Sample records for quark model calculation

  1. Dibaryons with Strangeness in Quark Models

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Gong, Fang; Huang, Hongxia; Ping, Jialun

    The extended quark delocalization color screening model, which incorporates Goldstone-boson-exchange with soft cutoff, and chiral quark model are employed to do a systematic dynamical calculation of six-quark systems with strangeness. The two models give similar results, although they have different attraction mechanisms. Comparing with the previous calculation of the extended quark delocalization color screening model, in which the Goldstone-bosons are introduced with hard cutoff, the present calculation obtains a little large binding energies for most of the states. However, the conclusions are the same. The calculations show that NΩ state with IJ = 1/2, 2 is a good dibaryon candidate with narrow width, and ΩΩ state with IJ = 00 is a stable dibaryon against the strong interaction. The calculations also reveal several other possible dibaryon candidates with high angular momentum, ΔΣ*(1/2, 3), ΔΞ*(1, 3), etc. These states may have too wide width to be observed experimentally.

  2. Calculation of the hadron contribution from light-by-light scattering to the anomalous (g-2)μ muon magnetic moment for a nonlocal quark model

    NASA Astrophysics Data System (ADS)

    Zhevlakov, A. S.; Radzhabov, A. E.; Dorokhov, A. E.

    2010-11-01

    The muon contribution to the anomalous magnetic moment from light-by-light scattering diagrams with pion participation is calculated for a nonlocal chiral quark model. For various nonlocal model parameterizations, the contribution makes a μ Had,LbL = 5.1(0.2) 10-10. Later on, we plan to calculate contributions from diagrams with an intermediate scalar meson and quark boxing.

  3. Neutron Electric Dipole Moment in the Standard Model: Complete Three-Loop Calculation of the Valence Quark Contributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarnecki, A.; Krause, B.

    1997-06-01

    We present a complete three-loop calculation of the electric dipole moment of the u and d quarks in the standard model. For the d quark, more relevant for the experimentally important neutron electric dipole moment, we find cancellations which lead to an order of magnitude suppression compared with previous estimates. {copyright} {ital 1997} {ital The American Physical Society}

  4. Up quark mass in lattice QCD with three light dynamical quarks and implications for strong CP invariance.

    PubMed

    Nelson, Daniel R; Fleming, George T; Kilcup, Gregory W

    2003-01-17

    A standing mystery in the standard model is the unnatural smallness of the strong CP violating phase. A massless up quark has long been proposed as one potential solution. A lattice calculation of the constants of the chiral Lagrangian essential for the determination of the up quark mass, 2alpha(8)-alpha(5), is presented. We find 2alpha(8)-alpha(5)=0.29+/-0.18, which corresponds to m(u)/m(d)=0.410+/-0.036. This is the first such calculation using a physical number of dynamical light quarks, N(f)=3.

  5. Electromagnetic Coupling of Negative Parity Nucleon Resonances N (1535) Based on Nonrelativistic Constituent Quark Model

    NASA Astrophysics Data System (ADS)

    Parsaei, Sara; Rajabi, Ali Akbar

    2018-01-01

    The electromagnetic transition between the nucleon and excited baryons has long been recognized as an important source of information for understanding strong interactions in the domain of quark confinement. We study the electromagnetic properties of the excitation of the negative parity the N*(1535) resonances in the nonrelativistic constituent quark model at large momentum transfers and have performed a calculation the longitudinal and transverse helicity amplitudes. Since the helicity amplitudes depend strongly on the quark wave function in this paper, we consider the baryon as a simple, non-relativistically three-body quark model and also consider a hypercentral potential scheme for the internal baryon structure, which makes three-body forces among three quarks. Since the hyper central potential depends only on the hyper radius, therefore, the Cornell potential which is a combination of the Coulombic-like term plus a linear confining term is considered as the potential for interaction between quarks. In our work, in solving the Schrodinger equation with the Cornell potential, the Nikiforov-Uvarov method employed, and the analytic eigen-energies and eigen-functions obtained. By using the obtained eigen-functions, the transition amplitudes calculated. We show that our results in the range {{{Q}}}2> 2 {{GeV}}2 lead to an overall better agreement with the experimental data in comparison with the other three non-relativistic quark models.

  6. Low-temperature behavior of the quark-meson model

    NASA Astrophysics Data System (ADS)

    Tripolt, Ralf-Arno; Schaefer, Bernd-Jochen; von Smekal, Lorenz; Wambach, Jochen

    2018-02-01

    We revisit the phase diagram of strong-interaction matter for the two-flavor quark-meson model using the functional renormalization group. In contrast to standard mean-field calculations, an unusual phase structure is encountered at low temperatures and large quark chemical potentials. In particular, we identify a regime where the pressure decreases with increasing temperature and discuss possible reasons for this unphysical behavior.

  7. Physics of the Quark Model

    ERIC Educational Resources Information Center

    Young, Robert D.

    1973-01-01

    Discusses the charge independence, wavefunctions, magnetic moments, and high-energy scattering of hadrons on the basis of group theory and nonrelativistic quark model with mass spectrum calculated by first-order perturbation theory. The presentation is explainable to advanced undergraduate students. (CC)

  8. The Top Quark, QCD, And New Physics.

    DOE R&D Accomplishments Database

    Dawson, S.

    2002-06-01

    The role of the top quark in completing the Standard Model quark sector is reviewed, along with a discussion of production, decay, and theoretical restrictions on the top quark properties. Particular attention is paid to the top quark as a laboratory for perturbative QCD. As examples of the relevance of QCD corrections in the top quark sector, the calculation of e{sup+}e{sup -}+ t{bar t} at next-to-leading-order QCD using the phase space slicing algorithm and the implications of a precision measurement of the top quark mass are discussed in detail. The associated production of a t{bar t} pair and a Higgs boson in either e{sup+}e{sup -} or hadronic collisions is presented at next-to-leading-order QCD and its importance for a measurement of the top quark Yulrawa coupling emphasized. Implications of the heavy top quark mass for model builders are briefly examined, with the minimal supersymmetric Standard Model and topcolor discussed as specific examples.

  9. Pole structure of the Λ ( 1405 ) in a recent QCD simulation

    DOE PAGES

    Molina, R.; Doring, M.

    2016-09-27

    The Λ(1405) baryon is difficult to detect in experiment, absent in many quark model calculations, and supposedly manifested through a two-pole structure. Its uncommon properties made it subject to numerous experimental and theoretical studies in recent years. Lattice-QCD eigenvalues for different quark masses were recently reported by the Adelaide group. We compare these eigenvalues to predictions of a model based on Unitary Chiral Perturbation Theory. The UχPT calculation predicts the quark mass dependence remarkably well. It also explains the overlap pattern with different meson-baryon components, mainly πΣ and K¯N, at different quark masses. As a result, more accurate lattice QCDmore » data are required to draw definite conclusions on the nature of the Λ(1405).« less

  10. Nucleon properties in the Polyakov quark-meson model

    NASA Astrophysics Data System (ADS)

    Li, Yingying; Hu, Jinniu; Mao, Hong

    2018-05-01

    We study the nucleon as a nontopological soliton in a quark medium as well as in a nucleon medium in terms of the Polyakov quark-meson (PQM) model with two flavors at finite temperature and density. The constituent quark masses evolving with the temperature at various baryon chemical potentials are calculated and the equations of motion are solved according to the proper boundary conditions. The PQM model predicts an increasing size of the nucleon and a reduction of the nucleon mass in both hot environment. However, the phase structure is different from each other in quark and nucleon mediums. There is a crossover in the low-density region and a first-order phase transition in the high-density region in quark medium, whereas there exists a crossover characterized by the overlap of the nucleons in nucleon medium.

  11. Calculating TMDs of a large nucleus: Quasi-classical approximation and quantum evolution

    DOE PAGES

    Kovchegov, Yuri V.; Sievert, Matthew D.

    2015-12-24

    We set up a formalism for calculating transverse-momentum-dependent parton distribution functions (TMDs) of a large nucleus using the tools of saturation physics. By generalizing the quasi-classical Glauber–Gribov–Mueller/McLerran–Venugopalan approximation to allow for the possibility of spin–orbit coupling, we show how any TMD can be calculated in the saturation framework. This can also be applied to the TMDs of a proton by modeling it as a large “nucleus.” To illustrate our technique, we calculate the quark TMDs of an unpolarized nucleus at large-x: the unpolarized quark distribution and the quark Boer–Mulders distribution. Here, we observe that spin–orbit coupling leads to mixing betweenmore » different TMDs of the nucleus and of the nucleons. We then consider the evolution of TMDs: at large-x, in the double-logarithmic approximation, we obtain the Sudakov form factor. At small-x the evolution of unpolarized-target quark TMDs is governed by BK/JIMWLK evolution, while the small-x evolution of polarized-target quark TMDs appears to be dominated by the QCD Reggeon.« less

  12. Propagation of cosmic rays through the atmosphere in the quark-gluon strings model

    NASA Technical Reports Server (NTRS)

    Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.

    1985-01-01

    The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.

  13. Study of degenerate four-quark states with SU(2) lattice Monte Carlo techniques

    NASA Astrophysics Data System (ADS)

    Green, A. M.; Lukkarinen, J.; Pennanen, P.; Michael, C.

    1996-01-01

    The energies of four-quark states are calculated for geometries in which the quarks are situated on the corners of a series of tetrahedra and also for geometries that correspond to gradually distorting these tetrahedra into a plane. The interest in tetrahedra arises because they are composed of three degenerate partitions of the four quarks into two two-quark color singlets. This is an extension of earlier work showing that geometries with two degenerate partitions (e.g., squares) experience a large binding energy. It is now found that even larger binding energies do not result, but that for the tetrahedra the ground and first excited states become degenerate in energy. The calculation is carried out using SU(2) for static quarks in the quenched approximation with β=2.4 on a 163×32 lattice. The results are analyzed using the correlation matrix between different Euclidean times and the implications of these results are discussed for a model based on two-quark potentials.

  14. Charmed bottom baryon spectroscopy from lattice QCD

    DOE PAGES

    Brown, Zachary S.; Detmold, William; Meinel, Stefan; ...

    2014-11-19

    In this study, we calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with J P = 1/2 + and J P = 3/2 +. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limitmore » and to the physical pion mass using SU(4|2) heavy-hadron chiral perturbation theory including 1/m Q and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.« less

  15. Fluctuations and correlations of conserved charges in QCD at finite temperature with effective models

    NASA Astrophysics Data System (ADS)

    Fu, Wei-Jie; Liu, Yu-Xin; Wu, Yue-Liang

    2010-01-01

    We study fluctuations of conserved charges including baryon number, electric charge, and strangeness as well as the correlations among these conserved charges in the 2+1 flavor Polyakov-Nambu-Jona-Lasinio model at finite temperature. The calculated results are compared with those obtained from recent lattice calculations performed with an improved staggered fermion action at two values of the lattice cutoff with almost physical up and down quark masses and a physical value for the strange quark mass. We find that our calculated results are well consistent with those obtained in lattice calculations except for some quantitative differences for fluctuations related with strange quarks. Our calculations indicate that there is a pronounced cusp in the ratio of the quartic to quadratic fluctuations of baryon number, i.e. χ4B/χ2B, at the critical temperature during the phase transition, which confirms that χ4B/χ2B is a useful probe of the deconfinement and chiral phase transition.

  16. Light-meson masses in an unquenched quark model

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyun; Ping, Jialun; Roberts, Craig D.; Segovia, Jorge

    2018-05-01

    We perform a coupled-channels calculation of the masses of light mesons with the quantum numbers I JP =-, (I ,J )=0 , 1, by including q q ¯ and (q q ¯)2 components in a nonrelativistic chiral quark model. The coupling between two- and four-quark configurations is realized through a 3P0 quark-pair creation model. With the usual form of this operator, the mass shifts are large and negative, an outcome which raises serious issues of validity for the quenched quark model. Herein, therefore, we introduce some improvements of the 3P0 operator in order to reduce the size of the mass shifts. By introducing two simple factors, physically well motivated, the coupling between q q ¯ and (q q ¯)2 components is weakened, producing mass shifts that are around 10%-20% of hadron bare masses.

  17. Gamma-ray bursts generated from phase transition of neutron stars to quark stars

    NASA Astrophysics Data System (ADS)

    Shu, Xiao-Yu; Huang, Yong-Feng; Zong, Hong-Shi

    2017-02-01

    The evolution of compact stars is believed to be able to produce various violent phenomena in our universe. In this paper, we discuss the possibility that gamma-ray bursts (GRBs) might result from the phase transition of a neutron star to a quark star and calculate the energy released from the conversion. In our study, we utilize the relativistic mean field (RMF) theory to describe the hadronic phase of neutron stars, while an improved quasi-particle model is adopted to describe the quark phase of quark stars. With quark matter equation-of-state (EOS) more reliable than models used before, it is found that the energy released is of the order of 1052 erg, which confirms the validity of the phase transition model.

  18. Lattice Studies of Hyperon Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richards, David G.

    2016-04-01

    I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.

  19. Chiral-symmetry breaking and confinement in Minkowski space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biernat, Elmer P.; Pena, M. T.; Ribiero, J. E.

    2016-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and comparedmore » with the experimental data from JLab.« less

  20. Chiral-symmetry breaking and confinement in Minkowski space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biernat, Elmar P.; Peña, M. T.; Departamento de Física, Instituto Superior Técnico

    2016-01-22

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and comparedmore » with the experimental data from JLab.« less

  1. Three Dimensional Imaging of the Nucleon

    NASA Astrophysics Data System (ADS)

    More, Jai; Mukherjee, Asmita; Nair, Sreeraj

    2018-05-01

    We study the Wigner distributions of quarks and gluons in light-front dressed quark model using the overlap of light front wave functions (LFWFs). We take the target to be a dressed quark, this is a composite spin -1/2 state of quark dressed with a gluon. This state allows us to calculate the quark and gluon Wigner distributions analytically in terms of LFWFs using Hamiltonian perturbation theory. We analyze numerically the Wigner distributions of quark and gluon and report their nature in the contour plots. We use an improved numerical technique to remove the cutoff dependence of the Fourier transformed integral over \\varvec{Δ}_\\perp.

  2. The Thomas–Fermi quark model: Non-relativistic aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Quan, E-mail: quan_liu@baylor.edu; Wilcox, Walter, E-mail: walter_wilcox@baylor.edu

    The first numerical investigation of non-relativistic aspects of the Thomas–Fermi (TF) statistical multi-quark model is given. We begin with a review of the traditional TF model without an explicit spin interaction and find that the spin splittings are too small in this approach. An explicit spin interaction is then introduced which entails the definition of a generalized spin “flavor”. We investigate baryonic states in this approach which can be described with two inequivalent wave functions; such states can however apply to multiple degenerate flavors. We find that the model requires a spatial separation of quark flavors, even if completely degenerate.more » Although the TF model is designed to investigate the possibility of many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of almost all ground state octet and decuplet baryons. The charge radii of such states are determined and compared with lattice calculations and other models. The low energy fit obtained allows us to extrapolate to the six-quark doubly strange H-dibaryon state, flavor symmetric strange states of higher quark content and possible six quark nucleon–nucleon resonances. The emphasis here is on the systematics revealed in this approach. We view our model as a versatile and convenient tool for quickly assessing the characteristics of new, possibly bound, particle states of higher quark number content. -- Highlights: • First application of the statistical Thomas–Fermi quark model to baryonic systems. • Novel aspects: spin as generalized flavor; spatial separation of quark flavor phases. • The model is statistical, but the low energy baryonic spectrum is successfully fit. • Numerical applications include the H-dibaryon, strange states and nucleon resonances. • The statistical point of view does not encourage the idea of bound many-quark baryons.« less

  3. Light-meson masses in an unquenched quark model

    DOE PAGES

    Chen, Xiaoyun; Ping, Jialun; Roberts, Craig D.; ...

    2018-05-17

    We perform a coupled-channels calculation of the masses of light mesons with the quantum numbers IJ P=-, (I,J) = 0,1, by includingmore » $$q\\bar{q}$$ and ($$q\\bar{q}$$) 2 components in a nonrelativistic chiral quark model. The coupling between two- and four-quark configurations is realized through a 3P 0 quark-pair creation model. With the usual form of this operator, the mass shifts are large and negative, an outcome which raises serious issues of validity for the quenched quark model. Therefore, we introduce some improvements of the 3P 0 operator in order to reduce the size of the mass shifts. By introducing two simple factors, physically well motivated, the coupling between $$q\\bar{q}$$ and ($$q\\bar{q}$$) 2 components is weakened, producing mass shifts that are around 10%–20% of hadron bare masses.« less

  4. Light-meson masses in an unquenched quark model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiaoyun; Ping, Jialun; Roberts, Craig D.

    We perform a coupled-channels calculation of the masses of light mesons with the quantum numbers IJ P=-, (I,J) = 0,1, by includingmore » $$q\\bar{q}$$ and ($$q\\bar{q}$$) 2 components in a nonrelativistic chiral quark model. The coupling between two- and four-quark configurations is realized through a 3P 0 quark-pair creation model. With the usual form of this operator, the mass shifts are large and negative, an outcome which raises serious issues of validity for the quenched quark model. Therefore, we introduce some improvements of the 3P 0 operator in order to reduce the size of the mass shifts. By introducing two simple factors, physically well motivated, the coupling between $$q\\bar{q}$$ and ($$q\\bar{q}$$) 2 components is weakened, producing mass shifts that are around 10%–20% of hadron bare masses.« less

  5. Magnetic moments of light nuclei from lattice quantum chromodynamics

    DOE PAGES

    Beane, S.  R.; Chang, E.; Cohen, S.; ...

    2014-12-16

    We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m π ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron capturesmore » its dominant structure. Similarly a shell-model-like moment is found for the triton, μ 3H ~ μ p. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.« less

  6. Energy Weighted Angular Correlations Between Hadrons Produced in Electron-Positron Annihilation.

    NASA Astrophysics Data System (ADS)

    Strharsky, Roger Joseph

    Electron-positron annihilation at large center of mass energy produces many hadronic particles. Experimentalists then measure the energies of these particles in calorimeters. This study investigated correlations between the angular locations of one or two such calorimeters and the angular orientation of the electron beam in the laboratory frame of reference. The calculation of these correlations includes weighting by the fraction of the total center of mass energy which the calorimeter measures. Starting with the assumption that the reaction proceeeds through the intermediate production of a single quark/anti-quark pair, a simple statistical model was developed to provide a phenomenological description of the distribution of final state hadrons. The model distributions were then used to calculate the one- and two-calorimeter correlation functions. Results of these calculations were compared with available data and several predictions were made for those quantities which had not yet been measured. Failure of the model to reproduce all of the data was discussed in terms of quantum chromodynamics, a fundamental theory which includes quark interactions.

  7. RX J1856.5-3754: A Strange Star with Solid Quark Surface?

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaoling; Xu, Renxin; Zhang, Shuangnan

    2003-01-01

    The featureless spectra of isolated 'neutron stars' may indicate that they are actually bare strange stars but a definitive conclusion on the nature of the compact objects cannot be reached until accurate and theoretically calculated spectra of the bare quark surface are known. However due to the complex nonlinearity of quantum chromodynamics it is almost impossible to present a definitive and accurate calculation of the density-dominated quark-gluon plasma from the first principles. Nevertheless it was suggested that cold quark matter with extremely high baryon density could be in a solid state. Within the realms of this possibility we have fitted the 500ks Chandra LETG/HRC data for the brightest isolated neutron star RX 51856.5-3754 with a phenomenological spectral model and found that electric conductivity of quark matter on the stellar surface is about 1.5 x 10(exp 16)/s.

  8. Top quark pair production and top quark properties at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chang-Seong

    2016-06-02

    We present the most recent measurements of top quark pairs production and top quark properties in proton-antiproton collisions with center-of-mass energy of 1.96 TeV using CDF II detector at the Tevatron. The combination of top pair production cross section measurements and the direct measurement of top quark width are reported. The test of Standard Model predictions for top quark decaying intomore » $b$-quarks, performed by measuring the ratio $R$ between the top quark branching fraction to $b$-quark and the branching fraction to any type of down quark is shown. The extraction of the CKM matrix element $$|V_{tb}|$$ from the ratio $R$ is discussed. We also present the latest measurements on the forward-backward asymmetry ($$A_{FB}$$) in top anti-top quark production. With the full CDF Run II data set, the measurements are performed in top anti-top decaying to final states that contain one or two charged leptons (electrons or muons). In addition, we combine the results of the leptonic forward-backward asymmetry in $$t\\bar t$$ system between the two final states. All the results show deviations from the next-to-leading order (NLO) standard model (SM) calculation.« less

  9. Transverse-momentum-dependent quark distribution functions of spin-one targets: Formalism and covariant calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninomiya, Yu; Bentz, Wolfgang; Cloet, Ian C.

    In this paper, we present a covariant formulation and model calculations of the leading-twist time-reversal even transverse-momentum-dependent quark distribution functions (TMDs) for a spin-one target. Emphasis is placed on a description of these three-dimensional distribution functions which is independent of any constraints on the spin quantization axis. We apply our covariant spin description to all nine leading-twist time-reversal even ρ meson TMDs in the framework provided by the Nambu–Jona-Lasinio model, incorporating important aspects of quark confinement via the infrared cutoff in the proper-time regularization scheme. In particular, the behaviors of the three-dimensional TMDs in a tensor polarized spin-one hadron aremore » illustrated. Sum rules and positivity constraints are discussed in detail. Our results do not exhibit the familiar Gaussian behavior in the transverse momentum, and other results of interest include the finding that the tensor polarized TMDs—associated with spin-one hadrons—are very sensitive to quark orbital angular momentum, and that the TMDs associated with the quark operator γ +γ Tγ 5 would vanish were it not for dynamical chiral symmetry breaking. In addition, we find that 44% of the ρ meson's spin is carried by the orbital angular momentum of the quarks, and that the magnitude of the tensor polarized quark distribution function is about 30% of the unpolarized quark distribution. Finally, a qualitative comparison between our results for the tensor structure of a quark-antiquark bound state is made to existing experimental and theoretical results for the two-nucleon (deuteron) bound state.« less

  10. Transverse-momentum-dependent quark distribution functions of spin-one targets: Formalism and covariant calculations

    DOE PAGES

    Ninomiya, Yu; Bentz, Wolfgang; Cloet, Ian C.

    2017-10-24

    In this paper, we present a covariant formulation and model calculations of the leading-twist time-reversal even transverse-momentum-dependent quark distribution functions (TMDs) for a spin-one target. Emphasis is placed on a description of these three-dimensional distribution functions which is independent of any constraints on the spin quantization axis. We apply our covariant spin description to all nine leading-twist time-reversal even ρ meson TMDs in the framework provided by the Nambu–Jona-Lasinio model, incorporating important aspects of quark confinement via the infrared cutoff in the proper-time regularization scheme. In particular, the behaviors of the three-dimensional TMDs in a tensor polarized spin-one hadron aremore » illustrated. Sum rules and positivity constraints are discussed in detail. Our results do not exhibit the familiar Gaussian behavior in the transverse momentum, and other results of interest include the finding that the tensor polarized TMDs—associated with spin-one hadrons—are very sensitive to quark orbital angular momentum, and that the TMDs associated with the quark operator γ +γ Tγ 5 would vanish were it not for dynamical chiral symmetry breaking. In addition, we find that 44% of the ρ meson's spin is carried by the orbital angular momentum of the quarks, and that the magnitude of the tensor polarized quark distribution function is about 30% of the unpolarized quark distribution. Finally, a qualitative comparison between our results for the tensor structure of a quark-antiquark bound state is made to existing experimental and theoretical results for the two-nucleon (deuteron) bound state.« less

  11. Properties of JP=1/2+ baryon octets at low energy

    NASA Astrophysics Data System (ADS)

    Kaur, Amanpreet; Gupta, Pallavi; Upadhyay, Alka

    2017-06-01

    The statistical model in combination with the detailed balance principle is able to phenomenologically calculate and analyze spin- and flavor-dependent properties like magnetic moments (with effective masses, with effective charge, or with both effective mass and effective charge), quark spin polarization and distribution, the strangeness suppression factor, and \\overline{d}-\\overline{u} asymmetry incorporating the strange sea. The s\\overline{s} in the sea is said to be generated via the basic quark mechanism but suppressed by the strange quark mass factor ms>m_{u,d}. The magnetic moments of the octet baryons are analyzed within the statistical model, by putting emphasis on the SU(3) symmetry-breaking effects generated by the mass difference between the strange and non-strange quarks. The work presented here assumes hadrons with a sea having an admixture of quark gluon Fock states. The results obtained have been compared with theoretical models and experimental data.

  12. Isoscalar-vector interaction and hybrid quark core in massive neutron stars

    NASA Astrophysics Data System (ADS)

    Shao, G. Y.; Colonna, M.; Di Toro, M.; Liu, Y. X.; Liu, B.

    2013-05-01

    The hadron-quark phase transition in the core of massive neutron stars is studied with a newly constructed two-phase model. For nuclear matter, a nonlinear Walecka type model with general nucleon-meson and meson-meson couplings, recently calibrated by Steiner, Hemper and Fischer, is taken. For quark matter, a modified Polyakov-Nambu—Jona-Lasinio model, which gives consistent results with lattice QCD data, is used. Most importantly, we introduce an isoscalar-vector interaction in the description of quark matter, and we study its influence on the hadron-quark phase transition in the interior of massive neutron stars. With the constraints of neutron star observations, our calculation shows that the isoscalar-vector interaction between quarks is indispensable if massive hybrids star exist in the universe, and its strength determines the onset density of quark matter, as well as the mass-radius relations of hybrid stars. Furthermore, as a connection with heavy-ion-collision experiments we give some discussions about the strength of isoscalar-vector interaction and its effect on the signals of hadron-quark phase transition in heavy-ion collisions, in the energy range of the NICA at JINR-Dubna and FAIR at GSI-Darmstadt facilities.

  13. Rare Λb→Λ l+l- and Λb→Λ γ decays in the relativistic quark model

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Galkin, V. O.

    2017-09-01

    Rare Λb→Λ l+l- and Λb→Λ γ decays are investigated in the relativistic quark model based on the quark-diquark picture of baryons. The decay form factors are calculated accounting for all relativistic effects, including relativistic transformations of baryon wave functions from rest to a moving reference frame and the contribution of the intermediate negative-energy states. The momentum-transfer-squared dependence of the form factors is explicitly determined in the whole accessible kinematical range. The calculated decay branching fractions, various forward-backward asymmetries for the rare decay Λb→Λ μ+μ-, are found to be consistent with recent detailed measurements by the LHCb Collaboration. Predictions for the Λb→Λ τ+τ- decay observables are given.

  14. Chiral symmetry and π - π scattering in the Covariant Spectator Theory

    DOE PAGES

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; ...

    2014-11-14

    The π-π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward Takahashi identity to the CST π-π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. Thus, the Adlermore » self-consistency zero for π-π scattering in the chiral limit emerges as the result for this sum.« less

  15. Semialigned two Higgs doublet model

    NASA Astrophysics Data System (ADS)

    Haba, Naoyuki; Umeeda, Hiroyuki; Yamada, Toshifumi

    2018-02-01

    In the left-right symmetric model based on S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry, there appear heavy neutral scalar particles mediating quark flavor changing neutral currents (FCNCs) at tree level. We consider a situation where such FCNCs give the only sign of the left-right model while WR gauge boson is decoupled, and name it "semialigned two Higgs doublet model" because the model resembles a two Higgs doublet model with mildly aligned Yukawa couplings to quarks. We predict a correlation among processes induced by quark FCNCs in the model, and argue that future precise calculation of meson-antimeson mixings and C P violation therein may hint at the semialigned two Higgs doublet model and the left-right model behind it.

  16. A covariant model for the gamma N -> N(1535) transition at high momentum transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Ramalho, M.T. Pena

    2011-08-01

    A relativistic constituent quark model is applied to the gamma N -> N(1535) transition. The N(1535) wave function is determined by extending the covariant spectator quark model, previously developed for the nucleon, to the S11 resonance. The model allows us to calculate the valence quark contributions to the gamma N -> N(1535) transition form factors. Because of the nucleon and N(1535) structure the model is valid only for Q^2> 2.3 GeV^2. The results are compared with the experimental data for the electromagnetic form factors F1* and F2* and the helicity amplitudes A_1/2 and S_1/2, at high Q^2.

  17. A quark model analysis of orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Scopetta, Sergio; Vento, Vicente

    1999-08-01

    Orbital Angular Momentum (OAM) twist-two parton distributions are studied. At the low energy, hadronic, scale we calculate them for the relativistic MIT bag model and for non-relativistic potential quark models. We reach the scale of the data by leading order evolution using the OPE and perturbative QCD. We confirm that the contribution of quarks and gluons OAM to the nucleon spin grows with Q2, and it can be relevant at the experimental scale, even if it is negligible at the hadronic scale, irrespective of the model used. The sign and shape of the quark OAM distribution at high Q2 may depend strongly on the relative size of the OAM and spin distributions at the hadronic scale. Sizeable quark OAM distributions at the hadronic scale, as proposed by several authors, can produce the dominant contribution to the nucleon spin at high Q2. As expected by general arguments, we obtain, that the large gluon OAM contribution is almost cancelled by the gluon spin contribution.

  18. Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Aaron S.; Hill, Richard J.; Kronfeld, Andreas S.

    The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation ofmore » $$g_A$$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.« less

  19. Hadron spectrum in quenched lattice QCD and distribution of zero modes

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yoichi

    1989-06-01

    I report the results of the calculation of the hadron spectrum with the standard one-plaquette gauge action on a 16★★3★48 lattice at β=5.85 in the quenched lattice QCD. The result remarkably agrees with that of quark potential models for the case where the quark mass is equal to or is larger than the strange quark mass, even when one uses the standard one-plaquette gauge action. This is contrary to what is stated in the literature. We clarify the reason of the discrepancy, paying close attention to systematic errors in numerical calculations. Further, I show the distribution of zero modes of quark matrix, both in the cases of a RG improved gauge action and the standard action, and discuss the difference between the two cases.

  20. Hadron masses in a gauge theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Rujula, A.; Georgi, H.; Glashow, S.L.

    1975-07-01

    We explore the implications for hadron spectroscopy of the ''standard'' gauge model of weak, electromagnetic, and strong interactions. The model involves four types of fractionally charged quarks, each in three colors, coupling to massless gauge gluons. The quarks are confined within colorless hadrons by a long-range spin-independent force realizing infrared slavery. We use the asymptotic freedom of the model to argue that for the calculation of hadron masses, the short-range quark-quark interaction may be taken to be Coulomb- like. We rederive many successful quark-model mass relations for the low-lying hadrons. Because a specific interaction and symmetry-breaking mechanism are forced onmore » us by the underlying renormalizable gauge field theory, we also obtain new mass relations. They are well satisfied. We develop a qualitative understanding of many features of the hadron mass spectrum, such as the origin and sign of the $Sigma$-$lambda$ mass splitting. Interpreting the newly discovered narrow boson resonances as states of charmonium, we use the model to predict the masses of charmed mesons and baryons.« less

  1. Predicting charmonium and bottomonium spectra with a quark harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Badavi, F. F.; Townsend, L. W.

    1986-01-01

    The nonrelativistic quark model is applied to heavy (nonrelativistic) meson (two-body) systems to obtain sufficiently accurate predictions of the spin-averaged mass levels of the charmonium and bottomonium spectra as an example of the three-dimensional harmonic oscillator. The present calculations do not include any spin dependence, but rather, mass values are averaged for different spins. Results for a charmed quark mass value of 1500 MeV/c-squared show that the simple harmonic oscillator model provides good agreement with experimental values for 3P states, and adequate agreement for the 3S1 states.

  2. Λ hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach

    NASA Astrophysics Data System (ADS)

    Sun, Yifeng; Ko, Che Ming

    2017-08-01

    Using a chiral kinetic approach based on initial conditions from a multiphase transport model, we study the spin polarizations of quarks and antiquarks in noncentral heavy ion collisions at the BNL Relativistic Heavy Ion Collider. Because of the nonvanishing vorticity field in these collisions, quarks and antiquarks are found to acquire appreciable spin polarizations in the direction perpendicular to the reaction plane. Converting quarks and antiquarks to hadrons via the coalescence model, we further calculate the spin polarizations of Λ and anti-Λ hyperons and find their values comparable to those measured in experiments by the STAR Collaboration.

  3. Equation of state and QCD transition at finite temperature

    NASA Astrophysics Data System (ADS)

    Bazavov, A.; Bhattacharya, T.; Cheng, M.; Christ, N. H.; Detar, C.; Ejiri, S.; Gottlieb, Steven; Gupta, R.; Heller, U. M.; Huebner, K.; Jung, C.; Karsch, F.; Laermann, E.; Levkova, L.; Miao, C.; Mawhinney, R. D.; Petreczky, P.; Schmidt, C.; Soltz, R. A.; Soeldner, W.; Sugar, R.; Toussaint, D.; Vranas, P.

    2009-07-01

    We calculate the equation of state in 2+1 flavor QCD at finite temperature with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nτ=8. Calculations have been performed with two different improved staggered fermion actions, the asqtad and p4 actions. Overall, we find good agreement between results obtained with these two O(a2) improved staggered fermion discretization schemes. A comparison with earlier calculations on coarser lattices is performed to quantify systematic errors in current studies of the equation of state. We also present results for observables that are sensitive to deconfining and chiral aspects of the QCD transition on Nτ=6 and 8 lattices. We find that deconfinement and chiral symmetry restoration happen in the same narrow temperature interval. In an appendix we present a simple parametrization of the equation of state that can easily be used in hydrodynamic model calculations. In this parametrization we include an estimate of current uncertainties in the lattice calculations which arise from cutoff and quark mass effects.

  4. High-Precision Differential Predictions for Top-Quark Pairs at the LHC

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Heymes, David; Mitov, Alexander

    2016-02-01

    We present the first complete next-to-next-to-leading order (NNLO) QCD predictions for differential distributions in the top-quark pair production process at the LHC. Our results are derived from a fully differential partonic Monte Carlo calculation with stable top quarks which involves no approximations beyond the fixed-order truncation of the perturbation series. The NNLO corrections improve the agreement between existing LHC measurements [V. Khachatryan et al. (CMS Collaboration), Eur. Phys. J. C 75, 542 (2015)] and standard model predictions for the top-quark transverse momentum distribution, thus helping alleviate one long-standing discrepancy. The shape of the top-quark pair invariant mass distribution turns out to be stable with respect to radiative corrections beyond NLO which increases the value of this observable as a place to search for physics beyond the standard model. The results presented here provide essential input for parton distribution function fits, implementation of higher-order effects in Monte Carlo generators, as well as top-quark mass and strong coupling determination.

  5. High-Precision Differential Predictions for Top-Quark Pairs at the LHC.

    PubMed

    Czakon, Michal; Heymes, David; Mitov, Alexander

    2016-02-26

    We present the first complete next-to-next-to-leading order (NNLO) QCD predictions for differential distributions in the top-quark pair production process at the LHC. Our results are derived from a fully differential partonic Monte Carlo calculation with stable top quarks which involves no approximations beyond the fixed-order truncation of the perturbation series. The NNLO corrections improve the agreement between existing LHC measurements [V. Khachatryan et al. (CMS Collaboration), Eur. Phys. J. C 75, 542 (2015)] and standard model predictions for the top-quark transverse momentum distribution, thus helping alleviate one long-standing discrepancy. The shape of the top-quark pair invariant mass distribution turns out to be stable with respect to radiative corrections beyond NLO which increases the value of this observable as a place to search for physics beyond the standard model. The results presented here provide essential input for parton distribution function fits, implementation of higher-order effects in Monte Carlo generators, as well as top-quark mass and strong coupling determination.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yan-Qing; Vogt, Ramona

    In this paper, we propose an improved version of the color evaporation model to describe heavy quarkonium production. In contrast to the traditional color evaporation model, we impose the constraint that the invariant mass of the intermediate heavy quark-antiquark pair be larger than the mass of produced quarkonium. We also introduce a momentum shift between the heavy quark-antiquark pair and the quarkonium. Finally, numerical calculations show that our model can describe the charmonium yields as well as the ratio of ψ' over J/ψ better than the traditional color evaporation model.

  7. Predicting charmonium and bottomonium spectra with a quark harmonic oscillator.

    PubMed

    Norbury, J W; Badavi, F F; Townsend, L W

    1986-11-01

    We present a simple application of the three-dimensional harmonic oscillator which should provide a very nice particle physics example to be presented in introductory undergraduate quantum mechanics course. The idea is to use the nonrelativistic quark model to calculate the spin-averaged mass levels of the charmonium and bottomonium spectra.

  8. A new approach to analytic, non-perturbative and gauge-invariant QCD

    NASA Astrophysics Data System (ADS)

    Fried, H. M.; Grandou, T.; Sheu, Y.-M.

    2012-11-01

    Following a previous calculation of quark scattering in eikonal approximation, this paper presents a new, analytic and rigorous approach to the calculation of QCD phenomena. In this formulation a basic distinction between the conventional "idealistic" description of QCD and a more "realistic" description is brought into focus by a non-perturbative, gauge-invariant evaluation of the Schwinger solution for the QCD generating functional in terms of the exact Fradkin representations of Green's functional G(x,y|A) and the vacuum functional L[A]. Because quarks exist asymptotically only in bound states, their transverse coordinates can never be measured with arbitrary precision; the non-perturbative neglect of this statement leads to obstructions that are easily corrected by invoking in the basic Lagrangian a probability amplitude which describes such transverse imprecision. The second result of this non-perturbative analysis is the appearance of a new and simplifying output called "Effective Locality", in which the interactions between quarks by the exchange of a "gluon bundle"-which "bundle" contains an infinite number of gluons, including cubic and quartic gluon interactions-display an exact locality property that reduces the several functional integrals of the formulation down to a set of ordinary integrals. It should be emphasized that "non-perturbative" here refers to the effective summation of all gluons between a pair of quark lines-which may be the same quark line, as in a self-energy graph-but does not (yet) include a summation over all closed-quark loops which are tied by gluon-bundle exchange to the rest of the "Bundle Diagram". As an example of the power of these methods we offer as a first analytic calculation the quark-antiquark binding potential of a pion, and the corresponding three-quark binding potential of a nucleon, obtained in a simple way from relevant eikonal scattering approximations. A second calculation, analytic, non-perturbative and gauge-invariant, of a nucleon-nucleon binding potential to form a model deuteron, will appear separately.

  9. Effect of sea quarks on single-spin asymmetries ANW± in transversely polarized pp collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Tian, Fang; Gong, Chang; Ma, Bo-Qiang

    2017-12-01

    We calculate the single-spin asymmetries ANW± of W± bosons produced in transversely polarized pp collisions with the valence part of the up (u) and down (d) quark Sivers functions treated by an available parametrization and the light-cone quark spectator-diquark model respectively, while the sea part Sivers functions of u and d quarks treated as parametrization. Comparing our results with those from experimental data at RHIC, we find that the Sivers functions of sea quarks play an important role in the determination of the shapes of ANW±. It is shown that ANW- is sensitive to u sea Sivers function, while ANW+ to d sea Sivers function intuitively. The results show that the contributions of u and d sea Sivers functions are rather sizable and of the same sign, and their signs agree with that of d valence quarks and are opposite to that of u valence quarks.

  10. D → Klv semileptonic decay using lattice QCD with HISQ at physical pion masses

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bipasha; Davies, Christine; Koponen, Jonna; Lepage, G. Peter

    2018-03-01

    he quark flavor sector of the Standard Model is a fertile ground to look for new physics effects through a unitarity test of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. We present a lattice QCD calculation of the scalar and the vector form factors (over a large q2 region including q2 = 0) associated with the D→ Klv semi-leptonic decay. This calculation will then allow us to determine the central CKM matrix element, Vcs in the Standard Model, by comparing the lattice QCD results for the form factors and the experimental decay rate. This form factor calculation has been performed on the Nf = 2 + 1 + 1 MILC HISQ ensembles with the physical light quark masses.

  11. Is the exotic X(5568) a bound state?

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyun; Ping, Jialun

    2016-06-01

    Stimulated by the recent observation of the exotic X(5568) state by the D0 Collaboration, we study the four-quark system usbar{b}bar{d} with quantum numbers J^P=0^+ in the framework of the chiral quark model. Two structures, diquark-antidiquark and meson-meson, with all possible color configurations are investigated by using the Gaussian expansion method. The results show that the energies of the tetraquark states with diquark-antiquark structure are too high to be candidates of X(5568), and no molecular structure can be formed in our calculations. The calculation is also extended to the four-quark system usbar{c}bar{d} and the same results as that of usbar{b}bar{d} are obtained.

  12. Quarkonium production in an improved color evaporation model

    DOE PAGES

    Ma, Yan-Qing; Vogt, Ramona

    2016-12-27

    In this paper, we propose an improved version of the color evaporation model to describe heavy quarkonium production. In contrast to the traditional color evaporation model, we impose the constraint that the invariant mass of the intermediate heavy quark-antiquark pair be larger than the mass of produced quarkonium. We also introduce a momentum shift between the heavy quark-antiquark pair and the quarkonium. Finally, numerical calculations show that our model can describe the charmonium yields as well as the ratio of ψ' over J/ψ better than the traditional color evaporation model.

  13. QCD next-to-leading-order predictions matched to parton showers for vector-like quark models.

    PubMed

    Fuks, Benjamin; Shao, Hua-Sheng

    2017-01-01

    Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.

  14. Quark scalar, axial and tensor charges in the Schwinger-Dyson formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Nodoka

    2016-01-22

    The quark scalar, axial and tensor charges of nucleon are calculated in the Schwinger-Dyson formalism. We first calculate these charges in the rainbow-ladder truncation using the IR cut quark-gluon vertex, and show that the result is in agreement with the known data. We then perform the same calculation with the phenomenological IR singular quark-gluon vertex. In this case, the Schwinger-Dyson equation does not converge. We show that this result suggests the requirement of additional corrections to the rainbow-ladder truncation, due to the interaction between quark and gluons in the deep IR region.

  15. Higgs boson production with heavy quarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher B.

    2005-11-01

    One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar fields is responsible for breaking the SU(2) L x U(1)Y gauge symmetry thus giving mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions via Yukawa couplings. The remnant of the process is a vet to he discovered scalar particle, the Higgs boson (h). However, current and future experiments at hadron colliders hold great promise. Of particular interest at hadron colliders is the production of a Higgs boson in association with a pair of heavy quarks, pp¯(pp) → QQ¯h, where Q can be either a top or a bottom quark. Indeed, the production of a Higgs boson with a pair of top quarks provides a very distinctive signal in hadronic collisions where background processes are formidable, and it will be instrumental in the discovery of a Higgs boson below about 130 GeV at the LHC. On the other hand, the production of a Higgs boson with bottom quarks can be strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric models. If this is the case, bb¯h production will play a crucial role at the Tevatron where it could provide the first signal of new physics. Given the prominent role that Higgs production with heavy quarks can play at hadron colliders, it becomes imperative to have precise theoretical predictions for total and differential cross sections. In this dissertation, we outline and present detailed results for the next-to-leading order (NLO) calculation of the Quantum Chromodynamic (QCD) corrections to QQ¯h production at both the Tevatron and the LHC. This calculation involves several difficult issues due to the three massive particles in the final state, a situation which is at the frontier of radiative correction calculations in quantum field theory. We detail the novel techniques developed to deal with these challenges. The calculation of pp¯(pp) → bb¯h at NLO in QCD involves several subtle issues not encountered in the case of pp¯(pp) → tt¯h. Recently, two different calculational schemes have been applied to the calculation of higher-order QCD corrections to bb¯h production. Here we compare these two seemingly different schemes and show that they produce compatible results for the total and differential cross sections in the cases of Higgs production with zero tagged b jets and one tagged b jet.

  16. Double Collins effect in e+e-→Λ Λ ¯ X and e+e-→Λ π X processes in a diquark spectator model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyu; Yang, Yongliang; Lu, Zhun

    2018-06-01

    We study the Collins function H1⊥ of the Λ hyperon, which describes the fragmentation of a transversely polarized quark into an unpolarized Λ hyperon. We calculate H1⊥ for light quarks of the Λ hyperon, in the diquark spectator model with a Gaussian form factor for the hyperon-quark-diquark vertex. The model calculation includes contributions from both the scalar diquark and vector diquark spectators. Using the model result, we estimate the azimuthal asymmetry A12, which appears in the ratio of unlike-sign events to like-sign events contributed by double Collins effects, in the processes e+e-→Λ Λ ¯X and e+e-→Λ π X . The QCD evolution effects for the half kT moment of the Collins function and the unpolarized fragmentation function D1(z ) are also included. The results show that the asymmetries are sizable and measurable at the kinematical configurations of Belle and BABAR experiments. We also find that the evolution effects play an important role in the phenomenological analysis.

  17. Search for baryon number violation in top-quark decays

    DOE PAGES

    Chatrchyan, Serguei

    2014-02-20

    A search for baryon number violation (BNV) in top-quark decays is performed using pp collisions produced by the LHC at sqrt(s) = 8 TeV. The top-quark decay considered in this search results in one light lepton (muon or electron), two jets, but no neutrino in the final state. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.5 inverse femtobarns. The event selection is optimized for top quarks produced in pairs, with one undergoing the BNV decay and the other the standard model hadronic decay to three jets. No significant excessmore » of events over the expected yield from standard model processes is observed. The upper limits at 95% confidence level on the branching fraction of the BNV top-quark decay are calculated to be 0.0016 and 0.0017 for the muon and the electron channels, respectively. Assuming lepton universality, an upper limit of 0.0015 results from the combination of the two channels. These limits are the first that have been obtained on a BNV process involving the top quark.« less

  18. A Monte Carlo code for the fragmentation of polarized quarks

    NASA Astrophysics Data System (ADS)

    Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.

    2017-12-01

    We describe a Monte Carlo code for the fragmentation of polarized quarks into pseudoscalar mesons. The quark jet is generated by iteration of the splitting q → h + q‧ where q and q‧ indicate quarks and h a hadron. The splitting function describing the energy sharing between q‧ and h is calculated on the basis of the Symmetric Lund Model where the quark spin is introduced through spin matrices as foreseen in the 3 P 0 mechanism. A complex mass parameter is introduced for the parametrisation of the Collins effect. The results for the Collins analysing power and the comparison with the Collins asymmetries measured by the COMPASS collaboration are presented. For the first time preliminary results on the simulated azimuthal asymmetry due to the Boer-Mulders function are also given.

  19. Beauty photoproduction using decays into electrons at HERA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chekanov, S.; Derrick, M.; Magill, S.

    Photoproduction of beauty quarks in events with two jets and an electron associated with one of the jets has been studied with the ZEUS detector at HERA using an integrated luminosity of 120 pb{sup -1}. The fractions of events containing b quarks, and also of events containing c quarks, were extracted from a likelihood fit using variables sensitive to electron identification as well as to semileptonic decays. Total and differential cross sections for beauty and charm production were measured and compared with next-to-leading-order QCD calculations and Monte Carlo models.

  20. B-meson decay constants from improved lattice nonrelativistic QCD with physical u, d, s, and c quarks.

    PubMed

    Dowdall, R J; Davies, C T H; Horgan, R R; Monahan, C J; Shigemitsu, J

    2013-05-31

    We present the first lattice QCD calculation of the decay constants f(B) and f(B(s)) with physical light quark masses. We use configurations generated by the MILC Collaboration including the effect of u, d, s, and c highly improved staggered quarks in the sea at three lattice spacings and with three u/d quark mass values going down to the physical value. We use improved nonrelativistic QCD (NRQCD) for the valence b quarks. Our results are f(B)=0.186(4) GeV, f(B(s))=0.224(4) GeV, f(B(s))/f(B)=1.205(7), and M(B(s))-M(B)=85(2) MeV, superseding earlier results with NRQCD b quarks. We discuss the implications of our results for the standard model rates for B((s))→μ(+)μ(-) and B→τν.

  1. Heavy Quark Dynamics toward thermalization: RAA, υ1, υ2, υ3

    NASA Astrophysics Data System (ADS)

    Plumari, Salvatore; Das, Santosh K.; Scardina, Francesco; Minissale, Vincenzo; Greco, Vincenzo

    2018-02-01

    We describe the propagation of Heavy quarks (HQs) in the quark-gluon plasma (QGP) within a relativistic Boltzmann transport (RBT) approach. The interaction between heavy quarks and light quarks is described within quasi-particle approach which is able to catch the main features of non-perturbative interaction as the increasing of the interaction in the region of low temperature near TC. In our calculations the hadronization of charm quarks in D mesons is described by mean of an hybrid model of coalescence plus fragmentation. We show that the coalescence play a key role to get a good description of the experimental data for the nuclear suppression factor RAA and the elliptic flow υ2(pT) at both RHIC and LHC energies. Moreover, we show some recent results on the direct flow υ1 and triangular flow υ3 of D meson.

  2. Uniformly rotating, axisymmetric, and triaxial quark stars in general relativity

    NASA Astrophysics Data System (ADS)

    Zhou, Enping; Tsokaros, Antonios; Rezzolla, Luciano; Xu, Renxin; Uryū, Kōji

    2018-01-01

    Quasiequilibrium models of uniformly rotating axisymmetric and triaxial quark stars are computed in a general-relativistic gravity scenario. The Isenberg-Wilson-Mathews (IWM) formulation is employed and the Compact Object Calculator (cocal) code is extended to treat rotating stars with finite surface density and new equations of state (EOSs). Besides the MIT bag model for quark matter which is composed of deconfined quarks, we examine a new EOS proposed by Lai and Xu that is based on quark clustering and results in a stiff EOS that can support masses up to 3.3 M⊙ in the case we considered. We perform convergence tests for our new code to evaluate the effect of finite surface density in the accuracy of our solutions and construct sequences of solutions for both small and high compactness. The onset of secular instability due to viscous dissipation is identified and possible implications are discussed. An estimate of the gravitational wave amplitude and luminosity based on quadrupole formulas is presented and comparison with neutron stars is discussed.

  3. Lattice QCD and nucleon resonances

    NASA Astrophysics Data System (ADS)

    Edwards, R. G.; Fiebig, H. R.; Fleming, G.; Richards, D. G.; LHP Collaboration

    2004-06-01

    Lattice calculations provide an ab initio means for the study of QCD. Recent progress at understanding the spectrum and structure of nucleons from lattice QCD studies is reviewed. Measurements of the masses of the lightest particles for the lowest spin values are described and related to predictions of the quark model. Measurements of the mass of the first radial excitation of the nucleon, the so-called Roper resonance, obtained using Bayesian statistical analyses, are detailed. The need to perform calculations at realistically light values of the pion mass is emphasised, and the exciting progress at attaining such masses is outlined. The talk concludes with future prospects, emphasising the importance of constructing a basis of interpolating operators that is sensitive to three-quark states, to multi-quark states, and to excited glue.

  4. Summary of the Topical Workshop on Top Quark Differential Distributions 2014

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Mitov, Alexander; Rojo, Juan

    2016-01-01

    We summarize the Topical Workshop on Top Quark Differential Distributions 2014, which took place in Cannes immediately before the annual Top2014 conference. The workshop was motivated by the availability of top quark differential distributions at next-to-next-to-leading order and the forthcoming Large Hadron Collider (LHC) 13 TeV data. The main goal of the workshop was to explore the impact of improved calculations of top quark production on precision LHC measurements, PDF determinations and searches for physics beyond the Standard Model, as well as finding ways in which the high precision data from ATLAS, CMS and LHCb can be used to further refine theoretical predictions for top production.

  5. Quark Mass Functions and Pion Structure in the Covariant Spectator Theory

    DOE PAGES

    Biernat, Elmar P.; Gross, Franz; Pena, Teresa; ...

    2018-05-24

    The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.

  6. Quark Mass Functions and Pion Structure in the Covariant Spectator Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biernat, Elmar P.; Gross, Franz; Pena, Teresa

    The Covariant Spectator Theory is applied to the description of quarks and the pion. The dressed quark mass function is calculated dynamically in Minkowski space and used in the calculation of the pion electromagnetic form factor. The effects of the mass function on the pion form factor and the different quark-pole contributions to the triangle diagram then are analyzed.

  7. Baryon magnetic moments: Symmetries and relations

    NASA Astrophysics Data System (ADS)

    Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; Wilhelm, Jonas; Chang, Emmanuel; Detmold, William; Orginos, Kostas

    2018-03-01

    Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled ∑0- ⋀ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.

  8. Regge vertex for quark production in the central rapidity region in the next-to-leading order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlov, M. G., E-mail: M.G.Kozlov@inp.nsk.su; Reznichenko, A. V., E-mail: A.V.Reznichenko@inp.nsk.su

    2016-03-15

    The effective vertex for quark production in the interaction of a Reggeized quark and a Reggeized gluon is calculated in the next-to-leading order (NLO). The resulting vertex is the missing component of the NLO multi-Regge amplitude featuring quark and gluon exchanges in the t channels. This calculation will make it possible to develop in future the bootstrap approach to proving quark Reggeization in the next-to-leading logarithmic approximation.

  9. Aspects of baryon structure in lattice QCD

    NASA Astrophysics Data System (ADS)

    Babich, Ronald

    Despite the long success of Quantum Chromodynamics (QCD) as the theory of the strong interactions, there remains much to be understood about the structure of hadrons and the consequences of QCD in the nonperturbative regime. Lattice gauge theory, a framework nearly as old as QCD itself, makes calculations in this regime possible, starting from first principles. With advances in theoretical understanding, methods, and computer technology, the lattice has found application to an ever-widening range of problems. In this dissertation, I consider two such problems having to do with the structure of baryons. The first concerns the contribution of sea quarks, and the strange quark in particular, to form factors of the nucleon. This has been a long-standing challenge for the lattice, because such contributions involve the insertion of a current on a quark loop, demanding the full inversion of the discretized Dirac operator, conceptually a large sparse matrix. I discuss methods for addressing this challenge and present a calculation of the strange scalar form factor and the related parameter fTs. The latter is of great theoretical interest, since it enters into the cross section for the scattering of dark matter off nuclei in supersymmetric extensions of the standard model. As such, it represents a major uncertainty in the interpretation of direct detection experiments. I also present results for the strange quark contribution to the nucleon's axial and electromagnetic form factors, which are themselves the subject of active experimental programs. These calculations were performed using the Wilson fermion formulation on a 243 x 64 anisotropic lattice. In the second part of the dissertation, I turn to the valence sector and address the role of diquark correlations in the observed spectrum of hadrons and their properties. A diquark is a correlated pair of quarks, thought to play an important role in certain phenomenological models of hadrons. I present results for baryon wave functions, evaluated in both the Coulomb and Landau gauges. By comparing baryons that differ in their diquark content, I find evidence for enhanced correlation in the scalar diquark channel, as favored by QCD-inspired quark models. I also present results for diquark mass splittings, determined from diquark correlators in the Landau gauge. This second set of calculations was performed with the overlap Dirac operator on quenched gauge configurations at beta = 6.

  10. Flavor asymmetry of the nucleon sea and the five-quark components of the nucleons.

    PubMed

    Chang, Wen-Chen; Peng, Jen-Chieh

    2011-06-24

    The existence of the five-quark Fock states for the intrinsic charm quark in the nucleons was suggested some time ago, but conclusive evidence is still lacking. We generalize the previous theoretical approach to the light-quark sector and study possible experimental signatures for such five-quark states. In particular, we compare the d-ū and ū + d-s-s data with the calculations based on the five-quark Fock states. The qualitative agreement between the data and the calculations is interpreted as evidence for the existence of the intrinsic light-quark sea in the nucleons. The probabilities for the |uuduū and |uuddd Fock states are also extracted.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Tlalpa, A.; Montano, J.; Ramirez-Zavaleta, F.

    We perform a complete calculation at the one-loop level for the Zggg and Z{sup '}ggg couplings in the context of the minimal 331 model, which predicts the existence of a new Z{sup '} gauge boson and new exotic quarks. Bose symmetry is exploited to write a compact and manifest SU{sub C}(3)-invariant vertex function for the Vggg (V=Z, Z{sup '}) coupling. Previous results on the Z{yields}ggg decay in the standard model are reproduced. It is found that this decay is insensitive to the effects of the new exotic quarks. This in contrast with the Z{sup '}{yields}ggg decay, which is sensitive tomore » both the standard model and exotic quarks, whose branching ratio is larger than that of the Z{yields}ggg transition by about a factor of 4.« less

  12. Soliton matter in the two-dimensional linear sigma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodd, L.R.; Lohe, M.A.; Rossi, M.

    1987-10-01

    We consider a one-dimensional model of nuclear matter where the quark clusters are described by solutions of the sigma model on a linear lattice in the self-consistent mean field approximation. Exact expressions are given for the baglike solutions confined to a finite interval, corresponding in the infinite interval limit to the free solitons previously found by Campbell and Liao. Periodic, self-consistent solutions which satisfy Bloch's theorem are constructed. Their energies and associated quark sigma field distributions are calculated numerically as functions of the baryon spacing, and compared with those of the uniform quark plasma. The predicted configuration of the groundmore » state depends critically on the assumed manner of filling the lowest band of quark single-particle levels, and on the density. In the absence of additional repulsive forces in the model, we find that the high density massless quark plasma is energetically favored and that there is a smooth transition from the baglike state to a uniform plasma with nonvanishing sigma field at comparatively large lattice constants 2dapprox. =10m/sub q//sup -1/ (m/sub q/ is the quark mass). If dilute filling of the entire band is employed, the clustered state is stable and a first order phase transition can occur for a range of much smaller lattice spacings 2dapprox. =4m/sub q//sup -1/. .AE« less

  13. Effects of heavy sea quarks at low energies.

    PubMed

    Bruno, Mattia; Finkenrath, Jacob; Knechtli, Francesco; Leder, Björn; Sommer, Rainer

    2015-03-13

    We present a factorization formula for the dependence of light hadron masses and low energy hadronic scales on the mass M of a heavy quark: apart from an overall mass-independent factor Q, ratios such as r_{0}(M)/r_{0}(0) are computable in perturbation theory at large M. The perturbation theory part is stable concerning different loop orders. Our nonperturbative Monte Carlo results obtained in a model calculation, where a doublet of heavy quarks is decoupled, match quantitatively to the perturbative prediction. Upon taking ratios of different hadronic scales at the same mass, the perturbative function drops out and the ratios are given by the decoupled theory up to M^{-2} corrections. We verify-in the continuum limit-that the sea quark effects of quarks with masses around the charm mass are very small in such ratios.

  14. Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at $$\\sqrt{s}=7 $$ TeV in the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2015-06-16

    Various differential cross-sections are measured in top-quark pair (tt) events produced in proton-proton collisions at a centre-of-mass energy of √s = 7 TeV at the LHC with the ATLAS detect or. These differential cross-sections are presented in a data set corresponding to an integrated luminosity of 4.6 fb -1 . The differential cross-sections are presented in terms of kinematic variables, such as momentum, rapidity and invariant mass, of a top-quark proxy referred to as the pseudo-top-quark as well as the pseudo-top-quark pair system. The dependence of the measurement on theoretical models is minimal. The measurements are performed on tt eventsmore » in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of them tagged as originating from a b-quark. The hadronic and leptonic pseudo-top-quarks are defined via the leptonic or hadronic decay mode of the W boson produced by the top-quark decay in events with a single charged lepton. Differential cross-section measurements of the pseudo-top-quark variables are compared with several Monte Carlo models that implement next-to-leading order or leading-order multi-leg matrix-element calculations.« less

  15. Semileptonic decays of Λ _c baryons in the relativistic quark model

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Galkin, V. O.

    2016-11-01

    Motivated by recent experimental progress in studying weak decays of the Λ _c baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach with the QCD-motivated potential. The form factors of the Λ _c→ Λ lν _l and Λ _c→ nlν _l decays are calculated in the whole accessible kinematical region without extrapolations and additional model assumptions. Relativistic effects are systematically taken into account including transformations of baryon wave functions from the rest to moving reference frame and contributions of the intermediate negative-energy states. Baryon wave functions found in the previous mass spectrum calculations are used for the numerical evaluation. Comprehensive predictions for decay rates, asymmetries and polarization parameters are given. They agree well with available experimental data.

  16. Moving heavy quarkonium entropy, effective string tension, and the QCD phase diagram

    NASA Astrophysics Data System (ADS)

    Chen, Xun; Feng, Sheng-Qin; Shi, Ya-Fei; Zhong, Yang

    2018-03-01

    The entropy and effective string tension of the moving heavy quark-antiquark pair in the strongly coupled plasmas are calculated by using a deformed an anti-de Sitter/Reissner-Nordström black hole metric. A sharp peak of the heavy-quarkonium entropy around the deconfinement transition can be realized in our model, which is consistent with the lattice QCD result. The effective string tension of the heavy quark-antiquark pair is related to the deconfinement phase transition. Thus, we investigate the deconfinement phase transition by analyzing the characteristics of the effective string tension with different temperatures, chemical potentials, and rapidities. It is found that the results of phase diagram calculated through effective string tension are in agreement with results calculated through a Polyakov loop. We argue that a moving system will reach the phase transition point at a lower temperature and chemical potential than a stationary system. It means that the lifetime of the moving quark-gluon plasma become longer than the static one.

  17. Heavy quarkonia in a potential model: binding energy, decay width, and survival probability

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Chaturvedi, O. S. K.; Thakur, Lata

    2018-06-01

    Recently a lot of progress has been made in deriving the heavy quark potential within a QCD medium. In this article we have considered heavy quarkonium in a hot quark gluon plasma phase. The heavy-quark potential has been modeled properly for short as well as long distances. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. We have numerically solved the 1+1-dimensional Schrodinger equation for this potential and obtained the eigen wavefunction and binding energy for the 1 S and 2 S states of charmonium and bottomonium. Further, we have calculated the decay width and dissociation temperature of quarkonium states in the QCD plasma. Finally, we have used our recently proposed unified model with these new values of decay widths to calculate the survival probability of the various quarkonium states with respect to centrality at relativistic heavy ion collider and large hadron collider energies. This study provides a unified, consistent and comprehensive description of spectroscopic properties of various quarkonium states at finite temperatures along with their nuclear modification factor at different collision energies.

  18. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  19. Cabibbo-Kobayashi-Maskawa-favored B decays to a scalar meson and a D meson

    NASA Astrophysics Data System (ADS)

    Zou, Zhi-Tian; Li, Ying; Liu, Xin

    2017-12-01

    In this work, we attempt to study the Cabibbo-Kobayashi-Maskawa-favored B → \\overline{D} S (" S" denoting the scalar meson) decays within the perturbative QCD approach at the leading order and the leading power. Although the light scalar mesons are widely perceived as primarily the four-quark bound states, in practice it is hard for us to make quantitative predictions based on the four-quark picture for light scalars. Hence, we calculate the decays with light scalars in the two-quark model. For the decays with scalar mesons above 1 GeV, we have explored two possible scenarios, depending on whether the light scalars are treated as the lowest lying q\\bar{q} states or four-quark particles. In total, we calculated the branching fractions of 72 decay modes, and most of them are in the range 10^{-4}-10^{-7}, which are measurable in the on-going LHCb experiment and the forthcoming Belle-II experiment. Moreover, since in the standard model these decays occur only through tree operators and have no CP asymmetries, any deviation will be a signal of new physics beyond the standard model. Despite large uncertainties induced by nonperturbative parameters and corrections of high order and high power, our results and discussions will be useful for the on-going LHCb and the forthcoming Belle-II experiments.

  20. Quark self-energy in an ellipsoidally anisotropic quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Kasmaei, Babak S.; Nopoush, Mohammad; Strickland, Michael

    2016-12-01

    We calculate the quark self-energy in a quark-gluon plasma that possesses an ellipsoidal momentum-space anisotropy in the local rest frame. By introducing additional transverse-momentum anisotropy parameters into the parton distribution functions, we generalize previous results which were obtained for the case of a spheroidal anisotropy. Our results demonstrate that the presence of anisotropies in the transverse directions affects the real and imaginary parts of quark self-energy and, consequently, the self-energy depends on both the polar and azimuthal angles in the local rest frame of the matter. Our results for the quark self-energy set the stage for the calculation of the effects of ellipsoidal momentum-space anisotropy on quark-gluon plasma photon spectra and collective flow.

  1. Baryon magnetic moments: Symmetries and relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parreno, Assumpta; Savage, Martin; Tiburzi, Brian

    Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggestmore » further calculations that would shed light on the curious patterns of baryon magnetic moments.« less

  2. Multiplicity distributions of gluon and quark jets and a test of QCD analytic calculations

    NASA Astrophysics Data System (ADS)

    Gary, J. William

    1999-03-01

    Gluon jets are identified in e +e - hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon hets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The mean and first few higher moments of the gluon jet charged particle multiplicity distribution are compared to the analogous results found for light quark (uds) jets, also defined inclusively. Large differences are observed between the mean, skew and curtosis values of the gluon and quark jets, but not between their dispersions. The cumulant factorial moments of the distributions are also measured, and are used to test the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the separated gluon and quark jet cumulant moments compared to a next-to-leading order calculation without energy conservation. There is good quantitative agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets. The data sample used is the LEP-1 sample of the OPAL experiment at LEP.

  3. Dynamical study of Ωc0 in the chiral quark model

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Ping, Jialun

    2018-02-01

    Recently, the experimental results of the LHCb Collaboration suggested the existence of five new excited states of Ωc0 : Ωc(3000 )0 , Ωc(3050 )0 , Ωc(3066 )0 , Ωc(3090 )0 , and Ωc(3119 )0 ; however, the quantum numbers of these new particles are not determined now. To understand the nature of these states, a dynamical calculation of Ωc0 both in five-quark configuration with quantum numbers I JP=0 (1/2 )- , 0 (3/2 )- , 0 (5/2 )- and in three-quark configuration with positive parity and negative parity was performed in the framework of the chiral quark model with the help of the Gaussian expansion method. The results show the masses both of the 1 P and the 2 S states in s s c systems are comparable to experimental data; Besides, Ξ D ¯ , ΞcK ¯ , and Ξc*K ¯ are also possible candidates of these new particles if the parity is negative. The distances between quark pairs suggest a compact structure nature.

  4. Scalar flavor changing neutral currents and rare top quark decays in a two Higgs doublet model 'for the top quark'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Itzhak; Physics Department, Technion-Institute of Technology, Haifa 32000; Eilam, Gad

    2008-06-01

    In the so-called two Higgs doublet model for the top quark (T2HDM), first suggested by Das and Kao, the top quark receives a special status, which endows it with a naturally large mass, and also potentially gives rise to large flavor changing neutral currents only in the up-quark sector. In this paper, we calculate the branching ratio for the rare decays t{yields}ch and h{yields}tc (h is a neutral Higgs scalar) in the T2HDM, at tree level and at 1-loop when it exceeds the tree level. We compare our results to predictions from other versions of 2HDM's and find that themore » scalar flavor changing neutral currents in the T2HDM can play a significant role in these decays. In particular, the 1-loop mediated decays can be significantly enhanced in the T2HDM compared with the 2HDM of types I and II, in some instances reaching BR{approx}10{sup -4}, which is within the detectable level at the LHC.« less

  5. Studying the Puzzle of the Pion Nucleon Sigma Term

    NASA Astrophysics Data System (ADS)

    Kane, Christopher; Lin, Huey-Wen

    2017-09-01

    The pion nucleon sigma term (σπN) is a fundamental parameter of QCD and is integral in the experimental search for dark matter particles as it is used to calculate the cross section of interactions between potential dark matter candidates and nucleons. Recent calculations of this term from lattice-QCD data disagree with calculations done using phenomenological data. This disparity is large enough to cause concern in the dark matter community as it would change the constraints on their experiments. We investigate one potential source of this disparity by studying the flavor dependence on LQCD data used to calculate σπN. To calculate σπN, we study the nucleon mass dependence on the pion mass and implement the Hellmann-Feynman Theorem. Previous calculations only consider LQCD data that accounted for 2 and 3 of the lightest quarks in the quark sea. We extend this study by using new high statistic data that considers 2, 3, and 4 quarks in the quark sea to see if the exclusion of the heavier quarks can account for this disparity. National Science Foundation.

  6. Pion properties at finite isospin chemical potential with isospin symmetry breaking

    NASA Astrophysics Data System (ADS)

    Wu, Zuqing; Ping, Jialun; Zong, Hongshi

    2017-12-01

    Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI <0 and μI >0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)

  7. Quark fragmentation into spin-triplet S -wave quarkonium

    DOE PAGES

    Bodwin, Geoffrey T.; Chung, Hee Sok; Kim, U-Rae; ...

    2015-04-08

    We compute fragmentation functions for a quark to fragment to a quarkonium through an S-wave spin-triplet heavy quark-antiquark pair. We consider both color-singlet and color-octet heavy quark-antiquark (Q (Q) over bar) pairs. We give results for the case in which the fragmenting quark and the quark that is a constituent of the quarkonium have different flavors and for the case in which these quarks have the same flavors. Our results for the sum over all spin polarizations of the Q (Q) over bar pairs confirm previous results. Our results for longitudinally polarized Q (Q) over bar pairs agree with previousmore » calculations for the same flavor cases and correct an error in a previous calculation for the different-flavor case.« less

  8. Measurement of the top-quark mass in the fully hadronic decay channel from ATLAS data at [Formula: see text].

    PubMed

    Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Almond, J; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Azuelos, G; Azuma, Y; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caudron, J; Caughron, S; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuciuc, C-M; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; Cunha Sargedas De Sousa, M J Da; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J A; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Florez Bustos, A C; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Franz, S; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gandrajula, R P; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godfrey, J; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Groth-Jensen, J; Grout, Z J; Guan, L; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Gunther, J; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hoffman, J; Hoffmann, D; Hofmann, J I; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jungst, R M; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karastathis, N; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonhardt, K; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marques, C N; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Mitsui, S; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moraes, A; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, M I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Randle-Conde, A S; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scott, W G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skovpen, K Yu; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Spurlock, B; Denis, R D St; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weigell, P; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Will, J Z; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, U K; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, X; Zhang, Z; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L

    The mass of the top quark is measured in a data set corresponding to 4.6 [Formula: see text] of proton-proton collisions with centre-of-mass energy [Formula: see text] TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top-antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified [Formula: see text]-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jet to dijet mass. The three-jet mass is calculated from the three jets produced in a top-quark decay. Using these three jets the dijet mass is obtained from the two jets produced in the [Formula: see text] boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of [Formula: see text].

  9. Sea quarks contribution to the nucleon magnetic moment and charge radius at the physical point

    NASA Astrophysics Data System (ADS)

    Sufian, Raza Sabbir; Yang, Yi-Bo; Liang, Jian; Draper, Terrence; Liu, Keh-Fei; χ QCD Collaboration

    2017-12-01

    We report a comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon magnetic moment, charge radius, and the electric and magnetic form factors. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We adopt a model-independent extrapolation of the nucleon magnetic moment and the charge radius. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light and strange disconnected-sea quarks contribution to the nucleon magnetic moment is μM(DI )=-0.022 (11 )(09 ) μN and to the nucleon mean square charge radius is ⟨r2⟩E(DI ) =-0.019 (05 )(05 ) fm2 which is about 1 /3 of the difference between the ⟨rp2⟩E of electron-proton scattering and that of a muonic atom and so cannot be ignored in obtaining the proton charge radius in the lattice QCD calculation. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton mean square charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron mean square charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light and strange disconnected-sea quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤Q2≤0.5 GeV2 .

  10. QCD equation of state with almost physical quark masses

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Christ, N. H.; Datta, S.; van der Heide, J.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Petrov, K.; Schmidt, C.; Soeldner, W.; Umeda, T.

    2008-01-01

    We present results on the equation of state in QCD with two light quark flavors and a heavier strange quark. Calculations with improved staggered fermions have been performed on lattices with temporal extent Nτ=4 and 6 on a line of constant physics with almost physical quark mass values; the pion mass is about 220 MeV, and the strange quark mass is adjusted to its physical value. High statistics results on large lattices are obtained for bulk thermodynamic observables, i.e. pressure, energy and entropy density, at vanishing quark chemical potential for a wide range of temperatures, 140MeV≤T≤800MeV. We present a detailed discussion of finite cutoff effects which become particularly significant for temperatures larger than about twice the transition temperature. At these high temperatures we also performed calculations of the trace anomaly on lattices with temporal extent Nτ=8. Furthermore, we have performed an extensive analysis of zero temperature observables including the light and strange quark condensates and the static quark potential at zero temperature. These are used to set the temperature scale for thermodynamic observables and to calculate renormalized observables that are sensitive to deconfinement and chiral symmetry restoration and become order parameters in the infinite and zero quark mass limits, respectively.

  11. Decay {B to K^ast(to Kπ)ℓ+ ℓ-} in Covariant Quark Model

    NASA Astrophysics Data System (ADS)

    Dubnička, S.; Dubničková, A. Z.; Habyl, N.; Ivanov, M. A.; Liptaj, A.; Nurbakova, G. S.

    2016-03-01

    Our article is devoted to the study of the rare {B to K^ast ℓ^+ℓ^-} decay where {ℓ=e,μ,τ}. We compute the relevant form factors in the framework of the covariant quark model with infrared confinement in the full kinematical momentum transfer region. The calculated form factors are used to evaluate branching fractions and polarization observables in the cascade decay {B to K^ast(to Kπ)ℓ^+ℓ^-}. We compare the obtained results with available experimental data and the results from other theoretical approaches.

  12. N*(1535) electroproduction at high Q2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Ramalho, M.T. Pena, K. Tsushima

    2012-04-01

    A covariant spectator quark model is applied to study the {gamma}N {yields} N*(1535) reaction in the large Q{sup 2} region. Starting from the relation between the nucleon and N*(1535) systems, the N*(1535) valence quark wave function is determined without the addition of any parameters. The model is then used to calculate the {gamma}N {yields} N*(1535) transition form factors. A very interesting, useful relation between the A{sub 1/2} and S{sub 1/2} helicity amplitudes for Q{sup 2} > GeV{sup 2}, is also derived.

  13. Contribution to the G 0 violation of parity experience: calculation and simulation of radiative corrections and the background noise study; Contribution a l'experience G0 de violation de la parite : calcul et simulation des corrections radiatives et etude du bruit de fond (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guler, Hayg

    2003-12-17

    In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrpounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In Go we using the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons andmore » for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the Go spectrometer. A complete calculation of radiative corrections has been clone and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model.« less

  14. Top quark forward-backward asymmetry in e+ e- annihilation at next-to-next-to-leading order in QCD.

    PubMed

    Gao, Jun; Zhu, Hua Xing

    2014-12-31

    We report on a complete calculation of electroweak production of top-quark pairs in e+ e- annihilation at next-to-next-to-leading order in quantum chromodynamics. Our setup is fully differential in phase space and can be used to calculate any infrared-safe observable. Especially we calculated the next-to-next-to-leading-order corrections to the top-quark forward-backward asymmetry and found sizable effects. Our results show a large reduction of the theoretical uncertainties in predictions of the forward-backward asymmetry, and allow for a precision determination of the top-quark electroweak couplings at future e+ e- colliders.

  15. Neutrino Emissivity in the Quark-Hadron Mixed Phase

    NASA Astrophysics Data System (ADS)

    Spinella, William; Weber, Fridolin; Orsaria, Milva; Contrera, Gustavo

    2018-05-01

    In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the cores of neutron stars. To this end we use relativistic mean-field equations of state to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures ($\\lesssim 10^9$ K) and quark fractions ($\\lesssim 30\\%$), and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions. There are a number of open issues that need to be addressed in a future study on the neutrino emission rates caused by electron-quark blob bremsstrahlung. Chiefly among them are the role of collective oscillations of matter, electron band structures, and of gaps at the boundaries of the Brillouin zones on bremsstrahlung, as discussed in the summary section of this paper. We hope this paper will stimulate studies addressing these issues.

  16. Relativistic effects in the double S- and P-wave charmonium production in e{sup +}e{sup -} annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elekina, E. N.; Martynenko, A. P.

    2010-03-01

    On the basis of perturbative QCD and the relativistic quark model we calculate relativistic and bound state corrections in the pair production of S-wave and P-wave charmonium states. Relativistic factors in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave function to the reference frame of the moving S- and P-wave mesons are taken into account. For the gluon and quark propagators entering the production vertex function we use a truncated expansion in the ratio of the relative quark momenta to the center-of-mass energy {radical}(s) up to the secondmore » order. The relativistic treatment of the wave functions makes all such second order terms convergent, thus allowing the reliable calculation of their contributions to the production cross section. Relativistic corrections to the quark bound state wave functions in the rest frame are considered by means of the QCD generalization of the standard Breit potential. It turns out that the examined effects change essentially the nonrelativistic results of the cross section for the reaction e{sup +}+e{sup -{yields}}J/{Psi}({eta}{sub c})+{chi}{sub cJ}(h{sub c}) at the center-of-mass energy {radical}(s)=10.6 GeV.« less

  17. Quark ACM with topologically generated gluon mass

    NASA Astrophysics Data System (ADS)

    Choudhury, Ishita Dutta; Lahiri, Amitabha

    2016-03-01

    We investigate the effect of a small, gauge-invariant mass of the gluon on the anomalous chromomagnetic moment (ACM) of quarks by perturbative calculations at one-loop level. The mass of the gluon is taken to have been generated via a topological mass generation mechanism, in which the gluon acquires a mass through its interaction with an antisymmetric tensor field Bμν. For a small gluon mass ( < 10 MeV), we calculate the ACM at momentum transfer q2 = -M Z2. We compare those with the ACM calculated for the gluon mass arising from a Proca mass term. We find that the ACM of up, down, strange and charm quarks vary significantly with the gluon mass, while the ACM of top and bottom quarks show negligible gluon mass dependence. The mechanism of gluon mass generation is most important for the strange quarks ACM, but not so much for the other quarks. We also show the results at q2 = -m t2. We find that the dependence on gluon mass at q2 = -m t2 is much less than at q2 = -M Z2 for all quarks.

  18. Transverse parton distribution functions at next-to-next-to-leading order: the quark-to-quark case.

    PubMed

    Gehrmann, Thomas; Lübbert, Thomas; Yang, Li Lin

    2012-12-14

    We present a calculation of the perturbative quark-to-quark transverse parton distribution function at next-to-next-to-leading order based on a gauge invariant operator definition. We demonstrate for the first time that such a definition works beyond the first nontrivial order. We extract from our calculation the coefficient functions relevant for a next-to-next-to-next-to-leading logarithmic Q(T) resummation in a large class of processes at hadron colliders.

  19. Tests of constituent-quark generation methods which maintain both the nucleon center of mass and the desired radial distribution in Monte Carlo Glauber models

    DOE PAGES

    Mitchell, J. T.; Perepelitsa, D. V.; Tannenbaum, M. J.; ...

    2016-05-23

    Here, several methods of generating three constituent quarks in a nucleon are evaluated which explicitly maintain the nucleon's center of mass and desired radial distribution and can be used within Monte Carlo Glauber frameworks. The geometric models provided by each method are used to generate distributions over the number of constituent quark participants ( N qp) in p+p,d+Au, and Au+Au collisions. The results are compared with each other and to a previous result of N qp calculations, without this explicit constraint, used in measurements of √S NN = 200 GeV p+p,d+Au, and Au+Au collisions at the BNL Relativistic Heavy Ionmore » Collider.« less

  20. Production of single heavy charged leptons at a linear collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Pree, Erin; Sher, Marc; Turan, Ismail

    2008-05-01

    A sequential fourth generation of quarks and leptons is allowed by precision electroweak constraints if the mass splitting between the heavy quarks is between 50 and 80 GeV. Although heavy quarks can be easily detected at the LHC, it is very difficult to detect a sequential heavy charged lepton, L, due to large backgrounds. Should the L mass be above 250 GeV, it cannot be pair-produced at a 500 GeV ILC. We calculate the cross section for the one-loop process e{sup +}e{sup -}{yields}L{tau}. Although the cross section is small, it may be detectable. We also consider contributions from the two-Higgsmore » doublet model and the Randall-Sundrum model, in which case the cross section can be substantially higher.« less

  1. Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurice, Yannick L; Reno, Mary Hall

    Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments andmore » to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.« less

  2. Neutron Electric Dipole Moment on the Lattice

    NASA Astrophysics Data System (ADS)

    Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan

    2018-03-01

    For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  3. Measurement of the charge asymmetry in top quark pair production in pp collisions at $$\\sqrt{s}$$ = 8 TeV using a template method

    DOE PAGES

    Khachatryan, Vardan

    2015-12-30

    The charge asymmetry in the production of top quark and antiquark pairs is measured in proton-proton collisions at a center-of-mass energy of 8 TeV. The data, corresponding to an integrated luminosity of 19.6 fb -1 were collected by the CMS experiment at the LHC. Events with a single isolated electron or muon, and four or more jets, at least one of which is likely to have originated from hadronization of a bottom quark, are selected. A template technique is used to measure the asymmetry in the distribution of differences in the top quark and antiquark absolute rapidities. The measuredmore » asymmetry is A y c= [0.33_0.26 (stat)_0.33 (syst)]%, which is the most precise result to date. The results are compared to calculations based on the standard model and on several beyond-the-standard-model scenarios.« less

  4. Measurement of the charge asymmetry in top quark pair production in p p collisions at √{s }=8 TeV using a template method

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Elkafrawy, T.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; de Remigis, P.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-Palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; McGinn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; Cms Collaboration

    2016-02-01

    The charge asymmetry in the production of top quark and antiquark pairs is measured in proton-proton collisions at a center-of-mass energy of 8 TeV. The data, corresponding to an integrated luminosity of 19.6 fb-1 , were collected by the CMS experiment at the LHC. Events with a single isolated electron or muon, and four or more jets, at least one of which is likely to have originated from hadronization of a bottom quark, are selected. A template technique is used to measure the asymmetry in the distribution of differences in the top quark and antiquark absolute rapidities. The measured asymmetry is Acy=[0.33 ±0.26 (stat ) ±0.33 (syst ) ]% , which is the most precise result to date. The results are compared to calculations based on the standard model and on several beyond-the-standard-model scenarios.

  5. Search for Standard Model Production of Four Top Quarks at CMS in the Dilepton Channel at a Center of Mass Energy of 13 TeV

    NASA Astrophysics Data System (ADS)

    Heilman, Jesse Alan

    The search for the production of four top quarks decaying in the dileptonic channel in proton-proton collisions at the LHC is presented. The analysis utilises the data recorded by the CMS experiment at sqrt{s} = 13 TeV in 2015, which corresponds to an integrated luminosity of 2.6 inverse femtobarns. A boosted decision tree algorithm is used to select signal and suppress background events. Upper limits on dileptonic four top quark production of 14.9 times the predicted standard model cross section observed and 22.3 +16.2-8.4 times the predicted standard model cross section expected are calculated at the 95% confidence level. A combination is then performed with a parallel analysis of the single lepton channel to extend the reach of the search.

  6. Nonperturbative comparison of clover and highly improved staggered quarks in lattice QCD and the properties of the Φ meson

    DOE PAGES

    Chakraborty, Bipasha; Davies, C. T. H.; Donald, G. C.; ...

    2017-10-02

    Here, we compare correlators for pseudoscalar and vector mesons made from valence strange quarks using the clover quark and highly improved staggered quark (HISQ) formalisms in full lattice QCD. We use fully nonperturbative methods to normalise vector and axial vector current operators made from HISQ quarks, clover quarks and from combining HISQ and clover fields. This allows us to test expectations for the renormalisation factors based on perturbative QCD, with implications for the error budget of lattice QCD calculations of the matrix elements of clover-staggeredmore » $b$-light weak currents, as well as further HISQ calculations of the hadronic vacuum polarisation. We also compare the approach to the (same) continuum limit in clover and HISQ formalisms for the mass and decay constant of the $$\\phi$$ meson. Our final results for these parameters, using single-meson correlators and neglecting quark-line disconnected diagrams are: $$m_{\\phi} =$$ 1.023(5) GeV and $$f_{\\phi} = $$ 0.238(3) GeV in good agreement with experiment. These results come from calculations in the HISQ formalism using gluon fields that include the effect of $u$, $d$, $s$ and $c$ quarks in the sea with three lattice spacing values and $$m_{u/d}$$ values going down to the physical point.« less

  7. Future of Lattice Calculations with Staggered Sea Quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottlieb, Steven

    2011-05-23

    The MILC collaboration for some years has been creating gauge ensembles with 2+1 flavors of asqtad or improved staggered quarks. There are some 40 ensembles covering a wide range of quark mass and lattice spacing, thus allowing control of the chiral and continuum limits. An extensive review of that program has been published in Reviews of Modern Physics. Recently, MILC has begun a new program using HPQCD's highly improved staggered quark (HISQ) action. This action has smaller taste symmetry breaking than asqtad and improved scaling properties. We also include a dynamical charm quark in these calculations. We summarize the achievementsmore » of the asqtad program, what has been done so far with HISQ quarks, and then consider what future ensembles will be created and their impact.« less

  8. Warm stellar matter within the quark-meson-coupling model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panda, P. K.; Providencia, C.; Menezes, D. P.

    2010-10-15

    In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole duringmore » cooling.« less

  9. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration

    2018-04-01

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  10. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less

  11. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD

    DOE PAGES

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; ...

    2018-04-13

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m π~806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elementsmore » of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.« less

  12. Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD.

    PubMed

    Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S; Orginos, Kostas; Savage, Martin J; Shanahan, Phiala E; Wagman, Michael L; Winter, Frank

    2018-04-13

    Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and ^{3}He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m_{π}∼806  MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O(10%), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.

  13. Tidal deformations of compact stars with crystalline quark matter

    NASA Astrophysics Data System (ADS)

    Lau, S. Y.; Leung, P. T.; Lin, L.-M.

    2017-05-01

    We study the tidal deformability of bare quark stars and hybrid compact stars composed of a quark-matter core in general relativity, assuming that the deconfined quark matter exists in a crystalline color superconducting phase. We find that taking the elastic property of crystalline quark matter into account in the calculation of the tidal deformability can break the universal I-Love relation discovered for fluid compact stars, which connects the moment of inertia and tidal deformability. Our result suggests that measurements of the moment of inertia and tidal deformability can in principle be used to test the existence of solid quark stars, despite our ignorance of the high-density equation of state. Assuming that the moment of inertia can be measured to 10% level, one can then distinguish a 1.4 (1 ) M⊙ solid quark star described by our quark-matter equation of state model with a gap parameter Δ =25 MeV from a fluid compact star if the tidal deformability can be measured to about 10% (45%) level. On the other hand, we find that the nuclear matter fluid envelope of a hybrid star can screen out the effect of the solid core significantly so that the resulting I-Love relation for hybrid stars still agrees with the universal relation for fluid stars to about 1% level.

  14. Measurement of the top-quark mass in the fully hadronic decay channel from ATLAS data at $$\\sqrt{s}=7\\mathrm{\\,TeV}$$

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2015-04-23

    In this study, the mass of the top quark is measured in a data set corresponding to 4.6 fb -1 of proton–proton collisions with centre-of-mass energy √s=7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top–antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified b-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio ofmore » three-jet to dijet mass. The three-jet mass is calculated from the three jets produced in a top-quark decay. Using these three jets the dijet mass is obtained from the two jets produced in the W boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of m t=175.1±1.4(stat.) ±1.2(syst.) GeV.« less

  15. Heisenberg Uncertainty and the Allowable Masses of the Up Quark and Down Quark

    NASA Astrophysics Data System (ADS)

    Orr, Brian

    2004-05-01

    A possible explanation for the inability to attain deterministic measurements of an elementary particle's energy, as given by the Heisenberg Uncertainty Principle, manifests itself in an interesting anthropic consequent of Andrei Linde's Self-reproducing Inflationary Multiverse model. In Linde's model, the physical laws and constants that govern our universe adopt other values in other universes, due to variable Higgs fields. While the physics in our universe allow for the advent of life and consciousness, the physics necessary for life are not likely to exist in other universes -- Linde demonstrates this through a kind of Darwinism for universes. Our universe, then, is unique. But what are the physical laws and constants that make our universe what it is? Craig Hogan identifies five physical constants that are not bound by symmetry. Fine-tuning these constants gives rise to the basic behavior and structures of the universe. Three of the non-symmetric constants are fermion masses: the up quark mass, the down quark mass, and the electron mass. I will explore Linde's and Hogan's works by comparing the amount of uncertainty in quark masses, as calculated from the Heisenberg Uncertainty Principle, to the range of quark mass values consistent with our observed universe. Should the fine-tuning of the up quark and down quark masses be greater than the range of Heisenberg uncertainties in their respective masses (as I predict, due to quantum tunneling), then perhaps there is a correlation between the measured Heisenberg uncertainty in quark masses and the fine-tuning of masses required for our universe to be as it is. Hogan; "Why the Universe is Just So;" Reviews of Modern Physics; Issue 4; Vol. 72; pg. 1149-1161; Oct. 2000 Linde, "The Self-Reproducing Inflationary Universe;" Scientific American; No. 5; Vol. 271; pg. 48-55; Nov. 1994

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Bipasha; Davies, C. T. H.; Donald, G. C.

    Here, we compare correlators for pseudoscalar and vector mesons made from valence strange quarks using the clover quark and highly improved staggered quark (HISQ) formalisms in full lattice QCD. We use fully nonperturbative methods to normalise vector and axial vector current operators made from HISQ quarks, clover quarks and from combining HISQ and clover fields. This allows us to test expectations for the renormalisation factors based on perturbative QCD, with implications for the error budget of lattice QCD calculations of the matrix elements of clover-staggeredmore » $b$-light weak currents, as well as further HISQ calculations of the hadronic vacuum polarisation. We also compare the approach to the (same) continuum limit in clover and HISQ formalisms for the mass and decay constant of the $$\\phi$$ meson. Our final results for these parameters, using single-meson correlators and neglecting quark-line disconnected diagrams are: $$m_{\\phi} =$$ 1.023(5) GeV and $$f_{\\phi} = $$ 0.238(3) GeV in good agreement with experiment. These results come from calculations in the HISQ formalism using gluon fields that include the effect of $u$, $d$, $s$ and $c$ quarks in the sea with three lattice spacing values and $$m_{u/d}$$ values going down to the physical point.« less

  17. Observations on the T lnR term in the quark-antiquark free energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiskis, J.

    1986-06-15

    Consider the response of a pure gauge theory at temperature T to an external quark-antiquark pair separated by R. In the confining phase, the leading term in the free energy at large R is sigmaR. A string-model calculation has given T lnR for the next-to-leading term. In this paper, the origin of the T lnR term is considered in a more general context that includes the analog spin model and the lattice gauge theory at strong coupling. The connection with transverse fluctuations is emphasized.

  18. New predictions on meson decays from string splitting

    NASA Astrophysics Data System (ADS)

    Bigazzi, Francesco; Cotrone, Aldo L.

    2006-11-01

    We study certain exclusive decays of high spin mesons into mesons in models of large Nc Yang-Mills with few flavors at strong coupling using string theory. The rate of the process is calculated by studying the splitting of a macroscopic string on the relevant dual gravity backgrounds. In the leading channel for the decay of heavy quarkonium into two open-heavy quark states, one of the two produced mesons has much larger spin than the other. In this channel the decay rate is practically independent on the spin and has a mild dependence on the mass of the heavy quarks. Moreover, it is only power-like suppressed with the mass of the produced quark-anti quark pair. We also reconsider decays of high spin mesons made up of light quarks, confirming the linear dependence of the rate on the mass of the decaying meson. As a bonus of our computation, we provide a formula for the splitting rate of a macroscopic string lying on a Dp-brane in flat space.

  19. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  20. Hard Photodisintegration of 3He

    NASA Astrophysics Data System (ADS)

    Granados, Carlos

    2011-02-01

    Large angle photodisintegration of two nucleons from the 3He nucleus is studied within the framework of the hard rescattering model (HRM). In the HRM the incoming photon is absorbed by one nucleon's valence quark that then undergoes a hard rescattering reaction with a valence quark from the second nucleon producing two nucleons emerging at large transverse momentum . Parameter free cross sections for pp and pn break up channels are calculated through the input of experimental cross sections on pp and pn elastic scattering. The calculated cross section for pp breakup and its predicted energy dependency are in good agreement with recent experimental data. Predictions on spectator momentum distributions and helicity transfer are also presented.

  1. Excited state baryon spectroscopy from lattice QCD

    DOE PAGES

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less

  2. Λ b→pl⁻ν¯ l form factors from lattice QCD with static b quarks

    DOE PAGES

    Detmold, William; Lin, C.-J. David; Meinel, Stefan; ...

    2013-07-23

    We present a lattice QCD calculation of form factors for the decay Λ b→pμ⁻ν¯ μ, which is a promising channel for determining the Cabibbo-Kobayashi-Maskawa matrix element |V ub| at the Large Hadron Collider. In this initial study we work in the limit of static b quarks, where the number of independent form factors reduces to two. We use dynamical domain-wall fermions for the light quarks, and perform the calculation at two different lattice spacings and at multiple values of the light-quark masses in a single large volume. Using our form factor results, we calculate the Λ b→pμ⁻ν¯ μ differential decaymore » rate in the range 14 GeV²≤q²≤q² max, and obtain the integral ∫ q²max 14 GeV²[dΓ/dq²]dq²/|V ub|²=15.3±4.2 ps⁻¹. Combined with future experimental data, this will give a novel determination of |V ub| with about 15% theoretical uncertainty. The uncertainty is dominated by the use of the static approximation for the b quark, and can be reduced further by performing the lattice calculation with a more sophisticated heavy-quark action.« less

  3. Phenomenology of soft hadron interactions and the relevant EAS data

    NASA Technical Reports Server (NTRS)

    Kalmykov, N. N.; Khristiansen, G. B.; Motova, M. V.

    1984-01-01

    The interpretation of the experimental data in superhigh energy cosmic rays requires the calculations using various models of elementary hadron interaction. One should prefer the models justified by accelerator data and giving definite predictions for superhigh energies. The model of quark-gluon pomeron strings (the QGPS models) satisfies this requirement.

  4. Localized N, {lambda}, {sigma}, and {xi} single-particle potentials in finite nuclei calculated with SU{sub 6} quark-model baryon-baryon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohno, M.; Fujiwara, Y.

    Localized single-particle potentials for all octet baryons, N, {lambda}, {sigma}, and {xi}, in finite nuclei, {sup 12}C, {sup 16}O, {sup 28}Si, {sup 40}Ca, {sup 56}Fe, and {sup 90}Zr, are calculated using the quark-model baryon-baryon interactions. G matrices evaluated in symmetric nuclear matter in the lowest order Brueckner theory (LOBT) are applied to finite nuclei in local density approximation. Nonlocal potentials are localized by a zero-momentum Wigner transformation. Empirical single-particle properties of the nucleon and the {lambda} hyperon in a nuclear medium have been known to be explained semiquantitatively in the LOBT framework. Attention is focused in the present consideration onmore » predictions for the {sigma} and {xi} hyperons. The unified description for the octet baryon-baryon interactions by the SU{sub 6} quark model enables us to obtain less ambiguous extrapolation to the S=-1 and S=-2 sectors based on the knowledge in the NN sector than other potential models. The {sigma} mean field is shown to be weakly attractive at the surface, but turns out to be repulsive inside, which is consistent with the experimental evidence. The {xi} hyperon s.p. potential is also attractive at the nuclear surface region, and inside it fluctuates around zero. Hence {xi} hypernuclear bound states are unlikely. We also evaluate energy shifts of the {sigma}{sup -} and {xi}{sup -} atomic levels in {sup 28}Si and {sup 56}Fe, using the calculated s.p. potentials.« less

  5. {phi} meson production in pp annihilation at rest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srisuphaphon, S.; Yan, Y.; Thailand Center of Excellence in Physics, Ministry of Education, Bangkok

    2011-10-01

    Apparent channel-dependent violations of the Okubo-Zwieg-Iizuka (OZI) rule in nucleon-antinucleon annihilation reactions in the presence of an intrinsic strangeness component in the nucleon are discussed. Admixture of ss quark pairs in the nucleon wave function enables the direct coupling to the {phi}-meson in the annihilation channel without violating the OZI rule. Three forms are considered in this work for the strangeness content of the proton wave function, namely, the uud cluster with a ss sea-quark component, kaon-hyperon clusters based on a simple chiral quark model, and the pentaquark picture uudss. Nonrelativistic quark model calculations reveal that the strangeness magnetic momentmore » {mu}{sub s} and the strangeness contribution to the proton spin {sigma}{sub s} from the first two models are consistent with recent experimental data, where {mu}{sub s} and {sigma}{sub s} are negative. For the third model, the uuds subsystem with the configurations [31]{sub FS}[211]{sub F}[22]{sub S} and [31]{sub FS}[31]{sub F}[22]{sub S} leads to negative values of {mu}{sub s} and {sigma}{sub s}. With effective quark line diagrams incorporating the {sup 3}P{sub 0} model, we give estimates for the branching ratios of the annihilation reactions at rest pp{yields}{phi}X (X={pi}{sup 0}, {eta}, {rho}{sup 0}, {omega}). Results for the branching ratios of {phi}X production from atomic pp s-wave states are for the first and third model found to be strongly channel dependent, in good agreement with measured rates.« less

  6. Taste changing in staggered quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quentin Mason et al.

    2004-01-05

    The authors present results from a systematic perturbative investigation of taste-changing in improved staggered quarks. They show one-loop taste-changing interactions can be removed perturbatively by an effective four-quark term and calculate the necessary coefficients.

  7. Systematics of quark/gluon tagging

    DOE PAGES

    Gras, Philippe; Höche, Stefan; Kar, Deepak; ...

    2017-07-18

    By measuring the substructure of a jet, one can assign it a “quark” or “gluon” tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton (C F versus C A). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we findmore » a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.« less

  8. Systematics of quark/gluon tagging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gras, Philippe; Höche, Stefan; Kar, Deepak

    By measuring the substructure of a jet, one can assign it a “quark” or “gluon” tag. In the eikonal (double-logarithmic) limit, quark/gluon discrimination is determined solely by the color factor of the initiating parton (C F versus C A). In this paper, we confront the challenges faced when going beyond this leading-order understanding, using both parton-shower generators and first-principles calculations to assess the impact of higher-order perturbative and nonperturbative physics. Working in the idealized context of electron-positron collisions, where one can define a proxy for quark and gluon jets based on the Lorentz structure of the production vertex, we findmore » a fascinating interplay between perturbative shower effects and nonperturbative hadronization effects. Turning to proton-proton collisions, we highlight a core set of measurements that would constrain current uncertainties in quark/gluon tagging and improve the overall modeling of jets at the Large Hadron Collider.« less

  9. Strange quark matter fragmentation in astrophysical events

    NASA Astrophysics Data System (ADS)

    Paulucci, L.; Horvath, J. E.

    2014-06-01

    The conjecture of Bodmer-Witten-Terazawa suggesting a form of quark matter (Strange Quark Matter) as the ground state of hadronic interactions has been studied in laboratory and astrophysical contexts by a large number of authors. If strange stars exist, some violent events involving these compact objects, such as mergers and even their formation process, might eject some strange matter into the interstellar medium that could be detected as a trace signal in the cosmic ray flux. To evaluate this possibility, it is necessary to understand how this matter in bulk would fragment in the form of strangelets (small lumps of strange quark matter in which finite effects become important). We calculate the mass distribution outcome using the statistical multifragmentation model and point out several caveats affecting it. In particular, the possibility that strangelets fragmentation will render a tiny fraction of contamination in the cosmic ray flux is discussed.

  10. Measurement of differential top-quark-pair production cross sections in pp collisions at $$\\sqrt{s} = 7\\ \\mathrm{TeV}$$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    Normalised differential top-quark-pair production cross sections are measured in pp collisions at a centre-of-mass energy of 7 TeVat the LHC with the CMS detector using data recorded in 2011 corresponding to an integrated luminosity of 5.0 fb -1. The measurements are performed in the lepton+jets decay channels (e+jets and μ+jets) and the dilepton decay channels ( , μ + μ -, and μ ±e ∓). The differential cross section is measured as a function of kinematic properties of the final-state charged leptons and jets associated to b quarks, as well as those of the top quarks and the system. The data are comparedmore » with several predictions from perturbative QCD calculations up to approximate next-to-next-to-leading-order precision. No significant deviations from the standard model are observed.« less

  11. Calculation of intensity of high energy muon groups observed deep underground

    NASA Technical Reports Server (NTRS)

    Vavilov, Y. N.; Dedenko, L. G.

    1985-01-01

    The intensity of narrow muon groups observed in Kolar Gold Field (KGF) at the depth of 3375 m.w.e. was calculated in terms of quark-gluon strings model for high energy hadron - air nuclei interactions by the method of direct modeling of nuclear cascade in the air and muon propagation in the ground for normal primary cosmic ray composition. The calculated intensity has been found to be approx. 10 to the 4 times less than one observed experimentally.

  12. Quark-hadron duality and parity violating asymmetry of electroweak reactions in the {delta} region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, K.; Sato, T.; Lee, T.-S.H.

    2005-08-01

    A dynamical model [T. Sato and T.-S. H. Lee, Phys. Rev. C 54, 2660 (1996); 63, 055201 (2001); T. Sato, D. Uno, and T.-S. H. Lee, ibid. 67, 065201 (2003)] of electroweak pion production reactions in the {delta}(1232) region has been extended to include the neutral current contributions for examining the local quark-hadron duality in neutrino-induced reactions and for investigating how the axial N-{delta} form factor can be determined by the parity violating asymmetry of N(e{sup {yields}},e{sup '}) reactions. We first show that the recent data of (e,e{sup '}) structure functions F{sub 1} and F{sub 2}, which exhibit the quark-hadronmore » duality, are in good agreement with our predictions. For possible future experimental tests, we then predict that the structure functions F{sub 1},F{sub 2}, and F{sub 3} for ({nu},e) and ({nu},{nu}{sup '}) processes also show the similar quark-hadron duality. The spin-dependent structure functions g{sub 1} and g{sub 2} of (e,e{sup '}) have also been calculated from our model. It is found that the local quark-hadron duality is not seen in the calculated g{sub 1} and g{sub 2}, while our results for g{sub 1} and some polarization observables associated with the exclusive p(e{sup {yields}},e{sup '}{pi}) and p{sup {yields}}(e{sup {yields}},e{sup '}{pi}) reactions are in reasonably good agreement with the recent data. In the study of parity violating asymmetry A of N(e{sup {yields}},e{sup '}) reactions, the relative importance between the nonresonant mechanisms and the {delta} excitation is investigated by taking into account the unitarity condition. Predictions are made for using the data of A to test the axial N-{delta} form factors determined previously in the studies of N({nu}{sub {mu}},{mu}{sup -}{pi}) reactions. The predicted asymmetry A are also compared with the parton model predictions for future experimental investigations of quark-hadron duality.« less

  13. Hadron mass and decays constant predictions of the valence approximation to lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weingarten, D.

    1993-05-01

    A key goal of the lattice formulation of QCD is to reproduce the masses and decay constants of the low-lying baryons and mesons. Lattice QCD mass and decay constant predictions for the real world are supposed to be obtained from masses and decay constants calculated with finite lattice spacing and finite lattice volume by taking the limits of zero spacing and infinite volume. In addition, since the algorithms used for hadron mass and decay constant calculations become progressively slower for small quark masses, results are presently found with quark masses much larger than the expected values of the up andmore » down quark masses. Predictions for the properties of hadrons containing up and down quarks then require a further extrapolation to small quark masses. The author reports here mass and decay constant predictions combining all three extrapolations for Wilson quarks in the valence (quenched) approximation. This approximation may be viewed as replacing the momentum and frequency dependent color dielectric constant arising from quark-antiquark vacuum polarization with its zero-momentum, zero-frequency limit. These calculations used approximately one year of machine time on the GF11 parallel computer running at a sustained rate of between 5 and 7 Gflops.« less

  14. $B$- and $D$-meson leptonic decay constants from four-flavor lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; Bernard, C.; Brown, N.

    We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamicalmore » $u$, $d$, $s$, and $c$ quarks. We analyze over twenty isospin-symmetric ensembles with six lattice spacings down to $$a\\approx 0.03$$~fm and several values of the light-quark mass down to the physical value $$\\frac{1}{2}(m_u+m_d)$$. We employ the highly-improved staggered-quark (HISQ) action for the sea and valence quarks; on the finest lattice spacings, discretization errors are sufficiently small that we can calculate the $B$-meson decay constants with the HISQ action for the first time directly at the physical $b$-quark mass. We obtain the most precise determinations to-date of the $D$- and $B$-meson decay constants and their ratios, $$f_{D^+} = 212.6 (0.5)$$~MeV, $$f_{D_s} = 249.8(0.4)$$~MeV, $$f_{D_s}/f_{D^+} = 1.1749(11)$$, $$f_{B^+} = 189.4(1.4)$$~MeV, $$f_{B_s} = 230.7(1.2)$$~MeV, $$f_{B_s}/f_{B^+} = 1.2180(49)$$, where the errors include statistical and all systematic uncertainties. Our results for the $B$-meson decay constants are three times more precise than the previous best lattice-QCD calculations, and bring the QCD errors in the Standard-Model predictions for the rare leptonic decays $$\\overline{\\mathcal{B}}(B_s \\to \\mu^+\\mu^-) = 3.65(11) \\times 10^{-9}$$, $$\\overline{\\mathcal{B}}(B^0 \\to \\mu^+\\mu^-) = 1.00(3) \\times 10^{-11}$$, and $$\\overline{\\mathcal{B}}(B^0 \\to \\mu^+\\mu^-)/\\overline{\\mathcal{B}}(B_s \\to \\mu^+\\mu^-) = 0.00264(7)$$ to well below other sources of uncertainty. As a byproduct of our analysis, we also update our previously published results for the light-quark-mass ratios and the scale-setting quantities $$f_{p4s}$$, $$M_{p4s}$$, and $$R_{p4s}$$. We obtain the most precise lattice-QCD determination to date of the ratio $$f_{K^+}/f_{\\pi^+} = 1.1950(^{+15}_{-22})$$~MeV.« less

  15. Baryon number, strangeness, and electric charge fluctuations in QCD at high temperature

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Hegde, P.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Schmidt, C.; Soeldner, W.

    2009-04-01

    We analyze baryon number, strangeness, and electric charge fluctuations as well as their correlations in QCD at high temperature. We present results obtained from lattice calculations performed with an improved staggered fermion action (p4 action) at two values of the lattice cutoff with almost physical up and down quark masses and a physical value for the strange quark mass. We compare these results, with an ideal quark gas at high temperature and a hadron resonance gas model at low temperature. We find that fluctuations and correlations are well described by the former already for temperatures about 1.5 times the transition temperature. At low temperature qualitative features of the lattice results are quite well described by a hadron resonance gas model. Higher order cumulants, which become increasingly sensitive to the light pions, however, show deviations from a resonance gas in the vicinity of the transition temperature.

  16. Off-shell test of the Moscow potential of nucleon-nucleon interaction on the basis of data on the reaction {gamma}d {sup {yields}} np in the photon-energy region around E{sub {gamma}} {approx_equal} 2 GeV, where this reaction is sensitive to quark effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knyr, V. A.; Neudatchin, V. G.; Khokhlov, N. A.

    Various pieces of evidence in favor of the Moscow potential of nucleon-nucleon interaction are discussed. The formalism of a relativistic potential model as applied to deuteron photodintegration is expounded. The differential cross section calculated for the reaction {gamma}d {sup {yields}} np on the basis of the Moscow potential at incident-photon energies E{sub {gamma}} between 1.5 and 2.5 GeV are quite in accord with present-day experimental data, which are also described well in the literature on the basis of the model of quark-gluon strings. Further steps in testing the Moscow potential and microscopically substantiating it on the basis of quark modelsmore » are indicated.« less

  17. Measurement of the differential cross section dσ/d(cosθ(t)) for Top-Quark Pair Production in pp Collisions at sqrt[s] = 1.96 TeV.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Martínez, M; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Ranjan, N; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2013-11-01

    We report a measurement of the differential cross section dσ/d(cosθ(t)) for top-quark pair production as a function of the top-quark production angle in proton-antiproton collisions at sqrt[s] = 1.96 TeV. This measurement is performed using data collected with the CDF II detector at the Tevatron, corresponding to an integrated luminosity of 9.4 fb(-1). We employ the Legendre polynomials to characterize the shape of the differential cross section at the parton level. The observed Legendre coefficients are in good agreement with the prediction of the next-to-leading-order standard-model calculation, with the exception of an excess linear-term coefficient a(1) = 0.40 ± 0.12, compared to the standard-model prediction of a(1)=0.15(-0.03)(+0.07).

  18. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD.

    PubMed

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku

    2015-01-09

    The most compelling possibility for a new law of nature beyond the four fundamental forces comprising the standard model of high-energy physics is the discrepancy between measurements and calculations of the muon anomalous magnetic moment. Until now a key part of the calculation, the hadronic light-by-light contribution, has only been accessible from models of QCD, the quantum description of the strong force, whose accuracy at the required level may be questioned. A first principles calculation with systematically improvable errors is needed, along with the upcoming experiments, to decisively settle the matter. For the first time, the form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in such a framework, lattice QCD+QED and QED. A nonperturbative treatment of QED is used and checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed for which statistically significant signals are obtained. Initial results are promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  19. Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1.

    PubMed

    Blanke, Monika; Buras, Andrzej J; Recksiegel, Stefan

    2016-01-01

    The Littlest Higgs model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. The latter originate in the interactions of ordinary quarks and leptons with heavy mirror quarks and leptons that are mediated by new heavy gauge bosons. Also a heavy fermionic top partner is present in this model which communicates with the SM fermions by means of standard [Formula: see text] and [Formula: see text] gauge bosons. We present a new analysis of quark flavour observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare K and B decays are still allowed to depart from their SM values. This includes [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. Taking into account the constraints from [Formula: see text] processes, significant departures from the SM predictions for [Formula: see text] and [Formula: see text] are possible, while the effects in B decays are much smaller. In particular, the LHT model favours [Formula: see text], which is not supported by the data, and the present anomalies in [Formula: see text] decays cannot be explained in this model. With the recent lattice and large N input the imposition of the [Formula: see text] constraint implies a significant suppression of the branching ratio for [Formula: see text] with respect to its SM value while allowing only for small modifications of [Formula: see text]. Finally, we investigate how the LHT physics could be distinguished from other models by means of indirect measurements and discuss the consequences for quark flavour observables of not finding any LHT state in the coming years.

  20. Flavor dependence of the pion and kaon form factors and parton distribution functions

    DOE PAGES

    Hutauruk, Parada T. P.; Cloët, Ian C.; Thomas, Anthony W.

    2016-09-01

    The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio u(K) + (x)/u(pi) + (x) drops below unity at large x, with a value of approximately Mmore » $$2\\atop{u}$$/Ms$$2\\atop{s}$$ as x → 1. With regard to the elastic form factors we report a large flavor dependence, with the u-quark contribution to the kaon form factor being an order of magnitude smaller than that of the s-quark at large Q 2, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K + and π + form factors differ by only 10%. Lastly, in general we find that flavor breaking effects are typically around 20%.« less

  1. Flavor dependence of the pion and kaon form factors and parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutauruk, Parada T. P.; Cloët, Ian C.; Thomas, Anthony W.

    The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio u(K) + (x)/u(pi) + (x) drops below unity at large x, with a value of approximately Mmore » $$2\\atop{u}$$/Ms$$2\\atop{s}$$ as x → 1. With regard to the elastic form factors we report a large flavor dependence, with the u-quark contribution to the kaon form factor being an order of magnitude smaller than that of the s-quark at large Q 2, which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K + and π + form factors differ by only 10%. Lastly, in general we find that flavor breaking effects are typically around 20%.« less

  2. Multiplicity distributions of gluon and quark jets and tests of QCD analytic predictions

    NASA Astrophysics Data System (ADS)

    OPAL Collaboration; Ackerstaff, K.; et al.

    Gluon jets are identified in e+e^- hadronic annihilation events by tagging two quark jets in the same hemisphere of an event. The gluon jet is defined inclusively as all the particles in the opposite hemisphere. Gluon jets defined in this manner have a close correspondence to gluon jets as they are defined for analytic calculations, and are almost independent of a jet finding algorithm. The charged particle multiplicity distribution of the gluon jets is presented, and is analyzed for its mean, dispersion, skew, and curtosis values, and for its factorial and cumulant moments. The results are compared to the analogous results found for a sample of light quark (uds) jets, also defined inclusively. We observe differences between the mean, skew and curtosis values of gluon and quark jets, but not between their dispersions. The cumulant moment results are compared to the predictions of QCD analytic calculations. A calculation which includes next-to-next-to-leading order corrections and energy conservation is observed to provide a much improved description of the data compared to a next-to-leading order calculation without energy conservation. There is agreement between the data and calculations for the ratios of the cumulant moments between gluon and quark jets.

  3. Semileptonic B-meson decays to light pseudoscalar mesons on the HISQ ensembles

    NASA Astrophysics Data System (ADS)

    Gelzer, Zechariah; Bernard, C.; Tar, C. De; El-Khadra, AX; Gámiz, E.; Gottlieb, Steven; Kronfeld, Andreas S.; Liu, Yuzhi; Meurice, Y.; Simone, J. N.; Toussaint, D.; Water, R. S. Van de; Zhou, R.

    2018-03-01

    We report the status of an ongoing lattice-QCD calculation of form factors for exclusive semileptonic decays of B mesons with both charged currents (B → πlv, Bs → Klv) and neutral currents (B → πl+l-, B → Kl+l-). The results are important for constraining or revealing physics beyond the Standard Model. This work uses MILC's (2+1 + 1)-flavor ensembles with the HISQ action for the sea and light valence quarks and the clover action in the Fermilab interpretation for the b quark. Simulations are carried out at three lattice spacings down to 0.088 fm, with both physical and unphysical sea-quark masses. We present preliminary results for correlation-function fits.

  4. Improving the theoretical prediction for the Bs - B̅s width difference: matrix elements of next-to-leading order ΔB = 2 operators

    NASA Astrophysics Data System (ADS)

    Davies, Christine; Harrison, Judd; Lepage, G. Peter; Monahan, Christopher; Shigemitsu, Junko; Wingate, Matthew

    2018-03-01

    We present lattice QCD results for the matrix elements of R2 and other dimension-7, ΔB = 2 operators relevant for calculations of Δs, the Bs - B̅s width difference. We have computed correlation functions using 5 ensembles of the MILC Collaboration's 2+1 + 1-flavour gauge field configurations, spanning 3 lattice spacings and light sea quarks masses down to the physical point. The HISQ action is used for the valence strange quarks, and the NRQCD action is used for the bottom quarks. Once our analysis is complete, the theoretical uncertainty in the Standard Model prediction for ΔΓs will be substantially reduced.

  5. Quark matter symmetry energy and quark stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Peng-Cheng; Chen, Lie-Wen, E-mail: lwchen@sjtu.edu.cn

    2014-01-10

    We extend the confined-density-dependent-mass (CDDM) model to include isospin dependence of the equivalent quark mass. Within the confined-isospin-density-dependent-mass (CIDDM) model, we study the quark matter symmetry energy, the stability of strange quark matter, and the properties of quark stars. We find that including isospin dependence of the equivalent quark mass can significantly influence the quark matter symmetry energy as well as the properties of strange quark matter and quark stars. While the recently discovered large mass pulsars PSR J1614–2230 and PSR J0348+0432 with masses around 2 M {sub ☉} cannot be quark stars within the CDDM model, they can bemore » well described by quark stars in the CIDDM model. In particular, our results indicate that the two-flavor u-d quark matter symmetry energy should be at least about twice that of a free quark gas or normal quark matter within the conventional Nambu-Jona-Lasinio model in order to describe PSR J1614–2230 and PSR J0348+0432 as quark stars.« less

  6. Disconnected-Sea Quarks Contribution to Nucleon Electromagnetic Form Factors

    NASA Astrophysics Data System (ADS)

    Sufian, Raza Sabbir

    We present comprehensive analysis of the light and strange disconnected-sea quarks contribution to the nucleon electric and magnetic form factors. The lattice QCD estimates of strange quark magnetic moment GsM (0) = -0.064(14)(09) microN and the mean squared charge radius E = -0.0043(16)(14) fm2 are more precise than any existing experimental measurements and other lattice calculations. The lattice QCD calculation includes ensembles across several lattice volumes and lattice spacings with one of the ensembles at the physical pion mass. We have performed a simultaneous chiral, infinite volume, and continuum extrapolation in a global fit to calculate results in the continuum limit. We find that the combined light-sea and strange quarks contribution to the nucleon magnetic moment is -0.022(11)(09) microN and to the nucleon mean square charge radius is -0.019(05)(05) fm 2. The most important outcome of this lattice QCD calculation is that while the combined light-sea and strange quarks contribution to the nucleon magnetic moment is small at about 1%, a negative 2.5(9)% contribution to the proton charge radius and a relatively larger positive 16.3(6.1)% contribution to the neutron charge radius come from the sea quarks in the nucleon. For the first time, by performing global fits, we also give predictions of the light-sea and strange quarks contributions to the nucleon electric and magnetic form factors at the physical point and in the continuum and infinite volume limits in the momentum transfer range of 0 ≤ Q2 ≤ 0.5 GeV2.

  7. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence.

    PubMed

    Borowka, S; Greiner, N; Heinrich, G; Jones, S P; Kerner, M; Schlenk, J; Schubert, U; Zirke, T

    2016-07-01

    We present the calculation of the cross section and invariant mass distribution for Higgs boson pair production in gluon fusion at next-to-leading order (NLO) in QCD. Top-quark masses are fully taken into account throughout the calculation. The virtual two-loop amplitude has been generated using an extension of the program GoSam supplemented with an interface to Reduze for the integral reduction. The occurring integrals have been calculated numerically using the program SecDec. Our results, including the full top-quark mass dependence for the first time, allow us to assess the validity of various approximations proposed in the literature, which we also recalculate. We find substantial deviations between the NLO result and the different approximations, which emphasizes the importance of including the full top-quark mass dependence at NLO.

  8. Constraining the hadronic spectrum through QCD thermodynamics on the lattice

    NASA Astrophysics Data System (ADS)

    Alba, Paolo; Bellwied, Rene; Borsányi, Szabolcs; Fodor, Zoltan; Günther, Jana; Katz, Sandor D.; Mantovani Sarti, Valentina; Noronha-Hostler, Jacquelyn; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2017-08-01

    Fluctuations of conserved charges allow us to study the chemical composition of hadronic matter. A comparison between lattice simulations and the hadron resonance gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well-established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the quark model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results.

  9. Polarization in Vector-Vector Decay of B Mesons at CDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans, Randal Milton

    1996-01-01

    The factorization assumption in bound state decays (splitting four-quark operators into the product of two two-quark operators) has proved to be a useful tool in B and D meson decays. The longitudinal polarization fraction,more » $,L/,,$ in the decays $$B_d \\to J/\\psi K^{*0}$$ and $$B_s \\to J/\\psi \\phi$$ can be calculated using various phenomenological models within the factorization assumption and, when compared to experimental measurements, provides a test of the factorization procedure when extended to color suppressed B decays....« less

  10. Electromagnetic effects on the light hadron spectrum

    DOE PAGES

    Basak, S.; Bazavov, A.; Bernard, C.; ...

    2015-09-28

    Calculations studying electromagnetic effects on light mesons are reported. The calculations use fully dynamical QCD, but only quenched photons, which suffices to NLO in χPT; that is, the sea quarks are electrically neutral, while the valence quarks carry charge. The non-compact formalism is used for photons. New results are obtained with lattice spacing as small as 0.045 fm and a large range of volumes. The success of chiral perturbation theory in describing these results and the implications for light quark masses are considered.

  11. The electrosphere of macroscopc ""nuclei"": diffuse emissions in the MeV band from dark antimatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, Michael Mcneil; Lawson, Kyle; Zhitnitsky, Ariel R

    2009-01-01

    Using a Thomas-Fermi model, we calculate the structure of the electrosphere of the quark antimatter nuggets postulated to comprise much of the dark matter. This provides a single self-consistent density profile from ultra-rel ativistic densities to the non-relativistic Boltzmann regime. We use this to present a microscopically justified calculation of several properties of the nuggets, including their net charge, and the ratio of MeV to 511 keV emissions from electron annihilation. We find that the calculated parameters agree with previous phenomenological estimates based on the observational supposition that the nuggets are a source of several unexplained diffuse emissions from themore » galaxy. This provides another nontrivial verification of the dark matter proposal. The structure of the electrosphere is quite general and will also be valid at the surface of strange-quark stars, should they exist.« less

  12. Maximum Mass of Hybrid Stars in the Quark Bag Model

    NASA Astrophysics Data System (ADS)

    Alaverdyan, G. B.; Vartanyan, Yu. L.

    2017-12-01

    The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.

  13. Neutral and charged scalar mesons, pseudoscalar mesons, and diquarks in magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Wang, Xinyang; Yu, Lang; Huang, Mei

    2018-04-01

    We investigate both (pseudo)scalar mesons and diquarks in the presence of external magnetic field in the framework of the two-flavored Nambu-Jona-Lasinio (NJL) model, where mesons and diquarks are constructed by infinite sum of quark-loop chains by using random phase approximation. The polarization function of the quark-loop is calculated to the leading order of 1 /Nc expansion by taking the quark propagator in the Landau level representation. We systematically investigate the masses behaviors of scalar σ meson, neutral and charged pions as well as the scalar diquarks, with respect to the magnetic field strength at finite temperature and chemical potential. It is shown that the numerical results of both neutral and charged pions are consistent with the lattice QCD simulations. The mass of the charge neutral pion keeps almost a constant under the magnetic field, which is preserved by the remnant symmetry of QCD ×QED in the vacuum. The mass of the charge neutral scalar σ is around two times quark mass and increases with the magnetic field due to the magnetic catalysis effect, which is an typical example showing that the polarized internal quark structure cannot be neglected when we consider the meson properties under magnetic field. For the charged particles, the one quark-antiquark loop contribution to the charged π± increases essentially with the increase of magnetic fields due to the magnetic catalysis of the polarized quarks. However, the one quark-quark loop contribution to the scalar diquark mass is negative comparing with the point-particle result and the loop effect is small.

  14. Tetraquark bound states in a Bethe-Salpeter approach

    NASA Astrophysics Data System (ADS)

    Heupel, Walter; Eichmann, Gernot; Fischer, Christian S.

    2012-12-01

    We determine the mass of tetraquark bound states from a coupled system of covariant Bethe-Salpeter equations. Similar in spirit to the quark-diquark model of the nucleon, we approximate the full four-body equation for the tetraquark by a coupled set of two-body equations with meson and diquark constituents. These are calculated from their quark and gluon substructure using a phenomenologically well-established quark-gluon interaction. For the lightest scalar tetraquark we find a mass of the order of 400 MeV and a wave function dominated by the pion-pion constituents. Both results are in agreement with a meson molecule picture for the f0 (600). Our results furthermore suggest the presence of a potentially narrow all-charm tetraquark in the mass region 5-6 GeV.

  15. Short-distance matrix elements for $D$-meson mixing for 2+1 lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chia Cheng

    2015-01-01

    We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched N f = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a 2 tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a 2 tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We reportmore » values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.« less

  16. Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Bajic, M.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Lopez, S. Calvente; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Moursli, R. Cherkaoui El; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; De Sousa, M. J. Da Cunha Sargedas; Via, C. Da; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Regie, J. B. De Vivie; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Cornell, S. Díez; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Duncan, A. K.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; Kacimi, M. El; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Costa, J. Goncalves Pinto Firmino Da; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klapdor-kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A. Lopez; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Outschoorn, V. I. Martinez; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paganini, M.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sánchez, J.; Martinez, V. Sanchez; Pineda, A. Sanchez; Sandaker, H.; Sandbach, R. L.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shirabe, S.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Haddad, E. Sideras; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turgeman, D.; Cakir, I. Turk; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zwalinski, L.

    2017-08-01

    Detailed measurements of t-channel single top-quark production are presented. They use 20.2 fb^{-1} of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be σ _{ {tot}} (tq) = 56.7^{+4.3}_{-3.8}pb for top-quark production and σ _{ {tot}} (\\bar{t} q) = 32.9^{+3.0}_{-2.7}pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be R_t=1.72 ± 0.09. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t-channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.

  17. Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adachi, S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alshehri, A A; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Antrim, D J; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Bajic, M; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Bianchi, R M; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Billoud, T R V; Bilokon, H; Bindi, M; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blazek, T; Bloch, I; Blocker, C; Blue, A; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burger, A M; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Lopez, S Calvente; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carlson, B T; Carminati, L; Carney, R M D; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, F; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Petrillo, K F; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Cornell, S Díez; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Duncan, A K; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Ezzi, M; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Flierl, B M; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Ganguly, S; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gellerstedt, K; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Gui, B; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, W; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hagihara, M; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Han, S; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Herde, H; Herget, V; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hladik, O; Hoad, X; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Honda, S; Honda, T; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hoya, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, P J; Hsu, S-C; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansky, R; Janssen, J; Janus, M; Janus, P A; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiang, Z; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, C A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Kharlamova, T; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klapdor-Kleingrothaus, T; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Koulouris, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kuprash, O; Kurashige, H; Kurchaninov, L L; Kurochkin, Y A; Kurth, M G; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyton, M; Li, B; Li, C; Li, H; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Loebinger, F K; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopez, J A Lopez; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Outschoorn, V I Martinez; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Maznas, I; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Menary, S B; Meng, L; Meng, X T; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Minegishi, Y; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mizukami, A; Mjörnmark, J U; Mlynarikova, M; Moa, T; Mochizuki, K; Mogg, P; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Moschovakos, P; Mosidze, M; Moss, H J; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paganini, M; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauch, D M; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reed, R G; Reeves, K; Rehnisch, L; Reichert, J; Reiss, A; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Resseguie, E D; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Roberts, R T; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Roloff, J; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Martinez, V Sanchez; Pineda, A Sanchez; Sandaker, H; Sandbach, R L; Sandhoff, M; Sandoval, C; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sato, K; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schouwenberg, J F P; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shirabe, S; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shope, D R; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Haddad, E Sideras; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Siral, I; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, J W; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, I M; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Suster, C J E; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Swift, S P; Sykora, I; Sykora, T; Ta, D; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tanioka, R; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Tornambe, P; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tulbure, T T; Tuna, A N; Tupputi, S A; Turchikhin, S; Turgeman, D; Cakir, I Turk; Turra, R; Tuts, P M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usui, J; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vasquez, G A; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, W; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Weber, S A; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wobisch, M; Wolf, T M H; Wolff, R; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xi, Z; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, L; Zhang, M; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zwalinski, L

    2017-01-01

    Detailed measurements of t -channel single top-quark production are presented. They use 20.2 fb[Formula: see text] of data collected by the ATLAS experiment in proton-proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be [Formula: see text] for top-quark production and [Formula: see text] for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be [Formula: see text]. The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t -channel scattering are measured at particle level. All measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.

  18. Color Superconductivity and Charge Neutrality in Yukawa Theory

    NASA Astrophysics Data System (ADS)

    Alford, Mark G.; Pangeni, Kamal; Windisch, Andreas

    2018-02-01

    It is generally believed that when Cooper pairing occurs between two different species of fermions, their Fermi surfaces become locked together so that the resultant state remains "neutral," with equal number densities of the two species, even when subjected to a chemical potential that couples to the difference in number densities. This belief is based on mean-field calculations in models with a zero-range interaction, where the anomalous self-energy is independent of energy and momentum. Following up on an early report of a deviation from neutrality in a Dyson-Schwinger calculation of color-flavor-locked quark matter, we investigate the neutrality of a two-species condensate using a Yukawa model which has a finite-range interaction. In a mean field calculation we obtain the full energy-momentum dependence of the self-energy and find that the energy dependence leads to a population imbalance in the Cooper-paired phase when it is stressed by a species-dependent chemical potential. This gives some support to the suggestion that the color-flavor-locked phase of quark matter might not be an insulator.

  19. Techniques for the treatment of IR divergences in decay processes at NLO and application to the top-quark decay.

    PubMed

    Basso, Lorenzo; Dittmaier, Stefan; Huss, Alexander; Oggero, Luisa

    We present the extension of two general algorithms for the treatment of infrared singularities arising in electroweak corrections to decay processes at next-to-leading order: the dipole subtraction formalism and the one-cutoff slicing method. The former is extended to the case of decay kinematics which has not been considered in the literature so far. The latter is generalised to production and decay processes with more than two charged particles, where new "surface" terms arise. Arbitrary patterns of massive and massless external particles are considered, including the treatment of infrared singularities in dimensional or mass regularisation. As an application of the two techniques we present the calculation of the next-to-leading order QCD and electroweak corrections to the top-quark decay width including all off-shell and decay effects of intermediate [Formula: see text] bosons. The result, e.g., represents a building block of a future calculation of NLO electroweak effects to off-shell top-quark pair ([Formula: see text]) production. Moreover, this calculation can serve as the first step towards an event generator for top-quark decays at next-to-leading order accuracy, which can be used to attach top-quark decays to complicated many-particle top-quark processes, such as for [Formula: see text] or [Formula: see text].

  20. Lattice QCD calculation of the B(s )→D(s) *ℓν form factors at zero recoil and implications for |Vc b|

    NASA Astrophysics Data System (ADS)

    Harrison, Judd; Davies, Christine T. H.; Wingate, Matthew; Hpqcd Collaboration

    2018-03-01

    We present results of a lattice QCD calculation of B →D* and Bs→Ds* axial vector matrix elements with both states at rest. These zero recoil matrix elements provide the normalization necessary to infer a value for the CKM matrix element |Vc b| from experimental measurements of B¯ 0→D*+ℓ-ν ¯ and B¯s0→Ds*+ℓ-ν¯ decay. Results are derived from correlation functions computed with highly improved staggered quarks (HISQ) for light, strange, and charm quark propagators, and nonrelativistic QCD for the bottom quark propagator. The calculation of correlation functions employs MILC Collaboration ensembles over a range of three lattice spacings. These gauge field configurations include sea quark effects of charm, strange, and equal-mass up and down quarks. We use ensembles with physically light up and down quarks, as well as heavier values. Our main results are FB→D *(1 )=0.895 ±0.01 0stat±0.024sys and FBs→Ds*(1 )=0.883 ±0.01 2stat±0.02 8sys . We discuss the consequences for |Vc b| in light of recent investigations into the extrapolation of experimental data to zero recoil.

  1. Heavy-quark production in massless quark scattering at two loops in QCD

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Mitov, A.; Moch, S.

    2007-07-01

    We present the two-loop virtual QCD corrections to the production of heavy quarks in the quark-anti-quark annihilation channel in the limit when all kinematical invariants are large compared to the mass of the heavy quark. Our result is exact up to terms suppressed by powers of the heavy-quark mass. The derivation is based on a simple relation between massless and massive scattering amplitudes in gauge theories proposed recently by two of the authors as well as a direct calculation of the massive amplitude at two loops. The results presented here form an important part of the next-to-next-to-leading order QCD contributions to heavy-quark production in hadron-hadron collisions.

  2. Mrst '96: Current Ideas in Theoretical Physics - Proceedings of the Eighteenth Annual Montréal-Rochester-Syracuse-Toronto Meeting

    NASA Astrophysics Data System (ADS)

    O'Donnell, Patrick J.; Smith, Brian Hendee

    1996-11-01

    The Table of Contents for the full book PDF is as follows: * Preface * Roberto Mendel, An Appreciaton * The Infamous Coulomb Gauge * Renormalized Path Integral in Quantum Mechanics * New Analysis of the Divergence of Perturbation Theory * The Last of the Soluble Two Dimensional Field Theories? * Rb and Heavy Quark Mixing * Rb Problem: Loop Contributions and Supersymmetry * QCD Radiative Effects in Inclusive Hadronic B Decays * CP-Violating Dipole Moments of Quarks in the Kobayashi-Maskawa Model * Hints of Dynamical Symmetry Breaking? * Pi Pi Scattering in an Effective Chiral Lagrangian * Pion-Resonance Parameters from QCD Sum Rules * Higgs Theorem, Effective Action, and its Gauge Invariance * SUSY and the Decay H_2^0 to gg * Effective Higgs-to-Light Quark Coupling Induced by Heavy Quark Loops * Heavy Charged Lepton Production in Superstring Inspired E6 Models * The Elastic Properties of a Flat Crystalline Membrane * Gauge Dependence of Topological Observables in Chern-Simons Theory * Entanglement Entropy From Edge States * A Simple General Treatment of Flavor Oscillations * From Schrödinger to Maupertuis: Least Action Principles from Quantum Mechanics * The Matrix Method for Multi-Loop Feynman Integrals * Simplification in QCD and Electroweak Calculations * Programme * List of Participants

  3. Composite operators in the hopping parameter expansion in the free quark model

    NASA Astrophysics Data System (ADS)

    Kunszt, Z.

    1983-11-01

    I have calculated hopping parameter series of meson and baryon propagators up to O(K32) in the Wilson formulation of the free quark model. The position of branch point singularities has been found with the help of Padé approximants. The values of the position of the singularities in K agreed with the exact values within 1-2% in case of mesons and 4-5% in case of baryons. It is argued that in QCD at the cross-over region the systematic errors of the method must be even smaller. Part of this work has been done while the author was visiting the Rutherford and Appleton Laboratories, UK.

  4. Renormalization group invariant of lepton Yukawa couplings

    NASA Astrophysics Data System (ADS)

    Tsuyuki, Takanao

    2015-04-01

    By using quark Yukawa matrices only, we can construct renormalization invariants that are exact at the one-loop level in the standard model. One of them, Iq, is accidentally consistent with unity, even though quark masses are strongly hierarchical. We calculate a lepton version of the invariant Il for Dirac and Majorana neutrino cases and find that Il can also be close to unity. For the Dirac neutrino and inverted hierarchy case, if the lightest neutrino mass is 3.0 meV to 8.8 meV, an equality Iq=Il can be satisfied. These invariants are not changed even if new particles couple to the standard model particles, as long as those couplings are generation independent.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez Ortega, Jorge

    The Standard Model of Partice Physics (SM) is probably the most successful theory, regarding to his predictions. The SM prediction formore » $CP$ violation is not enough to explain the overwhelming asymmetry among the matter and anti-matter abundance. Measuring some process where $CP$ violation is different to the one predicted by the SM would be a clear signal for Physics Beyond the Standard Model. The SM prediction for the $CP$ violation phase, $$\\phi_{s}$$, in the $$B^{0}_{s}$$ meson is practically equal to zero for the current experiments. This means that measuring a deviation from zero in $$\\phi_{s}$$ could be an indication for Physics Beyond the SM. On the other hand, the approximation based on the ``heavy quark symmetry'' let approximated calculations of the fundamental quantities of those hadrons containing a heavy quark, $c,b,t$. These calculations are expressed as expansions on inverse powers of the heavy quark mass in such hadron. This formalism is called `` Heavy Quark Effective Theory'' (HQET), and has been successful predicting some properties of the heavy hadrons. The HQET prediction for the lifetime ratio the $$B^{0}_{d}$$ and $$B^{0}_{s}$$ is practically equal to one. So, measuring with good precision the $$B^{0}_{s}$$ lifetime is also a way to test an approximation based on the SM. In this thesis it is detailed presented the method to measure the $$\\phi_{s}$$ and the lifetime ratio of the $$B^{0}_{d}$$ and $$B^{0}_{s}$$, among other quantities, with the DØ located in the Fermi National Accelerator Laboratory, in the United States.« less

  6. Jet Topics: Disentangling Quarks and Gluons at Colliders

    NASA Astrophysics Data System (ADS)

    Metodiev, Eric M.; Thaler, Jesse

    2018-06-01

    We introduce jet topics: a framework to identify underlying classes of jets from collider data. Because of a close mathematical relationship between distributions of observables in jets and emergent themes in sets of documents, we can apply recent techniques in "topic modeling" to extract jet topics from the data with minimal or no input from simulation or theory. As a proof of concept with parton shower samples, we apply jet topics to determine separate quark and gluon jet distributions for constituent multiplicity. We also determine separate quark and gluon rapidity spectra from a mixed Z -plus-jet sample. While jet topics are defined directly from hadron-level multidifferential cross sections, one can also predict jet topics from first-principles theoretical calculations, with potential implications for how to define quark and gluon jets beyond leading-logarithmic accuracy. These investigations suggest that jet topics will be useful for extracting underlying jet distributions and fractions in a wide range of contexts at the Large Hadron Collider.

  7. Features of quark and lepton mixing from differential geometry of curves on surfaces

    NASA Astrophysics Data System (ADS)

    Bordes, José; Hong-Mo, Chan; Pfaudler, Jakov; Sheung Tsun, Tsou

    1998-09-01

    It is noted that the Cabibbo-Kobayashi-Moskawa (CKM) matrix elements for both quarks and leptons as conceived in the dualized standard model (DSM) can be interpreted as direction cosines obtained by moving the Darboux trihedron (a 3-frame) along a trajectory on a sphere traced out through changing energy scales by a 3-vector factorized from the mass matrix. From the Darboux analogues of the well-known Serret-Frenet formulas for space curves, it is seen that the corner elements (Vub,Vtd for quarks, and Ue3,Uτ1 for leptons) are associated with the (geodesic) torsion, while the other off-diagonal elements (Vus,Vcd and Vcb,Vts for quarks, and Ue2,Uμ1 and Uμ3,Uτ2 for leptons) with the (respectively, geodesic and normal) curvatures of the trajectory. From this it follows that (i) the corner elements in both matrices are much smaller than the other elements, and (ii) the Uμ3,Uτ2 elements for the lepton CKM matrix are much larger than their counterparts in the quark matrix. Both these conclusions are strongly borne out by experiment, for quarks in hadron decays and for leptons in neutrino oscillations, and by previous explicit calculations within the DSM scheme.

  8. Hard breakup of the deuteron into two Δ isobars

    NASA Astrophysics Data System (ADS)

    Granados, Carlos G.; Sargsian, Misak M.

    2011-05-01

    We study high-energy photodisintegration of the deuteron into two Δ isobars at large center of mass angles within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main steps: the photon knocks a quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn→ΔΔ scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration is mainly determined by the properties of the pn→ΔΔ scattering. We predict that the cross section of the deuteron breakup to Δ++Δ- is 4-5 times larger than that of the breakup to the Δ+Δ0 channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard Δ isobars are the result of the disintegration of the preexisting ΔΔ components of the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup in both Δ++Δ- and Δ+Δ0 channels to be similar.

  9. Heavy-quark production in gluon fusion at two loops in QCD

    NASA Astrophysics Data System (ADS)

    Czakon, M.; Mitov, A.; Moch, S.

    2008-07-01

    We present the two-loop virtual QCD corrections to the production of heavy quarks in gluon fusion. The results are exact in the limit when all kinematical invariants are large compared to the mass of the heavy quark up to terms suppressed by powers of the heavy-quark mass. Our derivation uses a simple relation between massless and massive QCD scattering amplitudes as well as a direct calculation of the massive amplitude at two loops. The results presented here together with those obtained previously for quark-quark scattering form important parts of the next-to-next-to-leading order QCD corrections to heavy-quark production in hadron-hadron collisions.

  10. Masses of constituent quarks confined in open bottom hadrons

    NASA Astrophysics Data System (ADS)

    Borka Jovanović, V.; Borka, D.; Jovanović, P.; Milošević, J.; Ignjatović, S. R.

    2014-12-01

    We apply color-spin and flavor-spin quark-quark interactions to the meson and baryon constituent quarks, and calculate constituent quark masses, as well as the coupling constants of these interactions. The main goal of this paper was to determine constituent quark masses from light and open bottom hadron masses, using the fitting method we have developed and clustering of hadron groups. We use color-spin Fermi-Breit (FB) and flavor-spin Glozman-Riska (GR) hyperfine interaction (HFI) to determine constituent quark masses (especially b quark mass). Another aim was to discern between the FB and GR HFI because our previous findings had indicated that both interactions were satisfactory. Our improved fitting procedure of constituent quark masses showed that on average color-spin (FB) HFI yields better fits. The method also shows the way how the constituent quark masses and the strength of the interaction constants appear in different hadron environments.

  11. Spin-dependent quark beam function at NNLO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boughezal, Radja; Petriello, Frank; Schubert, Ulrich

    2017-08-01

    We calculate the beam function for longitudinally polarized quarks through next-to-next-to-leading order (NNLO) in QCD perturbation theory. This is the last missing ingredient needed to apply the factorization theorem for the N-jettiness event-shape variable in a variety of polarized collisions through the NNLO level. We present all technical details of our derivation. As a by-product of our calculation we provide the first independent check of the previously obtained unpolarized quark beam function. We anticipate that our result will have phenomenological applications in describing data from polarized collisions.

  12. Top-quark loop corrections in Z+jet and Z + 2 jet production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Keith Ellis, R.

    2017-01-01

    The sophistication of current predictions formore » $Z+$jet production at hadron colliders necessitates a re-evaluation of any approximations inherent in the theoretical calculations. In this paper we address one such issue, the inclusion of mass effects in top-quark loops. We ameliorate an existing calculation of $Z+1$~jet and $Z+2$~jet production by presenting exact analytic formulae for amplitudes containing top-quark loops that enter at next-to-leading order in QCD. Although approximations based on an expansion in powers of $$1/m_t^2$$ can lead to poor high-energy behavior, an exact treatment of top-quark loops demonstrates that their effect is small and has limited phenomenological interest.« less

  13. Study of the production of the Σ b *± with the CDF detector at the Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calancha Paredes, Constantino

    The composition of matter is a topic in which the man has been interested throughout History. Since the introduction of the atom by Democritus in the 5th century BC until the establishment of the Standard Model, our successful theory that contains our current knowledge on the matter and their interactions, it has come a long way trying to solve this fundamental question. The efforts of many of the greatest minds to perform crucial experiments and develop theoretical models have helped to get deeper insight into the origin of the matter. Today we know that indivisible atoms postulated by Democritus aremore » no longer true, and they are actually composed of a nucleus made of protons and neutrons (nucleons) with orbiting electrons through electromagnetic interactions. Also the nucleons are not fundamental particles but are composed of more fundamental ones called quarks. According to the present state of our knowledge, matter is composed of two types of particles: quarks and leptons. Leptons are believed to be fundamental particles and can occur freely in nature. Quarks are also fundamental particles, and there are no free in nature, but are confined to form hadrons. The hadrons may consist of a quark and an antiquark (mesons) or three quarks or three antiquarks (baryons). These quarks and leptons interact through the exchange of particles called bosons. Figure 1.1 summary the elementary particles in the Standard Model. Despite its enormous success we know that the Standard Model is incomplete. Some of the issues left unresolved by the Standard Model are the mechanism for electroweak symmetry breaking, the mass spectrum of the Standard Model or that the Universe is much more matter than antimatter. That means that it should exist a more general theory which include the Standard Model as a valid approximation for low energy. This more general theory must give answers to the previous unresolved questions. Accumulate more experimental information is crucial to get a deeper understanding of the Standard Model and its limitations. In particular, it is very important the measurement of those observables which they are not able to be calculated from theory by perturbation theory. Particle accelerators have played and play nowadays a major role for past and new physics discoverements and has been for many years the source of many precision measurements. Unprecedent discoveries have been made and are yet to come. These measurements allow to select the models that best fit the results and also they can be used as input for those models to get further predictions. Tevatron has been for many years the highest energy particle collider operational in the world. It is located in the high energy physics laboratory Fermilab in Batavia, in the State of Illinois (USA). Tevatron produce proton-antiproton collisions with an energy of 1.96 TeV at the center of the mass. This thesis is based on the data taken by the CDF II detector, one of the two multipurpose detectors located in the two interaction points at Tevatron. In this thesis a precise measurement of the mass and width of four heavy baryon states are performed. These states are described together by the symbol Σ b *±. They are built by two light quarks and one heavy b quark as it is shown in Fig. 1.2. Baryons containing one bottom quark and two light quarks are described by Heavy Quark Effective Theories (HQET).« less

  14. Two-loop hard-thermal-loop thermodynamics with quarks

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Petitgirard, Emmanuel; Strickland, Michael

    2004-08-01

    We calculate the quark contribution to the free energy of a hot quark-gluon plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All ultraviolet divergences can be absorbed into renormalizations of the vacuum energy and the HTL quark and gluon mass parameters. The quark and gluon HTL mass parameters are determined self-consistently by a variational prescription. Combining the quark contribution with the two-loop HTL perturbation theory free energy for pure glue we obtain the total two-loop QCD free energy. Comparisons are made with lattice estimates of the free energy for Nf=2 and with exact numerical results obtained in the large-Nf limit.

  15. Quark chiral condensate from the overlap quark propagator

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Zhaofeng

    2017-05-01

    From the overlap lattice quark propagator calculated in the Landau gauge, we determine the quark chiral condensate by fitting operator product expansion formulas to the lattice data. The quark propagators are computed on domain wall fermion configurations generated by the RBC-UKQCD Collaborations with N f = 2+1 flavors. Three ensembles with different light sea quark masses are used at one lattice spacing 1/a = 1.75(4) GeV. We obtain in the SU(2) chiral limit. Supported by National Natural Science Foundation of China (11575197, 11575196, 11335001, 11405178), joint funds of NSFC (U1632104, U1232109), YC and ZL acknowledge the support of NSFC and DFG (CRC110)

  16. Strange Quark Magnetic Moment of the Nucleon at the Physical Point.

    PubMed

    Sufian, Raza Sabbir; Yang, Yi-Bo; Alexandru, Andrei; Draper, Terrence; Liang, Jian; Liu, Keh-Fei

    2017-01-27

    We report a lattice QCD calculation of the strange quark contribution to the nucleon's magnetic moment and charge radius. This analysis presents the first direct determination of strange electromagnetic form factors including at the physical pion mass. We perform a model-independent extraction of the strange magnetic moment and the strange charge radius from the electromagnetic form factors in the momentum transfer range of 0.051  GeV^{2}≲Q^{2}≲1.31  GeV^{2}. The finite lattice spacing and finite volume corrections are included in a global fit with 24 valence quark masses on four lattices with different lattice spacings, different volumes, and four sea quark masses including one at the physical pion mass. We obtain the strange magnetic moment G_{M}^{s}(0)=-0.064(14)(09)μ_{N}. The four-sigma precision in statistics is achieved partly due to low-mode averaging of the quark loop and low-mode substitution to improve the statistics of the nucleon propagator. We also obtain the strange charge radius ⟨r_{s}^{2}⟩_{E}=-0.0043(16)(14)  fm^{2}.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, Nicolas; Höche, Stefan; Luisoni, Gionata

    The first computation of Higgs production in association with three jets at NLO in QCD has recently been performed using the effective theory, where the top quark is treated as an infinitely heavy particle and integrated out. This approach is restricted to the regions in phase space where the typical scales are not larger than the top quark mass. Here we investigate this statement at a quantitative level by calculating the leading-order contributions to the production of a Standard Model Higgs boson in association with up to three jets taking full top-quark and bottom-quark mass dependence into account. We findmore » that the transverse momentum of the hardest particle or jet plays a key role in the breakdown of the effective theory predictions, and that discrepancies can easily reach an order of magnitude for transverse momenta of about 1 TeV. The impact of bottom-quark loops is found to be visible in the small transverse momentum region, leading to corrections of up to 5 percent. Lastly, we further study the impact of mass corrections when VBF selection cuts are applied and when the center-of-mass energy is increased to 100 TeV.« less

  18. runDM: Running couplings of Dark Matter to the Standard Model

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2018-02-01

    runDM calculates the running of the couplings of Dark Matter (DM) to the Standard Model (SM) in simplified models with vector mediators. By specifying the mass of the mediator and the couplings of the mediator to SM fields at high energy, the code can calculate the couplings at low energy, taking into account the mixing of all dimension-6 operators. runDM can also extract the operator coefficients relevant for direct detection, namely low energy couplings to up, down and strange quarks and to protons and neutrons.

  19. Quark orbital dynamics in the proton from lattice QCD: From Ji to Jaffe-Manohar orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Engelhardt, M.

    2017-05-01

    Given a Wigner distribution simultaneously characterizing quark transverse positions and momenta in a proton, one can directly evaluate their cross product, i.e., quark orbital angular momentum. The aforementioned distribution can be obtained by generalizing the proton matrix elements of quark bilocal operators which define transverse momentum-dependent parton distributions (TMDs); the transverse momentum information is supplemented with transverse position information by introducing an additional nonzero momentum transfer. A gauge connection between the quarks must be specified in the quark bilocal operators; the staple-shaped gauge link path used in TMD calculations yields the Jaffe-Manohar definition of orbital angular momentum, whereas a straight path yields the Ji definition. An exploratory lattice calculation, performed at the pion mass mπ=518 MeV , is presented which quasicontinuously interpolates between the two definitions and demonstrates that their difference can be clearly resolved. The resulting Ji orbital angular momentum is confronted with traditional evaluations based on Ji's sum rule. Jaffe-Manohar orbital angular momentum is enhanced in magnitude compared to its Ji counterpart.

  20. Precision electroweak physics at LEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannelli, M.

    1994-12-01

    Copious event statistics, a precise understanding of the LEP energy scale, and a favorable experimental situation at the Z{sup 0} resonance have allowed the LEP experiments to provide both dramatic confirmation of the Standard Model of strong and electroweak interactions and to place substantially improved constraints on the parameters of the model. The author concentrates on those measurements relevant to the electroweak sector. It will be seen that the precision of these measurements probes sensitively the structure of the Standard Model at the one-loop level, where the calculation of the observables measured at LEP is affected by the value chosenmore » for the top quark mass. One finds that the LEP measurements are consistent with the Standard Model, but only if the mass of the top quark is measured to be within a restricted range of about 20 GeV.« less

  1. Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower

    DOE PAGES

    Höche, Stefan; Krauss, Frank; Maierhöfer, Philipp; ...

    2015-06-26

    We present differential cross sections for the production of top-quark pairs in conjunction with up to two jets, computed at next-to-leading order in perturbative QCD and consistently merged with a parton shower in the SHERPA+OPENLOOPS framework. Top quark decays including spin correlation effects are taken into account at leading order accuracy. The calculation yields a unified description of top-pair plus multi-jet production, and detailed results are presented for various key observables at the Large Hadron Collider. As a result, a large improvement with respect to the multi-jet merging approach at leading order is found for the total transverse energy spectrum,more » which plays a prominent role in searches for physics beyond the Standard Model.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Bipasha; Davies, C. T. H.; de Oliveira, P. G.

    We determine the contribution to the anomalous magnetic moment of the muon from themore » $$\\alpha^2_{\\mathrm{QED}}$$ hadronic vacuum polarization diagram using full lattice QCD and including $u/d$ quarks with physical masses for the first time. We use gluon field configurations that include $u$, $d$, $s$ and $c$ quarks in the sea at multiple values of the lattice spacing, multiple $u/d$ masses and multiple volumes that allow us to include an analysis of finite-volume effects. We obtain a result for $$a_{\\mu}^{\\mathrm{HVP,LO}}$$ of $667(6)(12)$, where the first error is from the lattice calculation and the second includes systematic errors from missing QED and isospin-breaking effects and from quark-line disconnected diagrams. Our result implies a discrepancy between the experimental determination of $$a_{\\mu}$$ and the Standard Model of 3$$\\sigma$$.« less

  3. Transverse spin structure of the nucleon from lattice-QCD simulations.

    PubMed

    Göckeler, M; Hägler, Ph; Horsley, R; Nakamura, Y; Pleiter, D; Rakow, P E L; Schäfer, A; Schierholz, G; Stüben, H; Zanotti, J M

    2007-06-01

    We present the first calculation in lattice QCD of the lowest two moments of transverse spin densities of quarks in the nucleon. They encode correlations between quark spin and orbital angular momentum. Our dynamical simulations are based on two flavors of clover-improved Wilson fermions and Wilson gluons. We find significant contributions from certain quark helicity flip generalized parton distributions, leading to strongly distorted densities of transversely polarized quarks in the nucleon. In particular, based on our results and recent arguments by Burkardt [Phys. Rev. D 72, 094020 (2005)], we predict that the Boer-Mulders function h(1/1), describing correlations of transverse quark spin and intrinsic transverse momentum of quarks, is large and negative for both up and down quarks.

  4. Decay constants $$f_B$$ and $$f_{B_s}$$ and quark masses $$m_b$$ and $$m_c$$ from HISQ simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komijani, J.; et al.

    2016-11-22

    We present a progress report on our calculation of the decay constantsmore » $$f_B$$ and $$f_{B_s}$$ from lattice-QCD simulations with highly-improved staggered quarks. Simulations are carried out with several heavy valence-quark masses on $(2+1+1)$-flavor ensembles that include charm sea quarks. We include data at six lattice spacings and several light sea-quark masses, including an approximately physical-mass ensemble at all but the smallest lattice spacing, 0.03 fm. This range of parameters provides excellent control of the continuum extrapolation to zero lattice spacing and of heavy-quark discretization errors. Finally, using the heavy-quark effective theory expansion we present a method of extracting from the same correlation functions the charm- and bottom-quark masses as well as some low-energy constants appearing in the heavy-quark expansion.« less

  5. From hadrons to quarks in neutron stars: a review.

    PubMed

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu-Jona-Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well understood nuclear matter regime at low densities and the quark matter regime at higher densities. The utility of such interpolations is driven by the present inability to calculate the dense matter equation of state in QCD from first principles. As we review, the parameters of effective quark models-which have direct relevance to the more general structure of the QCD phase diagram of dense and hot matter-are constrained by neutron star mass and radii measurements, in particular favoring large repulsive density-density and attractive diquark pairing interactions. We describe the structure of neutron stars constructed from the unified equations of states with crossover. Lastly we present the current equations of state-called 'QHC18' for quark-hadron crossover-in a parametrized form practical for neutron star modeling.

  6. Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-08-09

    Detailed measurements of t-channel single top-quark production are presented. They use 20.2 fb -1 of data collected by the ATLAS experiment in proton–proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be σ tot(tq) = 56.7more » $$+4.3\\atop{-3.8}$$ pb for top-quark production and σ tot($$\\bar{t}q$$) = 32.9$$+3.0\\atop{-2.7}$$ pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be R t = 1.72 ± 0.09 . The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t-channel scattering are measured at particle level. In conclusion, all measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.« less

  7. Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    Detailed measurements of t-channel single top-quark production are presented. They use 20.2 fb -1 of data collected by the ATLAS experiment in proton–proton collisions at a centre-of-mass energy of 8 TeV at the LHC. Total, fiducial and differential cross-sections are measured for both top-quark and top-antiquark production. The fiducial cross-section is measured with a precision of 5.8% (top quark) and 7.8% (top antiquark), respectively. The total cross-sections are measured to be σ tot(tq) = 56.7more » $$+4.3\\atop{-3.8}$$ pb for top-quark production and σ tot($$\\bar{t}q$$) = 32.9$$+3.0\\atop{-2.7}$$ pb for top-antiquark production, in agreement with the Standard Model prediction. In addition, the ratio of top-quark to top-antiquark production cross-sections is determined to be R t = 1.72 ± 0.09 . The differential cross-sections as a function of the transverse momentum and rapidity of both the top quark and the top antiquark are measured at both the parton and particle levels. The transverse momentum and rapidity differential cross-sections of the accompanying jet from the t-channel scattering are measured at particle level. In conclusion, all measurements are compared to various Monte Carlo predictions as well as to fixed-order QCD calculations where available.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Keh-Fei; Draper, Terrence

    It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. Wemore » started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D s meson decay constant f Ds, the strangeness and charmness, the meson mass decomposition and the strange quark spin from the anomalous Ward identity. Recently, we have started to include multiple lattices with different lattice spacings and different volumes including large lattices at the physical pion mass point. We are getting quite close to being able to calculate the hadron structure at the physical point and to do the continuum and large volume extrapolations, which is our ultimate aim. We have now finished several projects which have included these systematic corrections. They include the leptonic decay width of the ρ, the πN sigma and strange sigma terms, and the strange quark magnetic moment. Over the years, we have also studied hadron spectroscopy with lattice calculations and in phenomenology. These include Roper resonance, pentaquark state, charmonium spectrum, glueballs, scalar mesons a 0(1450) and σ(600) and other scalar mesons, and the 1 -+ meson. In addition, we have employed the canonical approach to explore the first-order phase transition and the critical point at finite density and finite temperature. We have also discovered a new parton degree of freedom -- the connected sea partons, from the path-integral formulation of the hadronic tensor, which explains the experimentally observed Gottfried sum rule violation. Combining experimental result on the strange parton distribution, the CT10 global fitting results of the total u and d anti-partons and the lattice result of the ratio of the momentum fraction of the strange vs that of u or d in the disconnected insertion, we have shown that the connected sea partons can be isolated. In this final technical report, we shall present a few representative highlights that have been achieved in the project.« less

  9. QCD thermodynamics with two flavors of quarks[1

    NASA Astrophysics Data System (ADS)

    MIMD lattice Computations (MILC) Collaboration

    We present results of numerical simulations of quantum chromodynamics at finite temperature on the Intel iPSC/860 parallel processor. We performed calculations with two flavors of Kogut-Susskind quarks and of Wilson quarks on 6 × 12 3 lattices in order to study the crossover from the low temperature hadronic regime to the high temperature regime. We investigate the properties of the objects whose exchange gives static screening lengths be reconstructing their correlated quark-antiquark structure.

  10. Rapidity distribution of photons from an anisotropic quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Lusaka; Roy, Pradip

    2010-05-01

    We calculate rapidity distribution of photons due to Compton and annihilation processes from quark gluon plasma with pre-equilibrium momentum-space anisotropy. We also include contributions from hadronic matter with late-stage transverse expansion. A phenomenological model has been used for the time evolution of hard momentum scale, phard(τ), and anisotropy parameter, ξ(τ). As a result of pre-equilibrium momentum-space anisotropy, we find significant modification of photons rapidity distribution. For example, with the fixed initial condition (FIC) free-streaming (δ=2) interpolating model we observe significant enhancement of photon rapidity distribution at fixed pT, where as for FIC collisionally broadened (δ=2/3) interpolating model the yield increases till y~1. Beyond that suppression is observed. With fixed final multiplicity (FFM) free-streaming interpolating model we predict enhancement of photon yield which is less than the case of FIC. Suppression is always observed for FFM collisionally broadened interpolating model.

  11. Semileptonic decays of B and D mesons in the light-front formalism

    NASA Astrophysics Data System (ADS)

    Jaus, W.

    1990-06-01

    The light-front formalism is used to present a relativistic calculation of form factors for semileptonic D and B decays in the constituent quark model. The quark-antiquark wave functions of the mesons can be obtained, in principle, from an analysis of the meson spectrum, but are approximated in this work by harmonic-oscillator wave functions. The predictions of the model are consistent with the experimental data for B decays. The Kobayashi-Maskawa (KM) matrix element ||Vcs|| is determined by a comparison of the experimental and theoretical rates for D0-->K-e+ν, and is consistent with a unitary KM matrix for three families. The predictions for D-->K* transitions are in conflict with the data.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalev, Andrew N.

    The authors describe a measurement of the top quark mass using events with two charged leptons collected by the CDF II Detector from pmore » $$\\bar{p}$$ collisions with √s = 1.96 TeV at the Fermilab Tevatron. The posterior probability distribution of the top quark pole mass is calculated using the differential cross-section for the t$$\\bar{t}$$ production and decay expressed with respect to observed leptons and jets momenta. The presence of background events in the collected sample is modeled using calculations of the differential cross-sections for major background processes. This measurement represents the first application of this method to events with two charged leptons. In a data sample with integrated luminosity of 340 pb -1, they observe 33 candidate events and measure M top = 165.2 ± 61. stat ± 3.4 syst GeV/c 2.« less

  13. B → Dℓν form factors at nonzero recoil and |V cb| from 2+1-flavor lattice QCD

    DOE PAGES

    Bailey, Jon A.

    2015-08-10

    We present the first unquenched lattice-QCD calculation of the hadronic form factors for the exclusive decay B¯→Dℓν¯ at nonzero recoil. We carry out numerical simulations on 14 ensembles of gauge-field configurations generated with 2+1 flavors of asqtad-improved staggered sea quarks. The ensembles encompass a wide range of lattice spacings (approximately 0.045 to 0.12 fm) and ratios of light (up and down) to strange sea-quark masses ranging from 0.05 to 0.4. For the b and c valence quarks we use improved Wilson fermions with the Fermilab interpretation, while for the light valence quarks we use asqtad-improved staggered fermions. We extrapolate ourmore » results to the physical point using rooted staggered heavy-light meson chiral perturbation theory. We then parametrize the form factors and extend them to the full kinematic range using model-independent functions based on analyticity and unitarity. We present our final results for f +(q 2) and f 0(q 2), including statistical and systematic errors, as coefficients of a series in the variable z and the covariance matrix between these coefficients. We then fit the lattice form-factor data jointly with the experimentally measured differential decay rate from BABAR to determine the CKM matrix element, |V cb|=(39.6 ± 1.7 QCD+exp ± 0.2 QED) × 10 –3. As a byproduct of the joint fit we obtain the form factors with improved precision at large recoil. In conclusion, we use them to update our calculation of the ratio R(D) in the Standard Model, which yields R(D)=0.299(11).« less

  14. Charmed Hadron Spectrum and Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Liuming

    Studying hadrons containing heavy quarks in lattice QCD is challenging mainly due to finite lattice spacing effects. To control the discretization errors, mQa is required to be much less than 1, where mQ is the quark mass and a is the lattice spacing. For currently accessible lattice spacings, the charm quark mass doesn't satisfy this requirement. One approach to simulate heavy quarks on the lattice is non-relativestic QCD, which treats heavy quark as a static source and expand the lattice quark action in powers of 1mQa . Unfortunately, the charm quark is not heavy enough to justify this expansion. An other is Heavy Quark Effective Theory (HQET) matched on QCD. Non-relativestic QCD and HQET are mainly used for bottom quark. Relativistic heavy-quark action, which incorporates both small mass and large mass formulations, is better suited to study the charm quark sector. The discretization errors can be reduced systematically following Symanzik improvement. In this work, we use the relativistic heavy quark action to study the charmed hadron spectrum and interactions in full lattice QCD. For the light quarks we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea quarks. The parameters in the heavy quark action are tuned to reduce lattice artifacts and match the charm quark mass and the action is tested by calculating the low-lying charmonium spectrum. We compute the masses of the spin-1/2 singly and doubly charmed baryons. For the singly charmed baryons, our results are in good agreement with experiment within our systematics. For the doubly charmed baryon xicc we find the isospin-averaged mass to be MXcc = 3665 +/- 17 +/- 14+0-78 MeV; the three given uncertainties are statistical, systematic and an estimate of lattice discretization errors, respectively. In addition, we predict the mass splitting of the (isospin-averaged) spin-1/2 O cc with the xicc to be MWcc-MXcc = 98 +/- 9 +/- 22 +/- 13 MeV (in this mass splitting, the leading discretization errors are also suppressed by SU(3) symmetry). Combining this splitting with our determination of MXcc leads to our prediction of the spin-1/2 Occ mass, MWcc = 3763 +/- 19 +/- 26+13-79 MeV. We calculate the scattering lengths of the charmed mesons with the light pseudoscalar mesons. The calculation is performed for four different light quark masses and extrapolated to the physical point using chiral perturbation formulas to next-to-next-to-leading order. The low energy constants are determined and used to make predictions. We find relatively strong attractive interaction in DK channels, which is closely related to the structure of DsJ(2317) state. The scattering of charmonium with light hadrons is also studied. Particularly, we find very weak attractive interaction between J/Psi and nucleon, in this channel the dominate interaction is attractive gluonic van der Walls and it could lead to molecular-like bound states.

  15. Neutron electric dipole moment from electric and chromoelectric dipole moments of quarks

    NASA Astrophysics Data System (ADS)

    Pospelov, Maxim; Ritz, Adam

    2001-04-01

    Using QCD sum rules, we calculate the electric dipole moment of the neutron dn induced by all CP violating operators up to dimension five. We find that the chromoelectric dipole moments of quarks d~i, including that of the strange quark, provide significant contributions comparable in magnitude to those induced by the quark electric dipole moments di. When the theta term is removed via the Peccei-Quinn symmetry, the strange quark contribution is also suppressed and dn=(1+/-0.5)\\{0.55e(d~d+0.5d~u)+0.7(dd-0.25du)\\}.

  16. Helicity amplitudes for QCD with massive quarks

    NASA Astrophysics Data System (ADS)

    Ochirov, Alexander

    2018-04-01

    The novel massive spinor-helicity formalism of Arkani-Hamed, Huang and Huang provides an elegant way to calculate scattering amplitudes in quantum chromodynamics for arbitrary quark spin projections. In this note we compute two families of tree-level QCD amplitudes with one massive quark pair and n - 2 gluons. The two cases include all gluons with identical helicity and one opposite-helicity gluon being color-adjacent to one of the quarks. Our results naturally incorporate the previously known amplitudes for both quark spins quantized along one of the gluonic momenta. In the all-multiplicity formulae presented here the spin quantization axes can be tuned at will, which includes the case of the definite-helicity quark states.

  17. Exploratory Lattice QCD Study of the Rare Kaon Decay K^{+}→π^{+}νν[over ¯].

    PubMed

    Bai, Ziyuan; Christ, Norman H; Feng, Xu; Lawson, Andrew; Portelli, Antonin; Sachrajda, Christopher T

    2017-06-23

    We report a first, complete lattice QCD calculation of the long-distance contribution to the K^{+}→π^{+}νν[over ¯] decay within the standard model. This is a second-order weak process involving two four-Fermi operators that is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with physical quark masses and controlled systematic errors will be possible with the next generation of computers.

  18. Exploratory Lattice QCD Study of the Rare Kaon Decay K+→π+ν ν ¯

    NASA Astrophysics Data System (ADS)

    Bai, Ziyuan; Christ, Norman H.; Feng, Xu; Lawson, Andrew; Portelli, Antonin; Sachrajda, Christopher T.; Rbc-Ukqcd Collaboration

    2017-06-01

    We report a first, complete lattice QCD calculation of the long-distance contribution to the K+→π+ν ν ¯ decay within the standard model. This is a second-order weak process involving two four-Fermi operators that is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with physical quark masses and controlled systematic errors will be possible with the next generation of computers.

  19. Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Wan

    2015-05-01

    We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.

  20. Fluctuations and correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Bazavov, A.; Bhattacharya, Tanmoy; DeTar, C. E.; Ding, H.-T.; Gottlieb, Steven; Gupta, Rajan; Hegde, P.; Heller, Urs M.; Karsch, F.; Laermann, E.; Levkova, L.; Mukherjee, Swagato; Petreczky, P.; Schmidt, Christian; Soltz, R. A.; Soeldner, W.; Sugar, R.; Vranas, Pavlos M.

    2012-08-01

    We calculate the quadratic fluctuations of net baryon number, electric charge and strangeness as well as correlations among these conserved charges in (2+1)-flavor lattice QCD at zero chemical potential. Results are obtained using calculations with tree-level improved gauge and the highly improved staggered quark actions with almost physical light and strange quark masses at three different values of the lattice cutoff. Our choice of parameters corresponds to a value of 160 MeV for the lightest pseudoscalar Goldstone mass and a physical value of the kaon mass. The three diagonal charge susceptibilities and the correlations among conserved charges have been extrapolated to the continuum limit in the temperature interval 150MeV≤T≤250MeV. We compare our results with the hadron resonance gas (HRG) model calculations and find agreement with HRG model results only for temperatures T≲150MeV. We observe significant deviations in the temperature range 160MeV≲T≲170MeV and qualitative differences in the behavior of the three conserved charge sectors. At T≃160MeV quadratic net baryon number fluctuations in QCD agree with HRG model calculations, while the net electric charge fluctuations in QCD are about 10% smaller and net strangeness fluctuations are about 20% larger. These findings are relevant to the discussion of freeze-out conditions in relativistic heavy ion collisions.

  1. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider.

    PubMed

    Bevilacqua, G; Hartanto, H B; Kraus, M; Worek, M

    2016-02-05

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%.

  2. Measurement of normalized differential t\\overline{t} cross sections in the dilepton channel from pp collisions at √{s}=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Strauss, J.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Bhawandeep, U.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Guiducci, L.; Marcellini, S.; Masetti, G.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Danilov, M.; Parygin, P.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Klyukhin, V.; Kodolova, O.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Volkov, P.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Shchutska, L.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zagozdzinska, A.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Adiguzel, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Benaglia, A.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2018-04-01

    Normalized differential cross sections for top quark pair production are measured in the dilepton (e+e-, μ + μ -, and μ ∓e±) decay channels in proton-proton collisions at a center-of-mass energy of 13 TeV. The measurements are performed with data corresponding to an integrated luminosity of 2.1 fb-1 using the CMS detector at the LHC. The cross sections are measured differentially as a function of the kinematic properties of the leptons, jets from bottom quark hadronization, top quarks, and top quark pairs at the particle and parton levels. The results are compared to several Monte Carlo generators that implement calculations up to next-to-leading order in perturbative quantum chromodynamics interfaced with parton showering, and also to fixed-order theoretical calculations of top quark pair production up to next-to-next-to-leading order. [Figure not available: see fulltext.

  3. Measurement of normalized differential $$\\mathrm{t}\\overline{\\mathrm{t}}$$ cross sections in the dilepton channel from pp collisions at $$\\sqrt{s} =$$ 13 TeV

    DOE PAGES

    Sirunyan, Albert M; et al.

    2017-08-25

    Normalized differential cross sections for top quark pair production are measured in the dilepton (emore » $^+$e$^-$, $$\\mu^+\\mu^-$$, and $$\\mu^\\mp$$e$$^\\pm$$) decay channels in proton-proton collisions at a center-of-mass energy of 13 TeV. The measurements are performed with data corresponding to an integrated luminosity of 2.1 fb$$^{-1}$$ using the CMS detector at the LHC. The cross sections are measured differentially as a function of the kinematic properties of the leptons, jets from bottom quark hadronization, top quarks, and top quark pairs at the particle and parton levels. The results are compared to several Monte Carlo generators that implement calculations up to next-to-leading order in perturbative quantum chromodynamics interfaced with parton showering, and also to fixed-order theoretical calculations of top quark pair production up to next-to-next-to-leading order.« less

  4. Quark structure of chiral solitons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitri Diakonov

    2004-05-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections andmore » additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.« less

  5. Hard breakup of two nucleons from the He3 nucleus

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.; Granados, Carlos

    2009-07-01

    We investigate a large angle photodisintegration of two nucleons from the He3 nucleus within the framework of the hard rescattering model (HRM). In the HRM a quark of one nucleon knocked out by an incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with large relative momentum. Assuming the dominance of the quark-interchange mechanism in a hard nucleon-nucleon scattering, the HRM allows the expression of the amplitude of a two-nucleon breakup reaction through the convolution of photon-quark scattering, NN hard scattering amplitude, and nuclear spectral function, which can be calculated using a nonrelativistic He3 wave function. The photon-quark scattering amplitude can be explicitly calculated in the high energy regime, whereas for NN scattering one uses the fit of the available experimental data. The HRM predicts several specific features for the hard breakup reaction. First, the cross section will approximately scale as s-11. Second, the s11 weighted cross section will have the shape of energy dependence similar to that of s10 weighted NN elastic scattering cross section. Also one predicts an enhancement of the pp breakup relative to the pn breakup cross section as compared to the results from low energy kinematics. Another result is the prediction of different spectator momentum dependencies of pp and pn breakup cross sections. This is due to the fact that the same-helicity pp-component is strongly suppressed in the ground state wave function of He3. Because of this suppression the HRM predicts significantly different asymmetries for the cross section of polarization transfer NN breakup reactions for circularly polarized photons. For the pp breakup this asymmetry is predicted to be zero while for the pn it is close to (2)/(3).

  6. Estimating the charm quark diffusion coefficient and thermalization time from D meson spectra at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Scardina, Francesco; Das, Santosh K.; Minissale, Vincenzo; Plumari, Salvatore; Greco, Vincenzo

    2017-10-01

    We describe the propagation of charm quarks in the quark-gluon plasma (QGP) by means of a Boltzmann transport approach. Nonperturbative interaction between heavy quarks and light quarks have been taken into account through a quasiparticle approach in which light partons are dressed with thermal masses tuned to lattice quantum chromodynamics (lQCD) thermodynamics. Such a model is able to describe the main feature of the nonperturbative dynamics: the enhancement of the interaction strength near Tc. We show that the resulting charm in-medium evolution is able to correctly predict simultaneously the nuclear suppression factor, RAA, and the elliptic flow, v2, at both Relativistic Heavy Ion Collider and Large Hadron Collider (LHC) energies and at different centralities. The hadronization of charm quarks is described by mean of an hybrid model of fragmentation plus coalescence and plays a key role toward the agreement with experimental data. We also performed calculations within the Langevin approach, which can lead to very similar RAA(pT) as Boltzmann, but the charm drag coefficient as to be reduced by about a 30 % and also generates an elliptic flow v2(pT) is about a 15 % smaller. We finally compare the space diffusion coefficient 2 π T Ds extracted by our phenomenological approach to lattice QCD results, finding a satisfying agreement within the present systematic uncertainties. Our analysis implies a charm thermalization time, in the p →0 limit, of about 4 -6 fm/c , which is smaller than the QGP lifetime at LHC energy.

  7. Neutral B-meson mixing from three-flavor lattice QCD: Determination of the SU(3)-breaking ratio \\xi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; /Brookhaven; Bernard, C.

    We study SU(3)-breaking effects in the neutral B{sub d}-{bar B}{sub d} and B{sub s}-{bar B}{sub s} systems with unquenched N{sub t}=2+1 lattice quantum chromodynamics (QCD). We calculate the relevant matrix elements on the MILC collaboration's gauge configurations with asqtad-improved staggered sea quarks. For the valence light-quarks (u, d, and s) we use the asqtad action, while for b quarks we use the Fermilab action. We obtain {xi}=f{sub B{sub s}} {radical}{ovr B{sub B{sub s}}}/f{sub B{sub d}}{radical}{ovr B{sub B{sub d}}}=1.268{+-}0.063. We also present results for the ratio of bag parameters B{sub B{sub s}}/B{sub B{sub d}} and the ratio of Cabibbo-Kobayashi-Maskawa matrix elementsmore » |V{sub td}|/|V{sub ts}|. Although we focus on the calculation of {xi}, the strategy and techniques described here will be employed in future extended studies of the B mixing parameters {Delta}M{sub d,s} and {Delta}{Gamma}{sub d,s} in the standard model and beyond.« less

  8. Resolving the Tevatron Top Quark Forward-Backward Asymmetry Puzzle: Fully Differential Next-to-Next-to-Leading-Order Calculation.

    PubMed

    Czakon, Michal; Fiedler, Paul; Mitov, Alexander

    2015-07-31

    We determine the dominant missing standard model (SM) contribution to the top quark pair forward-backward asymmetry at the Tevatron. Contrary to past expectations, we find a large, around 27%, shift relative to the well-known value of the inclusive asymmetry in next-to-leading order QCD. Combining all known standard model corrections, we find that A(FB)(SM)=0.095±0.007. This value is in agreement with the latest DØ measurement [V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 90, 072011 (2014)] A(FB)(D∅)=0.106±0.03 and about 1.5σ below that of CDF [T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 87, 092002 (2013)] A(FB)(CDF)=0.164±0.047. Our result is derived from a fully differential calculation of the next-to-next-to leading order (NNLO) QCD corrections to inclusive top pair production at hadron colliders and includes-without any approximation-all partonic channels contributing to this process. This is the first complete fully differential calculation in NNLO QCD of a two-to-two scattering process with all colored partons.

  9. Resolving the Tevatron Top Quark Forward-Backward Asymmetry Puzzle: Fully Differential Next-to-Next-to-Leading-Order Calculation

    NASA Astrophysics Data System (ADS)

    Czakon, Michal; Fiedler, Paul; Mitov, Alexander

    2015-07-01

    We determine the dominant missing standard model (SM) contribution to the top quark pair forward-backward asymmetry at the Tevatron. Contrary to past expectations, we find a large, around 27%, shift relative to the well-known value of the inclusive asymmetry in next-to-leading order QCD. Combining all known standard model corrections, we find that AF BS M = 0.095 ±0.007 . This value is in agreement with the latest DØ measurement [V. M. Abazov et al. (D0 Collaboration), Phys. Rev. D 90, 072011 (2014)] AFBD ∅=0.106 ±0.03 and about 1.5 σ below that of CDF [T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 87, 092002 (2013)] AFBCDF=0.164 ±0.047 . Our result is derived from a fully differential calculation of the next-to-next-to leading order (NNLO) QCD corrections to inclusive top pair production at hadron colliders and includes—without any approximation—all partonic channels contributing to this process. This is the first complete fully differential calculation in NNLO QCD of a two-to-two scattering process with all colored partons.

  10. Beam energy dependence of elliptic and triangular flow with the AMPT model

    NASA Astrophysics Data System (ADS)

    Solanki, Dronika; Sorensen, Paul; Basu, Sumit; Raniwala, Rashmi; Nayak, Tapan Kumar

    2013-03-01

    A beam energy scan has been carried out at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory to search for the onset of deconfinement and a possible critical point where the transition from a Quark Gluon Plasma to a hadronic phase changes from a rapid cross-over to a first order phase transition. Anisotropy in the azimuthal distribution of produced particles such as the second and third harmonics v2 and v3 are expected to be sensitive to the existence of a Quark Gluon Plasma phase and the Equation of State of the system. For this reason, they are of great experimental interests. In this Letter we report on calculations of v2 and v3 from the AMPT model in the Default (Def.) and String Melting (SM) mode to provide a reference for the energy dependence of v2 and v3 for √{sNN} from 7.7 GeV to 2.76 TeV. We expect that in the case that collisions cease to produce QGP at lower colliding energies, data will deviate from the AMPT String Melting calculations and come in better agreement with the Default calculations.

  11. Change of Electroweak Nuclear Reaction Rates by CP- and Isospin Symmetry Breaking - A Model Calculation

    NASA Astrophysics Data System (ADS)

    Stumpf, Harald

    2006-09-01

    Based on the assumption that electroweak bosons, leptons and quarks possess a substructure of elementary fermionic constituents, in previous papers the effect of CP-symmetry breaking on the effective dynamics of these particles was calculated. Motivated by the phenomenological procedure in this paper, isospin symmetry breaking will be added and the physical consequences of these calculations will be discussed. The dynamical law of the fermionic constituents is given by a relativistically invariant nonlinear spinor field equation with local interaction, canonical quantization, selfregularization and probability interpretation. The corresponding effective dynamics is derived by algebraic weak mapping theorems. In contrast to the commonly applied modifications of the quark mass matrices, CP-symmetry breaking is introduced into this algebraic formalism by an inequivalent vacuum with respect to the CP-invariant case, represented by a modified spinor field propagator. This leads to an extension of the standard model as effective theory which contains besides the "electric" electroweak bosons additional "magnetic" electroweak bosons and corresponding interactions. If furthermore the isospin invariance of the propagator is broken too, it will be demonstrated in detail that in combination with CP-symmetry breaking this induces a considerable modification of electroweak nuclear reaction rates.

  12. Mass dependence of Higgs boson production at large transverse momentum through a bottom-quark loop

    NASA Astrophysics Data System (ADS)

    Braaten, Eric; Zhang, Hong; Zhang, Jia-Wei

    2018-05-01

    In the production of the Higgs through a bottom-quark loop, the transverse momentum distribution of the Higgs at large PT is complicated by its dependence on two other important scales: the bottom quark mass mb and the Higgs mass mH. A strategy for simplifying the calculation of the cross section at large PT is to calculate only the leading terms in its expansion in mb2/PT2. In this paper, we consider the bottom-quark-loop contribution to the parton process q q ¯→H +g at leading order in αs. We show that the leading power of 1 /PT2 can be expressed in the form of a factorization formula that separates the large scale PT from the scale of the masses. All the dependence on mb and mH can be factorized into a distribution amplitude for b b ¯ in the Higgs, a distribution amplitude for b b ¯ in a real gluon, and an end point contribution. The factorization formula can be used to organize the calculation of the leading terms in the expansion in mb2/PT2 so that every calculation involves at most two scales.

  13. High Energy Phenomenology - Proceedings of the Workshop

    NASA Astrophysics Data System (ADS)

    Pérez, Miguel A.; Huerta, Rodrigo

    1992-06-01

    The Table of Contents for the full book PDF is as follows: * Preface * Radiative Corrections in the Electroweak Standard Model * Introduction * The Electroweak Standard Model and its Renormalization * Basic Properties of the Standard Model * Renormalization of the Standard Model * Calculation of Radiative Corrections * One-Loop Integrals * Corrected Matrix Elements and Cross Sections * Photonic Corrections * Physical Applications and Results * Parameter Relations in Higher Orders * Decay Widths * Z Physics * W-Pair Production * Higgs Production in e+e- Annihilation * Conclusion * Appendix: Feynman Rules * References * Hadron Collider Physics * Introduction * e+ e- Annihilation * The Standard Model * The Drell-Yan Process in Hadronic Collisions * The Structure Functions * Hadronic Z Production * Hadronic W Production * The Transverse Mass * Quark Decays of W's * Weak Interactions * Neutrino Scattering * Weak Neutral Currents * The Standard Model * Symmetries and Lagrangians * Spontaneous Symmetry Breaking * The Standard Model Again * Experimental Situation * Appendix * References * Lectures on Heavy Quark Effective Theory * Introduction * Motivation * Physical Intuition * The Heavy Quark Effective Theory * The Effective Lagrangian and its Feynman Rules * What is an Effective Theory? * The Effective Theory Beyond Tree Level * External Currents * Leading-Logs or No Leading-Logs; A digression * Sample Calculations * Symmetries * Flavor-SU(N) * Spin-SU(2) * Spectrum * Strong Transitions * Covariant Representation of States * Meson Decay Constants * Preliminaries * Formal Derivation: Green Functions * Quick and Dirty Derivation: States in the HQET * Vector Meson Decay Constant * Corrections * Form Factors in overline {B} rightarrow Deν and overline {B} rightarrow D ^ast {e}ν * Preliminaries * Form Factors in the HQET * Form Factors in order αs * 1/MQ * The Correcting Lagrangian * The Corrected Currents * Corrections of order mc/mb * Corrections of order overline {Λ} /m_c and overline {Λ} /m_c * Conclusions and More * Inclusive Semileptonic Decay Rates * overline {B} rightarrow Π {e} overline {ν} and overline {B} rightarrow Π {e} overline {ν} * Rare overline {B} decays * e^+ e^- rightarrow {B} overline {B} * λb → λcDs vs λb → λc D*s * Factorization * A Last Word (or Two) * References * An Overview of Nonleptonic Decays of B, D, K Mesons and CP-Noninvariance * Generic Ways to Study Nonleptonic Decays and CP-Noninvariance * The Quark-Diagram Scheme * Invariants of the CKM and the Universal Decay-Amplitude CP-Noninvariance Factor Xcp * Implications of Measuring Partial-Decay-Rate Asymmetries in B± Decays and in Neutral B Decays such as B0, overline {B}^{0} rightarrow K_sJ/{Ψ} * Nonleptonic Decays of D Mesons: From the CKM Non- and Singly-Suppressed Decays to the Predictions of Doubly-Suppressed Decays * Charm Meson D Decays into Vector and Pseudoscalar Bosons, D → VP * Charm Meson Decays into Pseudoscalar-Pseudoscalar Mesons, D → PP * Charm Meson Decays into Vector-Vector Mesons, D → VV * Nonleptonic Decays of B Mesons * The CKM Non-Suppressed Decays * Interesting Features in the Rare B Meson Decays * CP-Noninvariance in K Meson Decays * Implications of Measurement of Re( ɛ'/ɛ) * Other Important Searches for Decay-Amplitude CP Noninvariance in Strange Particles * Some Generic Properties of Decay-Amplitude CP-Noninvariance * References * Top Quark Physics * Introduction * The Top Quark Exists * Upper Limit on Mt * Other Constraints on Mt * Production of Top * Hadron Colliders * SM Top Decays * Detecting SM Tops-Signatures * Model-Independent Lower Limit on Mt * Determining the Charge of a New Heavy Quark * When the Top Quark is Detected * Top Decays - A Window to New Physics? * - Decay to Supersymmetric Partners * - Decay to Charged Higgs Bosons * - Flavor-Changing Neutral Current Decays * - Other possibilities * New Information Once Top is Observed * Studying the Top Decays Couplings * The Top Quark at N LC * Measuring Mt - How Well? * Sharper Predictions for Many Observables * Measuring Vts, Vtd, Vtb and Γ(t → bW) * Top Polarization Predictions - A New Observable * Testing QCD Polarization Predictions * Correlation of Top Spin Direction with Final b, l+ Directions and Top Mass Measurements * Measuring P_{pm} ^ t * General Top Couplings * One Loop Corrections to Top Decay * Decay Helicity Amplitudes * New Sources of CP Violation at the Weak Scale? * The Effect of Top Loops on Higgs Masses * Is t → Wb a Background for Studying TeV WW Interactions? * Predictions for Mt * Final Remarks * References * High Precision Radiative Corrections in the Semileptonic Decays of Hyperons * On the Decay W± → P±γ * The Decay H0 → γγ and Physics Beyond the Standard Model * Neutrino Masses and Double Beta Decay * Neutrino Oscillations in a Medium: Analytic Calculation of Nonadiabatic Transitions * Gauge-Invariant Perturbation Theory Near a Gauge Resonance * Lower Dimensional Divergences in Gauge Theories * Strange Stars: Which is the Ground State of QCD at Finite Baryon Number? * Experimental Signatures of the SU(5)c Color Model * Generalized Supersymmetric Quantum Mechanics * Chern-Simons Theories in 2 + 1 Dimensions * List of participants

  14. Cross section measurement of t-channel single top quark production in pp collisions at s = 13 TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-07-29

    The cross section for the production of single top quarks in the t channel is measured in proton-proton collisions at 13 TeV with the CMS detector at the LHC. The analyzed data correspond to an integrated luminosity of 2.2 fb –1. The event selection requires one muon and two jets where one of the jets is identified as originating from a bottom quark. Several kinematic variables are then combined into a multivariate discriminator to distinguish signal from background events. A fit to the distribution of the discriminating variable yields a total cross section of 238 ± 13 (stat) ± 29more » (syst) pb and a ratio of top quark and top antiquark production of R t-ch. = 1.81 ± 0.18 (stat) ± 0.15 (syst). From the total cross section the absolute value of the CKM matrix element V tb is calculated to be 1.05 ± 0.07 (exp) ± 0.02 (theo). Finally, all results are in agreement with the standard model predictions.« less

  15. Measurements of charm hadron production and anisotropic flow in Au+Au collisions at 200 GeV with the STAR experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Sooraj

    2018-02-01

    Heavy flavor quarks, owing to their large masses, are predominantly produced through initial hard parton scatterings in heavy-ion collisions, and thus are excellent probes to study properties of the strongly coupled Quark Gluon Plasma (sQGP) medium produced in these collisions. Measurements of anisotropic flow harmonics of heavy flavor hadrons can provide information on the properties of the medium, including the heavy flavor transport coefficient. Charm quark hadronization mechanism in the sQGP medium can be studied through measurements of yields of different charm hadrons. In these proceedings we report on the measurements of elliptic and triangular flow harmonics of D0 mesons as well as the yield ratios of D±s/D0 and Λ±c/D0 in Au+Au collisions at = 200 GeV at RHIC with the STAR detector. These measurements use the STAR Heavy Flavor Tracker (HFT) to reconstruct charm hadrons via their hadronic decay channels. Results are compared to model calculations and the implications on the understanding of charm quark dynamics in the medium are discussed.

  16. Cross section measurement of t-channel single top quark production in pp collisions at s = 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    The cross section for the production of single top quarks in the t channel is measured in proton-proton collisions at 13 TeV with the CMS detector at the LHC. The analyzed data correspond to an integrated luminosity of 2.2 fb –1. The event selection requires one muon and two jets where one of the jets is identified as originating from a bottom quark. Several kinematic variables are then combined into a multivariate discriminator to distinguish signal from background events. A fit to the distribution of the discriminating variable yields a total cross section of 238 ± 13 (stat) ± 29more » (syst) pb and a ratio of top quark and top antiquark production of R t-ch. = 1.81 ± 0.18 (stat) ± 0.15 (syst). From the total cross section the absolute value of the CKM matrix element V tb is calculated to be 1.05 ± 0.07 (exp) ± 0.02 (theo). Finally, all results are in agreement with the standard model predictions.« less

  17. Is nucleon spin structure inconsistent with the constituent quark model?

    NASA Astrophysics Data System (ADS)

    Qing, Di; Chen, Xiang-Song; Wang, Fan

    1998-12-01

    Proton spin structure discovered in polarized deep inelastic scattering is shown to be consistent with the valence-sea quark mixing constituent quark model. The relativistic correction and quark-antiquark pair creation (annihilation) terms inherently involved in the quark axial vector current suppress the quark spin contribution to the proton spin. The relativistic quark orbital angular momentum provides compensative terms to keep the proton spin 12 untouched. The tensor charge of the proton is predicted to have a similar but smaller suppression. An explanation on why baryon magnetic moments can be parametrized by the naive quark model spin content as well as the spin structure discovered in polarized deep inelastic scattering is given.

  18. Angular Momentum Content of the ρ Meson in Lattice QCD

    NASA Astrophysics Data System (ADS)

    Glozman, Leonid Ya.; Lang, C. B.; Limmer, Markus

    2009-09-01

    The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the LJ2S+1 basis one may extract a partial wave content of a meson. We present results for the ground state of the ρ meson using quenched simulations as well as simulations with nf=2 dynamical quarks, all for lattice spacings close to 0.15 fm. We point out that these results indicate a simple S13-wave composition of the ρ meson in the infrared, like in the SU(6) flavor-spin quark model.

  19. Hadronic vacuum polarization contribution to aμ from full lattice QCD

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bipasha; Davies, C. T. H.; de Oliveira, P. G.; Koponen, J.; Lepage, G. P.; van de Water, R. S.; Hpqcd Collaboration

    2017-08-01

    We determine the contribution to the anomalous magnetic moment of the muon from the αQED2 hadronic vacuum polarization diagram using full lattice QCD and including u /d quarks with physical masses for the first time. We use gluon field configurations that include u , d , s and c quarks in the sea at multiple values of the lattice spacing, multiple u /d masses and multiple volumes that allow us to include an analysis of finite-volume effects. We obtain a result for aμHVP ,LO of 667 (6 )(12 )×10-10, where the first error is from the lattice calculation and the second includes systematic errors from missing QED and isospin-breaking effects and from quark-line disconnected diagrams. Our result implies a discrepancy between the experimental determination of aμ and the Standard Model of 3 σ .

  20. Charmonium resonances on the lattice

    NASA Astrophysics Data System (ADS)

    Bali, Gunnar; Collins, Sara; Mohler, Daniel; Padmanath, M.; Piemonte, Stefano; Prelovsek, Sasa; Weishäupl, Simon

    2018-03-01

    The nature of resonances and excited states near decay thresholds is encoded in scattering amplitudes, which can be extracted from single-particle and multiparticle correlators in finite volumes. Lattice calculations have only recently reached the precision required for a reliable study of such correlators. The distillation method represents a significant improvement insofar as it simplifies quark contractions and allows one to easily extend the operator basis used to construct interpolators. We present preliminary results on charmonium bound states and resonances on the Nf = 2+1 CLS ensembles. The long term goal of our investigation is to understand the properties of the X resonances that do not fit into conventional models of quark-antiquark mesons. We tune various parameters of the distillation method and the charm quark mass. As a first result, we present the masses of the ground and excited states in the 0++ and 1- channels

  1. Angular momentum content of the rho meson in lattice QCD.

    PubMed

    Glozman, Leonid Ya; Lang, C B; Limmer, Markus

    2009-09-18

    The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the ;{2S+1}L_{J} basis one may extract a partial wave content of a meson. We present results for the ground state of the rho meson using quenched simulations as well as simulations with n_{f} = 2 dynamical quarks, all for lattice spacings close to 0.15 fm. We point out that these results indicate a simple ;{3}S_{1}-wave composition of the rho meson in the infrared, like in the SU(6) flavor-spin quark model.

  2. Vector mesons in the Nambu-Jona-Lasinio model

    NASA Astrophysics Data System (ADS)

    Schüren, C.; Döring, F.; Ruiz Arriola, E.; Goeke, K.

    1993-12-01

    We investigate solitonic solutions with baryon number equal to one of the semi-bosonized SU(2) Nambu-Jona-Lasinio model including σ -, π -, ρ -, A 1- and ω-mesons both on the chiral circle ( σ2r) + π2( r) = f2π) and beyond it ( σ2( r) + π2( r) ≠ f2π). The action is treated in the mesonic and baryonic sector in the leading order of the large- Nc expansion (one-quark-loop approximation). The UV-divergent real part of the effective action is rendered finite using different gauge-invariant regularization methods (Pauli-Villars and proper time). The parameters of the model are fixed in two different ways: either approximately by a heat kernel expansion of the effective action up to second order or by an exact calculation of the mesonic on-shell masses. This leaves the constituent quark mass as the only free parameter of the model. In the solitonic sector we pay special attention to the way the Wick rotation from euclidean space back to Minkowski space has to be performed. We get solitonic solutions from hedgehoglike field configurations on the chiral circle for a wide range of couplings. We also find that if the chiral-circle constraint is relaxed vector mesons provide stable solitonic solutions. Moreover, whether the baryon number is carried by the valence quarks or by the Dirac sea depends strongly on the particular values of the constituent quark mass. We also study the low-energy limit of the model and its connection to chiral perturbation theory. To this end a covariant-derivative expansion is performed in the presence of external fields. After integrating out the scalar, vector and axial degrees of freedom this leads to the corresponding low-energy parameters as e.g. pion radii and some threshold parameters for pion-pion scattering. Vector mesons provide a natural explanation for an axial coupling constant at the quark level gAQ lower than one. However, we find for the gAN of the nucleon noticeable deviations from the non-relativistic quark model prediction g AN = {5}/{3}g AQ. For the values of the parameters where solitons are found, pionic radii come out to be too small. Finally, the relation of the present model to other chiral soliton models as well as some effective lagrangians is displayed.

  3. QCD phase transition with chiral quarks and physical quark masses.

    PubMed

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  4. The Quark - A Decade Later

    ERIC Educational Resources Information Center

    Dakin, James T.

    1974-01-01

    Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)

  5. Regge Trajectories of triply heavy baryons

    NASA Astrophysics Data System (ADS)

    Rai, Ajay Kumar; Shah, Zalak

    2017-12-01

    Ω ccc , Ω bbb , Ω bcc and Ω ccb baryons are considerable theoretical interest in a baryonic analogue of heavy quarkonium because of the color-singlet bound state of three heavy quark (c,b) combination inside. Regge trajectories are concerned with the mass spectrum of the particles so that the present study exhibits the regge trajectories obtained from excited states of four experimentally unknown triply heavy Ω baryons. The trajectories are plotted in (n, M 2) and (J, M 2) planes which are helpful to determine the unknown quantum number and JP values. The calculations have computed in Hypercentral Constituent Quark Model with hyper coulomb plus linear potential.

  6. Strong-Isospin-Breaking Correction to the Muon Anomalous Magnetic Moment from Lattice QCD at the Physical Point

    NASA Astrophysics Data System (ADS)

    Chakraborty, B.; Davies, C. T. H.; Detar, C.; El-Khadra, A. X.; Gámiz, E.; Gottlieb, Steven; Hatton, D.; Koponen, J.; Kronfeld, A. S.; Laiho, J.; Lepage, G. P.; Liu, Yuzhi; MacKenzie, P. B.; McNeile, C.; Neil, E. T.; Simone, J. N.; Sugar, R.; Toussaint, D.; van de Water, R. S.; Vaquero, A.; Fermilab Lattice, Hpqcd,; Milc Collaborations

    2018-04-01

    All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon's anomalous magnetic moment to date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to aμHVP for the first time with physical values of mu and md and dynamical u , d , s , and c quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of δ aμHVP ,mu≠md=+1.5 (7 )% , in agreement with estimates from phenomenology.

  7. Strong-Isospin-Breaking Correction to the Muon Anomalous Magnetic Moment from Lattice QCD at the Physical Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, B.; Davies, C. T. H.; DeTar, C.

    All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon’s anomalous magnetic moment to date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction tomore » $${a}_{{\\mu}}^{\\mathrm{HVP}}$$ for the first time with physical values of $${m}_{u}$$ and $${m}_{d}$$ and dynamical $u$, $d$, $s$, and $c$ quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of $${\\delta}{a}_{{\\mu}}^{\\mathrm{HVP},{m}_{u}{\

  8. Strong-Isospin-Breaking Correction to the Muon Anomalous Magnetic Moment from Lattice QCD at the Physical Point

    DOE PAGES

    Chakraborty, B.; Davies, C. T. H.; DeTar, C.; ...

    2018-04-12

    All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon’s anomalous magnetic moment to date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction tomore » $${a}_{{\\mu}}^{\\mathrm{HVP}}$$ for the first time with physical values of $${m}_{u}$$ and $${m}_{d}$$ and dynamical $u$, $d$, $s$, and $c$ quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of $${\\delta}{a}_{{\\mu}}^{\\mathrm{HVP},{m}_{u}{\

  9. Full mass dependence in Higgs boson production in association with jets at the LHC and FCC

    DOE PAGES

    Greiner, Nicolas; Höche, Stefan; Luisoni, Gionata; ...

    2017-01-23

    The first computation of Higgs production in association with three jets at NLO in QCD has recently been performed using the effective theory, where the top quark is treated as an infinitely heavy particle and integrated out. This approach is restricted to the regions in phase space where the typical scales are not larger than the top quark mass. Here we investigate this statement at a quantitative level by calculating the leading-order contributions to the production of a Standard Model Higgs boson in association with up to three jets taking full top-quark and bottom-quark mass dependence into account. We findmore » that the transverse momentum of the hardest particle or jet plays a key role in the breakdown of the effective theory predictions, and that discrepancies can easily reach an order of magnitude for transverse momenta of about 1 TeV. The impact of bottom-quark loops is found to be visible in the small transverse momentum region, leading to corrections of up to 5 percent. Lastly, we further study the impact of mass corrections when VBF selection cuts are applied and when the center-of-mass energy is increased to 100 TeV.« less

  10. Light-quark, heavy-quark systems: An update

    NASA Astrophysics Data System (ADS)

    Grinstein, B.

    1993-06-01

    We review many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorem, we describe striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of (vert bar)V(sub cb)(vert bar). We discuss factorization and compare with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. We compile many interesting results and discuss the validity of the calculations.

  11. Search for the Chiral Magnetic Effect in Heavy-Ion Collisions and Quantification of the Background with the AMPT Model

    NASA Astrophysics Data System (ADS)

    Bryon, Jacob

    2017-09-01

    The chiral magnetic effect (CME) arises from the chirality imbalance of quarks and its interaction to the strong magnetic field generated in non-central heavy-ion collisions. Possible formation of domains of quarks with chirality imbalances is an intrinsic property of the Quantum ChromoDynamics (QCD), which describes the fundamental strong interactions among quarks and gluons. Azimuthal-angle correlations have been used to measure the magnitude of charge- separation across the reaction plane, which was predicted to arise from the CME. However, backgrounds from collective motion (flow) of the collision system can also contribute to the correlation observable. In this poster, we investigate the magnitude of the background utilizing the AMPT model, which contains no CME signals. We demonstrate, for Au +Au collisions at 200 and 39 GeV, a scheme to remove the flow background via the event-shape engineering with the vanishing magnitude of the flow vector. We also calculate the ensemble average of the charge-separation observable, and provide a background baseline for the experimental data.

  12. Color screening and regeneration of bottomonia in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Du, X.; He, M.; Rapp, R.

    2017-11-01

    The production of ground-state and excited bottomonia in ultrarelativistic heavy-ion collisions is investigated within a kinetic-rate equation approach including regeneration. We augment our previous calculations by an improved treatment of medium effects, with temperature-dependent binding energies and pertinent reaction rates, B -meson resonance states in the equilibrium limit near the hadronization temperature, and a lattice-QCD based equation of state for the bulk medium. In addition to the centrality dependence of the bottomonium yields, we compute their transverse-momentum (pT) spectra and elliptic flow with momentum-dependent reaction rates and a regeneration component based on b -quark spectra from a nonperturbative transport model of heavy-quark diffusion. The latter has noticeable consequences for the shape of the bottomonium pT spectra. We quantify how uncertainties in the various modeling components affect the predictions for observables. Based on this we argue that the Υ (1 S ) suppression is a promising observable for mapping out the in-medium properties of the QCD force, while Υ (2 S ) production can help to quantify the role of regeneration from partially thermalized b quarks.

  13. Recent theoretical progress in top quark pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Mitov, Alexander

    2013-05-01

    This is a writeup of a plenary talk given at the conference HCP 2012 held November 2012 in Kyoto, Japan. This writeup reviews recent theoretical developments in the following areas of top quark physics at hadron colliders: (a) the forward-backward asymmetry anomaly at the Tevatron, (b) precision top mass determination, (c) state of the art NLO calculations and (d) progress in NNLO calculations.

  14. Associated production of a Higgs boson decaying into bottom quarks at the LHC in full NNLO QCD

    NASA Astrophysics Data System (ADS)

    Ferrera, Giancarlo; Somogyi, Gábor; Tramontano, Francesco

    2018-05-01

    We consider the production of a Standard Model Higgs boson decaying to bottom quarks in association with a vector boson W± / Z in hadron collisions. We present a fully exclusive calculation of QCD radiative corrections both for the production cross section and for the Higgs boson decay rate up to next-to-next-to-leading order (NNLO) accuracy. Our calculation also includes the leptonic decay of the vector boson with finite-width effects and spin correlations. We consider typical kinematical cuts applied in the experimental analyses at the Large Hadron Collider (LHC) and we find that the full NNLO QCD corrections significantly decrease the accepted cross section and have a substantial impact on the shape of distributions. We point out that these additional effects are essential to obtain precise theoretical predictions to be compared with the LHC data.

  15. Higgs and Bottom Quarks Associated Production at High Energy Colliders in the Littlest Higgs Model with T-Parity

    NASA Astrophysics Data System (ADS)

    Hou, Biao-Feng; Zhang, Hua-Ying; Bi, Heng-Heng

    2018-03-01

    In the littlest Higgs Model with T-parity, we discuss the Higgs production in association with bottom quarks at the LHC and future electron-positron collider. We calculate the cross sections of production channels pp\\to b\\bar{b}H, b\\bar{b}\\to H and bg → bH at 14 TeV LHC and the cross sections of production channel {e}+{e}-\\to b\\bar{b}H in (un)polarized beams at the lowest order. In order to investigate the observability, we display some typical final state distributions in the Higgs to diphoton channel. Supported by the National Natural Science Foundation of China (NNSFC) under Grant No. 11405047 and the Startup Foundation for Doctors of Henan Normal University under Grant No. qd15207

  16. Nucleon Structure Functions from a Chiral Soliton

    NASA Astrophysics Data System (ADS)

    Weigel, Herbert

    1998-10-01

    In an attempt to merge the parton model description of deep inelastic scattering with the phenomenologically successful picture of baryons as chiral solitons we study nucleon structure functions in the Nambu--Jona--Lasinio (NJL) chiral soliton model(R. Alkofer, H. Reinhardt and H. Weigel, Phys. Rep. 265) (1996) 139.. We compute the unpolarized structure function for electron--nucleon scattering which enters the Gottfried sum rule, S_G. The model calculation not only explains the observed deviation from the historical value S_G=1/3 but also reproduces the gross features of the exerimental data when accounting for projection and Q^2--evolution(H. Weigel, L. Gamberg and H. Reinhardt, Mod. Phys. Lett. A11) (1996) 3021; Phys. Lett. B399 (1997) 287.. The latter operation further serves to determine the low--momentum scale, Q_0^2, of the model. Subsequently we turn to the polarized structure functions g_1(x,Q^2) and g_2(x,Q^2)(H. Weigel, L. Gamberg and H. Reinhardt, Phys. Rev. D55) (1997) 6910.. These are particularly interesting in the present model because chiral soliton models nicely account for the smallness of the first moment of g_1(x,Q^2). In addition we report on the calculation(L. Gamberg, H. Reinhardt and H. Weigel, Phys. Rev. D58) (1998) 054014. of the chiral odd quark distributions and the corresponding structure functions h_T(x,Q^2) and h_L(x,Q^2). At the low model scale, Q_0^2, we find that the leading twist effective quark distributions, f_1^(q)(x,Q_0^2), g_1^(q)(x,Q_0^2) and h_T^(q)(x,Q_0^2) satisfy Soffer's inequality for both quark flavors q=u,d. The Q^2 evolution of the twist--2 contributions is performed according to the standard GLAP formalism while the twist--three pieces, \\overlineg_2(x) and \\overlineh_L(x), are evolved according to the large NC scheme. Finally we explain the generalization of chiral soliton models to three flavors and discuss the strange quark contribution to g1 as an example(box[t]15cm)O. Schröder, H. Reinhardt and H. Weigel, ``Strangeness Contribution to the Polarized Nucleon Structure Function g_1'', hep--ph/9805251, Phys. Lett. B to appear..

  17. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    DOE PAGES

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; ...

    2016-11-21

    Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less

  18. Nonperturbative evaluation of the physical classical velocity in the lattice heavy quark effective theory

    NASA Astrophysics Data System (ADS)

    Mandula, Jeffrey E.; Ogilvie, Michael C.

    1998-02-01

    In the lattice formulation of heavy quark effective theory, the value of the ``classical velocity'' v, as defined through the separation of the four-momentum of a heavy quark into a part proportional to the heavy quark mass and a residual part that remains finite in the heavy quark limit (P=Mv+p), is different from its value as it appears in the bare heavy quark propagator [S-1(p)=v.p]. The origin of the difference, which is effectively a lattice-induced renormalization, is the reduction of Lorentz [or O(4)] invariance to (hyper)cubic invariance. The renormalization is finite and depends specifically on the form of the discretization of the reduced heavy quark Dirac equation. For the forward time, centered space discretization, we compute this renormalization nonperturbatively, using an ensemble of lattices at β=6.1 provided by the Fermilab ACP-MAPS Collaboration. The calculation makes crucial use of a variationally optimized smeared operator for creating composite heavy-light mesons. It has the property that its propagator achieves an asymptotic plateau in just a few Euclidean time steps. For comparison, we also compute the shift perturbatively, to one loop in lattice perturbation theory. The nonperturbative calculation of the leading multiplicative shift in the classical velocity is considerably different from the one-loop estimate and indicates that for the above parameters v--> is reduced by about 10-13 %.

  19. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin

    Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less

  20. A consumer`s guide to lattice QCD results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGrand, T.

    1994-12-01

    The author presents an overview of recent lattice QCD results on hadron spectroscopy and matrix elements. Case studies include light quark spectroscopy, the determination of {alpha}{sub s} from heavy quark spectroscopy, the D-meson decay constant, a calculation of the Isgur-Wise function, and some examples of the (lack of) effect of sea quarks on matrix elements. The review is intended for the nonexpert.

  1. Charges on Strange Quark Nuggets in Space

    NASA Technical Reports Server (NTRS)

    Teplitz, V.; Bhatia, A.; Abers, E.; Dicus, D.; Repko, W.; Rosenbaum, D.

    2008-01-01

    This viewgraph presentation reviews the work done in calculations to find ZN such that the rate of ambient photons ionize the strange quark nuggets (SQNs) Electrons are equal to the rate of ambient e's to replace them.

  2. Transverse momentum dependence of spectra of cumulative particles produced from droplets of dense nuclear matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vechernin, Vladimir

    2016-01-22

    The transverse momentum dependence of the yields of particles produced from the clusters of dense cold nuclear matter in nuclei is calculated in the approach based on perturbative QCD calculations of the corresponding quark diagrams near the thresholds. It is shown that the transverse momentum dependence of the pion and proton spectra at different values of the Feynman variable x in the cumulative region, x > 1, can be described by the only parameter - the constituent quark mass, taken to be equal 300 MeV. It is found that the cumulative protons are formed predominantly via a coherent coalescence of threemore » fast cluster quarks, whereas the production of cumulative pions is dominated by one fast cluster quark hadronization. This enabled to explain the experimentally observed more slow increase of the mean transverse momentum of cumulative protons with the increase of the cumulative variable x, compared to pions.« less

  3. Diphoton production in association with two bottom jets

    NASA Astrophysics Data System (ADS)

    Fäh, Daniel; Greiner, Nicolas

    2017-11-01

    We study the production of a photon pair in association with two bottom jets at the LHC. This process constitutes an important background to double Higgs production with the subsequent decay of the two Higgs bosons into a pair of photons and b-quarks respectively. We calculate this process at next-to-leading order accuracy in QCD and find that QCD corrections lead to a substantial increase of the production cross section due to new channels opening up at next-to-leading order and their inclusion is therefore inevitable for a reliable prediction. Furthermore, the approximation of massless b-quarks is scrutinized by calculating the process with both massless and massive b-quarks. We find that the massive bottom quark leads to a substantial reduction of the cross section where the biggest effect is, however, due to the use of a four-flavor PDF set and the corresponding smaller values for the strong coupling constant.

  4. Calculation of the {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} Scattering Lengths in Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torok, Aaron

    The {pi}{sup +}{Sigma}{sup +} and {pi}{sup +}{Xi}{sup 0} scattering lengths were calculated in mixed-action Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy Baryon Chiral Perturbation Theory with two and three flavors of light quarks was used to perform the chiral extrapolations. To NNLO in the three-flavor chiral expansion, the kaon-baryon processes that were investigated show no signs of convergence. Using the two-flavor chiral expansion for extrapolation, the pion-hyperon scattering lengths are found to be a{sub {pi}}{sup +}{sub {Sigma}}{sup +} = -0.197{+-}0.017more » fm, and a{sub {pi}}{sup +}{sub {Xi}}{sup 0} = -0.098{+-}0.017 fm, where the comprehensive error includes statistical and systematic uncertainties.« less

  5. A quark model analysis of the transversity distribution

    NASA Astrophysics Data System (ADS)

    Scopetta, Sergio; Vento, Vicente

    1998-04-01

    The feasibility of measuring chiral-odd parton distribution functions in polarized Drell-Yan and semi-inclusive experiments has renewed theoretical interest in their study. Models of hadron structure have proven successful in describing the gross features of the chiral-even structure functions. Similar expectations motivated our study of the transversity parton distributions in the Isgur-Karl and MIT bag models. We confirm, by performing a NLO calculation, the diverse low x behaviors of the transversity and spin structure functions at the experimental scale and show that it is fundamentally a consequence of the different behaviors under evolution of these functions. The inequalities of Soffer establish constraints between data and model calculations of the chiral-odd transversity function. The approximate compatibility of our model calculations with these constraints confers credibility to our estimates.

  6. Search for gluinos and scalar quarks in pp collisions at square root[s] = 1.8 TeV using the missing energy plus multijets signature.

    PubMed

    Affolder, T; Akimoto, H; Akopian, A; Albrow, M G; Amaral, P; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Bailey, S; de Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bell, W H; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berge, J P; Berryhill, J; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bokhari, W; Bolla, G; Bonushkin, Y; Bortoletto, D; Boudreau, J; Brandl, A; van den Brink, S; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N; Buckley-Geer, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M-T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, Y S; Ciobanu, C I; Clark, A G; Connolly, A; Conway, J; Cordelli, M; Cranshaw, J; Cropp, R; Culbertson, R; Dagenhart, D; D'Auria, S; DeJongh, F; Dell'Agnello, S; Dell'Orso, M; Demortier, L; Deninno, M; Derwent, P F; Devlin, T; Dittmann, J R; Dominguez, A; Donati, S; Done, J; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K; Elias, J E; Engels, E; Erbacher, R; Errede, D; Errede, S; Fan, Q; Feild, R G; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Frisch, H J; Fukui, Y; Furic, I; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; Garcia-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Giannetti, P; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldstein, J; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Green, C; Grim, G; Gris, P; Groer, L; Grosso-Pilcher, C; Guenther, M; Guillian, G; Guimaraes da Costa, J; Haas, R M; Haber, C; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hill, C; Hoffman, K D; Holck, C; Hollebeek, R; Holloway, L; Hughes, R; Huston, J; Huth, J; Ikeda, H; Incandela, J; Introzzi, G; Iwai, J; Iwata, Y; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A; Korytov, A; Kovacs, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T; Lee, A M; Lee, K; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, M; Mariotti, M; Martignon, G; Martin, A; Matthews, J A J; Mayer, J; Mazzanti, P; McFarland, K S; McIntyre, P; McKigney, E; Menguzzato, M; Menzione, A; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Muller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Nelson, C; Nelson, T; Neu, C; Neuberger, D; Newman-Holmes, C; Ngan, C-Y P; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Popovic, M; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rakitine, A; Ratnikov, F; Reher, D; Reichold, A; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Roy, A; Ruiz, A; Safonov, A; St Denis, R; Sakumoto, W K; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sato, H; Savard, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Segler, S; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M; Sidoti, A; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, P; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P; Tanaka, M; Tannenbaum, B; Tecchio, M; Tesarek, R; Teng, P K; Terashi, K; Tether, S; Thompson, A S; Thurman-Keup, R; Tipton, P; Tkaczyk, S; Toback, D; Tollefson, K; Tollestrup, A; Tonelli, D; Toyoda, H; Trischuk, W; de Troconiz, J F; Tseng, J; Turini, N; Ukegawa, F; Vaiciulis, T; Valls, J; Vejcik, S; Velev, G; Veramendi, G; Vidal, R; Vila, I; Vilar, R; Volobouev, I; von der Mey, M; Vucinic, D; Wagner, R G; Wagner, R L; Wallace, N B; Wan, Z; Wang, C; Wang, M J; Ward, B; Waschke, S; Watanabe, T; Waters, D; Watts, T; Webb, R; Wenzel, H; Wester, W C; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Wolinski, S; Worm, S; Wu, X; Wyss, J; Yao, W; Yagil, A; Yeh, G P; Yoh, J; Yosef, C; Yoshida, T; Yu, I; Yu, S; Yu, Z; Zanetti, A; Zetti, F; Zucchelli, S

    2002-01-28

    We have performed a search for gluinos (g) and scalar quarks (q) in a data sample of 84 pb(-1) of pp collisions at square root[s] = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and three or more jets, a characteristic signature in R-parity-conserving supersymmetric models. The analysis has been performed "blind," in that the inspection of the signal region is made only after the predictions from standard model backgrounds have been calculated. Comparing the data with predictions of constrained supersymmetric models, we exclude gluino masses below 195 GeV/c2 (95% C.L.), independent of the squark mass. For the case m(q) approximately m(g), gluino masses below 300 GeV/c2 are excluded.

  7. Quark masses and strong coupling constant in 2+1 flavor QCD

    DOE PAGES

    Maezawa, Y.; Petreczky, P.

    2016-08-30

    We present a determination of the strange, charm and bottom quark masses as well as the strong coupling constant in 2+1 flavor lattice QCD simulations using highly improved staggered quark action. The ratios of the charm quark mass to the strange quark mass and the bottom quark mass to the charm quark mass are obtained from the meson masses calculated on the lattice and found to be mc/ms = 11.877(91) and mb/mc = 4.528(57) in the continuum limit. We also determine the strong coupling constant and the charm quark mass using the moments of pseudoscalar charmonium correlators: α s(μ =more » m c) = 0.3697(85) and mc(μ = mc) = 1.267(12) GeV. Our result for αs corresponds to the determination of the strong coupling constant at the lowest energy scale so far and is translated to the value α s(μ = M Z, n f = 5) = 0.11622(84).« less

  8. Decay constants and radiative decays of heavy mesons in light-front quark model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Ho-Meoyng

    2007-04-01

    We investigate the magnetic dipole decays V{yields}P{gamma} of various heavy-flavored mesons such as (D,D*,D{sub s},D{sub s}*,{eta}{sub c},J/{psi}) and (B,B*,B{sub s},B{sub s}*,{eta}{sub b},{upsilon}) using the light-front quark model constrained by the variational principle for the QCD-motivated effective Hamiltonian. The momentum dependent form factors F{sub VP}(q{sup 2}) for V{yields}P{gamma}* decays are obtained in the q{sup +}=0 frame and then analytically continued to the timelike region by changing q{sub perpendicular} to iq{sub perpendicular} in the form factors. The coupling constant g{sub VP{gamma}} for real photon case is then obtained in the limit as q{sup 2}{yields}0, i.e. g{sub VP{gamma}}=F{sub VP}(q{sup 2}=0). The weak decaymore » constants of heavy pseudoscalar and vector mesons are also calculated. Our numerical results for the decay constants and radiative decay widths for the heavy-flavored mesons are overall in good agreement with the available experimental data as well as other theoretical model calculations.« less

  9. Composite Pseudoclassical Models of Quarks

    NASA Astrophysics Data System (ADS)

    Musin, Yu. R.

    2018-05-01

    Composite models of quarks are proposed, analogous to composite models of leptons. A model-based explanation of the appearance of generations of fundamental particles in the Standard Model is given. New empirical formulas are proposed for the quark masses, modifying Barut's well-known formula.

  10. Strong-Isospin-Breaking Correction to the Muon Anomalous Magnetic Moment from Lattice QCD at the Physical Point.

    PubMed

    Chakraborty, B; Davies, C T H; DeTar, C; El-Khadra, A X; Gámiz, E; Gottlieb, Steven; Hatton, D; Koponen, J; Kronfeld, A S; Laiho, J; Lepage, G P; Liu, Yuzhi; Mackenzie, P B; McNeile, C; Neil, E T; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Vaquero, A

    2018-04-13

    All lattice-QCD calculations of the hadronic-vacuum-polarization contribution to the muon's anomalous magnetic moment to date have been performed with degenerate up- and down-quark masses. Here we calculate directly the strong-isospin-breaking correction to a_{μ}^{HVP} for the first time with physical values of m_{u} and m_{d} and dynamical u, d, s, and c quarks, thereby removing this important source of systematic uncertainty. We obtain a relative shift to be applied to lattice-QCD results obtained with degenerate light-quark masses of δa_{μ}^{HVP,m_{u}≠m_{d}}=+1.5(7)%, in agreement with estimates from phenomenology.

  11. RI/MOM and RI/SMOM renormalization of overlap quark bilinears on domain wall fermion configurations

    NASA Astrophysics Data System (ADS)

    Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Keh-Fei; Liu, Zhaofeng; Yang, Yi-Bo; χ QCD Collaboration

    2018-05-01

    Renormalization constants (RCs) of overlap quark bilinear operators on 2 +1 -flavor domain wall fermion configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for the axial vector current is computed by using a Ward identity. Then the RCs for the quark field and the vector, tensor, scalar, and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The RCs are converted to the MS ¯ scheme and we compare the numerical results from using the two intermediate schemes. The lattice size is 4 83×96 and the inverse spacing 1 /a =1.730 (4 ) GeV .

  12. From quarks and gluons to baryon form factors.

    PubMed

    Eichmann, Gernot

    2012-04-01

    I briefly summarize recent results for nucleon and [Formula: see text] electromagnetic, axial and transition form factors in the Dyson-Schwinger approach. The calculation of the current diagrams from the quark-gluon level enables a transparent discussion of common features such as: the implications of dynamical chiral symmetry breaking and quark orbital angular momentum, the timelike structure of the form factors, and their interpretation in terms of missing pion-cloud effects.

  13. Probing superfast quarks in nuclei through dijet production at the LHC

    DOE PAGES

    Freese, Adam J.; Sargsian, Misak M.; Strikman, Mark I.

    2015-11-12

    We investigate dijet production from proton-nucleus collisions at the Large Hadron Collider (LHC) as a means for observing superfast quarks in nuclei with Bjorken x>1 . Kinematically, superfast quarks can be identified through directly measurable jet kinematics. Dynamically, their description requires understanding several elusive properties of nuclear QCD, such as nuclear forces at very short distances, as well as medium modification of parton distributions in nuclei. In the present work, we develop a model for nuclear parton distributions at large x in which the nuclear dynamics at short distance scales are described by two- and three-nucleon short range correlations (SRCs).more » Nuclear modifications are accounted for using the color screening model, and an improved description of the EMC effect is reached by using a structure function parametrization that includes higher-twist contributions. We apply QCD evolution at the leading order to obtain nuclear parton distributions in the kinematic regime of the LHC, and based on the obtained distributions calculate the cross section for dijet production. We find that the rates of the dijet production in pA collisions at kinematics accessible by ATLAS and CMS are sufficient not only to observe superfast quarks but also to get information about the practically unexplored three-nucleon SRCs in nuclei. Additionally, the LHC can extend our knowledge of the EMC effect to large Q 2 where higher-twist effects are negligible.« less

  14. Probing superfast quarks in nuclei through dijet production at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freese, Adam J.; Sargsian, Misak M.; Strikman, Mark I.

    2015-11-01

    We investigate dijet production from proton-nucleus collisions at the Large Hadron Collider (LHC) as a means for observing superfast quarks in nuclei with Bjorken x>1 . Kinematically, superfast quarks can be identified through directly measurable jet kinematics. Dynamically, their description requires understanding several elusive properties of nuclear QCD, such as nuclear forces at very short distances, as well as medium modification of parton distributions in nuclei. In the present work, we develop a model for nuclear parton distributions at large x in which the nuclear dynamics at short distance scales are described by two- and three-nucleon short range correlations (SRCs).more » Nuclear modifications are accounted for using the color screening model, and an improved description of the EMC effect is reached by using a structure function parametrization that includes higher-twist contributions. We apply QCD evolution at the leading order to obtain nuclear parton distributions in the kinematic regime of the LHC, and based on the obtained distributions calculate the cross section for dijet production. We find that the rates of the dijet production in pA collisions at kinematics accessible by ATLAS and CMS are sufficient not only to observe superfast quarks but also to get information about the practically unexplored three-nucleon SRCs in nuclei. Additionally, the LHC can extend our knowledge of the EMC effect to large Q2 where higher-twist effects are negligible.« less

  15. From hadrons to quarks in neutron stars: a review

    NASA Astrophysics Data System (ADS)

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D.; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu–Jona–Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well understood nuclear matter regime at low densities and the quark matter regime at higher densities. The utility of such interpolations is driven by the present inability to calculate the dense matter equation of state in QCD from first principles. As we review, the parameters of effective quark models—which have direct relevance to the more general structure of the QCD phase diagram of dense and hot matter—are constrained by neutron star mass and radii measurements, in particular favoring large repulsive density-density and attractive diquark pairing interactions. We describe the structure of neutron stars constructed from the unified equations of states with crossover. Lastly we present the current equations of state—called ‘QHC18’ for quark-hadron crossover—in a parametrized form practical for neutron star modeling.

  16. New signals for vector-like down-type quark in U(1) of E_6

    NASA Astrophysics Data System (ADS)

    Das, Kasinath; Li, Tianjun; Nandi, S.; Rai, Santosh Kumar

    2018-01-01

    We consider the pair production of vector-like down-type quarks in an E_6 motivated model, where each of the produced down-type vector-like quark decays into an ordinary Standard Model light quark and a singlet scalar. Both the vector-like quark and the singlet scalar appear naturally in the E_6 model with masses at the TeV scale with a favorable choice of symmetry breaking pattern. We focus on the non-standard decay of the vector-like quark and the new scalar which decays to two photons or two gluons. We analyze the signal for the vector-like quark production in the 2γ +≥ 2j channel and show how the scalar and vector-like quark masses can be determined at the Large Hadron Collider.

  17. The Top Quark as a Window to Beyond the Standard Model Physics

    NASA Astrophysics Data System (ADS)

    Yu, Chiu-Tien

    The top quark was the last of the Standard Model quarks to be discovered, and is of considerable interest. The closeness of the top quark mass to the electroweak scale is suggestive that the top quark could be closely related to the mechanisms for electroweak symmetry breaking. Any new physics in electroweak symmetry breaking models could then preferentially couple to the top quark, making the top quark a promising probe for new physics. In this thesis, we will explore two aspects of the top quark as a harbinger to new physics: the top forward-backward asymmetry as seen at the Tevatron and the search for stops. In this thesis, we will discuss the Asymmetric Left-Right Model (ALRM), a model that is based on the gauge group U'(1) x SU(2) x SU'(2) with couplings g' 1,g'2; and g' associated with the fields B',W,W', respectively, and show how this model can explain the top forwardbackward asymmetry. We will then explore the scalar sector of the ALRM, and provide a specific Higgs mechanism that provides the masses for the W' and Z' bosons. The top forward-backward asymmetry is a test of invariance of chargeconjugation. Thus, we look at the X-gluon model, a model that was motivated by the top forward-backward asymmetry, and show that one can look at the longitudinal polarization of the top-quark to test parity conservation. Finally, we investigate searches for stop squarks, the supersymmetric partner of the top quark, at the Large Hadron Collider (LHC) using shape-based analyses.

  18. HTL resummation in the light cone gauge

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Hou, De-fu

    2018-04-01

    The light cone gauge with light cone variables is often used in pQCD calculations in relativistic heavy-ion collision physics. The Hard Thermal Loops (HTL) resummation is an indispensable technique for hot QCD calculation. It was developed in covariant gauges with conventional Minkowski varaiables; we shall extend this method to the light cone gauge. In the real time formalism, using the Mandelstam-Leibbrant prescription of (n·K)‑1, we calculate the transverse and longitudinal components of the gluon HTL self energy, and prove that there are no infrared divergences. With this HTL self energy, we derive the HTL resummed gluon propagator in the light cone gauge. We also calculate the quark HTL self energy and the resummed quark propagator in the light cone gauge and find it is gauge independent. As application examples, we analytically calculate the damping rates of hard quarks and gluons with the HTL resummed gluon propagator in the light cone gauge and showed that they are gauge independent. The final physical results are identical to those computed in covariant gauge, as they should be. Supported by National Natural Science Foundation of China (11375070, 11735007, 11521064)

  19. Ab initio calculation of the $$np \\to d ³$$ radiative capture process

    DOE PAGES

    Beane, Silas R.; Chang, Emmanuel; Detmold, William; ...

    2015-09-24

    In this study, lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture processmore » $$np \\to d\\gamma$$, and the photo-disintegration processes $$\\gamma^{(\\ast)} d \\to np$$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of $$m_\\pi \\sim 450$$ and 806 MeV, and are combined with pionless nuclear effective field theory to determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross section of $$\\sigma^{lqcd}(np\\to d\\gamma)=332.4({\\tiny \\begin{array}{l}+5.4 \\\\ - 4.7\\end{array}})\\ mb$$ is obtained at an incident neutron speed of $$v=2,200\\ m/s$$, consistent with the experimental value of $$\\sigma^{expt}(np \\to d\\gamma) = 334.2(0.5)\\ mb$$.« less

  20. Search for massive resonances decaying into WW, WZ or ZZ bosons in proton-proton collisions at $$ \\sqrt{s}=13 $$ TeV

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-03-30

    We present a search for new massive resonances decaying to WW, WZ or ZZ bosons in l nu quark anti-quark and quark anti-quark quark anti-quark final states. Our results are based on data corresponding to an integrated luminosity of 2.3-2.7 inverse femtobarns recorded in proton-proton collisions atmore » $$\\sqrt{s} = $$ 13 TeV with the CMS detector at the LHC. Decays of spin-1 and spin-2 resonances into two vector bosons are sought in the mass range 0.6-4.0 TeV. No significant excess over the standard model background is observed. Combining the results of the l nu quark anti-quark and quark anti-quark quark anti-quark final states, cross section and mass exclusion limits are set for models that predict heavy spin-1 and spin-2 resonances. Furthermore, this is the first search for a narrow-width spin-2 resonance at $$\\sqrt{s} = $$ 13 TeV.« less

  1. The Quark's Model and Confinement

    ERIC Educational Resources Information Center

    Novozhilov, Yuri V.

    1977-01-01

    Quarks are elementary particles considered to be components of the proton, the neutron, and others. This article presents the quark model as a mathematical concept. Also discussed are gluons and bag models. A bibliography is included. (MA)

  2. Hard QCD rescattering in few nucleon systems

    NASA Astrophysics Data System (ADS)

    Maheswari, Dhiraj; Sargsian, Misak

    2017-01-01

    The theoretical framework of hard QCD rescattering mechanism (HRM) is extended to calculate the high energy γ3 He -> pd reaction at 900 center of mass angle. In HRM model , the incoming high energy photon strikes a quark from one of the nucleons in the target which subsequently undergoes hard rescattering with the quarks from the other nucleons generating hard two-body baryonic system in the final state of the reaction. Based on the HRM, a parameter free expression for the differential cross section for the reaction is derived, expressed through the 3 He -> pd transition spectral function, hard pd -> pd elastic scattering cross section and the effective charge of the quarks being interchanged in the hard rescattering process. The numerical estimates obtained from this expression for the differential cross section are in a good agreement with the data recently obtained at the Jefferson Lab experiment, showing the energy scaling of cross section with an exponent of s-17, also consistent with the quark counting rule. The angular and energy dependences of the cross section are also predicted within HRM which are in good agreement with the preliminary data of these distributions. Research is supported by the US Department of Energy.

  3. Photon emission from quark-gluon plasma out of equilibrium

    NASA Astrophysics Data System (ADS)

    Hauksson, Sigtryggur; Jeon, Sangyong; Gale, Charles

    2018-01-01

    The photon emission from a nonequilibrium quark-gluon plasma is analyzed. We derive an integral equation that describes photon production through quark-antiquark annihilation and quark bremsstrahlung. It includes coherence between different scattering sites, also known as the Landau-Pomeranchuk-Migdal effect. These leading-order processes are studied for the first time together in an out-of-equilibrium field theoretical treatment that enables the inclusion of viscous corrections to the calculation of electromagnetic emission rates. In the special case of an isotropic, viscous, plasma the integral equation only depends on three constants, which capture the nonequilibrium nature of the medium.

  4. Quarkonium-nucleus bound states from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beane, S.  R.; Chang, E.; Cohen, S.  D.

    2015-06-11

    Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.

  5. Polarized structure functions in a constituent quark scenario

    NASA Astrophysics Data System (ADS)

    Scopetta, Sergio; Vento, Vicente; Traini, Marco

    1998-12-01

    Using a simple picture of the constituent quark as a composite system of point-like partons, we construct the polarized parton distributions by a convolution between constituent quark momentum distributions and constituent quark structure functions. Using unpolarized data to fix the parameters we achieve good agreement with the polarization experiments for the proton, while not so for the neutron. By relaxing our assumptions for the sea distributions, we define new quark functions for the polarized case, which reproduce well the proton data and are in better agreement with the neutron data. When our results are compared with similar calculations using non-composite constituent quarks the accord with the experiments of the present scheme is impressive. We conclude that, also in the polarized case, DIS data are consistent with a low energy scenario dominated by composite constituents of the nucleon.

  6. calculation of B → D*lv form factor at zero recoil using the Oktay-Kronfeld action

    NASA Astrophysics Data System (ADS)

    Bailey, Jon A.; Bhattacharya, Tanmoy; Gupta, Rajan; Jang, Yong-Chull; Lee, Weonjong; Leem, Jaehoon; Park, Sungwoo; Yoon, Boram

    2018-03-01

    We present the first preliminary results for the semileptonic form factor hA1 (w = 1)/ρAj at zero recoil for the B → D*lv decay using lattice QCD with four flavors of sea quarks. We use the HISQ staggered action for the light valence and sea quarks (the MILC HISQ configurations), and the Oktay-Kronfeld (OK) action for the heavy valence quarks.

  7. Relations between heavy-light meson and quark masses

    NASA Astrophysics Data System (ADS)

    Brambilla, N.; Komijani, J.; Kronfeld, A. S.; Vairo, A.; Tumqcd Collaboration

    2018-02-01

    The study of heavy-light meson masses should provide a way to determine renormalized quark masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it is possible to calculate hadronic quantities for arbitrary values of the quark masses. In this paper, we address two aspects relating heavy-light meson masses to the quark masses. First, we introduce a definition of the renormalized quark mass that is free of both scale dependence and renormalon ambiguities, and discuss its relation to more familiar definitions of the quark mass. We then show how this definition enters a merger of the descriptions of heavy-light masses in heavy-quark effective theory and in chiral perturbation theory (χ PT ). For practical implementations of this merger, we extend the one-loop χ PT corrections to lattice gauge theory with heavy-light mesons composed of staggered fermions for both quarks. Putting everything together, we obtain a practical formula to describe all-staggered heavy-light meson masses in terms of quark masses as well as some lattice artifacts related to staggered fermions. In a companion paper, we use this function to analyze lattice-QCD data and extract quark masses and some matrix elements defined in heavy-quark effective theory.

  8. Relations between heavy-light meson and quark masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brambilla, N.; Komijani, J.; Kronfeld, A. S.

    Here, the study of heavy-light meson masses should provide a way to determine renormalized quark masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it is possible to calculate hadronic quantities for arbitrary values of the quark masses. In this paper, we address two aspects relating heavy-light meson masses to the quark masses. First, we introduce a definition of the renormalized quark mass that is free of both scale dependence and renormalon ambiguities, and discuss its relation to more familiar definitions of the quark mass. We then show how this definition enters a mergermore » of the descriptions of heavy-light masses in heavy-quark effective theory and in chiral perturbation theory (χPT). For practical implementations of this merger, we extend the one-loop χPT corrections to lattice gauge theory with heavy-light mesons composed of staggered fermions for both quarks. Putting everything together, we obtain a practical formula to describe all-staggered heavy-light meson masses in terms of quark masses as well as some lattice artifacts related to staggered fermions. In a companion paper, we use this function to analyze lattice-QCD data and extract quark masses and some matrix elements defined in heavy-quark effective theory.« less

  9. Relations between heavy-light meson and quark masses

    DOE PAGES

    Brambilla, N.; Komijani, J.; Kronfeld, A. S.; ...

    2018-02-07

    Here, the study of heavy-light meson masses should provide a way to determine renormalized quark masses and other properties of heavy-light mesons. In the context of lattice QCD, for example, it is possible to calculate hadronic quantities for arbitrary values of the quark masses. In this paper, we address two aspects relating heavy-light meson masses to the quark masses. First, we introduce a definition of the renormalized quark mass that is free of both scale dependence and renormalon ambiguities, and discuss its relation to more familiar definitions of the quark mass. We then show how this definition enters a mergermore » of the descriptions of heavy-light masses in heavy-quark effective theory and in chiral perturbation theory (χPT). For practical implementations of this merger, we extend the one-loop χPT corrections to lattice gauge theory with heavy-light mesons composed of staggered fermions for both quarks. Putting everything together, we obtain a practical formula to describe all-staggered heavy-light meson masses in terms of quark masses as well as some lattice artifacts related to staggered fermions. In a companion paper, we use this function to analyze lattice-QCD data and extract quark masses and some matrix elements defined in heavy-quark effective theory.« less

  10. K to π π decay amplitudes from lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, T.; Boyle, P. A.; Christ, N. H.

    2011-12-01

    We report a direct lattice calculation of the K to ππ decay matrix elements for both the ΔI=1/2 and 3/2 amplitudes A 0 and A 2 on 2+1 flavor, domain wall fermion, 16 3×32×16 lattices. This is a complete calculation in which all contractions for the required ten, four-quark operators are evaluated, including the disconnected graphs in which no quark line connects the initial kaon and final two-pion states. These lattice operators are nonperturbatively renormalized using the Rome-Southampton method and the quadratic divergences are studied and removed. This is an important but notoriously difficult calculation, requiring high statistics on amore » large volume. In this paper, we take a major step toward the computation of the physical K→ππ amplitudes by performing a complete calculation at unphysical kinematics with pions of mass 422 MeV at rest in the kaon rest frame. With this simplification, we are able to resolve Re(A 0) from zero for the first time, with a 25% statistical error and can develop and evaluate methods for computing the complete, complex amplitude A 0, a calculation central to understanding the Δ=1/2 rule and testing the standard model of CP violation in the kaon system.« less

  11. B*Bπ coupling using relativistic heavy quarks

    DOE PAGES

    Flynn, J. M.; Fritzsch, P.; Kawanai, T.; ...

    2016-01-27

    We report on a calculation of the B*Bπ coupling in lattice QCD. The strong matrix element (Bπ|B*) is directly related to the leading order low-energy constant in heavy meson chiral perturbation theory (HM ΧPT) for B mesons. We carry out our calculation directly at the b-quark mass using a non-perturbatively tuned clover action that controls discretization effects of order |p →a| and (ma) n for all n. Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki gauge action at two lattice spacings of a –1 = 1.729(25) GeV, a –1 = 2.281 (28) GeV, andmore » unitary pion masses down to 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the HM ΧPT coupling g b = 0.56(3) stat(7) sys in the continuum and at the physical light-quark masses. Furthermore, this is the first calculation performed directly at the physical b-quark mass and lies in the region one would expect from carrying out an interpolation between previous results at the charm mass and at the static point.« less

  12. Top-quark decay at next-to-next-to-leading order in QCD.

    PubMed

    Gao, Jun; Li, Chong Sheng; Zhu, Hua Xing

    2013-01-25

    We present the complete calculation of the top-quark decay width at next-to-next-to-leading order in QCD, including next-to-leading electroweak corrections as well as finite bottom quark mass and W boson width effects. In particular, we also show the first results of the fully differential decay rates for the top-quark semileptonic decay t → W(+)(l(+)ν)b at next-to-next-to-leading order in QCD. Our method is based on the understanding of the invariant mass distribution of the final-state jet in the singular limit from effective field theory. Our result can be used to study arbitrary infrared-safe observables of top-quark decay with the highest perturbative accuracy.

  13. Hyperon polarization in heavy-ion collisions and holographic gravitational anomaly

    NASA Astrophysics Data System (ADS)

    Baznat, Mircea; Gudima, Konstantin; Sorin, Alexander; Teryaev, Oleg

    2018-04-01

    We study the energy dependence of global polarization of Λ hyperons in peripheral Au-Au collisions. We combine the calculation of vorticity and strange chemical potential in the framework of the kinetic quark-gluon-string model with the anomalous mechanism related to the axial vortical effect. We pay special attention to the temperature-dependent contribution related to the holographic gravitational anomaly and find that the preliminary data from the BNL Relativistic Heavy Ion Collider are compatible with its suppression discovered earlier in lattice calculations.

  14. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    NASA Astrophysics Data System (ADS)

    Dorokhov, Alexander E.

    2004-11-01

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, ahvp(1)μ, is estimated.

  15. Vector and Axial-Vector Correlators in AN Instanton-Like Quark Model

    NASA Astrophysics Data System (ADS)

    Dorokhov, Alexander E.

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instanton-like quark-quark interaction. This function describes the transition between the high energy asymptotically free region of almost massless current quarks to the low energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, aμ hvp(1), is estimated.

  16. Study of the in-medium nucleon electromagnetic form factors using a light-front nucleon wave function combined with the quark-meson coupling model

    NASA Astrophysics Data System (ADS)

    de Araújo, W. R. B.; de Melo, J. P. B. C.; Tsushima, K.

    2018-02-01

    We study the nucleon electromagnetic (EM) form factors in symmetric nuclear matter as well as in vacuum within a light-front approach using the in-medium inputs calculated by the quark-meson coupling model. The same in-medium quark properties are used as those used for the study of in-medium pion properties. The zero of the proton EM form factor ratio in vacuum, the electric to magnetic form factor ratio μpGEp (Q2) /GMp (Q2) (Q2 = -q2 > 0 with q being the four-momentum transfer), is determined including the latest experimental data by implementing a hard constituent quark component in the nucleon wave function. A reasonable fit is achieved for the ratio μpGEp (Q2) /GMp (Q2) in vacuum, and we predict that the Q02 value to cross the zero of the ratio to be about 15 GeV2. In addition the double ratio data of the proton EM form factors in 4He and H nuclei, [GEp4He (Q2) /G4HeMp (Q2) ] / [GEp1H (Q2) /GMp1H (Q2) ], extracted by the polarized (e → ,e‧ p →) scattering experiment on 4He at JLab, are well described. We also predict that the Q02 value satisfying μpGEp (Q02) /GMp (Q0 2) = 0 in symmetric nuclear matter, shifts to a smaller value as increasing nuclear matter density, which reflects the facts that the faster falloff of GEp (Q2) as increasing Q2 and the increase of the proton mean-square charge radius. Furthermore, we calculate the neutron EM form factor double ratio in symmetric nuclear matter for 0.1

  17. Diquark mass differences from unquenched lattice QCD

    NASA Astrophysics Data System (ADS)

    Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Zhaofeng; Qiao, Hao-Xue; Yang, Yi-Bo

    2016-07-01

    We calculate diquark correlation functions in the Landau gauge on the lattice using overlap valence quarks and 2+1-flavor domain wall fermion configurations. Quark masses are extracted from the scalar part of quark propagators in the Landau gauge. The scalar diquark quark mass difference and axial vector scalar diquark mass difference are obtained for diquarks composed of two light quarks and of a strange and a light quark. The light sea quark mass dependence of the results is examined. Two lattice spacings are used to check the discretization effects. The coarse and fine lattices are of sizes 243 × 64 and 323 × 64 with inverse spacings 1/a = 1.75(4) GeV and 2.33(5) GeV, respectively. Supported by National Science Foundation of China (11575197, 10835002, 11405178, 11335001), joint funds of NSFC (U1232109), MG and ZL are partially supported by the Youth Innovation Promotion Association of CAS (2015013, 2011013), YC and ZL acknowledge support of NSFC and DFG (CRC110)

  18. The strange and charm quark contributions to the anomalous magnetic moment of the muon from lattice QCD

    NASA Astrophysics Data System (ADS)

    Koponen, Jonna; Chakraborty, Bipasha; Davies, Christine T. H.; Donald, Gordon; Dowdall, Rachel; Gonçalves de Oliveira, Pedro; Lepage, G. Peter; Teubner, Thomas

    2016-04-01

    We describe a new technique (published in [1]) to determine the contribution to the anomalous magnetic moment of the muon coming from the hadronic vacuum polarisation using lattice QCD. Our method uses Padé approximants to reconstruct the Adler function from its derivatives at q2 = 0. These are obtained simply and accurately from time-moments of the vector current-current correlator at zero spatial momentum. We test the method using strange quark correlators calculated on MILC Collaboration's nf = 2 + 1 + 1 HISQ ensembles at multiple values of the lattice spacing, multiple volumes and multiple light sea quark masses (including physical pion mass configurations). We find the (connected) contribution to the anomalous moment from the strange quark vacuum polarisation to be aμs = 53.41 (59) ×10-10, and the contribution from charm quarks to be aμc = 14.42 (39) ×10-10 - 1% accuracy is achieved for the strange quark contribution. The extension of our method to the light quark contribution and to that from the quark-line disconnected diagram is straightforward.

  19. Bethe-Salpeter wave functions of ηc(1S, 2S) and ψ(1S, 2S) states: local-potential description of the charmonium system revisited

    NASA Astrophysics Data System (ADS)

    Nochi, Kazuki; Kawanai, Taichi; Sasaki, Shoichi

    2018-03-01

    The quark potential models with an energy-independent central potential have been successful for understanding the conventional charmonium states especially below the open charm threshold. As one might consider, however, the interquark potential is in general energy-dependent, and its tendency gets stronger in higher lying states. Confirmation of whether the interquark potential is energy-independent is also important to verify the validity of the quark potential models. In this talk, we examine the energy dependence of the charmonium potential, which can be determined from the Bethe-Salpeter (BS) amplitudes of cc̅ mesons in lattice QCD.We first calculate the BS amplitudes of radially excited charmonium states, the ηc(2S) and ψ(2S) states, using the variational method and then determine both the quark kinetic mass and the charmonium potential within the HAL QCD method. Through a direct comparison of charmonium potentials determined from both the 1S and 2S states, we confirm that neither the central nor spin-spin potential shows visible energy dependence at least up to 2S state.

  20. NLO Higgs+jet at Large Transverse Momenta Including Top Quark Mass Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, Tobias

    We present a next-to-leading order calculation of H+jet in gluon fusion including the effect of a finite top quark massmore » $$m_t$$ at large transverse momenta. Using the recently published two-loop amplitudes in the high energy expansion and our previous setup that includes finite $$m_t$$ effects in a low energy expansion, we are able to obtain $$m_t$$-finite results for transverse momenta below 225 GeV and above 500 GeV with negligible remaining top quark mass uncertainty. The only remaining region that has to rely on the common leading order rescaling approach is the threshold region $$\\sqrt{\\hat s}\\simeq 2m_t$$. We demonstrate that this rescaling provides an excellent approximation in the high $$p_T$$ region. Our calculation settles the issue of top quark mass effects at large transverse momenta. It is implemented in the parton level Monte Carlo code MCFM and is publicly available immediately in version 8.2.« less

  1. Constituent Quark and Diquark Properties from Small Angle Proton--Proton Elastic Scattering at High Energies

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Bzdak, A.

    2007-01-01

    Small momentum transfer elastic proton-proton cross-section at high energies is calculated assuming the nucleon composed of two constituents -- a quark and a diquark. A comparison to data (described very well up to -t approx 2 GeV2/c) allows to determine some properties of the constituents. While quark turns out fairly small, the diquark appears to be rather large, comparable to the size of the proton.

  2. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the regularization invariant symmetric momentum-subtraction schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Leandro G.; Physics Department, Brookhaven National Laboratory, Upton, New York 11973; Sturm, Christian

    2010-09-01

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the MS scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f}=3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less

  3. Two-loop matching factors for light quark masses and three-loop mass anomalous dimensions in the RI/SMOM schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturm, C.; Almeida, L.

    2010-04-26

    Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the {ovr MS} scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{mu}} schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f} = 3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less

  4. Proton-Proton Fusion and Tritium β Decay from Lattice Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Savage, Martin J.; Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Beane, Silas R.; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Nplqcd Collaboration

    2017-08-01

    The nuclear matrix element determining the p p →d e+ν fusion cross section and the Gamow-Teller matrix element contributing to tritium β decay are calculated with lattice quantum chromodynamics for the first time. Using a new implementation of the background field method, these quantities are calculated at the SU(3) flavor-symmetric value of the quark masses, corresponding to a pion mass of mπ˜806 MeV . The Gamow-Teller matrix element in tritium is found to be 0.979(03)(10) at these quark masses, which is within 2 σ of the experimental value. Assuming that the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange currents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the calculated p p →d e+ν transition matrix element leads to a fusion cross section at the physical quark masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial counterterm of pionless effective field theory is determined to be L1 ,A=3.9 (0.2 )(1.0 )(0.4 )(0.9 ) fm3 at a renormalization scale set by the physical pion mass, also agreeing within the accepted phenomenological range. This work concretely demonstrates that weak transition amplitudes in few-nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom and opens the way for subsequent investigations of many important quantities in nuclear physics.

  5. Chiral Odd Structure Functions in The Nambu--Jona--Lasinio Soliton Model

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard; Reinhardt, Hugo; Weigel, Herbert

    1998-10-01

    We study unpolarized and polarized nucleon structure functions(H. Weigel, L. Gamberg, and H. Reinhardt, Mod. Phys. Lett. A11) (1996) 3021; Phys. Lett. B399 (1997) 287;Phys. Rev. D55(1997) 6910. within the bosonized Nambu--Jona--Lasinio (NJL) model where the nucleon emerges as a chiral soliton(R. Alkofer, H. Reinhardt and H. Weigel, Phys. Rep. 265) (1996) 139.. These considerations attempt to merge the parton model description of deep inelastic scattering with the phenomenologically successful picture of baryons as chiral solitons. In addition we report on the calculation of the chiral odd quark distributions(L. Gamberg, H. Reinhardt and H. Weigel, "Chiral odd structure functions from a chiral soliton", hep-ph/9801379, Phys. Rev. D. in press.) and the corresponding structure functions h_T(x,Q^2) and h_L(x,Q^2). At the low model scale, Q_0^2, we find that the leading twist effective quark distributions, f_1^(q)(x,Q_0^2), g_1^(q)(x,Q_0^2) and h_T^(q)(x,Q_0^2) satisfy Soffer's inequality for both quark flavors q=u,d. The Q^2 evolution of the twist--2 contributions is performed according to the standard GLAP formalism while the twist--three pieces, \\overlineg_2(x) and \\overlineh_L(x), are evolved according to the large NC scheme.

  6. Measurement of inclusive radiative B-meson decay B decaying to X(S) meson-gamma

    NASA Astrophysics Data System (ADS)

    Ozcan, Veysi Erkcan

    Radiative decays of the B meson, B→ Xsgamma, proceed via virtual flavor changing neutral current processes that are sensitive to contributions from high mass scales, either within the Standard Model of electroweak interactions or beyond. In the Standard Model, these transitions are sensitive to the weak interactions of the top quark, and relatively robust predictions of the inclusive decay rate exist. Significant deviation from these predictions could be interpreted as indications for processes not included in the minimal Standard Model, like interactions of charged Higgs or SUSY particles. The analysis of the inclusive photon spectrum from B→ Xsgamma decays is rather challenging due to high backgrounds from photons emitted in the decay of mesons in B decays as well as e+e- annihilation to low mass quark and lepton pairs. Based on 88.5 million BB events collected by the BABAR detector, the photon spectrum above 1.9 GeV is presented. By comparison of the first and second moments of the photon spectrum with QCD predictions (calculated in the kinetic scheme), QCD parameters describing the bound state of the b quark in the B meson are extracted: mb=4.45+/-0.16 GeV/c2m2 p=0.65+/-0.29 GeV2 These parameters are useful input to non-perturbative QCD corrections to the semileptonic B decay rate and the determination of the CKM parameter Vub. Based on these parameters and heavy quark expansion, the full branching fraction is obtained as: BRB→X sgEg >1.6GeV=4.050.32 stat+/-0.38syst +/-0.29model x10-4. This result is in good agreement with previous measurements, the statistical and systematic errors are comparable. It is also in good agreement with the theoretical Standard Model predictions, and thus within the present errors there is no indication of any interactions not accounted for in the Standard Model. This finding implies strong constraints on physics beyond the Standard Model.

  7. General structure of democratic mass matrix of quark sector in E6 model

    NASA Astrophysics Data System (ADS)

    Ciftci, R.; ćiftci, A. K.

    2016-03-01

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E6 Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  8. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    PubMed

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  9. The quark condensate in multi-flavour QCD – planar equivalence confronting lattice simulations

    DOE PAGES

    Armoni, Adi; Shifman, Mikhail; Shore, Graham; ...

    2015-02-01

    Planar equivalence between the large N limits of N=1 Super Yang–Mills (SYM) theory and a variant of QCD with fermions in the antisymmetric representation is a powerful tool to obtain analytic non-perturbative results in QCD itself. In particular, it allows the quark condensate for N=3 QCD with quarks in the fundamental representation to be inferred from exact calculations of the gluino condensate in N=1 SYM. In this paper, we review and refine our earlier predictions for the quark condensate in QCD with a general number nf of flavours and confront these with lattice results.

  10. Spin physics through unpolarized processes

    NASA Astrophysics Data System (ADS)

    Lu, Zhun

    2016-02-01

    This article presents a review of our present understanding of the spin structure of the unpolarized hadron. Particular attention is paid to the quark sector at leading twist, namely, the quark Boer-Mulders function, which describes the transverse polarization of the quark inside an unpolarized hadron. After introducing the operator definition of the Boer-Mulders function, a detailed treatment of different non-perturbative calculations of the Boer-Mulders functions is provided. The phenomenology in Drell-Yan processes and semi-inclusive leptoproduction, including the extraction of the quark and antiquark Boer-Mulders functions from experimental data, is presented comprehensively. Finally, prospects for future theoretical studies and experimental measurements are presented in brief.

  11. Strange quark condensate in the nucleon in 2 + 1 flavor QCD.

    PubMed

    Toussaint, D; Freeman, W

    2009-09-18

    We calculate the "strange quark content of the nucleon," , which is important for interpreting the results of some dark matter detection experiments. The method is to evaluate quark-line disconnected correlations on the MILC lattice ensembles, which include the effects of dynamical light and strange quarks. After continuum and chiral extrapolations, the result is = 0.69(7)_{stat}(9)_{syst}, in the modified minimal subtraction scheme (2 GeV) regularization, or for the renormalization scheme invariant form, m_{s} partial differentialM_{N}/ partial differentialm_{s} = 59(6)(8) MeV.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czakon, M.; Fiedler, P.; Heymes, D.

    The differentialmore » $$t\\bar{t}$$ cross sections, measured as a function of the transverse momentum of the top quark and the invariant mass of the $$t\\bar{t}$$ system, are employed to determine the pole mass of the top quark. The data corresponds to an integrated luminosity of 9.7 $$fb^{−1}$$, collected with the D0 detector of the Fermilab Tevatron. Precise calculations at next-to-next-to leading order in perturbative quantum chromodynamics provide the absolute differential cross sections that are employed to extract the pole mass of the top quark.We measure the pole mass of the top quark to be 169.1 ± 2.5 (tot.) GeV.« less

  13. A search for the top and b‧ quarks in hadronic Z 0 decays

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Bavaria, G.; Beard, C.; Beck, F.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Bloodworth, I. J.; Bock, P.; Boerner, H.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burchart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Davies, O. W.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchesneau, D.; Duchovni, E.; Duerdoth, I. P.; Dumas, D.; El Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gandois, B.; Ganel, O.; Gary, J. W.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hatzifotiadou, D.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Heintze, J.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Hinde, P. S.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Imori, M.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jin, E.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Köpke, L.; Kokott, T. P.; Koshiba, M.; Kowalewski, R.; Kreutzmann, H.; Von Krogh, J.; Kroll, J.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Muller, A.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Patrick, G. N.; Pawley, S. J.; Perez, A.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Possoz, A.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Roehner, F.; Rollnik, A.; Roney, J. M.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Von Der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Ströhmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk, G.; Van Den Plas, D.; Vandalen, G. J.; Virtue, C. J.; Wagner, A.; Wahl, C.; Wang, H.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yamashita, H.; Yang, Y.; Yekutieli, G.; Zeuner, W.; Zorn, G. T.; Zylberajch, S.; OPAL Collaboration

    1990-02-01

    We report on a search for new quarks in hadronic Z° decays. From the event shape analysis of a data sample containing 2185 multihadronic annihilation events, we observe no evidence for the top or b' quarks. We derive limits for the top and b' quark masses under the assumption of various possible standard model and non-standard model decay schemes. Our search is sensitive to quark masses larger than 23 GeV/ c2; it yields the following lower limits at a 95% confidence level: 44.5 GeV/ c2 for the top quark mass and 45.2 GeV/ c2 for the b‧ quark mass.

  14. The QCD Equation of state and critical end-point estimates at O (μB6)

    NASA Astrophysics Data System (ADS)

    Sharma, Sayantan; Bielefeld-BNL-CCNU Collaboration

    2017-11-01

    We present results for the QCD Equation of State at non-zero chemical potentials corresponding to the conserved charges in QCD using Taylor expansion upto sixth order in the baryon number, electric charge and strangeness chemical potentials. The latter two are constrained by the strangeness neutrality and a fixed electric charge to baryon number ratio. In our calculations, we use the Highly Improved Staggered Quarks (HISQ) discretization scheme at physical quark masses and at different values of the lattice spacings to control lattice cut-off effects. Furthermore we calculate the pressure along lines of constant energy density, which serve as proxies for the freeze-out conditions and discuss their dependence on μB, which is necessary for hydrodynamic modelling near freezeout. We also provide an estimate of the radius of convergence of the Taylor series from the 6th order coefficients which provides a new constraint on the location of the critical end-point in the T-μB plane of the QCD phase diagram.

  15. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence

    NASA Astrophysics Data System (ADS)

    Jones, S. P.; Kerner, M.; Luisoni, G.

    2018-04-01

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high pt ,H region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  16. Next-to-Leading-Order QCD Corrections to Higgs Boson Plus Jet Production with Full Top-Quark Mass Dependence.

    PubMed

    Jones, S P; Kerner, M; Luisoni, G

    2018-04-20

    We present the next-to-leading-order QCD corrections to the production of a Higgs boson in association with one jet at the LHC including the full top-quark mass dependence. The mass of the bottom quark is neglected. The two-loop integrals appearing in the virtual contribution are calculated numerically using the method of sector decomposition. We study the Higgs boson transverse momentum distribution, focusing on the high p_{t,H} region, where the top-quark loop is resolved. We find that the next-to-leading-order QCD corrections are large but that the ratio of the next-to-leading-order to leading-order result is similar to that obtained by computing in the limit of large top-quark mass.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.

    We used lattice QCD calculations with background magnetic fields to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the SU(3) flavor-symmetric point, where the pion mass is m π ~ 800 MeV, and the other corresponding to a pion mass m π ~ 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units---the natural baryon magneton. This suggests that simple extrapolations can be used to determinemore » magnetic moments at the physical point, and extrapolated results are found to agree with experiment within uncertainties. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-N c limit of QCD are studied; and, in one case, the quark model prediction is significantly closer to the extracted values than the large-N c prediction. The magnetically coupled Λ-Σ 0 system is treated in detail at the SU(3) F point, with the lattice QCD results comparing favorably with predictions based on SU(3) F symmetry. Our analysis enables the first extraction of the isovector transition magnetic polarizability. The possibility that large magnetic fields stabilize strange matter is explored, but such a scenario is found to be unlikely.« less

  18. The static hard-loop gluon propagator to all orders in anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nopoush, Mohammad; Guo, Yun; Strickland, Michael

    We calculate the (semi-)static hard-loop self-energy and propagator using the Keldysh formalism in a momentum-space anisotropic quark-gluon plasma. The static retarded, advanced, and Feynman (symmetric) self-energies and propagators are calculated to all orders in the momentum-space anisotropy parameter ξ. For the retarded and advanced self-energies/propagators, we present a concise derivation and comparison with previouslyobtained results and extend the calculation of the self-energies to next-to-leading order in the gluon energy, ω. For the Feynman self-energy/propagator, we present new results which are accurate to all orders in ξ. We compare our exact results with prior expressions for the Feynman self-energy/propagator which weremore » obtained using Taylor-expansions around an isotropic state. Here, we show that, unlike the Taylor-expanded results, the all-orders expression for the Feynman propagator is free from infrared singularities. Finally, we discuss the application of our results to the calculation of the imaginary-part of the heavy-quark potential in an anisotropic quark-gluon plasma.« less

  19. The static hard-loop gluon propagator to all orders in anisotropy

    DOE PAGES

    Nopoush, Mohammad; Guo, Yun; Strickland, Michael

    2017-09-15

    We calculate the (semi-)static hard-loop self-energy and propagator using the Keldysh formalism in a momentum-space anisotropic quark-gluon plasma. The static retarded, advanced, and Feynman (symmetric) self-energies and propagators are calculated to all orders in the momentum-space anisotropy parameter ξ. For the retarded and advanced self-energies/propagators, we present a concise derivation and comparison with previouslyobtained results and extend the calculation of the self-energies to next-to-leading order in the gluon energy, ω. For the Feynman self-energy/propagator, we present new results which are accurate to all orders in ξ. We compare our exact results with prior expressions for the Feynman self-energy/propagator which weremore » obtained using Taylor-expansions around an isotropic state. Here, we show that, unlike the Taylor-expanded results, the all-orders expression for the Feynman propagator is free from infrared singularities. Finally, we discuss the application of our results to the calculation of the imaginary-part of the heavy-quark potential in an anisotropic quark-gluon plasma.« less

  20. Big bang nucleosynthesis and the quark-hadron transition

    NASA Technical Reports Server (NTRS)

    Kurki-Suonio, Hannu; Matzner, Richard A.; Olive, Keith A.; Schramm, David N.

    1990-01-01

    An examination and brief review is made of the effects of quark-hadron transition induced fluctuations on Big Bang nucleosynthesis. It is shown that cosmologically critical densities in baryons are difficult to reconcile with observation, but the traditional baryon density constraints from homogeneous calculations might be loosened by as much as 50 percent, to 0.3 of critical density, and the limit on the number of neutrino flavors remains about N(sub nu) is less than or approximately 4. To achieve baryon densities of greater than or approximately 0.3 of critical density would require initial density contrasts R is much greater the 10(exp e), whereas the simplest models for the transition seem to restrict R to less than of approximately 10(exp 2).

  1. Big Bang nucleosynthesis and the Quark-Hadron transition

    NASA Technical Reports Server (NTRS)

    Kurki-Suonio, Hannu; Matzner, Richard A.; Olive, Keith A.; Schramm, David N.

    1989-01-01

    An examination and brief review is made of the effects of quark-hadron transistion induced fluctuations on Big Bang nucleosynthesis. It is shown that cosmologically critical densities in baryons are difficult to reconcile with observation, but the traditional baryon density constraints from homogeneous calculations might be loosened by as much as 50 percent, to 0.3 of critical density, and the limit on the number of neutrino flavors remains about N(sub nu) is less than or approximately 4. To achieve baryon densities of greater than or approximately 0.3 of critical density would require initial density contrasts R is much greater the 10(exp 3), whereas the simplest models for the transition seem to restrict R to less than of approximately 10(exp 2).

  2. Width of the confining string in Yang-Mills theory.

    PubMed

    Gliozzi, F; Pepe, M; Wiese, U-J

    2010-06-11

    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  3. On the light massive flavor dependence of the large order asymptotic behavior and the ambiguity of the pole mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, André H.; Lepenik, Christopher; Preisser, Moritz

    Here, we provide a systematic renormalization group formalism for the mass effects in the relation of the pole mass m Q pole and short-distance masses such as themore » $$—\\atop{MS}$$ mass $$—\\atop{m}$$ Q of a heavy quark Q, coming from virtual loop insertions of massive quarks lighter than Q. The formalism reflects the constraints from heavy quark symmetry and entails a combined matching and evolution procedure that allows to disentangle and successively integrate out the corrections coming from the lighter massive quarks and the momentum regions between them and to precisely control the large order asymptotic behavior. With the formalism we systematically sum logarithms of ratios of the lighter quark masses and m Q , relate the QCD corrections for different external heavy quarks to each other, predict the O(α$$4\\atop{s}$$) virtual quark mass corrections in the pole-$$—\\atop{MS}$$ mass relation, calculate the pole mass differences for the top, bottom and charm quarks with a precision of around 20 MeV and analyze the decoupling of the lighter massive quark flavors at large orders. The summation of logarithms is most relevant for the top quark pole mass m t pole, where the hierarchy to the bottom and charm quarks is large. We determine the ambiguity of the pole mass for top, bottom and charm quarks in different scenarios with massive or massless bottom and charm quarks in a way consistent with heavy quark symmetry, and we find that it is 250 MeV. The ambiguity is larger than current projections for the precision of top quark mass measurements in the high-luminosity phase of the LHC.« less

  4. On the light massive flavor dependence of the large order asymptotic behavior and the ambiguity of the pole mass

    DOE PAGES

    Hoang, André H.; Lepenik, Christopher; Preisser, Moritz

    2017-09-20

    Here, we provide a systematic renormalization group formalism for the mass effects in the relation of the pole mass m Q pole and short-distance masses such as themore » $$—\\atop{MS}$$ mass $$—\\atop{m}$$ Q of a heavy quark Q, coming from virtual loop insertions of massive quarks lighter than Q. The formalism reflects the constraints from heavy quark symmetry and entails a combined matching and evolution procedure that allows to disentangle and successively integrate out the corrections coming from the lighter massive quarks and the momentum regions between them and to precisely control the large order asymptotic behavior. With the formalism we systematically sum logarithms of ratios of the lighter quark masses and m Q , relate the QCD corrections for different external heavy quarks to each other, predict the O(α$$4\\atop{s}$$) virtual quark mass corrections in the pole-$$—\\atop{MS}$$ mass relation, calculate the pole mass differences for the top, bottom and charm quarks with a precision of around 20 MeV and analyze the decoupling of the lighter massive quark flavors at large orders. The summation of logarithms is most relevant for the top quark pole mass m t pole, where the hierarchy to the bottom and charm quarks is large. We determine the ambiguity of the pole mass for top, bottom and charm quarks in different scenarios with massive or massless bottom and charm quarks in a way consistent with heavy quark symmetry, and we find that it is 250 MeV. The ambiguity is larger than current projections for the precision of top quark mass measurements in the high-luminosity phase of the LHC.« less

  5. Top quark polarization and T-odd spin correlations as tools for testing (non) Standard Model predictions

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Ma, J. P.; Schroeder, T.

    In this paper a number of T-odd spin-momentum correlations are defined for t and t-bar quarks and directly measurable correlations involving the momenta of the charged leptons and/or b jets from t and t-bar decay are identified. It concentrates on observables which can be classified as being even under a CP symmetry transformation in the case of e(sup +)e(sup -) yields tt-bar X or pp-bar yields tt-bar X (unpolarized or transversely polarized beams). These correlations project onto absorptive parts of the scattering matrix which are induced by CP-conserving interactions. In order to estimate the effects of the Standard Model interactions the Quantum Chromodynamics and Higgs boson contributions were calculated to a number of these observables. Several of them are considered to be useful tools for a detailed study of the tt-bar system at future hadron colliders.

  6. Resonance--Continuum Interference in Light Higgs Boson Production at a Photon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Lance J.; Sofianatos, Yorgos; /SLAC /Stanford U., Phys. Dept.

    2009-01-06

    We study the effect of interference between the Standard Model Higgs boson resonance and the continuum background in the process {gamma}{gamma} {yields} H {yields} b{bar b} at a photon collider. Taking into account virtual gluon exchange between the final-state quarks, we calculate the leading corrections to the height of the resonance for the case of a light (m{sub H} < 160 GeV) Higgs boson. We find that the interference is destructive and around 0.1-0.2% of the peak height, depending on the mass of the Higgs and the scattering angle. This suppression is smaller by an order of magnitude than themore » anticipated experimental accuracy at a photon collider. However, the fractional suppression can be significantly larger if the Higgs coupling to b quarks is increased by physics beyond the Standard Model.« less

  7. Background field Landau mode operators for the nucleon

    NASA Astrophysics Data System (ADS)

    Kamleh, Waseem; Bignell, Ryan; Leinweber, Derek B.; Burkardt, Matthias

    2018-03-01

    The introduction of a uniform background magnetic field breaks threedimensional spatial symmetry for a charged particle and introduces Landau mode effects. Standard quark operators are inefficient at isolating the nucleon correlation function at nontrivial field strengths. We introduce novel quark operators constructed from the twodimensional Laplacian eigenmodes that describe a charged particle on a finite lattice. These eigenmode-projected quark operators provide enhanced precision for calculating nucleon energy shifts in a magnetic field. Preliminary results are obtained for the neutron and proton magnetic polarisabilities using these methods.

  8. Multicharmed Baryon Production in High Energy Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Zhao, Jiaxing; Zhuang, Pengfei

    2017-03-01

    We study nuclear medium effect on multicharmed baryon production in relativistic heavy ion collisions. By solving the three-quark Schroedinger equation at finite temperature, we calculate the wave functions and Wigner functions for doubly and triply charmed baryons Ξ_{cc} and Ω_{ccc}. Their production in nuclear collisions is largely enhanced due to the combination of uncorrelated charm quarks in the quark-gluon plasma. It is most probable to discover these new particles in heavy ion collisions at the RHIC and LHC energies.

  9. Color-Sextet Quark Productions at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Tanaka, Hidekazu; Watanabe, Isamu

    Production cross-sections of color-sextet quarks at hadron colliders are estimated in various energies and the results are compared with cross-sections of the conventional top quark productions. Particular attentions are paid for a model recently proposed in Ref. 2 in order to explain the dynamical mechanism of the electroweak symmetry breaking. The model may be tested at SSC and LHC if the sextet quarks dominantly decay semileptonically through effective fourfermion interactions, or if the sextet quarks have long enough lifetime to reach the detectors.

  10. Nucleon, $$\\Delta$$ and $$\\Omega$$ excited states in $$N_f=2+1$$ lattice QCD

    DOE PAGES

    John Bulava; Edwards, Robert G.; Engelson, Eric; ...

    2010-07-22

    The energies of the excited states of the Nucleon,more » $$\\Delta$$ and $$\\Omega$$ are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses $$m_{\\pi}$$ = 392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we find reasonable agreement in the pattern of states. In addition, the need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified.« less

  11. Prompt atmospheric neutrino fluxes: perturbative QCD models and nuclear effects

    DOE PAGES

    Bhattacharya, Atri; Enberg, Rikard; Jeong, Yu Seon; ...

    2016-11-28

    We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, k T factorization including low-x resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest datamore » on forward charm meson production from LHCb at 7 TeV and at 13 TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from 10% to 50% at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.« less

  12. Prediction of new Quarks, Generations and Quark Masses

    NASA Astrophysics Data System (ADS)

    Lach, Thedore

    2002-04-01

    The Standard model currently suggests no relationship between the quark and lepton masses. The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an up quark mass of 237.31 MeV/c2 and a dn quark mass of 42.392 MeV/c2. These two new quarks help explain the numerical relationship between all the quark and lepton masses in a single function. The mass of each SNU-P (quark or lepton) is just the geometric mean of two related SNU-Ps, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.743828 (predicted), 117.3520, 1778.38, 26950.08 MeV. The resulting slope of these masses when plotted on semi log paper is "e" to 5 significant figures using the currently accepted mass for Tau. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these quarks, and lepton.

  13. Enhanced Higgs mass in Compact Supersymmetry

    DOE PAGES

    Tobioka, Kohsaku; Kitano, Ryuichiro; Murayama, Hitoshi

    2016-04-05

    The current LHC results make weak scale supersymmetry difficult due to relatively heavy mass of the discovered Higgs boson and the null results of new particle searches. Geometrical supersymmetry breaking from extra dimensions, Scherk-Schwarz mechanism, is possible to accommodate such situations. A concrete example, the Compact Supersymmetry model, has a compressed spectrum ameliorating the LHC bounds and large mixing in the top and scalar top quark sector with (Formula presented.) which radiatively raises the Higgs mass. And while the zero mode contribution of the model has been considered, in this paper we calculate the Kaluza-Klein tower effect to the Higgsmore » mass. Although such contributions are naively expected to be as small as a percent level for 10 TeV Kaluza-Klein modes, we find the effect significantly enhances the radiative correction to the Higgs quartic coupling by from 10 to 50%. This is mainly because the top quark wave function is pushed out from the brane, which makes the top mass depend on higher powers in the Higgs field. And, as a result the Higgs mass is enhanced up to 15 GeV from the previous calculation. We also show the whole parameter space is testable at the LHC run II.« less

  14. Conserved charge fluctuations at vanishing and non-vanishing chemical potential

    NASA Astrophysics Data System (ADS)

    Karsch, Frithjof

    2017-11-01

    Up to 6th order cumulants of fluctuations of net baryon-number, net electric charge and net strangeness as well as correlations among these conserved charge fluctuations are now being calculated in lattice QCD. These cumulants provide a wealth of information on the properties of strong-interaction matter in the transition region from the low temperature hadronic phase to the quark-gluon plasma phase. They can be used to quantify deviations from hadron resonance gas (HRG) model calculations which frequently are used to determine thermal conditions realized in heavy ion collision experiments. Already some second order cumulants like the correlations between net baryon-number and net strangeness or net electric charge differ significantly at temperatures above 155 MeV in QCD and HRG model calculations. We show that these differences increase at non-zero baryon chemical potential constraining the applicability range of HRG model calculations to even smaller values of the temperature.

  15. The Discovery of the Top Quark

    DOE R&D Accomplishments Database

    Sinervo, P.K.

    1995-12-01

    The top quark and the Higgs boson are the heaviest elementary particles predicted by the standard model. The four lightest quark flavours, the up, down, strange and charm quarks, were well-established by the mid-1970's. The discovery in 1977 of the {Tau} resonances, a new family of massive hadrons, required the introduction of the fifth quark flavour. Experimental and theoretical studies have indicated that this quark also has a heavier partner, the top quark.

  16. Precision Light Flavor Physics from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Murphy, David

    In this thesis we present three distinct contributions to the study of light flavor physics using the techniques of lattice QCD. These results are arranged into four self-contained papers. The first two papers concern global fits of the quark mass, lattice spacing, and finite volume dependence of the pseudoscalar meson masses and decay constants, computed in a series of lattice QCD simulations, to partially quenched SU(2) and SU(3) chiral perturbation theory (chiPT). These fits determine a subset of the low energy constants of chiral perturbation theory -- in some cases with increased precision, and in other cases for the first time -- which, once determined, can be used to compute other observables and amplitudes in chiPT. We also use our formalism to self-consistently probe the behavior of the (asymptotic) chiral expansion as a function of the quark masses by repeating the fits with different subsets of the data. The third paper concerns the first lattice QCD calculation of the semileptonic K0 → pi-l +nul ( Kl3) form factor at vanishing momentum transfer, f+Kpi(0), with physical mass domain wall quarks. The value of this form factor can be combined with a Standard Model analysis of the experimentally measured K0 → pi -l+nu l decay rate to extract a precise value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus, and to test unitarity of the CKM matrix. We also discuss lattice calculations of the pion and kaon decay constants, which can be used to extract Vud through an analogous Standard Model analysis of experimental constraints on leptonic pion and kaon decays. The final paper explores the recently proposed exact one flavor algorithm (EOFA). This algorithm has been shown to drastically reduce the memory footprint required to simulate single quark flavors on the lattice relative to the widely used rational hybrid Monte Carlo (RHMC) algorithm, while also offering modest O(20%) speed-ups. We independently derive the exact one flavor action, explore its equivalence to the RHMC action, and demonstrate that additional preconditioning techniques can be used to significantly accelerate EOFA simulations. We apply EOFA to the ongoing RBC/UKQCD calculation of the Delta I = 1/2 K → pipi decay amplitude, and demonstrate that, in this context, gauge field configurations can be generated a factor of 4.2 times faster using an EOFA-based simulation rather than the previous RHMC-based simulations. We expect that EOFA will help to significantly reduce the statistical error in the first-principles determination of the Standard Model CP-violation parameters epsilon and epsilon' offered by the K → pipi calculation.

  17. Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; Bernard, C.; Brambilla, N.

    We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging frommore » $$a\\approx0.15~$$fm to $0.03~$fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $$\\overline{\\text{MS}}$$-renormalized masses are $$m_u(2~\\text{GeV}) = 2.118(38)~$$MeV, $$m_d(2~\\text{GeV}) = 4.690(54)~$$MeV, $$m_s(2~\\text{GeV}) = 92.52(69)~$$MeV, $$m_c(3~\\text{GeV}) = 984.3(5.6)~$$MeV, and $$m_c(m_c) = 1273(10)~$$MeV, with four active flavors; and $$m_b(m_b) = 4197(14)~$$MeV with five active flavors. We also obtain ratios of quark masses $$m_c/m_s = 11.784(22)$$, $$m_b/m_s = 53.93(12)$$, and $$m_b/m_c = 4.577(8)$$. The result for $$m_c$$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $$\\alpha_s^4$$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $$\\overline{\\Lambda}_\\text{MRS}=552(30)~$$MeV in the minimal renormalon-subtracted (MRS) scheme, $$\\mu_\\pi^2 = 0.06(22)~\\text{GeV}^2$$, and $$\\mu_G^2(m_b)=0.38(2)~\\text{GeV}^2$$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph

  18. Quark Model in the Quantum Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Hussar, P. E.; And Others

    1980-01-01

    This article discusses in detail the totally symmetric three-quark karyonic wave functions. The two-body mesonic states are also discussed. A brief review of the experimental efforts to identify the quark model multiplets is given. (Author/SK)

  19. Casimir meets Poisson: improved quark/gluon discrimination with counting observables

    DOE PAGES

    Frye, Christopher; Larkoski, Andrew J.; Thaler, Jesse; ...

    2017-09-19

    Charged track multiplicity is among the most powerful observables for discriminating quark- from gluon-initiated jets. Despite its utility, it is not infrared and collinear (IRC) safe, so perturbative calculations are limited to studying the energy evolution of multiplicity moments. While IRC-safe observables, like jet mass, are perturbatively calculable, their distributions often exhibit Casimir scaling, such that their quark/gluon discrimination power is limited by the ratio of quark to gluon color factors. In this paper, we introduce new IRC-safe counting observables whose discrimination performance exceeds that of jet mass and approaches that of track multiplicity. The key observation is that trackmore » multiplicity is approximately Poisson distributed, with more suppressed tails than the Sudakov peak structure from jet mass. By using an iterated version of the soft drop jet grooming algorithm, we can define a “soft drop multiplicity” which is Poisson distributed at leading-logarithmic accuracy. In addition, we calculate the next-to-leading-logarithmic corrections to this Poisson structure. If we allow the soft drop groomer to proceed to the end of the jet branching history, we can define a collinear-unsafe (but still infrared-safe) counting observable. Exploiting the universality of the collinear limit, we define generalized fragmentation functions to study the perturbative energy evolution of collinear-unsafe multiplicity.« less

  20. Casimir meets Poisson: improved quark/gluon discrimination with counting observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, Christopher; Larkoski, Andrew J.; Thaler, Jesse

    Charged track multiplicity is among the most powerful observables for discriminating quark- from gluon-initiated jets. Despite its utility, it is not infrared and collinear (IRC) safe, so perturbative calculations are limited to studying the energy evolution of multiplicity moments. While IRC-safe observables, like jet mass, are perturbatively calculable, their distributions often exhibit Casimir scaling, such that their quark/gluon discrimination power is limited by the ratio of quark to gluon color factors. In this paper, we introduce new IRC-safe counting observables whose discrimination performance exceeds that of jet mass and approaches that of track multiplicity. The key observation is that trackmore » multiplicity is approximately Poisson distributed, with more suppressed tails than the Sudakov peak structure from jet mass. By using an iterated version of the soft drop jet grooming algorithm, we can define a “soft drop multiplicity” which is Poisson distributed at leading-logarithmic accuracy. In addition, we calculate the next-to-leading-logarithmic corrections to this Poisson structure. If we allow the soft drop groomer to proceed to the end of the jet branching history, we can define a collinear-unsafe (but still infrared-safe) counting observable. Exploiting the universality of the collinear limit, we define generalized fragmentation functions to study the perturbative energy evolution of collinear-unsafe multiplicity.« less

  1. Single-spin observables and orbital structures in hadronic distributions

    NASA Astrophysics Data System (ADS)

    Sivers, Dennis

    2006-11-01

    Single-spin observables in scattering processes (either analyzing powers or polarizations) are highly constrained by rotational invariance and finite symmetries. For example, it is possible to demonstrate that all single-spin observables are odd under the finite transformation O=PAτ where P is parity and Aτ is a finite symmetry that can be designated “artificial time reversal”. The operators P, O and Aτ all have eigenvalues ±1 so that all single-spin observables can be classified into two distinct categories: (1) P-odd and Aτ-even, (2) P-even and Aτ-odd. Within the light-quark sector of the standard model, P-odd observables are generated from pointlike electroweak processes while Aτ-odd observables (neglecting quark mass parameters) come from dynamic spin-orbit correlations within hadrons or within larger composite systems, such as nuclei. The effects of Aτ-odd dynamics can be inserted into transverse-momentum dependent constituent distribution functions and, in this paper, we construct the contribution from an orbital quark to the Aτ-odd quark parton distribution ΔNGq/p↑front(x,kTN;μ2). Using this distribution, we examine the crucial role of initial- and final-state interactions in the observation of the scattering asymmetries in different hard-scattering processes. This construction provides a geometrical and dynamical interpretation of the Collins conjugation relation between single-spin asymmetries in semi-inclusive deep inelastic scattering and the asymmetries in Drell-Yan production. Finally, our construction allows us to display a significant difference between the calculation of a spin asymmetry generated by a hard-scattering mechanism involving color-singlet exchange (such as a photon) and a calculation of an asymmetry with a hard-scattering exchange involving gluons. This leads to an appreciation of the process-dependence inherent in measurements of single-spin observables.

  2. New approach to the resummation of logarithms in Higgs-boson decays to a vector quarkonium plus a photon

    NASA Astrophysics Data System (ADS)

    Bodwin, Geoffrey T.; Chung, Hee Sok; Ee, June-Haak; Lee, Jungil

    2017-03-01

    We present a calculation of the rates for Higgs-boson decays to a vector heavy-quarkonium state plus a photon, where the heavy-quarkonium states are the J /ψ and the ϒ (n S ) states, with n =1 , 2, or 3. The calculation is carried out in the light-cone formalism, combined with nonrelativistic QCD factorization, and is accurate at leading order in mQ2/mH2, where mQ is the heavy-quark mass and mH is the Higgs-boson mass. The calculation contains corrections through next-to-leading order in the strong-coupling constant αs and the square of the heavy-quark velocity v , and includes a resummation of logarithms of mH2/mQ2 at next-to-leading logarithmic accuracy. We have developed a new method, which makes use of Abel summation, accelerated through the use of Padé approximants, to deal with divergences in the resummed expressions for the quarkonium light-cone distribution amplitudes. This approach allows us to make definitive calculations of the resummation effects. Contributions from the order-αs and order-v2 corrections to the light-cone distribution amplitudes that we obtain with this new method differ substantially from the corresponding contributions that one obtains from a model light-cone distribution amplitude [M. König and M. Neubert, J. High Energy Phys. 08 (2015) 012, 10.1007/JHEP08(2015)012]. Our results for the real parts of the direct-process amplitudes are considerably smaller than those from one earlier calculation [G. T. Bodwin, H. S. Chung, J.-H. Ee, J. Lee, and F. Petriello, Phys. Rev. D 90, 113010 (2014), 10.1103/PhysRevD.90.113010], reducing the sensitivity to the Higgs-boson-heavy-quark couplings, and are somewhat smaller than those from another earlier calculation [M. König and M. Neubert, J. High Energy Phys. 08 (2015) 012, 10.1007/JHEP08(2015)012]. However, our results for the standard-model Higgs-boson branching fractions are in good agreement with those in M. König and M. Neubert, J. High Energy Phys. 08 (2015) 012, 10.1007/JHEP08(2015)012.

  3. Top quark forward-backward asymmetry and same-sign top quark pairs.

    PubMed

    Berger, Edmond L; Cao, Qing-Hong; Chen, Chuan-Ren; Li, Chong Sheng; Zhang, Hao

    2011-05-20

    The top quark forward-backward asymmetry measured at the Tevatron collider shows a large deviation from standard model expectations. Among possible interpretations, a nonuniversal Z' model is of particular interest as it naturally predicts a top quark in the forward region of large rapidity. To reproduce the size of the asymmetry, the couplings of the Z' to standard model quarks must be large, inevitably leading to copious production of same-sign top quark pairs at the energies of the Large Hadron Collider (LHC). We explore the discovery potential for tt and ttj production in early LHC experiments at 7-8 TeV and conclude that if no tt signal is observed with 1 fb⁻¹ of integrated luminosity, then a nonuniversal Z' alone cannot explain the Tevatron forward-backward asymmetry.

  4. Theoretical estimation of Photons flow rate Production in quark gluon interaction at high energies

    NASA Astrophysics Data System (ADS)

    Al-Agealy, Hadi J. M.; Hamza Hussein, Hyder; Mustafa Hussein, Saba

    2018-05-01

    photons emitted from higher energetic collisions in quark-gluon system have been theoretical studied depending on color quantum theory. A simple model for photons emission at quark-gluon system have been investigated. In this model, we use a quantum consideration which enhances to describing the quark system. The photons current rate are estimation for two system at different fugacity coefficient. We discussion the behavior of photons rate and quark gluon system properties in different photons energies with Boltzmann model. The photons rate depending on anisotropic coefficient : strong constant, photons energy, color number, fugacity parameter, thermal energy and critical energy of system are also discussed.

  5. General structure of democratic mass matrix of quark sector in E{sub 6} model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciftci, R., E-mail: rciftci@cern.ch; Çiftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    2016-03-25

    An extension of the Standard Model (SM) fermion sector, which is inspired by the E{sub 6} Grand Unified Theory (GUT) model, might be a good candidate to explain a number of unanswered questions in SM. Existence of the isosinglet quarks might explain great mass difference of bottom and top quarks. Also, democracy on mass matrix elements is a natural approach in SM. In this study, we have given general structure of Democratic Mass Matrix (DMM) of quark sector in E6 model.

  6. Effects of a spin-flavour-dependent interaction on light-flavoured baryon helicity amplitudes

    NASA Astrophysics Data System (ADS)

    Ronniger, Michael; Metsch, Bernard Ch.

    2013-01-01

    This paper is a continuation of a previous work about the effects of a phenomenological flavour-dependent force in a relativistically covariant constituent quark model based on the Salpeter equation on the structure of light-flavoured baryon resonances. Here the longitudinal and transverse helicity amplitudes as studied experimentally in the electro-excitation of nucleon- and Δ-resonances are calculated. In particular the amplitudes for the excitation of three- and four-star resonances as calculated in a previous model A are compared to those of the novel model C as well as to existing and partially new experimental data such as, e.g., determined by the CB-ELSA Collaboration. A brief discussion on some improvements to model C is given after the introduction.

  7. Integrability in heavy quark effective theory

    NASA Astrophysics Data System (ADS)

    Braun, Vladimir M.; Ji, Yao; Manashov, Alexander N.

    2018-06-01

    It was found that renormalization group equations in the heavy-quark effective theory (HQET) for the operators involving one effective heavy quark and light degrees of freedom are completely integrable in some cases and are related to spin chain models with the Hamiltonian commuting with the nondiagonal entry C( u) of the monodromy matrix. In this work we provide a more complete mathematical treatment of such spin chains in the QISM framework. We also discuss the relation of integrable models that appear in the HQET context with the large-spin limit of integrable models in QCD with light quarks. We find that the conserved charges and the "ground state" wave functions in HQET models can be obtained from the light-quark counterparts in a certain scaling limit.

  8. The chiral quark condensate and pion decay constant in nuclear matter at next-to-leading order

    NASA Astrophysics Data System (ADS)

    Lacour, A.; Oller, J. A.; Meißner, U.-G.

    2010-12-01

    Making use of the recently developed chiral power counting for the physics of nuclear matter (Oller et al 2010 J. Phys. G: Nucl. Part. Phys. 37 015106, Lacour et al Ann. Phys. at press), we evaluate the in-medium chiral quark condensate up to next-to-leading order for both symmetric nuclear matter and neutron matter. Our calculation includes the full in-medium iteration of the leading order local and one-pion exchange nucleon-nucleon interactions. Interestingly, we find a cancellation between the contributions stemming from the quark mass dependence of the nucleon mass appearing in the in-medium nucleon-nucleon interactions. Only the contributions originating from the explicit quark mass dependence of the pion mass survive. This cancellation is the reason of previous observations concerning the dominant role of the long-range pion contributions and the suppression of short-range nucleon-nucleon interactions. We find that the linear density contribution to the in-medium chiral quark condensate is only slightly modified for pure neutron matter by the nucleon-nucleon interactions. For symmetric nuclear matter, the in-medium corrections are larger, although smaller compared to other approaches due to the full iteration of the lowest order nucleon-nucleon tree-level amplitudes. Our calculation satisfies the Hellmann-Feynman theorem to the order worked out. Also we address the problem of calculating the leading in-medium corrections to the pion decay constant. We find that there are no extra in-medium corrections that violate the Gell-Mann-Oakes-Renner relation up to next-to-leading order.

  9. Parton Dynamics Inferred from High-Mass Drell-Yan Dimuons Induced by 120 GeV p+D Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramson, Bryan J.

    2018-01-01

    Fermilab Experiment 906/SeaQuest (E906/SeaQuest) is the latest in a well established tradition of studying leptoproduction from the annihilation of a quark and anti-quark, known as the Drell-Yan process. The broad goal of E906/SeaQuest is measuring various properties of nucleon structure in order to learn more about quarks and Quantum Chromodynamics (QCD), the mathematical description of the strong force. The present work investigated violations of the Lam-Tung relation between virtual photon polarization and quark and lepton angular momentum. The violation of Lam-Tung can be explained as the signature of quark-nucleon spin-orbit coupling through the use of the Transverse-Momentum-Dependent (TMD) framework, whichmore » assumes that the initial transverse momentum of quarks is smaller than the hard scattering scale, but also non-negligible. An analysis of the angular moments in Drell-Yan collected by E906/SeaQuest was performed with four different configurations in order to estimate the systematic errors attributed to each correction. After correction for background and error propagation, the final extraction of the azimuthal moment excluding contributions from the trigger was ν = 0.151 ± 0.88(stat.) ± 0.346(syst.) at an average transverse momentum of 0.87 ± 0.50 GeV/c and an average dimuon mass of 5.48 ± 0.70 GeV. In the future, the magnitude of the systematic errors on the extraction could potentially be reduced by improving the quality of the trigger efficiency calculation, improving the intensity dependent event reconstruction efficiency, considering the changes in acceptance due to a beam shift relative to the E906/SeaQuest spectrometer, and improving the modeling of background.« less

  10. Precise measurement of the top-quark mass in the lepton+jets topology at CDF II.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-11-02

    We present a measurement of the mass of the top quark from proton-antiproton collisions recorded at the CDF experiment in Run II of the Fermilab Tevatron. We analyze events from the single lepton plus jets final state (tt-->W(+)bW(-)b-->lnubqq'b). The top-quark mass is extracted using a direct calculation of the probability density that each event corresponds to the tt final state. The probability is a function of both the mass of the top quark and the energy scale of the calorimeter jets, which is constrained in situ by the hadronic W boson mass. Using 167 events observed in 955 pb(-1) of integrated luminosity, we achieve the single most precise measurement of the top-quark mass, 170.8+/-2.2(stat.)+/-1.4(syst.) GeV/c(2).

  11. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter

    NASA Astrophysics Data System (ADS)

    Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.

    2018-05-01

    The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.

  12. Symétries et nomenclature des baryons: Proposition d'une nouvelle nomenclature

    NASA Astrophysics Data System (ADS)

    Landry, Gaëtan

    Baryons, such as protons and neutrons, are matter particles made of three quarks. Their current nomenclature is based on the concept of isospin, introduced by Werner Heisenberg in 1932 to explain the similarity between the masses of protons and neutrons, as well as the similarity of their behaviour under the strong interaction. It is a refinement of a nomenclature designed in 1964, before the acceptance of the quark model, for light baryons. A historical review of baryon physics before the advent of the quark model is given to understand the motivations behind the light baryon nomenclature. Then, an overview of the quark model is given to understand the extensions done to this nomenclature in 1986, as well as to understand the physics of baryons and of properties such as isospin and flavour quantum numbers. Since baryon properties are in general explained by the quark model, a nomenclature based on isospin leads to several issues of physics and of clarity. To resolve these issues, the concepts of isospin and mass groups are generalized to all flavours of quarks, the Gell-Mann--Okubo formalism is extended to generalized mass groups, and a baryon nomenclature based on the quark model, reflecting modern knowledge, is proposed.

  13. Electroexcitation of nucleon resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inna Aznauryan, Volker D. Burkert

    2012-01-01

    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regimemore » for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.« less

  14. Sparticle spectroscopy of the minimal SO(10) model

    DOE PAGES

    Fukuyama, Takeshi; Okada, Nobuchika; Tran, Hieu Minh

    2017-02-14

    Here, the supersymmetric (SUSY) minimal SO(10) model is a well-motivated grand unified theory, where the Standard Model (SM) fermions have Yukawa couplings with only one 10-plet and onemore » $$\\overline{126}$$-plet Higgs fields and it is highly non-trivial if the realistic quark and lepton mass matrices can be reproduced in this context. It has been known that the best fit for all the SM fermion mass matrices is achieved by a vacuum expectation value of the $$\\overline{126}$$-plet Higgs field being at the intermediate scale of around O(10 13) GeV. Under the presence of the SO(10) symmetry breaking at the intermediate scale, the successful SM gauge coupling unification is at risk and likely to be spoiled. Recently, it has been shown that the low-energy fermion mass matrices, except for the down-quark mass predicted to be too low, are very well-fitted without the intermediate scale. In order to resolve the too-low down quark mass while keeping the other fittings intact, we consider SUSY threshold corrections to reproduce the right down quark mass. It turns out that this requires flavor-dependent soft parameters. Motivated by this fact, we calculate particle mass spectra at low energies with flavor-dependent sfermion masses at the grand unification scale. We present a benchmark particle mass spectrum which satisfies a variety of phenomenological constraints, in particular, the observed SM-like Higgs boson mass of around 125 GeV and the relic abundance of the neutralino dark matter as well as the experimental result of the muon anomalous magnetic moment. In the resultant mass spectrum, sleptons in the first and second generations, bino and winos are all light, and this scenario can be tested at the LHC Run-2 in the near future.« less

  15. STATIC QUARK ANTI-QUARK FREE AND INTERNAL ENERGY IN 2-FLAVOR QCD AND BOUND STATES IN THE QGP.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZANTOW, F.; KACZMAREK, O.

    2005-07-25

    We present results on heavy quark free energies in 2-flavour QCD. The temperature dependence of the interaction between static quark anti-quark pairs will be analyzed in terms of temperature dependent screening radii, which give a first estimate on the medium modification of (heavy quark) bound states in the quark gluon plasma. Comparing those radii to the (zero temperature) mean squared charge radii of chasmonium states indicates that the J/{Psi} may survive the phase transition as a bound state, while {chi}{sub c} and {Psi}{prime} are expected to show significant thermal modifications at temperatures close to the transition. Furthermore we will analyzemore » the relation between heavy quark free energies, entropy contributions and internal energy and discuss their relation to potential models used to analyze the melting of heavy quark bound states above the deconfinement temperature. Results of different groups and various potential models for bound states in the deconfined phase of QCD are compared.« less

  16. Search for scalar bottom quarks from gluino decays in collisions at.

    PubMed

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Dituro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciverez, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; di Giovanni, G P; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J L; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Dennis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-05-05

    We searched for scalar bottom quarks 156 pb(-1) of pp collisions at radicalS = 1.96 recorded by the Collider Detector at Fermilab II experiment at the Tevatron. Scalar bottom quarks can be produced from gluino decays in -parity conserving models of supersymmetry when the mass of the gluino exceeds that of the scalar bottom quark. Then, a scalar bottom quark can decay into a bottom quark and a neutralino. To search for this scenario, we investigated events with large missing transverse energy and at least three jets, two or more of which were identified as containing a secondary vertex from the hadronization of quarks. We found four candidate events, where 2.6 +/- 0.7 are expected from standard model processes, and placed 95% confidence level lower limits on gluino and scalar bottom quark masses of up to 280 and 240 GeV/c(2), respectively.

  17. Selected topics on dynamical symmetry breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veldhuis, W.T.A.

    1993-12-31

    In chapter 2 the fermion number induced by nontrivial topological configurations in the O(3) nonlinear {sigma} model in 2 + 1 dimensions is studied in the presence of a parity breaking fermion mass term. We consider a scalar background configuration that adiabatically evolves from the normal vacuum to a soliton of winding number unity. The appearance of zero energy modes is analyzed as a function of the relative magnitudes of the explicit, odd parity, fermion mass, m{sub odd}, the fermion mass induced by the Yukawa coupling, m{sub Y}, and the inverse soliton width, 1/{rho}{sub s}. We find {rho}{sub c}, themore » maximum value of {rho} = {rho}{sub s}m{sub Y} for which a fermion zero energy level crossing occurs during the adiabatical evolution. We obtain that whenever the ratio M{sub f} = m{sub odd}/m{sub Y} < 1 and {rho} > {rho}{sub c}(M{sub f}) the ground state charge of the soliton is wholly determined by its topological charge. Otherwise, it vanishes. In chapter 3 the top quark mass prediction in supersymmetric top condensate models is found to be insensitive to the inclusion of the effects of higher dimensional operators. For associated coefficients of characteristically moderate strength, the supersymmetric renormalization group trajectories are strongly focused to the infrared quasi-fixed point of the top Yukawa coupling constant. In chapter 4 the sensitivity of the top quark and Higgs boson masses in the top condensate model to two loop radiative corrections is studied. Both the top quark and the Higgs boson masses vary by a few GeV with respect to their values in the one loop calculation. Finally, in chapter 5 an upper bound on the mass of the lightest neutral scalar Higgs boson is calculated in an extended version of the minimal supersymmetric standard model that contains an additional Higgs singlet.« less

  18. Masses and decay constants of D(s) * and B(s) * mesons with Nf=2 +1 +1 twisted mass fermions

    NASA Astrophysics Data System (ADS)

    Lubicz, V.; Melis, A.; Simula, S.; ETM Collaboration

    2017-08-01

    We present a lattice calculation of the masses and decay constants of D(s) * and B(s) * mesons using the gauge configurations produced by the European Twisted Mass Collaboration (ETMC) with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing a ˜(0.06 -0.09 ) fm . Pion masses are simulated in the range Mπ≃(210 - 450 ) MeV , while the strange and charm sea-quark masses are close to their physical values. We compute the ratios of vector to pseudoscalar masses and decay constants for various values of the heavy-quark mass mh in the range 0.7 mcphys≲mh≲3 mcphys . In order to reach the physical b -quark mass, we exploit the heavy quark effective theory prediction that, in the static limit of infinite heavy-quark mass, the considered ratios are equal to one. At the physical point our results are MD*/MD=1.0769 (79 ) , MDs*/MDs=1.0751(56 ), fD*/fD=1.078 (36 ), fDs*/fD s=1.087 (20 ), MB*/MB=1.0078 (15 ), MBs*/MBs=1.0083(10 ), fB*/fB=0.958 (22 ) and fBs*/fB s=0.974 (10 ). Combining them with the experimental values of the pseudoscalar meson masses (used as input to fix the quark masses) and the values of the pseudoscalar decay constants calculated by ETMC, we get MD*=2013 (14 ), MDs*=2116 (11 ), fD*=223.5 (8.4 ), fDs*=268.8 (6.6 ), MB*=5320.5 (7.6 ), MBs*=5411.36 (5.3 ), fB*=185.9 (7.2 ) and fBs*=223.1 (5.4 ) MeV .

  19. Strange Quark Matter Status and Prospects

    NASA Technical Reports Server (NTRS)

    Sandweiss, J.

    2004-01-01

    The existence of quark states with more than three quarks is allowed in QCD. The stability of such quark matter states has been studied with lattice QCD and phenomenological bag models, but is not well constrained by theory. The addition of strange quarks to the system allows the quarks to be in lower energy states despite the additional mass penalty. There is additional stability from reduced Coulomb repulsion. SQM is expected to have a low Z/A. Stable or metastable massive multiquark states contain u, d, and s quarks.

  20. Potential description of the charmonium from lattice QCD

    NASA Astrophysics Data System (ADS)

    Kawanai, Taichi; Sasaki, Shoichi

    2016-01-01

    We present spin-independent and spin-spin interquark potentials for charmonium states, that are calculated using a relativistic heavy quark action for charm quarks on the PACS-CS gauge configurations generated with the Iwasaki gauge action and 2+1 flavors of Wilson clover quark. The interquark potential with finite quark masses is defined through the equal-time Bethe-Salpeter amplitude. The light and strange quark masses are close to the physical point where the pion mass corresponds to Mπ ≈ 156(7) MeV, and charm quark mass is tuned to reproduce the experimental values of ηc and J/ψ states. Our simulations are performed with a lattice cutoff of a-1 ≈ 2.2 GeV and a spatial volume of (3 fm)3. We solve the nonrelativistic Schrödinger equation with resulting charmonium potentials as theoretical inputs. The resultant charmonium spectrum below the open charm threshold shows a fairly good agreement with experimental data of well-established charmonium states.

  1. Bottomonium continuous production from unequilibrium bottom quarks in ultrarelativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Chen, Baoyi; Zhao, Jiaxing

    2017-09-01

    We employ the Langevin equation and Wigner function to describe the bottom quark dynamical evolutions and their formation into a bound state in the expanding Quark Gluon Plasma (QGP). The additional suppressions from parton inelastic scatterings are supplemented in the regenerated bottomonium. Hot medium modifications on ϒ (1 S) properties are studied consistently by taking the bottomonium potential to be the color-screened potential from Lattice results, which affects both ϒ (1 S) regeneration and dissociation rates. Finally, we calculated the ϒ (1 S) nuclear modification factor RAA rege from bottom quark combination with different diffusion coefficients in Langevin equation, representing different thermalization of bottom quarks. In the central Pb-Pb collisions (b = 0) at √{sNN} = 5.02 TeV, we find a non-negligible ϒ (1 S) regeneration, and it is small in the minimum bias centrality. The connections between bottomonium regeneration and bottom quark energy loss in the heavy ion collisions are also discussed.

  2. Threshold corrections to the bottom quark mass revisited

    DOE PAGES

    Anandakrishnan, Archana; Bryant, B. Charles; Raby, Stuart

    2015-05-19

    Threshold corrections to the bottom quark mass are often estimated under the approximation that tan β enhanced contributions are the most dominant. In this work we revisit this common approximation made to the estimation of the supersymmetric thresh-old corrections to the bottom quark mass. We calculate the full one-loop supersymmetric corrections to the bottom quark mass and survey a large part of the phenomenological MSSM parameter space to study the validity of considering only the tan β enhanced corrections. Our analysis demonstrates that this approximation underestimates the size of the threshold corrections by ~12.5% for most of the considered parametermore » space. We discuss the consequences for fitting the bottom quark mass and for the effective couplings to Higgses. Here, we find that it is important to consider the additional contributions when fitting the bottom quark mass but the modifications to the effective Higgs couplings are typically O(few)% for the majority of the parameter space considered.« less

  3. Free energy of a heavy quark-antiquark pair in a thermal medium from AdS/CFT

    NASA Astrophysics Data System (ADS)

    Ewerz, Carlo; Kaczmarek, Olaf; Samberg, Andreas

    2018-03-01

    We study the free energy of a heavy quark-antiquark pair in a thermal medium using the AdS/CFT correspondence. We point out that a commonly used prescription for calculating this quantity leads to a temperature dependence in conflict with general properties of the free energy. The problem originates from a particular way of subtracting divergences. We argue that the commonly used prescription gives rise to the binding energy rather than the free energy. We consider a different subtraction procedure and show that the resulting free energy is well-behaved and in qualitative agreement with results from lattice QCD. The free energy and the binding energy of the quark pair are computed for N=4 supersymmetric Yang-Mills theory and several non-conformal theories. We also calculate the entropy and the internal energy of the pair in these theories. Using the consistent subtraction, we further study the free energy, entropy, and internal energy of a single heavy quark in the thermal medium for various theories. Also here the results are found to be in qualitative agreement with lattice QCD results.

  4. Determination of |V(us)|| from a lattice QCD calculation of the K → πℓν semileptonic form factor with physical quark masses.

    PubMed

    Bazavov, A; Bernard, C; Bouchard, C M; Detar, C; Du, Daping; El-Khadra, A X; Foley, J; Freeland, E D; Gámiz, E; Gottlieb, Steven; Heller, U M; Kim, Jongjeong; Kronfeld, A S; Laiho, J; Levkova, L; Mackenzie, P B; Neil, E T; Oktay, M B; Qiu, Si-Wei; Simone, J N; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran

    2014-03-21

    We calculate the kaon semileptonic form factor f+(0) from lattice QCD, working, for the first time, at the physical light-quark masses. We use gauge configurations generated by the MILC Collaboration with Nf = 2 + 1 + 1 flavors of sea quarks, which incorporate the effects of dynamical charm quarks as well as those of up, down, and strange. We employ data at three lattice spacings to extrapolate to the continuum limit. Our result, f+(0) = 0.9704(32), where the error is the total statistical plus systematic uncertainty added in quadrature, is the most precise determination to date. Combining our result with the latest experimental measurements of K semileptonic decays, one obtains the Cabibbo-Kobayashi-Maskawa matrix element |V(us)| = 0.22290(74)(52), where the first error is from f+(0) and the second one is from experiment. In the first-row test of Cabibbo-Kobayashi-Maskawa unitarity, the error stemming from |V(us)| is now comparable to that from |V(ud)|.

  5. Nucleon Spin Structure and Constituent Quark Model

    NASA Astrophysics Data System (ADS)

    Wang, Fan; Qing, Di; Chen, Xiang-Song; Goldman, T.

    1998-10-01

    The success of the constituent quark model has been challenged by the nucleon spin structure discovered in polarized deep inelastic scattering (DIS). We find that this puzzle is due to misidentifying the axial charge Δ q and the nonrelativistic quark spin. The space component of the quark axial vector current operator, int d^3x\\overlineψ γγ_5ψ =2s_q, defines the quark spin operator s_q, including not only the Pauli spin operator, which corresponds to the nonrelativistic quark spin s_q^NR, but also relativistic and quark-antiquark pair creation (annihilation) correction terms. Both of these suppress the quark spin contribution for a nucleon at rest due to transverse motion of the quark. The relativistic quark orbital angular momentum operator L_q=int d^3x\\overlineψ x× fracpartial iψ includes L^NRq and two correction terms which are exactly the same as those of sq but of opposite sign. They provide compensation which keeps the total nucleon spin frac 12 untouched no matter what kind of quark model is used. Nucleon spin can be decomposed either as s_q+Lq or as s_q^NR+L_q^NR. (The gluon degree of freedom is assumed to be frozen in the nucleon ground state at low energy scales.) The tensor charge δ q=int d^3x\\overlineψ Σ ψ of the nucleon is predicted to have similar but smaller corrections.

  6. Physics beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2011-04-01

    Recent discoveries of the excited states of the Bs** meson along with the discovery of the omega-b-minus have brought into popular acceptance the concept of the orbiting quarks predicted by the Checker Board Model (CBM) 14 years ago. Back then the concept of orbiting quarks was not fashionable. Recent estimates of velocities of these quarks inside the proton and neutron are in excess of 90% the speed of light also in agreement with the CBM model. Still a 2D structure of the nucleus has not been accepted nor has it been proven wrong. The CBM predicts masses of the up and dn quarks are 237.31 MeV and 42.392 MeV respectively and suggests that a lighter generation of quarks u and d make up a different generation of quarks that make up light mesons. The CBM also predicts that the T' and B' quarks do exist and are not as massive as might be expected. (this would make it a 5G world in conflict with the SM) The details of the CB model and prediction of quark masses can be found at: http://checkerboard.dnsalias.net/ (1). T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000). (2). T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/.

  7. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    DOE PAGES

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; ...

    2015-01-07

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  8. A discussion on leading renormalon in the pole mass

    NASA Astrophysics Data System (ADS)

    Komijani, J.

    2017-08-01

    Perturbative series of some quantities in quantum field theories, such as the pole mass of a quark, suffer from a kind of divergence called renormalon divergence. In this paper, the leading renormalon in the pole mass is investigated, and a map is introduced to suppress this renormalon. The inverse of the map is then used to generate the leading renormalon and obtain an expression to calculate its overall normalization. Finally, the overall normalization of the leading renormalon of the pole mass is calculated for several values of quark flavors.

  9. Nonperturbative renormalization of quark bilinear operators and B{sub K} using domain wall fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Y.; Dawson, C.; Brookhaven National Laboratory, Upton, New York 11973

    2008-09-01

    We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-K mixing parameter B{sub K}. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed nonperturbatively and then matched perturbatively to the MS scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16{sup 3}x32 lattice volume, the Iwasaki gauge action at {beta}=2.13 and domain wall fermions with L{sub s}=16.

  10. Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks

    DOE PAGES

    Bazavov, A.; Bernard, C.; Komijani, J.; ...

    2014-10-30

    We compute the leptonic decay constants f D+, f Ds , and f K+, and the quark-mass ratios m c=m s and m s=m l in unquenched lattice QCD using the experimentally determined value of f π+ for normalization. We use the MILC Highly Improved Staggered Quark (HISQ) ensembles with four dynamical quark flavors -- up, down, strange, and charm -- and with both physical and unphysical values of the light sea-quark masses. The use of physical pions removes the need for a chiral extrapolation, thereby eliminating a significant source of uncertainty in previous calculations. Four different lattice spacing ranging from a ≈ 0:06 fm to 0:15 fm are included in the analysis to control the extrapolation to the continuum limit. Our primary results are f D+ = 212:6(0:4)more » $$(^{+1.0}_{-1.2})$$ MeV, f Ds = 249:0(0:3)$$(^{+1.1}_{-1.5})$$ MeV, and f Ds/f D+ = 1:1712(10)$$(^{+29}_{-32})$$, where the errors are statistical and total systematic, respectively. The errors on our results for the charm decay constants and their ratio are approximately two to four times smaller than those of the most precise previous lattice calculations. We also obtain f K+/ f π+ = 1:1956(10)$$(^{+26}_{-18})$$, updating our previous result, and determine the quark-mass ratios m s/m l = 27:35(5)$$(^{+10}_{-7})$$ and m c/m s = 11:747(19)$$(^{+59}_{-43})$$. When combined with experimental measurements of the decay rates, our results lead to precise determinations of the CKM matrix elements !Vus! = 0:22487(51)(29)(20)(5), !Vcd! = 0:217(1)(5)(1) and !Vcs! = 1:010(5)(18)(6), where the errors are from this calculation of the decay constants, the uncertainty in the experimental decay rates, structure-dependent electromagnetic corrections, and, in the case of !Vus!, the uncertainty in |Vud|, respectively.« less

  11. Heavy quark radiation in NLO+PS POWHEG generators

    NASA Astrophysics Data System (ADS)

    Buonocore, Luca; Nason, Paolo; Tramontano, Francesco

    2018-02-01

    In this paper we deal with radiation from heavy quarks in the context of next-to-leading order calculations matched to parton shower generators. A new algorithm for radiation from massive quarks is presented that has considerable advantages over the one previously employed. We implement the algorithm in the framework of the POWHEG-BOX, and compare it with the previous one in the case of the hvq generator for bottom production in hadronic collisions, and in the case of the bb4l generator for top production and decay.

  12. D meson semileptonic form factors in Nf = 3 QCD with Möbius domain-wall quarks

    NASA Astrophysics Data System (ADS)

    Kaneko, Takashi; Colquhoun, Brian; Fukaya, Hidenori; Hashimoto, Shoji

    2018-03-01

    e present our calculation of D → π and D → K semileptonic form factors in Nf = 2 + 1 lattice QCD. We simulate three lattice cutoffs a-1 ≃ 2.5, 3.6 and 4.5 GeV with pion masses as low as 230 MeV. The Möbius domain-wall action is employed for both light and charm quarks. We present our results for the vector and scalar form factors and discuss their dependence on the lattice spacing, light quark masses and momentum transfer.

  13. Complex heavy-quark potential at finite temperature from lattice QCD.

    PubMed

    Rothkopf, Alexander; Hatsuda, Tetsuo; Sasaki, Shoichi

    2012-04-20

    We calculate for the first time the complex potential between a heavy quark and antiquark at finite temperature across the deconfinement transition in lattice QCD. The real and imaginary part of the potential at each separation distance r is obtained from the spectral function of the thermal Wilson loop. We confirm the existence of an imaginary part above the critical temperature T(C), which grows as a function of r and underscores the importance of collisions with the gluonic environment for the melting of heavy quarkonia in the quark-gluon plasma.

  14. Relativistic Few-Body Hadronic Physics Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyzou, Wayne

    2016-06-20

    The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computationsmore » push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In addition to computing bound state properties and scattering cross section, we also computed electron scattering cross sections in few-nucleon and few-quark systems, which are sensitive to the electric currents in these systems. We produced the definitive review on article on relativistic quantum mechanics, which and been used by many groups. In addition we developed and tested many computational techniques are used by other groups. Many of these techniques have applications in other areas of physics. The research benefited by collaborations with physicists from many different institutions and countries. It also involved working with seventeen undergraduate and graduate students.« less

  15. Search for resonant t t ¯ production in proton-proton collisions at √{s }=8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Ali, A.; Aly, R.; Aly, S.; Assran, Y.; Ellithi Kamel, A.; Lotfy, A.; Mahmoud, M. A.; Masod, R.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Pekkanen, J.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Husemann, U.; Kassel, F.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Jain, Sh.; Khurana, R.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Braghieri, A.; Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Dellacasa, G.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Mazza, G.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Ramirez Sanchez, G.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Toriashvili, T.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; du Pree, T.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, S. J.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Sen, S.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2016-01-01

    A search is performed for the production of heavy resonances decaying into top-antitop quark pairs in proton-proton collisions at √{s }=8 TeV . Data used for the analyses were collected with the CMS detector and correspond to an integrated luminosity of 19.7 fb-1 . The search is performed using events with three different final states, defined by the number of leptons (electrons and muons) from the t t ¯ →W b W b decay. The analyses are optimized for reconstruction of top quarks with high Lorentz boosts, where jet substructure techniques are used to enhance the sensitivity. Results are presented for all channels and a combination is performed. No significant excess of events relative to the expected yield from standard model processes is observed. Upper limits on the production cross section of heavy resonances decaying to t t ¯ are calculated. A narrow leptophobic topcolor Z' resonance with a mass below 2.4 TeV is excluded at 95% confidence level. Limits are also derived for a broad Z' resonance with a 10% width relative to the resonance mass, and a Kaluza-Klein excitation of the gluon in the Randall-Sundrum model. These are the most stringent limits to date on heavy resonances decaying into top-antitop quark pairs.

  16. The qqqqq components and hidden flavor contributions to the baryon magnetic moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, C. S.; Li, Q. B.; Riska, D. O.

    2006-11-15

    The contributions from the qqqqq components to the magnetic moments of the octet as well as the {delta}{sup ++} and {omega}{sup -} decuplet baryons are calculated for the configurations that are expected to have the lowest energy if the hyperfine interaction depends on both spin and flavor. The contributions from the uu,dd, and the ss components are given separately. It is shown that addition of qqqqq admixtures to the ground state baryons can improve the overall description of the magnetic moments of the baryon octet and decuplet in the quark model without SU(3) flavor symmetry breaking, beyond that of themore » different constituent masses of the strange and light-flavor quarks. The explicit flavor (and spin) wave functions for all the possible configurations of the qqqqq components with light and strange qq pairs are given for the baryon octet and decuplet. Admixtures of {approx}10% of the qqqqq configuration where the flavor-spin symmetry is [4]{sub FS}[22]{sub F}[22]{sub S}, which is likely to have the lowest energy, in particular reduces the deviation from the empirical values of the magnetic moments {sigma}{sup -} and the {xi}{sup 0} compared with the static qqq quark model.« less

  17. Kicks of magnetized strange quark stars induced by anisotropic emission of neutrinos

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Manreza Paret, D.; Pérez Martínez, A.; Piccinelli, Gabriella; Sánchez, Angel; Ruíz Montaño, Jorge S.

    2018-05-01

    We study the anisotropic neutrino emission from the core of neutron stars induced by the star's magnetic field. We model the core as made out of a magnetized ideal gas of strange quark matter and implement the conditions for stellar equilibrium in this environment. The calculation is performed without resorting to analytical simplifications and for temperature, density, and magnetic field values corresponding to typical conditions for a neutron star's evolution. The anisotropic neutrino emission produces a rocket effect that contributes to the star's kick velocity. We find that the computed values for the kick velocity lie within the range of the observed values, reaching velocities of the order of ˜1000 km s-1 for magnetic fields between 1015-1018 G and radii of 20 to 5 km, respectively.

  18. Study of the s - s bar asymmetry in the proton

    NASA Astrophysics Data System (ADS)

    Goharipour, Muhammad

    2018-05-01

    The study of s - s bar asymmetry is essential to better understand of the structure of nucleon and also the perturbative and nonperturbative mechanisms for sea quark generation. Actually, the nature and dynamical origins of this asymmetry have always been an interesting subject to research both experimentally and theoretically. One of the most powerful models can lead to s - s bar asymmetry is the meson-baryon model (MBM). In this work, using a simplified configuration of this model suggested by Pumplin, we calculate the s - s bar asymmetry for different values of cutoff parameter Λ, to study the dependence of model to this parameter and also to estimate the theoretical uncertainty imposed on the results due to its uncertainty. Then, we study the evolution of distributions obtained both at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) using different evolution schemes. It is shown that the evolution of the intrinsic quark distributions from a low initial scale, as suggested by Chang and Pang, is not a good choice at NNLO using variable flavor number scheme (VFNS).

  19. Model of flavor unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.E.

    1980-12-15

    An SU(7) model is presented toward a flavor unification for known particles. The t quark is not a partner of the b quark. There are three types of neutrinos and several: so far unobserved: light detectable particles (masses <300 GeV): a doubly charged lepton T/sup - -/, a Q=-4/3 quark x, and a Q=5/3 quark y. An intermediate mass scale is a necessity and there is no problem of magnetic monopoles.

  20. Octet baryon magnetic moments from lattice QCD: Approaching experiment from a three-flavor symmetric point

    DOE PAGES

    Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; ...

    2017-06-23

    We used lattice QCD calculations with background magnetic fields to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the SU(3) flavor-symmetric point, where the pion mass is m π ~ 800 MeV, and the other corresponding to a pion mass m π ~ 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units---the natural baryon magneton. This suggests that simple extrapolations can be used to determinemore » magnetic moments at the physical point, and extrapolated results are found to agree with experiment within uncertainties. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-N c limit of QCD are studied; and, in one case, the quark model prediction is significantly closer to the extracted values than the large-N c prediction. The magnetically coupled Λ-Σ 0 system is treated in detail at the SU(3) F point, with the lattice QCD results comparing favorably with predictions based on SU(3) F symmetry. Our analysis enables the first extraction of the isovector transition magnetic polarizability. The possibility that large magnetic fields stabilize strange matter is explored, but such a scenario is found to be unlikely.« less

  1. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  2. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE PAGES

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan; ...

    2016-01-04

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  3. Comment on 'Controversy concerning the definition of quark and gluon angular momentum' by Elliot Leader [PRD 83, 096012 (2011)

    NASA Astrophysics Data System (ADS)

    Lin, Huey-Wen; Liu, Keh-Fei

    2012-03-01

    It is argued by the author that the canonical form of the quark energy-momentum tensor with a partial derivative instead of the covariant derivative is the correct definition for the quark momentum and angular momentum fraction of the nucleon in covariant quantization. Although it is not manifestly gauge-invariant, its matrix elements in the nucleon will be nonvanishing and are gauge-invariant. We test this idea in the path-integral quantization by calculating correlation functions on the lattice with a gauge-invariant nucleon interpolation field and replacing the gauge link in the quark lattice momentum operator with unity, which corresponds to the partial derivative in the continuum. We find that the ratios of three-point to two-point functions are zero within errors for both the u and d quarks, contrary to the case without setting the gauge links to unity.

  4. Leading-twist parton distribution amplitudes of S-wave heavy-quarkonia

    DOE PAGES

    Ding, Minghui; Gao, Fei; Chang, Lei; ...

    2015-12-08

    Here, the leading-twist parton distribution amplitudes (PDAs) of ground-state 1S 0 and 3S 1 cc¯- and bb¯quarkonia are calculated using a symmetry-preserving continuum treatment of the meson bound-state problem which unifies the properties of these heavy-quark systems with those of light-quark bound-states, including QCD's Goldstone modes. Analysing the evolution of 1S 0 and 3S 1 PDAs with current-quark mass, m^ q, increasing away from the chiral limit, it is found that in all cases there is a value of m^ q for which the PDA matches the asymptotic form appropriate to QCD's conformal limit and hence is insensitive to changesmore » in renormalisation scale, ζ. This mass lies just above that associated with the s-quark. At current-quark masses associated with heavy-quarkonia, on the other hand, the PDAs are piecewise convex–concave–convex.« less

  5. The Kalman-Tran-D'Souza model and the semileptonic decay rates of heavy baryons

    NASA Astrophysics Data System (ADS)

    D'Souza, I.; Kalman, C. S.; Kulikov, P. Yu.; Narodetskii, I. M.

    2001-03-01

    We present an investigation of the inclusive semileptonic decay widths of the heavy baryons Λ Q, Σ Q and Ξ Q, ( q = b, c) performed within a relativistic constituent quark model, formulated on the light-front. In a way conceptually similar to the deep-inelastic scattering case, the H Q-baryon inclusive width is expressed as the integral of the free Q-quark partial width multiplied by a bound-state factor related to the Q-quark distribution function in the H Q. The non-perturbative meson structure is described through the quark-model wave functions, constructed via the Hamiltonian light-front formalism using as input the Kalman-Tran-D'Souza equal time wave functions. A link between spectroscopic quark models and the H Q decay physics is obtained in this way. It is shown that the bound-state effects and the Fermi motion of the b-quark remarkably reduce the decay rate with respect to the free-quark result. Our predictions for the BR(Λ c → X sl ν e) and BR(Λ b → X cl ν e) decays are in good agreement with existing data.

  6. The QCD form factor of heavy quarks at NNLO

    NASA Astrophysics Data System (ADS)

    Gluza, J.; Mitov, A.; Moch, S.; Riemann, T.

    2009-07-01

    We present an analytical calculation of the two-loop QCD corrections to the electromagnetic form factor of heavy quarks. The two-loop contributions to the form factor are reduced to linear combinations of master integrals, which are computed through higher orders in the parameter of dimensional regularization epsilon = (4-D)/2. Our result includes all terms of order epsilon at two loops and extends the previous literature. We apply the exponentiation of the heavy-quark form factor to derive new improved three-loop expansions in the high-energy limit. We also discuss the implications for predictions of massive n-parton amplitudes based on massless results in the limit, where the quark mass is small compared to all kinematical invariants.

  7. Prediction of the B{c}{*} mass in full lattice QCD.

    PubMed

    Gregory, E B; Davies, C T H; Follana, E; Gamiz, E; Kendall, I D; Lepage, G P; Na, H; Shigemitsu, J; Wong, K Y

    2010-01-15

    By using the highly improved staggered quark formalism to handle charm, strange, and light valence quarks in full lattice QCD, and NRQCD to handle bottom valence quarks, we are able to determine accurately ratios of the B meson vector-pseudoscalar mass splittings, in particular, [m(B{c}{*})-m(B{c})]/[m(B{s}{*})-m(B{s})]. We find this ratio to be 1.15(15), showing the "light" quark mass dependence of this splitting to be very small. Hence we predict m(B{c}{*})=6.330(7)(2)(6) GeV, where the first two errors are from the lattice calculation and the third from existing experiment. This is the most accurate prediction of a gold-plated hadron mass from lattice QCD to date.

  8. Searches for anomalous coupling in top-quark interaction with the W boson and b quark, along with searches for quark-flavor-changing neutral currents, in an analysis of data from the CMS experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boos, E. E.; Bunichev, V. E.; Vorotnikov, G. A.

    2016-01-15

    The results of searches for effects beyond the Standard Model in processes of single top-quark production in the CMS experiment are presented. Anomalous contributions of the vector and magnetic types in top-quark interaction with the W boson and b quark and quark-flavor-changing neutral currents in top-quark interaction with the c or u quark via gluon exchange were studied. The respective analysis was performed with the aid of Bayesian neural networks. No statistically significant deviations were found, and upper limits on anomalous couplings at a 95% confidence level were set.

  9. Quark Physics without Quarks: A Review of Recent Developments in S-Matrix Theory.

    ERIC Educational Resources Information Center

    Capra, Fritjof

    1979-01-01

    Reviews the developments in S-matrix theory over the past five years which have made it possible to derive results characteristic of quark models without any need to postulate the existence of physical quarks. In the new approach, the quark patterns emerge as a consequence of combining the general S-matrix principles with the concept of order.…

  10. Potential description of charmonium and charmed-strange mesons from lattice QCD

    NASA Astrophysics Data System (ADS)

    Kawanai, Taichi; Sasaki, Shoichi

    2015-11-01

    We present spin-independent and spin-spin interquark potentials for the charmonium and charmed-strange mesons, which are calculated in 2 +1 flavor lattice QCD simulations using the PACS-CS gauge configurations generated at the lightest pion mass (Mπ≈156 (7 ) MeV ) with a lattice cutoff of a-1≈2.2 GeV and a spatial volume of (3 fm )3 . For the charm quark, we use a relativistic heavy quark (RHQ) action with fine tuned RHQ parameters, which closely reproduce both the experimental spin-averaged mass and hyperfine splitting of the 1 S charmonium. The interquark potential and the quark kinetic mass, both of which are key ingredients within the potential description of heavy-heavy and heavy-light mesons, are determined from the equal-time Bethe-Salpeter (BS) amplitude. The charmonium potentials are obtained from the BS wave function of 1 S charmonia (ηc and J /ψ mesons), while the charmed-strange potential are calculated from the Ds and Ds* heavy-light mesons. We then use resulting potentials and quark masses as purely theoretical inputs so as to solve the nonrelativistic Schrödinger equation for calculating accessible energy levels of charmonium and charmed-strange mesons without unknown parameters. The resultant spectra below the D D ¯ and D K thresholds excellently agree with well-established experimental data.

  11. Endpoint Model of Exclusive Processes

    NASA Astrophysics Data System (ADS)

    Dagaonkar, Sumeet; Jain, Pankaj; Ralston, John P.

    2018-07-01

    The endpoint model explains the scaling laws observed in exclusive hadronic reactions at large momentum transfer in all experimentally important regimes. The model, originally conceived by Feynman and others, assumes a single valence quark carries most of the hadron momentum. The quark wave function is directly related to the momentum transfer dependence of the reaction. After extracting the momentum dependence of the quark wave function from one process, it explains all the others. Endpoint quark-counting rules relate the number of quarks in a hadron to the power-law. A universal linear endpoint behavior explains the proton electromagnetic form factors F1 and F2, proton-proton scattering at fixed-angle, the t-dependence of proton-proton scattering at large s>> t, and Compton scattering at fixed t. The model appears to be the only comprehensive mechanism consistent with all experimental information.

  12. Basic features of the pion valence-quark distribution function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Lei; Mezrag, Cédric; Moutarde, Hervé

    2014-10-07

    The impulse-approximation expression used hitherto to define the pion's valence-quark distribution function is flawed because it omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-independent result that quarks dressed via the rainbow–ladder truncation, or any practical analogue, carry all the pion's light-front momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic model to express the principal impact of both classes of corrections. This enables amore » realistic comparison with experiment that allows us to highlight the basic features of the pion's measurable valence-quark distribution, q π(x); namely, at a characteristic hadronic scale, q π(x)~(1-x) 2 for x≳0.85; and the valence-quarks carry approximately two-thirds of the pion's light-front momentum.« less

  13. Search for electroweak production of a vector-like quark decaying to a top quark and a Higgs boson using boosted topologies in fully hadronic final states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    A search is performed for electroweak production of a vector-like top quark partner T of charge 2/3 in association with a standard model top or bottom quark, using 2.3 fb –1 of proton-proton collision data atmore » $$\\sqrt{s}$$ = 13 TeV collected by the CMS experiment at the CERN LHC. The search targets T quarks decaying to a top quark and a Higgs boson in fully hadronic final states. For a T quark with mass above 1 TeV the daughter top quark and Higgs boson are highly Lorentz-boosted and can each appear as a single hadronic jet. Jet substructure and b tagging techniques are used to identify the top quark and Higgs boson jets, and to suppress the standard model backgrounds. An excess of events is searched for in the T quark candidate mass distribution in the data, which is found to be consistent with the expected backgrounds. Upper limits at 95% confidence level are set on the product of the single T quark production cross sections and the branching fraction B(T → tH), and these vary between 0.31 and 0.93 pb for T quark masses in the range 1000-1800 GeV. Finally, this is the first search for single electroweak production of a vector-like T quark in fully hadronic final states.« less

  14. Search for electroweak production of a vector-like quark decaying to a top quark and a Higgs boson using boosted topologies in fully hadronic final states

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Chekhovsky, V.; Dvornikov, O.; Dydyshka, Y.; Emeliantchik, I.; Litomin, A.; Makarenko, V.; Mossolov, V.; Stefanovitch, R.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Micanovic, S.; Sudic, L.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; SavoyNavarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chistov, R.; Danilov, M.; Polikarpov, S.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Sandoval Gonzalez, I. D.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Wilson, G.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-04-01

    A search is performed for electroweak production of a vector-like top quark partner T of charge 2/3 in association with a standard model top or bottom quark, using 2.3 fb-1 of proton-proton collision data at √{s}=13 TeV collected by the CMS experiment at the CERN LHC. The search targets T quarks decaying to a top quark and a Higgs boson in fully hadronic final states. For a T quark with mass above 1 TeV the daughter top quark and Higgs boson are highly Lorentz-boosted and can each appear as a single hadronic jet. Jet substructure and b tagging techniques are used to identify the top quark and Higgs boson jets, and to suppress the standard model backgrounds. An excess of events is searched for in the T quark candidate mass distribution in the data, which is found to be consistent with the expected backgrounds. Upper limits at 95% confidence level are set on the product of the single T quark production cross sections and the branching fraction B(T\\to tH) , and these vary between 0.31 and 0.93 pb for T quark masses in the range 1000-1800 GeV. This is the first search for single electroweak production of a vector-like T quark in fully hadronic final states. [Figure not available: see fulltext.

  15. Search for electroweak production of a vector-like quark decaying to a top quark and a Higgs boson using boosted topologies in fully hadronic final states

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2017-04-21

    A search is performed for electroweak production of a vector-like top quark partner T of charge 2/3 in association with a standard model top or bottom quark, using 2.3 fb –1 of proton-proton collision data atmore » $$\\sqrt{s}$$ = 13 TeV collected by the CMS experiment at the CERN LHC. The search targets T quarks decaying to a top quark and a Higgs boson in fully hadronic final states. For a T quark with mass above 1 TeV the daughter top quark and Higgs boson are highly Lorentz-boosted and can each appear as a single hadronic jet. Jet substructure and b tagging techniques are used to identify the top quark and Higgs boson jets, and to suppress the standard model backgrounds. An excess of events is searched for in the T quark candidate mass distribution in the data, which is found to be consistent with the expected backgrounds. Upper limits at 95% confidence level are set on the product of the single T quark production cross sections and the branching fraction B(T → tH), and these vary between 0.31 and 0.93 pb for T quark masses in the range 1000-1800 GeV. Finally, this is the first search for single electroweak production of a vector-like T quark in fully hadronic final states.« less

  16. Results on top-quark physics and top-quark-like signatures by CMS

    NASA Astrophysics Data System (ADS)

    Chabert, Eric; CMS Collaboration

    2017-07-01

    This report reviews the results obtained by the CMS Collaboration on top quark physics, focusing on the latest ones based on p-p collisions provided by the LHC at \\sqrt{s}=13{{TeV}} during Run II. It covers measurements of single-top, top quark pairs and associated productions as well as measurements of top quark properties. Finally several beyond the standard model searches involving top quark in the final states are presented, such as searches for supersymmetry in the third generation, heavy resonances decaying into a top quark pair, or dark matter produced in association to a single-top or a top quark pair.

  17. Transverse momentum correlations of quarks in recursive jet models

    NASA Astrophysics Data System (ADS)

    Artru, X.; Belghobsi, Z.; Redouane-Salah, E.

    2016-08-01

    In the symmetric string fragmentation recipe adopted by PYTHIA for jet simulations, the transverse momenta of successive quarks are uncorrelated. This is a simplification but has no theoretical basis. Transverse momentum correlations are naturally expected, for instance, in a covariant multiperipheral model of quark hadronization. We propose a simple recipe of string fragmentation which leads to such correlations. The definition of the jet axis and its relation with the primordial transverse momentum of the quark is also discussed.

  18. E-Invariant Quantized Motion of Valence Quarks

    NASA Astrophysics Data System (ADS)

    Kreymer, E. L.

    2018-06-01

    In sub-proton space wave processes are impossible. The analog of the Klein-Gordon equation in sub-proton space is elliptical and describes a stationary system with a constant number of particles. For dynamical processes, separation of variables is used and in each quantum of motion of the quark two states are distinguished: a localization state and a translation state with infinite velocity. Alternation of these states describes the motion of a quark. The mathematical expectations of the lifetimes of the localization states and the spatial extents of the translation states for a free quark and for a quark in a centrally symmetric potential are found. The action after one quantum of motion is equal to the Planck constant. The one-sided Laplace transform is used to determine the Green's function. Use of path integrals shows that the quantized trajectory of a quark is a broken line enveloping the classical trajectory of oscillation of the quark. Comparison of the calculated electric charge distribution in a proton with its experimental value gives satisfactory results. A hypothesis is formulated, according to which the three Grand Geometries of space correspond to the three main interactions of elementary particles.

  19. Sakurai Prize: The Future of Higgs Physics

    NASA Astrophysics Data System (ADS)

    Dawson, Sally

    2017-01-01

    The discovery of the Higgs boson relied critically on precision calculations. The quantum contributions from the Higgs boson to the W and top quark masses suggested long before the Higgs discovery that a Standard Model Higgs boson should have a mass in the 100-200 GeV range. The experimental extraction of Higgs properties requires normalization to the predicted Higgs production and decay rates, for which higher order corrections are also essential. As Higgs physics becomes a mature subject, more and more precise calculations will be required. If there is new physics at high scales, it will contribute to the predictions and precision Higgs physics will be a window to beyond the Standard Model physics.

  20. Search for anomalous production of highly boosted Z bosons decaying to μ+μ- in proton-proton collisions at √{ s} = 7 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Scheurer, A.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bansal, M.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Michelotto, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Dattola, D.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Bachtis, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-05-01

    Results are reported from a search for the anomalous production of highly boosted Z bosons with large transverse momentum and decaying to μ+μ-. Such Z bosons may be produced in the decays of new heavy particles. The search uses pp collision data at √{ s} = 7 TeV, corresponding to an integrated luminosity of 5.0fb-1 recorded with the CMS detector. The shape of the observed transverse momentum distribution of Z bosons is consistent with standard model expectations. Constraints are obtained on models predicting the production of excited quarks decaying via electroweak processes. Assuming a compositeness scale that is equal to the excited quark mass as well as transition coupling strengths between Z bosons and excited quarks that are equal to standard model couplings to quarks, masses of excited quarks below 1.94 TeV are excluded at the 95% confidence level. For excited quark production via a novel contact interaction, masses below 2.22 TeV are excluded, even if the excited quarks do not couple to gluons.

  1. Bs and Ds decay constants in three-flavor lattice QCD.

    PubMed

    Wingate, Matthew; Davies, Christine T H; Gray, Alan; Lepage, G Peter; Shigemitsu, Junko

    2004-04-23

    Capitalizing on recent advances in lattice QCD, we present a calculation of the leptonic decay constants f(B(s)) and f(D(s)) that includes effects of one strange sea quark and two light sea quarks via an improved staggered action. By shedding the quenched approximation and the associated lattice scale uncertainty, lattice QCD greatly increases its predictive power. Nonrelativistic QCD is used to simulate heavy quarks with masses between 1.5m(c) and m(b). We arrive at the following results: f(B(s))=260+/-7+/-26+/-8+/-5 and f(D(s))=290+/-20+/-29+/-29+/-6 MeV. The first quoted error is the statistical uncertainty, and the rest estimate the sizes of higher order terms neglected in this calculation. All of these uncertainties are systematically improvable by including another order in the weak coupling expansion, the nonrelativistic expansion, or the Symanzik improvement program.

  2. Many body effects in nuclear matter QCD sum rules

    NASA Astrophysics Data System (ADS)

    Drukarev, E. G.; Ryskin, M. G.; Sadovnikova, V. A.

    2017-12-01

    We calculate the single-particle nucleon characteristics in symmetric nuclear matter with inclusion of the 3N and 4N interactions. We calculated the contribution of the 3N interactions earlier, now we add that of the 4N ones. The contribution of the 4N forces to nucleon self energies is expressed in terms of the nonlocal scalar condensate (d = 3) and of the configurations of the vector-scalar and the scalar-scalar quark condensates (d = 6) in which two diquark operators act on two different nucleons of the matter.These four-quark condensates are obtained in the model-independent way. The density dependence of the nucleon effective mass, of the vector self energy and of the single-particle potential energy are obtained. We traced the dependence of the nucleon characteristics on the actual value of the pion-nucleon sigma term. We obtained also the nucleon characteristics in terms of the quasifree nucleons, with the noninteracting nucleons surrounded by their pion clouds as the starting point. This approach leads to strict hierarchy of the many body forces.

  3. Production of heavy Higgs bosons and decay into top quarks at the LHC

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Galler, P.; Mellein, C.; Si, Z.-G.; Uwer, P.

    2016-02-01

    We investigate the production of heavy, neutral Higgs boson resonances and their decays to top-quark top-antiquark (t t ¯) pairs at the Large Hadron Collider (LHC) at next-to-leading order (NLO) in the strong coupling of quantum chromodynamics (QCD). The NLO corrections to heavy Higgs boson production and the Higgs-QCD interference are calculated in the large mt limit with an effective K-factor rescaling. The nonresonant t t ¯ background is taken into account at NLO QCD including weak-interaction corrections. In order to consistently determine the total decay widths of the heavy Higgs bosons, we consider for definiteness the type-II two-Higgs-doublet extension of the standard model and choose three parameter scenarios that entail two heavy neutral Higgs bosons with masses above the t t ¯ threshold and unsuppressed Yukawa couplings to top quarks. For these three scenarios we compute, for the LHC operating at 13 TeV, the t t ¯ cross section and the distributions of the t t ¯ invariant mass, of the transverse top-quark momentum and rapidity, and of the cosine of the Collins-Soper angle with and without the two heavy Higgs resonances. For selected Mt t ¯ bins we estimate the significances for detecting a heavy Higgs signal in the t t ¯ dileptonic and lepton plus jets decay channels.

  4. Leading Twist TMDs in a Light-Front Quark-Diquark Model for Proton

    NASA Astrophysics Data System (ADS)

    Maji, Tanmay; Chakrabarti, Dipankar

    2018-05-01

    We present p_{\\perp } variation (fixed x) of the leading-twist T-even transverse momentum dependent parton distributions (TMDs) of a proton in a light-front quark-diquark model at μ ^2=2.4 and 20 GeV^2. The quark densities for unpolarized and transversely polarized proton are also presented. We observe a Soffer bound for TMDs in this model.

  5. Phase structure of the Polyakov-quark-meson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, B.-J.; Pawlowski, J. M.; Wambach, J.

    2007-10-01

    The relation between the deconfinement and chiral phase transition is explored in the framework of a Polyakov-loop-extended two-flavor quark-meson (PQM) model. In this model the Polyakov loop dynamics is represented by a background temporal gauge field which also couples to the quarks. As a novelty an explicit quark chemical potential and N{sub f}-dependence in the Polyakov loop potential is proposed by using renormalization group arguments. The behavior of the Polyakov loop as well as the chiral condensate as function of temperature and quark chemical potential is obtained by minimizing the grand canonical thermodynamic potential of the system. The effect ofmore » the Polyakov loop dynamics on the chiral phase diagram and on several thermodynamic bulk quantities is presented.« less

  6. Parametrization of a nonlocal chiral quark model in the instantaneous three-flavor case. Basic formulas and tables

    NASA Astrophysics Data System (ADS)

    Grigorian, H.

    2007-05-01

    We describe the basic formulation of the parametrization scheme for the instantaneous nonlocal chiral quark model in the three-flavor case. We choose to discuss the Gaussian, Lorentzian-type, Woods-Saxon, and sharp cutoff (NJL) functional forms of the momentum dependence for the form factor of the separable interaction. The four parameters, light and strange quark masses and coupling strength (G S) and range of the interaction (Λ), have been fixed by the same phenomenological inputs: pion and kaon masses and the pion decay constant and light quark mass in vacuum. The Woods-Saxon and Lorentzian-type form factors are suitable for an interpolation between sharp cutoff and soft momentum dependence. Results are tabulated for applications in models of hadron structure and quark matter at finite temperatures and chemical potentials, where separable models have been proven successfully.

  7. Interquark potential with finite quark mass from lattice QCD.

    PubMed

    Kawanai, Taichi; Sasaki, Shoichi

    2011-08-26

    We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1  GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined. © 2011 American Physical Society

  8. Weak mixing below the weak scale in dark-matter direct detection

    NASA Astrophysics Data System (ADS)

    Brod, Joachim; Grinstein, Benjamin; Stamou, Emmanuel; Zupan, Jure

    2018-02-01

    If dark matter couples predominantly to the axial-vector currents with heavy quarks, the leading contribution to dark-matter scattering on nuclei is either due to one-loop weak corrections or due to the heavy-quark axial charges of the nucleons. We calculate the effects of Higgs and weak gauge-boson exchanges for dark matter coupling to heavy-quark axial-vector currents in an effective theory below the weak scale. By explicit computation, we show that the leading-logarithmic QCD corrections are important, and thus resum them to all orders using the renormalization group.

  9. Higher Order Heavy Quark Corrections to Deep-Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Blümlein, Johannes; DeFreitas, Abilio; Schneider, Carsten

    2015-04-01

    The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q2. We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring αs (MZ), the charm quark mass mc, and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.

  10. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    NASA Astrophysics Data System (ADS)

    Bijnens, Johan; Rössler, Thomas

    2015-11-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique.

  11. Comparison of different source calculations in two-nucleon channel at large quark mass

    NASA Astrophysics Data System (ADS)

    Yamazaki, Takeshi; Ishikawa, Ken-ichi; Kuramashi, Yoshinobu

    2018-03-01

    We investigate a systematic error coming from higher excited state contributions in the energy shift of light nucleus in the two-nucleon channel by comparing two different source calculations with the exponential and wall sources. Since it is hard to obtain a clear signal of the wall source correlation function in a plateau region, we employ a large quark mass as the pion mass is 0.8 GeV in quenched QCD. We discuss the systematic error in the spin-triplet channel of the two-nucleon system, and the volume dependence of the energy shift.

  12. Wilson loops in warped resolved deformed conifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Stephen, E-mail: pystephen@swansea.ac.uk

    We calculate quark-antiquark potentials using the relationship between the expectation value of the Wilson loop and the action of a probe string in the string dual. We review and categorise the possible forms of the dependence of the energy on the separation between the quarks. In particular, we examine the possibility of there being a minimum separation for probe strings which do not penetrate close to the origin of the bulk space, and derive a condition which determines whether this is the case. We then apply these considerations to the flavoured resolved deformed conifold background of Gaillard et al. (2010)more » . We suggest that the unusual behaviour that we observe in this solution is likely to be related to the IR singularity which is not present in the unflavoured case. - Highlights: > We calculate quark-antiquark potentials using the Wilson loop and the action of a probe string in the string dual. > We review and categorise the possible forms of the dependence of the energy on the separation between the quarks. > We look in particular at the flavoured resolved deformed conifold. > There appears to be unusual behaviour which seems likely to be related to the IR singularity introduced by flavours.« less

  13. Canonical coordinates and meson spectra for scalar deformed Script N = 4 SYM from the AdS/CFT correspondence

    NASA Astrophysics Data System (ADS)

    Shock, Jonathan P.

    2006-10-01

    Two points on the Coulomb branch of Script N = 4 super Yang Mills are investigated using their supergravity duals. By switching on condensates for the scalars in the Script N = 4 multiplet with a form which preserves a subgroup of the original R-symmetry, disk and sphere configurations of D3-branes are formed in the dual supergravity background. The analytic, canonical metric for these geometries is formulated and the singularity structure is studied. Quarks are introduced into the corresponding field theories using D7-brane probes and the meson spectrum is calculated. For one of the condensate configurations, a mass gap is found and shown analytically to be present in the massless limit. It is also found that there is a stepped spectrum with eigenstate degeneracy in the limit of small quark masses and this result is shown analytically. In the second, similar deformation it is necessary to understand the full D3-D7 brane interaction to study the limit of small quark masses. For quark masses larger than the condensate scale the spectrum is calculated and shown to be discrete as expected.

  14. Measuring top-quark polarization in top-pair + missing-energy events.

    PubMed

    Berger, Edmond L; Cao, Qing-Hong; Yu, Jiang-Hao; Zhang, Hao

    2012-10-12

    The polarization of a top quark can be sensitive to new physics beyond the standard model. Since the charged lepton from top-quark decay is maximally correlated with the top-quark spin, it is common to measure the polarization from the distribution in the angle between the charged lepton and the top-quark directions. We propose a novel method based on the charged lepton energy fraction and illustrate the method with a detailed simulation of top-quark pairs produced in supersymmetric top squark pair production. We show that the lepton energy ratio distribution that we define is very sensitive to the top-quark polarization but insensitive to the precise measurement of the top-quark energy.

  15. Is There Really a Spin Crisis?

    NASA Astrophysics Data System (ADS)

    Qing, Di; Chen, XiangSong; Su, WeiNing; Wang, Fan

    1999-10-01

    The matrix element of quark axial vector current is shown to be different from the nonrelativistic quark spin sum for a nucleon at rest. The nucleon spin content discovered in polarized deep inelastic scattering is shown to be accommodated in a constituent quark model with 15% sea quark component mixing. The relativistic correction and sea quark pair excitation inherently related to quark axial vector current reduce the nucleon axial charge and this reduction is compensated by the relativistic quark orbital angular momentum exactly and in turn keeps the nucleon spin 1/2 untouched. Nucleon tensor charge has similar but smaller relativistic and sea quark pair excitation reduction. The project supported in part by the NSF (19675018), SED and SSTD of China

  16. 2D model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore M.

    2003-10-01

    The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.

  17. The 5th Generation model of Particle Physics

    NASA Astrophysics Data System (ADS)

    Lach, Theodore

    2009-05-01

    The Standard model of Particle Physics is able to account for all known HEP phenomenon, yet it is not able to predict the masses of the quarks or leptons nor can it explain why they have their respective values. The Checker Board Model (CBM) predicts that there are 5 generation of quarks and leptons and shows a pattern to those masses, namely each three quarks or leptons (within adjacent generations or within a generation) are related to each other by a geometric mean relationship. A 2D structure of the nucleus can be imaged as 2D plate spinning on its axis, it would for all practical circumstances appear to be a 3D object. The masses of the hypothesized ``up'' and ``dn'' quarks determined by the CBM are 237.31 MeV and 42.392 MeV respectively. These new quarks in addition to a lepton of 7.4 MeV make up one of the missing generations. The details of this new particle physics model can be found at the web site: checkerboard.dnsalias.net. The only areas were this theory conflicts with existing dogma is in the value of the mass of the Top quark. The particle found at Fermi Lab must be some sort of composite particle containing Top quarks.

  18. Checker Board Model predicts 5 Generations of Quarks

    NASA Astrophysics Data System (ADS)

    Lach, Theodore M., II

    2002-10-01

    The Checker Board Model (CBM) of the nucleus is a 2 Dimensional model that relies on the belief that nature is superbly symmetric and the belief that the synchronization of the 2 outer rotating quarks in the nucleons accounts for magnetic moment of the nucleons and that the magnetic flux from the nucleons couples (weaves) into the checker board array structures and this in addition to electrostatic forces of the rotating and stationary quarks accounts for the apparent strong nuclear force. The symmetry of the He nucleus, one might call it Super Symmetric, helps explain the stable structure of the alpha particle. A semi-classical (relativistic) approach was used to explain the mass of the proton and neutron, along with their magnetic moments and their absolute and relative sizes in terms of the above structure and two newly proposed quarks (1) : the "up" and the "dn" quarks, not to be confused with the lighter u and d quarks in the standard model. Using the prescribed 2D checkerboard arrays where protons go on dark squares and neutrons go on light squares, one is able to recreate all the known nuclei. This exercise came up with structures that could explain the rational for the Halo nuclei and why 9He was so unstable where as 8He was much more stable and 10He is not a bound structure. Since the heavy masses of the "up" and "dn" quark (237.31 MeV and 42.392 MeV respectively) did not fit within the standard model as candidates for u and d, a new model (New Physics) had to be invented that would explain why "up" and "dn" were so heavy. Trial and error resulted in the empirical fitting of these two new quarks into a scheme that placed them between the mass of u / d and the c / s quarks. This new particle physics model predicts that nature has 5 generations not 3. Perhaps it should be called the 5G model. The two new generations come from the "up" and "dn' quark and a much heavier generation of a 42.5 GeV "massive dn" or (Big Bottom, B') and 65 GeV "massive up" or (Big Top, T') quark. This model was uploaded to the lanl web server just before the Aug. 2000 NP meeting at Michigan State. (2) Subsequent versions of this paper explain the rational of the 27 GeV lepton, which this model dubbed the "gluon" and for that information please refer to pages 608 to 618 of the "Rise of the Standard Model", editors: Hoddeson, Brown, Riordan, and Dresden. NOTE: the 27 GeV lepton was predicted by this model and uploaded before the author read the Rise of the Standard Model, so indeed it was a prediction, not a fitting. Early on it was believed that the 27 GeV resonance was attributed to the finding of the gluon, yet today this is not the case and the standard model requires the gluon be massless. One key conflict between the 3G and 5G model is that the 3G model has established the mass of the "t" quark as 175 GeV based upon experimental findings, whereas the 5G model anticipates the "t" quark is hidden among the Upsilon mesons between 10 and 11 GeV. The recent find by CERN of an 113 GeV particle may end up being the meson of the combination of the massive "up" and massive "dn" (T' B'). The final convincing argument in favor of the 5G model is that all the masses of the quarks and leptons in this model are related with one another based upon a simple geometric mean. The masses of all the "up like" quarks fall on a straight line on semi-log paper, as do the "dn like" quarks, and the leptons. All three of these (equally spaced) curves come together at about 430 GeV. One last point, the upper bound masses of the neutrinos also fall on a straight line in this theory and also appear to join the other curves at about 430 GeV. The Checkerboard model has a close association with the Cluster Model, since the structures envisioned by the Cluster model are totally compatible with the CBM. Binding energies of the nuclei are also easily explained in this 2D model, see reference #1. (1). T.M. Lach, Checkerboard Structure of the Nucleus, Infinite Energy, Vol. 5, issue 30, (2000). (2). T.M. Lach, Masses of the Sub-Nuclear Particles, nucl-th/0008026, @http://xxx.lanl.gov/

  19. Model of Four-Dimensional Sub-Proton Euclidean Space with Real Time for Valence Quarks. Lagrangian Mechanics

    NASA Astrophysics Data System (ADS)

    Kreymer, E. L.

    2018-06-01

    The model of Euclidean space with imaginary time used in sub-hadron physics uses only part of it since this part is isomorphic to Minkowski space and has the velocity limit 0 ≤ ||v Ei|| ≤ 1. The model of four-dimensional Euclidean space with real time (E space), in which 0 ≤ ||v E|| ≤ ∞ is investigated. The vectors of this space have E-invariants, equal or analogous to the invariants of Minkowski space. All relations between physical quantities in E-space, after they are mapped into Minkowski space, satisfy the principles of SRT and are Lorentz-invariant, and the velocity of light corresponds to infinite velocity. Results obtained in the model are different from the physical laws in Minkowski space. Thus, from the model of the Lagrangian mechanics of quarks in a centrally symmetric attractive potential it follows that the energy-mass of a quark decreases with increase of the velocity and is equal to zero for v = ∞. This made it possible to establish the conditions of emission and absorption of gluons by quarks. The effect of emission of gluons by high-energy quarks was discovered experimentally significantly earlier. The model describes for the first time the dynamic coupling of the masses of constituent and current quarks and reveals new possibilities in the study of intrahardon space. The classical trajectory of the oscillation of quarks in protons is described.

  20. Baryon inhomogeneity generation in the quark-gluon plasma phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layek, Biswanath; Mishra, Ananta P.; Srivastava, Ajit M.

    2006-05-15

    We discuss the possibility of generation of baryon inhomogeneities in a quark-gluon plasma phase due to moving Z(3) interfaces. By modeling the dependence of effective mass of the quarks on the Polyakov loop order parameter, we study the reflection of quarks from collapsing Z(3) interfaces and estimate resulting baryon inhomogeneities in the context of the early universe. We argue that in the context of certain low energy scale inflationary models, it is possible that large Z(3) walls arise at the end of the reheating stage. Collapse of such walls could lead to baryon inhomogeneities which may be separated by largemore » distances near the QCD scale. Importantly, the generation of these inhomogeneities is insensitive to the order, or even the existence, of the quark-hadron phase transition. We also briefly discuss the possibility of formation of quark nuggets in this model, as well as baryon inhomogeneity generation in relativistic heavy-ion collisions.« less

  1. Chromomagnetic and chromoelectric dipole moments in the 4GTHDM

    NASA Astrophysics Data System (ADS)

    Hernández-Juárez, A.; Tavares, G.; Moyotl, A.

    2017-10-01

    The contributions to the chromomagnetic (CMDM) and chromoelectric (CEDM) dipole moments of the top quark are calculated in framework of the two-Higgs doublet model with a sequential fourth family. We only consider the contributions arising from the neutral scalar bosons H 0 and A 0, whereas the contribution of the charged scalar will be analyzed elsewhere. For the scalar boson masses we consider the degenerate case, with 200 GeV < mϕ < 500 GeV, while for the mass of the fourth family up quark we consider the interval 400 GeV < m t 4 < 600 GeV. It is found that the CMDM and CEDM are specially sensitive when mϕ is about 600 GeV and can reach the sizes of |at | ˜ 10-5 and |dt | ˜ 10-24 e cm, respectively.

  2. Low-energy effective worldsheet theory of a non-Abelian vortex in high-density QCD revisited: A regular gauge construction

    NASA Astrophysics Data System (ADS)

    Chatterjee, Chandrasekhar; Nitta, Muneto

    2017-04-01

    Color symmetry is spontaneously broken in quark matter at high density as a consequence of di-quark condensations with exhibiting color superconductivity. Non-Abelian vortices or color magnetic flux tubes stably exist in the color-flavor locked phase at asymptotically high density. The effective worldsheet theory of a single non-Abelian vortex was previously calculated in the singular gauge to obtain the C P2 model [1,2]. Here, we reconstruct the effective theory in a regular gauge without taking a singular gauge, confirming the previous results in the singular gauge. As a byproduct of our analysis, we find that non-Abelian vortices in high-density QCD do not suffer from any obstruction for the global definition of a symmetry breaking.

  3. Decay width of hadronic molecule structure for quarks

    NASA Astrophysics Data System (ADS)

    Chen, Xiaozhao; Lü, Xiaofu

    2018-06-01

    Based on the general form of the Bethe-Salpeter wave functions for the bound states consisting of two vector fields, we obtain the general formulas for the decay widths of molecular states composed of two heavy vector mesons with arbitrary spin and parity into a heavy meson plus a light meson. In this approach, our attention is still focused on the internal structure of heavy vector mesons in the molecular state. According to the molecule state model of exotic meson, we give the generalized Bethe-Salpeter wave function of molecular state as a four-quark state. Then the observed Y (3940 ) state is considered as a molecular state consisting of two heavy vector mesons D*0D¯*0 and the strong Y (3940 )→J /ψ ω decay width is calculated. The numerical result is consistent with the experimental values.

  4. Data-driven analysis for the temperature and momentum dependence of the heavy-quark diffusion coefficient in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xu, Yingru; Bernhard, Jonah E.; Bass, Steffen A.; Nahrgang, Marlene; Cao, Shanshan

    2018-01-01

    By applying a Bayesian model-to-data analysis, we estimate the temperature and momentum dependence of the heavy quark diffusion coefficient in an improved Langevin framework. The posterior range of the diffusion coefficient is obtained by performing a Markov chain Monte Carlo random walk and calibrating on the experimental data of D -meson RAA and v2 in three different collision systems at the Relativistic Heavy-Ion Collidaer (RHIC) and the Large Hadron Collider (LHC): Au-Au collisions at 200 GeV and Pb-Pb collisions at 2.76 and 5.02 TeV. The spatial diffusion coefficient is found to be consistent with lattice QCD calculations and comparable with other models' estimation. We demonstrate the capability of our improved Langevin model to simultaneously describe the RAA and v2 at both RHIC and the LHC energies, as well as the higher order flow coefficient such as D meson v3. We show that by applying a Bayesian analysis, we are able to quantitatively and systematically study the heavy flavor dynamics in heavy-ion collisions.

  5. DOE-high energy physics contract with the University of Hawaii. Final report, December 1, 1980-June 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-06-02

    Experimental research covered includes involvement in SLAC and Fermilab accelerator experiments and construction of the ''Muon String'' of the DUMAND project. Activities also included planning of future experiments at the SLC and Tevatron. Experiments addressed the search for the free quark, gluon radiation, reduced upper limits for the mass of neutrinos. The theoretical program includes exact calculation of flavor changing processes within the standard model, constraints on the weak coupling of heavy quarks, neutrino oscillation, the role of DEMONS in superconductivity, extended electroweak models, gauge models, the origin of electron/muon asymmetry in the beam dump, SU(5) and departures in unification.more » QCD and vector dominance predictions were reconciled in the electromagnetic decays of neutral pions and eta mesons, and it was proposed that the electron plus jet events seen by UAl along with their W events are to interpreted as the production and decay of top. The possibility of observable particle-antiparticle rate differences in hyperon decays as a test of CP-invariance was proposed. (LEW)« less

  6. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    NASA Astrophysics Data System (ADS)

    Gupta, Uma Shankar; Mohapatra, Ranjita K.; Srivastava, Ajit M.; Tiwari, Vivek K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using the Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.

  7. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Uma Shankar; Tiwari, Vivek K.; Mohapatra, Ranjita K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using themore » Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken's hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.« less

  8. Ab initio calculation of finite-temperature charmonium potentials

    NASA Astrophysics Data System (ADS)

    Evans, P. W. M.; Allton, C. R.; Skullerud, J.-I.

    2014-04-01

    The interquark potential in charmonium states is calculated in both the zero and nonzero temperature phases from a first-principles lattice QCD calculation. Simulations with two dynamical quark flavors are used with temperatures T in the range 0.4Tc≲T≲1.7Tc, where Tc is the deconfining temperature. The correlators of point-split operators are analyzed to gain spatial information about the charmonium states. A method introduced by the HAL QCD Collaboration and based on the Schrödinger equation is applied to obtain the interquark potential. We find a clear temperature dependence with the central potential agreeing with the Cornell potential in the confined phase and becoming flatter (more screened) as the temperature increases past the deconfining temperature. This is the first time the interquark potential has been calculated for realistic quarks at finite temperature.

  9. Quark-mass dependence of two-nucleon observables

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Lee, Tze-Kei; Liu, C.-P.; Liu, Yu-Sheng

    2012-11-01

    We study the potential implications of lattice QCD determinations of the S-wave nucleon-nucleon scattering lengths with unphysical light quark masses. If the light quark masses are small enough such that nuclear effective field theory (NEFT) can be used to perform quark-mass extrapolations, then the leading quark-mass dependence of not only the effective range and the two-body current, but also all the low-energy deuteron matrix elements up to next-to-leading-order in NEFT can be obtained. As a proof of principle, we compute the quark-mass dependence of the deuteron charge radius, magnetic moment, polarizability, and the deuteron photodisintegration cross section using the lattice calculation of the scattering lengths at 354 MeV pion mass by the ``Nuclear Physics with Lattice QCD'' (NPLQCD) collaboration and the NEFT power counting scheme of Beane, Kaplan, and Vuorinen (BKV), even though it is not yet established that the 354 MeV pion mass is within the radius of convergence of the BKV scheme. Once the lattice result with quark mass within the NEFT radius of convergence is obtained, our observation can be used to constrain the time variation of isoscalar combination of u and d quark mass mq, to help the anthropic principle study to find the mq range that allows the existence of life, and to provide a weak test of the multiverse conjecture.

  10. The origin of mass

    NASA Astrophysics Data System (ADS)

    Froggatt*, C. D.

    2003-01-01

    The quark-lepton mass problem and the ideas of mass protection are reviewed. The hierarchy problem and suggestions for its resolution, including Little Higgs models, are discussed. The Multiple Point Principle (MPP) is introduced and used within the Standard Model (SM) to predict the top quark and Higgs particle masses. Mass matrix ansätze are considered; in particular we discuss the lightest family mass generation model, in which all the quark mixing angles are successfully expressed in terms of simple expressions involving quark mass ratios. It is argued that an underlying chiral flavour symmetry is responsible for the hierarchical texture of the fermion mass matrices. The phenomenology of neutrino mass matrices is briefly discussed.

  11. Quark-hadron duality in lepton scattering off nucleons

    NASA Astrophysics Data System (ADS)

    Graczyk, Krzysztof M.

    2010-03-01

    Quark-hadron (QH) duality in lepton scattering off nucleons is studied with the resonance quark model. It is shown that in the case of neutrino scattering off an isoscalar target the duality is simultaneously observed for charged and neutral currents xF1νN, F2νN, and xF3νN weak structure functions. We demonstrate that the QH duality can be a useful property for modeling structure functions in the so-called resonance region. As an example it is shown that combining relativistic quark model predictions with duality arguments allows a construction of the inclusive resonance F2ep structure function.

  12. Axial charges of octet and decuplet baryons in a perturbative chiral quark model

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Samart, D.; Khosonthongkee, K.; Limphirat, A.; Xu, K.; Yan, Y.

    2018-05-01

    Using the perturbative chiral quark model (PCQM), we investigate and predict in this work axial charges gAB of octet and decuplet N , Σ , Ξ , Δ , Σ*, and Ξ* baryons, considering both the ground and excited states in the quark propagator. The PCQM predictions are in good agreement with the experimental data, lattice-QCD values, and other approaches. In addition, the study reveals that the meson cloud is influential in the PCQM, contributing around 30% to the total values of gAB, and the meson cloud contribution to gAB stems mainly from the diagrams with the ground-state quark propagator while the excited intermediate quark states reduce gAB by 10-20%.

  13. Measurement of the t (bar)t production cross section using heavy flavor tags in W + greater than or equal to 3 jet events in p (bar)p collisions at 1.8 TeV

    NASA Astrophysics Data System (ADS)

    Ptochos, Fotios K.

    1998-11-01

    This thesis presents the measurement of the tt production cross section using 110/ pb/sp-1 of pp collisions at /sqrt[s]=1.8 TeV collected using the Collider Detector at Fermilab (CDF). Assuming Standard Model couplings, events consistent with containing a W boson produced in association with at least three jets are used for the search of events originating from t/bar t/to W+bW/sp- /bar b decays. The presence of high momentum electrons and muons associated with large energy imbalance transverse to the beam direction are the characteristic signatures used to identify events with W/to/ell+/nu decays. In order to further reduce the QCD background contribution from W production in association with jets, three algorithms are used to determine the presence of a heavy flavor b-quark jet in the event. Two of the algorithms use the very fine position resolution of the silicon vertex detector in order to identify either displaced vertices or displaced tracks contained inside a jet. The presence of b-quark in the event is also inferred by the identification of a soft lepton from its semileptonic decay (b/to/ell/nu X or b/to c/to/ell/nu X). This is the basic ingredient of the third algorithm used in the analysis. The background to tt signal, consists of Wbb, Wcc, Wc, single top, misidentified Z's produced in association with heavy flavor jets, Z/toτ+/tau/sp- and diboson (WW, WZ, ZZ) production. The contribution of this background is calculated with a combination of data and Monte Carlo simulated events. Non-heavy flavor jets misidentified as b-quarks consist a major source of background and its contribution is determined directly from the data. The W+/ge3 jet sample consists of 252 events before b- quark identification. The algorithm based on the presence of a displaced secondary vertex in a jet, identifies 29 events containing a b-quark jet with a background expectation of 8.12/pm0.99 events yielding a tt cross of σt/bar t=4.83/pm1.54 pb using acceptances for a top quark mass of 175 GeV/c2. The algorithm based on the presence of displaced tracks in a jet, identifies 41 candidate events with a background contribution of 11.33/pm1.36 events, yielding a tt cross section of σt/bar t=7.33/pm2.10 pb. Finally, 25 events are found consistent with containing jets from b-quark semileptonic decays with expected background of 13.22/pm1.22 events, resulting to a tt cross section of σt/bar t=8.37/pm3.98 pb. Based on a kinematic fit of events containing b-quark jets, the top mass is measured to be Mtop=175.9 GeV/c2. For the measured mass the tt cross sections for all three b-quark identification algorithms are in good agreement with the theoretical calculations which are in the range of 4.75 pb to 5.5 pb for a top quark mass of Mtop=175 GeV/c2.

  14. A determination of the fragmentation functions of u-quarks into charged pions

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Korzen, B.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration (EMC)

    1985-10-01

    The fragmentation functions of u-quarks into positive and negative pions are determined from an analysis of identified pions produced in deep inelastic muon-deuterium scattering. The method adopted is not sensitive to the knowledge of the primary quark distribution functions. The fragmentation of u quarks to positive pions is found to fall less steeply in z than that to negative pions as expected in the quark parton model.

  15. Scalar correlator at [symbol: see text](alpha(s)4), Higgs boson decay into bottom quarks, and bounds on the light-quark masses.

    PubMed

    Baikov, P A; Chetyrkin, K G; Kühn, J H

    2006-01-13

    We compute, for the first time, the absorptive part of the massless correlator of two quark scalar currents in five loops. As physical applications, we consider the [symbol: see text](alpha(s)4) corrections to the decay rate of the standard model Higgs boson into quarks, as well as the constraints on the strange quark mass following from QCD sum rules.

  16. Hyper-scaling relations in the conformal window from dynamic AdS/QCD

    NASA Astrophysics Data System (ADS)

    Evans, Nick; Scott, Marc

    2014-09-01

    Dynamic AdS/QCD is a holographic model of strongly coupled gauge theories with the dynamics included through the running anomalous dimension of the quark bilinear, γ. We apply it to describe the physics of massive quarks in the conformal window of SU(Nc) gauge theories with Nf fundamental flavors, assuming the perturbative two-loop running for γ. We show that to find regular, holographic renormalization group flows in the infrared, the decoupling of the quark flavors at the scale of the mass is important, and enact it through suitable boundary conditions when the flavors become on shell. We can then compute the quark condensate and the mesonic spectrum (Mρ,Mπ,Mσ) and decay constants. We compute their scaling dependence on the quark mass for a number of examples. The model matches perturbative expectations for large quark mass and naïve dimensional analysis (including the anomalous dimensions) for small quark mass. The model allows study of the intermediate regime where there is an additional scale from the running of the coupling, and we present results for the deviation of scalings from assuming only the single scale of the mass.

  17. 1/Nc expansion and the spin-flavor structure of the quark interaction in the constituent quark model

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Schat, Carlos

    2010-12-01

    We study the hierarchy of the coefficients in the 1/Nc expansion for the negative parity L=1 excited baryons from the perspective of the constituent quark model. This is related to the problem of determining the spin-flavor structure of the quark interaction. The most general two-body scalar interaction between quarks contains the spin-flavor structures t1at2a,s→1·s→2 and s→1·s→2t1at2a. We show that in the limit of a zero range interaction all these structures are matched onto the same hadronic mass operator Sc2, which gives a possible explanation for the dominance of this operator in the 1/Nc expansion for the L=1 states and implies that in this limit it is impossible to distinguish between these different spin-flavor structures. Modeling a finite range interaction through the exchange of a vector and pseudoscalar meson, we propose a test for the spin-flavor dependence of the quark forces. For the scalar part of the quark interaction, we find that both pion exchange and gluon exchange are compatible with the data.

  18. Search for High-Mass Resonant Top-Antitop Pair Production in Lepton+Jets Events in 8 TeV pp Collisions

    NASA Astrophysics Data System (ADS)

    Turner, Paul Jonathan

    In this thesis we present a search for boosted top-antitop quark pairs, consistent with heavy resonance decay, produced in √s=8 TeV proton-proton collisions at the Large Hadron Collider recorded by the Compact Muon Solenoid Experiment. Data samples corresponding to 19.7 fb -1 of integrated luminosity were analyzed by selecting events containing one electron or muon and at least two high transverse momentum jets consistent with the semileptonic decay of the top-antitop quark pair. The highly boosted topology of heavy resonance decay into top-antitop quark pairs requires a dedicated event selection, including the use of new top tagging algorithms to select events with boosted hadronic top quark decays by studying the jet substructure. The invariant mass of the top-antitop quark pair is reconstructed using a chi2 approach, and we look for excess above the Standard Model background predictions for evidence of undiscovered new heavy resonances. No such evidence is found, and we use a Bayesian statistical analysis to set model-independent 95% Confidence Level upper limits on the production cross-section times branching ratio for narrow 1% width and wide 10% width resonances. In addition, we place limits on two benchmark models that predict top-antitop quark resonant production including a leptophobic Topcolor Z' and a Kaluza-Klein excitation of a gluon in a Randall-Sundrum model. We then compare these limits to the searches for resonant top-antitop quark pair production done using the fully-leptonic and all-hadronic decay modes of the top-antitop quark pair and present a combined result where all decay channels are used to produce the strongest limits on resonant top-antitop quark pair production to date.

  19. The Model of Complex Structure of Quark

    NASA Astrophysics Data System (ADS)

    Liu, Rongwu

    2017-09-01

    In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.

  20. Experimental constraint on quark electric dipole moments

    NASA Astrophysics Data System (ADS)

    Liu, Tianbo; Zhao, Zhiwen; Gao, Haiyan

    2018-04-01

    The electric dipole moments (EDMs) of nucleons are sensitive probes of additional C P violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, tensor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to C P violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as 1.27 ×10-24 e .cm for the up quark and 1.17 ×10-24 e .cm for the down quark at the scale of 4 GeV2 . We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about 3 orders of magnitude leading to a much more sensitive probe of new physics models.

  1. Erratum to: Constraining couplings of top quarks to the Z boson in $$ t\\overline{t} $$ + Z production at the LHC

    DOE PAGES

    Röntsch, Raoul; Schulze, Markus

    2015-09-21

    We study top quark pair production in association with a Z boson at the Large Hadron Collider (LHC) and investigate the prospects of measuring the couplings of top quarks to the Z boson. To date these couplings have not been constrained in direct measurements. Such a determination will be possible for the first time at the LHC. Our calculation improves previous coupling studies through the inclusion of next-to-leading order (NLO) QCD corrections in production and decays of all unstable particles. We treat top quarks in the narrow-width approximation and retain all NLO spin correlations. To determine the sensitivity of amore » coupling measurement we perform a binned log-likelihood ratio test based on normalization and shape information of the angle between the leptons from the Z boson decay. The obtained limits account for statistical uncertainties as well as leading theoretical systematics from residual scale dependence and parton distribution functions. We use current CMS data to place the first direct constraints on the ttbZ couplings. We also consider the upcoming high-energy LHC run and find that with 300 inverse fb of data at an energy of 13 TeV the vector and axial ttbZ couplings can be constrained at the 95% confidence level to C_V=0.24^{+0.39}_{-0.85} and C_A=-0.60^{+0.14}_{-0.18}, where the central values are the Standard Model predictions. This is a reduction of uncertainties by 25% and 42%, respectively, compared to an analysis based on leading-order predictions. We also translate these results into limits on dimension-six operators contributing to the ttbZ interactions beyond the Standard Model.« less

  2. Pinning down the large- x gluon with NNLO top-quark pair differential distributions

    NASA Astrophysics Data System (ADS)

    Czakon, Michał; Hartland, Nathan P.; Mitov, Alexander; Nocera, Emanuele R.; Rojo, Juan

    2017-04-01

    Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations have become available only recently. In this work we study the impact on the large- x gluon of top-quark pair differential distributions measured by ATLAS and CMS at √{s}=8 TeV. Our analysis, performed in the NNPDF3.0 framework at NNLO accuracy, allows us to identify the optimal combination of LHC top-quark pair measurements that maximize the constraints on the gluon, as well as to assess the compatibility between ATLAS and CMS data. We find that differential distributions from top-quark pair production provide significant constraints on the large- x gluon, comparable to those obtained from inclusive jet production data, and thus should become an important ingredient for the next generation of global PDF fits.

  3. Effective field theory approach to heavy quark fragmentation

    DOE PAGES

    Fickinger, Michael; Fleming, Sean; Kim, Chul; ...

    2016-11-17

    Using an approach based on Soft Collinear Effective Theory (SCET) and Heavy Quark Effective Theory (HQET) we determine the b-quark fragmentation function from electron-positron annihilation data at the Z-boson peak at next-to-next-to leading order with next-to-next-to leading log resummation of DGLAP logarithms, and next-to-next-to-next-to leading log resummation of endpoint logarithms. This analysis improves, by one order, the previous extraction of the b-quark fragmentation function. We find that while the addition of the next order in the calculation does not much shift the extracted form of the fragmentation function, it does reduce theoretical errors indicating that the expansion is converging. Usingmore » an approach based on effective field theory allows us to systematically control theoretical errors. Furthermore, while the fits of theory to data are generally good, the fits seem to be hinting that higher order correction from HQET may be needed to explain the b-quark fragmentation function at smaller values of momentum fraction.« less

  4. Physical and Relativistic Numerical Cosmology.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  5. Accidental symmetries and massless quarks in the economical 3-3-1 model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero, J. C.; Sánchez–Vega, B. L.

    In the framework of a 3-3-1 model with a minimal scalar sector, known as the economical 3-3-1 model, we study its capabilities of generating realistic quark masses. After a detailed study of the symmetries of the model, before and after the spontaneous symmetry breaking, we find a remaining axial symmetry that prevents some quarks from gaining mass at all orders in perturbation theory. Since this accidental symmetry is anomalous, we also consider briefly the possibility of generating their masses for nonperturbative effects. However, we find that nonperturbative effects are not enough to generate the measured masses for the three masslessmore » quarks. Hence, these results imply that the economical 3-3-1 model is not a realistic description of the electroweak interaction.« less

  6. CPsuperH2.3: An updated tool for phenomenology in the MSSM with explicit CP violation

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Carena, M.; Ellis, J.; Pilaftsis, A.; Wagner, C. E. M.

    2013-04-01

    We describe the Fortran code CPsuperH2.3, which incorporates the following updates compared with its predecessor CPsuperH2.0. It implements improved calculations of the Higgs-boson masses and mixing including stau contributions and finite threshold effects on the tau-lepton Yukawa coupling. It incorporates the LEP limits on the processes e+e-→HiZ,HiHj and the CMS limits on Hi→τ¯τ obtained from 4.6 fb-1 of data at a center-of-mass energy of 7 TeV. It also includes the decay mode Hi→Zγ and the Schiff-moment contributions to the electric dipole moments of Mercury and Radium 225, with several calculational options for the case of Mercury. These additions make CPsuperH2.3 a suitable tool for analyzing possible CP-violating effects in the MSSM in the era of the LHC and a new generation of EDM experiments.

  7. CPsuperH2.3: an Updated Tool for Phenomenology in the MSSM with Explicit CP Violation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.S.; Carena, M.; Ellis, J.

    2013-04-01

    We describe the Fortran code CPsuperH2.3, which incorporates the following updates compared with its predecessor CPsuperH2.0. It implements improved calculations of the Higgs-boson masses and mixing including stau contributions and finite threshold effects on the tau-lepton Yukawa coupling. It incorporates the LEP limits on the processes e^+e^-->H_iZ,H_iH_j and the CMS limits on H_i->@t@?@t obtained from 4.6 fb^-^1 of data at a center-of-mass energy of 7 TeV. It also includes the decay mode H_i->Z@c and the Schiff-moment contributions to the electric dipole moments of Mercury and Radium 225, with several calculational options for the case of Mercury. These additions make CPsuperH2.3more » a suitable tool for analyzing possible CP-violating effects in the MSSM in the era of the LHC and a new generation of EDM experiments. Program summary: Program title: CPsuperH2.3 Catalogue identifier: ADSR_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSR_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 24058 No. of bytes in distributed program, including test data, etc.: 158721 Distribution format: tar.gz Programming language: Fortran77. Computer: PC running under Linux and computers in Unix environment. Operating system: Linux. RAM: 32 MB Classification: 11.1. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADSR_v2_0 Journal reference of previous version: Comput. Phys. Comm. 180(2009)312 Nature of problem: The calculations of mass spectrum, decay widths and branching ratios of the neutral and charged Higgs bosons in the Minimal Supersymmetric Standard Model with explicit CP violation have been improved. The program is based on renormalization-group-improved diagrammatic calculations that include dominant higher-order logarithmic and threshold corrections, b-quark and @t-lepton Yukawa-coupling resummation effects and improved treatment of Higgs-boson pole-mass shifts. The couplings of the Higgs bosons to the Standard Model gauge bosons and fermions, to their supersymmetric partners and all the trilinear and quartic Higgs-boson self-couplings are also calculated. Also included are a full treatment of the 4x4 (2x2) neutral (charged) Higgs propagator matrix together with the center-of-mass dependent Higgs-boson couplings to gluons and photons, and an integrated treatment of several B-meson observables. The new implementations include the EDMs of Thallium, neutron, Mercury, Deuteron, Radium, and muon, as well as the anomalous magnetic moment of muon, (g_@m-2), the top-quark decays, improved calculations of the Higgs-boson masses and mixing including stau contributions, the LEP limits, and the CMS limits on H_i->@t@t@?. It also implements the decay mode H_i->Z@c and includes the corresponding Standard Model branching ratios of the three neutral Higgs bosons in the array GAMBRN(IM,IWB = 2,IH). Solution method: One-dimensional numerical integration for several Higgs-decay modes and EDMs, iterative treatment of the threshold corrections and Higgs-boson pole masses, and the numerical diagonalization of the neutralino mass matrix. Reasons for new version: Mainly to provide the full calculations of the EDMs of Thallium, neutron, Mercury, Deuteron, Radium, and muon as well as (g_@m-2), improved calculations of the Higgs-boson masses and mixing including stau contributions, the LEP limits, the CMS limits on H_i->@t@t@?, the top-quark decays, H_i->Z@c decay, and the corresponding Standard Model branching ratios of the three neutral Higgs bosons. Summary of revisions: Full calculations of the EDMs of Thallium, neutron, Mercury, Deuteron, Radium, and muon as well as (g_@m-2). Improved treatment of Higgs-boson masses and mixing including stau contributions. The LEP limits. The CMS limits on H_i->@t@t@?. The top-quark decays. The H_i->Z@c decay. The corresponding Standard Model branching ratios of the three neutral Higgs bosons. Running time: Less than 1.0 s.« less

  8. Holography for Heavy Ions Collisions at LHC and NICA

    NASA Astrophysics Data System (ADS)

    Aref'eva, Irina

    2017-12-01

    This is a contribution for the Proceedings of 5th International Conference on New Frontiers in Physics (ICNFP 2016), held at Crete, 6-14 July 2016. Our goal is to obtain phenomenologically reliable insights for the physics of the quark-gluon plasma (QGP) from the holography. I briefly review how in the holographical setup one can describe the QGP formation in heavy ion collisions and how to get quantitatively the main characteristics of the QGP formation - the total multiplicity and the thermalization time. To fit the experimental form of dependence of total multiplicity on energy, obtained at LHC, we have to deal with a special anisotropic holographic model, related with the Lifshitz-type background. Our conjecture is that this Lifshitz-type background with non-zero chemical potential can be used to describe future data expected from NICA. In particular, we present the results of calculations the holographic confinement/deconfinement phase transition in the (µ, T) (chemical potential, temperature) plane in this anizotropic background and show the dependence of the transition line on the orientation of the quark pair. This dependence leads to a non-sharp character of physical confinement/deconfinement phase in the (µ, T)-plane. We use the bottom-up soft wall approach incorporating quark confinement deforming factor and vector field providing the non-zero chemical potential. In this model we also estimate the holographic photon production.

  9. Dark matter admixed strange quark stars in the Starobinsky model

    NASA Astrophysics Data System (ADS)

    Lopes, Ilídio; Panotopoulos, Grigoris

    2018-01-01

    We compute the mass-to-radius profiles for dark matter admixed strange quark stars in the Starobinsky model of modified gravity. For quark matter, we assume the MIT bag model, while self-interacting dark matter inside the star is modeled as a Bose-Einstein condensate with a polytropic equation of state. We numerically integrate the structure equations in the Einstein frame, adopting the two-fluid formalism, and we treat the curvature correction term nonperturbatively. The effects on the properties of the stars of the amount of dark matter as well as the higher curvature term are investigated. We find that strange quark stars (in agreement with current observational constraints) with the highest masses are equally affected by dark matter and modified gravity.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAEZAWA,Y.; AOKI, S.; EJIRI, S.

    The authors report the current status of the systematic studies of the QCD thermodynamics by lattice QCD simulations with two flavors of improved Wilson quarks. They evaluate the critical temperature of two flavor QCD in the chiral limit at zero chemical potential and show the preliminary result. Also they discuss fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to chemical potential.

  11. The Future of Hadrons: The Nexus of Subatomic Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigg, Chris

    2011-09-01

    The author offers brief observations on matters discussed at the XIV International Conference on Hadron Spectroscopy and explore prospects for hadron physics. Quantum chromodynamics (QCD) has been validated as a new law of nature. It is internally consistent up to very high energies, and so could be a complete theory of the strong interactions. Whether QCD is the final answer for the strong interactions is a subject for continuing experimental tests, which are being extended in experimentation at the Large Hadron Collider. Beyond the comparison of perturbative calculations with experiment, it remains critically important to test the confinement hypothesis bymore » searching for free quarks, or for signatures of unconfined color. Sensitive negative searches for quarks continue to be interesting, and the definitive observation of free quarks would be revolutionary. Breakdowns of factorization would compromise the utility of perturbative QCD. Other discoveries that would require small or large revisions to QCD include the observation of new kinds of colored matter beyond quarks and gluons, the discovery that quarks are composite, or evidence that SU(3){sub c} gauge symmetry is the vestige of a larger, spontaneously broken, color symmetry. While probing our underlying theory for weakness or new openings, we have plenty to do to apply QCD to myriad experimental settings, to learn its implications for matter under unusual conditions, and to become more adept at calculating its consequences. New experimental tools provide the means for progress on a very broad front.« less

  12. Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2015-10-22

    An analysis is presented of events containing jets including at least one b -tagged jet, sizeable missing transverse momentum, and at least two leptons including a pair of the same electric charge, with the scalar sum of the jet and lepton transverse momenta being large. A data sample with an integrated luminosity of 20.3 fb –1 of pp collisions at √s = 8 TeV recorded by the ATLAS detector at the Large Hadron Collider is used. Standard Model processes rarely produce these final states, but there are several models of physics beyond the Standard Model that predict an enhanced ratemore » of production of such events; the ones considered here are production of vector-like quarks, enhanced four-top-quark production, pair production of chiral b'-quarks, and production of two positively charged top quarks. Eleven signal regions are defined; subsets of these regions are combined when searching for each class of models. In the three signal regions primarily sensitive to positively charged top quark pair production, the data yield is consistent with the background expectation. There are more data events than expected from background in the set of eight signal regions defined for searching for vector-like quarks and chiral b'-quarks, but the significance of the discrepancy is less than two standard deviations. Furthermore, the discrepancy reaches 2.5 standard deviations in the set of five signal regions defined for searching for four-top-quark production. The results are used to set 95% CL limits on various models.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naganoma, Junji

    The study of the top quark pair production mechanism in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV is described. The main subjects are the measurements of the top quark pair production cross section, the top quark mass and a search for a new particle decaying to the top quark pair. The analyses are based on 1.9 fb -1 of data collected by the Collider Detector at Fermilab (CDF) Run II experiment between March 2002 and May 2007, using the lepton+jets events. The measured top quark pair production cross section is 8.2 ± 0.5 (stat.) ± 0.8 (syst.) ± 0.5 (lum.) pb, which is slightly higher than the standard model prediction at the top mass of 175 GeV/c 2. The top quark mass is an important parameter in the standard model, and also in the experimental studies. The measured top quark mass if 171.6 ± 2.0 (stat.) ± 1.3(syst.) GeV/c 2. Finally, they report on a search for a new gauge boson decaying to tmore » $$\\bar{t}$$, which interferes with the standard model gluon in the q$$\\bar{q}$$ → t$$\\bar{t}$$ production process. They call such a hypothetical particle a 'Massive Gluon'. The observed t$$\\bar{t}$$ invariant mass distribution is consistent with the standard model expectations, and also the measured massive gluon coupling strength with quarks is consistent within a statistical fluctuation of the standard model expectation in the wide range of the massive gluon masses and widths. They set the upper and lower limits on the coupling strength of the massive gluon.« less

  14. Euclidean bridge to the relativistic constituent quark model

    NASA Astrophysics Data System (ADS)

    Hobbs, T. J.; Alberg, Mary; Miller, Gerald A.

    2017-03-01

    Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). Purpose: Seeking to bridge these complementary world views, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark + scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. Results: From this formalism, we define and compute a new quantity—the Euclidean density function (EDF)—an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. Conclusions: The quark + scalar diquark ECQM is a step toward a realistic quark model in Euclidean space, and needs additional refinements. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation.

  15. Electric and magnetic form factors of strange baryons

    NASA Astrophysics Data System (ADS)

    Van Cauteren, T.; Merten, D.; Corthals, T.; Janssen, S.; Metsch, B.; Petry, H.-R.; Ryckebusch, J.

    . Predictions for the electromagnetic form factors of the Λ , Σ and Ξ hyperons are presented. The numerical calculations are performed within the framework of the fully relativistic constituent-quark model developed by the Bonn group. The computed magnetic moments compare favorably with the experimentally known values. Most magnetic form factors GM (Q2) can be parameterized in terms of a dipole with cutoff masses ranging from 0.79 to 1.14 GeV.

  16. PHOTOPRODUCTION OF γp → pπ0 η AT ELSA IN BONN

    NASA Astrophysics Data System (ADS)

    Crede, V.

    2003-07-01

    The study of nucleon resonances provides important information on many open questions in baryon spectroscopy. The key to any progress is the identification of the effective degrees of freedom leading to a qualitative understanding of strong QCD. The problem of missing resonances predicted by quark models is discussed on the basis of experimental results of the CB-ELSA experiment at the e- accelerator ELSA in Bonn. Resonance production and even cascades of the type N**(∆**) → N*(∆*) → pπ0π0(pπ0η) are observed as well as ηη photoproduction off the proton. Indications for a ∆ resonance around 1900 MeV are seen. The latter is particularly interesting if it had negative parity because a confirmation of this state would be in contradiction with constituent quark models1,5. Both, the quark models using one-gluon exchange and the quark model using instantoninduced forces as short-range residual quark-quark interaction predict the three states ∆5/2- (1930), ∆3/2- (1940) and ∆1/2- (1900) at masses in the 2100 MeV region.

  17. Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Kalsi, A. K.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Wang, Y.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Teroerde, M.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Alexakhin, V.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Bat, A.; Boran, F.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Tali, B.; Tok, U. G.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Köseoglu, I.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T. Q.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Rogan, C.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Golf, F.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-01-01

    A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance pTmiss in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb-1 . Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the pTmiss , the scalar sum of jet transverse momenta, and the mT 2 mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeV and neutralino masses up to 430 GeV are excluded. For a model with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeV and neutralino masses up to 1150 GeV are excluded. These limits extend previous results.

  18. Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    A search for single production of vector-like top quark partners (T) decaying into a Higgs boson and a top quark is performed using data from pp collisions at a centre-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The top quark decay includes an electron or a muon while the Higgs boson decays into a pair of b quarks. No significant excess over standard model backgrounds is observed. Exclusion limits on the product of the production cross section and the branching fraction are derived in themore » T quark mass range 700 to 1800 GeV. For a mass of 1000 GeV, values of the product of the production cross section and the branching fraction greater than 0.8 and 0.7 pb are excluded at 95% confidence level, assuming left- and right-handed coupling of the T quark to standard model particles, respectively. This is the first analysis setting exclusion limits on the cross section of singly produced vector-like T quarks at a centre-of-mass energy of 13 TeV.« less

  19. Search for single production of a heavy vector-like T quark decaying to a Higgs boson and a top quark with a lepton and jets in the final state

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2017-05-11

    A search for single production of vector-like top quark partners (T) decaying into a Higgs boson and a top quark is performed using data from pp collisions at a centre-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The top quark decay includes an electron or a muon while the Higgs boson decays into a pair of b quarks. No significant excess over standard model backgrounds is observed. Exclusion limits on the product of the production cross section and the branching fraction are derived in themore » T quark mass range 700 to 1800 GeV. For a mass of 1000 GeV, values of the product of the production cross section and the branching fraction greater than 0.8 and 0.7 pb are excluded at 95% confidence level, assuming left- and right-handed coupling of the T quark to standard model particles, respectively. This is the first analysis setting exclusion limits on the cross section of singly produced vector-like T quarks at a centre-of-mass energy of 13 TeV.« less

  20. B -meson decay constants from 2 + 1 -flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    DOE PAGES

    Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku; ...

    2015-03-10

    We calculate the B-meson decay constants f B, f Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M π ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b quarks we use the anisotropic clovermore » action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(α sa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f B0 = 199.5(12.6) MeV, f B+=195.6(14.9) MeV, f Bs=235.4(12.2) MeV, f Bs/f B0=1.197(50), and f Bs/f B+=1.223(71), where the errors are statistical and total systematic added in quadrature. Finally, these results are in good agreement with other published results and provide an important independent cross-check of other three-flavor determinations of B-meson decay constants using staggered light quarks.« less

  1. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christ, Norman H.; Flynn, Jonathan M.; Izubuchi, Taku

    2015-03-10

    We calculate the B-meson decay constants f B, f Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M π ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action withmore » the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(α sa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f B0 = 196.2(15.7) MeV, f B+ = 195.4(15.8) MeV, f Bs = 235.4(12.2) MeV, f Bs/f B0 = 1.193(59), and f Bs/f B+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.« less

  2. Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD

    NASA Astrophysics Data System (ADS)

    Hall, Jonathan M. M.; Leinweber, Derek B.

    2016-11-01

    Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).

  3. Excitations of single-beauty hadrons

    NASA Astrophysics Data System (ADS)

    Burch, Tommy; Hagen, Christian; Lang, Christian B.; Limmer, Markus; Schäfer, Andreas

    2009-01-01

    In this work we study the predominantly orbital and radial excitations of hadrons containing a single heavy quark. We present meson and baryon mass splittings and ratios of meson decay constants (e.g., fBs/fB and fBs'/fBs) resulting from quenched and dynamical two-flavor configurations. Light quarks are simulated using the chirally improved lattice Dirac operator at valence masses as light as Mπ≈350MeV. The heavy quark is approximated by a static propagator, appropriate for the b quark on our lattices (1/ã1-2GeV). We also include some preliminary calculations of the O(1/mQ) kinetic corrections to the states, showing, in the process, a viable way of applying the variational method to three-point functions involving excited states. We compare our results with recent experimental findings.

  4. Isoscalar ππ Scattering and the σ Meson Resonance from QCD.

    PubMed

    Briceño, Raul A; Dudek, Jozef J; Edwards, Robert G; Wilson, David J

    2017-01-13

    We present for the first time a determination of the energy dependence of the isoscalar ππ elastic scattering phase shift within a first-principles numerical lattice approach to QCD. Hadronic correlation functions are computed including all required quark propagation diagrams, and from these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum, we obtain the S-wave phase shift up to the KK[over ¯] threshold. Calculations are performed at two values of the u, d quark mass corresponding to m_{π}=236,391  MeV, and the resulting amplitudes are described in terms of a σ meson which evolves from a bound state below the ππ threshold at the heavier quark mass to a broad resonance at the lighter quark mass.

  5. Determination of the chiral condensate from (2+1)-flavor lattice QCD.

    PubMed

    Fukaya, H; Aoki, S; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T; Yamada, N

    2010-03-26

    We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16{3}x48 lattice at a lattice spacing approximately 0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in (2+1)-flavor QCD with strange quark mass fixed at its physical value as Sigma;{MS[over ]}(2 GeV)=[242(04)(+19/-18) MeV]{3} where the errors are statistical and systematic, respectively.

  6. η → 3 π : Study of the Dalitz plot and extraction of the Quark Mass Ratio Q [The decay η → 3 π : Study of the Dalitz plot and extraction of the quark mass ratio Q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich

    Themore » $$\\eta\\to 3\\pi$$ amplitude is sensitive to the quark mass difference $$m_u-m_d$$ and offers a unique way to determine the quark mass ratio $$Q^2\\equiv (m_s^2-m_{ud}^2)/(m_d^2-m_u^2)$$ from experiment. We calculate the amplitude dispersively and fit the KLOE data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Lastly, our representation of the transition amplitude implies $$Q = 22.0 \\pm 0.7$$.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perea, Philip Michael

    I have performed a search for t-channel single top quark production in pmore » $$\\bar{p}$$ single number sub collisions at 1.96 TeV on a 366 pb -1 dataset collected with the D0 detector from 2002-2005. The analysis is restricted to the leptonic decay of the W boson from the top quark to an electron or muon, tq$$\\bar{b}$$ → lv lb q$$\\bar{b}$$ (l = e,μ). A powerful b-quark tagging algorithm derived from neural networks is used to identify b jets and significantly reduce background. I further use neural networks to discriminate signal from background, and apply a binned likelihood calculation to the neural network output distributions to derive the final limits. No direct observation of single top quark production has been made, and I report expected/measured 95% confidence level limits of 3.5/8.0 pb.« less

  8. η → 3 π : Study of the Dalitz plot and extraction of the Quark Mass Ratio Q [The decay η → 3 π : Study of the Dalitz plot and extraction of the quark mass ratio Q

    DOE PAGES

    Colangelo, Gilberto; Lanz, Stefan; Leutwyler, Heinrich; ...

    2017-01-09

    Themore » $$\\eta\\to 3\\pi$$ amplitude is sensitive to the quark mass difference $$m_u-m_d$$ and offers a unique way to determine the quark mass ratio $$Q^2\\equiv (m_s^2-m_{ud}^2)/(m_d^2-m_u^2)$$ from experiment. We calculate the amplitude dispersively and fit the KLOE data on the charged mode, varying the subtraction constants in the range allowed by chiral perturbation theory. parameter-free predictions obtained for the neutral Dalitz plot and the neutral-to-charged branching ratio are in excellent agreement with experiment. Lastly, our representation of the transition amplitude implies $$Q = 22.0 \\pm 0.7$$.« less

  9. Chiral phase transition at finite chemical potential in 2 +1 -flavor soft-wall anti-de Sitter space QCD

    NASA Astrophysics Data System (ADS)

    Bartz, Sean P.; Jacobson, Theodore

    2018-04-01

    The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.

  10. New Methods for B Decay Constants and Form Factors from Lattice NRQCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Christine; Hughes, Ciaran; Monahan, Christopher

    We determine the normalisation of scalar and pseudo scalar current operators made from NonRelativistic QCD (NRQCD) b quarks and Highly Improved Staggered (HISQ) light quarks through O(αs∧QCD/mb). We use matrix elements of these operators to extract B meson decay constants and form factors and compare to those obtained using the standard vector and axial vector operators. We work on MILC second-generation 2+1+1 gluon field configurations, including those with physical light quarks in the sea. This provides a test of systematic uncertainties in these calculations and we find agreement between the results to the 2% level of uncertainty previously quoted.

  11. Staggered chiral perturbation theory in the two-flavor case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Xining

    2010-07-01

    I study two-flavor staggered chiral perturbation theory in the light pseudoscalar sector. The pion mass and decay constant are calculated through next-to-leading order in the partially-quenched case. In the limit where the strange quark mass is large compared to the light quark masses and the taste splittings, I show that the SU(2) staggered chiral theory emerges from the SU(3) staggered chiral theory, as expected. Explicit relations between SU(2) and SU(3) low energy constants and taste-violating parameters are given. The results are useful for SU(2) chiral fits to asqtad data and allow one to incorporate effects from varying strange quark masses.

  12. New methods for B decay constants and form factors from Lattice NRQCD

    NASA Astrophysics Data System (ADS)

    Davies, Christine; Hughes, Ciaran; Monahan, Christopher

    2018-03-01

    We determine the normalisation of scalar and pseudo scalar current operators made from NonRelativistic QCD (NRQCD) b quarks and Highly Improved Staggered (HISQ) light quarks through O(αs∧QCD/mb). We use matrix elements of these operators to extract B meson decay constants and form factors and compare to those obtained using the standard vector and axial vector operators. We work on MILC second-generation 2+1+1 gluon field configurations, including those with physical light quarks in the sea. This provides a test of systematic uncertainties in these calculations and we find agreement between the results to the 2% level of uncertainty previously quoted.

  13. Dimension-5 C P -odd operators: QCD mixing and renormalization

    DOE PAGES

    Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; ...

    2015-12-23

    Here, we study the off-shell mixing and renormalization of flavor-diagonal dimension-five T- and P-odd operators involving quarks, gluons, and photons, including quark electric dipole and chromoelectric dipole operators. Furthermore, we present the renormalization matrix to one loop in themore » $$\\bar{MS}$$ scheme. We also provide a definition of the quark chromoelectric dipole operator in a regularization-independent momentum-subtraction scheme suitable for nonperturbative lattice calculations and present the matching coefficients with the $$\\bar{MS}$$ scheme to one loop in perturbation theory, using both the naïve dimensional regularization and ’t Hooft–Veltman prescriptions for γ 5.« less

  14. Towards a systematic construction of realistic D-brane models on a del Pezzo singularity

    NASA Astrophysics Data System (ADS)

    Dolan, Matthew J.; Krippendorf, Sven; Quevedo, Fernando

    2011-10-01

    A systematic approach is followed in order to identify realistic D-brane models at toric del Pezzo singularities. Requiring quark and lepton spectrum and Yukawas from D3 branes and massless hypercharge, we are led to Pati-Salam extensions of the Standard Model. Hierarchies of masses, flavour mixings and control of couplings select higher order del Pezzo singularities, minimising the Higgs sector prefers toric del Pezzos with dP 3 providing the most successful compromise. Then a supersymmetric local string model is presented with the following properties at low energies: (i) the MSSM spectrum plus a local B - L gauge field or additional Higgs fields depending on the breaking pattern, (ii) a realistic hierarchy of quark and lepton masses and (iii) realistic flavour mixing between quark and lepton families with computable CKM and PMNS matrices, and CP violation consistent with observations. In this construction, kinetic terms are diagonal and under calculational control suppressing standard FCNC contributions. Proton decay operators of dimension 4, 5, 6 are suppressed, and gauge couplings can unify depending on the breaking scales from string scales at energies in the range 1012-1016 GeV, consistent with TeV soft-masses from moduli mediated supersymmetry breaking. The GUT scale model corresponds to D3 branes at dP 3 with two copies of the Pati-Salam gauge symmetry SU(4) × SU(2) R × SU(2) L . D-brane instantons generate a non-vanishing μ-term. Right handed sneutrinos can break the B - L symmetry and induce a see-saw mechanism of neutrino masses and R-parity violating operators with observable low-energy implications.

  15. Color superconductivity from the chiral quark-meson model

    NASA Astrophysics Data System (ADS)

    Sedrakian, Armen; Tripolt, Ralf-Arno; Wambach, Jochen

    2018-05-01

    We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral phase transition in the quark-meson model where the interactions between quarks are generated by pion and sigma exchanges. Starting from the Nambu-Gorkov propagator in real-time formulation we obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the zero temperature limit using a model input spectral function. We find that these components of the gap display a complicated structure with the real part being strongly suppressed above 2Δ0, where Δ0 is its on-shell value. We find Δ0 ≃ 40MeV close to the chiral phase transition.

  16. Charmonium dissociation in collisions with ϕ mesons in hadronic matter

    NASA Astrophysics Data System (ADS)

    Ji, Shi-Tao; Xu, Xiao-Ming

    2017-02-01

    The ϕ-charmonium dissociation reactions in hadronic matter are studied. Unpolarised cross sections for , or , , , or , , or and are calculated in the Born approximation, in the quark-interchange mechanism and with a temperature-dependent quark potential. The potential leads to remarkable temperature dependence of the cross sections. With the cross sections and the ϕ distribution function we calculate the dissociation rates of the charmonia in interactions with the ϕ meson in hadronic matter. The dependence of the rates on temperature and charmonium momentum is relevant to the influence of ϕ mesons on charmonium suppression. Supported by National Natural Science Foundation of China (11175111)

  17. Improvement of heavy-heavy current for calculation of B̅ → D(*)lv̅ form factors using Oktay-Kronfeld heavy quarks

    NASA Astrophysics Data System (ADS)

    Bailey, Jon A.; Jang, Yong-Chull; Lee, Weonjong; Leem, Jaehoon

    2018-03-01

    The CKM matrix element |Vcb| can be extracted by combining data from experiments with lattice QCD results for the semileptonic form factors for the B̅ → D(*)lv̅ decays. The Oktay-Kronfeld (OK) action was designed to reduce heavy-quark discretization errors to below 1%, or through O(λ3) in HQET power counting. Here we describe recent progress on bottom-to-charm currents improved to the same order in HQET as the OK action, and correct formerly reported results of our matching calculations, in which the operator basis was incomplete.

  18. Electroexcitation of the Δ +(1232) at low momentum transfer

    DOE PAGES

    Blomberg, A.; Anez, D.; Sparveris, N.; ...

    2016-07-05

    We report on new pmore » $$(e,e^\\prime p)\\pi^\\circ$$ measurements at the $$\\Delta^{+}(1232)$$ resonance at the low momentum transfer region. The mesonic cloud dynamics is predicted to be dominant and rapidly changing in this kinematic region offering a test bed for chiral effective field theory calculations. The new data explore the low $Q^2$ dependence of the resonant quadrupole amplitudes while extending the measurements of the Coulomb quadrupole amplitude to the lowest momentum transfer ever reached. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.« less

  19. Vector-like quarks coupling discrimination at the LHC and future hadron colliders

    NASA Astrophysics Data System (ADS)

    Barducci, D.; Panizzi, L.

    2017-12-01

    The existence of new coloured states with spin one-half, i.e. extra-quarks, is a striking prediction of various classes of new physics models. Should one of these states be discovered during the 13 TeV runs of the LHC or at future high energy hadron colliders, understanding its properties will be crucial in order to shed light on the underlying model structure. Depending on the extra-quarks quantum number under SU(2) L , their coupling to Standard Model quarks and bosons have either a dominant left- or right-handed chiral component. By exploiting the polarisation properties of the top quarks arising from the decay of pair-produced extra quarks, we show how it is possible to discriminate among the two hypothesis in the whole discovery range currently accessible at the LHC, thus effectively narrowing down the possible interpretations of a discovered state in terms of new physics scenarios. Moreover, we estimate the discovery and discrimination power of future prototype hadron colliders with centre of mass energies of 33 and 100 TeV.

  20. Geometrical basis for the Standard Model

    NASA Astrophysics Data System (ADS)

    Potter, Franklin

    1994-02-01

    The robust character of the Standard Model is confirmed. Examination of its geometrical basis in three equivalent internal symmetry spaces-the unitary plane C 2, the quaternion space Q, and the real space R 4—as well as the real space R 3 uncovers mathematical properties that predict the physical properties of leptons and quarks. The finite rotational subgroups of the gauge group SU(2) L × U(1) Y generate exactly three lepton families and four quark families and reveal how quarks and leptons are related. Among the physical properties explained are the mass ratios of the six leptons and eight quarks, the origin of the left-handed preference by the weak interaction, the geometrical source of color symmetry, and the zero neutrino masses. The ( u, d) and ( c, s) quark families team together to satisfy the triangle anomaly cancellation with the electron family, while the other families pair one-to-one for cancellation. The spontaneously broken symmetry is discrete and needs no Higgs mechanism. Predictions include all massless neutrinos, the top quark at 160 GeV/ c 2, the b' quark at 80 GeV/ c 2, and the t' quark at 2600 GeV/ c 2.

  1. Measurement of the top quark mass using charged particles in pp collisions at √s = 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2016-05-18

    A novel technique for measuring the mass of the top quark that uses only the kinematic properties of its charged decay products is presented. Top quark pair events with final states with one or two charged leptons and hadronic jets are selected from the data set of 8 TeV proton-proton collisions, corresponding to an integrated luminosity of 19.7 fb -1. By reconstructing secondary vertices inside the selected jets and computing the invariant mass of the system formed by the secondary vertex and an isolated lepton, an observable is constructed that is sensitive to the top quark mass that is expected tomore » be robust against the energy scale of hadronic jets. The main theoretical systematic uncertainties, concerning the modeling of the fragmentation and hadronization of b quarks and the reconstruction of secondary vertices from the decays of b hadrons, are studied. A top quark mass of 173.68±0.20(stat) -0.97 +1.58(syst) GeV is measured. Furthermore, the overall systematic uncertainty is dominated by the uncertainty in the b quark fragmentation and the modeling of kinematic properties of the top quark.« less

  2. Measurements of the u valence quark distribution function in the proton and u quark fragmentation functions

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I. G.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S. C.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; De la Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration

    1989-07-01

    A new determination of the u valence quark distribution function in the proton is obtained from the analysis of identified charged pions, kaons, protons and antiprotons produced in muon-proton and muon-deuteron scattering. The comparison with results obtained in inclusive deep inelastic lepton-nucleon scattering provides a further test of the quark-parton model. The u quark fragmentation functions into positive and negative pions, kaons, protons and antiprotons are also measured.

  3. An approach to the instanton effect in B system

    NASA Astrophysics Data System (ADS)

    Kitazawa, Noriaki; Sakai, Yuki

    2018-01-01

    We discuss the constraint on the size of QCD instanton effects in low-energy effective theory. Among various instanton effects in meson mass spectrum and dynamics, we concentrate on the instanton-induced masses of light quarks. The famous instanton-induced six-quark interaction, so-called ’t Hooft vertex, could give nonperturbative quantum corrections to light quark masses. Many works have already been achieved to constrain the mass corrections in light meson system, or the system of π, K, η and η‧, and now we know for a fact that the instanton-induced mass of up-quark is too small to realize the solution of the strong CP problem by vanishing current mass of up-quark. In this work, we give a constraint on the instanton-induced mass correction to light quarks from the mass spectrum of heavy mesons, B+, B0, Bs and their antiparticles. To accomplish this, the complete second-order chiral symmetry breaking terms are identified in heavy meson effective theory. We find that the strength of the constraint from heavy meson masses is at the same level of that from light mesons, and it would be made even stronger by more precise data from future B factories and lattice calculations.

  4. A proposal of a local modified QCD

    NASA Astrophysics Data System (ADS)

    Cabo Montes de Oca, A.

    2012-06-01

    A local and renormalizable version of a modified PQCD introduced in previous works is presented. The construction indicates that it could be equivalent to massless QCD. The case in which only quark condensate effects are retained is discussed in more detail. Then, the appearing auxiliary fermion fields can be integrated, leading to a theory with the action of massless QCD, to which one local and gauge invariant Lagrangian term for each quark flavour is added. Those action terms are defined by two gluon and two quark fields, in a form curiously not harming power counting renormalizability. The gluon self-energy is evaluated in second order in the gauge coupling and all orders in the new quark couplings, and the result became transversal as required by the gauge invariance. The vacuum energy was also calculated in the two-loop approximation and became gauge parameter independent. The possibilities that higher-loop contributions to the vacuum energy allow the generation of a quark mass hierarchy as a flavour symmetry-breaking effect are commented. The decision on this issue needs a further evaluation of more than two-loop contributions, in which more than one type of quark loops start appearing, possibly leading to interference effects in the vacuum energy.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Ellis, R. Keith; Czakon, Michal

    We present results for the production of a pair of on-shell Z bosons via gluon-gluon fusion. This process occurs both through the production and decay of the Higgs boson, and through continuum production where the Z boson couples to a loop of massless quarks or to a massive quark. We calculate the interference of the two processes and its contribution to the cross section up to and including order O(αmore » $$_{s}^{3}$$ ). The two-loop contributions to the amplitude are all known analytically, except for the continuum production through loops of top quarks of mass m. The latter contribution is important for the invariant mass of the two Z bosons, (as measured by the mass of their leptonic decay products, m$$_{4l}$$), in a regime where m$$_{4l}$$ ≥ 2m because of the contributions of longitudinal bosons. We examine all the contributions to the virtual amplitude involving top quarks, as expansions about the heavy top quark limit combined with a conformal mapping and Padé approximants. Comparison with the analytic results, where known, allows us to assess the validity of the heavy quark expansion, and it extensions. We give results for the NLO corrections to this interference, including both real and virtual radiation.« less

  6. Recursive model for the fragmentation of polarized quarks

    NASA Astrophysics Data System (ADS)

    Kerbizi, A.; Artru, X.; Belghobsi, Z.; Bradamante, F.; Martin, A.

    2018-04-01

    We present a model for Monte Carlo simulation of the fragmentation of a polarized quark. The model is based on string dynamics and the 3P0 mechanism of quark pair creation at string breaking. The fragmentation is treated as a recursive process, where the splitting function of the subprocess q →h +q' depends on the spin density matrix of the quark q . The 3P0 mechanism is parametrized by a complex mass parameter μ , the imaginary part of which is responsible for single spin asymmetries. The model has been implemented in a Monte Carlo program to simulate jets made of pseudoscalar mesons. Results for single hadron and hadron pair transverse-spin asymmetries are found to be in agreement with experimental data from SIDIS and e+e- annihilation. The model predictions on the jet-handedness are also discussed.

  7. B{sub K} with two flavors of dynamical overlap fermions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, S.; Riken BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973; Fukaya, H.

    2008-05-01

    We present a two-flavor QCD calculation of B{sub K} on a 16{sup 3}x32 lattice at a{approx}0.12 fm (or equivalently a{sup -1}=1.67 GeV). Both valence and sea quarks are described by the overlap fermion formulation. The matching factor is calculated nonperturbatively with the so-called RI/MOM scheme. We find that the lattice data are well described by the next-to-leading order (NLO) partially quenched chiral perturbation theory (PQChPT) up to around a half of the strange quark mass (m{sub s}{sup phys}/2). The data at quark masses heavier than m{sub s}{sup phys}/2 are fitted including a part of next-to-next-to-leading order terms. We obtain B{submore » K}{sup MS}(2 GeV)=0.537(4)(40), where the first error is statistical and the second is an estimate of systematic uncertainties from finite volume, fixing topology, the matching factor, and the scale setting.« less

  8. Parton physics on a Euclidean lattice.

    PubMed

    Ji, Xiangdong

    2013-06-28

    I show that the parton physics related to correlations of quarks and gluons on the light cone can be studied through the matrix elements of frame-dependent, equal-time correlators in the large momentum limit. This observation allows practical calculations of parton properties on a Euclidean lattice. As an example, I demonstrate how to recover the leading-twist quark distribution by boosting an equal-time correlator to a large momentum.

  9. A precision measurement of the neutron 2. Probing the color force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Posik, Matthew R.

    2014-01-01

    The g 2 nucleon spin-dependent structure function measured in electron deep inelastic scattering contains information beyond the simple parton model description of the nucleon. It provides insight into quark-gluon correlations and a path to access the confining local color force a struck quark experiences just as it is hit by the virtual photon due to the remnant di-quark. The quantity d 2, a measure of this local color force, has its information encoded in an x 2 weighted integral of a linear combination of spin structure functions g 1 and g 2 and thus is dominated by the valence-quark regionmore » at large momentum fraction x. To date, theoretical calculations and experimental measurements of the neutron d 2 differ by about two standard deviations. Therefore, JLab experiment E06-014, performed in Hall A, made a precision measurement of this quantity at two mean four momentum transfers values of 3.21 and 4.32 GeV 2. Double spin asymmetries and absolute cross-sections were measured in both DIS and resonance regions by scattering longitudinally polarized electrons at beam energies of 4.74 and 5.89 GeV from a longitudinally and transversely polarized 3He target. Results for the absolute cross-sections and spin structure functions on 3He will be presented in the dissertation, as well as results for the neutron d 2 and extracted color forces.« less

  10. Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks

    NASA Astrophysics Data System (ADS)

    Ohta, Shigemi

    2006-12-01

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is a-1 ˜ 1.7GeV and the spatial volume is about (1.9fm)3 . Despite the small volume, the ratio of the isovector vector and axial charges gA /gV and that of structure function moments x u-d / x u- d are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a-1 ˜ 1.6GeV and the spatial volume is about (3.0fm)3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios gA /gV and x u-d / x u- d are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d1 , though yet to be renormalized, appears small in both sets.

  11. Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration

    2017-08-01

    We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.

  12. The Dualized Standard Model and its Applications — AN Interim Report

    NASA Astrophysics Data System (ADS)

    Chan, Hong-Mo; Tsou, Sheung Tsun

    Based on a non-Abelian generalization of electric-magnetic duality, the Dualized Standard Model (DSM) suggests a natural explanation for exactly three generations of fermions as the "dual colour" widetilde SU (3) symmetry broken in a particular manner. The resulting scheme then offers on the one hand a fermion mass hierarchy and a perturbative method for calculating the mass and mixing parameters of the Standard Model fermions, and on the other hand testable predictions for new phenomena ranging from rare meson decays to ultra-high energy cosmic rays. Calculations to one-loop order gives, at the cost of adjusting only three real parameters, values for the following quantities all (except one) in very good agreement with experiment: the quark CKM matrix elements dvbr Vrsdvbr , the lepton CKM matrix elements dvbr Ursdvbr, and the second generation masses mc, ms, mμ. This means, in particular, that it gives near maximal mixing Uμ3 between νμ and ντ as observed by SuperKamiokande, Kamiokande and Soudan, while keeping small the corresponding quark angles Vcb, Vts. In addition, the scheme gives (i) rough order-of-magnitude estimates for the masses of the lowest generation, (ii) predictions for low energy FCNC effects such as KL→ eμ, and (iii) a possible explanation for the long-standing puzzle of air showers beyond the GZK cut-off. All these together, however, still represent but a portion of the possible physical consequences derivable from the DSM scheme, the majority of which are yet to be explored.

  13. Scalar quantum chromodynamics in two dimensions and parton model. [Scalar quarks, SU(N) groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shei, S.S.; Tsao, H.S.

    1977-05-01

    The SU(N) scalar quantum chromodynamics in two space-time dimensions in the large N limit are studied. This is the model of color gauge fields interacting with scalar quarks. It is found that the consensual properties of the four dimensional QCD, i.e., the infrared slavery, quark confinement, the charmonium picture etc. are all realized. Moreover, the current in this model mimics nicely the behaviors of current in the four dimensional QCD, in contrast to the original model of 't Hooft.

  14. Parity partners in the baryon resonance spectrum

    DOE PAGES

    Lu, Ya; Chen, Chen; Roberts, Craig D.; ...

    2017-07-28

    Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less

  15. Parity partners in the baryon resonance spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ya; Chen, Chen; Roberts, Craig D.

    Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less

  16. Jet-conversion photons from an anisotropic quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Lusaka; Roy, Pradip

    2010-10-01

    We calculate the pT distributions of jet-conversion photons from a quark-gluon plasma with pre-equilibrium momentum-space anisotropy. A phenomenological model has been used for the time evolution of the hard momentum scale phard(τ) and anisotropy parameter ξ(τ). As a result of pre-equilibrium momentum-space anisotropy, we find significant modification of the jet-conversion photon pT distribution. For example, with fixed initial condition pre-equilibrium anisotropy, we predict a significant enhancement of the jet-photon pT distribution in the entire region, whereas for pre-equilibrium anisotropy with fixed final multiplicity (FFM), suppression of the jet-conversion photon pT distribution is observed. The results with FFM (as it is the most realistic situation) have been compared with high pT PHENIX photon data. It is found that the data are reproduced well if the isotropization time lies within 1.5 fm/c.

  17. Higgs boson decay into b-quarks at NNLO accuracy

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán

    2015-04-01

    We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in αs. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.

  18. Search for lepton flavour violation in the eμ continuum with the ATLAS detector in √{s} = 7 TeV pp collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bona, M.; Bondioli, M.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Booth, P.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Brambilla, E.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Bright-Thomas, P. G.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camard, A.; Camarri, P.; Cameron, D.; Cammin, J.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, L.; Chen, S.; Chen, X.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Coelli, S.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Via, C.; Dabrowski, W.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Daly, C. H.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; de Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Drevermann, H.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Efthymiopoulos, I.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fasching, D.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flammer, J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fonseca Martin, T.; Fopma, J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gieraltowski, G. F.; Gilchriese, M.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonzalez, S.; González de la Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Green, B.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruwe, M.; Grybel, K.; Guest, D.; Guicheney, C.; Guida, A.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, C. J.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heldmann, M.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Hoummada, A.; Howarth, J.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; König, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larner, A.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Leahu, M.; Lebedev, A.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Lewandowska, M.; Lewis, G. H.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchesotti, M.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; Maximov, D. A.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Moneta, L.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, MC; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohska, T. K.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, A.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rajek, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandhu, P.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savine, A. Y.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, HS.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Swedish, S.; Sykora, I.; Sykora, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Treis, J.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Twomey, M. S.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, J.; Wang, J.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, C.; Xu, D.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zinonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2012-06-01

    This paper presents a search for the t-channel exchange of an R-parity violating scalar top quark (tilde{t}) in the e ± μ ∓ continuum using 2.1 fb-1 of data collected by the ATLAS detector in √{s}=7 TeV pp collisions at the Large Hadron Collider. Data are found to be consistent with the expectation from the Standard Model backgrounds. Limits on R-parity-violating couplings at 95 % C.L. are calculated as a function of the scalar top mass (m_{tilde{t}}). The upper limits on the production cross section for pp→ eμX, through the t-channel exchange of a scalar top quark, ranges from 170 fb for m_{tilde{t}}=95 GeV to 30 fb for m_{tilde{t}}=1000 GeV.

  19. Search for lepton flavour violation in the eμ continuum with the ATLAS detector in $$\\sqrt{s} = 7~\\mbox{TeV}$$ pp collisions at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2012-06-14

    This paper presents a search for the t-channel exchange of an R-parity violating scalar top quark (more » $$\\sim\\atop{t}$$) in the e ±μ ∓ continuum using 2.1 fb 1 of data collected by the ATLAS detector in √s = 7 TeV pp collisions at the Large Hadron Collider. Data are found to be consistent with the expectation from the Standard Model backgrounds. Limits on R-parity-violating couplings at 95 % C.L. are calculated as a function of the scalar top mass (m$$_t^-$$). The upper limits on the production cross section for pp→eμX, through the t-channel exchange of a scalar top quark, ranges from 170 fb for m$$_t^-$$ = 95 GeV to 30 fb for m$$_t^-$$ = 1000 GeV.« less

  20. Search for pair production of excited top quarks in the lepton + jets final state

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Escalante Del Valle, A.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Bilin, B.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Kalsi, A. K.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, J.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Wang, Y.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; El-khateeb, E.; Elgammal, S.; Mohamed, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Teroerde, M.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Gianneios, P.; Katsoulis, P.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Tsitsonis, D.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Ravera, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Eysermans, J.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Alexakhin, V.; Bunin, P.; Gavrilenko, M.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sosnov, D.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Markin, O.; Parygin, P.; Philippov, D.; Polikarpov, S.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Godizov, A.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Bachiller, I.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Chang, Y. H.; Cheng, K. y.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Chen, Y. M.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bakirci, M. N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tok, U. G.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Köseoglu, I.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Linacre, J.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Teodorescu, L.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Karapostoli, G.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; Gouskos, L.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Golf, F.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Freer, C.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wamorkar, T.; Wang, B.; Wisecarver, A.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Bucci, R.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Li, W.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Siddireddy, P.; Smith, G.; Taroni, S.; Wayne, M.; Wightman, A.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Kalogeropoulos, A.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xiao, R.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-03-01

    A search is performed for the pair production of spin-3/2 excited top quarks, each decaying to a top quark and a gluon. The search uses the data collected with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb-1. Events are selected by requiring an isolated muon or electron, an imbalance in the transverse momentum, and at least six jets of which exactly two must be compatible with originating from the fragmentation of a bottom quark. No significant excess over the standard model predictions is found. A lower limit of 1.2 TeV is set at 95% confidence level on the mass of the spin-3/2 excited top quark in an extension of the Randall-Sundrum model, assuming a 100% branching fraction of its decay into a top quark and a gluon. These are the best limits to date in a search for excited top quarks and the first at 13 TeV.

  1. Search for pair production of excited top quarks in the lepton + jets final state

    DOE PAGES

    Chatrchyan, Serguei

    2014-11-19

    A search is performed for pair-produced spin-3/2 excited top quarks t *t ¯ * , each decaying to a top quark and a gluon. The search uses data collected with the CMS detector from pp collisions at a center-of-mass energy of √s = 8 TeV, selecting events that have a single isolated muon or electron, an imbalance in transverse momentum, and at least six jets, of which one must be compatible with originating from the fragmentation of a b quark. The data, corresponding to an integrated luminosity of 19.5 fb -1, show no significant excess over standard model predictions, andmore » provide a lower limit of 803 GeV at 95% confidence on the mass of the spin-3/2 t* quark in an extension of the Randall-Sundrum model, assuming a 100% branching fraction of its decay into a top quark and a gluon. As a result, this is the first search for a spin-3/2 excited top quark performed at the LHC.« less

  2. Search for pair production of excited top quarks in the lepton + jets final state

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-02-03

    A search is performed for the pair production of spin-3/2 excited top quarks, each decaying to a top quark and a gluon. The search uses the data collected with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 inverse femtobarns. Events are selected by requiring an isolated muon or electron, an imbalance in the transverse momentum, and at least six jets of which exactly two must be compatible with originating from the fragmentation of a bottom quark. No significant excess over the standard model predictions is found. A lowermore » limit of 1.2 TeV is set at 95% confidence level on the mass of the spin-3/2 excited top quark in an extension of the Randall-Sundrum model, assuming a 100% branching fraction of its decay into a top quark and a gluon. As a result, these are the best limits to date in a search for excited top quarks and the first at 13 TeV.« less

  3. Search for pair production of excited top quarks in the lepton + jets final state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.

    A search is performed for the pair production of spin-3/2 excited top quarks, each decaying to a top quark and a gluon. The search uses the data collected with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 inverse femtobarns. Events are selected by requiring an isolated muon or electron, an imbalance in the transverse momentum, and at least six jets of which exactly two must be compatible with originating from the fragmentation of a bottom quark. No significant excess over the standard model predictions is found. A lowermore » limit of 1.2 TeV is set at 95% confidence level on the mass of the spin-3/2 excited top quark in an extension of the Randall-Sundrum model, assuming a 100% branching fraction of its decay into a top quark and a gluon. As a result, these are the best limits to date in a search for excited top quarks and the first at 13 TeV.« less

  4. Describing the strongly interacting quark-gluon plasma through the Friedberg-Lee model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Song; Li Jiarong; Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079

    2010-10-15

    The Friedberg-Lee (FL) model is studied at finite temperature and density. The soliton solutions of the FL model in the deconfinement phase transition are solved and thoroughly discussed for certain boundary conditions. We indicate that the solitons before and after the deconfinement have different physical meanings: the soliton before deconfinement represents hadrons, while the soliton after the deconfinement represents the bound state of quarks which leads to a strongly interacting quark-gluon plasma phase. The corresponding phase diagram is given.

  5. Exotic Signals of Vectorlike Quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrescu, Bogdan A.; Yu, Felix

    2016-12-06

    Vectorlike fermions are an important target for hadron collider searches. We show that the vectorlike quarks may predominantly decay via higher-dimensional operators into a quark plus a couple of other Standard Model fermions. Pair production of vectorlike quarks of charge 2/3 at the LHC would then lead to a variety of possible final states, includingmore » $$t\\bar t + 4\\tau$$, $$t\\bar b\

  6. Top Quark Properties at the TeVatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Yvonne

    2011-03-01

    Discovered in 1995 by CDF and D0 at the Fermilab Tevatron collider, the top quark remains interesting to test the Standard Model. Having collected more than 7 fb{sup -1} of integrated luminosity with both experiments until today, several top quark properties have been measured with increasing precision, while other properties have been investigated for the first time. In this article recent measurements of top quark properties from CDF and D0 are presented, using between 1 fb{sup -1} and 4.8 fb{sup -1} of data. In particular, the measurement of the top quark mass, the top quark width, the top antitop massmore » difference, a check of the electric charge of the top quark, measurements of the top antitop quark spin correlation and W helicity as well as a search for charged Higgs bosons are discussed.« less

  7. Nuclear matter from effective quark-quark interaction.

    PubMed

    Baldo, M; Fukukawa, K

    2014-12-12

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  8. Fluctuation instability of the Dirac Sea in quark models of strong interactions

    NASA Astrophysics Data System (ADS)

    Zinovjev, G. M.; Molodtsov, S. V.

    2016-03-01

    A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac sea (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac sea, a neutral ensemble, a color superconductor, and a Bardeen-Cooper-Schrieffer (BCS) state, was performed. In the presence of color quark interaction, a BCS state is unambiguously chosen as the ground state of the quark ensemble.

  9. Search for supersymmetry in proton-proton collisions at 13 TeV using identified top quarks

    DOE PAGES

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...

    2018-01-31

    A search for supersymmetry is presented based on proton-proton collision events containing identified hadronically decaying top quarks, no leptons, and an imbalance pmore » $$miss\\atop{T}$$ in transverse momentum. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 35.9 fb -1. Search regions are defined in terms of the multiplicity of bottom quark jet and top quark candidates, the p$$miss\\atop{T}$$, the scalar sum of jet transverse momenta, and the m T2 mass variable. No statistically significant excess of events is observed relative to the expectation from the standard model. Lower limits on the masses of supersymmetric particles are determined at 95% confidence level in the context of simplified models with top quark production. For a model with direct top squark pair production followed by the decay of each top squark to a top quark and a neutralino, top squark masses up to 1020 GeV and neutralino masses up to 430 GeV are excluded. For a model with pair production of gluinos followed by the decay of each gluino to a top quark-antiquark pair and a neutralino, gluino masses up to 2040 GeV and neutralino masses up to 1150 GeV are excluded. Finally, these limits extend previous results.« less

  10. Additional strange hadrons from QCD thermodynamics and strangeness freezeout in heavy ion collisions.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2014-08-15

    We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anzai, Chihaya; Hasselhuhn, Alexander; Höschele, Maik

    We compute the contribution to the total cross section for the inclusive production of a Standard Model Higgs boson induced by two quarks with different flavour in the initial state. Our calculation is exact in the Higgs boson mass and the partonic center-of-mass energy. Here, we describe the reduction to master integrals, the construction of a canonical basis, and the solution of the corresponding differential equations. Our analytic result contains both Harmonic Polylogarithms and iterated integrals with additional letters in the alphabet.

  12. The Trigonometry of Twistors and Elementary Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, Karl

    2009-03-10

    A new trigonometry for twistors is presented. The operator-theoretic maximum twistor turning angle is shown to be related to the space-time geometric angle within the light cone. The corresponding maximally turned twistor antieigenvectors are calculated and interpretted. The two weak interaction CP eigenvectors of neutral kaons are shown to be exactly the two strong interaction strangeness antieigenvectors. Quark mixing is seen trigonometrically. 't Hooft's microcosmos model is connected to the theories of normal degree and complex dynamics.

  13. Nuclear modification factor in an anisotropic quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Mandal, Mahatsab; Bhattacharya, Lusaka; Roy, Pradip

    2011-10-01

    We calculate the nuclear modification factor (RAA) of light hadrons by taking into account the initial state momentum anisotropy of the quark-gluon plasma (QGP) expected to be formed in relativistic heavy ion collisions. Such an anisotropy can result from the initial rapid longitudinal expansion of the matter. A phenomenological model for the space-time evolution of the anisotropic QGP is used to obtain the time dependence of the anisotropy parameter ξ and the hard momentum scale, phard. The result is then compared with the PHENIX experimental data to constrain the isotropization time scale, τiso for fixed initial conditions (FIC). It is shown that the extracted value of τiso lies in the range 0.5⩽τiso⩽1.5. However, using a fixed final multiplicity (FFM) condition does not lead to any firm conclusion about the extraction of the isotropization time. The present calculation is also extended to contrast with the recent measurement of nuclear modification factor by the ALICE collaboration at s=2.76 TeV. It is argued that in the present approach, the extraction of τiso at this energy is uncertain and, therefore, refinement of the model is necessary. The sensitivity of the results on the initial conditions has been discussed. We also present the nuclear modification factor at Large Hadron Collider (LHC) energies with s=5.5 TeV.

  14. The top quark (20 years after the discovery)

    DOE PAGES

    Boos, Eduard; Brandt, Oleg; Denisov, Dmitri; ...

    2015-09-10

    On the twentieth anniversary of the observation of the top quark, we trace our understanding of this heaviest of all known particles from the prediction of its existence, through the searches and discovery, to the current knowledge of its production mechanisms and properties. We also discuss the central role of the top quark in the Standard Model and the windows that it opens for seeking new physics beyond the Standard Model.

  15. Lattice Computation of the Nucleon Scalar Quark Contents at the Physical Point.

    PubMed

    Durr, S; Fodor, Z; Hoelbling, C; Katz, S D; Krieg, S; Lellouch, L; Lippert, T; Metivet, T; Portelli, A; Szabo, K K; Torrero, C; Toth, B C; Varnhorst, L

    2016-04-29

    We present a QCD calculation of the u, d, and s scalar quark contents of nucleons based on 47 lattice ensembles with N_{f}=2+1 dynamical sea quarks, 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and pion masses down to 120 MeV. Using the Feynman-Hellmann theorem, we obtain f_{ud}^{N}=0.0405(40)(35) and f_{s}^{N}=0.113(45)(40), which translates into σ_{πN}=38(3)(3)  MeV, σ_{sN}=105(41)(37)  MeV, and y_{N}=0.20(8)(8) for the sigma terms and the related ratio, where the first errors are statistical and the second errors are systematic. Using isospin relations, we also compute the individual up and down quark contents of the proton and neutron (results in the main text).

  16. Meson spectroscopy, quark mixing and quantum chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A.T.

    1979-04-01

    A semiphenomenological theory of the quark-antiquark meson mass spectrum is presented. Relativistic kinematic effects due to unequal quark masses and SU (3) -breaking effects in the slopes of Regge trajectories and in radially excited states are taken into account. Violation of the OZI rule is accounted for by means of a mixing matrix for the quark wave functions, which is given by QCD. To describe the dependence of the mixing parameters on the meson masses, a simple extrapolation of the QCD expressions is proposed from the ''asymptotic-freedom'' region to the ''infrared-slavery'' region. To calculate the masses and mixing angles ofmore » the pseudoscalar mesons, the condition for a minimal pion mass is proposed. The eta-meson mass is then shown to be close to its maximum. The predictions of the theory for meson masses and mixing angles are in good agreement with experiment.« less

  17. Isospin splittings in the light-baryon octet from lattice QCD and QED.

    PubMed

    Borsanyi, Sz; Dürr, S; Fodor, Z; Frison, J; Hoelbling, C; Katz, S D; Krieg, S; Kurth, Th; Lellouch, L; Lippert, Th; Portelli, A; Ramos, A; Sastre, A; Szabo, K

    2013-12-20

    While electromagnetic and up-down quark mass difference effects on octet baryon masses are very small, they have important consequences. The stability of the hydrogen atom against beta decay is a prominent example. Here, we include these effects by adding them to valence quarks in a lattice QCD calculation based on Nf=2+1 simulations with five lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. This allows us to gain control over all systematic errors, except for the one associated with neglecting electromagnetism in the sea. We compute the octet baryon isomultiplet mass splittings, as well as the individual contributions from electromagnetism and the up-down quark mass difference. Our results for the total splittings are in good agreement with experiment.

  18. Estimate of the hadronic vacuum polarization disconnected contribution to the anomalous magnetic moment of the muon from lattice QCD

    NASA Astrophysics Data System (ADS)

    Chakraborty, Bipasha; Davies, C. T. H.; Koponen, J.; Lepage, G. P.; Peardon, M. J.; Ryan, S. M.

    2016-04-01

    The quark-line disconnected diagram is a potentially important ingredient in lattice QCD calculations of the hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon. It is also a notoriously difficult one to evaluate. Here, for the first time, we give an estimate of this contribution based on lattice QCD results that have a statistically significant signal, albeit at one value of the lattice spacing and an unphysically heavy value of the u /d quark mass. We use HPQCD's method of determining the anomalous magnetic moment by reconstructing the Adler function from time moments of the current-current correlator at zero spatial momentum. Our results lead to a total (including u , d and s quarks) quark-line disconnected contribution to aμ of -0.15 % of the u /d hadronic vacuum polarization contribution with an uncertainty which is 1% of that contribution.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazavov, A.; Ding, H. -T.; Hegde, P.

    In this paper, we investigate the phase structure of QCD with three degenerate quark flavors as a function of the degenerate quark masses at vanishing baryon number density. We use the highly improved staggered quarks on lattices with temporal extent N τ = 6 and perform calculations for six values of quark masses, which in the continuum limit correspond to pion masses in the range 80 MeV ≲ m π ≲ 230 MeV. By analyzing the volume and temperature dependence of the chiral condensate and chiral susceptibility, we find no direct evidence for a first-order phase transition in this rangemore » of pion mass values. Finally, relying on the universal scaling behaviors of the chiral observables near an anticipated chiral critical point, we estimate an upper bound for the critical pion mass m c π ≲ 50 MeV, below which a region of first-order chiral phase transition is favored.« less

  20. Isoscalar π π Scattering and the σ Meson Resonance from QCD

    DOE PAGES

    Briceño, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; ...

    2017-01-09

    Here, we present for the first time a determination of the energy dependence of the isoscalar ππ elastic scattering phase-shift within a first-principles numerical lattice approach to QCD. We also compute the hadronic correlation functions including all required quark propagation diagrams. From these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum we obtain the S-wave phase-shift up to the Kmore » $$\\bar{K}$$ threshold. Calculations are performed at two values of the u, d quark mass corresponding to m π = 236, 391 MeV and the resulting amplitudes are described in terms of a σ meson which evolves from a bound-state below ππ threshold at the heavier quark mass, to a broad resonance at the lighter quark mass.« less

Top