:Atoms put into the strong field of modern lasers display a wealth of novel phenomena that are not accessible to conventional perturbation theory where the external field is considered small as compared to inneratomic forces. Hence, the full ab initio solution of the time-dependent Schrödinger equation is desirable but in full dimensionality only feasible for no more than two (active) electrons. If many-electron effects come into play or effective ground state potentials are needed, (time-dependent) density functional theory may be employed. QPROP aims at providing tools for (i) the time-propagation of the wavefunction according to the time-dependent Schrödinger equation, (ii) the time-propagation of Kohn-Sham orbitals according to the time-dependent Kohn-Sham equations, and (iii) the energy-analysis of the final one-electron wavefunction (or the Kohn-Sham orbitals). Method of solution:An expansion of the wavefunction in spherical harmonics leads to a coupled set of equations for the radial wavefunctions. These radial wavefunctions are propagated using a split-operator technique and the Crank-Nicolson approximation for the short-time propagator. The initial ground state is obtained via imaginary time-propagation for spherically symmetric (but otherwise arbitrary) effective potentials. Excited states can be obtained through the combination of imaginary time-propagation and orthogonalization. For the Kohn-Sham scheme a multipole expansion of the effective potential is employed. Wavefunctions can be analyzed using the window-operator technique, facilitating the calculation of electron spectra, either angular-resolved or integrated Restrictions onto the complexity of the problem:The coupling of the atom to the external field is treated in dipole approximation. The time-dependent Schrödinger solver is restricted to the treatment of a single active electron. As concerns the time-dependent density functional mode of QPROP, the Hartree-potential (accounting for the classical electron-electron repulsion) is expanded up to the quadrupole. Only the monopole term of the Krieger-Li-Iafrate exchange potential is currently implemented. As in any nontrivial optimization problem, convergence to the optimal many-electron state (i.e. the ground state) is not automatically guaranteed External routines/libraries used:The program uses the well established libraries BLAS, LAPACK, and F2C

  19. Quantum Hall Electron Nematics

    NASA Astrophysics Data System (ADS)

    MacDonald, Allan

    In 2D electron systems hosted by crystals with hexagonal symmetry, electron nematic phases with spontaneously broken C3 symmetry are expected to occur in the quantum Hall regime when triplets of Landau levels associated with three different Fermi surface pockets are partially filled. The broken symmetry state is driven by intravalley Coulombic exchange interactions that favor spontaneously polarized valley occupations. I will discuss three different examples of 2D electron systems in which this type of broken symmetry state is expected to occur: i) the SnTe (111) surface, ii) the Bi (111) surface. and iii) unbalanced bilayer graphene. This type of quantum Hall electron nematic state has so far been confirmed only in the Bi (111) case, in which the anisotropic quasiparticle wavefunctions of the broken symmetry state were directly imaged. In the SnTe case the nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions and intervalley scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the three-fold Landau level degeneracy, yielding a ground state energy with 2 π/3 periodicity as a function of Zeeman-field orientation angle. I will comment on the possibility of observing similar states in the absence of a magnetic field. Supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03-02ER45958.

  20. From quantum to classical interactions between a free electron and a surface

    NASA Astrophysics Data System (ADS)

    Beierle, Peter James

    Quantum theory is often cited as being one of the most empirically validated theories in terms of its predictive power and precision. These attributes have led to numerous scientific discoveries and technological advancements. However, the precise relationship between quantum and classical physics remains obscure. The prevailing description is known as decoherence theory, where classical physics emerges from a more general quantum theory through environmental interaction. Sometimes referred to as the decoherence program, it does not solve the quantum measurement problem. We believe experiments performed between the microscopic and macroscopic world may help finish the program. The following considers a free electron that interacts with a surface (the environment), providing a controlled decoherence mechanism. There are non-decohering interactions to be examined and quantified before the weaker decohering effects are filtered out. In the first experiment, an electron beam passes over a surface that's illuminated by low-power laser light. This induces a surface charge redistribution causing the electron deflection. This phenomenon's parameters are investigated. This system can be well understood in terms of classical electrodynamics, and the technological applications of this electron beam switch are considered. Such phenomena may mask decoherence effects. A second experiment tests decoherence theory by introducing a nanofabricated diffraction grating before the surface. The electron undergoes diffraction through the grating, but as the electron passes over the surface it's predicted by various physical models that the electron will lose its wave interference property. Image charge based models, which predict a larger loss of contrast than what is observed, are falsified (despite experiencing an image charge force). A theoretical study demonstrates how a loss of contrast may not be due to the irreversible process decoherence, but dephasing (a reversible process due to randomization of the wavefunction's phase). To resolve this ambiguity, a correlation function on an ensemble of diffraction patterns is analyzed after an electron undergoes either process in a path integral calculation. The diffraction pattern is successfully recovered for dephasing, but not for decoherence, thus verifying it as a potential tool in experimental studies to determine the nature of the observed process.

  1. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    DOE PAGES

    McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai; ...

    2017-11-07

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less

  2. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less

  3. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo.

    PubMed

    McDaniel, T; D'Azevedo, E F; Li, Y W; Wong, K; Kent, P R C

    2017-11-07

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.

  4. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.

    2017-11-01

    Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.

  5. Properties of the water to boron nitride interaction: From zero to two dimensions with benchmark accuracy.

    PubMed

    Al-Hamdani, Yasmine S; Rossi, Mariana; Alfè, Dario; Tsatsoulis, Theodoros; Ramberger, Benjamin; Brandenburg, Jan Gerit; Zen, Andrea; Kresse, Georg; Grüneis, Andreas; Tkatchenko, Alexandre; Michaelides, Angelos

    2017-07-28

    Molecular adsorption on surfaces plays an important part in catalysis, corrosion, desalination, and various other processes that are relevant to industry and in nature. As a complement to experiments, accurate adsorption energies can be obtained using various sophisticated electronic structure methods that can now be applied to periodic systems. The adsorption energy of water on boron nitride substrates, going from zero to 2-dimensional periodicity, is particularly interesting as it calls for an accurate treatment of polarizable electrostatics and dispersion interactions, as well as posing a practical challenge to experiments and electronic structure methods. Here, we present reference adsorption energies, static polarizabilities, and dynamic polarizabilities, for water on BN substrates of varying size and dimension. Adsorption energies are computed with coupled cluster theory, fixed-node quantum Monte Carlo (FNQMC), the random phase approximation, and second order Møller-Plesset theory. These wavefunction based correlated methods are found to agree in molecular as well as periodic systems. The best estimate of the water/h-BN adsorption energy is -107±7 meV from FNQMC. In addition, the water adsorption energy on the BN substrates could be expected to grow monotonically with the size of the substrate due to increased dispersion interactions, but interestingly, this is not the case here. This peculiar finding is explained using the static polarizabilities and molecular dispersion coefficients of the systems, as computed from time-dependent density functional theory (DFT). Dynamic as well as static polarizabilities are found to be highly anisotropic in these systems. In addition, the many-body dispersion method in DFT emerges as a particularly useful estimation of finite size effects for other expensive, many-body wavefunction based methods.

  6. Enhancing the quantum efficiency of InGaN yellow-green light-emitting diodes by growth interruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming

    2014-08-18

    We studied the effect of multiple interruptions during the quantum well growth on emission-efficiency enhancement of InGaN-based yellow-green light emitting diodes on c-plane sapphire substrate. The output power and dominant wavelength at 20 mA are 0.24 mW and 556.3 nm. High resolution x-ray diffraction, photoluminescence, and electroluminescence measurements demonstrate that efficiency enhancement could be partially attributed to crystal quality improvement of the active region resulted from reduced In clusters and relevant defects on the surface of InGaN layer by introducing interruptions. The less tilted energy band in the quantum well is also caused by the decrease of In-content gradient along c-axis resultedmore » from In segregation during the interruptions, which increases spatial overlap of electron-hole wavefunction and thus the internal quantum efficiency. The latter also leads to smaller blueshift of dominant wavelength with current increasing.« less

  7. Combination of Wavefunction and Density Functional Approximations for Describing Electronic Correlation

    NASA Astrophysics Data System (ADS)

    Garza, Alejandro J.

    Perhaps the most important approximations to the electronic structure problem in quantum chemistry are those based on coupled cluster and density functional theories. Coupled cluster theory has been called the ``gold standard'' of quantum chemistry due to the high accuracy that it achieves for weakly correlated systems. Kohn-Sham density functionals based on semilocal approximations are, without a doubt, the most widely used methods in chemistry and material science because of their high accuracy/cost ratio. The root of the success of coupled cluster and density functionals is their ability to efficiently describe the dynamic part of the electron correlation. However, both traditional coupled cluster and density functional approximations may fail catastrophically when substantial static correlation is present. This severely limits the applicability of these methods to a plethora of important chemical and physical problems such as, e.g., the description of bond breaking, transition states, transition metal-, lanthanide- and actinide-containing compounds, and superconductivity. In an attempt to tackle this problem, nonstandard (single-reference) coupled cluster-based techniques that aim to describe static correlation have been recently developed: pair coupled cluster doubles (pCCD) and singlet-paired coupled cluster doubles (CCD0). The ability to describe static correlation in pCCD and CCD0 comes, however, at the expense of important amounts of dynamic correlation so that the high accuracy of standard coupled cluster becomes unattainable. Thus, the reliable and efficient description of static and dynamic correlation in a simultaneous manner remains an open problem for quantum chemistry and many-body theory in general. In this thesis, different ways to combine pCCD and CCD0 with density functionals in order to describe static and dynamic correlation simultaneously (and efficiently) are explored. The combination of wavefunction and density functional methods has a long history in quantum chemistry (practical implementations have appeared in the literature since the 1970s). However, this kind of techniques have not achieved widespread use due to problems such as double counting of correlation and the symmetry dilemma--the fact that wavefunction methods respect the symmetries of Hamiltonian, while modern functionals are designed to work with broken symmetry densities. Here, particular mathematical features of pCCD and CCD0 are exploited to avoid these problems in an efficient manner. The two resulting families of approximations, denoted as pCCD+DFT and CCD0+DFT, are shown to be able to describe static and dynamic correlation in standard benchmark calculations. Furthermore, it is also shown that CCD0+DFT lends itself to combination with correlation from the direct random phase approximation (dRPA). Inclusion of dRPA in the long-range via the technique of range-separation allows for the description of dispersion correlation, the remaining part of the correlation. Thus, when combined with the dRPA, CCD0+DFT can account for all three-types of electron correlation that are necessary to accurately describe molecular systems. Lastly, applications of CCD0+DFT to actinide chemistry are considered in this work. The accuracy of CCD0+DFT for predicting equilibrium geometries and vibrational frequencies of actinide molecules and ions is assessed and compared to that of well-established quantum chemical methods. For this purpose, the f0 actinyl series (UO2 2+, NpO 23+, PuO24+, the isoelectronic NUN, and Thorium (ThO, ThO2+) and Nobelium (NoO, NoO2) oxides are studied. It is shown that the CCD0+DFT description of these species agrees with available experimental data and is comparable with the results given by the highest-level calculations that are possible for such heavy compounds while being, at least, an order of magnitude lower in computational cost.

  8. Two charges on plane in a magnetic field I. “Quasi-equal” charges and neutral quantum system at rest cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar-Ruiz, M.A., E-mail: mauricio.escobar@nucleares.unam.mx; Turbiner, A.V., E-mail: turbiner@nucleares.unam.mx

    Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot). It is shown that for these two cases, when a neutral system is at rest (the center-of-mass momentum is zero), some outstanding properties occur: in double polar coordinates in CMS (R,ϕ) and relative (ρ,φ) coordinate systems (i) the eigenfunctions aremore » factorizable, all factors except for ρ-dependent are found analytically, they have definite relative angular momentum, (ii) dynamics in ρ-direction is the same for both systems being described by a funnel-type potential; (iii) at some discrete values of dimensionless magnetic fields b≤1 the system becomes quasi-exactly-solvable and a finite number of eigenfunctions in ρ are polynomials. The variational method is employed. Trial functions are based on combining for the phase of a wavefunction (a) the WKB expansion at large distances, (b) the perturbation theory at small distances (c) with a form of the known analytically (quasi-exactly-solvable) eigenfunctions. Such a form of trial function appears as a compact uniform approximation for lowest eigenfunctions. For the lowest states with relative magnetic quantum numbers s=0,1,2 this approximation gives not less than 7 s.d., 8 s.d., 9 s.d., respectively, for the total energy E(B) for magnetic fields 0.049a.u.« less

  9. Flexible scheme to truncate the hierarchy of pure states.

    PubMed

    Zhang, P-P; Bentley, C D B; Eisfeld, A

    2018-04-07

    The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalay, Berfin; Demiralp, Metin

    This proceedings paper aims to show the efficiency of an expectation value identity for a given algebraic function operator which is assumed to be depending pn only position operator. We show that this expectation value formula becomes enabled to determine the eigenstates of the quantum system Hamiltonian as long as it is autonomous and an appropriate basis set in position operator is used. This approach produces a denumerable infinite recursion which may be considered as revisited but at the same time generalized form of the recursions over the natural number powers of the position operator. The content of this shortmore » paper is devoted not only to the formulation of the new method but also to show that this novel approach is capable of catching the eigenvalues and eigenfunctions for Hydrogen-like systems, beyond that, it can give a hand to us to reveal the wavefunction structure. So it has also somehow a confirmative nature.« less

  11. Flexible scheme to truncate the hierarchy of pure states

    NASA Astrophysics Data System (ADS)

    Zhang, P.-P.; Bentley, C. D. B.; Eisfeld, A.

    2018-04-01

    The hierarchy of pure states (HOPS) is a wavefunction-based method that can be used for numerically modeling open quantum systems. Formally, HOPS recovers the exact system dynamics for an infinite depth of the hierarchy. However, truncation of the hierarchy is required to numerically implement HOPS. We want to choose a "good" truncation method, where by "good" we mean that it is numerically feasible to check convergence of the results. For the truncation approximation used in previous applications of HOPS, convergence checks are numerically challenging. In this work, we demonstrate the application of the "n-particle approximation" to HOPS. We also introduce a new approximation, which we call the "n-mode approximation." We then explore the convergence of these truncation approximations with respect to the number of equations required in the hierarchy in two exemplary problems: absorption and energy transfer of molecular aggregates.

  12. Two dimensional J-matrix approach to quantum scattering

    NASA Astrophysics Data System (ADS)

    Olumegbon, Ismail Adewale

    We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.

  13. Two dimensional J-matrix approach to quantum scattering

    NASA Astrophysics Data System (ADS)

    Olumegbon, Ismail Adewale

    2013-01-01

    We present an extension of the J-matrix method of scattering to two dimensions in cylindrical coordinates. In the J-matrix approach we select a zeroth order Hamiltonian, H0, which is exactly solvable in the sense that we select a square integrable basis set that enable us to have an infinite tridiagonal representation for H0. Expanding the wavefunction in this basis makes the wave equation equivalent to a three-term recursion relation for the expansion coefficients. Consequently, finding solutions of the recursion relation is equivalent to solving the original H0 problem (i.e., determining the expansion coefficients of the system's wavefunction). The part of the original potential interaction which cannot be brought to an exact tridiagonal form is cut in an NxN basis space and its matrix elements are computed numerically using Gauss quadrature approach. Hence, this approach embodies powerful tools in the analysis of solutions of the wave equation by exploiting the intimate connection and interplay between tridiagonal matrices and the theory of orthogonal polynomials. In such analysis, one is at liberty to employ a wide range of well established methods and numerical techniques associated with these settings such as quadrature approximation and continued fractions. To demonstrate the utility, usefulness, and accuracy of the extended method we use it to obtain the bound states for an illustrative short range potential problem.

  14. CheckDen, a program to compute quantum molecular properties on spatial grids.

    PubMed

    Pacios, Luis F; Fernandez, Alberto

    2009-09-01

    CheckDen, a program to compute quantum molecular properties on a variety of spatial grids is presented. The program reads as unique input wavefunction files written by standard quantum packages and calculates the electron density rho(r), promolecule and density difference function, gradient of rho(r), Laplacian of rho(r), information entropy, electrostatic potential, kinetic energy densities G(r) and K(r), electron localization function (ELF), and localized orbital locator (LOL) function. These properties can be calculated on a wide range of one-, two-, and three-dimensional grids that can be processed by widely used graphics programs to render high-resolution images. CheckDen offers also other options as extracting separate atom contributions to the property computed, converting grid output data into CUBE and OpenDX volumetric data formats, and perform arithmetic combinations with grid files in all the recognized formats.

  15. Magnetic Polarizability of Virtual (s\\bar{s}) and (c\\bar{c}) Pairs in the Nucleon

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2017-12-01

    We suggest 3 P 0 quantum state of virtual (s\\bar{s}) pairs in the nucleon can be polarised by the internal fields permeating the volume of the nucleon (proton or neutron). Due to the quadratic Zeeman interaction, 3 P 0 wavefunction of virtual (q\\bar{q}) pairs acquires the admixture of 1 P 10 quantum state in the magnetic field, which generates the antiparallel polarization of s and \\bar{s} quarks (in the nucleon). Considering the internal magnetic fields of neutron and proton (originating from their measured magnetic dipole moments), we suggest the induced s-quark polarization in the neutron to be of the oposite direction compared to the proton case. We mention the influence of the internal chromo-magnetic fields on the quantum state of (q\\bar{q}) pairs in the nucleon and we discuss also the expected behaviour of virtual (c\\bar{c}) pairs.

  16. Helium like impurity in CdTe/ Cd1-xMnxTe semimagnetic semiconductors under magnetic field: Dimensionality effect on electron - Electron interaction

    NASA Astrophysics Data System (ADS)

    Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram

    2017-11-01

    We study the effect of magnetic field on the Coulomb interaction between the two electrons confined inside a CdTe/Cd1-xMnxTe Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD) for the composition of Mn2+ ion, x = 0.3. The two particle Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the applied magnetic field tremendously alters the Coulomb interaction of the electrons and their binding to the donor impurity by shrinking the spatial extension of the two particle wavefunction and leads to tunnelling through the barrier. The qualitative phenomenon involved in such variation of electron - electron interaction with the magnetic field has also been explained through the 3D - plot of the probability density function.

  17. Matrix product state description of Halperin states

    NASA Astrophysics Data System (ADS)

    Crépel, V.; Estienne, B.; Bernevig, B. A.; Lecheminant, P.; Regnault, N.

    2018-04-01

    Many fractional quantum Hall states can be expressed as a correlator of a given conformal field theory used to describe their edge physics. As a consequence, these states admit an economical representation as an exact matrix product state (MPS) that was extensively studied for the systems without any spin or any other internal degrees of freedom. In that case, the correlators are built from a single electronic operator, which is primary with respect to the underlying conformal field theory. We generalize this construction to the archetype of Abelian multicomponent fractional quantum Hall wave functions, the Halperin states. These can be written as conformal blocks involving multiple electronic operators and we explicitly derive their exact MPS representation. In particular, we deal with the caveat of the full wave-function symmetry and show that any additional SU(2) symmetry is preserved by the natural MPS truncation scheme provided by the conformal dimension. We use our method to characterize the topological order of the Halperin states by extracting the topological entanglement entropy. We also evaluate their bulk correlation lengths, which are compared to plasma analogy arguments.

  18. 6D fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Heckman, Jonathan J.; Tizzano, Luigi

    2018-05-01

    We present a 6D generalization of the fractional quantum Hall effect involving membranes coupled to a three-form potential in the presence of a large background four-form flux. The low energy physics is governed by a bulk 7D topological field theory of abelian three-form potentials with a single derivative Chern-Simons-like action coupled to a 6D anti-chiral theory of Euclidean effective strings. We derive the fractional conductivity, and explain how continued fractions which figure prominently in the classification of 6D superconformal field theories correspond to a hierarchy of excited states. Using methods from conformal field theory we also compute the analog of the Laughlin wavefunction. Compactification of the 7D theory provides a uniform perspective on various lower-dimensional gapped systems coupled to boundary degrees of freedom. We also show that a supersymmetric version of the 7D theory embeds in M-theory, and can be decoupled from gravity. Encouraged by this, we present a conjecture in which IIB string theory is an edge mode of a 10 + 2-dimensional bulk topological theory, thus placing all twelve dimensions of F-theory on a physical footing.

  19. Rashba quantum wire: exact solution and ballistic transport.

    PubMed

    Perroni, C A; Bercioux, D; Ramaglia, V Marigliano; Cataudella, V

    2007-05-08

    The effect of Rashba spin-orbit interaction in quantum wires with hard-wall boundaries is discussed. The exact wavefunction and eigenvalue equation are worked out, pointing out the mixing between the spin and spatial parts. The spectral properties are also studied within perturbation theory with respect to the strength of the spin-orbit interaction and diagonalization procedure. A comparison is made with the results of a simple model, the two-band model, that takes account only of the first two sub-bands of the wire. Finally, the transport properties within the ballistic regime are analytically calculated for the two-band model and through a tight-binding Green function for the entire system. Single and double interfaces separating regions with different strengths of spin-orbit interaction are analysed by injecting carriers into the first and the second sub-band. It is shown that in the case of a single interface the spin polarization in the Rashba region is different from zero, and in the case of two interfaces the spin polarization shows oscillations due to spin-selective bound states.

  20. Tunable Magnetic Exchange Interactions in Manganese-Doped Inverted Core-Shell ZnSe-CdSe Nanocrystals

    DTIC Science & Technology

    2009-01-01

    exchange coupling even for a singlemagnetic dopant atom12,17. Whereas magnetically doped monocomponent nanocrystals are well established16, wavefunction...Solid State Commun. 114, 547–550 (2000). 13. Radovanovic, P. V. & Gamelin, D. R. Electronic absorption spectroscopy of cobalt ions in diluted magnetic...D. R. Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): Physical property dependence on dopant locale. J. Am. Chem. Soc

  1. Double-quantum resonances and exciton-scattering in coherent 2D spectroscopy of photosynthetic complexes

    PubMed Central

    Abramavicius, Darius; Voronine, Dmitri V.; Mukamel, Shaul

    2008-01-01

    A simulation study demonstrates how the nonlinear optical response of the Fenna–Matthews–Olson photosynthetic light-harvesting complex may be explored by a sequence of laser pulses specifically designed to probe the correlated dynamics of double excitations. Cross peaks in the 2D correlation plots of the spectra reveal projections of the double-exciton wavefunctions onto a basis of direct products of single excitons. An alternative physical interpretation of these signals in terms of quasiparticle scattering is developed. PMID:18562293

  2. Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Lori A.; Marshall, Michael S.; Sherrill, C. David, E-mail: sherrill@gatech.edu

    2014-12-21

    A systematic examination of noncovalent interactions as modeled by wavefunction theory is presented in comparison to gold-standard quality benchmarks available for 345 interaction energies of 49 bimolecular complexes. Quantum chemical techniques examined include spin-component-scaling (SCS) variations on second-order perturbation theory (MP2) [SCS, SCS(N), SCS(MI)] and coupled cluster singles and doubles (CCSD) [SCS, SCS(MI)]; also, method combinations designed to improve dispersion contacts [DW-MP2, MP2C, MP2.5, DW-CCSD(T)-F12]; where available, explicitly correlated (F12) counterparts are also considered. Dunning basis sets augmented by diffuse functions are employed for all accessible ζ-levels; truncations of the diffuse space are also considered. After examination of both accuracymore » and performance for 394 model chemistries, SCS(MI)-MP2/cc-pVQZ can be recommended for general use, having good accuracy at low cost and no ill-effects such as imbalance between hydrogen-bonding and dispersion-dominated systems or non-parallelity across dissociation curves. Moreover, when benchmarking accuracy is desirable but gold-standard computations are unaffordable, this work recommends silver-standard [DW-CCSD(T**)-F12/aug-cc-pVDZ] and bronze-standard [MP2C-F12/aug-cc-pVDZ] model chemistries, which support accuracies of 0.05 and 0.16 kcal/mol and efficiencies of 97.3 and 5.5 h for adenine·thymine, respectively. Choice comparisons of wavefunction results with the best symmetry-adapted perturbation theory [T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, and C. D. Sherrill, J. Chem. Phys. 140, 094106 (2014)] and density functional theory [L. A. Burns, Á. Vázquez-Mayagoitia, B. G. Sumpter, and C. D. Sherrill, J. Chem. Phys. 134, 084107 (2011)] methods previously studied for these databases are provided for readers' guidance.« less

  3. Vertical field-effect transistor based on wave-function extension

    NASA Astrophysics Data System (ADS)

    Sciambi, A.; Pelliccione, M.; Lilly, M. P.; Bank, S. R.; Gossard, A. C.; Pfeiffer, L. N.; West, K. W.; Goldhaber-Gordon, D.

    2011-08-01

    We demonstrate a mechanism for a dual layer, vertical field-effect transistor, in which nearly depleting one layer will extend its wave function to overlap the other layer and increase tunnel current. We characterize this effect in a specially designed GaAs/AlGaAs device, observing a tunnel current increase of two orders of magnitude at cryogenic temperatures, and we suggest extrapolations of the design to other material systems such as graphene.

  4. Quantum thermodynamic cycles and quantum heat engines. II.

    PubMed

    Quan, H T

    2009-04-01

    We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.

  5. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.

    2012-02-16

    Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z inmore » AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse momentum distributions. The effective confining potential also creates quark-antiquark pairs from the amplitude q {yields} q{bar q}q. Thus in holographic QCD higher Fock states can have any number of extra q{bar q} pairs. We discuss the relevance of higher Fock-states for describing the detailed structure of space and time-like form factors. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also obtained.« less

  6. Status in calculating electronic excited states in transition metal oxides from first principles.

    PubMed

    Bendavid, Leah Isseroff; Carter, Emily Ann

    2014-01-01

    Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.

  7. Nondynamical correlation energy in model molecular systems

    NASA Astrophysics Data System (ADS)

    Chojnacki, Henryk

    The hypersurfaces for the deprotonation processes have been studied at the nonempirical level for H3O+, NH+4, PH+4, and H3S+ cations within their correlation consistent basis set. The potential energy curves were calculated and nondynamical correlation energies analyzed. We have found that the restricted Hartree-Fock wavefunction leads to the improper dissociation limit and, in the three latest cases requires multireference description. We conclude that these systems may be treated as a good models for interpretation of the proton transfer mechanism as well as for testing one-determinantal or multireference cases.

  8. Thermal isomerization of azobenzenes: on the performance of Eyring transition state theory.

    PubMed

    Rietze, Clemens; Titov, Evgenii; Lindner, Steven; Saalfrank, Peter

    2017-08-09

    The thermal [Formula: see text] (back-)isomerization of azobenzenes is a prototypical reaction occurring in molecular switches. It has been studied for decades, yet its kinetics is not fully understood. In this paper, quantum chemical calculations are performed to model the kinetics of an experimental benchmark system, where a modified azobenzene (AzoBiPyB) is embedded in a metal-organic framework (MOF). The molecule can be switched thermally from cis to trans, under solvent-free conditions. We critically test the validity of Eyring transition state theory for this reaction. As previously found for other azobenzenes (albeit in solution), good agreement between theory and experiment emerges for activation energies and activation free energies, already at a comparatively simple level of theory, B3LYP/6-31G * including dispersion corrections. However, theoretical Arrhenius prefactors and activation entropies are in qualitiative disagreement with experiment. Several factors are discussed that may have an influence on activation entropies, among them dynamical and geometric constraints (imposed by the MOF). For a simpler model-[Formula: see text] isomerization in azobenzene-a systematic test of quantum chemical methods from both density functional theory and wavefunction theory is carried out in the context of Eyring theory. Also, the effect of anharmonicities on activation entropies is discussed for this model system. Our work highlights capabilities and shortcomings of Eyring transition state theory and quantum chemical methods, when applied for the [Formula: see text] (back-)isomerization of azobenzenes under solvent-free conditions.

  9. Thermal isomerization of azobenzenes: on the performance of Eyring transition state theory

    NASA Astrophysics Data System (ADS)

    Rietze, Clemens; Titov, Evgenii; Lindner, Steven; Saalfrank, Peter

    2017-08-01

    The thermal Z\\to E (back-)isomerization of azobenzenes is a prototypical reaction occurring in molecular switches. It has been studied for decades, yet its kinetics is not fully understood. In this paper, quantum chemical calculations are performed to model the kinetics of an experimental benchmark system, where a modified azobenzene (AzoBiPyB) is embedded in a metal-organic framework (MOF). The molecule can be switched thermally from cis to trans, under solvent-free conditions. We critically test the validity of Eyring transition state theory for this reaction. As previously found for other azobenzenes (albeit in solution), good agreement between theory and experiment emerges for activation energies and activation free energies, already at a comparatively simple level of theory, B3LYP/6-31G* including dispersion corrections. However, theoretical Arrhenius prefactors and activation entropies are in qualitiative disagreement with experiment. Several factors are discussed that may have an influence on activation entropies, among them dynamical and geometric constraints (imposed by the MOF). For a simpler model—Z\\to E isomerization in azobenzene—a systematic test of quantum chemical methods from both density functional theory and wavefunction theory is carried out in the context of Eyring theory. Also, the effect of anharmonicities on activation entropies is discussed for this model system. Our work highlights capabilities and shortcomings of Eyring transition state theory and quantum chemical methods, when applied for the Z\\to E (back-)isomerization of azobenzenes under solvent-free conditions.

  10. Quantum control of coherent π -electron ring currents in polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mineo, Hirobumi; Fujimura, Yuichi

    2017-12-01

    We present results for quantum optimal control (QOC) of the coherent π electron ring currents in polycyclic aromatic hydrocarbons (PAHs). Since PAHs consist of a number of condensed benzene rings, in principle, there exist various coherent ring patterns. These include the ring current localized to a designated benzene ring, the perimeter ring current that flows along the edge of the PAH, and the middle ring current of PAHs having an odd number of benzene rings such as anthracene. In the present QOC treatment, the best target wavefunction for generation of the ring current through a designated path is determined by a Lagrange multiplier method. The target function is integrated into the ordinary QOC theory. To demonstrate the applicability of the QOC procedure, we took naphthalene and anthracene as the simplest examples of linear PAHs. The mechanisms of ring current generation were clarified by analyzing the temporal evolutions of the electronic excited states after coherent excitation by UV pulses or (UV+IR) pulses as well as those of electric fields of the optimal laser pulses. Time-dependent simulations of the perimeter ring current and middle ring current of anthracene, which are induced by analytical electric fields of UV pulsed lasers, were performed to reproduce the QOC results.

  11. Quantum size and magnesium composition effects on the optical absorption in the MgxZn(1-x)O/ZnO quantum well

    NASA Astrophysics Data System (ADS)

    Dakhlaoui, Hassen ben Bechir; Mouna, Nefzi

    2018-02-01

    In this work, we investigated the effects of polarizations and structural parameters on the optical absorption coefficient (OAC) and the intersubband transition between the three lowest energy levels E1,E2 , and E3 in the MgxZn(1-x)O/ZnO single quantum well. The energy of the electron in each level and its respective wavefunction are calculated by the numerical solution of Schrödinger and Poisson equations self-consistently using an effective mass approximation. Our findings exhibit that the intersubband transitions, ΔE12 and ΔE13 , can be altered and controlled by varying the quantum well width and the magnesium composition, x. Moreover, our results suggest that the optical absorption coefficients, α12 and α13 , can be modulated principally by adjusting the quantum well width, especially the optical absorption coefficient (α12), which presents a red shift by raising the quantum well thickness. Contrary to α12 , the optical absorption coefficient, α13 , can present either a red or a blue shift by increasing the quantum well width. The process responsible for this behavior, which can be suitable for optoelectronic device applications, is discussed here in detail.

  12. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  13. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar, E-mail: t-seideman@northwestern.edu

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify ourmore » approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.« less

  14. Two-electron spin correlations in precision placed donors in silicon.

    PubMed

    Broome, M A; Gorman, S K; House, M G; Hile, S J; Keizer, J G; Keith, D; Hill, C D; Watson, T F; Baker, W J; Hollenberg, L C L; Simmons, M Y

    2018-03-07

    Substitutional donor atoms in silicon are promising qubits for quantum computation with extremely long relaxation and dephasing times demonstrated. One of the critical challenges of scaling these systems is determining inter-donor distances to achieve controllable wavefunction overlap while at the same time performing high fidelity spin readout on each qubit. Here we achieve such a device by means of scanning tunnelling microscopy lithography. We measure anti-correlated spin states between two donor-based spin qubits in silicon separated by 16 ± 1 nm. By utilising an asymmetric system with two phosphorus donors at one qubit site and one on the other (2P-1P), we demonstrate that the exchange interaction can be turned on and off via electrical control of two in-plane phosphorus doped detuning gates. We determine the tunnel coupling between the 2P-1P system to be 200 MHz and provide a roadmap for the observation of two-electron coherent exchange oscillations.

  15. Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.

    2015-09-14

    We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less

  16. Coherence penalty functional: A simple method for adding decoherence in Ehrenfest dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimov, Alexey V., E-mail: alexvakimov@gmail.com, E-mail: oleg.prezhdo@rochester.edu; Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973; Long, Run

    2014-05-21

    We present a new semiclassical approach for description of decoherence in electronically non-adiabatic molecular dynamics. The method is formulated on the grounds of the Ehrenfest dynamics and the Meyer-Miller-Thoss-Stock mapping of the time-dependent Schrödinger equation onto a fully classical Hamiltonian representation. We introduce a coherence penalty functional (CPF) that accounts for decoherence effects by randomizing the wavefunction phase and penalizing development of coherences in regions of strong non-adiabatic coupling. The performance of the method is demonstrated with several model and realistic systems. Compared to other semiclassical methods tested, the CPF method eliminates artificial interference and improves agreement with the fullymore » quantum calculations on the models. When applied to study electron transfer dynamics in the nanoscale systems, the method shows an improved accuracy of the predicted time scales. The simplicity and high computational efficiency of the CPF approach make it a perfect practical candidate for applications in realistic systems.« less

  17. Translation of time-reversal violation in the neutral K-meson system into a table-top mechanical system

    NASA Astrophysics Data System (ADS)

    Reiser, Andreas; Schubert, Klaus R.; Stiewe, Jürgen

    2012-08-01

    Weak interactions break time-reversal (T) symmetry in the two-state system of neutral K-mesons. We present and discuss a two-state mechanical system, i.e. a Foucault-type pendulum on a rotating table, for a full representation of {K^0}{{\\overlineK}{}^0} transitions by the pendulum motions including T violation. The pendulum moves with two different oscillation frequencies and two different magnetic dampings. Its equation of motion is identical to the differential equation for the real part of the CPT-symmetric K-meson wavefunction. The pendulum is able to represent microscopic CP and T violation with CPT symmetry owing to the macroscopic Coriolis force, which breaks the symmetry under reversal-of-motion. Video clips of the pendulum motions are given as supplementary material.

  18. Anharmonic quantum mechanical systems do not feature phase space trajectories

    NASA Astrophysics Data System (ADS)

    Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole

    2018-07-01

    Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.

  19. Electrical tuning of the oscillator strength in type II InAs/GaInSb quantum wells for active region of passively mode-locked interband cascade lasers

    NASA Astrophysics Data System (ADS)

    Dyksik, Mateusz; Motyka, Marcin; Kurka, Marcin; Ryczko, Krzysztof; Misiewicz, Jan; Schade, Anne; Kamp, Martin; Höfling, Sven; Sęk, Grzegorz

    2017-11-01

    Two designs of active region for an interband cascade laser, based on double or triple GaInSb/InAs type II quantum wells (QWs), were compared with respect to passive mode-locked operation in the mid-infrared range around 4 µm. The layer structure and electron and hole wavefunctions under external electric field were engineered to allow controlling the optical transition oscillator strength and the resulting lifetimes. As a result, the investigated structures can mimic absorber-like and gain-like sections of a mode-locked device when properly polarized with opposite bias. A significantly larger oscillator strength tuning range for triple QWs was experimentally verified by Fourier-transform photoreflectance.

  20. Analytical model for the threshold voltage of III-V nanowire transistors including quantum effects

    NASA Astrophysics Data System (ADS)

    Marin, E. G.; Ruiz, F. G.; Tienda-Luna, I. M.; Godoy, A.; Gámiz, F.

    2014-02-01

    In this work we propose an analytical model for the threshold voltage (VT) of III-V cylindrical nanowires, that takes into consideration the two dimensional quantum confinement of the carriers, the Fermi-Dirac statistics, the wave-function penetration into the gate insulator and the non-parabolicity of the conduction band structure. A simple expression for VT is obtained assuming some suitable approximations. The model results are compared to those of a 2D self consistent Schrödinger-Poisson solver, demonstrating a good fit for different III-V materials, insulator thicknesses and nanowire sizes with diameter down to 5 nm. The VT dependence on the confinement effective mass is discussed. The different contributions to VT are analyzed showing significant variations among different III-V materials.

  1. Local quantum measurement and no-signaling imply quantum correlations.

    PubMed

    Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S

    2010-04-09

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  2. Two-dimensional Electronic Double-Quantum Coherence Spectroscopy

    PubMed Central

    Kim, Jeongho; Mukamel, Shaul

    2009-01-01

    CONSPECTUS The theory of electronic structure of many-electron systems like molecules is extraordinarily complicated. A lot can be learned by considering how electron density is distributed, on average, in the average field of the other electrons in the system. That is, mean field theory. However, to describe quantitatively chemical bonds, reactions, and spectroscopy requires consideration of the way that electrons avoid each other by the way they move; this is called electron correlation (or in physics, the many-body problem for fermions). While great progress has been made in theory, there is a need for incisive experimental tests that can be undertaken for large molecular systems in the condensed phase. Here we report a two-dimensional (2D) optical coherent spectroscopy that correlates the double excited electronic states to constituent single excited states. The technique, termed two-dimensional double-coherence spectroscopy (2D-DQCS), makes use of multiple, time-ordered ultrashort coherent optical pulses to create double- and single-quantum coherences over time intervals between the pulses. The resulting two-dimensional electronic spectrum maps the energy correlation between the first excited state and two-photon allowed double-quantum states. The principle of the experiment is that when the energy of the double-quantum state, viewed in simple models as a double HOMO to LUMO excitation, equals twice that of a single excitation, then no signal is radiated. However, electron-electron interactions—a combination of exchange interactions and electron correlation—in real systems generates a signal that reveals precisely how the energy of the double-quantum resonance differs from twice the single-quantum resonance. The energy shift measured in this experiment reveals how the second excitation is perturbed by both the presence of the first excitation and the way that the other electrons in the system have responded to the presence of that first excitation. We compare a series of organic dye molecules and find that the energy offset for adding a second electronic excitation to the system relative to the first excitation is on the order of tens of milli-electronvolts, and it depends quite sensitively on molecular geometry. These results demonstrate the effectiveness of 2D-DQCS for elucidating quantitative information about electron-electron interactions, many-electron wavefunctions, and electron correlation in electronic excited states and excitons. PMID:19552412

  3. Interferometry with non-classical motional states of a Bose-Einstein condensate.

    PubMed

    van Frank, S; Negretti, A; Berrada, T; Bücker, R; Montangero, S; Schaff, J-F; Schumm, T; Calarco, T; Schmiedmayer, J

    2014-05-30

    The Ramsey interferometer is a prime example of precise control at the quantum level. It is usually implemented using internal states of atoms, molecules or ions, for which powerful manipulation procedures are now available. Whether it is possible to control external degrees of freedom of more complex, interacting many-body systems at this level remained an open question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose-Einstein condensate in an anharmonic trap. The control sequences used to manipulate the condensate wavefunction are obtained from optimal control theory and are directly optimized to maximize the interferometric contrast. They permit a fast manipulation of the atomic ensemble compared to the intrinsic decay processes and many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in the experimental implementation.

  4. Fritz London and the scale of quantum mechanisms

    NASA Astrophysics Data System (ADS)

    Monaldi, Daniela

    2017-11-01

    Fritz London's seminal idea of ;quantum mechanisms of macroscopic scale;, first articulated in 1946, was the unanticipated result of two decades of research, during which London pursued quantum-mechanical explanations of various kinds of systems of particles at different scales. He started at the microphysical scale with the hydrogen molecule, generalized his approach to chemical bonds and intermolecular forces, then turned to macrophysical systems like superconductors and superfluid helium. Along this path, he formulated a set of concepts-the quantum mechanism of exchange, the rigidity of the wave function, the role of quantum statistics in multi-particle systems, the possibility of order in momentum space-that eventually coalesced into a new conception of systems of equal particles. In particular, it was London's clarification of Bose-Einstein condensation that enabled him to formulate the notion of superfluids, and led him to the recognition that quantum mechanics was not, as it was commonly assumed, relevant exclusively as a micromechanics.

  5. ADHM and the 4d quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Barns-Graham, Alec; Dorey, Nick; Lohitsiri, Nakarin; Tong, David; Turner, Carl

    2018-04-01

    Yang-Mills instantons are solitonic particles in d = 4 + 1 dimensional gauge theories. We construct and analyse the quantum Hall states that arise when these particles are restricted to the lowest Landau level. We describe the ground state wavefunctions for both Abelian and non-Abelian quantum Hall states. Although our model is purely bosonic, we show that the excitations of this 4d quantum Hall state are governed by the Nekrasov partition function of a certain five dimensional supersymmetric gauge theory with Chern-Simons term. The partition function can also be interpreted as a variant of the Hilbert series of the instanton moduli space, counting holomorphic sections rather than holomorphic functions. It is known that the Hilbert series of the instanton moduli space can be rewritten using mirror symmetry of 3d gauge theories in terms of Coulomb branch variables. We generalise this approach to include the effect of a five dimensional Chern-Simons term. We demonstrate that the resulting Coulomb branch formula coincides with the corresponding Higgs branch Molien integral which, in turn, reproduces the standard formula for the Nekrasov partition function.

  6. Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization

    NASA Astrophysics Data System (ADS)

    Kitano, Ryuichiro; Li, Tianjun

    2003-06-01

    A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group.

  7. JOURNAL SCOPE GUIDELINES: Paper classification scheme

    NASA Astrophysics Data System (ADS)

    2005-06-01

    This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas

  8. Transparent conducting oxides: A δ-doped superlattice approach

    PubMed Central

    Cooper, Valentino R.; Seo, Sung S. Ambrose; Lee, Suyoun; Kim, Jun Sung; Choi, Woo Seok; Okamoto, Satoshi; Lee, Ho Nyung

    2014-01-01

    Metallic states appearing at interfaces between dissimilar insulating oxides exhibit intriguing phenomena such as superconductivity and magnetism. Despite tremendous progress in understanding their origins, very little is known about how to control the conduction pathways and the distribution of charge carriers. Using optical spectroscopic measurements and density-functional theory (DFT) simulations, we examine the effect of SrTiO3 (STO) spacer layer thickness on the optical transparency and carrier distribution in La δ-doped STO superlattices. We experimentally observe that these metallic superlattices remain highly transparent to visible light; a direct consequence of the appropriately large gap between the O 2p and Ti 3d states. In superlattices with relatively thin STO layers, we predict that three-dimensional conduction would occur due to appreciable overlap of quantum mechanical wavefunctions between neighboring δ-doped layers. These results highlight the potential for using oxide heterostructures in optoelectronic devices by providing a unique route for creating novel transparent conducting oxides. PMID:25109668

  9. Saddle point localization of molecular wavefunctions.

    PubMed

    Mellau, Georg Ch; Kyuberis, Alexandra A; Polyansky, Oleg L; Zobov, Nikolai; Field, Robert W

    2016-09-15

    The quantum mechanical description of isomerization is based on bound eigenstates of the molecular potential energy surface. For the near-minimum regions there is a textbook-based relationship between the potential and eigenenergies. Here we show how the saddle point region that connects the two minima is encoded in the eigenstates of the model quartic potential and in the energy levels of the [H, C, N] potential energy surface. We model the spacing of the eigenenergies with the energy dependent classical oscillation frequency decreasing to zero at the saddle point. The eigenstates with the smallest spacing are localized at the saddle point. The analysis of the HCN ↔ HNC isomerization states shows that the eigenstates with small energy spacing relative to the effective (v1, v3, ℓ) bending potentials are highly localized in the bending coordinate at the transition state. These spectroscopically detectable states represent a chemical marker of the transition state in the eigenenergy spectrum. The method developed here provides a basis for modeling characteristic patterns in the eigenenergy spectrum of bound states.

  10. Making Sense of Bell's Theorem and Quantum Nonlocality

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen

    2017-05-01

    Bell's theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell's theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system (one with which the original system has previously interacted). Einstein was repulsed by such "spooky action at a distance" and was led to question whether quantum mechanics could provide a complete description of physical reality. In this paper I argue that quantum mechanics does not require spooky action at a distance of any kind and yet it is entirely reasonable to question the assumption that quantum mechanics can provide a complete description of physical reality. The magic of entangled quantum states has little to do with entanglement and everything to do with superposition, a property of all quantum systems and a foundational tenet of quantum mechanics.

  11. Time reversibility of quantum diffusion in small-world networks

    NASA Astrophysics Data System (ADS)

    Han, Sung-Guk; Kim, Beom Jun

    2012-02-01

    We study the time-reversal dynamics of a tight-binding electron in the Watts-Strogatz (WS) small-world networks. The localized initial wave packet at time t = 0 diffuses as time proceeds until the time-reversal operation, together with the momentum perturbation of the strength η, is made at the reversal time T. The time irreversibility is measured by I = |Π( t = 2 T) - Π( t = 0)|, where Π is the participation ratio gauging the extendedness of the wavefunction and for convenience, t is measured forward even after the time reversal. When η = 0, the time evolution after T makes the wavefunction at t = 2 T identical to the one at t = 0, and we find I = 0, implying a null irreversibility or a complete reversibility. On the other hand, as η is increased from zero, the reversibility becomes weaker, and we observe enhancement of the irreversibility. We find that I linearly increases with increasing η in the weakly-perturbed region, and that the irreversibility is much stronger in the WS network than in the local regular network.

  12. Symmetry and the geometric phase in ultracold hydrogen-exchange reactions

    NASA Astrophysics Data System (ADS)

    Croft, J. F. E.; Hazra, J.; Balakrishnan, N.; Kendrick, B. K.

    2017-08-01

    Quantum reactive scattering calculations are reported for the ultracold hydrogen-exchange reaction and its non-reactive atom-exchange isotopic counterparts, proceeding from excited rotational states. It is shown that while the geometric phase (GP) does not necessarily control the reaction to all final states, one can always find final states where it does. For the isotopic counterpart reactions, these states can be used to make a measurement of the GP effect by separately measuring the even and odd symmetry contributions, which experimentally requires nuclear-spin final-state resolution. This follows from symmetry considerations that make the even and odd identical-particle exchange symmetry wavefunctions which include the GP locally equivalent to the opposite symmetry wavefunctions which do not. It is shown how this equivalence can be used to define a constant which quantifies the GP effect and can be obtained solely from experimentally observable rates. This equivalence reflects the important role that discrete symmetries play in ultracold chemistry and highlights the key role that ultracold reactions can play in understanding fundamental aspects of chemical reactivity more generally.

  13. Multipole expansions and Fock symmetry of the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Meremianin, A. V.; Rost, J.-M.

    2006-10-01

    The main difficulty in utilizing the O(4) symmetry of the hydrogen atom in practical calculations is the dependence of the Fock stereographic projection on energy. This is due to the fact that the wavefunctions of the states with different energies are proportional to the hyperspherical harmonics (HSH) corresponding to different points on the hypersphere. Thus, the calculation of the matrix elements reduces to the problem of re-expanding HSH in terms of HSH depending on different points on the hypersphere. We solve this problem by applying the technique of multipole expansions for four-dimensional HSH. As a result, we obtain the multipole expansions whose coefficients are the matrix elements of the boost operator taken between hydrogen wavefunctions (i.e., hydrogen form factors). The explicit expressions for those coefficients are derived. It is shown that the hydrogen matrix elements can be presented as derivatives of an elementary function. Such an operator representation is convenient for the derivation of recurrence relations connecting matrix elements between states corresponding to different values of the quantum numbers n and l.

  14. Quantum calculations for one-dimensional cooling of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vredenbregt, E.; Doery, M.; Bergeman, T.

    1993-05-01

    We report theoretical velocity distributions for sub-Doppler laser cooling of metastable He*(2{sup 3}S), calculated with the Density Matrix and Monte Carlo Wavefunction approaches. For low-field (B = 50 mG) magnetic-field induced laser cooling on the 2{sup 3}S {yields} (2{sup 3}P, J = 2) transition ({lambda} = 1083 nm), we get a narrow, sub-Doppler structure, consisting of three, {approximately}1 photon recoil wide peaks, spaced {approximately}1 recoil apart. With increasing field, this three-peak structure develops into two velocity-selective resonance (VSR) peaks, each {approximately}2 recoils wide. For the 2{sup 3}S {yields} (3{sup 3}P, J = 2) transition ({lambda} 389 nm), VSR peaks aremore » predicted to appear at low field without the third, central peak, which only develops at higher field (B = 200 mG). Additional computations deal with polarization-gradient cooling. In general, we find that for one-dimensional cooling calculations, the Density Matrix method is more efficient than the Monte Carlo Wavefunction approach. Experiments are currently under way to test the results.« less

  15. Introduction

    NASA Astrophysics Data System (ADS)

    Bub, Jeffrey; Fuchs, Christopher A.

    The great debate between Einstein and Bohr on the interpretation of quantum mechanics culminated with the Einstein-Podolsky-Rosen (EPR) paper in 1935, "Can quantum-mechanical description of physical reality be considered complete?" (Einstein, Podolsky, & Rosen, 1935, and Bohr's reply, 1935). EPR showed that composite quantum systems, consisting of widely separated subsystems, could exist in certain quantum states that they thought spelled trouble for the Copenhagen interpretation. Specifically, they argued that for such states, the correlations between the outcomes of measurements on the subsystems were incompatible with the assumption that the quantum state was a complete description of the system. They concluded that quantum mechanics was an incomplete theory-that the quantum state could not be the whole story about a system.

  16. PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics

    NASA Astrophysics Data System (ADS)

    Fring, Andreas; Jones, Hugh; Znojil, Miloslav

    2008-06-01

    Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the growing community of this subject. It is, for instance, well understood that the reality of the spectrum can be attributed either to the unbroken PT-symmetry of the entire system, that is, invariance of the Hamiltonian and the corresponding wavefunctions under a simultaneous parity transformation and time reversal, or more generally to its pseudo-Hermiticity . When the spectrum is real and discrete the Hamiltonian is actually quasi-Hermitian, with a positive-definite metric operator, and can in principle be related by a similarity transformation to an isospectral Hermitian counterpart. For all approaches well-defined procedures have been developed, which allow one to construct metric operators and therefore a consistent description of the underlying quantum mechanical observables. Even though the general principles have been laid out, it remains a challenge in most concrete cases to implement the entire procedure. Solvable models in this sense, some of which may be found in this issue, remain a rare exception. Nonetheless, despite this progress some important questions are still unanswered. For instance, according to the current understanding the non-Hermitian Hamiltonian does not uniquely define the physics of the system since a meaningful metric can no longer be associated with the system in a non-trivial and unambiguous manner. A fully consistent scattering theory has also not yet been formulated. Other issues remain controversial, such as the quantum brachistochrone problem, the problem of forming a mixture between a Hermitian and non-Hermitian system, the new phenomenological possibilities of forming a kind of worm-hole effect, etc. We would like to acknowledge the financial support of the London Mathematical Society, the Institute of Physics, the Doppler Institute in Prague and the School of Engineering and Mathematical Science of City University London. We hope this special issue will be useful to the newcomer as well as to the expert in the subject. Workshop photograph Participants of the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics.

  17. Wavefunction Engineering of Spintronic devices in ZnO/MgO and GaN/AlN Quantum Structures Doped with Transition Metal Ions

    DTIC Science & Technology

    2006-08-01

    2005). 7. " Dependence of the interband transitions on the In mole-fraction and the applied electric field in InxGaj_xAs/In0. 52Al0.48As multiple... tunneling boundary conditions for open structures. The boundary conditions at interfaces require the maintenance of derivative operator ordering...computational methods for the solution of Schr6dinger’s equations for scattering/ tunneling structures as well as for the eigenvalue problems that arise for

  18. Many-Body Localization and Thermalization in Quantum Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Nandkishore, Rahul; Huse, David A.

    2015-03-01

    We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the eigenstate thermalization hypothesis (ETH) and the resulting single-eigenstate statistical mechanics. We then focus on a class of systems that fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson-localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can forever locally remember information about their local initial conditions and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL) and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveal dynamically stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality, where equilibrium ordering is forbidden.

  19. Generalized Pauli constraints in small atoms

    NASA Astrophysics Data System (ADS)

    Schilling, Christian; Altunbulak, Murat; Knecht, Stefan; Lopes, Alexandre; Whitfield, James D.; Christandl, Matthias; Gross, David; Reiher, Markus

    2018-05-01

    The natural occupation numbers of fermionic systems are subject to nontrivial constraints, which include and extend the original Pauli principle. A recent mathematical breakthrough has clarified their mathematical structure and has opened up the possibility of a systematic analysis. Early investigations have found evidence that these constraints are exactly saturated in several physically relevant systems, e.g., in a certain electronic state of the beryllium atom. It has been suggested that, in such cases, the constraints, rather than the details of the Hamiltonian, dictate the system's qualitative behavior. Here, we revisit this question with state-of-the-art numerical methods for small atoms. We find that the constraints are, in fact, not exactly saturated, but that they lie much closer to the surface defined by the constraints than the geometry of the problem would suggest. While the results seem incompatible with the statement that the generalized Pauli constraints drive the behavior of these systems, they suggest that the qualitatively correct wave-function expansions can in some systems already be obtained on the basis of a limited number of Slater determinants, which is in line with numerical evidence from quantum chemistry.

  20. Chloride Ion Transport by the E. coli CLC Cl-/H+ Antiporter: A Combined Quantum-Mechanical and Molecular-Mechanical Study.

    PubMed

    Wang, Chun-Hung; Duster, Adam W; Aydintug, Baris O; Zarecki, MacKenzie G; Lin, Hai

    2018-01-01

    We performed steered molecular dynamics (SMD) and umbrella sampling simulations of Cl - ion migration through the transmembrane domain of a prototypical E. coli CLC Cl - /H + antiporter by employing combined quantum-mechanical (QM) and molecular-mechanical (MM) calculations. The SMD simulations revealed interesting conformational changes of the protein. While no large-amplitude motions of the protein were observed during pore opening, the side chain rotation of the protonated external gating residue Glu148 was found to be critical for full access of the channel entrance by Cl - . Moving the anion into the external binding site (S ext ) induced small-amplitude shifting of the protein backbone at the N-terminal end of helix F. As Cl - traveled through the pore, rigid-body swinging motions of helix R separated it from helix D. Helix R returned to its original position once Cl - exited the channel. Population analysis based on polarized wavefunction from QM/MM calculations discovered significant (up to 20%) charge loss for Cl - along the ion translocation pathway inside the pore. The delocalized charge was redistributed onto the pore residues, especially the functional groups containing π bonds (e.g., the Tyr445 side chain), while the charges of the H atoms coordinating Cl - changed almost negligibly. Potentials of mean force computed from umbrella sampling at the QM/MM and MM levels both displayed barriers at the same locations near the pore entrance and exit. However, the QM/MM PMF showed higher barriers (~10 kcal/mol) than the MM PMF (~2 kcal/mol). Binding energy calculations indicated that the interactions between Cl - and certain pore residues were overestimated by the semi-empirical PM3 Hamiltonian and underestimated by the CHARMM36 force fields, both of which were employed in the umbrella sampling simulations. In particular, CHARMM36 underestimated binding interactions for the functional groups containing π bonds, missing the stabilizations of the Cl - ion due to electron delocalization. The results suggested that it is important to explore these quantum effects for accurate descriptions of the Cl - transport.

  1. Chloride Ion Transport by the E. coli CLC Cl−/H+ Antiporter: A Combined Quantum-Mechanical and Molecular-Mechanical Study

    PubMed Central

    Wang, Chun-Hung; Duster, Adam W.; Aydintug, Baris O.; Zarecki, MacKenzie G.; Lin, Hai

    2018-01-01

    We performed steered molecular dynamics (SMD) and umbrella sampling simulations of Cl− ion migration through the transmembrane domain of a prototypical E. coli CLC Cl−/H+ antiporter by employing combined quantum-mechanical (QM) and molecular-mechanical (MM) calculations. The SMD simulations revealed interesting conformational changes of the protein. While no large-amplitude motions of the protein were observed during pore opening, the side chain rotation of the protonated external gating residue Glu148 was found to be critical for full access of the channel entrance by Cl−. Moving the anion into the external binding site (Sext) induced small-amplitude shifting of the protein backbone at the N-terminal end of helix F. As Cl− traveled through the pore, rigid-body swinging motions of helix R separated it from helix D. Helix R returned to its original position once Cl− exited the channel. Population analysis based on polarized wavefunction from QM/MM calculations discovered significant (up to 20%) charge loss for Cl− along the ion translocation pathway inside the pore. The delocalized charge was redistributed onto the pore residues, especially the functional groups containing π bonds (e.g., the Tyr445 side chain), while the charges of the H atoms coordinating Cl− changed almost negligibly. Potentials of mean force computed from umbrella sampling at the QM/MM and MM levels both displayed barriers at the same locations near the pore entrance and exit. However, the QM/MM PMF showed higher barriers (~10 kcal/mol) than the MM PMF (~2 kcal/mol). Binding energy calculations indicated that the interactions between Cl− and certain pore residues were overestimated by the semi-empirical PM3 Hamiltonian and underestimated by the CHARMM36 force fields, both of which were employed in the umbrella sampling simulations. In particular, CHARMM36 underestimated binding interactions for the functional groups containing π bonds, missing the stabilizations of the Cl− ion due to electron delocalization. The results suggested that it is important to explore these quantum effects for accurate descriptions of the Cl− transport. PMID:29594103

  2. Chloride Ion Transport by the E. coli CLC Cl–/H+ Antiporter: A Combined Quantum-Mechanical and Molecular-Mechanical Study

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Hung; Duster, Adam W.; Aydintug, Baris O.; Zarecki, MacKenzie G.; Lin, Hai

    2018-03-01

    We performed steered molecular dynamics (SMD) and umbrella sampling simulations of Cl– ion migration through the transmembrane domain of a prototypical E. coli CLC Cl–/H+ antiporter employing combined quantum-mechanical (QM) and molecular-mechanical (MM) calculations. The SMD simulations revealed interesting conformational changes of the protein. While no large-amplitude motions of the protein were observed during pore opening, the side chain rotation of the protonated external gating residue Glu148 was found critical to full access of the channel entrance by Cl–. Moving the anion into the external binding site (Sext) induced small-amplitude shifting of the protein backbone at the N-terminal end of helix F. As Cl– travelled through the pore, rigid-body swinging motions of helix R separated it from helix D. Helix R returned to its original position once Cl– exited the channel. Population analysis based on polarized wavefunction from QM/MM calculations discovered significant (up to 20%) charge loss for Cl– along the ion translocation pathway inside the pore. The delocalized charge was redistributed onto the pore residues, especially the functional groups containing pi bonds (e.g. the Tyr445 side chain), while the charges of the H atoms coordinating Cl– changed almost negligibly. Potentials of mean force computed from umbrella sampling at the QM/MM and MM levels both displayed barriers at the same locations near the pore entrance and exit. However, the QM/MM PMF showed higher barriers ( 10 kcal/mol) than the MM PMF ( 2 kcal/mol). Binding energy calculations indicated that the interactions between Cl– and certain pore residues were overestimated by the semi-empirical PM3 Hamiltonian and underestimated by the CHARMM36 force fields, both of which were employed in the umbrella sampling simulations. In particular, CHARMM36 underestimated binding interactions for the functional groups containing pi bonds, missing the stabilizations of the Cl– ion due to electron delocalization. The results suggested that it is important to explore these quantum effects for accurate descriptions of the Cl– transport.

  3. Some Properties and Uses of Torsional Overlap Integrals

    NASA Astrophysics Data System (ADS)

    Mekhtiev, Mirza A.; Hougen, Jon T.

    1998-01-01

    The first diagonalization step in a rho-axis-method treatment of methyl-top internal rotation problems involves finding eigenvalues and eigenvectors of a torsional Hamiltonian, which depends on the rotational projection quantum numberKas a parameter. Traditionally the torsional quantum numbervt= 0, 1, 2···is assigned to eigenfunctions of givenKin order of increasing energy. In this paper we propose an alternative labeling scheme, using the torsional quantum numbervT, which is based on properties of theK-dependent torsional overlap integrals . In particular, the quantum numbervTis assigned in such a way that torsional wavefunctions |vT,K> vary as slowly as possible whenKchanges by unity. Roughly speaking,vT=vtfor torsional levels below the barrier, whereasvTis more closely related to the free-rotor quantum number for levels above the barrier. Because of the latter fact, we believevTwill in general be a physically more meaningful torsional quantum number for levels above the barrier. The usefulness of overlap integrals for qualitative prediction of torsion-rotation band intensities and for rationalizing the magnitudes of perturbations involving some excitation of the small-amplitude vibrations in an internal rotor problem is also discussed.

  4. Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field

    NASA Astrophysics Data System (ADS)

    Xu-Fang, Bai; Ying, Zhang; Wuyunqimuge; Eerdunchaolu

    2016-07-01

    Based on the variational method of Pekar type, we study the energies and the wave-functions of the ground and the first-excited states of magneto-bipolaron, which is strongly coupled to the LO phonon in a parabolic potential quantum dot under an applied magnetic field, thus built up a quantum dot magneto-bipolaron qubit. The results show that the oscillation period of the probability density of the two electrons in the qubit decreases with increasing electron-phonon coupling strength α, resonant frequency of the magnetic field ω c, confinement strength of the quantum dot ω 0, and dielectric constant ratio of the medium η the probability density of the two electrons in the qubit oscillates periodically with increasing time t, angular coordinate φ 2, and dielectric constant ratio of the medium η the probability of electron appearing near the center of the quantum dot is larger, and the probability of electron appearing away from the center of the quantum dot is much smaller. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. E2013407119) and the Items of Institution of Higher Education Scientific Research of Hebei Province and Inner Mongolia, China (Grant Nos. ZD20131008, Z2015149, Z2015219, and NJZY14189).

  5. Generators of dynamical symmetries and the correct gauge transformation in the Landau level problem: use of pseudomomentum and pseudo-angular momentum

    NASA Astrophysics Data System (ADS)

    Konstantinou, Georgios; Moulopoulos, Konstantinos

    2016-11-01

    Due to the importance of gauge symmetry in all fields of physics, and motivated by an article written almost three decades ago that warns against a naive handling of gauge transformations in the Landau level problem (a quantum electron moving in a spatially uniform magnetic field), we point out a proper use of the generators of dynamical symmetries combined with gauge transformation methods to easily obtain exact analytical solutions for all Landau level-wavefunctions in arbitrary gauge. Our method is different from the old argument and provides solutions in an easier manner and in a broader set of geometries and gauges; in so doing, it eliminates the need for extra procedures (i.e. a change of basis) pointed out as a necessary step in the old literature, and gives back the standard simple result, provided that an appropriate use is made of the dynamical symmetries of the system and their generators. In this way the present work will at least be useful for university-level education, i.e. in advanced classes in quantum mechanics and condensed matter physics. In addition, it clarifies the actual role of the gauge in the Landau level problem, which often appears confusing in the usual derivations provided in textbooks. Finally, we go further by showing that a similar methodology can be made to apply to the more difficult case of a spatially non-uniform magnetic field (where closed analytical results are rare), in which case the various generators (pseudomomentum and pseudo-angular momentum) appear as line integrals of the inhomogeneous magnetic field; we give closed analytical solutions for all cases, and show how the old and rather forgotten Bawin-Burnel gauge shows up naturally as a ‘reference gauge’ in all solutions.

  6. Generalized effective-mass theory of subsurface scanning tunneling microscopy: Application to cleaved quantum dots

    NASA Astrophysics Data System (ADS)

    Roy, M.; Maksym, P. A.; Bruls, D.; Offermans, P.; Koenraad, P. M.

    2010-11-01

    An effective-mass theory of subsurface scanning tunneling microscopy (STM) is developed. Subsurface structures such as quantum dots embedded into a semiconductor slab are considered. States localized around subsurface structures match on to a tail that decays into the vacuum above the surface. It is shown that the lateral variation in this tail may be found from a surface envelope function provided that the effects of the slab surfaces and the subsurface structure decouple approximately. The surface envelope function is given by a weighted integral of a bulk envelope function that satisfies boundary conditions appropriate to the slab. The weight function decays into the slab inversely with distance and this slow decay explains the subsurface sensitivity of STM. These results enable STM images to be computed simply and economically from the bulk envelope function. The method is used to compute wave-function images of cleaved quantum dots and the computed images agree very well with experiment.

  7. Cosmological perturbations in inflation and in de Sitter space

    NASA Astrophysics Data System (ADS)

    Pimentel, Guilherme Leite

    This thesis focuses on various aspects of inflationary fluctuations. First, we study gravitational wave fluctuations in de Sitter space. The isometries of the spacetime constrain to a few parameters the Wheeler-DeWitt wavefunctional of the universe, to cubic order in fluctuations. At cubic order, there are three independent terms in the wavefunctional. From the point of view of the bulk action, one term corresponds to Einstein gravity, and a new term comes from a cubic term in the curvature tensor. The third term is a pure phase and does not give rise to a new shape for expectation values of graviton fluctuations. These results can be seen as the leading order non-gaussian contributions in a slow-roll expansion for inflationary observables. We also use the wavefunctional approach to explain a universal consistency condition of n-point expectation values in single field inflation. This consistency condition relates a soft limit of an n-point expectation value to ( n-1)-point expectation values. We show how these conditions can be easily derived from the wavefunctional point of view. Namely, they follow from the momentum constraint of general relativity, which is equivalent to the constraint of spatial diffeomorphism invariance. We also study expectation values beyond tree level. We show that subhorizon fluctuations in loop diagrams do not generate a mass term for superhorizon fluctuations. Such a mass term could spoil the predictivity of inflation, which is based on the existence of properly defined field variables that become constant once their wavelength is bigger than the size of the horizon. Such a mass term would be seen in the two point expectation value as a contribution that grows linearly with time at late times. The absence of this mass term is closely related to the soft limits studied in previous chapters. It is analogous to the absence of a mass term for the photon in quantum electrodynamics, due to gauge symmetry. Finally, we use the tools of holography and entanglement entropy to study superhorizon correlations in quantum field theories in de Sitter space. The entropy has interesting terms that have no equivalent in flat space field theories. These new terms are due to particle creation in an expanding universe. The entropy is calculated directly for free massive scalar theories. For theories with holographic duals, it is determined by the area of some extremal surface in the bulk geometry. We calculate the entropy for different classes of holographic duals. For one of these classes, the holographic dual geometry is an asymptotically Anti-de Sitter space that decays into a crunching cosmology, an open Friedmann-Robertson-Walker universe. The extremal surface used in the calculation of the entropy lies almost entirely on the slice of maximal scale factor of the crunching cosmology.

  8. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li+-benzene

    NASA Astrophysics Data System (ADS)

    D'Arcy, Jordan H.; Kolmann, Stephen J.; Jordan, Meredith J. T.

    2015-08-01

    Quantum and anharmonic effects are investigated in (H2)2-Li+-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials, using rigid-body diffusion Monte Carlo (RBDMC) simulations. The potential-energy surface (PES) is calculated as a modified Shepard interpolation of M05-2X/6-311+G(2df,p) electronic structure data. The RBDMC simulations yield zero-point energies (ZPE) and probability density histograms that describe the ground-state nuclear wavefunction. Binding a second H2 molecule to the H2-Li+-benzene complex increases the ZPE of the system by 5.6 kJ mol-1 to 17.6 kJ mol-1. This ZPE is 42% of the total electronic binding energy of (H2)2-Li+-benzene and cannot be neglected. Our best estimate of the 0 K binding enthalpy of the second H2 to H2-Li+-benzene is 7.7 kJ mol-1, compared to 12.4 kJ mol-1 for the first H2 molecule. Anharmonicity is found to be even more important when a second (and subsequent) H2 molecule is adsorbed; use of harmonic ZPEs results in significant error in the 0 K binding enthalpy. Probability density histograms reveal that the two H2 molecules are found at larger distance from the Li+ ion and are more confined in the θ coordinate than in H2-Li+-benzene. They also show that both H2 molecules are delocalized in the azimuthal coordinate, ϕ. That is, adding a second H2 molecule is insufficient to localize the wavefunction in ϕ. Two fragment-based (H2)2-Li+-benzene PESs are developed. These use a modified Shepard interpolation for the Li+-benzene and H2-Li+-benzene fragments, and either modified Shepard interpolation or a cubic spline to model the H2-H2 interaction. Because of the neglect of three-body H2, H2, Li+ terms, both fragment PESs lead to overbinding of the second H2 molecule by 1.5 kJ mol-1. Probability density histograms, however, indicate that the wavefunctions for the two H2 molecules are effectively identical on the "full" and fragment PESs. This suggests that the 1.5 kJ mol-1 error is systematic over the regions of configuration space explored by our simulations. Notwithstanding this, modified Shepard interpolation of the weak H2-H2 interaction is problematic and we obtain more accurate results, at considerably lower computational cost, using a cubic spline interpolation. Indeed, the ZPE of the fragment-with-spline PES is identical, within error, to the ZPE of the full PES. This fragmentation scheme therefore provides an accurate and inexpensive method to study higher hydrogen loading in this and similar systems.

  9. "Plug-and-Play" potentials: Investigating quantum effects in (H2)2-Li(+)-benzene.

    PubMed

    D'Arcy, Jordan H; Kolmann, Stephen J; Jordan, Meredith J T

    2015-08-21

    Quantum and anharmonic effects are investigated in (H2)2-Li(+)-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials, using rigid-body diffusion Monte Carlo (RBDMC) simulations. The potential-energy surface (PES) is calculated as a modified Shepard interpolation of M05-2X/6-311+G(2df,p) electronic structure data. The RBDMC simulations yield zero-point energies (ZPE) and probability density histograms that describe the ground-state nuclear wavefunction. Binding a second H2 molecule to the H2-Li(+)-benzene complex increases the ZPE of the system by 5.6 kJ mol(-1) to 17.6 kJ mol(-1). This ZPE is 42% of the total electronic binding energy of (H2)2-Li(+)-benzene and cannot be neglected. Our best estimate of the 0 K binding enthalpy of the second H2 to H2-Li(+)-benzene is 7.7 kJ mol(-1), compared to 12.4 kJ mol(-1) for the first H2 molecule. Anharmonicity is found to be even more important when a second (and subsequent) H2 molecule is adsorbed; use of harmonic ZPEs results in significant error in the 0 K binding enthalpy. Probability density histograms reveal that the two H2 molecules are found at larger distance from the Li(+) ion and are more confined in the θ coordinate than in H2-Li(+)-benzene. They also show that both H2 molecules are delocalized in the azimuthal coordinate, ϕ. That is, adding a second H2 molecule is insufficient to localize the wavefunction in ϕ. Two fragment-based (H2)2-Li(+)-benzene PESs are developed. These use a modified Shepard interpolation for the Li(+)-benzene and H2-Li(+)-benzene fragments, and either modified Shepard interpolation or a cubic spline to model the H2-H2 interaction. Because of the neglect of three-body H2, H2, Li(+) terms, both fragment PESs lead to overbinding of the second H2 molecule by 1.5 kJ mol(-1). Probability density histograms, however, indicate that the wavefunctions for the two H2 molecules are effectively identical on the "full" and fragment PESs. This suggests that the 1.5 kJ mol(-1) error is systematic over the regions of configuration space explored by our simulations. Notwithstanding this, modified Shepard interpolation of the weak H2-H2 interaction is problematic and we obtain more accurate results, at considerably lower computational cost, using a cubic spline interpolation. Indeed, the ZPE of the fragment-with-spline PES is identical, within error, to the ZPE of the full PES. This fragmentation scheme therefore provides an accurate and inexpensive method to study higher hydrogen loading in this and similar systems.

  10. Retina as Reciprocal Spatial Fourier Transform Space Implies ``Wave-transformation'' Functions, String Theory, the Inappropriate Uncertainty Principle, and Predicts ``Quarked'' Protons.

    NASA Astrophysics Data System (ADS)

    Mc Leod, Roger David; Mc Leod, David M.

    2007-10-01

    Vision, via transform space: ``Nature behaves in a reciprocal way;' also, Rect x pressure-input sense-reports as Sinc p, indicating brain interprets reciprocal ``p'' space as object space. Use Mott's and Sneddon's Wave Mechanics and Its Applications. Wave transformation functions are strings of positron, electron, proton, and neutron; uncertainty is a semantic artifact. Neutrino-string de Broglie-Schr"odinger wave-function models for electron, positron, suggest three-quark models for protons, neutrons. Variably vibrating neutrino-quills of this model, with appropriate mass-energy, can be a vertical proton string, quills leftward; thread string circumferentially, forming three interlinked circles with ``overpasses''. Diameters are 2:1:2, center circle has quills radially outward; call it a down quark, charge --1/3, charge 2/3 for outward quills, the up quarks of outer circles. String overlap summations are nodes; nodes also far left and right. Strong nuclear forces may be --px. ``Dislodging" positron with neutrino switches quark-circle configuration to 1:2:1, `downers' outside. Unstable neutron charge is 0. Atoms build. With scale factors, retinal/vision's, and quantum mechanics,' spatial Fourier transforms/inverses are equivalent.

  11. Semiclassical initial value representation for the quantum propagator in the Heisenberg interaction representation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Jakob; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il

    2015-12-14

    One of the challenges facing on-the-fly ab initio semiclassical time evolution is the large expense needed to converge the computation. In this paper, we suggest that a significant saving in computational effort may be achieved by employing a semiclassical initial value representation (SCIVR) of the quantum propagator based on the Heisenberg interaction representation. We formulate and test numerically a modification and simplification of the previous semiclassical interaction representation of Shao and Makri [J. Chem. Phys. 113, 3681 (2000)]. The formulation is based on the wavefunction form of the semiclassical propagation instead of the operator form, and so is simpler andmore » cheaper to implement. The semiclassical interaction representation has the advantage that the phase and prefactor vary relatively slowly as compared to the “standard” SCIVR methods. This improves its convergence properties significantly. Using a one-dimensional model system, the approximation is compared with Herman-Kluk’s frozen Gaussian and Heller’s thawed Gaussian approximations. The convergence properties of the interaction representation approach are shown to be favorable and indicate that the interaction representation is a viable way of incorporating on-the-fly force field information within a semiclassical framework.« less

  12. Exponentially more precise quantum simulation of fermions in the configuration interaction representation

    NASA Astrophysics Data System (ADS)

    Babbush, Ryan; Berry, Dominic W.; Sanders, Yuval R.; Kivlichan, Ian D.; Scherer, Artur; Wei, Annie Y.; Love, Peter J.; Aspuru-Guzik, Alán

    2018-01-01

    We present a quantum algorithm for the simulation of molecular systems that is asymptotically more efficient than all previous algorithms in the literature in terms of the main problem parameters. As in Babbush et al (2016 New Journal of Physics 18, 033032), we employ a recently developed technique for simulating Hamiltonian evolution using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision. The algorithm of this paper involves simulation under an oracle for the sparse, first-quantized representation of the molecular Hamiltonian known as the configuration interaction (CI) matrix. We construct and query the CI matrix oracle to allow for on-the-fly computation of molecular integrals in a way that is exponentially more efficient than classical numerical methods. Whereas second-quantized representations of the wavefunction require \\widetilde{{ O }}(N) qubits, where N is the number of single-particle spin-orbitals, the CI matrix representation requires \\widetilde{{ O }}(η ) qubits, where η \\ll N is the number of electrons in the molecule of interest. We show that the gate count of our algorithm scales at most as \\widetilde{{ O }}({η }2{N}3t).

  13. Improved treatment of exact exchange in Quantum ESPRESSO

    DOE PAGES

    Barnes, Taylor A.; Kurth, Thorsten; Carrier, Pierre; ...

    2017-01-18

    Here, we present an algorithm and implementation for the parallel computation of exact exchange in Quantum ESPRESSO (QE) that exhibits greatly improved strong scaling. QE is an open-source software package for electronic structure calculations using plane wave density functional theory, and supports the use of local, semi-local, and hybrid DFT functionals. Wider application of hybrid functionals is desirable for the improved simulation of electronic band energy alignments and thermodynamic properties, but the computational complexity of evaluating the exact exchange potential limits the practical application of hybrid functionals to large systems and requires efficient implementations. We demonstrate that existing implementations ofmore » hybrid DFT that utilize a single data structure for both the local and exact exchange regions of the code are significantly limited in the degree of parallelization achievable. We present a band-pair parallelization approach, in which the calculation of exact exchange is parallelized and evaluated independently from the parallelization of the remainder of the calculation, with the wavefunction data being efficiently transformed on-the-fly into a form that is optimal for each part of the calculation. For a 64 water molecule supercell, our new algorithm reduces the overall time to solution by nearly an order of magnitude.« less

  14. Holographic description of a quantum black hole on a computer

    NASA Astrophysics Data System (ADS)

    Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun

    2014-05-01

    Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics.

  15. On Schrödinger's equation, Hertz's mechanics and Van Vleck's determinant

    NASA Astrophysics Data System (ADS)

    Lopes Coelho, R.; Stachel, John

    2013-07-01

    There has been much research on Schrödinger's route to what we now call Schrödinger's equation. Various authors disagree as to the exact nature of the influence of each of the physicists he cites—and of some that he does not. This paper, intended for graduate students of and researchers in quantum theory, clarifies Schrödinger's original aims in formulating a wave equation for matter, discusses how far he fulfilled his original aspirations and in what respects he fell short of his goal. An analysis of Schrödinger's foundational paper enables us to distinguish between a formal and an epistemological part, and consider the input of the physicists cited on the basis of the part in which each reference occurs. It turns out, for instance, that Hamilton's optical-mechanical analogy belongs entirely to the epistemological part. Indeed, no element of this analogy plays any role in the formal part of Schrödinger's argument. Instead of basing his theory on this analogy, as is often done nowadays in the physics literature and even in the history of science, we maintain that the aim of Schrödinger's project was to represent wave phenomena by a ‘wave’ in configuration- or q-space, paralleling Hertz's treatment in his Mechanics (1894). The influence of this book on Schrödinger's foundational paper is demonstrated by an analysis of his unpublished paper: Hertz's Mechanics and Einstein's Theory of Gravitation. This approach enables us to dispense with the optical-mechanical analogy in tracing the route to Schrödinger's equation. We also discuss the curious role of the Van Vleck determinant as the ‘missing link’ in taking the classical limit of Schrödinger's wavefunction. A concluding section discusses the relation of some of Schrödinger's earlier and later work to the development of quantum field theory.

  16. Particle-hole symmetry in many-body theories of electron correlation

    NASA Astrophysics Data System (ADS)

    Kats, Daniel; Usvyat, Denis; Manby, Frederick R.

    2018-06-01

    Second-quantised creation and annihilation operators for fermionic particles anticommute, but the same is true for the creation and annihilation operators for holes. This introduces a symmetry into the quantum theory of fermions that is absent for bosons. In ab initio electronic structure theory, it is common to classify methods by the number of electrons for which the method returns exact results: for example Hartree-Fock theory is exact for one-electron systems, whereas coupled-cluster theory with single and double excitations is exact for two-electron systems. Here, we discuss the generalisation: methods based on approximate wavefunctions that are exact for n-particle systems are also exact for n-hole systems. Novel electron correlation methods that attempt to improve on the coupled-cluster framework sometimes retain this property, and sometimes lose it. Here, we argue for retaining particle-hole symmetry as a desirable design criterion of approximate electron correlation methods. Dispensing with it might lead to loss of n-representability of density matrices, and this in turn can lead to spurious long-range behaviour in the correlation energy.

  17. Tail-like regime and BCS-BEC crossover due to hybridization in a two-band superconductor.

    PubMed

    Reyes, D; Continentino, M A; Deus, F; Thomas, C

    2018-05-02

    Superconductivity in strongly correlated systems is a remarkable phenomenon that attracts huge interest. The study of this problem is relevant for materials such as the high T c oxides, pnictides and heavy fermions. These systems also have in common the existence of electrons of several orbitals that coexist at a common Fermi surface. In this paper we study the effect of pressure, chemical or applied on multi-band superconductivity. Pressure varies the atomic distances and consequently the overlap of the wave-functions in the crystal. This rearranges the electronic structure that we model including a pressure dependent hybridization between the bands. We consider the case of two-dimensional systems in a square lattice with inverted bands. We study the conditions for obtaining a pressure induced superconductor quantum critical point and show that hybridization, i.e. pressure can induce a Bardeen-Cooper-Schrieffer-Bose-Einstein condensation crossover in multi-band systems even for moderate interactions. We found a tail-like superconductor regime and briefly discuss the influence of the symmetry of the order parameter in the results.

  18. Tail-like regime and BCS-BEC crossover due to hybridization in a two-band superconductor

    NASA Astrophysics Data System (ADS)

    Reyes, D.; Continentino, M. A.; Deus, F.; Thomas, C.

    2018-05-01

    Superconductivity in strongly correlated systems is a remarkable phenomenon that attracts huge interest. The study of this problem is relevant for materials such as the high T c oxides, pnictides and heavy fermions. These systems also have in common the existence of electrons of several orbitals that coexist at a common Fermi surface. In this paper we study the effect of pressure, chemical or applied on multi-band superconductivity. Pressure varies the atomic distances and consequently the overlap of the wave-functions in the crystal. This rearranges the electronic structure that we model including a pressure dependent hybridization between the bands. We consider the case of two-dimensional systems in a square lattice with inverted bands. We study the conditions for obtaining a pressure induced superconductor quantum critical point and show that hybridization, i.e. pressure can induce a Bardeen–Cooper–Schrieffer-Bose–Einstein condensation crossover in multi-band systems even for moderate interactions. We found a tail-like superconductor regime and briefly discuss the influence of the symmetry of the order parameter in the results.

  19. ARC: An open-source library for calculating properties of alkali Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Šibalić, N.; Pritchard, J. D.; Adams, C. S.; Weatherill, K. J.

    2017-11-01

    We present an object-oriented Python library for the computation of properties of highly-excited Rydberg states of alkali atoms. These include single-body effects such as dipole matrix elements, excited-state lifetimes (radiative and black-body limited) and Stark maps of atoms in external electric fields, as well as two-atom interaction potentials accounting for dipole and quadrupole coupling effects valid at both long and short range for arbitrary placement of the atomic dipoles. The package is cross-referenced to precise measurements of atomic energy levels and features extensive documentation to facilitate rapid upgrade or expansion by users. This library has direct application in the field of quantum information and quantum optics which exploit the strong Rydberg dipolar interactions for two-qubit gates, robust atom-light interfaces and simulating quantum many-body physics, as well as the field of metrology using Rydberg atoms as precise microwave electrometers. Program Files doi:http://dx.doi.org/10.17632/hm5n8w628c.1 Licensing provisions: BSD-3-Clause Programming language: Python 2.7 or 3.5, with C extension External Routines: NumPy [1], SciPy [1], Matplotlib [2] Nature of problem: Calculating atomic properties of alkali atoms including lifetimes, energies, Stark shifts and dipole-dipole interaction strengths using matrix elements evaluated from radial wavefunctions. Solution method: Numerical integration of radial Schrödinger equation to obtain atomic wavefunctions, which are then used to evaluate dipole matrix elements. Properties are calculated using second order perturbation theory or exact diagonalisation of the interaction Hamiltonian, yielding results valid even at large external fields or small interatomic separation. Restrictions: External electric field fixed to be parallel to quantisation axis. Supplementary material: Detailed documentation (.html), and Jupyter notebook with examples and benchmarking runs (.html and .ipynb). [1] T.E. Oliphant, Comput. Sci. Eng. 9, 10 (2007). http://www.scipy.org/. [2] J.D. Hunter, Comput. Sci. Eng. 9, 90 (2007). http://matplotlib.org/.

  20. Quantum acoustics with superconducting qubits

    NASA Astrophysics Data System (ADS)

    Chu, Yiwen

    2017-04-01

    The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.

  1. Some foundational aspects of quantum computers and quantum robots.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, P.; Physics

    1998-01-01

    This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specificmore » models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.« less

  2. Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Kouhestani, H.

    2015-08-01

    Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.

  3. Physics at the FMQT’08 conference

    NASA Astrophysics Data System (ADS)

    Špička, V.; Nieuwenhuizen, Th. M.; Keefe, P. D.

    2010-01-01

    This paper summarizes the recent state of the art of the following topics presented at the FQMT’08 conference: Foundations of quantum physics, Quantum measurement; Quantum noise, decoherence and dephasing; Cold atoms and Bose-Einstein condensation; Physics of quantum computing and information; Nonequilibrium quantum statistical mechanics; Quantum, mesoscopic and partly classical thermodynamics; Mesoscopic, nano-electro-mechanical systems and optomechanical systems; Spins systems and their dynamics, Brownian motion and molecular motors; Physics of biological systems, and Relevant experiments from the nanoscale to the macroscale. To all these subjects an introduction is given and the recent literature is overviewed. The paper contains some 680 references in total.

  4. Quantum Monte Carlo calculations of light nuclei with local chiral two- and three-nucleon interactions

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, J.; ...

    2017-11-30

    Local chiral effective field theory interactions have recently been developed and used in the context of quantum Monte Carlo few- and many-body methods for nuclear physics. In this paper, we go over detailed features of local chiral nucleon-nucleon interactions and examine their effect on properties of the deuteron, paying special attention to the perturbativeness of the expansion. We then turn to three-nucleon interactions, focusing on operator ambiguities and their interplay with regulator effects. We then discuss the nuclear Green's function Monte Carlo method, going over both wave-function correlations and approximations for the two- and three-body propagators. Finally, following this, wemore » present a range of results on light nuclei: Binding energies and distribution functions are contrasted and compared, starting from several different microscopic interactions.« less

  5. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    PubMed

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  6. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics

    NASA Astrophysics Data System (ADS)

    Kretchmer, Joshua S.; Chan, Garnet Kin-Lic

    2018-02-01

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  7. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics.

    PubMed

    Kretchmer, Joshua S; Chan, Garnet Kin-Lic

    2018-02-07

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  8. Quantum Optical Implementations of Current Quantum Computing Paradigms

    DTIC Science & Technology

    2005-05-01

    Conferences and Proceedings: The results were presented at several conferences. These include: 1. M. O. Scully, " Foundations of Quantum Mechanics ", in...applications have revealed a strong connection between the fundamental aspects of quantum mechanics that governs physical systems and the informational...could be solved in polynomial time using quantum computers. Another set of problems where quantum mechanics can carry out computations substantially

  9. Holographic description of a quantum black hole on a computer.

    PubMed

    Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun

    2014-05-23

    Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics. Copyright © 2014, American Association for the Advancement of Science.

  10. Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3

    DOE PAGES

    Moll, Philip J. W.; Helm, Toni; Zhang, Shang-Shun; ...

    2017-08-21

    Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention as a structurally isotropic Kondo lattice material possessing the minimum required complexity to still reveal this rich physics. By using magnetic fields with strengths comparable to the crystal field energy scale, we illustrate a strong field-induced anisotropy as a consequence of non-spherically symmetric spin interactions in the prototypical heavy fermion material CeIn3. We demonstrate the importance of magnetic anisotropy in modeling f-electron materials when the orbital charactermore » of the 4f wavefunction changes (e.g., with pressure or composition). Additionally, magnetic fields are shown to tune the effective hybridization and exchange interactions potentially leading to new exotic field tuned effects in f-based materials.« less

  11. Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moll, Philip J. W.; Helm, Toni; Zhang, Shang-Shun

    Metals containing cerium exhibit a diverse range of fascinating phenomena including heavy fermion behavior, quantum criticality, and novel states of matter such as unconventional superconductivity. The cubic system CeIn3 has attracted significant attention as a structurally isotropic Kondo lattice material possessing the minimum required complexity to still reveal this rich physics. By using magnetic fields with strengths comparable to the crystal field energy scale, we illustrate a strong field-induced anisotropy as a consequence of non-spherically symmetric spin interactions in the prototypical heavy fermion material CeIn3. We demonstrate the importance of magnetic anisotropy in modeling f-electron materials when the orbital charactermore » of the 4f wavefunction changes (e.g., with pressure or composition). Additionally, magnetic fields are shown to tune the effective hybridization and exchange interactions potentially leading to new exotic field tuned effects in f-based materials.« less

  12. Identifying decohering paths in closed quantum systems

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas

    1990-01-01

    A specific proposal is discussed for how to identify decohering paths in a wavefunction of the universe. The emphasis is on determining the correlations among subsystems and then considering how these correlations evolve. The proposal is similar to earlier ideas of Schroedinger and of Zeh, but in other ways it is closer to the decoherence functional of Griffiths, Omnes, and Gell-Mann and Hartle. There are interesting differences with each of these which are discussed. Once a given coarse-graining is chosen, the candidate paths are fixed in this scheme, and a single well defined number measures the degree of decoherence for each path. The normal probability sum rules are exactly obeyed (instantaneously) by these paths regardless of the level of decoherence. Also briefly discussed is how one might quantify some other aspects of classicality. The important role that concrete calculations play in testing this and other proposals is stressed.

  13. Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebaweh; Khalil, E. M.; Obada, A.-S. F.

    2017-06-01

    The problem of the interaction between a two-level atom and a two-mode field in the parametric amplifier-type is considered. A similar problem appears in an ion trapped in a two-dimensional trap. The problem is transformed into an interaction governed by su(1,1) Lie algebraic operators with phase and coupling parameter depending on time. Under an integrability condition, that relates phase and coupling, a solution to the wavefunction is obtained using the Schrödinger equation. The effects of the functional dependence of the coupling and the initial state of the two-level atom on atomic inversion, the degree of entanglement, the fidelity and the Glauber second-order correlation function are investigated. It is shown that the acceleration term plays an important role in controlling the function behavior of the considered quantities.

  14. Pulsed quantum optomechanics

    PubMed Central

    Vanner, M. R.; Pikovski, I.; Cole, G. D.; Kim, M. S.; Brukner, Č.; Hammerer, K.; Milburn, G. J.; Aspelmeyer, M.

    2011-01-01

    Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing, and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions. PMID:21900608

  15. Material Phase Causality or a Dynamics-Statistical Interpretation of Quantum Mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koprinkov, I. G.

    2010-11-25

    The internal phase dynamics of a quantum system interacting with an electromagnetic field is revealed in details. Theoretical and experimental evidences of a causal relation of the phase of the wave function to the dynamics of the quantum system are presented sistematically for the first time. A dynamics-statistical interpretation of the quantum mechanics is introduced.

  16. Tampering detection system using quantum-mechanical systems

    DOEpatents

    Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  17. Emergent mechanics, quantum and un-quantum

    NASA Astrophysics Data System (ADS)

    Ralston, John P.

    2013-10-01

    There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications

  18. Wave Geometry: a Plurality of Singularities

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    Five interconnected wave singularities are discussed: phase monopoles, at eigenvalue degeneracies in parameter space, where the 2-form generating the geomeeic phase is singular, phase dislocations, at zeros of complex wavefunctions in position space, where different wavefronts (surfaces of constant phase) meet; caustics, that is envelopes (foci) of families of classical paths or geometrical rays, where real rays are born violently and which are complementary to dislocations; Stokes sets, at which a complex ray is born gently where it is maximally dominated by another ray; and complex degeneracies, which are the sources of adiabatic quantum transtions in analytic Hamiltonians.

  19. Ultracold atoms in strong synthetic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ketterle, Wolfgang

    2015-03-01

    The Harper Hofstadter Hamiltonian describes charged particles in the lowest band of a lattice at high magnetic fields. This Hamiltonian can be realized with ultracold atoms using laser assisted tunneling which imprints the same phase into the wavefunction of neutral atoms as a magnetic field dose for electrons. I will describe our observation of a bosonic superfluid in a magnetic field with half a flux quantum per lattice unit cell, and discuss new possibilities for implementing spin-orbit coupling. Work done in collaboration with C.J. Kennedy, G.A. Siviloglou, H. Miyake, W.C. Burton, and Woo Chang Chung.

  20. Suppression of Pauli Spin Blockade in Few Hole Laterally Gated Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Gaudreau, Louis; Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry; National Research Council Team; Sandia Labs Team

    Hole spins have attracted increasing attention as candidates for qubits in quantum information applications. The p-type character of their wavefunction leads to smaller hyperfine interaction with the nuclei resulting in longer coherence times. Additionally, strong spin-orbit interaction allows for enhanced all-electrical manipulation of spin qubit states. Single hole spins have been electrically studied in InSb and Si nanowire quantum dots, however, electrostatically confined hole spins in a 2D hole gas have thus far been limited to the many hole regime. In this talk we will present a full description of the two-hole spin spectrum in a lateral GaAs/AlGaAs double quantum. High-bias magneto-transport spectroscopy reveals all four states of the spectrum (singlet and triplets) in both the (1,1) and (2,0) configurations, essential for spin readout based on Pauli spin blockade. We show that spin-flip tunneling between dots is as strong as spin conserving tunneling, a consequence of the strong spin-orbit interaction. This suppresses the Pauli spin blockade. Our results suggest that alternate techniques for single hole spin qubit readout need to be explored.

  1. Blip decomposition of the path integral: exponential acceleration of real-time calculations on quantum dissipative systems.

    PubMed

    Makri, Nancy

    2014-10-07

    The real-time path integral representation of the reduced density matrix for a discrete system in contact with a dissipative medium is rewritten in terms of the number of blips, i.e., elementary time intervals over which the forward and backward paths are not identical. For a given set of blips, it is shown that the path sum with respect to the coordinates of all remaining time points is isomorphic to that for the wavefunction of a system subject to an external driving term and thus can be summed by an inexpensive iterative procedure. This exact decomposition reduces the number of terms by a factor that increases exponentially with propagation time. Further, under conditions (moderately high temperature and/or dissipation strength) that lead primarily to incoherent dynamics, the "fully incoherent limit" zero-blip term of the series provides a reasonable approximation to the dynamics, and the blip series converges rapidly to the exact result. Retention of only the blips required for satisfactory convergence leads to speedup of full-memory path integral calculations by many orders of magnitude.

  2. A walk through the approximations of ab initio multiple spawning

    NASA Astrophysics Data System (ADS)

    Mignolet, Benoit; Curchod, Basile F. E.

    2018-04-01

    Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.

  3. Factorization in large-scale many-body calculations

    DOE PAGES

    Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.

    2013-08-07

    One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elementsmore » on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.« less

  4. A walk through the approximations of ab initio multiple spawning.

    PubMed

    Mignolet, Benoit; Curchod, Basile F E

    2018-04-07

    Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.

  5. Theory of the Quantized Hall Conductance in Periodic Systems: a Topological Analysis.

    NASA Astrophysics Data System (ADS)

    Czerwinski, Michael Joseph

    The integral quantization of the Hall conductance in two-dimensional periodic systems is investigated from a topological point of view. Attention is focused on the contributions from the electronic sub-bands which arise from perturbed Landau levels. After reviewing the theoretical work leading to the identification of the Hall conductance as a topological quantum number, both a determination and interpretation of these quantized values for the sub-band conductances is made. It is shown that the Hall conductance of each sub-band can be regarded as the sum of two terms which will be referred to as classical and nonclassical. Although each of these contributions individually leads to a fractional conductance, the sum of these two contributions does indeed yield an integer. These integral conductances are found to be given by the solution of a simple Diophantine equation which depends on the periodic perturbation. A connection between the quantized value of the Hall conductance and the covering of real space by the zeroes of the sub-band wavefunctions allows for a determination of these conductances under more general potentials. A method is described for obtaining the conductance values from only those states bordering the Brillouin zone, and not the states in its interior. This method is demonstrated to give Hall conductances in agreement with those obtained from the Diophantine equation for the sinusoidal potential case explored earlier. Generalizing a simple gauge invariance argument from real space to k-space, a k-space 'vector potential' is introduced. This allows for a explicit identification of the Hall conductance with the phase winding number of the sub-band wavefunction around the Brillouin zone. The previously described division of the Hall conductance into classical and nonclassical contributions is in this way made more rigorous; based on periodicity considerations alone, these terms are identified as the winding numbers associated with (i) the basis states and (ii) the coefficients of these basis states, respectively. In this way a general Diophantine equation, independent of the periodic potential, is obtained. Finally, the use of the 'parallel transport' of state vectors in the determination of an overall phase convention for these states is described. This is seen to lead to a simple and straightforward method for determining the Hall conductance. This method is based on the states directly, without reference to the particular component wavefunctions of these states. Mention is made of the generality of calculations of this type, within the context of the geometric (or Berry) phases acquired by systems under an adiabatic modification of their environment.

  6. Quantum inertia stops superposition: Scan Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Gato-Rivera, Beatriz

    2017-08-01

    Scan Quantum Mechanics is a novel interpretation of some aspects of quantum mechanics in which the superposition of states is only an approximate effective concept. Quantum systems scan all possible states in the superposition and switch randomly and very rapidly among them. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia Iq reaches a critical value Icr for an observable, the switching among its different eigenvalues stops and the corresponding superposition comes to an end, leaving behind a system with a well defined value of that observable. Consequently, increasing the mass, temperature, gravitational strength, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. Moreover, the process could be reversible. Entanglement can only occur between quantum systems because an exact synchronization between the switchings of the systems involved must be established in the first place and classical systems do not have any switchings to start with. Future experiments might determine the critical inertia Icr corresponding to different observables, which translates into a critical mass Mcr for fixed environmental conditions as well as critical temperatures, critical electric and magnetic fields, etc. In addition, this proposal implies a new radiation mechanism from astrophysical objects with strong gravitational fields, giving rise to non-thermal synchrotron emission, that could contribute to neutron star formation. Superconductivity, superfluidity, Bose-Einstein condensates, and any other physical phenomena at very low temperatures must be reanalyzed in the light of this interpretation, as well as mesoscopic systems in general.

  7. Faithful conversion of propagating quantum information to mechanical motion

    NASA Astrophysics Data System (ADS)

    Reed, A. P.; Mayer, K. H.; Teufel, J. D.; Burkhart, L. D.; Pfaff, W.; Reagor, M.; Sletten, L.; Ma, X.; Schoelkopf, R. J.; Knill, E.; Lehnert, K. W.

    2017-12-01

    The motion of micrometre-sized mechanical resonators can now be controlled and measured at the fundamental limits imposed by quantum mechanics. These resonators have been prepared in their motional ground state or in squeezed states, measured with quantum-limited precision, and even entangled with microwave fields. Such advances make it possible to process quantum information using the motion of a macroscopic object. In particular, recent experiments have combined mechanical resonators with superconducting quantum circuits to frequency-convert, store and amplify propagating microwave fields. But these systems have not been used to manipulate states that encode quantum bits (qubits), which are required for quantum communication and modular quantum computation. Here we demonstrate the conversion of propagating qubits encoded as superpositions of zero and one photons to the motion of a micromechanical resonator with a fidelity in excess of the classical bound. This ability is necessary for mechanical resonators to convert quantum information between the microwave and optical domains or to act as storage elements in a modular quantum information processor. Additionally, these results are an important step towards testing speculative notions that quantum theory may not be valid for sufficiently massive systems.

  8. Testing Nonassociative Quantum Mechanics.

    PubMed

    Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut

    2015-11-27

    The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.

  9. Transport across nanogaps using self-consistent boundary conditions

    NASA Astrophysics Data System (ADS)

    Biswas, D.; Kumar, R.

    2012-06-01

    Charge particle transport across nanogaps is studied theoretically within the Schrodinger-Poisson mean field framework. The determination of self-consistent boundary conditions across the gap forms the central theme in order to allow for realistic interface potentials (such as metal-vacuum) which are smooth at the boundary and do not abruptly assume a constant value at the interface. It is shown that a semiclassical expansion of the transmitted wavefunction leads to approximate but self consistent boundary conditions without assuming any specific form of the potential beyond the gap. Neglecting the exchange and correlation potentials, the quantum Child-Langmuir law is investigated. It is shown that at zero injection energy, the quantum limiting current density (Jc) is found to obey the local scaling law Jc ~ Vgα/D5-2α with the gap separation D and voltage Vg. The exponent α > 1.1 with α → 3/2 in the classical regime of small de Broglie wavelengths.

  10. Towards optimal experimental tests on the reality of the quantum state

    NASA Astrophysics Data System (ADS)

    Knee, George C.

    2017-02-01

    The Barrett-Cavalcanti-Lal-Maroney (BCLM) argument stands as the most effective means of demonstrating the reality of the quantum state. Its advantages include being derived from very few assumptions, and a robustness to experimental error. Finding the best way to implement the argument experimentally is an open problem, however, and involves cleverly choosing sets of states and measurements. I show that techniques from convex optimisation theory can be leveraged to numerically search for these sets, which then form a recipe for experiments that allow for the strongest statements about the ontology of the wavefunction to be made. The optimisation approach presented is versatile, efficient and can take account of the finite errors present in any real experiment. I find significantly improved low-cardinality sets which are guaranteed partially optimal for a BCLM test in low Hilbert space dimension. I further show that mixed states can be more optimal than pure states.

  11. Quantization of parameters and the string landscape problem

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Vargas Moniz, Paulo

    2007-05-01

    We broaden the domain of application of Brustein and de Alwis's recent paper, where they introduce a (dynamical) selection principle on the landscape of string solutions using FRW quantum cosmology. More precisely, we (i) explain how their analysis is based in choosing a restrictive range of parameters, thereby affecting the validity of the predictions extracted and (ii) subsequently provide a wider and cohesive description, regarding the probability distribution induced by quantum cosmological transition amplitudes. In addition, employing DeWitt's argument for an initial condition on the wavefunction of the Universe, we found that the string and gravitational parameters become related through interesting expressions involving an integer n, suggesting a quantization relation for some of the involved parameters. This research work was supported by the grants POCI/FP/63916/2005, FEDER-POCI/P/FIS/57547/2004 and Acções Integradas (CRUP-CSIC) Luso-Espanholas E-138/04.

  12. Spin eigen-states of Dirac equation for quasi-two-dimensional electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremko, Alexander, E-mail: eremko@bitp.kiev.ua; Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua; Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua

    Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shownmore » that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.« less

  13. Electron transport through a spin crossover junction. Perspectives from a wavefunction-based approach

    NASA Astrophysics Data System (ADS)

    Vela, Sergi; Verot, Martin; Fromager, Emmanuel; Robert, Vincent

    2017-02-01

    The present paper reports the application of a computational framework, based on the quantum master equation, the Fermi's golden Rule, and conventional wavefunction-based methods, to describe electron transport through a spin crossover molecular junction (Fe(bapbpy) (NCS)2, 1, bapbpy = N-(6-(6-(Pyridin-2-ylamino)pyridin-2-yl)pyridin-2-yl)-pyridin-2-amine). This scheme is an alternative to the standard approaches based on the relative position and nature of the frontier orbitals, as it evaluates the junction's Green's function by means of accurate state energies and wavefunctions. In the present work, those elements are calculated for the relevant states of the high- and low-spin species of 1, and they are used to evaluate the output conductance within a given range of bias- and gate-voltages. The contribution of the ground and low-lying excited states to the current is analyzed, and inspected in terms of their 2S + 1 Ms-states. In doing so, it is shown the relevance of treating not only the ground state in its maximum-Ms projection, as usually done in most computational-chemistry packages, but the whole spectrum of low-energy states of the molecule. Such improved representation of the junction has a notable impact on the total conductivity and, more importantly, it restores the equivalence between alpha and beta transport, which means that no spin polarization is observed in the absence of Zeeman splitting. Finally, this work inspects the strong- and weak-points of the suggested theoretical framework to understand electron transport through molecular switchable materials, identifies a pathway for future improvement, and offers a new insight into concepts that play a key role in spintronics.

  14. Application of calculated NMR parameters, aromaticity indices and wavefunction properties for evaluation of corrosion inhibition efficiency of pyrazine inhibitors

    NASA Astrophysics Data System (ADS)

    Behzadi, Hadi; Manzetti, Sergio; Dargahi, Maryam; Roonasi, Payman; Khalilnia, Zahra

    2018-01-01

    In light of the importance of developing novel corrosion inhibitors, a series of quantum chemical calculations were carried out to evaluate 15N chemical shielding CS tensors as well as aromaticity indexes including NICS, HOMA, FLU, and PDI of three pyrazine derivatives, 2-methylpyrazine (MP), 2-aminopyrazine (AP) and 2-amino-5-bromopyrazine (ABP). The NICS parameters have been shown in previous studies to be paramount to the prediction of anti-corrosion properties, and have been combined here with HOMA, FLU and PDI and detailed wavefunction analysis to determine the effects from bromination and methylation on pyrazine. The results show that the electron density around the nitrogens, represented by CS tensors, can be good indicators of anti-corrosion efficiency. Additionally, the NICS, FLU and PDI, as aromaticity indicators of molecule, are well correlated with experimental corrosion inhibition efficiencies of the studied inhibitors. Bader sampling and detailed wavefunction analysis shows that the major effects from bromination on the pyrazine derivatives affect the Laplacian of the electron density of the ring, delocalizing the aromatic electrons of the carbon atoms into lone pairs and increasing polarization of the Laplacian values. This feature is well agreement with empirical studies, which show that ABP is the most efficient anti-corrosion compound followed by AP and MP, a property which can be attributed and predicted by derivation of the Laplacian of the electron density of the ring nuclei. This study shows the importance of devising DFT methods for development of new corrosion inhibitors, and the strength of electronic and nuclear analysis, and depicts most importantly how corrosion inhibitors composed of aromatic moieties may be modified to increase anti-corrosive properties.

  15. Thermalization and its mechanism for generic quantum isolated systems

    NASA Astrophysics Data System (ADS)

    Olshanii, Maxim; Dunjko, Vanja; Rigol, Marcos

    2008-05-01

    Time dynamics of isolated many-body quantum systems has long been an elusive subject, perhaps most urgently needed in the foundations of quantum statistical mechanics. In generic systems, one expects the nonequilibrium dynamics to lead to thermalization: a relaxation to states where the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable through the time-tested recipe of statistical mechanics. The relaxation mechanism is not obvious, however; dynamical chaos cannot play the key role as it does in classical systems since quantum evolution is linear. Here we demonstrateootnotetextM. Rigol, V. Dunjko, and M. Olshanii, to appear in Nature (2008), using the results of an ab initio numerical experiment with 5 hard-core bosons moving in a 5x5 lattice, that in quantum systems thermalization happens not in course of time evolution but instead at the level of individual eigenstates, as first proposed by DeutschootnotetextJ. M. Deutsch, Phys.Rev. A 43, 2046 (1991) and SrednickiootnotetextM. Srednicki, Phys. Rev. E 50, 888 (1994).

  16. Twisting Neutron Waves

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry

    Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.

  17. Continuous quantum measurement and the quantum to classical transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Tanmoy; Habib, Salman; Jacobs, Kurt

    2003-04-01

    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. 85, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities thatmore » describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit: first, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.« less

  18. Atoms and Molecules Interacting with Light

    NASA Astrophysics Data System (ADS)

    van der Straten, Peter; Metcalf, Harold

    2016-02-01

    Part I. Atom-Light Interaction: 1. The classical physics pathway; Appendix 1.A. Damping force on an accelerating charge; Appendix 1.B. Hanle effect; Appendix 1.C. Optical tweezers; 2. Interaction of two-level atoms and light; Appendix 2.A. Pauli matrices for motion of the bloch vector; Appendix 2.B. The Ramsey method; Appendix 2.C. Echoes and interferometry; Appendix 2.D. Adiabatic rapid passage; Appendix 2.E Superposition and entanglement; 3. The atom-light interaction; Appendix 3.A. Proof of the oscillator strength theorem; Appendix 3.B. Electromagnetic fields; Appendix 3.C. The dipole approximation; Appendix 3.D. Time resolved fluorescence from multi-level atoms; 4. 'Forbidden' transitions; Appendix 4.A. Higher order approximations; 5. Spontaneous emission; Appendix 5.A. The quantum mechanical harmonic oscillator; Appendix 5.B. Field quantization; Appendix 5.C. Alternative theories to QED; 6. The density matrix; Appendix 6.A. The Liouville-von Neumann equation; Part II. Internal Structure: 7. The hydrogen atom; Appendix 7.A. Center-of-mass motion; Appendix 7.B. Coordinate systems; Appendix 7.C. Commuting operators; Appendix 7.D. Matrix elements of the radial wavefunctions; 8. Fine structure; Appendix 8.A. The Sommerfeld fine-structure constant; Appendix 8.B. Measurements of the fine structure 9. Effects of the nucleus; Appendix 9.A. Interacting magnetic dipoles; Appendix 9.B. Hyperfine structure for two spin =2 particles; Appendix 9.C. The hydrogen maser; 10. The alkali-metal atoms; Appendix 10.A. Quantum defects for the alkalis; Appendix 10.B. Numerov method; 11. Atoms in magnetic fields; Appendix 11.A. The ground state of atomic hydrogen; Appendix 11.B. Positronium; Appendix 11.C. The non-crossing theorem; Appendix 11.D. Passage through an anticrossing: Landau-Zener transitions; 12. Atoms in electric fields; 13. Rydberg atoms; 14. The helium atom; Appendix 14.A. Variational calculations; Appendix 14.B. Detail on the variational calculations of the ground state; 15. The periodic system of the elements; Appendix 15. A paramagnetism; Appendix 15.B. The color of gold; 16. Molecules; Appendix 16.A. Morse potential; 17. Binding in the hydrogen molecule; Appendix 17.A. Confocal elliptical coordinates; Appendix 17.B. One-electron two-center integrals; Appendix 17.C. Electron-electron interaction in molecular hydrogen; 18. Ultra-cold chemistry; Part III. Applications: 19. Optical forces and laser cooling; 20. Confinement of neutral atoms; 21. Bose-Einstein condensation; Appendix 21.A. Distribution functions; Appendix 21.B. Density of states; 22. Cold molecules; 23. Three level systems; Appendix 23.A. General Case for _1 , _2; 24. Fundamental physics; Part IV. Appendices: Appendix A. Notation and definitions; Appendix B. Units and notation; Appendix C. Angular momentum in quantum mechanics; Appendix D. Transition strengths; References; Index.

  19. Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth William, III

    A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no previous demonstrations of a strain-mediated spin-mechanical interface and hence the system is largely uncharacterized. Second, fabricating high quality diamond mechanical oscillators is difficult due to the robust and chemically inert nature of diamond. Finally, engineering highly coherent NV centers with a coherent optical interface in nanostructured diamond remains an outstanding challenge. In this thesis, we theoretically and experimentally address each of these challenges, and show that with future improvements, this device is suitable for future quantum-enabled applications. First, we theoretically and experimentally demonstrate a dynamic, strain-mediated coupling between the spin and orbital degrees of freedom of the NV center and the driven mechanical motion of a single-crystal diamond cantilever. We employ Ramsey interferometry to demonstrate coherent, mechanical driving of the NV spin evolution. Using this interferometry technique, we present the first demonstration of nanoscale strain imaging, and quantitatively characterize the previously unknown spin-strain coupling constants. Next, we use the driven motion of the cantilever to perform deterministic control of the frequency and polarization dependence of the optical transitions of the NV center. Importantly, this experiment constitutes the first demonstration of on-chip control of both the frequency and polarization state of a single photon produced by a quantum emitter. In the final experiment, we use mechanical driving to engineer a series of spin ``clock" states and demonstrate a significant increase in the spin coherence time of the NV center. We conclude this thesis with a theoretical discussion of prospective applications for this device, including generation of non-classical mechanical states and spin-spin entanglement, as well as an evaluation of the current limitations of our devices, including a possible avenues for improvement to reach the regime of strong spin-phonon coupling.

  20. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitskiy, Anton V.; Voth, Gregory A., E-mail: gavoth@uchicago.edu

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionistmore » perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.« less

  1. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.

    PubMed

    Sinitskiy, Anton V; Voth, Gregory A

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

  2. Effective equations for the quantum pendulum from momentous quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Hector H.; Chacon-Acosta, Guillermo; Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  3. Where to place the positive muon in the Periodic Table?

    PubMed

    Goli, Mohammad; Shahbazian, Shant

    2015-03-14

    In a recent study it was suggested that the positively charged muon is capable of forming its own "atoms in molecules" (AIM) in the muonic hydrogen-like molecules, composed of two electrons, a muon and one of the hydrogen's isotopes, thus deserves to be placed in the Periodic Table [Phys. Chem. Chem. Phys., 2014, 16, 6602]. In the present report, the capacity of the positively charged muon in forming its own AIM is considered in a large set of molecules replacing muons with all protons in the hydrides of the second and third rows of the Periodic Table. Accordingly, in a comparative study the wavefunctions of both sets of hydrides and their muonic congeners are first derived beyond the Born-Oppenheimer (BO) paradigm, assuming protons and muons as quantum waves instead of clamped particles. Then, the non-BO wavefunctions are used to derive the AIM structures of both hydrides and muonic congeners within the context of the multi-component quantum theory of atoms in molecules. The results of the analysis demonstrate that muons are generally capable of forming their own atomic basins and the properties of these basins are not fundamentally different from those AIM containing protons. Particularly, the bonding modes in the muonic species seem to be qualitatively similar to their congener hydrides and no new bonding model is required to describe the bonding of muons to a diverse set of neighboring atoms. All in all, the positively charged muon is similar to a proton from the structural and bonding viewpoint and deserves to be placed in the same box of hydrogen in the Periodic Table. This conclusion is in line with a large body of studies on the chemical kinetics of the muonic molecules portraying the positively charged muon as a lighter isotope of hydrogen.

  4. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  5. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity

    PubMed Central

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297

  6. Computational Cellular Dynamics Based on the Chemical Master Equation: A Challenge for Understanding Complexity.

    PubMed

    Liang, Jie; Qian, Hong

    2010-01-01

    Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.

  7. Ring-breaking electron attachment to uracil: following bond dissociations via evolving resonances.

    PubMed

    Gianturco, Franco A; Sebastianelli, F; Lucchese, R R; Baccarelli, I; Sanna, N

    2008-05-07

    Calculations are carried out at various distinct energies to obtain both elastic cross sections and S-matrix resonance indicators (poles) from a quantum treatment of the electron scattering from gas-phase uracil. The low-energy region confirms the presence of pi(*) resonances as revealed by earlier calculations and experiments which are compared with the present findings. They turn out to be little affected by bond deformation, while the transient negative ions (TNIs) associated with sigma(*) resonances in the higher energy region ( approximately 8 eV) indeed show that ring deformations which allow vibrational redistribution of the excess electron energy into the molecular target strongly affect these shape resonances: They therefore evolve along different dissociative pathways and stabilize different fragment anions. The calculations further show that the occurrence of conical intersections between sigma(*) and pi(*)-type potential energy surfaces (real parts) is a very likely mechanism responsible for energy transfers between different TNIs. The excess electron wavefunctions for such scattering states, once mapped over the molecular space, provide nanoscopic reasons for the selective breaking of different bonds in the ring region.

  8. Deep learning and the electronic structure problem

    NASA Astrophysics Data System (ADS)

    Mills, Kyle; Spanner, Michael; Tamblyn, Isaac

    In the past decade, the fields of artificial intelligence and computer vision have progressed remarkably. Supported by the enthusiasm of large tech companies, as well as significant hardware advances and the utilization of graphical processing units to accelerate computations, deep neural networks (DNN) are gaining momentum as a robust choice for many diverse machine learning applications. We have demonstrated the ability of a DNN to solve a quantum mechanical eigenvalue equation directly, without the need to compute a wavefunction, and without knowledge of the underlying physics. We have trained a convolutional neural network to predict the total energy of an electron in a confining, 2-dimensional electrostatic potential. We numerically solved the one-electron Schrödinger equation for millions of electrostatic potentials, and used this as training data for our neural network. Four classes of potentials were assessed: the canonical cases of the harmonic oscillator and infinite well, and two types of randomly generated potentials for which no analytic solution is known. We compare the performance of the neural network and consider how these results could lead to future advances in electronic structure theory.

  9. Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.

    2018-06-01

    On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.

  10. Theory of the Decoherence Effect in Finite and Infinite Open Quantum Systems Using the Algebraic Approach

    NASA Astrophysics Data System (ADS)

    Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert

    Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.

  11. Raman scattering mediated by neighboring molecules

    NASA Astrophysics Data System (ADS)

    Williams, Mathew D.; Bradshaw, David S.; Andrews, David L.

    2016-05-01

    Raman scattering is most commonly associated with a change in vibrational state within individual molecules, the corresponding frequency shift in the scattered light affording a key way of identifying material structures. In theories where both matter and light are treated quantum mechanically, the fundamental scattering process is represented as the concurrent annihilation of a photon from one radiation mode and creation of another in a different mode. Developing this quantum electrodynamical formulation, the focus of the present work is on the spectroscopic consequences of electrodynamic coupling between neighboring molecules or other kinds of optical center. To encompass these nanoscale interactions, through which the molecular states evolve under the dual influence of the input light and local fields, this work identifies and determines two major mechanisms for each of which different selection rules apply. The constituent optical centers are considered to be chemically different and held in a fixed orientation with respect to each other, either as two components of a larger molecule or a molecular assembly that can undergo free rotation in a fluid medium or as parts of a larger, solid material. The two centers are considered to be separated beyond wavefunction overlap but close enough together to fall within an optical near-field limit, which leads to high inverse power dependences on their local separation. In this investigation, individual centers undergo a Stokes transition, whilst each neighbor of a different species remains in its original electronic and vibrational state. Analogous principles are applicable for the anti-Stokes case. The analysis concludes by considering the experimental consequences of applying this spectroscopic interpretation to fluid media; explicitly, the selection rules and the impact of pressure on the radiant intensity of this process.

  12. Electron-related linear and nonlinear optical responses in vertically coupled triangular quantum dots

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Mora-Ramos, M. E.; Duque, C. A.

    2014-11-01

    The conduction band states of GaAs-based vertically coupled double triangular quantum dots in two dimensions are investigated within the effective mass and parabolic approximation, using a diagonalization procedure to solve the corresponding Schrödinger-like equation. The effect of an externally applied static electric field is included in the calculation, and the variation of the lowest confined energy levels as a result of the change of the field strength is reported for different geometrical setups. The linear and nonlinear optical absorptions and the relative change of the refractive index, associated with the energy transition between the ground and the first excited state in the system, are studied as a function of the incident light frequency for distinct configurations of inter-dot distance and electric field intensities. The blueshift of the resonant absorption peaks is detected as a consequence of the increment in the field intensity, whereas the opposite effect is obtained from the increase of inter-dot vertical distance. It is also shown that for large enough values of the electric field there is a quenching of the optical absorption due to field-induced change of symmetry of the first excited state wavefunction, in the case of triangular dots of equal shape and size.

  13. Quantum mechanical expansion of variance of a particle in a weakly non-uniform electric and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Poh Kam; Kosaka, Wataru; Oikawa, Shun-ichi

    We have solved the Heisenberg equation of motion for the time evolution of the position and momentum operators for a non-relativistic spinless charged particle in the presence of a weakly non-uniform electric and magnetic field. It is shown that the drift velocity operator obtained in this study agrees with the classical counterpart, and that, using the time dependent operators, the variances in position and momentum grow with time. The expansion rate of variance in position and momentum are dependent on the magnetic gradient scale length, however, independent of the electric gradient scale length. In the presence of a weakly non-uniformmore » electric and magnetic field, the theoretical expansion rates of variance expansion are in good agreement with the numerical analysis. It is analytically shown that the variance in position reaches the square of the interparticle separation, which is the characteristic time much shorter than the proton collision time of plasma fusion. After this time, the wavefunctions of the neighboring particles would overlap, as a result, the conventional classical analysis may lose its validity. The broad distribution of individual particle in space means that their Coulomb interactions with other particles become weaker than that expected in classical mechanics.« less

  14. Interfacing planar superconducting qubits with high overtone bulk acoustic phonons

    NASA Astrophysics Data System (ADS)

    Kervinen, Mikael; Rissanen, Ilkka; Sillanpää, Mika

    2018-05-01

    Mechanical resonators are a promising way for interfacing qubits in order to realize hybrid quantum systems that offer great possibilities for applications. Mechanical systems can have very long energy lifetimes, and they can be further interfaced to other systems. Moreover, integration of a mechanical oscillator with qubits creates a potential platform for the exploration of quantum physics in macroscopic mechanical degrees of freedom. The utilization of high overtone bulk acoustic resonators coupled to superconducting qubits is an intriguing platform towards these goals. These resonators exhibit a combination of high-frequency and high-quality factors. They can reach their quantum ground state at dilution refrigeration temperatures and they can be strongly coupled to superconducting qubits via their piezoelectric effect. In this paper, we demonstrate our system where bulk acoustic phonons of a high overtone resonator are coupled to a transmon qubit in a planar circuit architecture. We show that the bulk acoustic phonons are interacting with the qubit in a simple design architecture at the quantum level, representing further progress towards the quantum control of mechanical motion.

  15. Decoherence in quantum mechanics and quantum cosmology

    NASA Technical Reports Server (NTRS)

    Hartle, James B.

    1992-01-01

    A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.

  16. Emergent Phenomena at Oxide Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, H.Y.

    2012-02-16

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burstmore » of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin operator changes sign with T-operation. (iii) Gauge symmetry (G), which is associated with a change in the phase of the wave-function as {Psi} {yields} e{sup i{theta}}{Psi}. Gauge symmetry is connected to the law of charge conservation, and broken G-symmetry corresponds to superconductivity/superfluidity. To summarize, the interplay among these electronic degrees of freedom produces various forms of symmetry breaking patterns of I, T, and G, leading to novel emergent phenomena, which can appear only by the collective behavior of electrons and cannot be expected from individual electrons. Figure 1 shows this schematically by means of several representative phenomena. From this viewpoint, the interfaces of TMOs offer a unique and important laboratory because I is already broken by the structure itself, and the detailed form of broken I-symmetry can often be designed. Also, two-dimensionality usually enhances the effects of electron correlations by reducing their kinetic energy. These two features of oxide interfaces produce many novel effects and functions that cannot be attained in bulk form. Given that the electromagnetic responses are a major source of the physical properties of solids, and new gauge structures often appear in correlated electronic systems, we put 'emergent electromagnetism' at the center of Fig. 1.« less

  17. Generalization of uncertainty relation for quantum and stochastic systems

    NASA Astrophysics Data System (ADS)

    Koide, T.; Kodama, T.

    2018-06-01

    The generalized uncertainty relation applicable to quantum and stochastic systems is derived within the stochastic variational method. This relation not only reproduces the well-known inequality in quantum mechanics but also is applicable to the Gross-Pitaevskii equation and the Navier-Stokes-Fourier equation, showing that the finite minimum uncertainty between the position and the momentum is not an inherent property of quantum mechanics but a common feature of stochastic systems. We further discuss the possible implication of the present study in discussing the application of the hydrodynamic picture to microscopic systems, like relativistic heavy-ion collisions.

  18. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    NASA Astrophysics Data System (ADS)

    Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.

    2016-11-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.

  19. Quantum formalism for classical statistics

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  20. Experimental metaphysics2 : The double standard in the quantum-information approach to the foundations of quantum theory

    NASA Astrophysics Data System (ADS)

    Hagar, Amit

    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the 'apparent' collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.

  1. Studies of quantum dots in the quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Goldmann, Eyal

    We present two studies of quantum dots in the quantum Hall regime. In the first study, presented in Chapter 3, we investigate the edge reconstruction phenomenon believed to occur when the quantum dot filling fraction is n≲1 . Our approach involves the examination of large dots (≤40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction. In the second study, presented in Chapter 4, we investigate quantum dots in the fractional quantum Hall regime using a Hartree formulation of composite fermion theory. We find that under appropriate conditions, the chemical potential of the dots oscillates periodically with B due to the transfer of composite fermions between quasi-Landau bands. This effect is analogous the addition spectrum oscillations which occur in quantum dots in the integer quantum Hall regime. Period f0 oscillations are found in sharply confined dots with filling factors nu = 2/5 and nu = 2/3. Period 3 f0 oscillations are found in a parabolically confined nu = 2/5 dot. More generally, we argue that the oscillation period of dots with band pinning should vary continuously with B, whereas the period of dots without band pinning is f0 .

  2. BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack; Samsonidze, Georgy; Strubbe, David A.; Jain, Manish; Cohen, Marvin L.; Louie, Steven G.

    2012-06-01

    BerkeleyGW is a massively parallel computational package for electron excited-state properties that is based on the many-body perturbation theory employing the ab initio GW and GW plus Bethe-Salpeter equation methodology. It can be used in conjunction with many density-functional theory codes for ground-state properties, including PARATEC, PARSEC, Quantum ESPRESSO, SIESTA, and Octopus. The package can be used to compute the electronic and optical properties of a wide variety of material systems from bulk semiconductors and metals to nanostructured materials and molecules. The package scales to 10 000s of CPUs and can be used to study systems containing up to 100s of atoms. Program summaryProgram title: BerkeleyGW Catalogue identifier: AELG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Open source BSD License. See code for licensing details. No. of lines in distributed program, including test data, etc.: 576 540 No. of bytes in distributed program, including test data, etc.: 110 608 809 Distribution format: tar.gz Programming language: Fortran 90, C, C++, Python, Perl, BASH Computer: Linux/UNIX workstations or clusters Operating system: Tested on a variety of Linux distributions in parallel and serial as well as AIX and Mac OSX RAM: (50-2000) MB per CPU (Highly dependent on system size) Classification: 7.2, 7.3, 16.2, 18 External routines: BLAS, LAPACK, FFTW, ScaLAPACK (optional), MPI (optional). All available under open-source licenses. Nature of problem: The excited state properties of materials involve the addition or subtraction of electrons as well as the optical excitations of electron-hole pairs. The excited particles interact strongly with other electrons in a material system. This interaction affects the electronic energies, wavefunctions and lifetimes. It is well known that ground-state theories, such as standard methods based on density-functional theory, fail to correctly capture this physics. Solution method: We construct and solve the Dyson's equation for the quasiparticle energies and wavefunctions within the GW approximation for the electron self-energy. We additionally construct and solve the Bethe-Salpeter equation for the correlated electron-hole (exciton) wavefunctions and excitation energies. Restrictions: The material size is limited in practice by the computational resources available. Materials with up to 500 atoms per periodic cell can be studied on large HPCs. Additional comments: The distribution file for this program is approximately 110 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: 1-1000 minutes (depending greatly on system size and processor number).

  3. From First Principles: The Application of Quantum Mechanics to Complex Molecules and Solvated Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitag, Mark A.

    2001-12-31

    The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate formore » most systems of chemical interest.« less

  4. Neutron scattering studies of K3H(SO4)2 and K3D(SO4)2: the particle-in-a-box model for the quantum phase transition.

    PubMed

    Fillaux, François; Cousson, Alain

    2012-08-21

    In the crystal of K(3)H(SO(4))(2) or K(3)D(SO(4))(2), dimers SO(4)···H···SO(4) or SO(4)···D···SO(4) are linked by strong centrosymmetric hydrogen or deuterium bonds whose O···O length is ≈2.50 Å. We address two open questions. (i) Are H or D sites split or not? (ii) Is there any structural counterpart to the phase transition observed for K(3)D(SO(4))(2) at T(c) ≈ 85.5 K, which does not exist for K(3)H(SO(4))(2)? Neutron diffraction by single-crystals at cryogenic or room temperature reveals no structural transition and no resolvable splitting of H or D sites. However, the width of the probability densities suggest unresolved splitting of the wavefunctions suggesting rigid entities H(L1/2)-H(R1/2) or D(L1/2)-D(R1/2) whose separation lengths are l(H) ≈ 0.16 Å or l(D) ≈ 0.25 Å. The vibrational eigenstates for the center of mass of H(L1/2)-H(R1/2) revealed by inelastic neutron scattering are amenable to a square-well and we suppose the same potential holds for D(L1/2)-D(R1/2). In order to explain dielectric and calorimetric measurements of mixed crystals K(3)D((1-ρ))H(ρ)(SO(4))(2) (0 ≤ ρ ≤ 1), we replace the classical notion of order-disorder by the quantum notion of discernible (e.g., D(L1/2)-D(R1/2)) or indiscernible (e.g., H(L1/2)-H(R1/2)) components depending on the separation length of the split wavefunction. The discernible-indiscernible isostructural transition at finite temperatures is induced by a thermal pure quantum state or at 0 K by ρ.

  5. Student Understanding of Time Dependence in Quantum Mechanics

    ERIC Educational Resources Information Center

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  6. Quantum Corral Wave-function Engineering

    NASA Astrophysics Data System (ADS)

    Correa, Alfredo; Reboredo, Fernando; Balseiro, Carlos

    2005-03-01

    We present a theoretical method for the design and optimization of quantum corrals[1] with specific electronic properties. Taking advantage that spins are subject to a RKKY interaction that is directly controlled by the scattering of the quantum corral, we design corral structures that reproduce spin Hamiltonians with coupling constants determined a priori[2]. We solve exactly the bi-dimensional scattering problem for each corral configuration within the s-wave approximation[3] and subsequently the geometry of the quantum corral is optimized by means of simulated annealing[4] and genetic algorithms[5]. We demonstrate the possibility of automatic design of structures with complicated target electronic properties[6]. This work was performed under the auspices of the US Department of Energy by the University of California at the LLNL under contract no W-7405-Eng-48. [1] M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature 403, 512 (2000) [2] D. P. DiVincenzo et al., Nature 408, 339 (2000) [3] G. A. Fiete and E. J. Heller, Rev. Mod. Phys. 75, 933 (2003) [4] M. R. A. T. N. Metropolis et al., J. Chem. Phys. 1087 (1953) [5] E. Aarts and J. K. Lenstra, eds. Local search in combinatorial problems (Princeton University Press, 1997) [6] A. A. Correa, F. Reboredo and C. Balseiro, Phys. Rev. B (in press).

  7. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    ERIC Educational Resources Information Center

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  8. Contact geometry and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Herczeg, Gabriel; Waldron, Andrew

    2018-06-01

    We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.

  9. EDITORIAL: Focus on Mechanical Systems at the Quantum Limit FOCUS ON MECHANICAL SYSTEMS AT THE QUANTUM LIMIT

    NASA Astrophysics Data System (ADS)

    Aspelmeyer, Markus; Schwab, Keith

    2008-09-01

    The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new progress was reported almost on a monthly basis and new groups entered the field. We intend to keep submission to this Focus Issue open for some time and invite everyone to share their latest results with us. And finally, a note to our fellow colleagues: keep up the good work! We would like to call the next Focus Issue 'Mechanical Systems IN the Quantum Regime'. Focus on Mechanical Systems at the Quantum Limit Contents Parametric coupling between macroscopic quantum resonators L Tian, M S Allman and R W Simmonds Quantum noise in a nanomechanical Duffing resonator E Babourina-Brooks, A Doherty and G J Milburn Creating and verifying a quantum superposition in a micro-optomechanical system Dustin Kleckner, Igor Pikovski, Evan Jeffrey, Luuk Ament, Eric Eliel, Jeroen van den Brink and Dirk Bouwmeester Ground-state cooling of a nanomechanical resonator via a Cooper-pair box qubit Konstanze Jaehne, Klemens Hammerer and Margareta Wallquist Dissipation in circuit quantum electrodynamics: lasing and cooling of a low-frequency oscillator Julian Hauss, Arkady Fedorov, Stephan André, Valentina Brosco, Carsten Hutter, Robin Kothari, Sunil Yeshwanth, Alexander Shnirman and Gerd Schön Route to ponderomotive entanglement of light via optically trapped mirrors Christopher Wipf, Thomas Corbitt, Yanbei Chen and Nergis Mavalvala Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system Xiao-Zhong Yuan, Hsi-Sheng Goan, Chien-Hung Lin, Ka-Di Zhu and Yi-Wen Jiang High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators A Schliesser, G Anetsberger, R Rivière, O Arcizet and T J Kippenberg Optomechanical to mechanical entanglement transformation Giovanni Vacanti, Mauro Paternostro, G Massimo Palma and Vlatko Vedral The optomechanical instability in the quantum regime Max Ludwig, Björn Kubala and Florian Marquardt Quantum limits of photothermal and radiation pressure cooling of a movable mirror M Pinard and A Dantan Mechanical feedback in the high-frequency limit R El Boubsi, O Usmani and Ya M Blanter Back-action evasion and squeezing of a mechanical resonator using a cavity detector A A Clerk, F Marquardt and K Jacobs Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity Claudiu Genes, David Vitali and Paolo Tombesi Dispersive optomechanics: a membrane inside a cavity A M Jayich, J C Sankey, B M Zwickl, C Yang, J D Thompson, S M Girvin, A A Clerk, F Marquardt and J G E Harris Cavity-assisted backaction cooling of mechanical resonators I Wilson-Rae, N Nooshi, J Dobrindt, T J Kippenberg and W Zwerger Cavity cooling of a nanomechanical resonator by light scattering I Favero and K Karrai Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation M P Blencowe and A D Armour Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme A D Armour and M P Blencowe Nanoelectromechanics of suspended carbon nanotubes A K Hüttel, M Poot, B Witkamp and H S J van der Zant Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator J D Teufel, C A Regal and K W Lehnert

  10. Integrability versus Thermalizability in Isolated Quantum Systems

    NASA Astrophysics Data System (ADS)

    Olshanii, Maxim

    2012-02-01

    The purpose of this presentation is to assess the status of our understanding of the transition from integrability to thermalizability in isolated quantum systems. In Classical Mechanics, the boundary stripe between the two is relatively sharp: its integrability edge is marked by the appearance of finite Lyapunov's exponents that further converge to a unique value when the ergodicity edge is reached. Classical ergodicity is a universal property: if a system is ergodic, then every observable attains its microcanonical value in the infinite time average over the trajectory. On the contrary, in Quantum Mechanics, Lyapunov's exponents are always zero. Furthermore, since quantum dynamics necessarily invokes coherent superpositions of eigenstates of different energy, projectors to the eigenstates become more relevant; those in turn never thermalize. All of the above indicates that in quantum many-body systems, (a) the integrability-thermalizability transition is smooth, and (b) the degree of thermalizability is not absolute like in classical mechanics, but it is relative to the class of observables of interest. In accordance with these observations, we propose a concrete measure of the degree of quantum thermalizability, consistent with the expected empirical manifestations of it. As a practical application of this measure, we devise a unified recipe for choosing an optimal set of conserved quantities to govern the after-relaxation values of observables, in both integrable quantum systems and in quantum systems in between integrable and thermalizable.

  11. Nonrelativistic Quantum Mechanics with Fundamental Environment

    NASA Astrophysics Data System (ADS)

    Gevorkyan, Ashot S.

    2011-03-01

    Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ⊗ R { ξ}, where R 3 and R { ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.

  12. Electronic coupling matrix elements from charge constrained density functional theory calculations using a plane wave basis set

    NASA Astrophysics Data System (ADS)

    Oberhofer, Harald; Blumberger, Jochen

    2010-12-01

    We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.

  13. From Einstein-Podolsky-Rosen paradox to quantum nonlocality: experimental investigation of quantum correlations

    NASA Astrophysics Data System (ADS)

    Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2016-11-01

    In 1935, Einstein, Podolsky and Rosen published their influential paper proposing a now famous paradox (the EPR paradox) that threw doubt on the completeness of quantum mechanics. Two fundamental concepts: entanglement and steering, were given in the response to the EPR paper by Schrodinger, which both reflect the nonlocal nature of quantum mechanics. In 1964, John Bell obtained an experimentally testable inequality, in which its violation contradicts the prediction of local hidden variable models and agrees with that of quantum mechanics. Since then, great efforts have been made to experimentally investigate the nonlocal feature of quantum mechanics and many distinguished quantum properties were observed. In this work, along with the discussion of the development of quantum nonlocality, we would focus on our recent experimental efforts in investigating quantum correlations and their applications with optical systems, including the study of entanglement-assisted entropic uncertainty principle, Einstein-Podolsky-Rosen steering and the dynamics of quantum correlations.

  14. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  15. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    PubMed

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  16. Quantum thermalization through entanglement in an isolated many-body system.

    PubMed

    Kaufman, Adam M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Preiss, Philipp M; Greiner, Markus

    2016-08-19

    Statistical mechanics relies on the maximization of entropy in a system at thermal equilibrium. However, an isolated quantum many-body system initialized in a pure state remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We experimentally studied the emergence of statistical mechanics in a quantum state and observed the fundamental role of quantum entanglement in facilitating this emergence. Microscopy of an evolving quantum system indicates that the full quantum state remains pure, whereas thermalization occurs on a local scale. We directly measured entanglement entropy, which assumes the role of the thermal entropy in thermalization. The entanglement creates local entropy that validates the use of statistical physics for local observables. Our measurements are consistent with the eigenstate thermalization hypothesis. Copyright © 2016, American Association for the Advancement of Science.

  17. Wigner's quantum phase-space current in weakly-anharmonic weakly-excited two-state systems

    NASA Astrophysics Data System (ADS)

    Kakofengitis, Dimitris; Steuernagel, Ole

    2017-09-01

    There are no phase-space trajectories for anharmonic quantum systems, but Wigner's phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics —finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg's uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J. We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J's discrete stagnation points, how these arise and how a quantum system's dynamics is constrained by the stagnation points' topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ℏ or vanishing anharmonicity, does not pointwise converge to classical dynamics.

  18. Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Monavarian, M.; Rashidi, A.; Aragon, A. A.; Oh, S. H.; Rishinaramangalam, A. K.; DenBaars, S. P.; Feezell, D.

    2018-01-01

    High-speed InGaN/GaN blue light-emitting diodes (LEDs) are needed for future gigabit-per-second visible-light communication systems. Large LED modulation bandwidths are typically achieved at high current densities, with reports close to 1 GHz bandwidth at current densities ranging from 5 to 10 kA/cm2. However, the internal quantum efficiency (IQE) of InGaN/GaN LEDs is quite low at high current densities due to the well-known efficiency droop phenomenon. Here, we show experimentally that nonpolar and semipolar orientations of GaN enable higher modulation bandwidths at low current densities where the IQE is expected to be higher and power dissipation is lower. We experimentally compare the modulation bandwidth vs. current density for LEDs on nonpolar (10 1 ¯ 0 ), semipolar (20 2 ¯ 1 ¯) , and polar (" separators="|0001 ) orientations. In agreement with wavefunction overlap considerations, the experimental results indicate a higher modulation bandwidth for the nonpolar and semipolar LEDs, especially at relatively low current densities. At 500 A/cm2, the nonpolar LED has a 3 dB bandwidth of ˜1 GHz, while the semipolar and polar LEDs exhibit bandwidths of 260 MHz and 75 MHz, respectively. A lower carrier density for a given current density is extracted from the RF measurements for the nonpolar and semipolar LEDs, consistent with the higher wavefunction overlaps in these orientations. At large current densities, the bandwidth of the polar LED approaches that of the nonpolar and semipolar LEDs due to coulomb screening of the polarization field. The results support using nonpolar and semipolar orientations to achieve high-speed LEDs at low current densities.

  19. Entanglement entropies and fermion signs of critical metals

    NASA Astrophysics Data System (ADS)

    Kaplis, N.; Krüger, F.; Zaanen, J.

    2017-04-01

    The fermion sign problem is often viewed as a sheer inconvenience that plagues numerical studies of strongly interacting electron systems. Only recently has it been suggested that fermion signs are fundamental for the universal behavior of critical metallic systems and crucially enhance their degree of quantum entanglement. In this work we explore potential connections between emergent scale invariance of fermion sign structures and scaling properties of bipartite entanglement entropies. Our analysis is based on a wave-function Ansatz that incorporates collective, long-range backflow correlations into fermionic Slater determinants. Such wave functions mimic the collapse of a Fermi liquid at a quantum critical point. Their nodal surfaces, a representation of the fermion sign structure in many-particle configurations space, show fractal behavior up to a length scale ξ that diverges at a critical backflow strength. We show that the Hausdorff dimension of the fractal nodal surface depends on ξ , the number of fermions and the exponent of the backflow. For the same wave functions we numerically calculate the second Rényi entanglement entropy S2. Our results show a crossover from volume scaling, S2˜ℓθ (θ =2 in d =2 dimensions), to the characteristic Fermi-liquid behavior S2˜ℓ lnℓ on scales larger than ξ . We find that volume scaling of the entanglement entropy is a robust feature of critical backflow fermions, independent of the backflow exponent and hence the fractal dimension of the scale invariant sign structure.

  20. Multimode optomechanical system in the quantum regime.

    PubMed

    Nielsen, William Hvidtfelt Padkær; Tsaturyan, Yeghishe; Møller, Christoffer Bo; Polzik, Eugene S; Schliesser, Albert

    2017-01-03

    We realize a simple and robust optomechanical system with a multitude of long-lived (Q > 10 7 ) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate (96 kHz) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K). Reaching this quantum regime entails, inter alia, quantum measurement backaction exceeding thermal forces and thus strong optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz. The multimode nature of the membrane and Fabry-Perot resonators will allow multimode entanglement involving electromagnetic, mechanical, and spin degrees of freedom.

  1. Multimode optomechanical system in the quantum regime

    NASA Astrophysics Data System (ADS)

    Hvidtfelt Padkær Nielsen, William; Tsaturyan, Yeghishe; Møller, Christoffer Bo; Polzik, Eugene S.; Schliesser, Albert

    2017-01-01

    We realize a simple and robust optomechanical system with a multitude of long-lived (Q > 107) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes’ motion with a measurement rate (96 kHz) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K). Reaching this quantum regime entails, inter alia, quantum measurement backaction exceeding thermal forces and thus strong optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz. The multimode nature of the membrane and Fabry-Perot resonators will allow multimode entanglement involving electromagnetic, mechanical, and spin degrees of freedom.

  2. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaoticmore » nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.« less

  3. Search for violations of quantum mechanics

    DOE PAGES

    Ellis, John; Hagelin, John S.; Nanopoulos, D. V.; ...

    1984-07-01

    The treatment of quantum effects in gravitational fields indicates that pure states may evolve into mixed states, and Hawking has proposed modification of the axioms of field theory which incorporate the corresponding violation of quantum mechanics. In this study we propose a modified hamiltonian equation of motion for density matrices and use it to interpret upper bounds on the violation of quantum mechanics in different phenomenological situations. We apply our formalism to the K 0-K 0 system and to long baseline neutron interferometry experiments. In both cases we find upper bounds of about 2 × 10 -21 GeV on contributionsmore » to the single particle “hamiltonian” which violate quantum mechanical coherence. We discuss how these limits might be improved in the future, and consider the relative significance of other successful tests of quantum mechanics. Finally, an appendix contains model estimates of the magnitude of effects violating quantum mechanics.« less

  4. Quantum mechanics as classical statistical mechanics with an ontic extension and an epistemic restriction.

    PubMed

    Budiyono, Agung; Rohrlich, Daniel

    2017-11-03

    Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.

  5. Macroscopic Entangled State Generation with Optomechanical Coupling of Two Mechanical Modes

    NASA Astrophysics Data System (ADS)

    Weaver, Matthew; Luna, Fernando; Buters, Frank; Heeck, Kier; de Man, Sven; Bouwmeester, Dirk

    Mechanical resonators with a large quantum position uncertainty are an excellent test system for proposed decoherence mechanisms in massive systems. We present a scheme to optomechanically entangle two mechanical resonators with large frequency separation via two tone driving and single photon projection measurements. The quantum position uncertainty can be tuned with a variable optical pulse displacement operation, and independent single photon readout of the two resonators provides robust verification of the quantum states of the system. This scheme is currently experimentally feasible in a number of high mass opto- and electro-mechanical systems. We demonstrate one such system with two spatially and frequency separated Si3N4 trampoline resonators. We also show how the resonators can be coupled with two tone driving and the single photon optomechanical coupling rates can be tuned.

  6. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems

    NASA Astrophysics Data System (ADS)

    Gogolin, Christian; Eisert, Jens

    2016-05-01

    We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.

  7. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.

    PubMed

    Gogolin, Christian; Eisert, Jens

    2016-05-01

    We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.

  8. Variational study of fermionic and bosonic systems with non-Gaussian states: Theory and applications

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Demler, Eugene; Ignacio Cirac, J.

    2018-03-01

    We present a new variational method for investigating the ground state and out of equilibrium dynamics of quantum many-body bosonic and fermionic systems. Our approach is based on constructing variational wavefunctions which extend Gaussian states by including generalized canonical transformations between the fields. The key advantage of such states compared to simple Gaussian states is presence of non-factorizable correlations and the possibility of describing states with strong entanglement between particles. In contrast to the commonly used canonical transformations, such as the polaron or Lang-Firsov transformations, we allow parameters of the transformations to be time dependent, which extends their regions of applicability. We derive equations of motion for the parameters characterizing the states both in real and imaginary time using the differential structure of the variational manifold. The ground state can be found by following the imaginary time evolution until it converges to a steady state. Collective excitations in the system can be obtained by linearizing the real-time equations of motion in the vicinity of the imaginary time steady-state solution. Our formalism allows us not only to determine the energy spectrum of quasiparticles and their lifetime, but to obtain the complete spectral functions and to explore far out of equilibrium dynamics such as coherent evolution following a quantum quench. We illustrate and benchmark this framework with several examples: a single polaron in the Holstein and Su-Schrieffer-Heeger models, non-equilibrium dynamics in the spin-boson and Kondo models, the superconducting to charge density wave phase transitions in the Holstein model.

  9. Resonance energy transfer: The unified theory via vector spherical harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk

    2016-08-21

    In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherentmore » in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.« less

  10. Quantum origins of objectivity

    NASA Astrophysics Data System (ADS)

    Horodecki, R.; Korbicz, J. K.; Horodecki, P.

    2015-03-01

    In spite of all of its successes, quantum mechanics leaves us with a central problem: How does nature create a bridge from fragile quanta to the objective world of everyday experience? Here we find that a basic structure within quantum mechanics that leads to the perceived objectivity is a so-called spectrum broadcast structure. We uncover this based on minimal assumptions, without referring to any dynamical details or a concrete model. More specifically, working formally within the decoherence theory setting with multiple environments (called quantum Darwinism), we show how a crucial for quantum mechanics notion of nondisturbance due to Bohr [N. Bohr, Phys. Rev. 48, 696 (1935), 10.1103/PhysRev.48.696] and a natural definition of objectivity lead to a canonical structure of a quantum system-environment state, reflecting objective information records about the system stored in the environment.

  11. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

    NASA Astrophysics Data System (ADS)

    Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski

    2014-07-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground-state spin. The nitrogen-vacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 × 10-6 strain Hz-1/2. Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime.

  12. Simulation Of Wave Function And Probability Density Of Modified Poschl Teller Potential Derived Using Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angraini, Lily Maysari; Suparmi, Variani, Viska Inda

    2010-12-01

    SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.

  13. Superconducting Qubits as Mechanical Quantum Engines

    NASA Astrophysics Data System (ADS)

    Sachtleben, Kewin; Mazon, Kahio T.; Rego, Luis G. C.

    2017-09-01

    We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.

  14. Nilpotent Quantum Mechanics: Analogues and Applications

    NASA Astrophysics Data System (ADS)

    Marcer, Peter; Rowlands, Peter

    2017-07-01

    The most significant characteristic of nilpotent quantum mechanics is that the quantum system (fermion state) and its environment (vacuum) are, in mathematical terms, mirror images of each other. So a change in one automatically leads to corresponding changes in the other. We have used this characteristic as a model for self-organization, which has applications well beyond quantum physics. The nilpotent structure has also been identified as being constructed from two commutative vector spaces. This construction has a number of identifiable characteristics which we can expect to find in systems where self-organization is dominant, and a case presented after the publication of a paper by us on ‘The ‘Logic’ of Self-Organizing Systems’,1 in the organization of the neurons in the visual cortex. We expect to find many more complex systems where our general principles, based, by analogy, on nilpotent quantum mechanics, will apply.

  15. Lorentz quantum mechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Wu, Biao

    2018-01-01

    We present a theoretical framework for the dynamics of bosonic Bogoliubov quasiparticles. We call it Lorentz quantum mechanics because the dynamics is a continuous complex Lorentz transformation in complex Minkowski space. In contrast, in usual quantum mechanics, the dynamics is the unitary transformation in Hilbert space. In our Lorentz quantum mechanics, three types of state exist: space-like, light-like and time-like. Fundamental aspects are explored in parallel to the usual quantum mechanics, such as a matrix form of a Lorentz transformation, and the construction of Pauli-like matrices for spinors. We also investigate the adiabatic evolution in these mechanics, as well as the associated Berry curvature and Chern number. Three typical physical systems, where bosonic Bogoliubov quasi-particles and their Lorentz quantum dynamics can arise, are presented. They are a one-dimensional fermion gas, Bose-Einstein condensate (or superfluid), and one-dimensional antiferromagnet.

  16. Superpersistent Currents in Dirac Fermion Systems

    DTIC Science & Technology

    2017-03-06

    development of quantum mechanics,, but also to quantum information processing and computing . Exploiting various physical systems to realize two-level...Here, using the QSD method, we calculated the dynamical trajectories of the system in the quantum regime. Our computations extending to the long time...currents in 2D Dirac material systems and pertinent phenomena in the emerging field of relativistic quantum nonlinear dynamics and chaos. Systematic

  17. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  18. Multimode optomechanical system in the quantum regime

    PubMed Central

    Nielsen, William Hvidtfelt Padkær; Tsaturyan, Yeghishe; Møller, Christoffer Bo; Polzik, Eugene S.; Schliesser, Albert

    2017-01-01

    We realize a simple and robust optomechanical system with a multitude of long-lived (Q > 107) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry–Perot resonator detects these modes’ motion with a measurement rate (96 kHz) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures (10 K). Reaching this quantum regime entails, inter alia, quantum measurement backaction exceeding thermal forces and thus strong optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to −2.4 dB (−3.6 dB if corrected for detection losses) and bandwidths ≲90 kHz. The multimode nature of the membrane and Fabry–Perot resonators will allow multimode entanglement involving electromagnetic, mechanical, and spin degrees of freedom. PMID:27999182

  19. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    PubMed

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  20. Quantum Tic-Tac-Toe as Metaphor for Quantum Physics

    NASA Astrophysics Data System (ADS)

    Goff, Allan; Lehmann, Dale; Siegel, Joel

    2004-02-01

    Quantum Tic-Tac-Toe is presented as an abstract quantum system derived from the rules of Classical Tic-Tac-Toe. Abstract quantum systems can be constructed from classical systems by the addition of three types of rules; rules of Superposition, rules of Entanglement, and rules of Collapse. This is formally done for Quantum Tic-Tac-Toe. As a part of this construction it is shown that abstract quantum systems can be viewed as an ensemble of classical systems. That is, the state of a quantum game implies a set of simultaneous classical games. The number and evolution of the ensemble of classical games is driven by the superposition, entanglement, and collapse rules. Various aspects and play situations provide excellent metaphors for standard features of quantum mechanics. Several of the more significant metaphors are discussed, including a measurement mechanism, the correspondence principle, Everett's Many Worlds Hypothesis, an ascertainity principle, and spooky action at a distance. Abstract quantum systems also show the consistency of backwards-in-time causality, and the influence on the present of both pasts and futures that never happened. The strongest logical argument against faster-than-light (FTL) phenomena is that since FTL implies backwards-in-time causality, temporal paradox is an unavoidable consequence of FTL; hence FTL is impossible. Since abstract quantum systems support backwards-in-time causality but avoid temporal paradox through pruning of the classical ensemble, it may be that quantum based FTL schemes are possible allowing backwards-in-time causality, but prohibiting temporal paradox.

  1. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.

  2. A Quantum Proxy Weak Blind Signature Scheme Based on Controlled Quantum Teleportation

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Yu, Yao-Feng; Song, Qin; Gao, Lan-Xiang

    2015-04-01

    Proxy blind signature is applied to the electronic paying system, electronic voting system, mobile agent system, security of internet, etc. A quantum proxy weak blind signature scheme is proposed in this paper. It is based on controlled quantum teleportation. Five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, so it could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.

  3. Controlled Quantum Packets

    NASA Technical Reports Server (NTRS)

    DeMartino, Salvatore; DeSiena, Silvio

    1996-01-01

    We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.

  4. Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond

    NASA Astrophysics Data System (ADS)

    Neukirch, Levi P.; von Haartman, Eva; Rosenholm, Jessica M.; Nick Vamivakas, A.

    2015-10-01

    Considerable advances made in the development of nanomechanical and nano-optomechanical devices have enabled the observation of quantum effects, improved sensitivity to minute forces, and provided avenues to probe fundamental physics at the nanoscale. Concurrently, solid-state quantum emitters with optically accessible spin degrees of freedom have been pursued in applications ranging from quantum information science to nanoscale sensing. Here, we demonstrate a hybrid nano-optomechanical system composed of a nanodiamond (containing a single nitrogen-vacancy centre) that is levitated in an optical dipole trap. The mechanical state of the diamond is controlled by modulation of the optical trapping potential. We demonstrate the ability to imprint the multi-dimensional mechanical motion of the cavity-free mechanical oscillator into the nitrogen-vacancy centre fluorescence and manipulate the mechanical system's intrinsic spin. This result represents the first step towards a hybrid quantum system based on levitating nanoparticles that simultaneously engages optical, phononic and spin degrees of freedom.

  5. Schemes of detecting nuclear spin correlations by dynamical decoupling based quantum sensing

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long Ma; Liu, Ren-Bao

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical decoupling (DD) enhanced diamond quantum sensing has enabled NMR of single nuclear spins and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the frequency fingerprints of target nuclear spins. Such schemes, however, cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear spin clusters. Here we show that the first limitation can be overcome by using wavefunction fingerprints of target nuclear spins, which is much more sensitive than the ''frequency fingerprints'' to weak hyperfine interaction between the targets and a sensor, while the second one can be overcome by a new design of two-dimensional DD sequences composed of two sets of periodic DD sequences with different periods, which can be independently set to match two different transition frequencies. Our schemes not only offer an approach to breaking the resolution limit set by ''frequency gradients'' in conventional MRI, but also provide a standard approach to correlation spectroscopy for single-molecule NMR.

  6. Physics at the FQMT'11 conference

    NASA Astrophysics Data System (ADS)

    Špička, V.; Nieuwenhuizen, Th M.; Keefe, P. D.

    2012-11-01

    This paper deals with the recent state of the art of the following topics presented at the FQMT'11 conference: foundations of quantum physics, quantum measurement; nonequilibrium quantum statistical physics; quantum thermodynamics; quantum measurement, entanglement and coherence; dissipation, dephasing, noise, and decoherence; quantum optics; macroscopic quantum behavior; e.g. cold atoms; Bose-Einstein condensates; physics of quantum computing and quantum information; mesoscopic, nano-electro-mechanical systems and nano-optical systems; spin systems and their dynamics; biological systems and molecular motors; and cosmology, gravitation and astrophysics. The lectures and discussions at the FQMT'11 conference, as well as the contributions to the related topical issue, reveal important themes for future development. The recent literature is included.

  7. Alloy and heterostructure architectures as promising tools for controlling electronic properties of semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Vaxenburg, Roman; Lifshitz, Efrat

    2012-02-01

    Tunability of energy levels and wavefunctions of carriers in colloidal quantum dots (CQDs) has a marked effect on numerous physical aspects, such as Coulomb interactions and charge separation, which in turn has a direct impact on the functioning of CQD-based opto-electronic devices. The electronic properties of CQDs are conventionally controlled by variation of their size. Here we demonstrate a theoretical approach to engineer the electronic properties of IV-VI CQDs by introducing an alloy composition in core and core/shell heterostructures, having the general chemical formula PbSexS1-x/PbSeyS1-y (0 ≤ x ≤ 1, 0 ≤ y ≤ 1), while maintaining a constant size. The theoretical model considered an effective mass anisotropy and smooth potential step at the core/shell interface. The model revealed the influence induced by variation of chemical composition and core-to-shell division on the band-gap energy, remote states’ density, internal charge separation, electron-hole Coulomb interaction, and optical transition oscillator strength.

  8. Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules

    DOE PAGES

    Yu, Hua-Gen

    2015-01-28

    We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An applicationmore » is illustrated by calculating the infrared vibrational dipole transition spectrum of CH₄ based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.« less

  9. Condensates in quantum chromodynamics and the cosmological constant

    PubMed Central

    Brodsky, Stanley J.; Shrock, Robert

    2011-01-01

    Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.

  10. The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads.

    PubMed

    Weymann, Ireneusz

    2010-01-13

    We analyze numerically the spin-dependent transport through coherent chains of three coupled quantum dots weakly connected to external magnetic leads. In particular, using the diagrammatic technique on the Keldysh contour, we calculate the conductance, shot noise and tunnel magnetoresistance (TMR) in the sequential and cotunneling regimes. We show that transport characteristics greatly depend on the strength of the interdot Coulomb correlations, which determines the spatial distribution of the electron wavefunction in the chain. When the correlations are relatively strong, depending on the transport regime, we find both negative TMR as well as TMR enhanced above the Julliere value, accompanied with negative differential conductance (NDC) and super-Poissonian shot noise. This nontrivial behavior of tunnel magnetoresistance is associated with selection rules that govern tunneling processes and various high-spin states of the chain that are relevant for transport. For weak interdot correlations, on the other hand, the TMR is always positive and not larger than the Julliere TMR, although super-Poissonian shot noise and NDC can still be observed.

  11. Short distance modification of the quantum virial theorem

    NASA Astrophysics Data System (ADS)

    Zhao, Qin; Faizal, Mir; Zaz, Zaid

    2017-07-01

    In this letter, we will analyse the deformation of a semi-classical gravitational system from minimal measurable length scale. In the semi-classical approximation, the gravitational field will be analysed as a classical field, and the matter fields will be treated quantum mechanically. Thus, using this approximation, this system will be represented by a deformation of Schrödinger-Newton equation by the generalised uncertainty principle (GUP). We will analyse the effects of this GUP deformed Schrödinger-Newton equation on the behaviour of such a semi-classical gravitational system. As the quantum mechanical virial theorem can be obtained using the Schrödinger-Newton equation, a short distance modification of the Schrödinger-Newton equation will also result in a short distance modification of the quantum mechanical virial theorem.

  12. Quantum optics, cavity QED, and quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2013-05-01

    Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.

  13. Dynamics of a coherently driven micromaser by the Monte Carlo wavefunction approach

    NASA Astrophysics Data System (ADS)

    Bonacina, L.; Casagrande, F.; Lulli, A.

    2000-08-01

    Using a Monte Carlo wavefunction approach we investigate the dynamics of a micromaser driven by a resonant coherent field. At steady state, for increasing interaction times, the system exhibits driven Rabi oscillations, followed by collapse as the range of micromaser trapping states is approached. The system operates in regimes ranging from a strong to a weak amplifier. In the strong-amplifier regime the cavity mode shows a preferred phase and can exhibit quadrature squeezing and sub-Poissonian photon statistics. In the weak-amplifier regime the cavity mode has no preferred phase, is super-Poissonian and is influenced by trapping effects; no revival of Rabi oscillations occurs. The main predictions can be compared with experimental measurements on the populations of atoms leaving the cavity.

  14. Extracontextuality and extravalence in quantum mechanics.

    PubMed

    Auffèves, Alexia; Grangier, Philippe

    2018-07-13

    We develop the point of view where quantum mechanics results from the interplay between the quantized number of 'modalities' accessible to a quantum system, and the continuum of 'contexts' that are required to define these modalities. We point out the specific roles of 'extracontextuality' and 'extravalence' of modalities, and relate them to the Kochen-Specker and Gleason theorems.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  15. A cellular automaton for the signed particle formulation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sellier, J. M.; Kapanova, K. G.; Dimov, I.

    2017-02-01

    Recently, a new formulation of quantum mechanics, based on the concept of signed particles, has been suggested. In this paper, we introduce a cellular automaton which mimics the dynamics of quantum objects in the phase-space in a time-dependent fashion. This is twofold: it provides a simplified and accessible language to non-physicists who wants to simulate quantum mechanical systems, at the same time it enables a different way to explore the laws of Physics. Moreover, it opens the way towards hybrid simulations of quantum systems by combining full quantum models with cellular automata when the former fail. In order to show the validity of the suggested cellular automaton and its combination with the signed particle formalism, several numerical experiments are performed, showing very promising results. Being this article a preliminary study on quantum simulations in phase-space by means of cellular automata, some conclusions are drawn about the encouraging results obtained so far and the possible future developments.

  16. Quantum information aspects of noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bertolami, Orfeu; Bernardini, Alex E.; Leal, Pedro

    2018-01-01

    Some fundamental aspects related with the construction of Robertson-Schrödinger-like uncertainty-principle inequalities are reported in order to provide an overall description of quantumness, separability and nonlocality of quantum systems in the noncommutative phase-space. Some consequences of the deformed noncommutative algebra are also considered in physical systems of interest.

  17. Quantum mechanics and reality: An interpretation of Everett's theory

    NASA Astrophysics Data System (ADS)

    Lehner, Christoph Albert

    The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious observer is not described by the objective state, but by a Everettian relative state conditional on the subjective state, and no theoretical 'mark of reality' is necessary for this concept of reality. I compare the resulting concept of reality to Kant's distinction between empirical and transcendental reality.

  18. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com; Faculty of Science, Assiut University, Assiut; Joshi, A., E-mail: mcbamji@gmail.com

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlationsmore » of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.« less

  19. SCELib3.0: The new revision of SCELib, the parallel computational library of molecular properties in the Single Center Approach

    NASA Astrophysics Data System (ADS)

    Sanna, N.; Baccarelli, I.; Morelli, G.

    2009-12-01

    SCELib is a computer program which implements the Single Center Expansion (SCE) method to describe molecular electronic densities and the interaction potentials between a charged projectile (electron or positron) and a target molecular system. The first version (CPC Catalog identifier ADMG_v1_0) was submitted to the CPC Program Library in 2000, and version 2.0 (ADMG_v2_0) was submitted in 2004. We here announce the new release 3.0 which presents additional features with respect to the previous versions aiming at a significative enhance of its capabilities to deal with larger molecular systems. SCELib 3.0 allows for ab initio effective core potential (ECP) calculations of the molecular wavefunctions to be used in the SCE method in addition to the standard all-electron description of the molecule. The list of supported architectures has been updated and the code has been ported to platforms based on accelerating coprocessors, such as the NVIDIA GPGPU and the new parallel model adopted is able to efficiently run on a mixed many-core computing system. Program summaryProgram title: SCELib3.0 Catalogue identifier: ADMG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADMG_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2 018 862 No. of bytes in distributed program, including test data, etc.: 4 955 014 Distribution format: tar.gz Programming language: C Compilers used: xlc V8.x, Intel C V10.x, Portland Group V7.x, nvcc V2.x Computer: All SMP platforms based on AIX, Linux and SUNOS operating systems over SPARC, POWER, Intel Itanium2, X86, em64t and Opteron processors Operating system: SUNOS, IBM AIX, Linux RedHat (Enterprise), Linux SuSE (SLES) Has the code been vectorized or parallelized?: Yes. 1 to 32 (CPU or GPU) used RAM: Up to 32 GB depending on the molecular system and runtime parameters Classification: 16.5 Catalogue identifier of previous version: ADMG_v2_0 Journal reference of previous version: Comput. Phys. Comm. 162 (2004) 51 External routines: CUDA libraries (SDK V2.x). Does the new version supersede the previous version?: Yes Nature of problem: In this set of codes an efficient procedure is implemented to describe the wavefunction and related molecular properties of a polyatomic molecular system within the Single Center of Expansion (SCE) approximation. The resulting SCE wavefunction, electron density, electrostatic and correlation/polarization potentials can then be used in a wide variety of applications, such as electron-molecule scattering calculations, quantum chemistry studies, biomodelling and drug design. Solution method: The polycentre Hartree-Fock solution for a molecule of arbitrary geometry, based on linear combination of Gaussian-Type Orbital (GTO), is expanded over a single center, typically the Center Of Mass (C.O.M.), by means of a Gauss Legendre/Chebyschev quadrature over the θ,φ angular coordinates. The resulting SCE numerical wavefunction is then used to calculate the one-particle electron density, the electrostatic potential and two different models for the correlation/polarization potentials induced by the impinging electron, which have the correct asymptotic behavior for the leading dipole molecular polarizabilities. Reasons for new version: The present release of SCELib allows the study of larger molecular systems with respect to the previous versions by means of theoretical and technological advances, with the first implementation of the code over a many-core computing system. Summary of revisions: The major features added with respect to SCELib Version 2.0 are molecular wavefunctions obtained via the Los Alamos (Hay and Wadt) LAN ECP plus DZ description of the inner-shell electrons (on Na-La, Hf-Bi elements) [1] can now be single-center-expanded; the addition required modifications of: (i) the filtering code readgau, (ii) the main reading function setinp, (iii) the sphint code (including changes to the CalcMO code), (iv) the densty code, (v) the vst code; the classes of platforms supported now include two more architectures based on accelerated coprocessors (Nvidia GSeries GPGPU and ClearSpeed e720 (ClearSpeed version, experimental; initial preliminary porting of the sphint() function not for production runs - see the code documentation for additional detail). A single-precision representation for real numbers in the SCE mapping of the GTOs ( sphint code), has been implemented into the new code; the I h symmetry point group for the molecular systems has been added to those already allowed in the SCE procedure; the orientation of the molecular axis system for the Cs (planar) symmetry has been changed in accord with the standard orientation adopted by the latest version of the quantum chemistry code (Gaussian C03 [2]), which is used to generate the input multi-centre molecular wavefunctions ( z-axis perpendicular to the symmetry plane); the abelian subgroup for the Cs point group has been changed from C 1 to Cs; atomic basis functions including g-type GTOs can now be single-center-expanded. Restrictions: Depending on the molecular system under study and on the operating conditions the program may or may not fit into available RAM memory. In this case a feature of the program is to memory map a disk file in order to efficiently access the memory data through a disk device. The parallel GP-GPU implementation limits the number of CPU threads to the number of GPU cores present. Running time: The execution time strongly depends on the molecular target description and on the hardware/OS chosen, it is directly proportional to the ( r,θ,φ) grid size and to the number of angular basis functions used. Thus, from the program printout of the main arrays memory occupancy, the user can approximately derive the expected computer time needed for a given calculation executed in serial mode. For parallel executions the overall efficiency must be further taken into account, and this depends on the no. of processors used as well as on the parallel architecture chosen, so a simple general law is at present not determinable. References:[1] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270; W.R. Wadt, P.J. Hay, J. Chem. Phys. 284 (1985);P.J. Hay, W.R. Wadt, J. Chem. Phys. 299 (1985). [2] M.J. Frisch et al., Gaussian 03, revision C.02, Gaussian, Inc., Wallingford, CT, 2004.

  20. Synchronization of an optomechanical system to an external drive

    NASA Astrophysics Data System (ADS)

    Amitai, Ehud; Lörch, Niels; Nunnenkamp, Andreas; Walter, Stefan; Bruder, Christoph

    2017-05-01

    Optomechanical systems driven by an effective blue-detuned laser can exhibit self-sustained oscillations of the mechanical oscillator. These self-oscillations are a prerequisite for the observation of synchronization. Here, we study the synchronization of the mechanical oscillations to an external reference drive. We study two cases of reference drives: (1) an additional laser applied to the optical cavity; (2) a mechanical drive applied directly to the mechanical oscillator. Starting from a master equation description, we derive a microscopic Adler equation for both cases, valid in the classical regime in which the quantum shot noise of the mechanical self-oscillator does not play a role. Furthermore, we numerically show that, in both cases, synchronization arises also in the quantum regime. The optomechanical system is therefore a good candidate for the study of quantum synchronization.

  1. Variational Wavefunction for the Periodic Anderson Model with Onsite Correlation Factors

    NASA Astrophysics Data System (ADS)

    Kubo, Katsunori; Onishi, Hiroaki

    2017-01-01

    We propose a variational wavefunction containing parameters to tune the probabilities of all the possible onsite configurations for the periodic Anderson model. We call it the full onsite-correlation wavefunction (FOWF). This is a simple extension of the Gutzwiller wavefunction (GWF), in which one parameter is included to tune the double occupancy of the f electrons at the same site. We compare the energy of the GWF and the FOWF evaluated by the variational Monte Carlo method and that obtained with the density-matrix renormalization group method. We find that the energy is considerably improved in the FOWF. On the other hand, the physical quantities do not change significantly between these two wavefunctions as long as they describe the same phase, such as the paramagnetic phase. From these results, we not only demonstrate the improvement by the FOWF, but we also gain insights on the applicability and limitation of the GWF to the periodic Anderson model.

  2. Composition in the Quantum World

    NASA Astrophysics Data System (ADS)

    Hall, Edward Jonathan

    This thesis presents a problem for the foundations of quantum mechanics. It arises from the way that theory describes the composition of larger systems in terms of smaller ones, and renders untenable a wide range of interpretations of quantum mechanics. That quantum mechanics is difficult to interpret is old news, given the well-known Measurement Problem. But the problem I raise is quite different, and in important respects more fundamental. In brief: The physical world exhibits mereological structure: physical objects have parts, which in turn have parts, and so on. A natural way to try to represent this structure is by means of a particle theory, according to which the physical world consists entirely enduring physical objects which themselves have no proper parts, but aggregates of which are, or compose, all physical objects. Elementary, non-relativistic quantum mechanics can be cast in this mold--at least, according to the usual expositions of that theory. But herein lies the problem: the standard attempt to give a systematic particle interpretation to elementary quantum mechanics results in nonsense, thanks to the well-established principle of Permutation Invariance, which constrains the quantum -mechanical description of systems containing identical particles. Specifically, it follows from the most minimal principles of a particle interpretation (much weaker than those needed to generate the Measurement Problem), together with Permutation Invariance, that systems identical in composition must have the same physical state. In other words, systems which merely have the same numbers of the same types of particles are therefore, at all times, perfect physical duplicates. This conclusion is absurd: e.g., it is quite plausible that some of those particles which compose my body make up a system identical in composition to some pepperoni pizza. Yet no part of me is a qualitative physical duplicate of any pepperoni pizza. Perhaps "you are what you eat" --but not in this sense! In what follows I develop the principles needed to explore this problem, contrast it with the Measurement Problem, and consider, finally, how it should influence our judgments of the relative merits of the many extant interpretations of quantum mechanics.

  3. Schrödinger Evolution of Self-Gravitating Disks

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2018-04-01

    An understanding of the long-term evolution of self-gravitating disks ranks among the classic problems of dynamical astronomy. In this talk, I will describe an intriguing connection between the secular inclination dynamics of a Lagrange-Laplace disk and the time-dependent Schrödinger equation. Within the context of this formalism, nodal bending waves correspond to the eigen-modes of a quasiparticle’s wavefunction, confined in an infinite square well with boundaries given by the radial extent of the disk. I will further show that external secular perturbations upon self-gravitating disks exhibit a mathematical similarity to quantum scattering theory, yielding an analytic criterion for the gravitational rigidity of a nearly-Keplerian disk under external perturbations.

  4. Inelastic light scattering from plasmons tunneling between Wannier-Stark states

    NASA Astrophysics Data System (ADS)

    Fluegel, B.; Pfeiffer, L. N.; West, K.; Mascarenhas, A.

    2018-06-01

    Using inelastic light scattering, we measure the zone-center electronic excitation modes in a set of multiple quantum wells. The width of the wavefunction barriers was chosen such that it prevents significant coupling of the electron ground states between wells yet is transparent to electron tunneling under an electric field. Under these conditions, we find charge-density-like and spin-density-like plasmons whose energies do not correspond to the excitations calculated for either a single well or a set of Coulomb-coupled wells. The observed energies are proportional to the electric field strength and the lower energy modes agree with predictions for plasmons tunneling between the Wannier-Stark ladder states.

  5. Loss of coherence and memory effects in quantum dynamics Loss of coherence and memory effects in quantum dynamics

    NASA Astrophysics Data System (ADS)

    Benatti, Fabio; Floreanini, Roberto; Scholes, Greg

    2012-08-01

    The last years have witnessed fast growing developments in the use of quantum mechanics in technology-oriented and information-related fields, especially in metrology, in the developments of nano-devices and in understanding highly efficient transport processes. The consequent theoretical and experimental outcomes are now driving new experimental tests of quantum mechanical effects with unprecedented accuracies that carry with themselves the concrete possibility of novel technological spin-offs. Indeed, the manifold advances in quantum optics, atom and ion manipulations, spintronics and nano-technologies are allowing direct experimental verifications of new ideas and their applications to a large variety of fields. All of these activities have revitalized interest in quantum mechanics and created a unique framework in which theoretical and experimental physics have become fruitfully tangled with information theory, computer, material and life sciences. This special issue aims to provide an overview of what is currently being pursued in the field and of what kind of theoretical reference frame is being developed together with the experimental and theoretical results. It consists of three sections: 1. Memory effects in quantum dynamics and quantum channels 2. Driven open quantum systems 3. Experiments concerning quantum coherence and/or decoherence The first two sections are theoretical and concerned with open quantum systems. In all of the above mentioned topics, the presence of an external environment needs to be taken into account, possibly in the presence of external controls and/or forcing, leading to driven open quantum systems. The open system paradigm has proven to be central in the analysis and understanding of many basic issues of quantum mechanics, such as the measurement problem, quantum communication and coherence, as well as for an ever growing number of applications. The theory is, however, well-settled only when the so-called Markovian or memoryless, approximation applies. When strong coupling or long environmental relaxation times make memory effects important for a realistic description of the dynamics, new strategies are asked for and the assessment of the general structure of non-Markovian dynamical equations for realistic systems is a crucial issue. The impact of quantum phenomena such as coherence and entanglement in biology has recently started to be considered as a possible source of the high efficiency of certain biological mechanisms, including e.g. light harvesting in photosynthesis and enzyme catalysis. In this effort, the relatively unknown territory of driven open quantum systems is being explored from various directions, with special attention to the creation and stability of coherent structures away from thermal equilibrium. These investigations are likely to advance our understanding of the scope and role of quantum mechanics in living systems; at the same time they provide new ideas for the developments of next generations of devices implementing highly efficient energy harvesting and conversion. The third section concerns experimental studies that are currently being pursued. Multidimensional nonlinear spectroscopy, in particular, has played an important role in enabling experimental detection of the signatures of coherence. Recent remarkable results suggest that coherence—both electronic and vibrational—survive for substantial timescales even in complex biological systems. The papers reported in this issue describe work at the forefront of this field, where researchers are seeking a detailed understanding of the experimental signatures of coherence and its implications for light-induced processes in biology and chemistry.

  6. Entangled states in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  7. Quantum approach to classical statistical mechanics.

    PubMed

    Somma, R D; Batista, C D; Ortiz, G

    2007-07-20

    We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.

  8. Classical system boundaries cannot be determined within quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Fields, Chris

    Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.

  9. Nanoscale orbital excitations and the infrared spectrum of a molecular Mott insulator: A15-Cs3C60.

    PubMed

    Naghavi, S S; Fabrizio, M; Qin, T; Tosatti, E

    2016-10-14

    The quantum physics of ions and electrons behind low-energy spectra of strongly correlated molecular conductors, superconductors and Mott insulators is poorly known, yet fascinating especially in orbitally degenerate cases. The fulleride insulator Cs 3 C 60 (A15), one such system, exhibits infrared (IR) spectra with low temperature peak features and splittings suggestive of static Jahn-Teller distortions with a breakdown of orbital symmetry in the molecular site. That is puzzling, since there is no detectable static distortion, and because the features and splittings disappear upon modest heating, which they should not. Taking advantage of the Mott-induced collapse of electronic wavefunctions from lattice-extended to nanoscale localized inside a caged molecular site, we show that the unbroken spin and orbital symmetry of the ion multiplets explains the IR spectrum without adjustable parameters. This demonstrates the importance of a fully quantum treatment of nuclear positions and orbital momenta in the Mott insulator sites, dynamically but not statically distorted. The observed demise of these features with temperature is explained by the thermal population of a multiplet term whose nuclear positions are essentially undistorted, but whose energy is very low-lying. That term is in fact a scaled-down orbital excitation analogous to that of other Mott insulators, with the same spin 1/2 as the ground state, but with a larger orbital momentum of two instead of one.

  10. Theoretical Study of the B(sup 3) Sigma(sup -, sub u) - X(sup3)Sigma(sub g, sup -) and B"(sup 3)Pi(sub u) - X(sup 3)Sigma(sub g, sup -) Band Systems of S(sub 2)

    NASA Technical Reports Server (NTRS)

    Pradhan, Atul D.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Multireference configuration-interaction (MRCI) wavefunctions and potential energy curves have been calculated for the X(sup 3)Sigma(sub g,sup -), B(sup 3)Sigma(sub u, Sup -) and B"(sup 3)Pi((sub u) states of S(sub 2) using correlation consistent Gaussian basis sets. These wavefunctions are utilized to compute the the transition dipole moments of the B(sup 3)Sigma(sub g, sup -) - X(sup 3) Sigma(sub g, sup -) and B"(sup 3)Pi(sub u) - X(sup 3)Sigma(sub g, sup -) systems. Oscillator strengths, transition probabilities, and radiative lifetimes are computed for the X-B system and comparison is made with experimental data.

  11. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  12. Real-Time Quantum Dynamics of Long-Range Electronic Excitation Transfer in Plasmonic Nanoantennas.

    PubMed

    Ilawe, Niranjan V; Oviedo, M Belén; Wong, Bryan M

    2017-08-08

    Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems.

  13. Redesigning the Quantum Mechanics Curriculum to Incorporate Problem Solving Using a Computer Algebra System

    NASA Astrophysics Data System (ADS)

    Roussel, Marc R.

    1999-10-01

    One of the traditional obstacles to learning quantum mechanics is the relatively high level of mathematical proficiency required to solve even routine problems. Modern computer algebra systems are now sufficiently reliable that they can be used as mathematical assistants to alleviate this difficulty. In the quantum mechanics course at the University of Lethbridge, the traditional three lecture hours per week have been replaced by two lecture hours and a one-hour computer-aided problem solving session using a computer algebra system (Maple). While this somewhat reduces the number of topics that can be tackled during the term, students have a better opportunity to familiarize themselves with the underlying theory with this course design. Maple is also available to students during examinations. The use of a computer algebra system expands the class of feasible problems during a time-limited exercise such as a midterm or final examination. A modern computer algebra system is a complex piece of software, so some time needs to be devoted to teaching the students its proper use. However, the advantages to the teaching of quantum mechanics appear to outweigh the disadvantages.

  14. Quantum entanglement in photoactive prebiotic systems.

    PubMed

    Tamulis, Arvydas; Grigalavicius, Mantas

    2014-06-01

    This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.

  15. The Conformal Template and New Perspectives for Quantum Chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Stanley J.; /SLAC

    2007-03-06

    Conformal symmetry provides a systematic approximation to QCD in both its perturbative and nonperturbative domains. One can use the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. For example, there is an exact correspondence between the fifth-dimensional coordinate of AdS space and a specific impact variable which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, themore » fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. One can also use conformal symmetry as a template for perturbative QCD predictions where the effects of the nonzero beta function can be systematically included in the scale of the QCD coupling. This leads to fixing of the renormalization scale and commensurate scale relations which relate observables without scale or scheme ambiguity. The results are consistent with the renormalization group and the analytic connection of QCD to Abelian theory at N{sub C} {yields} 0. I also discuss a number of novel phenomenological features of QCD. Initial- and .nal-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, di.ractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, nonperturbative antisymmetric sea quark distributions, anomalous heavy quark e.ects, and the unexpected effects of direct higher-twist processes.« less

  16. Quantum Feynman Ratchet

    NASA Astrophysics Data System (ADS)

    Goyal, Ketan; Kawai, Ryoichi

    As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.

  17. Is a description deeper than the quantum one possible?

    NASA Astrophysics Data System (ADS)

    Ghirardi, GianCarlo; Romano, Raffaele

    2014-12-01

    Recently, it has been argued that quantum mechanics is a complete theory, and that different quantum states do necessarily correspond to different elements of reality, under the assumptions that quantum mechanics is correct and that measurement settings can be freely chosen. In this work, we prove that this result is a consequence of an unnecessarily strong mathematical expression of the free choice assumption, which embodies more conditions than explicitly stated. The issues of the completeness of quantum mechanics, and of the interpretation of the state vector, are by no means resolved. Taking this perspective, we describe how the recently introduced class of crypto-nonlocal hidden variables theories can be used to characterize the maximal possible departure from quantum mechanics, when the system consists of a pair of qubits.

  18. Ground State Structure of a Coupled 2-Fermion System in Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    1997-05-01

    We prove the uniqueness of the ground state for a supersymmetric quantum mechanical system of two fermions and two bosons, which is closely related to theN=1 WZ-model. The proof is constructive and gives detailed information on what the ground state looks like

  19. Hybrid plasmonic systems: from optical transparencies to strong coupling and entanglement

    NASA Astrophysics Data System (ADS)

    Gray, Stephen K.

    2018-02-01

    Classical electrodynamics and quantum mechanical models of quantum dots and molecules interacting with plasmonic systems are discussed. Calculations show that just one quantum dot interacting with a plasmonic system can lead to interesting optical effects, including optical transparencies and more general Fano resonance features that can be tailored with ultrafast laser pulses. Such effects can occur in the limit of moderate coupling between quantum dot and plasmonic system. The approach to the strong coupling regime is also discussed. In cases with two or more quantum dots within a plasmonic system, the possibility of quantum entanglement mediated through the dissipative plasmonic structure arises.

  20. Quantum Brownian motion model for the stock market

    NASA Astrophysics Data System (ADS)

    Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong

    2016-06-01

    It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.

Top