Science.gov

Sample records for quarter-filled layered organic

  1. Classification of the Ground States of Two-Dimensional Quarter-Filled Organic Conductors with Strong Dimerization

    NASA Astrophysics Data System (ADS)

    Hotta, Chisa; Fukuyama, Hidetoshi

    2001-02-01

    A possible phase diagram of the family of two-dimensional organic conductors, κ-ET2X, has so far been characterized by the strength of the mutual on-site Coulomb interaction relative to the bandwidth. In this paper, it is pointed out that there is another important parameter to categorize members of this family with quarter-filled hole bands under strong dimerization. The key parameter turns out to be the degree of splitting of the anti-bonding highest occupied molecular orbital (HOMO) bands which determines the shape of the Fermi surface, and then the possible importance of the nesting, which leads to the stability of different types of the ground states, Mott insulator and spin-density-wave (SDW) is pointed out.

  2. Phase diagram of quarter-filled band organic salts, [EDT-TTF-CONMe2]2X, X=AsF6 and Br

    NASA Astrophysics Data System (ADS)

    Auban-Senzier, P.; Pasquier, C. R.; Jérome, D.; Suh, S.; Brown, S. E.; Mézière, C.; Batail, P.

    2010-06-01

    An investigation of the P/T phase diagram of the quarter-filled organic conductors, [EDT-TTF-CONMe2]2X is reported on the basis of transport and NMR studies of two members, X=AsF6 and Br of the family. The strongly insulating character of these materials in the low pressure regime has been attributed to a very stable charge ordered state confirmed by 13C NMR and the only existence of 1/4 Umklapp e-e scattering favoring charge ordering instead of the 1D Mott localization seen in (TM)2X which are 1/4-filled compounds with dimerization. A nonmagnetic insulating phase instead of the spin density wave state is stabilized in the deconfined regime of the phase diagram. The sequence of phases observed under pressure may be considered as generic for 1/4-filled conductors with correlations.

  3. Phase Diagram of Quarter-Filled Band Organic Salts [EDT-TTF-CONMe2]2X, X=AsF6 and Br

    NASA Astrophysics Data System (ADS)

    Auban-Senzier, P.; Pasquier, C. R.; Jérome, D.; Suh, S.; Brown, S. E.; Mézière, C.; Batail, P.

    2009-06-01

    An investigation of the P-T phase diagram of the quarter-filled organic conductors, [EDT-TTF-CONMe2]2X is reported on the basis of transport and NMR studies of two members, X=AsF6 and Br of the family. The strongly insulating character of these materials in the low-pressure regime has been attributed to a remarkably stable charge-ordered state confirmed by C13 NMR and the only existence of 1/4 Umklapp e-e scattering favoring a charge ordering instead of the 1D Mott localization seen in (TMTTF)2X and (TMTSF)2X which are 1/4-filled compounds with dimerization. A nonmagnetic insulating phase instead of the spin density wave state is stabilized in the deconfined regime of the phase diagram. This sequence of phases observed under pressure may be considered as a generic behavior for 1/4-filled conductors with correlations.

  4. Single-pole ladder at quarter filling

    NASA Astrophysics Data System (ADS)

    Aristov, D. N.; Kiselev, M. N.; Kikoin, K.

    2007-06-01

    We study the ground state and excitation spectrum of a quasi-one-dimensional system consisting of a pole and rungs oriented in opposite directions (“centipede ladder,” CL) at quarter filling. The spin and charge excitation spectra are found in the limits of small and large longitudinal hoppings t‖ compared to the on-rung hopping rate t⊥ and exchange coupling I⊥ . At small t‖ , the system with ferromagnetic on-rung exchange demonstrates instability against dimerization. Coherent propagation of charge-transfer excitons is possible in this limit. At large t‖ , CL behaves like two-orbital Hubbard chain, but the gap opens in the charge excitation spectrum, thus reducing the symmetry from SU(4) to SU(2). The spin excitations are always gapless and their dispersion changes from quadratic magnonlike for ferromagnetic on-rung exchange to linear spinonlike for antiferromagnetic on-rung exchange in weak longitudinal hopping limit.

  5. Quarter-Filled Honeycomb Lattice with a Quantized Hall Conductance

    NASA Astrophysics Data System (ADS)

    Shimshoni, Efrat; Murthy, Ganpathy; Shankar, Ramamurti; Fertig, Herbert

    2012-02-01

    We study a generic two-dimensional hopping model on a honeycomb lattice with strong spin-orbit coupling, without the requirement that the half-filled lattice be a Topological Insulator. For quarter-(or three-quarter) filling, we show that a state with a quantized Hall conductance generically arises in the presence of a Zeeman field of sufficient strength. We discuss the influence of Hubbard interactions and argue that spontaneous ferromagnetism (which breaks time-reversal) will occur, leading to a quantized anomalous Hall effect. G. Murthy, E. Shimshoni, R. Shankar, and H. A. Fertig, arxiv:1108.2010[cond-mat.mes-hall

  6. Bond patterns and charge-order amplitude in quarter-filled charge-transfer solids

    NASA Astrophysics Data System (ADS)

    Clay, R. T.; Ward, A. B.; Gomes, N.; Mazumdar, S.

    2017-03-01

    Most quasi-one-dimensional (quasi-1D) quarter-filled organic charge-transfer solids (CTS) with insulating ground states have two thermodynamic transitions: a high-temperature metal-insulator transition followed by a low-temperature magnetic transition. This sequence of transitions can be understood within the 1D Peierls-extended Hubbard (PEH) model. However, in some quasi-1D CTS both transitions occur simultaneously in a direct metal to spin-gapped insulator transition. In this second class of materials the organic stack bond distortion pattern does not follow the pattern of a second dimerization of a dimer lattice. These materials also display charge ordering of a large amplitude below the transition. Using quantum Monte Carlo methods we show that the same PEH model can be used to understand both classes of materials, however, within different parameter regions. We discuss the relevance of our work to experiments on several quarter-filled conductors, focusing in particular on the materials (EDO-TTF)2X and (DMEDO-TTF)2X .

  7. Entanglement entropies of the quarter filled Hubbard model

    NASA Astrophysics Data System (ADS)

    Calabrese, Pasquale; Essler, Fabian H. L.; Läuchli, Andreas M.

    2014-09-01

    We study Rényi and von Neumann entanglement entropies in the ground state of the one dimensional quarter-filled Hubbard model with periodic boundary conditions. We show that they exhibit an unexpected dependence on system size: for L = 4mod 8 the results are in agreement with expectations based on conformal field theory, while for L = 0mod 8 additional contributions arise. We show that these can be understood in terms of a ‘shell-filling’ effect and we develop a conformal field theory approach to calculate the additional contributions to the entropies. These analytic results are found to be in excellent agreement with density matrix renormalization group computations for weak Hubbard interactions. We argue that for larger interactions the presence of a marginal irrelevant operator in the spin sector strongly affects the entropies at the finite sizes accessible numerically and we present an effective way to take them into account.

  8. Peierls to superfluid crossover in the one-dimensional, quarter-filled Holstein model.

    PubMed

    Hohenadler, M; Assaad, F F

    2013-01-09

    We use continuous-time quantum Monte Carlo simulations to study retardation effects in the metallic, quarter-filled Holstein model in one dimension. Based on results which include the one- and two-particle spectral functions as well as the optical conductivity, we conclude that with increasing phonon frequency the ground state evolves from one with dominant diagonal order-2k(F) charge correlations-to one with dominant off-diagonal fluctuations, namely s-wave pairing correlations. In the parameter range of this crossover, our numerical results support the existence of a spin gap for all phonon frequencies. The crossover can hence be interpreted in terms of preformed pairs corresponding to bipolarons, which are essentially localized in the Peierls phase, and 'condense' with increasing phonon frequency to generate dominant pairing correlations.

  9. Quarter-filled supersolid and solid phases in the extended Bose-Hubbard model.

    PubMed

    Ng, Kwai-Kong; Chen, Y C; Tzeng, Y C

    2010-05-12

    We numerically study the ground state phase diagram of the two-dimensional hard-core Bose-Hubbard model with nearest-(V(1)) and next-nearest-neighbour (V(2)) repulsions. In particular, we focus on the quarter-filled phases where one supersolid and two solid phases are observed. Using both canonical and grand canonical quantum Monte Carlo (QMC) methods and a mean-field calculation, we provide evidence for the existence of a commensurate supersolid. Despite the two possible diagonal long-range orderings for the solid phase, only one kind of supersolid phase is found to be energetically stable. The competition between the two solid phases manifests itself as a first-order phase transition around 2V(2) ∼ V(1). The change of order parameters as a function of the chemical potential is also presented.

  10. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOEpatents

    Rand, Barry P.; Forrest, Stephen R.

    2011-05-24

    A photosensitive device includes a series of organic photoactive layers disposed between two electrodes. Each layer in the series is in direct contact with a next layer in the series. The series is arranged to form at least one donor-acceptor heterojunction, and includes a first organic photoactive layer comprising a first host material serving as a donor, a thin second organic photoactive layer comprising a second host material disposed between the first and a third organic photoactive layer, and the third organic photoactive layer comprising a third host material serving as an acceptor. The first, second, and third host materials are different. The thin second layer serves as an acceptor relative to the first layer or as a donor relative to the third layer.

  11. Dynamics of Fractionally Charged Phase Soliton in One-Dimensional Quarter-Filled Electron--Lattice Systems

    NASA Astrophysics Data System (ADS)

    Hirokawa, Kenichi; Terai, Akira; Ono, Yoshiyuki

    2013-10-01

    The dynamical properties of a phase soliton with a fractional charge ± e/2 in the bond-charge-density-wave (BCDW) background of one-dimensional quarter-filled electron--lattice systems are studied by numerical and semi-phenomenological methods using the Su--Schrieffer--Heeger (SSH) model. A special focus is on the time evolutions of the velocity and energy of the charged soliton subject to an electric field. Several interesting properties are obtained: the saturation of the soliton velocity, the divergence of the soliton energy and the propagation of condensed acoustic phonons. The saturation velocity, which is independent of the applied field strength, is less than the phason velocity. These properties are different from those of the sine-Gordon model which was believed to describe the commensurate BCDW systems. The velocity--energy relation is also different from that of the sine-Gordon soliton but is described by the same form as that of the acoustic polaron in the SSH model. These results suggest that it is necessary to take into account the interactions between the electrons and the acoustic phonons in order to really understand the dynamics of the fractionally charged soliton in the electron--lattice system.

  12. Spin, charge, and single-particle spectral functions of the one-dimensional quarter filled Holstein model

    NASA Astrophysics Data System (ADS)

    Assaad, F. F.

    2008-10-01

    We use a recently developed extension of the weak-coupling diagrammatic determinantal quantum Monte Carlo method to investigate the spin, charge, and single-particle spectral functions of the one-dimensional quarter filled Holstein model with phonon frequency ω0=0.1t . As a function of the dimensionless electron-phonon coupling we observe a transition from a Luttinger to a Luther-Emery liquid with dominant 2kf charge fluctuations. Emphasis is placed on the temperature dependence of the single-particle spectral function. At high temperatures and in both phases it is well accounted for within a self-consistent Born approximation. In the low-temperature Luttinger liquid phase we observe features that compare favorably with a bosonization approach retaining only forward scattering. In the Luther-Emery phase, the spectral function at low temperatures shows a quasiparticle gap that matches half the spin gap, whereas at temperatures above which this quasiparticle gap closes characteristic features of the Luttinger liquid model are apparent. Our results are based on lattice simulations on chains up to L=20 for two-particle properties and on cluster dynamical mean-field theory calculations with clusters up to 12 sites for the single-particle spectral function.

  13. Gate Control of Electronic Phases in a Quarter-Filled Manganite

    NASA Astrophysics Data System (ADS)

    Hatano, T.; Ogimoto, Y.; Ogawa, N.; Nakano, M.; Ono, S.; Tomioka, Y.; Miyano, K.; Iwasa, Y.; Tokura, Y.

    2013-10-01

    Electron correlation often produces a variety of electrically insulating states caused by self-organization of electrons, which are particularly stable at commensurate fillings. Although collapsing such ordered states by minute external stimuli has been a key strategy toward device applications, it is difficult to access their true electronic phase boundaries due to the necessity of fine-tuning of material parameters. Here, we demonstrate the ambipolar resistance switching in Pr1-xSrxMnO3 thin films (x = 0.5; an effectively 1/4-filled state) by quasi-continuous control of the doping level x and band-width W using gate-voltage and magnetic field, enabled by the extreme electric-field formed at the nanoscale interface generated in an electrolyte-gated transistor. An electroresistance peak with unprecedented steepness emerges on approaching a critical point in the x-W phase diagram. The technique opens a new route to Mott-insulator based transistors and to discovering singularities hitherto unnoticed in conventional bulk studies of strongly correlated electron systems.

  14. Gate Control of Electronic Phases in a Quarter-Filled Manganite

    PubMed Central

    Hatano, T.; Ogimoto, Y.; Ogawa, N.; Nakano, M.; Ono, S.; Tomioka, Y.; Miyano, K.; Iwasa, Y.; Tokura, Y.

    2013-01-01

    Electron correlation often produces a variety of electrically insulating states caused by self-organization of electrons, which are particularly stable at commensurate fillings. Although collapsing such ordered states by minute external stimuli has been a key strategy toward device applications, it is difficult to access their true electronic phase boundaries due to the necessity of fine-tuning of material parameters. Here, we demonstrate the ambipolar resistance switching in Pr1−xSrxMnO3 thin films (x = 0.5; an effectively 1/4-filled state) by quasi-continuous control of the doping level x and band-width W using gate-voltage and magnetic field, enabled by the extreme electric-field formed at the nanoscale interface generated in an electrolyte-gated transistor. An electroresistance peak with unprecedented steepness emerges on approaching a critical point in the x-W phase diagram. The technique opens a new route to Mott-insulator based transistors and to discovering singularities hitherto unnoticed in conventional bulk studies of strongly correlated electron systems. PMID:24104858

  15. Organic photovoltaic cells utilizing ultrathin sensitizing layer

    DOEpatents

    Forrest, Stephen R.; Yang, Fan; Rand, Barry P.

    2011-09-06

    A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.

  16. Organic doping of rotated double layer graphene

    SciTech Connect

    George, Lijin; Jaiswal, Manu

    2016-05-06

    Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with different rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.

  17. Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors.

    PubMed

    Pappa, Anna-Maria; Inal, Sahika; Roy, Kirsty; Zhang, Yi; Pitsalidis, Charalampos; Hama, Adel; Pas, Jolien; Malliaras, George G; Owens, Roisin M

    2017-03-29

    Oppositely charged polyelectrolyte multilayers (PEMs) were built up in a layer-by-layer (LbL) assembly on top of the conducting polymer channel of an organic electrochemical transistor (OECT), aiming to combine the advantages of well-established PEMs with a high performance electronic transducer. The multilayered film is a model system to investigate the impact of biofunctionalization on the operation of OECTs comprising a poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) film as the electrically active layer. Understanding the mechanism of ion injection into the channel that is in direct contact with charged polymer films provides useful insights for novel biosensing applications such as nucleic acid sensing. Moreover, LbL is demonstrated to be a versatile electrode modification tool enabling tailored surface features in terms of thickness, softness, roughness, and charge. LbL assemblies built up on top of conducting polymers will aid the design of new bioelectronic platforms for drug delivery, tissue engineering, and medical diagnostics.

  18. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  19. Enterprise Management Network Architecture: The Organization Layer

    DTIC Science & Technology

    1990-11-01

    Distributed Systems capabilities 7 1.25 Distributed Systems Problems 7 2. Enterprise Management Network Node 8 3. Organization Layer 12 3.1 Modeling ...hierarchies, authority relations, etc., and the modeling of technologies being used such as network and database types. " The realizational or physical level...section, we define the content and use of the tools used to acquire the description of the organizational model of the Enterprise Management Network (EMU

  20. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2016-07-05

    A method for fabricating an organic light emitting device stack involves depositing a first conductive electrode layer over a substrate; depositing a first set of one or more organic layers, wherein at least one of the first set of organic layers is a first emissive layer and one of the first set of organic layers is deposited by a solution-based process that utilizes a first solvent; depositing a first conductive interlayer by a dry deposition process; and depositing a second set of one or more organic layers, wherein at least one of the second set of organic layers is a second emissive layer and one of the second set of organic layers is deposited by a solution-based process that utilizes a second solvent, wherein all layers that precede the layer deposited using the second solvent are insoluble in the second solvent.

  1. Interfacial Layer Optimization in Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Litofsky, Joshua; Lafalce, Evan; Jiang, Xiaomei

    2014-03-01

    Organic photovoltaic devices (OPVs) based on benchmark π - conjugated polymer polythiophene and electron acceptor PCBM are made up of a sandwich-like structure of multifunctional layers. Interfacial layers (IL) facilitate charge transport between the charge generation layer and the electrodes and enhance charge extraction. Optimizing the IL thus provides one mean of maximizing the efficiency of OPVs. Various electron transport layers such as ZnO and LiF were used, and hole transport layers included PEDOT:PSS and V2O5. Two different device architectures were explored: conventional structure with ITO serving as an anode and inverted structure when ITO acts as a cathode. Using various deposition techniques, we worked to optimize IL thickness and film formation methods. By analyzing device shunt and series resistances using a standard diode equation, we were able to identify the optimal parameters for device performance. The combination of thin IL with electrodes of appropriate work function yielded much better results compared to the control device with no IL. We can use these results and techniques to further optimize future OPV devices based on other novel material systems. This work was supported by the NSF REU grant # DMR-1263066: REU Site in Applied Physics at USF.

  2. Plasma-etched organic layers for antireflection purposes.

    PubMed

    Schulz, Ulrike; Präfke, Christiane; Gödeker, Christoph; Kaiser, Norbert; Tünnermann, Andreas

    2011-03-20

    Organic layers can be used to realize special functions in optical interference coatings. Suitable compounds for such layers were thermally evaporated and characterized. A plasma etching procedure was applied to produce nanostructures on top of the organic layers to reduce their effective refractive indices. Broadband antireflective coatings were obtained by combining these artificial low-index layers with conventionally prepared interference stacks.

  3. Organic light emitting device having multiple separate emissive layers

    SciTech Connect

    Forrest, Stephen R

    2012-03-27

    An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.

  4. Organizing Principles of Cortical Layer 6

    PubMed Central

    Briggs, Farran

    2009-01-01

    Neurons in the deepest layer of mammalian cerebral cortex are morphologically and physiological diverse and are situated in a strategic position to modulate neuronal activity locally and in other structures. The variety of neuronal circuits within which layer 6 neurons participate differs across species and cortical regions. However even amidst this diversity, common organizational features emerge. Examination of the anatomical and physiological characteristics of different classes of layer 6 neuron, each specialized to participate in distinct circuits, provides insight into the functional contributions of layer 6 neurons toward cortical information processing. PMID:20179784

  5. Organic photosensitive optoelectronic device having a phenanthroline exciton blocking layer

    DOEpatents

    Thompson, Mark E [Anaheim Hills, CA; Li, Jian [Los Angeles, CA; Forrest, Stephen [Princeton, NJ; Rand, Barry [Princeton, NJ

    2011-02-22

    An organic photosensitive optoelectronic device, having an anode, a cathode, and an organic blocking layer between the anode and the cathode is described, wherein the blocking layer comprises a phenanthroline derivative, and at least partially blocks at least one of excitons, electrons, and holes.

  6. Organic light emitting diode with surface modification layer

    DOEpatents

    Basil, John D.; Bhandari, Abhinav; Buhay, Harry; Arbab, Mehran; Marietti, Gary J.

    2017-09-12

    An organic light emitting diode (10) includes a substrate (12) having a first surface (14) and a second surface (16), a first electrode (32), and a second electrode (38). An emissive layer (36) is located between the first electrode (32) and the second electrode (38). The organic light emitting diode (10) further includes a surface modification layer (18). The surface modification layer (18) includes a non-planar surface (30, 52).

  7. Photochromic transduction layers in organic memory elements.

    PubMed

    Shallcross, R Clayton; Zacharias, Philipp; Köhnen, Anne; Körner, Peter O; Maibach, Eduard; Meerholz, Klaus

    2013-01-18

    Photochromic molecules provide an intriguing and relatively untapped alternative to traditional materials utilized in organic memory devices. Here, we review recent progress in the implementation of photochromic molecules in electrically-addressed organic memory devices. Recent results for a lightemitting photochromic organic diode are highlighted in the context of multifunctional devices with the ability to simultaneously operate as multilevel memory, signage and display elements. Furthermore, a set of design rules for successful implementation of photochromic compounds in organic memory devices are suggested.

  8. Interface study of insertion layers in organic semiconductor devices

    NASA Astrophysics Data System (ADS)

    Ding, Huanjun; Irfan, "; So, Franky; Gao, Yongli

    2009-08-01

    Inserting an ultra-thin interlayer has been an important means in modifying the performance of organic semiconductor devices. Using photoemission and inverse photoemission spectroscopy (UPS, XPS and IPES), we have investigated the electronic structure of a number of insertion layers widely used in organic semiconductor devices. We found that inserting alkali metal compound thin layers such as LiF between the electron transport layer (ETL) and the cathode can induce energy level shift in the ETL that reduces the electron injection barrier. The reduction is attributed to the release of the alkali metal that n-doped the ETL, and as such it depends on the cathode material deposited on top of the insertion layer. For thin metal oxide insertion layers, such as MoO3, between the anode and the hole transport layer (HTL), reduction of the hole injection barrier is also observed. This reduction, however, is due to the large workfunction of the oxide that subsequently moves the highest occupied molecular orbital (HOMO) toward the anode Fermi level. Effects of other insertion layers, such as metal insertion layer in organic bistable device (OBD) and organic insertion layer in bipolar organic thin film transistors (OTFT) will also be discussed.

  9. Layer-by-layer all-transfer-based organic solar cells.

    PubMed

    Kim, Jung Kyu; Kim, Wanjung; Wang, Dong Hwan; Lee, Haksoo; Cho, Sung M; Choi, Dae-Geun; Park, Jong Hyeok

    2013-04-30

    For the first time, we describe a novel cost- and time-effective vacuum-free process to fabricate bulk-heterojunction (BHJ) organic photovoltaics (OPVs) via layer-by-layer selective stamping transfer of all layers. By controlling the surface properties of polyurethane acrylate (PUA) stamping molds with ultraviolet (UV)-ozone (UVO) exposure, poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS), BHJ layer, and metal cathode were uniformly transferred layer by layer onto each of the bottom layers. Among several interfaces between each layer, we found that the interface between the active layer and metal cathode is a critical factor in obtaining conventional device-like efficiency. To enhance the interfacial connectivity between the BHJ layer and metal cathode and increase electron extraction from the BHJ layer, a titanium oxide (TiOx) interlayer was introduced. Cell performance was optimized by controlling the concentration of TiOx solution. The poly(3-hexylthiophene-2,5-diyl)/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT/PC60BM) BHJ device fabricated by transferring PEDOT/PSS, TiOx/active layer, and Al cathode showed 2.01% power conversion efficiency. This efficiency is not comparable to those of conventional OPVs, but our approach shows the possibility of fabricating OPVs via the layer-by-layer transfer method for the first time.

  10. Organic electrophosphorescence device having interfacial layers

    SciTech Connect

    Choulis, Stelios A.; Mathai, Mathew; Choong, Vi-En; So, Franky

    2010-08-10

    Techniques are described for forming an organic light emitting diode device with improved device efficiency. Materials having at least one energy level that is similar to those of a phosphorescent light emitting material in the diode are incorporated into the device to directly inject holes or electrons to the light emitting material.

  11. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  12. Film-coupled nanoparticles by atomic layer deposition: Comparison with organic spacing layers

    SciTech Connect

    Ciracì, Cristian Mock, Jack J.; McGuire, Felicia; Liu, Xiaojun; Smith, David R.; Chen, Xiaoshu; Oh, Sang-Hyun

    2014-01-13

    Film-coupled nanoparticle systems have proven a reliable platform for exploring the field enhancement associated with sub-nanometer sized gaps between plasmonic nanostructures. In this Letter, we present a side-by-side comparison of the spectral properties of film-coupled plasmon-resonant, gold nanoparticles, with dielectric spacer layers fabricated either using atomic layer deposition or using organic layers (polyelectrolytes or self-assembled monolayers of molecules). In either case, large area, uniform spacer layers with sub-nanometer thicknesses can be accurately deposited, allowing extreme coupling regimes to be probed. The observed spectral shifts of the nanoparticles as a function of spacer layer thickness are similar for the organic and inorganic films and are consistent with numerical calculations taking into account the nonlocal response of the metal.

  13. Organization of stratification, turbulence, and veering in bottom Ekman layers

    NASA Astrophysics Data System (ADS)

    Perlin, A.; Moum, J. N.; Klymak, J. M.; Levine, M. D.; Boyd, T.; Kosro, P. M.

    2007-05-01

    Detailed observations of the Ekman spiral in the stratified bottom boundary layer during a 3-month period in an upwelling season over the Oregon shelf suggest a systematic organization. Counter-clockwise veering in the bottom boundary layer is constrained to the weakly stratified layer below the pycnocline, and its height is nearly identical to the turbulent boundary layer height. Veering reaches 13+/-4 degrees near the bottom and exhibits a very weak dependence on the speed and direction of the interior flow and the thickness of the veering layer. A simple Ekman balance model with turbulent viscosity consistent with the law-of-the-wall parameterization modified to account for stratification at the top of the mixed layer is used to demonstrate the importance of stratification on the Ekman veering. The model agrees reasonably well with observations in the lower 60-70% of the bottom mixed layer, above which it diverges from the data due to the unaccounted physics in the interior. Neglect of stratification in an otherwise identical model results in far worse agreement with the data yielding veering in the bottom Ekman layer which is much smaller than measured, but distributed over a much thicker layer.

  14. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Organic Flatland-Recent Advances in Synthetic 2D Organic Layers.

    PubMed

    Cai, Song-Liang; Zhang, Wei-Guang; Zuckermann, Ronald N; Li, Zhan-Ting; Zhao, Xin; Liu, Yi

    2015-10-14

    Ultrathin, 2D organic layers of sub-ten nanometer thicknesses and high aspect ratios have received a great deal of attention for their graphene-like topological features and emerging properties. Rational synthetic strategies have led to the realization of periodic 2D layers with unprecedented structural precision. Herein, recent progress on the synthesis of 2D organic layers, including methods based on both non-covalent and covalent interactions, is summarized, and potential applications are highlighted. Such 2D organic nanostructures have a brilliant future as prospective multifunctional materials, showing great promise as platforms for engineering novel optoelectronic, interfacial, and bioactive properties.

  16. Finely tailored performance of inverted organic photovoltaics through layer-by-layer interfacial engineering.

    PubMed

    Chen, Qun; Worfolk, Brian J; Hauger, Tate C; Al-Atar, Usama; Harris, Kenneth D; Buriak, Jillian M

    2011-10-01

    Control over interfacial properties in organic photovoltaics (OPVs) is critical for many aspects of their performance. Functionalization of the transparent conducting electrode, in this case, indium tin oxide (ITO), through an electrostatic layer by layer (eLbL) approach with cationic N,N'-bis[2-(trimethylammonium)ethylene] perylene-3,4,9,10-tetracarboxyldiimide (PTCDI(+)) and anionic poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate) (PEDOT:PSS(-)), led to high control over the surface properties. The films were studied through a variety of surface and spectroscopic techniques, including X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, atomic force microscopy (AFM), and ellipsometry. The work function of modified ITO was measured by UV photoelectron spectroscopy (UPS) and showed oscillating values with respect to odd-even layer numbers; the strong odd-even effect is due to the differing electronic characteristics of the top layer, either PTCDI(+) or PEDOT:PSS(-). The modified ITO electrodes were then used as the cathode in a series of inverted organic photovoltaic architectures. The performance of inverted OPVs was, in parallel to the UPS results, found to be highly dependent on the layer number of coated films and showed an obvious oscillation based on layer number. Inverted OPVs were retested after 128 days of storage in air, and almost all devices maintained over 70% of original power conversion efficiency (PCE). © 2011 American Chemical Society

  17. Organic photovoltaic devices with a single layer geometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kolesov, Vladimir A.; Fuentes-Hernandez, Canek; Aizawa, Naoya; Larrain, Felipe A.; Chou, Wen-Fang; Perrotta, Alberto; Graham, Samuel; Kippelen, Bernard

    2016-09-01

    Organic photovoltaics (OPV) can lead to a low cost and short energy payback time alternative to existing photovoltaic technologies. However, to fulfill this promise, power conversion efficiencies must be improved and simultaneously the architecture of the devices and their processing steps need to be further simplified. In the most efficient devices to date, the functions of photocurrent generation, and hole/electron collection are achieved in different layers adding complexity to the device fabrication. In this talk, we present a novel approach that yields devices in which all these functions are combined in a single layer. Specifically, we report on bulk heterojunction devices in which amine-containing polymers are first mixed in the solution together with the donor and acceptor materials that form the active layer. A single-layer coating yields a self-forming bottom electron-collection layer comprised of the amine-containing polymer (e.g. PEIE). Hole-collection is achieved by subsequent immersion of this single layer in a solution of a polyoxometalate (e.g. phosphomolybdic acid (PMA)) leading to an electrically p-doped region formed by the diffusion of the dopant molecules into the bulk. The depth of this doped region can be controlled with values up to tens of nm by varying the immersion time. Devices with a single 500 nm-thick active layer of P3HT:ICBA processed using this method yield power conversion efficiency (PCE) values of 4.8 ± 0.3% at 1 sun and demonstrate a performance level superior to that of benchmark three-layer devices with separate layers of PEIE/P3HT:ICBA/MoOx (4.1 ± 0.4%). Devices remain stable after shelf lifetime experiments carried-out at 60 °C over 280 h.

  18. Fabrication of organic thin-film transistors using layer-by-layer assembly.

    PubMed

    Stricker, Jeffery T; Gudmundsdóttir, Anna D; Smith, Adam P; Taylor, Barney E; Durstock, Michael F

    2007-06-14

    Layer-by-layer assembly is presented as a deposition technique for the incorporation of ultrathin gate dielectric layers into thin-film transistors utilizing a highly doped organic active layer. This deposition technique enables the fabrication of device structures with a controllable gate dielectric thickness. In particular, devices with a dielectric layer comprised of poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) bilayer films were fabricated to examine the properties of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the transistor active layer. The transistor Ion/off ratio and switching speed are shown to be controlled by the gate bias, which is dependent upon the voltage applied and the number of bilayers deposited for the gate dielectric. The devices operate in the depletion mode as a result of dedoping of the active layer with the application of a positive gate bias. The depletion and recovery rate are highly dependent on the level of hydration in the film and the environment under which the device is operated. These observations are consistent with an electrochemical dedoping of the conducting polymer during operation.

  19. Structure and dynamics of electrical double layers in organic electrolytes.

    PubMed

    Feng, Guang; Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Qiao, Rui

    2010-01-01

    The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF(4)) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA(+) and BF(4)(-) in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF(4-)ACN electrolyte using molecular dynamics simulations complemented with quantum density functional theory calculations. The solvation of TEA(+) and BF(4)(-) ions is found to be much weaker than that of small inorganic ions in aqueous solutions, and the ACN molecules in the solvation shell of both types of ions show only weak packing and orientational ordering. These solvation characteristics are caused by the large size, charge delocalization, and irregular shape (in the case of TEA(+) cation) of the ions. Near neutral electrodes, the double-layer structure in the organic electrolyte exhibits a rich organization: the solvent shows strong layering and orientational ordering, ions are significantly contact-adsorbed on the electrode, and alternating layers of cations/anions penetrate ca. 1.1 nm into the bulk electrolyte. The significant contact adsorption of ions and the alternating layering of cation/anion are new features found for EDLs in organic electrolytes. These features essentially originate from the fact that van der Waals interactions between organic ions and the electrode are strong and the partial desolvation of these ions occurs easily, as a result of the large size of the organic ions. Near charged electrodes, distinct counter-ion concentration peaks form, and the ion distribution cannot be described by the Helmholtz model or the Helmholtz + Poisson-Boltzmann model. This is because the number of counter-ions adsorbed on the electrode exceeds the number of electrons on the electrode, and the electrode is over-screened in parts of the EDL. The computed capacitances of the EDLs are in good

  20. Structure and dynamics of electrical double layers in organic electrolytes

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Qiao, Rui; Feng, Guang

    2010-01-01

    The organic electrolyte of tetraethylammonium tetrafluoroborate (TEABF{sub 4}) in the aprotic solvent of acetonitrile (ACN) is widely used in electrochemical systems such as electrochemical capacitors. In this paper, we examine the solvation of TEA{sup +} and BF{sub 4}{sup -} in ACN, and the structure, capacitance, and dynamics of the electrical double layers (EDLs) in the TEABF{sub 4}-ACN electrolyte using molecular dynamics simulations complemented with quantum density functional theory calculations. The solvation of TEA+ and BF4- ions is found to be much weaker than that of small inorganic ions in aqueous solutions, and the ACN molecules in the solvation shell of both types of ions show only weak packing and orientational ordering. These solvation characteristics are caused by the large size, charge delocalization, and irregular shape (in the case of TEA+ cation) of the ions. Near neutral electrodes, the double-layer structure in the organic electrolyte exhibits a rich organization: the solvent shows strong layering and orientational ordering, ions are significantly contact-adsorbed on the electrode, and alternating layers of cations/anions penetrate ca. 1.1 nm into the bulk electrolyte. The significant contact adsorption of ions and the alternating layering of cation/anion are new features found for EDLs in organic electrolytes. These features essentially originate from the fact that van der Waals interactions between organic ions and the electrode are strong and the partial desolvation of these ions occurs easily, as a result of the large size of the organic ions. Near charged electrodes, distinct counter-ion concentration peaks form, and the ion distribution cannot be described by the Helmholtz model or the Helmholtz + Poisson-Boltzmann model. This is because the number of counter-ions adsorbed on the electrode exceeds the number of electrons on the electrode, and the electrode is over-screened in parts of the EDL. The computed capacitances of the EDLs are in

  1. On the source of organic acid aerosol layers above clouds.

    PubMed

    Sorooshian, Armin; Lu, Miao-Ling; Brechtel, Fred J; Jonsson, Haflidi; Feingold, Graham; Flagan, Richard C; Seinfeld, John H

    2007-07-01

    During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of northern California and in southeastern Texas, respectively. An on-board particle-into-liquid sampler (PILS) quantified inorganic and organic acid species with < or = 5-min time resolution. Ubiquitous organic aerosol layers above cloud with enhanced organic acid levels were observed in both locations. The data suggest that aqueous-phase reactions to produce organic acids, mainly oxalic acid, followed by droplet evaporation is a source of elevated organic acid aerosol levels above cloud. Oxalic acid is observed to be produced more efficiently relative to sulfate as the cloud liquid water content increases, corresponding to larger and less acidic droplets. As derived from large eddy simulations of stratocumulus underthe conditions of MASE, both Lagrangian trajectory analysis and diurnal cloudtop evolution provide evidence that a significant fraction of the aerosol mass concentration above cloud can be accounted for by evaporated droplet residual particles. Methanesulfonate data suggest that entrainment of free tropospheric aerosol can also be a source of organic acids above boundary layer clouds.

  2. White organic light emitting devices with a color conversion layer

    NASA Astrophysics Data System (ADS)

    Qi, Qing-Jin; Wu, Xiao-Ming; Hua, Yu-Lin; Dong, Mu-Sen; Yin, Shougen

    2010-07-01

    A white organic light emitting device (WOLED) combining the blue organic light emitting device with a red color conversion layer (CCL) is reported, which includes a fluorescent material N-(4-((E)-2-(6-((E)-4-(diphenylamino) styryl)naphtha len-2-yl)vinyl) phenyl)-N-phenylbenzenamine (N-BDAVBi) doped into 4,4'-N,N'-dicarbazole-biphenyl (CBP) as the blue light emitting layer, and the poly (2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylene vinylene (MEH-PPV) as a red CCL. By optimizing the concentration of MEH-PPV in the CCL, a good white light emission is obtained, which shows that the stable CIE coordinates of (0.33, 0.34) will have a slight change when the driving voltage is increased from 6 to 11 V. The maximum brightness and current efficiency of the optimized device are 11294 cd/m2 and 6.4 cd/A, respectively.

  3. Metal-Organic Frameworks for Thin-Layer Chromatographic Applications.

    PubMed

    Schenk, Claudia; Kutzscher, Christel; Drache, Franziska; Helten, Stella; Senkovska, Irena; Kaskel, Stefan

    2017-01-25

    Preparation of thin-layer chromatographic (TLC) plates based on metal-organic frameworks (MOFs) as porous stationary phases is described. DUT-67 (DUT = Dresden University of Technology), a zirconium based MOF, was used in combination with a fluorescent indicator as stationary phase for analyzing a small selection of a wide spectrum of relevant analytes. The successful separation of benzaldehyde from trans-cinnamaldehyde and 4-aminophenol from 2-aminotoluene is reported as a model system using optimized eluent mixtures containing acetic acid.

  4. Soil moisture sensor calibration for organic soil surface layers

    NASA Astrophysics Data System (ADS)

    Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y. H.

    2015-12-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology HOBE. For the Decagon 5TE sensor such a function is currently not reported in literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified: for the Decagon 5TE apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger non-linearity in the sensor response and signal saturation in the high level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and HOBE sites are

  5. Soil moisture sensor calibration for organic soil surface layers

    NASA Astrophysics Data System (ADS)

    Bircher, Simone; Andreasen, Mie; Vuollet, Johanna; Vehviläinen, Juho; Rautiainen, Kimmo; Jonard, François; Weihermüller, Lutz; Zakharova, Elena; Wigneron, Jean-Pierre; Kerr, Yann H.

    2016-04-01

    This paper's objective is to present generic calibration functions for organic surface layers derived for the soil moisture sensors Decagon ECH2O 5TE and Delta-T ThetaProbe ML2x, using material from northern regions, mainly from the Finnish Meteorological Institute's Arctic Research Center in Sodankylä and the study area of the Danish Center for Hydrology (HOBE). For the Decagon 5TE sensor such a function is currently not reported in the literature. Data were compared with measurements from underlying mineral soils including laboratory and field measurements. Shrinkage and charring during drying were considered. For both sensors all field and lab data showed consistent trends. For mineral layers with low soil organic matter (SOM) content the validity of the manufacturer's calibrations was demonstrated. Deviating sensor outputs in organic and mineral horizons were identified. For the Decagon 5TE, apparent relative permittivities at a given moisture content decreased for increased SOM content, which was attributed to an increase of bound water in organic materials with large specific surface areas compared to the studied mineral soils. ThetaProbe measurements from organic horizons showed stronger nonlinearity in the sensor response and signal saturation in the high-level data. The derived calibration fit functions between sensor response and volumetric water content hold for samples spanning a wide range of humus types with differing SOM characteristics. This strengthens confidence in their validity under various conditions, rendering them highly suitable for large-scale applications in remote sensing and land surface modeling studies. Agreement between independent Decagon 5TE and ThetaProbe time series from an organic surface layer at the Sodankylä site was significantly improved when the here-proposed fit functions were used. Decagon 5TE data also well-reflected precipitation events. Thus, Decagon 5TE network data from organic surface layers at the Sodankylä and

  6. Efficient organic photovoltaic devices using a combination of exciton blocking layer and anodic buffer layer

    NASA Astrophysics Data System (ADS)

    Chan, M. Y.; Lee, C. S.; Lai, S. L.; Fung, M. K.; Wong, F. L.; Sun, H. Y.; Lau, K. M.; Lee, S. T.

    2006-11-01

    By using bathophenanthroline (BPhen) as an exciton blocking layer (EBL) at the organic/cathode contact of a standard copper phthalocyanine/C60 organic photovoltaic (OPV) device, power conversion efficiency was substantially increased from 0.86% to 2.64%. The BPhen-based devices showed a 45% increase in power conversion efficiency over that of an equivalent device with an EBL of bathocuproine. The performance improvement was analyzed in terms of the electron energy levels, optical transparencies and electron mobilities of the two EBLs. Based on these results, the roles of and requirements for an effective EBL were discussed. Combining the use of BPhen and a WO3 anodic buffer layer further increased the power conversion efficiency of the OPV device to 3.33%.

  7. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.

    PubMed

    Hsu, Chang-Lung; Lin, Cheng-Te; Huang, Jen-Hsien; Chu, Chih-Wei; Wei, Kung-Hwa; Li, Lain-Jong

    2012-06-26

    Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conductivity than that of conventional indium tin oxide. We report a layer-by-layer molecular doping process on graphene for forming sandwiched graphene/tetracyanoquinodimethane (TCNQ)/graphene stacked films for polymer solar cell anodes, where the TCNQ molecules (as p-dopants) were securely embedded between two graphene layers. Poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM) bulk heterojunction polymer solar cells based on these multilayered graphene/TCNQ anodes are fabricated and characterized. The P3HT/PCBM device with an anode structure composed of two TCNQ layers sandwiched by three CVD graphene layers shows optimum PCE (∼2.58%), which makes the proposed anode film quite attractive for next-generation flexible devices demanding high conductivity and transparency.

  8. Local Control of Forest Floor Organic Layer (F and H Layers) Drying Processes

    NASA Astrophysics Data System (ADS)

    Keith, D. M.; Johnson, E. A.

    2008-12-01

    The forest floor in many ecosystems consists of a partially decomposed organic layer (duff). The duff, along with the litter layer, is the boundary between the atmosphere and the mineral soil, and for this reason it plays a crucial role in forest hydrology. The water budget of the duff is locally controlled throughout much of the snow free season, i.e. vertical fluxes dominate the water budget. During these dry periods the moisture content of the top layer of the duff, known as the F layer, cycles diurnally. Our objective is to better understand the processes controlling the duff water budget during dry periods using both modeling and field experiments. The model couples heat and mass transfer with meteorological fluxes to quantify the duff water budget during dry periods; since the fluxes are vertical during these dry periods the model is one dimensional. Field experiments determined which processes control the duff water budget during dry periods. The results indicate that the diurnal cycling of the moisture content in the F layer during dry periods is controlled by diurnal meteorological fluxes which drive coupled liquid and vapour fluxes through the duff layer. Additionally, there is minimal moisture movement between the mineral soil and the duff layer during these dry periods. This suggests that the duff water budget during dry periods is disconnected from the underlying mineral soil. The simulations incorporated the coupled meteorological fluxes and the disconnection between the duff and the mineral soil. These simulations reproduced the drying pattern in the duff with Nash-Sutcliffe efficiencies greater than 0.910 and coefficients of determination greater than 0.970 during the two longest precipitation free periods in the summer of 2007.

  9. Polyaniline-based organic memristive device fabricated by layer-by-layer deposition technique

    NASA Astrophysics Data System (ADS)

    Erokhina, Svetlana; Sorokin, Vladimir; Erokhin, Victor

    2015-09-01

    Memristors and memristive devices represent a splendid area of research due to the unique possibilities for the realization of new types of computer hardware elements and mimicking several essential properties of the nervous system of living beings. The organic memristive device was developed as an electronic single-device analogue of the synapse, suitable for the realization of circuits allowing Hebbian type of learning. This work is dedicated to the realization of the active channel of organic memristive devices by polyelectrolyte self-assembling (layer-by-layer technique). Stable and reproducible electrical characteristics of the device were obtained when the thickness of the active channel was more than seven bilayers. The device revealed rectifying behaviour and the presence of hysteresis—important properties for the realization of neuromorphic systems with synapse-like properties of the individual elements. Compared to previously reported results on organic memristive devices fabricated using other methods, the present device does not require any additional doping that is usually performed through acid treatment. Such a behaviour is extremely important for the cases in which biological systems (nervous cells, slime mould, etc.) must be interfaced with the system of organic memristive devices, since acid treatment can kill living beings. [Figure not available: see fulltext.

  10. Ordered Layered Organic-Inorganic of 4-Chlorophenoxyacetate-Zinc Layered Hydroxide Nanohybrid

    SciTech Connect

    Hussein, Mohd Zobir; Nazarudin, Nor Farhana binti; Sarijo, Siti Halimah; Yarmo, Mohd Ambar

    2011-03-30

    Ordered layered organic-inorganic nanostructure composed of zinc layered hydroxide-4-chlorophenoxy acetate (ZLH-4CPA) was prepared by reaction of an organic anion, 4-chlorophenoxy acetate (4CPA) with ZnO under aqueous environment. The concentration of 4CPA was found to be a controlling factor in determining the formation of phase pure, well ordered nanolayered hybrid material. At lower concentration of 4CPA (0.05 M), a mixed phase was observed in which ZnO co-existed with the nanohybrid. At 0.01 M, a pure phase is obtained with high crystallinity but a well ordered nanolayered structure is lacking. A pure phase, well ordered nanolayered hybrid can be clearly observed at 0.2 M 4CPA. ZnO shows well defined grain structure of various sizes at nanometer scale range. Direct reaction between ZnO and 4CPA under aqueous environment resulted in the formation of 4CPA-ZLH nanohybrid with flake-like fibrous structure. On heating at 500 deg. C for 5 h under atmospheric condition, the nanohybrid was transformed back to well defined grain structure, as previously observed for the starting materials, ZnO. This shows that the nanohybrid has ''memory effect'' property. Well ordered nanolayered hybrid with up to 5 harmonics, from which the average basal spacing of 19.03 A of the material was deduced, showing long range order of the layer packing.

  11. Organic and inorganic–organic thin film structures by molecular layer deposition: A review

    PubMed Central

    Sundberg, Pia

    2014-01-01

    Summary The possibility to deposit purely organic and hybrid inorganic–organic materials in a way parallel to the state-of-the-art gas-phase deposition method of inorganic thin films, i.e., atomic layer deposition (ALD), is currently experiencing a strongly growing interest. Like ALD in case of the inorganics, the emerging molecular layer deposition (MLD) technique for organic constituents can be employed to fabricate high-quality thin films and coatings with thickness and composition control on the molecular scale, even on complex three-dimensional structures. Moreover, by combining the two techniques, ALD and MLD, fundamentally new types of inorganic–organic hybrid materials can be produced. In this review article, we first describe the basic concepts regarding the MLD and ALD/MLD processes, followed by a comprehensive review of the various precursors and precursor pairs so far employed in these processes. Finally, we discuss the first proof-of-concept experiments in which the newly developed MLD and ALD/MLD processes are exploited to fabricate novel multilayer and nanostructure architectures by combining different inorganic, organic and hybrid material layers into on-demand designed mixtures, superlattices and nanolaminates, and employing new innovative nanotemplates or post-deposition treatments to, e.g., selectively decompose parts of the structure. Such layer-engineered and/or nanostructured hybrid materials with exciting combinations of functional properties hold great promise for high-end technological applications. PMID:25161845

  12. Organic photovoltaic device with interfacial layer and method of fabricating same

    DOEpatents

    Marks, Tobin J.; Hains, Alexander W.

    2013-03-19

    An organic photovoltaic device and method of forming same. In one embodiment, the organic photovoltaic device has an anode, a cathode, an active layer disposed between the anode and the cathode; and an interfacial layer disposed between the anode and the active layer, the interfacial layer comprising 5,5'-bis[(p-trichlorosilylpropylphenyl)phenylamino]-2,2'-bithiophene (PABTSi.sub.2).

  13. Carrier modulation layer-enhanced organic light-emitting diodes.

    PubMed

    Jou, Jwo-Huei; Kumar, Sudhir; Singh, Meenu; Chen, Yi-Hong; Chen, Chung-Chia; Lee, Meng-Ting

    2015-07-17

    Organic light-emitting diode (OLED)-based display products have already emerged in the market and their efficiencies and lifetimes are sound at the comparatively low required luminance. To realize OLED for lighting application sooner, higher light quality and better power efficiency at elevated luminance are still demanded. This review reveals the advantages of incorporating a nano-scale carrier modulation layer (CML), also known as a spacer, carrier-regulating layer, or interlayer, among other terms, to tune the chromaticity and color temperature as well as to markedly improve the device efficiency and color rendering index (CRI) for numerous OLED devices. The functions of the CML can be enhanced as multiple layers and blend structures are employed. At proper thickness, the employment of CML enables the device to balance the distribution of carriers in the two emissive zones and achieve high device efficiencies and long operational lifetime while maintaining very high CRI. Moreover, we have also reviewed the effect of using CML on the most significant characteristics of OLEDs, namely: efficiency, luminance, life-time, CRI, SRI, chromaticity, and the color temperature, and see how the thickness tuning and selection of proper CML are crucial to effectively control the OLED device performance.

  14. TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells

    DOEpatents

    Marks, Iobin J [Evanston, IL; Hains, Alexander W [Evanston, IL

    2011-02-15

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode; an active organic layer comprising an electron-donating organic material and an electron-accepting organic material; and an interfacial layer formed between the anode and active organic layer, where the interfacial layer comprises a hole-transporting polymer characterized with a hole-mobility higher than that of the electron-donating organic material in the active organic layer, and a small molecule that has a high hole-mobility and is capable of crosslinking on contact with air.

  15. Near infrared organic photodetector utilizing a double electron blocking layer.

    PubMed

    Shafian, Shafidah; Hwang, Heewon; Kim, Kyungkon

    2016-10-31

    A near infrared organic photodiode (OPD) utilizing a double electron blocking layer (EBL) fabricated by the sequential deposition of molybdenum (VI) oxide (MoO3) and poly(3,4ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) is reported. The double EBL improves the on/off current ratio of OPD up to 1.36 x 104 at -1V, which is one order of magnitude higher than PEDOT:PSS single EBL (2.45 x 103) and three orders of magnitude higher than that of MoO3 single EBL (7.86). The detectivity at near infrared (800 nm) at -1V is 4.90 x 1011 Jones, which is 2.83 times higher than the PEDOT:PSS single EBL and 2 magnitudes higher compared to the MoO3 single EBL.

  16. Crystal orientations in nacreous layers of organic-inorganic biocomposites

    SciTech Connect

    Lee, Seung Woo

    2009-09-15

    Abalone shell comprises a bio-composite material, combining the properties of inorganic calcite intergrown with organic nacre. This paper reports about the microstructure of this composite. By examining the Kikuchi patterns obtained for nacre (Haliotis discus hannai) using transmission electron microscopy, we have shown that the tiles within nacre have specific orientations. The stereographic projection spheres for the tiles of nacre can be divided into two main types, namely a right oriented region and a left oriented region with respect to the c axis as a reference plane (001). The cluster character of nacre can be explained in terms of the growth mechanism of the 'Christmas tree' pattern. The orientation of the c-axis in the nacreous layer is elucidated for the first time. We demonstrate the use of the soluble protein obtained from the tiles of nacre in in vitro calcium carbonate crystallization.

  17. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOEpatents

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  18. External serial connection without layer patterning for organic solar cells

    NASA Astrophysics Data System (ADS)

    Wong, Ying Qian; Wong, Hin Yong; Tan, Ching Seong; Meng, Hsin-Fei

    2016-12-01

    This paper proposes a novel alternative to conventional internal serial connection, where precise patterning and scribing of organic layers can be eliminated. Adjacent cells can be made nearer for better space-utilization and higher voltages per unit area. Also, blade coating is proposed as the fabrication method as it has low material wastage (less than 5%), easily scalable to large area, has high film uniformity and has high throughput due to its roll-to-roll potential. This paper demonstrates 3-cells large area (12.98 cm2) external serial connection organic solar cells (OSCs) using the material poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) and 2,6-Bis(trimethyltin)-4, 8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo [1,2-b:4,5-b']dithiophene:6,6-phenyl C71-butyric acid methyl ester (PBDTTT-CT:PC71BM) respectively. The power conversion efficiencies (PCEs) of the resulting 3-cells modules are 2.0% and 4.1% respectively.

  19. Color stabilization in white organic light emitting devices utilizing trapping layers inserted in both an electron transport layer and an emitting layer.

    PubMed

    Kwack, Byoung Chan; Lee, Kwang Seop; Choo, Dong Chul; Kim, Tae Whan; Seo, Ji Hyun; Kim, Young Kwan

    2008-10-01

    The electrical and the optical properties of white organic light emitting devices (OLEDs) utilizing trapping layers inserted into both an electron transport layer (ETL) and an emitting layer (EML) were investigated. The current density of OLEDs with an ETL containing a 5,6,11,12-tetraphenylnaphthacene (rubrene) layer was slightly smaller than those of other devices. The luminance-current density and luminance efficiency-current density of the OLEDs with rubrene layers embedded in only an ETL or an EML were similar to the blue reference device. While the electroluminescence (EL) spectrum for the OLEDs with a rubrene layer in the ETL in the low voltage range showed the white color, that with rubrene layers in both the EML and the ETL exhibited white color, regardless of the applied voltage. The Commission International de l'Eclairage coordinates of the white OLEDs became stabilized by inserting rubrene layers into both the EML and the ETL.

  20. Avian Hepatitis E Virus Infection in Organic Layers.

    PubMed

    Crespo, Rocio; Opriessnig, Tanja; Uzal, Francisco; Gerber, Priscilla F

    2015-09-01

    Between 2012 and 2014, 141 chickens from 10 organic layer flocks with a history of severe drop in egg production (up to 40%) and slight increased mortality (up to 1% per week) were submitted to the Avian Health and Food Safety Laboratory (Puyallup, WA). At necropsy, the most common finding was pinpoint white foci on the liver and regressed ova without any other remarkable lesions. Histologically, there was multifocal mild-to-severe acute necrotizing hepatitis present. No significant bacteria were recovered from liver samples, and tests for mycotoxins were negative. Twenty-six serum samples from four affected flocks tested were positive for avian hepatitis E virus (HEV) immunoglobulin Y antibodies. Avian HEV RNA was detected in 10 livers of chickens from two different affected flocks. The avian HEV was characterized by sequencing and determined to belong to genotype 2. The diagnosis of a clinical manifest HEV was based solely on the demonstration of specific viral RNA and the absence of other causative agents in samples from flocks, as the clinical sings and pathologic lesions were atypical.

  1. Large Scale Organization of a Near Wall Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Stanislas, Michel; Dekou Tiomajou, Raoul Florent; Foucaut, Jean Marc

    2016-11-01

    This study lies in the context of large scale coherent structures investigation in a near wall turbulent boundary layer. An experimental database at high Reynolds numbers (Re θ = 9830 and Re θ = 19660) was obtained in the LML wind tunnel with stereo-PIV at 4 Hz and hot wire anemometry at 30 kHz. A Linear Stochastic Estimation procedure, is used to reconstruct a 3 component field resolved in space and time. Algorithms were developed to extract coherent structures from the reconstructed field. A sample of 3D view of the structures is depicted in Figure 1. Uniform momentum regions are characterized with their mean hydraulic diameter in the YZ plane, their life time and their contribution to Reynolds stresses. The vortical motions are characterized by their position, radius, circulation and vorticity in addition to their life time and their number computed at a fixed position from the wall. The spatial organization of the structures was investigated through a correlation of their respective indicative functions in the spanwise direction. The simplified large scale model that arise is compared to the ones available in the literature. Streamwise low (green) and high (yellow) uniform momentum regions with positive (red) and negative (blue) vortical motions. This work was supported by Campus International pour la Sécurité et l'Intermodalité des Transports.

  2. Organic photovoltaic cell incorporating electron conducting exciton blocking layers

    SciTech Connect

    Forrest, Stephen R.; Lassiter, Brian E.

    2014-08-26

    The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to an analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.

  3. Surface chemistry for molecular layer deposition of organic and hybrid organic-inorganic polymers.

    PubMed

    George, Steven M; Yoon, Byunghoon; Dameron, Arrelaine A

    2009-04-21

    The fabrication of many devices in modern technology requires techniques for growing thin films. As devices miniaturize, manufacturers will need to control thin film growth at the atomic level. Because many devices have challenging morphologies, thin films must be able to coat conformally on structures with high aspect ratios. Techniques based on atomic layer deposition (ALD), a special type of chemical vapor deposition, allow for the growth of ultra-thin and conformal films of inorganic materials using sequential, self-limiting reactions. Molecular layer deposition (MLD) methods extend this strategy to include organic and hybrid organic-inorganic polymeric materials. In this Account, we provide an overview of the surface chemistry for the MLD of organic and hybrid organic-inorganic polymers and examine a variety of surface chemistry strategies for growing polymer thin films. Previously, surface chemistry for the MLD of organic polymers such as polyamides and polyimides has used two-step AB reaction cycles using homo-bifunctional reactants. However, these reagents can react twice and eliminate active sites on the growing polymer surface. To avoid this problem, we can employ alternative precursors for MLD based on hetero-bifunctional reactants and ring-opening reactions. We can also use surface activation or protected chemical functional groups. In addition, we can combine the reactants for ALD and MLD to grow hybrid organic-inorganic polymers that should display interesting properties. For example, using trimethylaluminum (TMA) and various diols as reactants, we can achieve the MLD of alucone organic-inorganic polymers. We can alter the chemical and physical properties of these organic-inorganic polymers by varying the organic constituent in the diol or blending the alucone MLD films with purely inorganic ALD films to build a nanocomposite or nanolaminate. The combination of ALD and MLD reactants enlarges the number of possible sequential self-limiting surface

  4. Probing the tropical tropopause layer for organic and inorganic bromine

    NASA Astrophysics Data System (ADS)

    Werner, Bodo; Pfeilsticker, Klaus; Atlas, Elliot; Cheung, Ross; Chipperfield, Martyn; Colosimo, Fedele; Deutschmann, Tim; Elkins, Jim; Fahey, David; Feng, Wu; Festa, James; Gao, Ru-Shan; Hossaini, Ryan; Navarro, Maria; Raecke, Rasmus; Scalone, Lisa; Spolaor, Max; Thornberry, Troy; Tsai, Catalina; Stutz, Jochen

    2016-04-01

    Bromine chemistry impacts the levels of ozone in the upper troposphere and the stratosphere. An accurate quantitative understanding of the sources, sinks, and chemical transformation of bromine species is thus important to understand the photochemistry and budget of bromine in the tropical upper troposphere, tropopause layer and lowermost stratosphere (UT/TTL/LS). These regions are also known to serve as a gateway for delivery of ozone depleting gases to the stratosphere. CH3Br, halons, short-lived organic bromine precursors (VSLS), such as CHBr3, CH2Br2, and possibly inorganic product gases have been identified as the main bromine gases delivered to the stratosphere. However, many important details of the transport and delivery of VSLS and inorganic bromine compounds through the TTL are still uncertain. Moreover, a number of chemical processes, including the transformation of the source gases and cycling of inorganic bromine species at low ambient temperature and on ice particles are also poorly understood. The presentation reports measurements of CH4, O3, NO2, and BrO performed by different instruments and techniques during the 2013 NASA-ATTREX flights in the TTL and LS. The interpretation of our measurements is supported by chemical transport model (SLIMCAT) simulations. SLIMCAT results, in conjunction with extensive radiative transfer calculations using the Monte Carlo model McArtim, also are used to improve retrieval of O3, NO2, and BrO concentrations from limb scattered sunlight measurements made with the Differential Optical Absorption Spectroscopy (DOAS) technique during ATTREX. The chemical transport model also allows us to attribute observed concentration variations to transport and to photochemical processes. When properly accounting for the transport-related concentration variations in methane and ozone, we find that measured BrO mostly agrees with model simulations. An exception are regions where the contribution of the short-lived CH2Br2 or the

  5. Encapsulation methods and dielectric layers for organic electrical devices

    DOEpatents

    Blum, Yigal D; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijan

    2013-07-02

    The disclosure provides methods and materials suitable for use as encapsulation barriers and dielectric layers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device with a dielectric layer comprising alternating layers of a silicon-containing bonding material and a ceramic material. The methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  6. Self-organization in cathode boundary layer discharges

    NASA Astrophysics Data System (ADS)

    Takano, Nobuhiko

    Cathode boundary layer (CBL) discharge, which has been developed as a UV light source, operates in a direct current between a planar cathode and a ring-shape anode that are separated by a dielectric with an opening of the same diameter as the anode. The nonthermal CBL discharges operate in a medium pressure range down to 30 Torr, emitting excimer radiation when operated with noble gases. The radiant excimer emittance at 172 nm in xenon reaches 1.7 W/cm2, and a maximum excimer efficiency of 6% has been obtained. The high excimer radiant emittance, in addition to low cost and simple geometry compared to other UV sources, makes CBL discharges an excellent choice for deep UV lamps and a candidate for integrated flat UV panels (Moselhy et al. 2004). It has been found that CBL discharges spontaneously give rise to regularly arranged filaments, i.e., self-organization, at a low current, e.g., less than 0.2 mA at 75 Torr (Schoenbach et al. 2004). In this thesis, the self-organization of direct current xenon discharges in the CBL configuration and parallel-plate geometry have been studied for a pressure range from 30 to 140 Torr and currents from 20 muA to 1 mA. Comprehensive examinations have been performed to investigate the behavior of those filaments by the use of optical, electrical, and spectral measurements. Side-on and end-on observations of the discharges have provided information on axial structure and distance of the filaments from the cathode fall. The electrical measurement has recorded a discrete I-V characteristic associated with the change of the numbers of the filaments. The spectral measurement provides scaling information on the relative population of high-lying states (1s 4, 1s5, and 2p6) of excited xenon atoms. Moreover, temperature measurement has revealed that the thermal electron emission from the cathode surface is negligible for the formation of filaments. The reactor geometry with parallel-plate electrodes analogously gives self-organization. The

  7. Organic light emitting diode with light extracting layer

    DOEpatents

    Lu, Songwei

    2016-06-14

    A light extraction substrate includes a glass substrate having a first surface and a second surface. A light extraction layer is formed on at least one of the surfaces. The light extraction layer is a coating, such as a silicon-containing coating, incorporating nanoparticles.

  8. The effect of the hole injection layer on the performance of single layer organic light-emitting diodes

    SciTech Connect

    Wenjin, Zeng; Ran, Bi; Hongmei, Zhang E-mail: iamwhuang@njupt.edu.cn; Wei, Huang E-mail: iamwhuang@njupt.edu.cn

    2014-12-14

    Efficient single-layer organic light-emitting diodes (OLEDs) were reported based on a green fluorescent dye 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7–tetramethyl-1H,5H,11H-(1) benzopyropyrano (6,7-8-I,j)quinolizin-11-one (C545T). Herein, poly(3,4-ethylenedioxy thiophene) poly(styrene sulfonate) were, respectively, applied as the injection layer for comparison. The hole transport properties of the emission layer with different hole injection materials are well investigated via current-voltage measurement. It was clearly found that the hole injection layers (HILs) play an important role in the adjustment of the electron/hole injection to attain transport balance of charge carriers in the single emission layer of OLEDs with electron-transporting host. The layer of tris-(8-hydroxyquinoline) aluminum played a dual role of host and electron-transporting materials within the emission layer. Therefore, appropriate selection of hole injection layer is a key factor to achieve high efficiency OLEDs with single emission layer.

  9. Layered Organization in the Coastal Ocean: 4-D Assessment of Thin Layer Structure, Dynamics and Impacts

    DTIC Science & Technology

    2009-09-30

    maintenance and dissipation of layers; (2) to understand the spatial coherence and spatial properties of thin layers in the coastal ocean (especially in...ORCAS profilers at K1 South and K2 had a Nortek ADV (Acoustic Doppler Velocity meter) for simultaneously measuring centimeter- scale currents and...year will be used to (1) detect the presence, intensity, thickness, temporal persistence, and spatial coherence of thin optical and acoustical layers

  10. Investigation of hole transport layer in relation to the properties of organic solar cells.

    PubMed

    Chou, Dei-Wei; Huang, Chien-Jung; Tsai, Chi-Chu; Meen, Teen-Hang; Chen, Wen-Ray; Yang, Cheng-Fu

    2012-04-01

    Organic solar cells based on a blend of copper phthalocyanine and bulk fullerene are fabricated with a double hole transport layer system. The double hole transport layer was composed of poly3,4-ethylenedioxythiophene:polystyrenesulfonate, and copper phthalocyanine and inserted between the anode and active layer. The double hole transport layer system utilizes advantages of both layer. The poly3,4-ethylenedioxythiophene:polystyrenesulfonate layer modifies the surface morphology of the ITO anode and the copper phthalocyanine layer enhances hole transport. In order to enhance the conductivity of the modification layer, the optimal amount of glycerol is doped into poly3,4-ethylenedioxythiophene:polystyrenesulfonate. Furthermore, the photovoltaic characteristics are further improved. Insertion of the double hole transport layer with a 4 nm-thick copper phthalocyanine layer resulted in open circuit voltage, short current, and power conversion efficiency as high as 0.46 V, 8.8 mA/cm2 and 1.37%, respectively.

  11. Efficient organic photovoltaic cells on a single layer graphene transparent conductive electrode using MoOx as an interfacial layer.

    PubMed

    Du, J H; Jin, H; Zhang, Z K; Zhang, D D; Jia, S; Ma, L P; Ren, W C; Cheng, H M; Burn, P L

    2017-01-07

    The large surface roughness, low work function and high cost of transparent electrodes using multilayer graphene films can limit their application in organic photovoltaic (OPV) cells. Here, we develop single layer graphene (SLG) films as transparent anodes for OPV cells that contain light-absorbing layers comprised of the evaporable molecular organic semiconductor materials, zinc phthalocyanine (ZnPc)/fullerene (C60), as well as a molybdenum oxide (MoOx) interfacial layer. In addition to an increase in the optical transmittance, the SLG anodes had a significant decrease in surface roughness compared to two and four layer graphene (TLG and FLG) anodes fabricated by multiple transfer and stacking of SLGs. Importantly, the introduction of a MoOx interfacial layer not only reduced the energy barrier between the graphene anode and the active layer, but also decreased the resistance of the SLG by nearly ten times. The OPV cells with the structure of polyethylene terephthalate/SLG/MoOx/CuI/ZnPc/C60/bathocuproine/Al were flexible, and had a power conversion efficiency of up to 0.84%, which was only 17.6% lower than the devices with an equivalent structure but prepared on commercial indium tin oxide anodes. Furthermore, the devices with the SLG anode were 50% and 86.7% higher in efficiency than the cells with the TLG and FLG anodes. These results show the potential of SLG electrodes for flexible and wearable OPV cells as well as other organic optoelectronic devices.

  12. Effects of trees on the burning of organic layers on permafrost terrain

    Treesearch

    Eric S. Kasischke; Merritt R. Turetsky; Evan S. Kane

    2012-01-01

    We collected data to estimate depth of the remaining (residual) organic layer as well as data to estimate total pre-fire organic layer depth in 99 plots located in mature black spruce (Picea mariana (Mill.) BSP) forests in interior Alaska that burned during the large fire seasons of 2004 and 2005. These data were collected immediately adjacent to...

  13. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    Treesearch

    Kristofer D. Johnson; Jennifer W. Harden; A. David McGuire; Mark Clark; Fengming Yuan; Andrew O. Finley

    2013-01-01

    Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF),...

  14. High-Performance Small Molecule/Polymer Ternary Organic Solar Cells Based on a Layer-By-Layer Process.

    PubMed

    Chen, Weichao; Du, Zhengkun; Xiao, Manjun; Zhang, Jidong; Yang, Chunpeng; Han, Liangliang; Bao, Xichang; Yang, Renqiang

    2015-10-21

    The layer-by-layer process method, which had been used to fabricate a bilayer or bulk heterojunction organic solar cell, was developed to fabricate highly efficient ternary blend solar cells in which small molecules and polymers act as two donors. The active layer could be formed by incorporating the small molecules into the polymer based active layer via a layer-by-layer method: the small molecules were first coated on the surface of poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) ( PSS), and then the mixed solution of polymer and fullerene derivative was spin-coated on top of a small molecule layer. In this method, the small molecules in crystalline state were effectively mixed in the active layer. Without further optimization of the morphology of the ternary blend, a high power conversion efficiency (PCE) of 8.76% was obtained with large short-circuit current density (Jsc) (17.24 mA cm(-2)) and fill factor (FF) (0.696). The high PCE resulted from not only enhanced light harvesting but also more balanced charge transport by incorporating small molecules.

  15. Effect of the additional anode layers on the absorption enhancement characteristic of plasmonic organic solar cells

    NASA Astrophysics Data System (ADS)

    Yoo, Sanghyuk; Kim, Jungho

    2014-12-01

    We numerically investigate the effect of additional anode layers on the absorption enhancement characteristic of pyramidal-grating plasmonic organic solar cells (OSCs) using the finite element method. The behaviors of the plasmonic absorption enhancement are compared between a “simple” structure consisting of only the active and metal cathode layers and a “practical” structure with the additional anode layers. The plasmonic absorption enhancement is identified by comparing the polarization-dependent absorbance spectra between the planar and plasmonic OSCs. When the active-layer thickness is small, the plasmonic resonance condition changes owing to the addition of the anode layers. When the active-layer thickness is large, the plasmonic resonance condition and corresponding absorption behavior show a slight difference irrespective of the inclusion of the additional anode layers. Therefore, the additional anode layers should be included in the optical analysis and design of plasmonic OSCs when the active-layer thickness is small.

  16. Study the spatial variability of organic soil layer thickness within Barataria Bay marshes, Louisiana

    SciTech Connect

    Hudnall, W.H.; Dharmasri, L.C.; Holladay, K.W.; Pelletier, R.

    1997-08-01

    Marshes convert to open water at a high rate in Louisiana. Organic layers degrade in eroding marshes. Organic accretion results in thick organic layers that help to maintain healthy marshes. Thin organic layers may be characteristic of erodible marshes that convert into open water. Thickness of the surface organic layer is a significant soil morphological feature that may indicate the status of the marsh. Soil morphology can show a significant spatial variability within marshes. Accretion rates and the landscape may be disturbed by hurricane activity, presence of channels, open water areas, and man made changes. Understanding spatial variability of organic layer thickness will enable one to delineate critical marsh areas and plan marsh management strategies. Study of multi-dimensional variability may help to understand the spatial variability of soil morphological characteristics and prominent pedogenic processes that can be related to a landscape-soil model. Thickness of surface organic layer (or depth to mineral horizon) was measured using grids at 200 m intervals established within one square mile area in saline and brackish marsh. The soils had a variable organic layer thickness over sandy or clayey alluvium. Data were used to generate thickness contour maps. Soil morphology indicated a considerable spatial variability within the saline and brackish marshes.

  17. Negative Linear Compressibility Due to Layer Sliding in a Layered Metal-Organic Framework.

    PubMed

    Zeng, Qingxin; Wang, Kai; Qiao, Yuancun; Li, Xiaodong; Zou, Bo

    2017-04-06

    Negative linear compressibility (NLC) is a rare and counterintuitive phenomenon because materials with this property would expand along one specific direction when uniformly compressed. NLC materials have a broad range of potential applications in designing pressure sensors, artificial muscles, and so on. Designing and searching for systems with NLC is desired and crucial for material and compression science. Herein, with the help of high-pressure X-ray diffraction measurements and density functional theory calculations, we find that the 2D layered Co(SCN)2(pyrazine)2 exhibits NLC with a new mechanism: layer sliding. When compressed, the ab planes slide along the a axis, leading to the decrease of lattice parameter β, which results in the NLC effect along principal axis X3 (≈ -0.84a - 0.55c). The layer sliding mechanism opens exciting opportunities for seeking, designing, and synthesizing new classes of materials with anomalous mechanical properties in monoclinic layered or other related systems.

  18. Layered Organization in the Coastal Ocean: 4-D Assessment of Thin Layer Structure, Dynamics and Impacts

    DTIC Science & Technology

    2008-01-01

    oceans, and the processes responsible for the formation, maintenance and dissipation of layers; (2) to understand the spatial coherence and spatial...and K2 had a Nortek ADV (Acoustic Doppler Velocity meter) for simultaneously measuring centimeter- scale currents and turbulence. Our ORCAS profiler...detect the presence, intensity, thickness, temporal persistence, and spatial coherence of thin optical and acoustical layers, (2) quantify their optical

  19. Influence of confinement layers in the emitting layer of the blue phosphorescent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ji, Chang-Yan; Gu, Zheng-Tian; Kou, Zhi-Qi

    2016-10-01

    The electrical and optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the various structure of confinement layer in the emitting layer (EML). A series of devices with different electron or hole confinement layer (TCTA or Bphen) are fabricated, it is more effective to balance charge carriers injection for the device with the double electron confinement layers structure, the power efficiency and luminance can reach 17.7 lm/W (at 103 cd/m2) and 3536 cd/m2 (at 8 V). In case of the same double electron confinement layers, another series of devices with different profile of EML are fabricated by changing the confinement layers position, the power efficiency and luminance can be improved to 21.7 lm/W (at 103 cd/m2) and 7674 cd/m2 (at 8 V) when the thickness of EML separated by confinement layers increases gradually from the hole injection side to the electron injection side, the driving voltage can also be reduced.

  20. Thin-Layer Chromatography: The "Eyes" of the Organic Chemist

    ERIC Educational Resources Information Center

    Dickson, Hamilton; Kittredge, Kevin W.; Sarquis, Arlyne

    2004-01-01

    Thin-layer chromatography (TLC) methods are successfully used in many areas of research and development such as clinical medicine, forensic chemistry, biochemistry, and pharmaceutical analysis as TLC is relatively inexpensive and has found widespread application as an easy to use, reliable, and quick analytic tool. The usefulness of TLC in organic…

  1. An Undergraduate Organic Experiment Using Thin-Layer Chromatography.

    ERIC Educational Resources Information Center

    Jones, Taylor B.; Jones, Tappey H.

    1985-01-01

    The separation of derivatives of aliphatic compounds (2,4-dinitrophenylhydrazones) is used to introduce methods and techniques typically employed in thin layer chromatography and to provide a clear illustration of chromatographic principles in general. Procedures used in the separation are presented. (JN)

  2. Thin-Layer Chromatography: The "Eyes" of the Organic Chemist

    ERIC Educational Resources Information Center

    Dickson, Hamilton; Kittredge, Kevin W.; Sarquis, Arlyne

    2004-01-01

    Thin-layer chromatography (TLC) methods are successfully used in many areas of research and development such as clinical medicine, forensic chemistry, biochemistry, and pharmaceutical analysis as TLC is relatively inexpensive and has found widespread application as an easy to use, reliable, and quick analytic tool. The usefulness of TLC in organic…

  3. Perovskite-Like Organic-Inorganic Hybrid Lead Iodide with a Large Organic Cation Incorporated within the Layers.

    PubMed

    Que, Chen-Jie; Mo, Chong-Jiao; Li, Zhao-Qi; Zhang, Guang-Lin; Zhu, Qin-Yu; Dai, Jie

    2017-03-06

    A great effort has been made to investigate 2D perovskites to improve the stability and controllability in the fabrication of photoelectronic devices. As far as we know, only small organic cations such as methylammonium can incorporate into the multilayered perovskite structure except the cations sandwiched between the inorganic layers. We report here a new layered lead iodide, (H2Aepz)3Pb4I14 (1), where larger organic cations, bis-protonated 2-(2-aminoethyl)pyrazole (Aepz), not only were sandwiched between the inorganic layers but also were incorporated within the perovskite-like PbI layered structure. Another 2D compound, (H2Aepz)PbI4 (2), was also prepared that was a one-layer perovskite. A simple Schottky device was prepared to investigate the photoelectroresponsive properties of the compounds in comparison with that of a typical organic-inorganic hybrid perovskite. In general, the energy gap is decreased with an increase in the perovskite layers, but the band gap of two-layered 1 is larger than that of one-layered 2. The photocurrent densities of the compounds are in the order of 1 < 2 < (CH3NH3)PbI3, which is discussed based on the crystal structures and band energy gaps.

  4. Removal of the organic surface layer in combined sewer sediment using a flushing gate.

    PubMed

    Laplace, D; Oms, C; Ahyerre, M; Chebbo, O; Lemasson, J; Felouzis, L

    2003-01-01

    Recent research identified the different sources of pollution of wet weather Combined Sewers Overflows (CSOs): it appeared that the deposits in sewers, and especially an organic layer situated at the water-sediment interface, may contribute 40-70% to the total pollution load of CSOs. Using the cyclic flush Hydrass gate, we generated increased water flows during dry weather. The effects of flushing the deposits have been analysed: the eroded particles sampled during the first flush wave show pollutant characteristics similar to characteristics measured in the organic layer. The organic layer that has formed on the surface of deposits can thus be washed off before rainstorms occur using the cyclic flushing technique.

  5. Organic photosensitive cells having a reciprocal-carrier exciton blocking layer

    DOEpatents

    Rand, Barry P.; Forrest, Stephen R.; Thompson, Mark E.

    2007-06-12

    A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10.sup.-7 cm.sup.2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.

  6. Organic solar cells: an overview focusing on active layer morphology.

    PubMed

    Benanti, Travis L; Venkataraman, D

    2006-01-01

    Solar cells constructed of organic materials are becoming increasingly efficient due to the discovery of the bulk heterojunction concept. This review provides an overview of organic solar cells. Topics covered include: a brief history of organic solar cell development; device construction, definitions, and characteristics; and heterojunction morphology and its relation to device efficiency in conjugated polymer/fullerene systems. The aim of this article is to show that researchers are developing a better understanding of how material structure relates to function and that they are applying this knowledge to build more efficient light-harvesting devices.

  7. Optical and electrical properties of bi-layers organic devices

    NASA Astrophysics Data System (ADS)

    Trad, Hager; Rouis, Ahlem; Davenas, Jöel; Majdoub, Mustapha

    2014-10-01

    The influence of interfacial charges on the device characteristics of bi-layers structure LEDs with poly[5-methoxy-2-octyloxy-1,4-phenylenevinylene] (MO-PPV) as active polymer layer is investigated. The concept to improve device performance is presented using: a diacetate cellulose (DAC) and a new synthetized 5-{2-(2-chloroethoxy)ethoxy}-2-{(E)-(2-pyridyl)azo}phenol (PDEG) components. The DAC and mixed (DAC+PDEG) layers were inserted between indium tin oxide (ITO) and MO-PPV polymer. The optical properties (UV-Vis) of MO-PPV, PDEG and mixed (DAC+PDEG) in solutions were studied and compared to those on thin films. Detailed current-voltage measurements of the bi-layers devices showed improvements of the threshold voltage (Vth) of the ITO/(DAC+PDEG)/MO-PPV/Al device attributed to the enhancement of carriers injection and transport resulted from the modified electrode structures. Conduction mechanisms of structure LEDs were matched with space-charge-limited current (SCLC) one. The impedance spectra for all devices can be discussed in terms of an equivalent circuit model designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The ITO/(DAC+PDEG)/MO-PPV/Al device showed the lowest impedance attributed to the removal of contaminants and to changes in the work function of ITO. The frequency-dependent electrical properties of the ITO/(DAC+PDEG)/MO-PPV/Al structure is analyzed by impedance spectroscopy as function of bias. We have extracted numerical values of the equivalent circuit model parameters by fitting experimental data. Their evolution with bias voltages has shown that the SCLC mechanism is characterized by an exponential trap distribution.

  8. Effect of a cathode buffer layer on the stability of organic solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Danbei; Zeng, Wenjin; Chen, Shilin; Su, Xiaodan; Wang, Jin; Zhang, Hongmei

    2015-08-01

    We present the effect of a cathode buffer layer on the performance and stability of organic photovoltaics (OPVs) based on a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM). Six kinds of cathode buffer layers, i.e. lithium fluoride, sodium chloride, NaCl/Mg, tris-(8-hydroxy-quinoline) aluminum, bathocuproine and 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene, were inserted between the photoactive layer and an Al cathode, which played a dominant role in the device’s performance. Devices with the cathode buffer layers above exhibited improved performance. The degradation of these devices with encapsulation was further investigated in an inert atmosphere. The results indicated that devices with inorganic cathode buffer layers exhibited better stability than those with organic cathode buffer layers.

  9. Importance of spin-orbit coupling in layered organic salts

    NASA Astrophysics Data System (ADS)

    Winter, Stephen M.; Riedl, Kira; Valentí, Roser

    2017-02-01

    We investigate the spin-orbit coupling (SOC) effects in α - and κ -phase BEDT-TTF and BEDT-TSF organic salts. Contrary to the assumption that SOC in organics is negligible due to light C, S, and H atoms, we show the relevance of such an interaction in a few representative cases. In the weakly correlated regime, SOC manifests primarily in the opening of energy gaps at degenerate band touching points. This effect becomes especially important for Dirac semimetals such as α -(ET) 2I3 . Furthermore, in the magnetic insulating phase, SOC results in additional anisotropic exchange interactions, which provide a compelling explanation for the puzzling field-induced behavior of the quantum spin-liquid candidate κ -(ET) 2Cu2(CN) 3 . We conclude by discussing the importance of SOC for the description of low-energy properties in organics.

  10. Mixing plasmonic Au nanoparticles into all polymer layers for improving the efficiency of organic solar cells

    NASA Astrophysics Data System (ADS)

    Choy, Wallace C. H.; Wang, Charlie C. D.; Fung, Dixon D. S.; Sha, Wei E. I.; Xie, Feng-Xian

    2012-09-01

    To enhance the light trapping of organic solar cells (OSCs), metallic (e.g. Au, Ag) nanoparticles (NPs) have been incorporated into the polymer layers conveniently in solution process. Although power conversion efficiency (PCE) of OSCs has been shown to improve by incorporating metallic NPs in either the buffer layer such as poly-(3,4-ethylenedioxythiophene) :poly(styrenesulfonate) (PEDOT:PSS)[1] or the active layer[2], the understanding on the changes is still not quite clear. Moreover, there are very limited studies on incorporating metallic NPs in more than one organic layer and investigating their effects on the optical and electrical properties as well as the performances of OSCs. In this work, monofunctional poly(ethylene glycol) (PEG)-capped Au NPs of sizes 18 nm and 35 nm are doped in the PEDOT:PSS and poly(3-hexylthiophene) (P3HT): phenyl-C61-butyric acid methyl ester (PCBM) layers respectively, leading to an improvement of PCE by ~22% compared to the optimized control device. We will firstly identify the impact of NPs in each polymer layer on OSC characteristics by doping Au NPs in either the PEDOT:PSS or P3HT:PCBM layer. Then, we will investigate Au NPs incorporated in all polymer layers. We demonstrate that the accumulated benefits of incorporating Au NPs in all organic layers of OSCs can achieve larger improvements in OSC performances.

  11. Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode.

    PubMed

    Zhao, Yang; Goncharova, Lyudmila V; Zhang, Qian; Kaghazchi, Payam; Sun, Qian; Lushington, Andrew; Wang, Biqiong; Li, Ruying; Sun, Xueliang

    2017-09-13

    Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al2O3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.

  12. Controlling the Spatial Organization of Liquid Crystalline Nanoparticles by Composition of the Organic Grafting Layer.

    PubMed

    Wójcik, Michał M; Olesińska, Magdalena; Sawczyk, Michał; Mieczkowski, Józef; Górecka, Ewa

    2015-07-06

    Understanding how the spatial ordering of liquid crystalline nanoparticles can be controlled by different factors is of great importance in the further development of their photonic applications. In this paper, we report a new key parameter to control the mesogenic behavior of gold nanoparticles modified by rodlike thiols. An efficient method to control the spatial arrangement of hybrid nanoparticles in a condensed state is developed by changing the composition of the mesogenic grafting layer on the surface of the nanoparticles. The composition can be tuned by different conditions of the ligand exchange reaction. The thermal and optical behavior of the mesogenic and promesogenic ligands were investigated by using differential scanning calorimetry (DSC) and hot-stage polarized optical microscopy. The chemical structure of the synthesized hybrid nanoparticles was characterized by (1) H NMR spectroscopy, thermogravimetric analysis (TGA), XPS, and elemental analysis, whereas the superstructures were examined by small-angle X-ray diffraction (SAXSRD) analysis. Structural studies showed that the organic sublayer made of mesogenic ligands is denser with an increasing the average ligand number, thereby separating the nanoparticles in the liquid crystalline phases, which changes the parameters of these phases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  14. Organic ferroelectric/semiconducting nanowire hybrid layer for memory storage

    NASA Astrophysics Data System (ADS)

    Cai, Ronggang; Kassa, Hailu G.; Haouari, Rachid; Marrani, Alessio; Geerts, Yves H.; Ruzié, Christian; van Breemen, Albert J. J. M.; Gelinck, Gerwin H.; Nysten, Bernard; Hu, Zhijun; Jonas, Alain M.

    2016-03-01

    Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and semiconducting nanowires over an insulating substrate, the ferroelectric dipole moment can be stabilized by injected free charge carriers accumulating laterally in the neighboring semiconducting nanowires. This lateral electrostatic coupling between ferroelectric and semiconducting nanowires offers new opportunities to design new device architectures. As an example, we demonstrate the fabrication of an elementary non-volatile memory device in a transistor-like configuration, of which the source-drain current exhibits a typical hysteretic behavior with respect to the poling voltage. The potential for size reduction intrinsic to the nanostructured hybrid layer offers opportunities for the development of strongly miniaturized ferroelectric and piezoelectric devices.Ferroelectric materials are important components of sensors, actuators and non-volatile memories. However, possible device configurations are limited due to the need to provide screening charges to ferroelectric interfaces to avoid depolarization. Here we show that, by alternating ferroelectric and semiconducting nanowires over an insulating substrate, the ferroelectric dipole moment can be stabilized by injected free charge carriers accumulating laterally in the neighboring semiconducting nanowires. This lateral electrostatic coupling between ferroelectric and semiconducting nanowires offers new opportunities to design new device architectures. As an example, we demonstrate the fabrication of an elementary non-volatile memory device in a transistor-like configuration, of which the source-drain current exhibits a typical hysteretic behavior with respect to the poling voltage. The potential for size reduction

  15. Development of inverted organic solar cells with TiO₂ interface layer by using low-temperature atomic layer deposition.

    PubMed

    Lin, Zhenhua; Jiang, Changyun; Zhu, Chunxiang; Zhang, Jie

    2013-02-01

    Organic solar cells (OSCs) with inverted structure have attracted much attention in recent years because of their improved device air stability due to the use of stable materials for electrodes and interface layers. In this work, TiO(2) films, fabricated using low temperature (e.g., 130-170 °C) atomic layer deposition (ALD) on ITO substrates, are used as electron selective interface layers to investigate inverted OSCs. It is found that though the as-deposited TiO(2) films are high resistive due to the presence of oxygen defects, the defects can be significantly reduced by light soaking. PV cells with 15-nm-thick amorphous-TiO(2) layers fabricated at low temperature show better performance than those with poly crystal TiO(2) with same thickness deposited at 250 °C. The low temperature ALD-grown TiO(2) films are dense, stable and robust with capability of conformal coating on nanostructural surfaces, showing a promising interface layer for achieving air-stable plastic OSCs with roll-to-roll mass production potential.

  16. Ambipolar charge transport in "traditional" organic hole transport layers.

    PubMed

    Khademi, S; Song, J Y; Wyatt, P B; Kreouzis, T; Gillin, W P

    2012-05-02

    Organic semiconductors are often labeled as electron or hole transport materials due to the primary role they perform in devices. However, despite these labels we have shown using time-of-flight that two of the traditional "hole transport materials" TPD and NPB are actually excellent electron transporters the electron transport properties of which are comparable to those for holes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Surface modification of inorganic layer compound with organic compound and preparation of thin films

    NASA Astrophysics Data System (ADS)

    Tagaya, Hideyuki; Morioka, Hiroyuki; Ogata, Sumikazu; Karasu, Masa; Kadokawa, Jun-ichi; Chiba, Koji

    1997-11-01

    Water treated Zn/Al layered double hydroxide (LDH) was prepared by the reaction of LDH oxide and water. By the reaction of the water treated Zn/Al LDH or amorphous metal hydroxide and organic oxychloride, surface modified inorganic layer compounds were prepared. Their layer structures were similar to those of the orginal LDHs except the reaction product of amorphous metal hydroxide and benzoyl chloride. Interlayer spacings of the reaction products were 0.77 to 2.67 nm depending on the size and number of function groups of organic compounds.

  18. Real Space Demonstration of Induced Crystalline 3D Nanostructuration of Organic Layers.

    PubMed

    Paradinas, Markos; Pérez-Rodríguez, Ana; Barrena, Esther; Ocal, Carmen

    2017-08-03

    The controlled 3D nanostructuration of molecular layers of the semiconducting molecules C22H14 (pentacene) and N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) is addressed. A tip-assisted method using atomic force microscopy (AFM) is developed for removing part of the organic material and relocating it in up to six layer thick nanostructures. Moreover, unconventional molecular scale imaging combining diverse friction force microscopy modes reveals the stacking sequence of the piled layers. In particular, we unambiguously achieve epitaxial growth, an issue of fundamental importance in thin film strategies for the nanostructuration of more efficient organic nanodevices.

  19. Highly Efficient Organic Solar Cells Consisting of Double Bulk Heterojunction Layers.

    PubMed

    Huang, Jiang; Wang, Hanyu; Yan, Kangrong; Zhang, Xiaohua; Chen, Hongzheng; Li, Chang-Zhi; Yu, Junsheng

    2017-03-15

    An organic solar cell (OSCs) containing double bulk heterojunction (BHJ) layers, namely, double-BHJ OSCs is constructed via stamp transferring of low bandgap BHJ atop of mediate bandgap active layers. Such devices allow a large gain in photocurrent to be obtained due to enhanced photoharvest, without suffering much from the fill factor drop usually seen in thick-layer-based devices. Overall, double-BHJ OSC with optimal ≈50 nm near-infrared PDPP3T:PC71 BM layer atop of ≈200 nm PTB7-Th:PC71 BM BHJ results in high power conversion efficiencies over 12%.

  20. Current–voltage characteristics of organic heterostructure devices with insulating spacer layers

    SciTech Connect

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul

    2015-05-14

    The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and we discuss relevant experimental data.

  1. Current–voltage characteristics of organic heterostructure devices with insulating spacer layers

    DOE PAGES

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; ...

    2015-05-14

    The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less

  2. The organic interlamellar layer in abalone nacre: Formation and mechanical response.

    PubMed

    López, Maria Isabel; Meyers, Marc André

    2016-01-01

    The interlamellar organic layer plays a key role in establishing the tensile mechanical response of nacre, while changing the compressive response in only a marginal manner. We conduct observations on the epithelial layer of the abalone foot in direct contact with the extrapallial layer where the deposition process takes place and identify cilia, microvilli, and secretory cells which determine the deposition of chitin to form the interlamellar organic layer. On the basis of these observations we propose a mechanism for the deposition of interlamellar organic layers. We show that the fraction of pores, as well as their diameter, grow rapidly as the interlamellar layer is extended uniaxially or biaxially, and compare these calculations with the observed values. In the calculations we assume a Poisson's ratio equal to zero in the plane of the lamellae. This assumption is justified by the thickness of the organic layer (20-50 nm) being equal to twice the diameter of the chitin fibrils; consequently the expansion of the membrane occurs at a constant thickness. As an illustration of this effect, an externally applied strain of 0.5 increases the initial pore diameter (typically equal to 20-50 nm) to a value of ten times (0.2-0.5 μm). These calculations explain the observations of large pores reported in the literature and interpret them as the result of externally applied loads. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. UV/Vis visible optical waveguides fabricated using organic-inorganic nanocomposite layers.

    PubMed

    Simone, Giuseppina; Perozziello, Gerardo

    2011-03-01

    Nanocomposite layers based on silica nanoparticles and a methacrylate matrix are synthesized by a solvent-free process and characterized in order to realize UV/Vis transparent optical waveguides. Chemical functionalization of the silica nanoparticles permits to interface the polymers and the silica. The refractive index, roughness and wettability and the machinability of the layers can be tuned changing the silica nanoparticle concentration and chemical modification of the surface of the nanoparticles. The optical transparency of the layers is affected by the nanoparticles organization between the organic chains, while it increased proportionally with respect to silica concentration. Nanocomposite layers with a concentration of 40 wt% in silica reached UV transparency for a wavelength of 250 nm. UV/Vis transparent waveguides were micromilled through nanocomposite layers and characterized. Propagation losses were measured to be around 1 dB cm(-1) at a wavelength of 350 nm.

  4. Enhancement of Barrier Properties Using Ultrathin Hybrid Passivation Layer for Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Bae, Sung Jin; Lee, Joo Won; Park, Jung Soo; Kim, Dong Young; Hwang, Sung Woo; Kim, Jai‑Kyeong; Ju, Byeong‑Kwon

    2006-07-01

    The hybrid thin-film (HTF) passivation layer composed of the UV curable acrylate layer and MS-31 (MgO:SiO2=3:1 wt %) layer was adopted in organic light emitting diode (OLED) to protect organic light emitting materials from penetrations of oxygen and water vapors. The moisture resistance of the deposited HTF layer was measured by the water vapor transmission rate (WVTR). The results showed that the HTF layer possessed a very low WVTR value of lower than 0.007 g/(m2 \\cdot day) at 37.8 °C and 100% RH. Therefore, the HTF on the OLED was found to be very effective in protect what from the penetrations of oxygen and moisture.

  5. Feeding layers of different genotypes in organic feed environments.

    PubMed

    Elwinger, K; Tufvesson, M; Lagerkvist, G; Tauson, R

    2008-11-01

    1. Two experiments were carried out to evaluate the suitability of an experimental laying hen genotype (SH) in organic egg production. SH had been selected over 25 generations on a low protein diet (130 g/kg) based on home grown feedstuffs. SH hens were compared with LSL (Experiment 1) and Hyline (Experiment 2) hens. The birds were kept in 12 aviary pens with access to outdoor runs. 2. Four diets, which were different in each experiment, were used. A control diet was compared with diets based on feedstuffs supposed to be able to be grown and produced according to organic standards. The diets differed in the content of sulphur amino acids. 3. There were no significant differences in mortality caused by diets or genotypes but an incidence of cannibalism occurred in one Hyline group fed on the diet with the lowest methionine content. 4. Severe feather pecking of LSL birds occurred and was worst on the low protein diet. In Experiment 2, signs of feather pecking of birds on the low protein diet occurred at the end of the experiment, but there was no difference between the genotypes. There was no significant difference in number of eggs produced between diets. Egg weight was influenced by diets in both experiments and by genotype in Experiment 2. Number of misplaced eggs was higher in SH hens in both experiments. There were few significant diet x genotype interactions. 5. The use of the outdoor area was influenced by diets and genotype in both experiments. 6. In conclusion, diets low in methionine content influenced predominantly plumage condition and egg weight, although production of eggs by number was unaffected. The SH hen adapted well to organic conditions, as did the Hyline genotype.

  6. Exclusion of grass roots from soil organic layers by Calluna: the role of ericoid mycorrhizas.

    PubMed

    Genney, D R; Alexander, I J; Hartley, S E

    2000-06-01

    The role of ericoid mycorrhizal colonization in competition between the dwarf shrub Calluna vulgaris and coarse grass Nardus stricta was investigated. Nardus was grown alone, or in competition with Calluna, in a layered organic/sand substrate with and without inoculation with the ericoid mycorrhizal endophyte Hymenoscyphus ericae, and with and without the addition of nitrogen. Root length and allocation between different substrate layers was assessed along with plant biomass, nutrient uptake and mycorrhizal colonization. Calluna was the superior competitor for nutrients, probably because of its ability to concentrate root growth in the upper organic layer. In the presence of Calluna both the absolute amount and proportion of Nardus root length in the organic layer were reduced, and this reduction was greatest when Calluna was mycorrhizal. The presence of ericoid mycorrhizal colonization did not reduce Nardus shoot nutrient content or concentration, suggesting that ericoid mycorrhizal suppression of Nardus growth was not due to nutrient competition: alternative mechanisms of interference are discussed.

  7. Charge transfer at organic-inorganic interfaces—Indoline layers on semiconductor substrates

    NASA Astrophysics Data System (ADS)

    Meyenburg, I.; Falgenhauer, J.; Rosemann, N. W.; Chatterjee, S.; Schlettwein, D.; Heimbrodt, W.

    2016-12-01

    We studied the electron transfer from excitons in adsorbed indoline dye layers across the organic-inorganic interface. The hybrids consist of indoline derivatives on the one hand and different inorganic substrates (TiO2, ZnO, SiO2(0001), fused silica) on the other. We reveal the electron transfer times from excitons in dye layers to the organic-inorganic interface by analyzing the photoluminescence transients of the dye layers after femtosecond excitation and applying kinetic model calculations. A correlation between the transfer times and four parameters have been found: (i) the number of anchoring groups, (ii) the distance between the dye and the organic-inorganic interface, which was varied by the alkyl-chain lengths between the carboxylate anchoring group and the dye, (iii) the thickness of the adsorbed dye layer, and (iv) the level alignment between the excited dye ( π* -level) and the conduction band minimum of the inorganic semiconductor.

  8. Unstirred Water Layers and the Kinetics of Organic Cation Transport

    PubMed Central

    Shibayama, Takahiro; Morales, Mark; Zhang, Xiaohong; Martinez, Lucy; Berteloot, Alfred; Secomb, Timothy W.; Wright, Stephen H.

    2015-01-01

    Purpose Unstirred water layers (UWLs) present an unavoidable complication in the measurement of transport kinetics in cultured cells and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1. Methods Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates. Results Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 µm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold. Conclusions Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the affinity of multidrug transporters for substrates. PMID:25791216

  9. Organic-free synthesis of layer-like FAU-type zeolites.

    PubMed

    Inayat, A; Schneider, C; Schwieger, W

    2015-01-01

    The formation of layer-like FAU-type zeolites was facilitated in the absence of any organic template. Instead, the addition of simple inorganic salts turned out to be an effective and easy to handle alternative to organic additives to induce morphological and even structural changes during zeolite crystallisation.

  10. Associations between and development of welfare indicators in organic layers.

    PubMed

    Hinrichsen, L K; Riber, A B; Labouriau, R

    2016-06-01

    The retail market share of organic eggs in Denmark is high, and the consumers expect high animal welfare standards in the organic production. Documentation of animal welfare is important, however, knowledge about the associations between animal-based welfare indicators is limited. The aims of the study were to investigate the associations between selected welfare indicators at two ages (peak and end of lay), and to examine the development with age of the chosen welfare indicators. The chosen welfare indicators were Ascaridia galli (roundworm) infection, Heterakis sp. (caecal worm) infection, keel bone damages, back feathering, body feathering, foot damages, comb colour and wounds on the body. An observational study with 12 organic egg farms was conducted in 2012 and 2013 with a total of 214 hens assessed individually at the peak and the end of lay. Insufficient data were obtained on helminth infection at the peak of lay. At the end of lay, all helminth infected hens were positive for A. galli, and only three of them had in addition a Heterakis sp. infection. Foot damages, pale combs and wounds on the body occurred at frequencies <5% and were therefore, together with the prevalence of Heterakis sp. infection, left out of the analysis of associations. A graphical model was used to analyse the associations between the remaining clinical welfare indicators, A. galli infection, housing systems and age of the hens at end of lay. A. galli infection was only directly associated with back feathering at end of lay (P=0.011) with an increased incidence of A. galli infection in hens with good back feathering. Between the two visits, the prevalence of hens with keel bone damages increased (P<0.001), and the plumage condition deteriorated (P<0.001), whereas the number of hens with plantar abscess (P=0.037) and pale combs (P=0.020) decreased. No significant differences were found for other foot damages or for skin damage. In conclusion, back feathering at end of lay provided

  11. Organic solar cells with plasmonic layers formed by laser nanofabrication.

    PubMed

    Beliatis, Michail J; Henley, Simon J; Han, Seungjin; Gandhi, Keyur; Adikaari, A A D T; Stratakis, Emmanuel; Kymakis, Emmanuel; Silva, S Ravi P

    2013-06-07

    A method for the synthesis of metal nanoparticle coatings for plasmonic solar cells which can meet large scale industrial demands is demonstrated. A UV pulsed laser is utilized to fabricate Au and Ag nanoparticles on the surface of polymer materials which form the substrates for plasmonic organic photovoltaic devices to enhance their performance. Control of the particles' size and density is demonstrated. The optical and electrical effects of these embedded particles on the power conversion efficiency are examined rigorously using both experimental and computer simulation. Gold nanoparticles of particular size and spatial distribution enhance the device efficiency. Based on our findings, we propose design considerations for utilizing the entire AM1.5 spectrum using plasmonic structures towards enhancing the efficiency of polymer solar cells using broad spectrum plasmonics.

  12. Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells.

    PubMed

    Huh, Yoon Ho; Bae, In-Gon; Jeon, Hong Goo; Park, Byoungchoo

    2016-10-31

    We herein report a homogeneous [6,6]-phenyl C61 butyric acid methyl ester (PCBM) layer, produced by a solution process of horizontal-dipping (H-dipping) to improve the photovoltaic (PV) effects of bilayer heterojunction organic photovoltaic cells (OPVs) based on a bi-stacked poly(3-hexylthiophene) (P3HT) electron donor layer and a PCBM electron acceptor layer (P3HT/PCBM). It was shown that a homogeneous and uniform coating of PCBM layers in the P3HT/PCBM bilayer OPVs resulted in reliable and reproducible device performance. We recorded a power conversion efficiency (PCE) of 2.89%, which is higher than that (2.00%) of bilayer OPVs with a spin-coated PCBM layer. Moreover, introducing surfactant additives of poly(oxyethylene tridecyl ether) (PTE) into the homogeneous P3HT/PCBM PV layers resulted in the bilayer OPVs showing a PCE value of 3.95%, which is comparable to those of conventional bulk-heterojunction (BHJ) OPVs (3.57-4.13%) fabricated by conventional spin-coating. This improved device performance may be attributed to the selective collection of charge carriers at the interfaces among the active layers and electrodes due to the PTE additives as well as the homogeneous formation of the functional PCBM layer on the P3HT layer. Furthermore, H-dip-coated PCBM layers were deposited onto aligned P3HT layers by a rubbing technique, and the rubbed bilayer OPV exhibited improved in-plane anisotropic PV effects with PCE anisotropy as high as 1.81, which is also higher than that (1.54) of conventional rubbed BHJ OPVs. Our results suggest that the use of the H-dip-coating process in the fabrication of PCBM layers with the PTE interface-engineering additive could be of considerable interest to those seeking to improve PCBM-based opto-electrical organic thin-film devices.

  13. Hafnium metallocene compounds used as cathode interfacial layers for enhanced electron transfer in organic solar cells.

    PubMed

    Park, Keunhee; Oh, Seungsik; Jung, Donggeun; Chae, Heeyeop; Kim, Hyoungsub; Boo, Jin-Hyo

    2012-01-09

    We have used hafnium metallocene compounds as cathode interfacial layers for organic solar cells [OSCs]. A metallocene compound consists of a transition metal and two cyclopentadienyl ligands coordinated in a sandwich structure. For the fabrication of the OSCs, poly[3,4-ethylenedioxythiophene]:poly(styrene sulfonate), poly(3-hexylthiophene-2,5-diyl) + 66-phenyl C61 butyric acid methyl ester, bis-(ethylcyclopentadienyl)hafnium(IV) dichloride, and aluminum were deposited as a hole transport layer, an active layer, a cathode interfacial layer, and a cathode, respectively. The hafnium metallocene compound cathode interfacial layer improved the performance of OSCs compared to that of OSCs without the interfacial layer. The current density-voltage characteristics of OSCs with an interfacial layer thickness of 0.7 nm and of those without an interfacial layer showed power conversion efficiency [PCE] values of 2.96% and 2.34%, respectively, under an illumination condition of 100 mW/cm2 (AM 1.5). It is thought that a cathode interfacial layer of an appropriate thickness enhances the electron transfer between the active layer and the cathode, and thus increases the PCE of the OSCs.

  14. Hafnium metallocene compounds used as cathode interfacial layers for enhanced electron transfer in organic solar cells

    PubMed Central

    2012-01-01

    We have used hafnium metallocene compounds as cathode interfacial layers for organic solar cells [OSCs]. A metallocene compound consists of a transition metal and two cyclopentadienyl ligands coordinated in a sandwich structure. For the fabrication of the OSCs, poly[3,4-ethylenedioxythiophene]:poly(styrene sulfonate), poly(3-hexylthiophene-2,5-diyl) + [6,6]-phenyl C61 butyric acid methyl ester, bis-(ethylcyclopentadienyl)hafnium(IV) dichloride, and aluminum were deposited as a hole transport layer, an active layer, a cathode interfacial layer, and a cathode, respectively. The hafnium metallocene compound cathode interfacial layer improved the performance of OSCs compared to that of OSCs without the interfacial layer. The current density-voltage characteristics of OSCs with an interfacial layer thickness of 0.7 nm and of those without an interfacial layer showed power conversion efficiency [PCE] values of 2.96% and 2.34%, respectively, under an illumination condition of 100 mW/cm2 (AM 1.5). It is thought that a cathode interfacial layer of an appropriate thickness enhances the electron transfer between the active layer and the cathode, and thus increases the PCE of the OSCs. PMID:22230259

  15. Speciation of organic aerosols in the Saharan Air Layer and in the free troposphere westerlies

    NASA Astrophysics Data System (ADS)

    García, M. Isabel; van Drooge, Barend L.; Rodríguez, Sergio; Alastuey, Andrés

    2017-07-01

    We focused this research on the composition of the organic aerosols transported in the two main airflows of the subtropical North Atlantic free troposphere: (i) the Saharan Air Layer - the warm, dry and dusty airstream that expands from North Africa to the Americas at subtropical and tropical latitudes - and (ii) the westerlies, which flow from North America over the North Atlantic at mid- and subtropical latitudes. We determined the inorganic compounds (secondary inorganic species and elemental composition), elemental carbon and the organic fraction (bulk organic carbon and organic speciation) present in the aerosol collected at Izaña Observatory, ˜ 2400 m a.s.l. on the island of Tenerife. The concentrations of all inorganic and almost all organic compounds were higher in the Saharan Air Layer than in the westerlies, with bulk organic matter concentrations within the range 0.02-4.0 µg m-3. In the Saharan Air Layer, the total aerosol population was by far dominated by dust (93 % of bulk mass), which was mixed with secondary inorganic pollutants ( < 5 %) and organic matter ( ˜ 1.5 %). The chemical speciation of the organic aerosols (levoglucosan, dicarboxylic acids, saccharides, n-alkanes, hopanes, polycyclic aromatic hydrocarbons and those formed after oxidation of α-pinene and isoprene, determined by gas chromatography coupled with mass spectrometry) accounted for 15 % of the bulk organic matter (determined by the thermo-optical transmission technique); the most abundant organic compounds were saccharides (associated with surface soils), secondary organic aerosols linked to oxidation of biogenic isoprene (SOA ISO) and dicarboxylic acids (linked to several primary sources and SOA). When the Saharan Air Layer shifted southward, Izaña was within the westerlies stream and organic matter accounted for ˜ 28 % of the bulk mass of aerosols. In the westerlies, the organic aerosol species determined accounted for 64 % of the bulk organic matter, with SOA ISO and

  16. Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil.

    PubMed

    Xu, Wenhua; Li, Wei; Jiang, Ping; Wang, Hui; Bai, Edith

    2014-10-01

    The roles of substrate availability and quality in determining temperature sensitivity (Q10) of soil carbon (C) decomposition are still unclear, which limits our ability to predict how soil C storage and cycling would respond to climate change. Here we determined Q10 in surface organic layer and subsurface mineral soil along an elevation gradient in a temperate forest ecosystem. Q10 was calculated by comparing the times required to respire a given amount of soil C at 15 and 25°C in a 350-day incubation. Results indicated that Q10 of the organic layer was 0.22-0.71 (absolute difference) higher than Q10 of the mineral soil. Q10 in both the organic layer (2.5-3.4) and the mineral soil (2.1-2.8) increased with decreasing substrate quality during the incubation. This enhancement of Q10 over incubation time in both layers suggested that Q10 of more labile C was lower than that of more recalcitrant C, consistent with the Arrhenius kinetics. No clear trend of Q10 was found along the elevation gradient. Because the soil organic C pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming.

  17. Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil

    NASA Astrophysics Data System (ADS)

    Xu, Wenhua; Li, Wei; Jiang, Ping; Wang, Hui; Bai, Edith

    2014-10-01

    The roles of substrate availability and quality in determining temperature sensitivity (Q10) of soil carbon (C) decomposition are still unclear, which limits our ability to predict how soil C storage and cycling would respond to climate change. Here we determined Q10 in surface organic layer and subsurface mineral soil along an elevation gradient in a temperate forest ecosystem. Q10 was calculated by comparing the times required to respire a given amount of soil C at 15 and 25°C in a 350-day incubation. Results indicated that Q10 of the organic layer was 0.22-0.71 (absolute difference) higher than Q10 of the mineral soil. Q10 in both the organic layer (2.5-3.4) and the mineral soil (2.1-2.8) increased with decreasing substrate quality during the incubation. This enhancement of Q10 over incubation time in both layers suggested that Q10 of more labile C was lower than that of more recalcitrant C, consistent with the Arrhenius kinetics. No clear trend of Q10 was found along the elevation gradient. Because the soil organic C pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming.

  18. Distinct temperature sensitivity of soil carbon decomposition in forest organic layer and mineral soil

    PubMed Central

    Xu, Wenhua; Li, Wei; Jiang, Ping; Wang, Hui; Bai, Edith

    2014-01-01

    The roles of substrate availability and quality in determining temperature sensitivity (Q10) of soil carbon (C) decomposition are still unclear, which limits our ability to predict how soil C storage and cycling would respond to climate change. Here we determined Q10 in surface organic layer and subsurface mineral soil along an elevation gradient in a temperate forest ecosystem. Q10 was calculated by comparing the times required to respire a given amount of soil C at 15 and 25°C in a 350-day incubation. Results indicated that Q10 of the organic layer was 0.22–0.71 (absolute difference) higher than Q10 of the mineral soil. Q10 in both the organic layer (2.5–3.4) and the mineral soil (2.1–2.8) increased with decreasing substrate quality during the incubation. This enhancement of Q10 over incubation time in both layers suggested that Q10 of more labile C was lower than that of more recalcitrant C, consistent with the Arrhenius kinetics. No clear trend of Q10 was found along the elevation gradient. Because the soil organic C pool of the organic layer in temperate forests is large, its higher temperature sensitivity highlights its importance in C cycling under global warming. PMID:25270905

  19. CMOS color image sensor with overlaid organic photoconductive layers having narrow absorption band

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi; Komatsu, Takashi; Saito, Takahiro

    2007-02-01

    At EI2006, we proposed the CMOS image sensor, which was overlaid with organic photoconductive layers in order to incorporate in it large light-capturing ability of a color film owing to its multiple-layer structure, and demonstrated the pictures taken by the trial product of the proposed CMOS image sensor overlaid with an organic layer having green sensitivity. In this study, we have tried to get the optimized spectral sensitivity for the proposed CMOS image sensor by means of the simulation to minimize the color difference between the original Macbeth chart and its reproduction with the spectral sensitivity of the sensor as a parameter. As a result, it has been confirmed that the proposed CMOS image sensor with multiple-layer structure possesses high potential capability in terms of imagecapturing efficiency when it is provided with the optimized spectral sensitivity.

  20. Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Sunghwan; Jun, Gwang Hoon; Jeon, Seokwoo; Hong, Soon Hyung

    2016-04-01

    Commercialization of organic solar cell (OSC) has faltered due to their low power conversion efficiency (PCE) compared to inorganic solar cell. Low electrical conductivity, low charge mobility, and short-range light absorption of most organic materials limit the PCE of OSCs. Carbon nanomaterials, especially carbon nanotubes (CNTs) and graphenes, are of great interest for use in OSC applications due to their high electrical conductivity, mobility, and unique optical properties for enhancing the performance of OSCs. In this review, recent progress toward the integration of carbon nanomaterials into OSCs is described. The role of carbon nanomaterials and strategies for their integration into various layers of OSCs, including the photoactive layer and charge transport layer, are discussed. Based on these, we also discuss the prospects of carbon nanomaterials for specific OSC layers to maximize the PCE.

  1. Design and application of carbon nanomaterials for photoactive and charge transport layers in organic solar cells.

    PubMed

    Jin, Sunghwan; Jun, Gwang Hoon; Jeon, Seokwoo; Hong, Soon Hyung

    2016-01-01

    Commercialization of organic solar cell (OSC) has faltered due to their low power conversion efficiency (PCE) compared to inorganic solar cell. Low electrical conductivity, low charge mobility, and short-range light absorption of most organic materials limit the PCE of OSCs. Carbon nanomaterials, especially carbon nanotubes (CNTs) and graphenes, are of great interest for use in OSC applications due to their high electrical conductivity, mobility, and unique optical properties for enhancing the performance of OSCs. In this review, recent progress toward the integration of carbon nanomaterials into OSCs is described. The role of carbon nanomaterials and strategies for their integration into various layers of OSCs, including the photoactive layer and charge transport layer, are discussed. Based on these, we also discuss the prospects of carbon nanomaterials for specific OSC layers to maximize the PCE.

  2. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    NASA Astrophysics Data System (ADS)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  3. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil.

    PubMed

    Xu, Lirong; Zhou, Xin; Tian, Wei Quan; Gao, Teng; Zhang, Yan Feng; Lei, Shengbin; Liu, Zhong Fan

    2014-09-01

    The integration of 2D covalent organic frameworks (COFs) with atomic thickness with graphene will lead to intriguing two-dimensional materials. A surface-confined covalently bonded Schiff base network was prepared on single-layer graphene grown on copper foil and the dynamic reaction process was investigated with scanning tunneling microscopy. DFT simulations provide an understanding of the electronic structures and the interactions between the surface COF and graphene. Strong coupling between the surface COF and graphene was confirmed by the dispersive bands of the surface COF after interaction with graphene, and also by the experimental observation of tunneling condition dependent contrast of the surface COF.

  4. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    PubMed Central

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-01-01

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor–inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance. PMID:26080437

  5. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    DOE PAGES

    Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; ...

    2015-06-15

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactivemore » materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.« less

  6. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells

    SciTech Connect

    Zhou, Nanjia; Kim, Myung -Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J.; Chang, Robert P. H.; Facchetti, Antonio; Marks, Tobin J.

    2015-06-15

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor– inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Lastly, continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  7. Amorphous oxide alloys as interfacial layers with broadly tunable electronic structures for organic photovoltaic cells.

    PubMed

    Zhou, Nanjia; Kim, Myung-Gil; Loser, Stephen; Smith, Jeremy; Yoshida, Hiroyuki; Guo, Xugang; Song, Charles; Jin, Hosub; Chen, Zhihua; Yoon, Seok Min; Freeman, Arthur J; Chang, Robert P H; Facchetti, Antonio; Marks, Tobin J

    2015-06-30

    In diverse classes of organic optoelectronic devices, controlling charge injection, extraction, and blocking across organic semiconductor-inorganic electrode interfaces is crucial for enhancing quantum efficiency and output voltage. To this end, the strategy of inserting engineered interfacial layers (IFLs) between electrical contacts and organic semiconductors has significantly advanced organic light-emitting diode and organic thin film transistor performance. For organic photovoltaic (OPV) devices, an electronically flexible IFL design strategy to incrementally tune energy level matching between the inorganic electrode system and the organic photoactive components without varying the surface chemistry would permit OPV cells to adapt to ever-changing generations of photoactive materials. Here we report the implementation of chemically/environmentally robust, low-temperature solution-processed amorphous transparent semiconducting oxide alloys, In-Ga-O and Ga-Zn-Sn-O, as IFLs for inverted OPVs. Continuous variation of the IFL compositions tunes the conduction band minima over a broad range, affording optimized OPV power conversion efficiencies for multiple classes of organic active layer materials and establishing clear correlations between IFL/photoactive layer energetics and device performance.

  8. Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane: Characteristics and mechanisms.

    PubMed

    Wang, Jiaxuan; Wang, Lei; Miao, Rui; Lv, Yongtao; Wang, Xudong; Meng, Xiaorong; Yang, Ruosong; Zhang, Xiaoting

    2016-03-15

    To investigate how the characteristics of pregenerated organic fouling layers on nanofiltration (NF) membranes influence the subsequent gypsum scaling behavior, filtration experiments with gypsum were carried out with organic-fouled poly(piperazineamide) NF membranes. Organic fouling layer on membrane was induced by bovine serum albumin (BSA), humic acid (HA), and sodium alginate (SA), respectively. The morphology and components of the scalants, the role of Ca(2+) adsorption on the organic fouling layer during gypsum crystallization, and the interaction forces of gypsum on the membrane surface were investigated. The results indicated that SA- and HA-fouled membranes had higher surface crystallization tendency along with more severe flux decline during gypsum scaling than BSA-fouled and virgin membranes because HA and SA macromolecules acted as nuclei for crystallization. Based on the analyses of Ca(2+) adsorption onto organic adlayers and adhesion forces, it was found that the flux decline rate and extent in the gypsum scaling experiment was positively related to the Ca(2+)-binding capacity of the organic matter. Although the dominant gypsum scaling mechanism was affected by coupling physicochemical effects, the controlling factors varied among foulants. Nevertheless, the carboxyl density of organic matter played an important role in determining surface crystallization on organic-fouled membrane.

  9. Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex.

    PubMed

    Tocker, Gilad; Barak, Omri; Derdikman, Dori

    2015-12-01

    Navigation requires integration of external and internal inputs to form a representation of location. Part of this integration is considered to be carried out by the grid cells network in the medial entorhinal cortex (MEC). However, the structure of this neural network is unknown. To shed light on this structure, we measured noise correlations between 508 pairs of simultaneous previously recorded grid cells. We differentiated between pure grid and conjunctive cells (pure grid in Layers II, III, and VI vs. conjunctive in Layers III and V--only Layer III was bi-modal), and devised a new method to classify cell pairs as belonging/not-belonging to the same module. We found that pairs from the same module show significantly more correlations than pairs from different modules. The correlations between pure grid cells decreased in strength as their relative spatial phase increased. However, correlations were mostly at 0 time-lag, suggesting that the source of correlations was not only synaptic, but rather resulted mostly from common input. Given our measured correlations, the two functional groups of grid cells (pure vs. conjunctive), and the known disorganized recurrent connections within Layer II, we propose the following model: conjunctive cells in deep layers form an attractor network whose activity is governed by velocity-controlled signals. A second manifold in Layer II receives organized feedforward projections from the deep layers, giving rise to pure grid cells. Numerical simulations indicate that organized projections induce such correlations as we measure in superficial layers. Our results provide new evidence for the functional anatomy of the entorhinal circuit-suggesting that strong phase-organized feedforward projections support grid fields in the superficial layers. © 2015 Wiley Periodicals, Inc.

  10. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.

    PubMed

    Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong

    2013-02-01

    Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.

  11. Intermediate high index layer for laser mode tuning in organic semiconductor lasers.

    PubMed

    Stroisch, M; Woggon, T; Teiwes-Morin, C; Klinkhammer, S; Forberich, K; Gombert, A; Gerken, M; Lemmer, U

    2010-03-15

    We modified the optical properties of organic semiconductor distributed feedback lasers by introducing a high refractive index layer consisting of tantalum pentoxide between the substrate and the active material layer. A thin film of tris-(8-hydroxyquinoline) aluminium doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran was used as the active layer. By varying the intermediate layer thickness we could change the effective refractive index of the guided laser mode and thus the laser wavelength. With this technique we were able to tune the laser emission range between 613 nm and 667 nm. For high index layer thicknesses higher than 40 nm the laser operated on the TE(1)-mode rather than the fundamental TE(0)-mode.

  12. Improved current efficiency in organic light-emitting devices with a hole blocking layer

    NASA Astrophysics Data System (ADS)

    Yang, Hui-shan

    2013-07-01

    A hole-blocking layer (HBL) of 4,7-diphenyl-1,10-phenanthroline (BPhen) is incorporated between the emitting layer (EML) and the electron transport layer (ETL) for a tris-(8-hydroxyqunoline)aluminum based organic light-emitting device (OLED). Such a structure helps to reduce the hole-leakage to the cathode, resulting in an improved current efficiency. The BPhen improves the balance of hole and electron injections. The current efficiency is improved compared with that of the device without the blocking layer. The highest luminous efficiency of the device with 6 nm BPhen acting as a blocking layer is 3.44 cd/A at 8 V, which is improved by nearly 1.5 times as compared with that of the device without it.

  13. Organic Photovoltaic Cells with Improved Performance Using Bathophenanthroline as a Buffer Layer

    NASA Astrophysics Data System (ADS)

    Wang, Na-na; Yu, Jun-sheng; Lin, Hui; Jiang, Ya-dong

    2010-02-01

    The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.

  14. Luminous efficiency enhancement in blue phosphorescent organic light-emitting diodes with an electron confinement layers

    NASA Astrophysics Data System (ADS)

    Kang, Jin Sung; Yoon, Ju-An; Yoo, Seung Il; Kim, Jin Wook; Yi, Seungjun; Zhu, Furong; Cheah, Kok Wai; Kim, Woo Young

    2015-09-01

    This study reports the results of blue phosphorescent organic light emitting diodes (PHOLEDs) employing an electron confinement layer (ECL), tris-(phenylpyrazole)iridium (Ir(ppz)3) and a hole confinement layer (HCl), 1,3,5-tris(N-phenylbenzimiazole-2-yl)benzene (TPBi). The electrical and optical characteristics of PHOLEDs with different emissive layers, including current density, luminance, and luminous efficiency, were analyzed. The thickness of the individual emissive layer was optimized, however, and the total thickness of the emitting region was kept constant at 300 Å. This work reveals that the effective electron confinement, due to a large energy level offset between the electron confinement and emitting layers, helps to improve hole-electron current balance in the emitting region. The maximum external quantum efficiency of 23.40% at 1500 cd/m2 was achieved for PHOLEDs with an ECL, which is 60% higher than the structural identical control device without ECL.

  15. Growth and characterization of organic layers deposited on porous-patterned Si surface

    NASA Astrophysics Data System (ADS)

    Gorbach, Tamara Ya.; Smertenko, Petro S.; Olkhovik, G. P.; Wisz, Grzegorz

    2016-12-01

    The organic layers with the thickness from a few nanometers up to few micrometers have been deposited from the chemical solution at room temperature on porous patterned Si surfaces using two medical solutions: thiamine diphosphide (pH=1÷2) and metamizole sodium (pH=6÷7). Based on evolution of morphology, structural and compositional features obtained by scanning electron microscopy, X-ray analysis, reflectance high energy electron diffraction the grown mechanisms in thin organic layers are discussed in the terms of terrace-step-kink model whereas self-organized assemblies evaluated more thick layers. Transport mechanism features and possible photovoltaic properties are discussed on the base of differential current-voltage characteristics.

  16. Mechanical strength of abalone nacre: role of the soft organic layer.

    PubMed

    Meyers, Marc André; Lin, Albert Yu-Min; Chen, Po-Yu; Muyco, Julie

    2008-01-01

    The nacreous portion of the abalone shell is composed of calcium carbonate crystals interleaved with layers of viscoelastic proteins. The resulting structure yields unique mechanical properties. In this study, we focus on the thin viscoelastic layers between the tiles and on their role on the mechanical properties of the shell. Both SEM and AFM show that the thin (approximately 30 nm) organic layer is porous, containing holes with diameter of approximately 50 nm. These holes enable the formation of mineral bridges between adjacent tile layers. The mineral bridges play a pivotal role in growth and ensure the maintenance of the same crystallographic relationship through tile growth in the 'terraced cone' mode. The existence of mineral bridges is consistent with the difference between tensile and compressive strength of the abalone. Mechanical tests with loading applied perpendicular to the plane of the organic layers reveal a tensile strength lower than 10 MPa, whereas the compressive strength is approximately 300-500 MPa. These nanoscale bridges have, by virtue of their dimensions (50 nm diameter x 30 nm length), a strength that reaches their theoretical value. The calculated tensile strength based on the theoretical strength predicts a bridge density of approximately 2.25/microm(2). A major conclusion of this investigation is that the role of the organic layer is primarily to subdivide the CaCO(3) matrix into platelets with thickness of 0.5 microm. Its intrinsic effect in providing a glue between adjacent tiles may not be significant.

  17. Electroluminescent devices using a layered organic-inorganic perovskite structure as emitter

    NASA Astrophysics Data System (ADS)

    Coelle, Michael; Bruetting, Wolfgang; Schwoerer, Markus; Yahiro, Masayuki; Tsutsui, Tetsuo

    2001-02-01

    Self-organizing layered perovskite compounds like (formula available in paper) naturally form a dielectric quantum-well structure in which semiconducting PbI4 layers and organic (C6H5C2H4NH3) layers are alternately piled up. Due to their low- dimensional semiconductor nature they exhibit a strong absorption and sharp photoluminescence from the exciton band. In electroluminescent devices pure green emission peaking at 520 nm with a very narrow half-width of about 10 nm has been reported. As the organic-inorganic layered structure has promising properties for EL-devices, we investigated two- and three layer structures using this perovskite as emitter material in combination with additional hole and electron injection layers. To get more insight into electrical properties and electroluminescence- mechanisms of this material, temperature dependent current- voltage-luminance characteristics have been measured, showing an increasing onset-voltage for current flow from 2.6 V at room temperature to about 8.8 V at 80 K. Electroluminescence is detected at temperatures below 150 K with onset voltages of about 13 V. At liquid nitrogen temperature efficiencies of (formula available in paper) are obtained.

  18. The effect of interfacial layers on charge transport in organic solar cell

    NASA Astrophysics Data System (ADS)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema

    2016-09-01

    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  19. Separation and electrical properties of self-organized graphene/graphite layers

    NASA Astrophysics Data System (ADS)

    Mailian, Manuel R.; Mailian, Aram R.

    2015-02-01

    Intrinsic layered structure of graphite is the source of ongoing and expanding search of ways of obtaining low-cost and promising graphite thin layers. We report on a novel method of obtaing and seperating rubbed graphite sheets by using water soluble NaCl substrate. The electrical behavior of sheets was characterized by current-voltage measurements. An in-plane electrical anisotropy depending on rubbing direction is discovered. Optical microscopy observations combined with discovered non-linear electrical behavior revealed that friction leads to the formation of sheet makeup which contain an optically transparent lamina of self-organized few-layer graphene.

  20. Layer-Specific Organization of Local Excitatory and Inhibitory Synaptic Connectivity in the Rat Presubiculum

    PubMed Central

    Peng, Yangfan; Barreda Tomás, Federico J.; Klisch, Constantin; Vida, Imre

    2017-01-01

    Abstract The presubiculum is part of the parahippocampal spatial navigation system and contains head direction and grid cells upstream of the medial entorhinal cortex. This position within the parahippocampal cortex renders the presubiculum uniquely suited for analyzing the circuit requirements underlying the emergence of spatially tuned neuronal activity. To identify the local circuit properties, we analyzed the topology of synaptic connections between pyramidal cells and interneurons in all layers of the presubiculum by testing 4250 potential synaptic connections using multiple whole-cell recordings of up to 8 cells simultaneously. Network topology showed layer-specific organization of microcircuits consistent with the prevailing distinction of superficial and deep layers. While connections among pyramidal cells were almost absent in superficial layers, deep layers exhibited an excitatory connectivity of 3.9%. In contrast, synaptic connectivity for inhibition was higher in superficial layers though markedly lower than in other cortical areas. Finally, synaptic amplitudes of both excitatory and inhibitory connections showed log-normal distributions suggesting a nonrandom functional connectivity. In summary, our study provides new insights into the microcircuit organization of the presubiculum by revealing area- and layer-specific connectivity rules and sets new constraints for future models of the parahippocampal navigation system. PMID:28334142

  1. Performance Enhancement of Organic Thin-Film Transistors Using Bathophenanthroline:Cs Electron Injection Layer

    NASA Astrophysics Data System (ADS)

    Kim, Myunghwan; Kim, Jeongsoo; Son, Heegeun; Jang, Ji-Hyang; Yi, Moonsuk

    2010-10-01

    In this study, we fabricated an organic thin-film transistor (OTFT) with a bathophenanthroline (Bphen):Cs electron injection layer between an organic semiconductor (C60) and a metal electrode. We compared the electrical characteristics of OTFTs with and without Bphen:Cs insertion layer which depend on the insertion layer thickness. We found that the Bphen:Cs layer inserted between the active layer (C60) and the metal electrode played an important role in improving the electrical characteristics of the devices. When the OTFT with 5-Å-thick Bphen:Cs was compared with that without Bphen:Cs, the mobility and the output current were determined to increase from 0.029 cm2 V-1 s-1 and 4.32×10-7 A to 0.127 cm2 V-1 s-1 and 1.67×10-6 A, respectively. This improvement was attributed to the reduction in contact resistance between C60 and the Al electrode layer when a Bphen:Cs electron injection layer of optimum thickness was applied.

  2. Organic solar cells with graded absorber layers processed from nanoparticle dispersions.

    PubMed

    Gärtner, Stefan; Reich, Stefan; Bruns, Michael; Czolk, Jens; Colsmann, Alexander

    2016-03-28

    The fabrication of organic solar cells with advanced multi-layer architectures from solution is often limited by the choice of solvents since most organic semiconductors dissolve in the same aromatic agents. In this work, we investigate multi-pass deposition of organic semiconductors from eco-friendly ethanol dispersion. Once applied, the nanoparticles are insoluble in the deposition agent, allowing for the application of further nanoparticulate layers and hence for building poly(3-hexylthiophene-2,5-diyl):indene-C60 bisadduct absorber layers with vertically graded polymer and conversely graded fullerene concentration. Upon thermal annealing, we observe some degrees of polymer/fullerene interdiffusion by means of X-ray photoelectron spectroscopy and Kelvin probe force microscopy. Replacing the common bulk-heterojunction by such a graded photo-active layer yields an enhanced fill factor of the solar cell due to an improved charge carrier extraction, and consequently an overall power conversion efficiency beyond 4%. Wet processing of such advanced device architectures paves the way for a versatile, eco-friendly and industrially feasible future fabrication of organic solar cells with advanced multi-layer architectures.

  3. Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Nazeeruddin, Mohammad Khaja; Shin, Hyung-Shik

    2015-04-14

    In this work, the effects of a titanium (Ti) layer on the charge transport and recombination rates of flexible perovskite solar cells were studied. Ti as an efficient barrier layer was deposited directly on PET-ITO flexible substrates through RF magnetic sputtering using a Ti-source and a pressure of ∼5 mTorr. A Ti coated PET-ITO was used for the fabrication of a flexible perovskite solar cell without using any metal oxide layer. The fabricated flexible perovskite solar cell was composed of a PET-ITO/Ti/perovskite (CH3NH3PbI3)/organic hole transport layer of 2,2',7,7'-tetrakis [N,N'-di-p-methoxyphenylamine]-9,9'-spirobifluorene (spiro-OMeTAD)-Li-TFSI/Ag. A high conversion efficiency of ∼8.39% along with a high short circuit current (JSC) of ∼15.24 mA cm(-2), an open circuit voltage (VOC) of ∼0.830 V and a high fill factor (FF) of ∼0.66 was accomplished by the fabricated flexible perovskite solar cell under a light illumination of ∼100 mW cm(-2) (1.5 AM). Intensity-modulated photocurrent (IMPS)/photovoltage spectroscopy (IMVS) studies demonstrated that the fabricated flexible perovskite solar cell considerably reduced the recombination rate.

  4. A water-processable organic electron-selective layer for solution-processed inverted organic solar cells

    SciTech Connect

    Chen, Dongcheng; Zhou, Hu; Cai, Ping; Sun, Shi; Ye, Hua; Su, Shi-Jian Cao, Yong

    2014-02-03

    A triazine- and pyridinium-containing water-soluble material of 1,1′,1″-(4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tris(benzene-4,1-diyl)) tris(methylene)tripyridinium bromide (TzPyBr) was developed as an organic electron-selective layer in solution-processed inverted organic solar cells due to its strong anti-erosion capacity against non-polar organic solvents commonly used for the active layer. Ohmic-like contact with the adjacent active materials like fullerene derivatives is speculated to be formed, as confirmed by the work-function measurements with scanning Kelvin probe and ultraviolet photoelectron spectroscopy techniques. Besides, considering the deep highest occupied molecular orbital energy level of TzPyBr, excellent hole-blocking property of the electron-selective layer is also anticipated. The inverted organic photovoltaic devices based on the TzPyBr/ITO (indium tin oxide) bilayer cathode exhibit dramatically enhanced performance compared to the control devices with bare ITO as the cathode and even higher efficiency than the conventional type devices with ITO and Al as the electrodes.

  5. Photoluminescence emission from Alq3 organic layer in metal-Alq3-metal plasmonic structure

    NASA Astrophysics Data System (ADS)

    Huang, Bohr-Ran; Liao, Chung-Chi; Fan, Wan-Ting; Wu, Jin-Han; Chen, Cheng-Chang; Lin, Yi-Ping; Li, Jung-Yu; Chen, Shih-Pu; Ke, Wen-Cheng; Chen, Nai-Chuan

    2014-06-01

    The emission properties of an organic layer embedded in a metal-organic-metal (MOM) structure were investigated. A partially radiative odd-SPW as well as a non-radiative even-SPW modes are supported by hybridization of the SPW modes on the opposite organic/metal interface in the structure. Because of the competition by this radiative SPW, the population of excitons that recombine to form non-radiative SPW should be reduced. This may account for why the photoluminescence intensity of the MOM sample is higher than that of an organic-metal sample even though the MOM sample has an additional metal layer that should intuitively act as a filter.

  6. Isolation and characterization of nanosheets containing few layers of the Aurivillius family of oxides and metal-organic compounds

    SciTech Connect

    Sreedhara, M.B.; Prasad, B.E.; Moirangthem, Monali; Murugavel, R.; Rao, C.N.R.

    2015-04-15

    Nanosheets containing few-layers of ferroelectric Aurivillius family of oxides, Bi{sub 2}A{sub n−1}B{sub n}O{sub 3n+3} (where A=Bi{sup 3+}, Ba{sup 2+} etc. and B=Ti{sup 4+}, Fe{sup 3+} etc.) with n=3, 4, 5, 6 and 7 have been prepared by reaction with n-butyllithium, followed by exfoliation in water. The few-layer samples have been characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and other techniques. The few-layer species have a thickness corresponding to a fraction of the c-parameter along which axis the perovskite layers are stacked. Magnetization measurements have been carried out on the few-layer samples containing iron. Few-layer species of a few layered metal-organic compounds have been obtained by ultrasonication and characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and magnetic measurements. Significant changes in the optical spectra and magnetic properties are found in the few-layer species compared to the bulk samples. Few-layer species of the Aurivillius family of oxides may find uses as thin layer dielectrics in photovoltaics and other applications. - Graphical abstract: Exfoliation of the layered Aurivillius oxides into few-layer nanosheets by chemical Li intercalation using n-BuLi followed by reaction in water. Exfoliation of the layered metal-organic compounds into few-layer nanosheets by ultrasonication. - Highlights: • Few-layer nanosheets of Aurivillius family of oxides with perovskite layers have been generated by lithium intercalation. • Few-layer nanosheets of few layered metal-organic compounds have been generated by ultrasonication. • Few-layer nanosheets of the Aurivillius oxides have been characterized by AFM, TEM and optical spectroscopy. • Aurivillius oxides containing Fe show layer dependent magnetic properties. • Exfoliated few-layer metal-organic compounds show changes in spectroscopic and magnetic properties compared with bulk materials.

  7. Phosphorus Speciation of Forest-soil Organic Surface Layers using P K-edge XANES Spectroscopy

    SciTech Connect

    J Prietzel; J Thieme; D Paterson

    2011-12-31

    The phosphorus (P) speciation of organic surface layers from two adjacent German forest soils with different degree of water-logging (Stagnosol, Rheic Histosol) was analyzed by P K-edge XANES and subsequent Linear Combination Fitting. In both soils, {approx}70% of the P was inorganic phosphate and {approx}30% organic phosphate; reduced P forms such as phosphonate were absent. The increased degree of water-logging in the Histosol compared to the Stagnosol did not affect P speciation.

  8. Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ

    PubMed Central

    Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei

    2013-01-01

    Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187

  9. Balancing high gain and bandwidth in multilayer organic photodetectors with tailored carrier blocking layers

    NASA Astrophysics Data System (ADS)

    Hammond, William T.; Mudrick, John P.; Xue, Jiangeng

    2014-12-01

    We present detailed studies of the high photocurrent gain behavior in multilayer organic photodiodes containing tailored carrier blocking layers we reported earlier in a Letter [W. T. Hammond and J. Xue, Appl. Phys. Lett. 97, 073302 (2010)], in which a high photocurrent gain of up to 500 was attributed to the accumulation of photogenerated holes at the anode/organic active layer interface and the subsequent drastic increase in secondary electron injection from the anode. Here, we show that both the hole-blocking layer structure and layer thickness strongly influence the magnitude of the photocurrent gain. Temporal studies revealed that the frequency response of such devices is limited by three different processes with lifetimes of 10 μs, 202 μs, and 2.72 ms for the removal of confined holes, which limit the 3 dB bandwidth of these devices to 1.4 kHz. Furthermore, the composition in the mixed organic donor-acceptor photoactive layer affects both gain and bandwidth, which is attributed to the varying charge transport characteristics, and the optimal gain-bandwidth product is achieved with approximately 30% donor content. Finally, these devices show a high dynamic range of more than seven orders of magnitude, although the photocurrent shows a sublinear dependence on the incident optical power.

  10. Balancing high gain and bandwidth in multilayer organic photodetectors with tailored carrier blocking layers

    SciTech Connect

    Hammond, William T.; Mudrick, John P.; Xue, Jiangeng

    2014-12-07

    We present detailed studies of the high photocurrent gain behavior in multilayer organic photodiodes containing tailored carrier blocking layers we reported earlier in a Letter [W. T. Hammond and J. Xue, Appl. Phys. Lett. 97, 073302 (2010)], in which a high photocurrent gain of up to 500 was attributed to the accumulation of photogenerated holes at the anode/organic active layer interface and the subsequent drastic increase in secondary electron injection from the anode. Here, we show that both the hole-blocking layer structure and layer thickness strongly influence the magnitude of the photocurrent gain. Temporal studies revealed that the frequency response of such devices is limited by three different processes with lifetimes of 10 μs, 202 μs, and 2.72 ms for the removal of confined holes, which limit the 3 dB bandwidth of these devices to 1.4 kHz. Furthermore, the composition in the mixed organic donor-acceptor photoactive layer affects both gain and bandwidth, which is attributed to the varying charge transport characteristics, and the optimal gain-bandwidth product is achieved with approximately 30% donor content. Finally, these devices show a high dynamic range of more than seven orders of magnitude, although the photocurrent shows a sublinear dependence on the incident optical power.

  11. Bioavailability of Hydrophobic Organic Compounds in Thin-Layered Capped Sediments

    PubMed Central

    Meric, Dogus; Alshawabkeh, Akram N.; Shine, James P.; Sheahan, Thomas C.

    2014-01-01

    The effect of a thin sand capping layer (7.5 cm) on the bioavailability of hydrophobic organic compounds (HOCs, i.e., PCBs and naphthalene) was studied using oligochaete worms, and the results compared to previously obtained bioavailability tests with a reactive core mat (RCM) cap. The study investigated the difference in HOC concentration in worms exposed to: a) a grab sample of sediment used as sampled for PCBs and spiked for PAHs; b) an initially clean mixture of sand and organic matter (biouptake layer) directly overlying the sediment; and c) the biouptake layer placed on top of the RCM-capped sediment. Benchscale experiments were performed to induce pore fluid flux through the sediment and into the overlying layer(s). Principal component analysis (PCA) was used to assess PCB homolog group concentrations. Results indicate that the thin sand cap alone reduced the average bioavailability of PCBs by a factor of 100 compared to direct exposure, but had no effect on the bioavailability of naphthalene. However, worms exposed to the RCM-protected biouptake layer show virtually the same HOC concentrations as those in the background worm samples, indicating effective isolation by the RCM. PMID:24374187

  12. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes.

    PubMed

    Li, Ning; Oida, Satoshi; Tulevski, George S; Han, Shu-Jen; Hannon, James B; Sadana, Devendra K; Chen, Tze-Chiang

    2013-01-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m(-2) with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W(-1) at 3,000 cd m(-2), comparable to the most efficient lighting technologies.

  13. Bioavailable Carbon and the Relative Degradation State of Organic Matter in Active Layer and Permafrost Soils

    NASA Astrophysics Data System (ADS)

    Jastrow, J. D.; Burke, V. J.; Vugteveen, T. W.; Fan, Z.; Hofmann, S. M.; Lederhouse, J. S.; Matamala, R.; Michaelson, G. J.; Mishra, U.; Ping, C. L.

    2015-12-01

    The decomposability of soil organic carbon (SOC) in permafrost regions is a key uncertainty in efforts to predict carbon release from thawing permafrost and its impacts. The cold and often wet environment is the dominant factor limiting decomposer activity, and soil organic matter is often preserved in a relatively undecomposed and uncomplexed state. Thus, the impacts of soil warming and permafrost thaw are likely to depend at least initially on the genesis and past history of organic matter degradation before its stabilization in permafrost. We compared the bioavailability and relative degradation state of SOC in active layer and permafrost soils from Arctic tundra in Alaska. To assess readily bioavailable SOC, we quantified salt (0.5 M K2SO4) extractable organic matter (SEOM), which correlates well with carbon mineralization rates in short-term soil incubations. To assess the relative degradation state of SOC, we used particle size fractionation to isolate fibric (coarse) from more degraded (fine) particulate organic matter (POM) and separated mineral-associated organic matter into silt- and clay-sized fractions. On average, bulk SOC concentrations in permafrost were lower than in comparable active layer horizons. Although SEOM represented a very small proportion of the bulk SOC, this proportion was greater in permafrost than in comparable active layer soils. A large proportion of bulk SOC was found in POM for all horizons. Even for mineral soils, about 40% of bulk SOC was in POM pools, indicating that organic matter in both active layer and permafrost mineral soils was relatively undecomposed compared to typical temperate soils. Not surprisingly, organic soils had a greater proportion of POM and mineral soils had greater silt- and clay-sized carbon pools, while cryoturbated soils were intermediate. For organic horizons, permafrost organic matter was generally more degraded than in comparable active layer horizons. However, in mineral and cryoturbated horizons

  14. Montane forest root growth and soil organic layer depth as potential factors stabilizing Cenozoic global change

    NASA Astrophysics Data System (ADS)

    Doughty, Christopher E.; Taylor, Lyla L.; Girardin, Cecile A. J.; Malhi, Yadvinder; Beerling, David J.

    2014-02-01

    Tree roots and their symbiotic fungal partners are believed to play a major role in regulating long-term global climate, but feedbacks between global temperature and biotic weathering have not yet been explored in detail. In situ field data from a 3000 m altitudinal transect in Peru show fine root growth decreases and organic layer depth increases with the cooler temperatures that prevail at increased altitude. We hypothesize that this observation suggests a negative feedback: as global temperatures rise, the soil organic layer will shrink, and more roots will grow in the mineral layer, thereby accelerating weathering and reducing atmospheric CO2. We examine this mechanism with a process-based biological weathering model and demonstrate that this negative feedback could have contributed to moderating long-term global Cenozoic climate during major Cenozoic CO2 changes linked to volcanic degassing and tectonic uplift events.

  15. Pillared-layer cluster organic frameworks constructed from nanoscale Ln10 and Cu16 clusters.

    PubMed

    Fang, Wei-Hui; Yang, Guo-Yu

    2014-06-02

    Two pillared-layer cluster organic frameworks, [Ln5(μ3-OH)4(μ-H2O)Cu8I8L11]·H2O (L = 4-pyridin-4-yl-benzoate; Ln = Dy(1), Eu(2)), have been made by employing lanthanide oxide and copper(I) halide as the source of lanthanide and transitional metal under hydrothermal condition. Compared to the pillared-layer frameworks constructed from heterometallic layers and organic pillars, these two compounds are derived from lanthanide cluster organic layers and copper(I) halide cluster motifs. Thus, there are two distinct types of inorganic metal connectors in the structure, one is hydroxo lanthanide [Ln10(μ3-OH)8](22+) (Ln10) cluster, and the other is copper(I) halide [Cu16I16] (Cu16) cluster. The rational assembly of these two inorganic connectors and organic linear linkers leads to the formation of the two complexes here. To the best of our knowledge, they appear to be the first 3D frameworks constructed from decanuclear hydroxo lanthanide clusters. From the topological point of view, these compounds represent an intriguing example of a binodal (8,14)-connected net considering the Ln10 and Cu16 connectors as the nodes, revealing that they are typical high dimensional frameworks with high connected net based on high nuclearity nodes. Furthermore, elemental analysis, IR, TGA, PXRD, and UV-vis properties are also studied.

  16. Few-layer, large-area, 2D covalent organic framework semiconductor thin films.

    PubMed

    Feldblyum, Jeremy I; McCreery, Clara H; Andrews, Sean C; Kurosawa, Tadanori; Santos, Elton J G; Duong, Vincent; Fang, Lei; Ayzner, Alexander L; Bao, Zhenan

    2015-09-21

    In this work, we synthesize large-area thin films of a conjugated, imine-based, two-dimensional covalent organic framework at the solution/air interface. Thicknesses between ∼2-200 nm are achieved. Films can be transferred to any desired substrate by lifting from underneath, enabling their use as the semiconducting active layer in field-effect transistors.

  17. In Situ Intercalation Dynamics in Inorganic–Organic Layered Perovskite Thin Films

    PubMed Central

    2014-01-01

    The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic–organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson–Mehl–Avrami–Kolmogorov model, with results fitting both ideal and nonideal cases. PMID:24905435

  18. In situ intercalation dynamics in inorganic-organic layered perovskite thin films.

    PubMed

    Ahmad, Shahab; Kanaujia, Pawan K; Niu, Wendy; Baumberg, Jeremy J; Vijaya Prakash, G

    2014-07-09

    The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.

  19. Enantiospecific spin polarization of electrons photoemitted through layers of homochiral organic molecules.

    PubMed

    Niño, Miguel Ángel; Kowalik, Iwona Agnieszka; Luque, Francisco Jesús; Arvanitis, Dimitri; Miranda, Rodolfo; de Miguel, Juan José

    2014-11-26

    Electrons photoemitted through layers of purely organic chiral molecules become strongly spin-polarized even at room temperature and for double-monolayer thicknesses. The substitution of one enantiomer for its mirror image does not revert the sign of the spin polarization, rather its direction in space. These findings might lead to the obtention of highly efficient spin filters for spintronic applications.

  20. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    SciTech Connect

    Johnson, Kristopher D; Harden, Jennifer; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew

    2013-01-01

    Permafrost is tightly coupled to the organic layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence (PF) and organic layer thickness (OLT) in more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between PF, OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow v. deep organic layers. Permafrost probability sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. As temperature warmed, sandy soils varied little in PF or OLT, but PF in loamy and sandy soils decreased substantially. The change in OLT was more heterogeneous across soil types in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened as temperature warmed. Furthermore, the rate of thickening with warming for OLTd soils was on average almost 4 times greater than the rate of thinning for OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.

  1. Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer

    NASA Astrophysics Data System (ADS)

    Kim, Inho; Seok Jeong, Doo; Seong Lee, Taek; Seong Lee, Wook; Lee, Kyeong-Seok

    2012-05-01

    We demonstrate using finite-difference-time-domain calculations that embedding Ag nano disks (NDs) in the buffer layers of thin P3HT:PCBM organic solar cells can enhance optical absorption in the active layers at specific wavelength range. We show that the aspect ratio of the NDs is a key parameter for strong plasmonic absorption enhancement. Two different plasmonic absorption bands are observed stemming from optical refractive index differences among the layers surrounding the NDs in the solar cell devices. One absorption band by the surface plasmon mode localized at the interface of indium tin oxide/ND, which is undesirable for plasmonic absorption enhancement in the active layer, become negligible as the aspect ratio of the diameter-to-height increased. The other absorption band by the dipole-like surface plasmon mode, which plays a main role in enhancing the absorption in the active layer, is spectrally tunable by adjusting the aspect ratio of the NDs. The influences of diameter, height, and coverage of the NDs on optical absorption in the active layer are discussed. Embedding the optimal size NDs in the buffer layer leads to the enhanced total absorption in the 50 nm thick active layer by 16% relative to that without the NDs, and the optical absorption keeps enhanced with increasing the active layer thickness up to 90 nm. However, further increases in the active layer thickness are detrimental to absorption enhancement, which is considered to be caused by destructive interference between scattered light by the NDs and incident light.

  2. Optical Properties of Hybrid Inorganic/Organic Thin Film Encapsulation Layers for Flexible Top-Emission Organic Light-Emitting Diodes.

    PubMed

    An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun

    2015-10-01

    Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.

  3. Optimisation of the material properties of indium tin oxide layers for use in organic photovoltaics

    SciTech Connect

    Doggart, P.; Bristow, N.; Kettle, J.

    2014-09-14

    The influence of indium tin oxide [(In{sub 2}O{sub 3}:Sn), ITO] material properties on the output performance of organic photovoltaic (OPV) devices has been modelled and investigated. In particular, the effect of altering carrier concentration (n), thickness (t), and mobility (μ{sub e}) in ITO films and their impact on the optical performance, parasitic resistances and overall efficiency in OPVs was studied. This enables optimal values of these parameters to be calculated for solar cells made with P3HT:PC{sub 61}BM and PCPDTBT:PC{sub 71}BM active layers. The optimal values of n, t and μ{sub e} are not constant between different OPV active layers and depend on the absorption spectrum of the underlying active layer material system. Consequently, design rules for these optimal values as a function of donor bandgap in bulk-heterojunction active layers have been formulated.

  4. A nanocomposite interconnecting layer for tandem small molecular organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Luo, D. Y.; Yu, L. M.; Man, J. X.; Liu, Z.; Lu, Z. H.

    2014-03-01

    A nanocomposite interconnecting layer of C60:LiF/Ag/MoOx had been applied in the tandem structure of organic photovoltaic cells to achieve high short circuit current (Jsc) and power conversion efficiency (PCE). The Jsc had been enhanced 40% after applying the nanocomposite interconnecting layer into a tandem structure compared to the conventional interconnecting layer of Bathocuproine (BCP)/Ag/MoOx. The improvement is due to the enhancement of the light absorption of the devices. A tandem device PCE of 3.04% was achieved by further improving the light absorption in the individual subcell units in the tandem structure by means of a bi-functional buffer layer of C60:LiF/BCP.

  5. A randomly nano-structured scattering layer for transparent organic light emitting diodes.

    PubMed

    Huh, Jin Woo; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Park, Seung Koo; Hwang, Joohyun; Cho, Nam Sung; Lee, Jonghee; Han, Jun-Han; Chu, Hye Yong; Lee, Jeong-Ik

    2014-09-21

    A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs.

  6. Molecular Interdiffusion between Stacked Layers by Solution and Thermal Annealing Processes in Organic Light Emitting Devices.

    PubMed

    Ohisa, Satoru; Pu, Yong-Jin; Yamada, Norifumi L; Matsuba, Go; Kido, Junji

    2015-09-23

    In organic light emitting devices (OLEDs), interfacial structures between multilayers have large impacts on the characteristics of OLEDs. Herein, we succeeded in revealing the interdiffusion in solution processed and thermal annealed OLEDs by neutron reflectometry. We investigated interfaces between a polymer under layer and small molecules upper layer. The small molecules diffused into the swollen polymer layer during the interfacial formation by the solution process, but the polymer did not diffuse into the small molecules layer. At temperatures close to the glass transition temperatures of the materials, asymmetric molecular diffusion was observed. We elucidated the effects of the interdiffusion on the characteristics of OLEDs. Partially mixing the interface improved the current efficiencies due to suppressed triplet-polaron quenching at the interface. Controlling and understanding the interfacial structures of the miultilayers will be more important to improve the OLED characteristics.

  7. Mobility enhancement of organic field-effect transistor based on guanine trap-neutralizing layer

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Zheng, Yifan; Yu, Junsheng; Taylor, André D.; Katz, Howard E.

    2016-10-01

    We introduced a nucleic acid component guanine as a trap-neutralizing layer between silicon dioxide gate dielectric and a pentacene semiconducting layer to obtain increased field-effect mobility in organic field-effect transistors (OFETs). A tripling of the field-effect mobility, from 0.13 to 0.42 cm2/V s, was achieved by introducing a 2 nm guanine layer. By characterizing the surface morphology of pentacene films grown on guanine, we found that the effect of guanine layer on the topography of pentacene film was not responsible for the mobility enhancement of the OFETs. The increased field-effect mobility was mainly attributed to the hydrogen bonding capacity of otherwise unassociated guanine molecules, which enabled them to neutralize trapping sites on the silicon dioxide surface.

  8. Efficiency improvement of organic solar cells by tuning hole transport layer with germanium oxide.

    PubMed

    Choi, Moon Kee; Kim, Ju-Hyung; Yoon, Hyunsik; Tahk, Dongha; Seo, Soonmin; Shin, Kyusoon; Lee, Hong H

    2012-01-01

    Improving optical property is critical for optimizing the power conversion efficiency of organic solar cells. In the present research, we show that modification of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) layer with GeO2 leads to 15% improvement of power conversion efficiency in a polymer solar cells through enhancement of short circuit currents. Modified PEDOT:PSS layer with optimized concentration of GeO2 assists active layer absorbing much light by playing a role of optical spacer. Using AFM and grazing incidence X-ray diffraction (GIXD) data, we also present the evidence that an addition of GeO2 does not affect crystallinity of active layer.

  9. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    NASA Astrophysics Data System (ADS)

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-01

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (-0.030, +0.001) shifting only from 1000 to 10 000 cd/m2. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq)3 as phosphorescent red dopant in electron transport layer.

  10. Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture.

    PubMed

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander

    2015-04-22

    Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.

  11. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    SciTech Connect

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin; Eun Lee, Song; Kwan Kim, Young; Hwa Yu, Hyeong; Turak, Ayse; Young Kim, Woo

    2015-06-28

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){sub 3} as phosphorescent red dopant in electron transport layer.

  12. Highly efficient bipolar connecting layers for tandem organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Niu, L.; Guan, Y.; Kong, C.; Cui, Y.; Ren, Y.; Tao, S.; Zhou, J.; Yu, J.

    2011-12-01

    A highly efficient tandem organic light-emitting device (OLED) has been fabricated by using an effective bipolar connecting layer structure. The connecting layers were made up of a layer of magnesium (Mg): 2,7-dipyrenyl-9,9-diphenyl fluorene (N-DPF) and a layer of tungsten trioxide (WO3). Such a connecting layer structure permits efficient opposite holes and electrons flowing into two adjacent emitting units. The current efficiency of the two-unit tandem device can be dramatically enhanced by more than four times compared with that of the conventional single-unit device. At 60 mA/cm2, the current efficiency of the tandem OLED using the connecting layers of Mg: N-DPF/WO3 was about 8.15 cd/A. The results can be marked as a breakthrough approach to improve the current efficiency and brightness of OLEDs. Furthermore, a model of the carrier tunneling into light-emitting units is proposed based on carrier balance and field-assisted tunneling. It indicates that the connecting layer structure functions as the origin of high efficiency for the tandem OLEDs.

  13. [Effects of hole-injection layers on the performance of blue organic light-emitting diodes].

    PubMed

    Gao, Li-Yan; Zhao, Su-Ling; Xu, Zheng; Zhang, Fu-Jun; Sun, Qin-Jun; Zhang, Tian-Hui; Kong, Chao

    2011-04-01

    The present work investigates the effects of different buffer layers on the performance of blue organic light-emitting diodes (OLEDs), and compares them with the device with no buffer layer. Two kinds of blue OLEDs with 4,4'-bis(2,2'-diphenyl vinyl)-1,1'-biphenyl (DPVBi) as the emitting layer, N, N'-bis-(1-naphthyl)-N, N'-1-diphenyl-1,1 '-biphenyl-4, 4'-diamine (NPB) as the hole transporting layer, and copper phthalocyanine (CuPc) and poly(3,4-ethylenedioxythiophene) : poly (styrenesulphonate) PEDOT : PSS as the hole injection layer respectively were fabricated with the structures of ITO/CuPc/NPB/DPVBi/BCP/Alq3 /Al and ITO/PEDOT : PSS/NPB/DPVBi/BCP/Alq3/Al. Moreover, the effects of different preparation technology of CuPc on the performance of OLEDs were also investigated. It was found that the performance of the devices with a hole injection layer is better than that of the device without any hole-injection layer. Although the luminance and efficiency of the water-soluble CuPc based device are worse than that of the device with thermally evaporated CuPc, but better than that of the device with water-soluble PEDOT : PSS. So the water-soluble CuPc is a good hole injection material because it is easier to fabricate the film than traditional CuPc.

  14. A randomly nano-structured scattering layer for transparent organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Huh, Jin Woo; Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Park, Seung Koo; Hwang, Joohyun; Cho, Nam Sung; Lee, Jonghee; Han, Jun-Han; Chu, Hye Yong; Lee, Jeong-Ik

    2014-08-01

    A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs.A random scattering layer (RSL) consisting of a random nano-structure (RNS) and a high refractive index planarization layer (HRI PL) is suggested and demonstrated as an efficient internal light-extracting layer for transparent organic light emitting diodes (TOLEDs). By introducing the RSL, a remarkable enhancement of 40% and 46% in external quantum efficiency (EQE) and luminous efficacy (LE) was achieved without causing deterioration in the transmittance. Additionally, with the use of the RSL, the viewing angle dependency of EL spectra was reduced to a marginal degree. The results were interpreted as the stronger influence of the scattering effect over the microcavity. The RSL can be applied widely in TOLEDs as an effective light-extracting layer for extracting the waveguide mode of confined light at the indium tin oxide (ITO)/OLED stack without introducing spectral changes in TOLEDs. Electronic supplementary information (ESI) available: Simulation results of total (bottom and top) radiance of TOLEDs with the RSL depending on HTL and ETL thicknesses. See DOI: 10.1039/c4nr01520g

  15. Layering

    NASA Image and Video Library

    2011-04-01

    At the bottom of this image from NASA Mars Odyssey is the cliff-face that is the sidewall of Ophir Chasma. Layering is easily visible in the upper cliff wall, with the thickness of the surface clearly visible.

  16. Nature and dynamic behaviour of organic surface layer deposits during dry weather.

    PubMed

    Oms, C; Gromaire, M C; Chebbo, G

    2005-01-01

    In-situ observations were performed at two different spatial and temporal scales, in order to get a better identification of the nature of the organic layer situated at the water-sediment interface, and which had previously been identified as major of combined sewer overflows organic loads. Its composition and its build up mechanisms during dry weather periods are presented. Results showed that the concept of dry weather accumulation and more generally the way organic sewer sediments are modelled needs to be reconsidered.

  17. Spatial organization of excitatory synaptic inputs to layer 4 neurons in mouse primary auditory cortex

    PubMed Central

    Kratz, Megan B.; Manis, Paul B.

    2015-01-01

    Layer 4 (L4) of primary auditory cortex (A1) receives a tonotopically organized projection from the medial geniculate nucleus of the thalamus. However, individual neurons in A1 respond to a wider range of sound frequencies than would be predicted by their thalamic input, which suggests the existence of cross-frequency intracortical networks. We used laser scanning photostimulation and uncaging of glutamate in brain slices of mouse A1 to characterize the spatial organization of intracortical inputs to L4 neurons. Slices were prepared to include the entire tonotopic extent of A1. We find that L4 neurons receive local vertically organized (columnar) excitation from layers 2 through 6 (L6) and horizontally organized excitation primarily from L4 and L6 neurons in regions centered ~300–500 μm caudal and/or rostral to the cell. Excitatory horizontal synaptic connections from layers 2 and 3 were sparse. The origins of horizontal projections from L4 and L6 correspond to regions in the tonotopic map that are approximately an octave away from the target cell location. Such spatially organized lateral connections may contribute to the detection and processing of auditory objects with specific spectral structures. PMID:25972787

  18. Stability of organic carbon in deep soil layers controlled by fresh carbon supply.

    PubMed

    Fontaine, Sébastien; Barot, Sébastien; Barré, Pierre; Bdioui, Nadia; Mary, Bruno; Rumpel, Cornelia

    2007-11-08

    The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.

  19. Comparison of dye doping and ultrathin emissive layer in white organic light-emitting devices with dual emissive layers

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Qi, Yige; Yu, Junsheng

    2014-09-01

    White organic light-emitting devices (WOLEDs) with combined doping emissive layer (EML) and ultrathin EML have been fabricated to investigate the effect of each EML on the electroluminescent (EL) performance of the WOLEDs. Through tailoring doping concentration of bis[(4,6-difluorophenyl)-pyridinato-N,C2'](picolinate) iridium(III) (FIrpic) and thickness of ultrathin bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2'] iridium (acetylacetonate) [(tbt)2Ir(acac)] EML, it is found that the change in the doping ratio of FIrpic significantly influenced the EL efficiencies and spectra, while the alteration of ultrathin EML thickness had much milder effect on the EL performance. The results indicated that ultrathin EML is in favor of reproducibility in mass production compared with doping method.

  20. A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers

    NASA Astrophysics Data System (ADS)

    Boehler, Christian; Güder, Firat; Kücükbayrak, Umut M.; Zacharias, Margit; Asplund, Maria

    2016-01-01

    On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ±0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system.

  1. A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers

    PubMed Central

    Boehler, Christian; Güder, Firat; Kücükbayrak, Umut M.; Zacharias, Margit; Asplund, Maria

    2016-01-01

    On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ±0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system. PMID:26791399

  2. A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers.

    PubMed

    Boehler, Christian; Güder, Firat; Kücükbayrak, Umut M; Zacharias, Margit; Asplund, Maria

    2016-01-21

    On-demand release of bioactive substances with high spatial and temporal control offers ground-breaking possibilities in the field of life sciences. However, available strategies for developing such release systems lack the possibility of combining efficient control over release with adequate storage capability in a reasonably compact system. In this study we present a new approach to target this deficiency by the introduction of a hybrid material. This organic-inorganic material was fabricated by atomic layer deposition of ZnO into thin films of polyethylene glycol, forming the carrier matrix for the substance to be released. Sub-surface growth mechanisms during this process converted the liquid polymer into a solid, yet water-soluble, phase. This layer permits extended storage for various substances within a single film of only a few micrometers in thickness, and hence demands minimal space and complexity. Improved control over release of the model substance Fluorescein was achieved by coating the hybrid material with a conducting polymer film. Single dosage and repetitive dispensing from this system was demonstrated. Release was controlled by applying a bias potential of ± 0.5 V to the polymer film enabling or respectively suppressing the expulsion of the model drug. In vitro tests showed excellent biocompatibility of the presented system.

  3. Layer-by-Layer-Assembled Laccase Enzyme on Stimuli-Responsive Membranes for Chloro-Organics Degradation.

    PubMed

    Sarma, Rupam; Islam, Md Saiful; Miller, Anne-Frances; Bhattacharyya, Dibakar

    2017-05-03

    Functionalized membranes provide versatile platforms for the incorporation of biocatalysts and nanostructured materials for efficient and benign environmental remediation. The existing techniques for remediating chloro-organics in water consist of both physical and chemical means mostly using metal oxide-based catalysts, despite associated environmental concerns. To offer bioinspired remediation as an alternative, we herein demonstrate a layer-by-layer approach to immobilize laccase enzyme onto pH-responsive functionalized membranes for the degradation of chloro-organics in water. The efficacy of these bioinspired membranes toward dechlorination of 2,4,6-trichlorophenol (TCP) is demonstrated under a pressure-driven continuous flow mode (convective flow) for the first time to the best of our knowledge. Over 80% of the initial TCP was degraded at an optimum flow rate under an applied air pressure of about 0.7 bar or lower. This corresponds to degradation of a substantial amount of the initial substrate in only 36 s residence time, whereas it takes hours for degradation in a batch reaction. This, in fact, demonstrates an energy efficient flow-through system with potentially large-scale applications. Comparison of the stability of the enzyme in the solution phase versus immobilized on the membrane phase showed a loss of some 65% of enzyme activity in the solution phase after 22 d, whereas the membrane-bound enzyme lost only a negligible percentage of the activity in a comparable time span. Finally, the membrane was exposed to rigorous cycles of TCP degradation trials to study its reusability. The primary results reveal a loss of only 14% of the initial activity after 4 cycles of use in a period of 25 d, demonstrating its potential to be reused. Regeneration of the functionalized membrane was also validated by dislodging the immobilized enzyme, followed by immobilization of fresh enzyme onto the membrane.

  4. Antimicrobial-Resistant Campylobacter in Organically and Conventionally Raised Layer Chickens.

    PubMed

    Kassem, Issmat I; Kehinde, Olugbenga; Kumar, Anand; Rajashekara, Gireesh

    2017-01-01

    Poultry is a major source of Campylobacter, which can cause foodborne bacterial gastroenteritis in humans. Additionally, poultry-associated Campylobacter can develop resistance to important antimicrobials, which increases the risk to public health. While broiler chickens have been the focus of many studies, the emergence of antimicrobial-resistant Campylobacter on layer farms has not received equal attention. However, the growing popularity of cage-free and organic layer farming necessitates a closer assessment of (1) the impact of these farming practices on the emergence of antimicrobial-resistant Campylobacter and (2) layers as a potential source for the transmission of these pathogens. Here, we showed that the prevalence of Campylobacter on organic and conventional layer farms was statistically similar (p > 0.05). However, the average number of Campylobacter jejuni-positive organically grown hens was lower (p < 0.05) in comparison to conventionally grown hens. Campylobacter isolated from both production systems carried antimicrobial resistance genes. The tet(O) and cmeB were the most frequently detected genes, while the occurrence of aph-3-1 and blaOXA-61 was significantly lower (p < 0.05). Farming practices appeared to have an effect on the antimicrobial resistance phenotype, because the isolates from organically grown hens on two farms (OF-2 and OF-3) exhibited significantly lower resistance (p < 0.05) to ciprofloxacin, erythromycin, and tylosin. However, on one of the sampled organic farms (OF-1), a relatively high number of antimicrobial-resistant Campylobacter were isolated. We conclude that organic farming can potentially impact the emergence of antimicrobial-resistant Campylobacter. Nevertheless, this impact should be regularly monitored to avoid potential relapses.

  5. The formation of organic (propolis films)/inorganic (layered crystals) interfaces for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Drapak, S. I.; Bakhtinov, A. P.; Gavrylyuk, S. V.; Kovalyuk, Z. D.; Lytvyn, O. S.

    2008-10-01

    Propolis (honeybee glue) organic films were prepared from an alcoholic solution on the surfaces of inorganic layered semiconductors (indium, gallium and bismuth selenides). Atomic force microscopy (AFM) and X-ray diffraction (XRD) are used to characterize structural properties of an organic/inorganic interfaces. It is shown that nanodimensional linear defects and nanodimensional cavities of various shapes are formed on the van der Waals (VDW) surfaces of layered crystals as a result of chemical interaction between the components of propolis (flavonoids, aminoacids and phenolic acids) and the VDW surfaces as well as deformation interaction between the VDW surfaces and propolis films during their polymerization. The nanocavities are formed as a result of the rupture of strong covalent bonds in the upper layers of layered crystals and have the shape of hexagons or triangles in the (0001) plane. The shape, lateral size and distribution of nanodimensional defects on the VDW surfaces depends on the type of crystals, the magnitude and distribution of surface stresses. We have obtained self-organized nanofold structures of propolis/InSe interface. It is established that such heterostructures have photosensitivity in the infrared range hν<1.2 eV (the values of energy gap are 1.2 eV for InSe and 3.07 eV for propolis films at room temperature).

  6. Direct Free Carrier Photogeneration in Single Layer and Stacked Organic Photovoltaic Devices.

    PubMed

    Chandran, Hrisheekesh Thachoth; Ng, Tsz-Wai; Foo, Yishu; Li, Ho-Wa; Qing, Jian; Liu, Xiao-Ke; Chan, Chiu-Yee; Wong, Fu-Lung; Zapien, Juan Antonio; Tsang, Sai-Wing; Lo, Ming-Fai; Lee, Chun-Sing

    2017-04-03

    High performance organic photovoltaic devices typically rely on type-II P/N junctions for assisting exciton dissociation. Heremans and co-workers recently reported a high efficiency device with a third organic layer which is spatially separated from the active P/N junction; but still contributes to the carrier generation by passing its energy to the P/N junction via a long-range exciton energy transfer mechanism. In this study the authors show that there is an additional mechanism contributing to the high efficiency. Some bipolar materials (e.g., subnaphthalocyanine chloride (SubNc) and subphthalocyanine chloride (SubPc)) are observed to generate free carriers much more effectively than typical organic semiconductors upon photoexcitation. Single-layer devices with SubNc or SubPc sandwiched between two electrodes can give power conversion efficiencies 30 times higher than those of reported single-layer devices. In addition, internal quantum efficiencies (IQEs) of bilayer devices with opposite stacking sequences (i.e., SubNc/SubPc vs SubPc/SubNc) are found to be the sum of IQEs of single layer devices. These results confirm that SubNc and SubPc can directly generate free carriers upon photoexcitation without assistance from a P/N junction. These allow them to be stacked onto each other with reversible sequence or simply stacking onto another P/N junction and contribute to the photocarrier generation.

  7. Organic light emitting field effect transistors based on an ambipolar p-i-n layered structure

    NASA Astrophysics Data System (ADS)

    Maiorano, V.; Bramanti, A.; Carallo, S.; Cingolani, R.; Gigli, G.

    2010-03-01

    A bottom contact/top gate ambipolar "p-i-n" layered light emitting field effect transistor with the active medium inserted between two doped transport layers, is reported. The doping profile results crucial to the capability of emitting light, as well as to the electrical characteristics of the device. In this sense, high output current at relative low applied gate/drain voltage and light emission along the whole large area transistor channel are observed, putting the basis to full integration of organic light emitting field effect transistors in planar complex devices.

  8. Tightly bound indirect exciton in single-layer hybrid organic-inorganic perovskite semiconductor

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Tao; Liew, Timothy C. H.

    2017-10-01

    We theoretically study the direct and indirect excitons (IXs) in a single-layer hybrid organic-inorganic perovskite (HOIP) semiconductor. Due to the 2D nature, the single-layer HOIP supports the large binding energy of IXs and direct excitons over a wide range of applied electric fields, which exceed the thermal energy of room temperature. Moreover, the ground-state IX has a lower energy than that of direct exciton, which will extend the coherence and relaxation time of IXs. This is beneficial to optoelectronic applications and excitonic information processing devices of IXs.

  9. Versatile dual organic interface layer for performance enhancement of polymer solar cells

    NASA Astrophysics Data System (ADS)

    Li, Zhiqi; Liu, Chunyu; Zhang, Zhihui; Li, Jinfeng; Zhang, Liu; Zhang, Xinyuan; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-11-01

    The electron transport layer plays a crucial role on determining electron injection and extraction, resulting from the effect of balancing charge transport and reducing the interfacial energy barrier. Decreasing the inherent incompatibility and enhancing electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collection. Herein, we demonstrate that an efficient dual polyelectrolytes interfacial layer composed of polyethylenimine (PEI) and conducting poly(9,9-dihexylfluorenyl-2,7-diyl) (PDHFD) is incorporated to investigate the interface energetics and electron transport in polymer solar cells (PSCs). The composited PEI/PDHFD interface layer (PPIL) overcomed the low conductivity of bare PEI polymer, which decreased series resistance and facilitated electron extraction at the ITO/PPIL-active layer interface. The introduction of the interface energy state of the PPIL reduced the work function of ITO so that it can mate the top of the valence band of the photoactive materials and promoted the formation of ohmic contact at ITO electrode interface. As a result, the composited PPIL tuned energy alignment and accelerated the electron transfer, leading to significantly increased photocurrent and power conversion efficiency (PCE) of the devices based on various representative polymer:fullerene systems.

  10. Tandem organic light-emitting diode with a molybdenum tri-oxide thin film interconnector layer

    NASA Astrophysics Data System (ADS)

    Lu, Fei-Ping; Wang, Qian; Zhou, Xiang

    2013-03-01

    A 10-nm-thick molybdenum tri-oxide (MoO3) thin film was used as the interconnector layer in tandem organic light-emitting devices (OLEDs). The tandem OLEDs with two identical emissive units consisting of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (NPB)/tris(8-hydroxyquinoline) aluminum (Alq3) exhibited current efficiency-current density characteristics superior to the conventional single-unit devices. At 20 mA/cm2, the current efficiency of the tandem OLEDs using the interconnector layers of MoO3 thin film was about 4.0 cd/A, which is about twice that of the corresponding conventional single-unit device (1.8 cd/A). The tandem OLED showed a higher power efficiency than the conventional single-unit device for luminance over 1200 cd/m2. The experimental results demonstrated that a MoO3 thin film with a proper thickness can be used as an effective interconnector layer in tandem OLEDs. Such an interconnector layer can be easily fabricated by simple thermal evaporation, greatly simplifying the device processing and fabrication processes required by previously reported interconnector layers. A possible explanation was proposed for the carrier generation of the MoO3 interconnector layer.

  11. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    USGS Publications Warehouse

    Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.

    2013-01-01

    Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (<28 cm) versus deep organic (≥28 cm) layers. The probability of observing permafrost sharply increased by 0.32 for every 10-cm OLT increase in shallow OLT soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.

  12. Improved performance of polymer solar cells by using inorganic, organic, and doped cathode buffer layers

    NASA Astrophysics Data System (ADS)

    Taohong, Wang; Changbo, Chen; Kunping, Guo; Guo, Chen; Tao, Xu; Bin, Wei

    2016-03-01

    The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer (CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode (OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs2CO3, bathophenanthroline (Bphen), and 8-hydroxyquinolatolithium (Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies (PCEs) of 3.0%-3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs2CO3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL. Project supported by the National Natural Science Foundation of China (Grant No. 61204014), the “Chenguang” Project (13CG42) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation, China, and the Shanghai University Young Teacher Training Program of Shanghai Municipality, China.

  13. Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound

    NASA Astrophysics Data System (ADS)

    Hattori, Toshiaki; Taira, Takahiro; Era, Masanao; Tsutsui, Tetsuo; Saito, Shugu

    1996-05-01

    Two Pbl-based layer perovskite compounds, which possess cyclohexenylethylamine or phenylbutylamine as an organic ammonium layer, were newly found to exhibit efficient exciton emission due to their self-organized quantum well structure where a lead halide semiconducting layer and an organic ammonium dielectric layer are alternately piled up. We prepared heterostructure electroluminescent devices using the combination of the emissive layered perovskite and an electron-transporting oxadiazole. When the heterostructure devices were driven at 110 K, greenish emission, which corresponded well to the exciton emission, was observed. In the device using the perovskite with an organic layer of cyclohexenythylamine, a high luminance exceeding 4000 cd m -2 and high external EL quantum efficiency of 2.8% were attained at a current density of 50 mA cm -2 at an applied voltage of 24 V.

  14. High performance organic photovoltaics with zinc oxide and graphene oxide buffer layers.

    PubMed

    Yusoff, Abd Rashid bin Mohd; Kim, Hyeong Pil; Jang, Jin

    2014-01-01

    We report air stable inverted organic photovoltaics (OPVs) incorporating graphene oxide (GO) and solution processed zinc oxide (ZnO) as hole transport and electron transport layers, respectively. Both the hole transport layer and the electron transport layer (HTL and ETL) are of advantage in high transparency and environmental stability. The use of GO and ZnO in poly(2,7-carbazole) derivative (PCDTBT):fullerene derivative (PC₇₀BM)-based inverted OPVs leads to an improved device stability and enhanced high open circuit voltage (V(oc)) of 0.81 V, a short-circuit current density (J(sc)) of 14.10 mA cm(-2), and a fill factor (FF) of 54.44 along with a power conversion efficiency of 6.20%.

  15. High performance organic photovoltaics with zinc oxide and graphene oxide buffer layers

    NASA Astrophysics Data System (ADS)

    Mohd Yusoff, Abd Rashid Bin; Kim, Hyeong Pil; Jang, Jin

    2014-01-01

    We report air stable inverted organic photovoltaics (OPVs) incorporating graphene oxide (GO) and solution processed zinc oxide (ZnO) as hole transport and electron transport layers, respectively. Both the hole transport layer and the electron transport layer (HTL and ETL) are of advantage in high transparency and environmental stability. The use of GO and ZnO in poly(2,7-carbazole) derivative (PCDTBT):fullerene derivative (PC70BM)-based inverted OPVs leads to an improved device stability and enhanced high open circuit voltage (Voc) of 0.81 V, a short-circuit current density (Jsc) of 14.10 mA cm-2, and a fill factor (FF) of 54.44 along with a power conversion efficiency of 6.20%.

  16. Monte Carlo model of light transport in multi-layered tubular organs

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Zhang, Ning

    2017-02-01

    We present a Monte Carlo static light migration model (Endo-MCML) to simulate endoscopic optical spectroscopy for tubular organs such as esophagus and colon. The model employs multi-layered hollow cylinder which emitting and receiving light both from the inner boundary to meet the conditions of endoscopy. Inhomogeneous sphere can be added in tissue layers to model cancer or other abnormal changes. The 3D light distribution and exit angle would be recorded as results. The accuracy of the model has been verified by Multi-layered Monte Carlo(MCML) method and NIRFAST. This model can be used for the forward modeling of light transport during endoscopically diffuse optical spectroscopy, light scattering spectroscopy, reflectance spectroscopy and other static optical detection or imaging technologies.

  17. First steps towards the realization of a double layer perceptron based on organic memristive devices

    NASA Astrophysics Data System (ADS)

    Emelyanov, A. V.; Lapkin, D. A.; Demin, V. A.; Erokhin, V. V.; Battistoni, S.; Baldi, G.; Dimonte, A.; Korovin, A. N.; Iannotta, S.; Kashkarov, P. K.; Kovalchuk, M. V.

    2016-11-01

    Memristors are widely considered as promising elements for the efficient implementation of synaptic weights in artificial neural networks (ANNs) since they are resistors that keep memory of their previous conductive state. Whereas demonstrations of simple neural networks (e.g., a single-layer perceptron) based on memristors already exist, the implementation of more complicated networks is more challenging and has yet to be reported. In this study, we demonstrate linearly nonseparable combinational logic classification (XOR logic task) using a network implemented with CMOS-based neurons and organic memrisitive devices that constitutes the first step toward the realization of a double layer perceptron. We also show numerically the ability of such network to solve a principally analogue task which cannot be realized by digital devices. The obtained results prove the possibility to create a multilayer ANN based on memristive devices that paves the way for designing a more complex network such as the double layer perceptron.

  18. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    SciTech Connect

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  19. Self-assembly of interfacial and photoactive layers via one-step solution processing for efficient inverted organic solar cells.

    PubMed

    Kang, Hongkyu; Lee, Jinho; Jung, Suhyun; Yu, Kilho; Kwon, Sooncheol; Hong, Soonil; Kee, Seyoung; Lee, Seongyu; Kim, Dongwon; Lee, Kwanghee

    2013-12-07

    Vertically self-assembled bilayers with an interfacial bottom layer and a photoactive top layer are demonstrated via a single coating step of a blend composed of an amine-containing nonconjugated polyelectrolyte (NPE) and an organic electron donor-acceptor bulk heterojunction composite. The self-assembled NPE layer reduces the work function of an indium tin oxide (ITO) cathode, which leads to efficient inverted organic solar cells without any additional interface engineering of the ITO.

  20. The active layer morphology of organic solar cells probed with grazing incidence scattering techniques.

    PubMed

    Müller-Buschbaum, Peter

    2014-12-10

    Grazing incidence X-ray scattering (GIXS) provides unique insights into the morphology of active materials and thin film layers used in organic photovoltaic devices. With grazing incidence wide angle X-ray scattering (GIWAXS) the molecular arrangement of the material is probed. GIWAXS is sensitive to the crystalline parts and allows for the determination of the crystal structure and the orientation of the crystalline regions with respect to the electrodes. With grazing incidence small angle X-ray scattering (GISAXS) the nano-scale structure inside the films is probed. As GISAXS is sensitive to length scales from nanometers to several hundred nanometers, all relevant length scales of organic solar cells are detectable. After an introduction to GISAXS and GIWAXS, selected examples for application of both techniques to active layer materials are reviewed. The particular focus is on conjugated polymers, such as poly(3-hexylthiophene) (P3HT).

  1. Oriented 2D covalent organic framework thin films on single-layer graphene.

    PubMed

    Colson, John W; Woll, Arthur R; Mukherjee, Arnab; Levendorf, Mark P; Spitler, Eric L; Shields, Virgil B; Spencer, Michael G; Park, Jiwoong; Dichtel, William R

    2011-04-08

    Covalent organic frameworks (COFs), in which molecular building blocks form robust microporous networks, are usually synthesized as insoluble and unprocessable powders. We have grown two-dimensional (2D) COF films on single-layer graphene (SLG) under operationally simple solvothermal conditions. The layered films stack normal to the SLG surface and show improved crystallinity compared with COF powders. We used SLG surfaces supported on copper, silicon carbide, and transparent fused silica (SiO(2)) substrates, enabling optical spectroscopy of COFs in transmission mode. Three chemically distinct COF films grown on SLG exhibit similar vertical alignment and long-range order, and two of these are of interest for organic electronic devices for which thin-film formation is a prerequisite for characterizing their optoelectronic properties.

  2. More stable hybrid organic solar cells deposited on amorphous Si electron transfer layer

    NASA Astrophysics Data System (ADS)

    Samiee, Mehran; Modtland, Brian; Aidarkhanov, Damir; Dalal, Vikram L.

    2014-05-01

    We report on defect densities, performance, and stability of organic/inorganic hybrid solar cells produced using n-doped inorganic amorphous silicon-carbide layers as the electron transport layer (ETL). The organic material was poly-3-hexyl-thiophene (P3HT) and heterojunction was formed using phenyl-C71-Butyric-Acid-Methyl Ester (PCBM). For comparison, inverted solar cells fabricated using Cs2CO3 as ETL were fabricated. Defect densities and subgap quantum efficiency curves were found to be nearly identical for both types of cells. The cells were subjected to 2xsun illumination and it was found that the cells produced using doped a-Si as ETL were much more stable than the cells produced using Cs2CO3.

  3. More stable hybrid organic solar cells deposited on amorphous Si electron transfer layer

    SciTech Connect

    Samiee, Mehran; Modtland, Brian; Dalal, Vikram L.; Aidarkhanov, Damir

    2014-05-26

    We report on defect densities, performance, and stability of organic/inorganic hybrid solar cells produced using n-doped inorganic amorphous silicon-carbide layers as the electron transport layer (ETL). The organic material was poly-3-hexyl-thiophene (P3HT) and heterojunction was formed using phenyl-C{sub 71}-Butyric-Acid-Methyl Ester (PCBM). For comparison, inverted solar cells fabricated using Cs{sub 2}CO{sub 3} as ETL were fabricated. Defect densities and subgap quantum efficiency curves were found to be nearly identical for both types of cells. The cells were subjected to 2xsun illumination and it was found that the cells produced using doped a-Si as ETL were much more stable than the cells produced using Cs{sub 2}CO{sub 3}.

  4. Nonvolatile organic bistable devices fabricated utilizing Cu2O nanocrystals embedded in a polyimide layer

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hun; Kim, Jae-Ho; Kim, Tae Whan; Song, Mun Seop; Kim, Young-Ho; Jin, Sungho

    2006-09-01

    The bistable effects of cuprous oxide (Cu2O) nanoparticles embedded in a polyimide (PI) matrix were investigated. Transmission electron microscopy images and selected area electron diffraction patterns showed that Cu2O nanocrystals were formed inside the PI layer. Current-voltage (I-V) measurements on Al/PI/nanocrystalline Cu2O/PI/Al structures at 300K showed a nonvolatile electrical bistability behavior. A bistable behavior for the fabricated organic bistable device (OBD) structures is described on the basis of the I-V results. These results indicate that OBDs fabricated utilizing self-assembled inorganic Cu2O nanocrystals embedded in an organic PI layer hold promise for potential applications in nonvolatile flash memory devices.

  5. A physical impact of organic fouling layers on bacterial adhesion during nanofiltration.

    PubMed

    Heffernan, R; Habimana, O; Semião, A J C; Cao, H; Safari, A; Casey, E

    2014-12-15

    Organic conditioning films have been shown to alter properties of surfaces, such as hydrophobicity and surface free energy. Furthermore, initial bacterial adhesion has been shown to depend on the conditioning film surface properties as opposed to the properties of the virgin surface. For the particular case of nanofiltration membranes under permeate flux conditions, however, the conditioning film thickens to form a thin fouling layer. This study hence sought to determine if a thin fouling layer deposited on a nanofiltration membrane under permeate flux conditions governed bacterial adhesion in the same manner as a conditioning film on a surface. Thin fouling layers (less than 50 μm thick) of humic acid or alginic acid were formed on Dow Filmtec NF90 membranes and analysed using Atomic Force Microscopy (AFM), confocal microscopy and surface energy techniques. Fluorescent microscopy was then used to quantify adhesion of Pseudomonas fluorescens bacterial cells onto virgin or fouled membranes under filtration conditions. It was found that instead of adhering on or into the organic fouling layer, the bacterial cells penetrated the thin fouling layer and adhered directly to the membrane surface underneath. Contrary to what surface energy measurements of the fouling layer would indicate, bacteria adhered to a greater extent onto clean membranes (24 ± 3% surface coverage) than onto those fouled with humic acid (9.8 ± 4%) or alginic acid (7.5 ± 4%). These results were confirmed by AFM measurements which indicated that a considerable amount of energy (10(-7) J/μm) was dissipated when attempting to penetrate the fouling layers compared to adhering onto clean NF90 membranes (10(-15) J/μm). The added resistance of this fouling layer was thusly seen to reduce the number of bacterial cells which could reach the membrane surface under permeate conditions. This research has highlighted an important difference between fouling layers for the particular case of nanofiltration

  6. Formation of organic nanoscale laminates and blends by molecular layer deposition.

    PubMed

    Loscutoff, Paul W; Zhou, Han; Clendenning, Scott B; Bent, Stacey F

    2010-01-26

    Nanoscale organic films are important for many applications. We report on a system of molecular layer deposition that allows for the deposition of conformal organic films with thickness and composition control at the subnanometer length scale. Nanoscale polyurea films are grown on silica substrates in a layer-by-layer fashion by dosing 1,4-phenylene diisocyanate (PDIC) and ethylenediamine (ED) in the gas phase. Ellipsometry measurements indicate that the film growth occurs at a constant growth rate, with film thicknesses consistent with molecular distances calculated using density functional theory. Characterization of the films by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy reveals formation of stable polyurea films with nearly stoichiometric composition, and transmission electron microscopy indicates that the films uniformly coat the substrate surface. Subnanometer control over the film composition was demonstrated using 2,2'-thiobis(ethylamine) (TBEA) as an alternate diamine to vary the composition of the films. By substituting TBEA for ED, blended films, with homogeneous composition through the film, and nanolaminates, with discrete layers of differing film chemistry, were created.

  7. Solution-processed carrier selective layers for high efficiency organic/nanostructured-silicon hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Kou, Ying-Shu; Yang, Song-Ting; Thiyagu, Subramani; Liu, Chien-Ting; Wu, Jia-Wei; Lin, Ching-Fuh

    2016-02-01

    The reduction of interface minority carrier recombination is regarded as a key performance indicator in improving the power conversion efficiency (PCE) of organic-inorganic hybrid solar cells. In this study, we chose two kinds of carrier-selective layers to be applied in a hybrid solar cell device. A hole selective transporting layer of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) was added to the interface between Si nanohole structures and PEDOT:PSS, and the electron selective layer cesium carbonate (Cs2CO3) was added to the interface between the backside Si wafer and the rear Ti/Ag electrode. The main process used a clean and low-cost solution process, and the annealed temperature was under 140 °C. In addition, after we inserted these two carrier selective layers, the minority carrier lifetime was prolonged from 29.98 μs to 140.81 μs, indicating its significance in reducing the recombination rate. Eventually, we demonstrated that the PCE of Si/organic heterojunction solar cells can be improved to 13.23%.

  8. Artificially MoO3 graded ITO anodes for acidic buffer layer free organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lee, Hye-Min; Kim, Seok-Soon; Kim, Han-Ki

    2016-02-01

    We report characteristics of MoO3 graded ITO anodes prepared by a RF/DC graded sputtering for acidic poly(3,4-ethylene dioxylene thiophene):poly(styrene sulfonic acid) (PEDOT:PSS)-free organic solar cells (OSCs). Graded sputtering of the MoO3 buffer layer on top of the ITO layer produced MoO3 graded ITO anodes with a sheet resistance of 12.67 Ω/square, a resistivity of 2.54 × 10-4 Ω cm, and an optical transmittance of 86.78%, all of which were comparable to a conventional ITO anode. In addition, the MoO3 graded ITO electrode showed a greater work function of 4.92 eV than that (4.6 eV) of an ITO anode, which is beneficial for hole extraction from an organic active layer. Due to the high work function of MoO3 graded ITO electrodes, the acidic PEDOT:PSS-free OSCs fabricated on the MoO3 graded ITO electrode exhibited a power conversion efficiency 3.60% greater than that of a PEDOT:PSS-free OSC on the conventional ITO anode. The successful operation of PEDOT:PSS-free OSCs indicates simpler fabrication steps for cost-effective OSCs and elimination of interfacial reactions caused by the acidic PEDOT:PSS layer for reliable OSCs.

  9. Calcium chloride electron injection/extraction layers in organic electronic devices

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Gao, Zhi; Yang, Hongsheng; Xiao, Lixin; Chen, Zhijian; Gong, Qihuang

    2014-01-01

    Nontoxic calcium chloride (CaCl2) was introduced into organic electronic devices as cathode buffer layer (CBL). The turn-on voltage and maximum luminance of organic light-emitting diode (OLED) with 1.5 nm CaCl2 was 3.5 V and 21 960 cd/m2, respectively. OLED with 1.5 nm CaCl2 possessed comparable electroluminescent characteristics to that of the commonly used LiF. Moreover, the performance of the organic photovoltaic device with 0.5 nm CaCl2 was comparable to that of the control device with LiF. Therefore, CaCl2 has the potential to be used as the CBL for organic electronic devices.

  10. Calcium chloride electron injection/extraction layers in organic electronic devices

    SciTech Connect

    Qu, Bo E-mail: qhgong@pku.edu.cn; Gao, Zhi; Yang, Hongsheng; Xiao, Lixin; Chen, Zhijian; Gong, Qihuang E-mail: qhgong@pku.edu.cn

    2014-01-27

    Nontoxic calcium chloride (CaCl{sub 2}) was introduced into organic electronic devices as cathode buffer layer (CBL). The turn-on voltage and maximum luminance of organic light-emitting diode (OLED) with 1.5 nm CaCl{sub 2} was 3.5 V and 21 960 cd/m{sup 2}, respectively. OLED with 1.5 nm CaCl{sub 2} possessed comparable electroluminescent characteristics to that of the commonly used LiF. Moreover, the performance of the organic photovoltaic device with 0.5 nm CaCl{sub 2} was comparable to that of the control device with LiF. Therefore, CaCl{sub 2} has the potential to be used as the CBL for organic electronic devices.

  11. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells.

    PubMed

    Ambade, Swapnil B; Ambade, Rohan B; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S; Mane, Rajaram S; Lee, Soo-Hyoung

    2016-03-07

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.

  12. Improved Power Conversion Efficiency of Inverted Organic Solar Cells by Incorporating Au Nanorods into Active Layer.

    PubMed

    He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2015-07-29

    This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.

  13. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOEpatents

    Forrest, Stephen; Kanno, Hiroshi

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  14. Characterizing ultrathin and thick organic layers by surface plasmon resonance three-wavelength and waveguide mode analysis.

    PubMed

    Granqvist, Niko; Liang, Huamin; Laurila, Terhi; Sadowski, Janusz; Yliperttula, Marjo; Viitala, Tapani

    2013-07-09

    A three-wavelength angular-scanning surface plasmon resonance based analysis has been utilized for characterizing optical properties of organic nanometer-thick layers with a wide range of thicknesses. The thickness and refractive index were determined for sample layers with thicknesses ranging from subnanometer to hundreds of nanometers. The analysis approach allows for simultaneous determination of both the refractive index and thickness without prior knowledge of either the refractive index or the thickness of the sample layers and without the help of other instruments, as opposed to current methods and approaches for characterizing optical properties of organic nanometer-thick layers. The applicability of the three-wavelength angular-scanning surface plasmon resonance approach for characterizing thin and thick organic layers was demonstrated by ex situ deposited mono- and multilayers of stearic acid and hydrogenated soy phosphatidylcholine and in situ layer-by-layer deposition of two different polyelectrolyte multilayer systems. In addition to the three-wavelength angular-scanning surface plasmon resonance approach, another surface plasmon resonance optical phenomenon, i.e., the surface plasmon resonance waveguide mode, was utilized to characterize organic sample layers whose thicknesses border the micrometer scale. This was demonstrated by characterizing both in situ layer-by-layer deposited polyelectrolyte multilayer systems and an ex situ deposited spin-coated polymer layer.

  15. Organic interlamellar layers, mesolayers and mineral nanobridges: contribution to strength in abalone (Haliotis rufescence) nacre.

    PubMed

    Lopez, Maria I; Meza Martinez, Pedro E; Meyers, Marc A

    2014-05-01

    The contributions of mesolayers, organic interlamellar layers and nanoasperities/mineral bridges to the strength of nacre from red abalone (Haliotis rufescens) shell nacre are investigated. Samples were demineralized and deproteinized to separate the organic and mineral components, respectively. Tensile tests were performed on both the isolated organic constituent and the isolated mineral. The strength of the isolated organic component suggests that growth bands play an important role in the mechanical behavior as they are thick regions of protein that are a significant fraction (∼0.4) of the total organic content. The thickness variation of the nacre tablets was measured and found to be a small fraction of the mean tablet thickness (0.568μm); the standard deviation is 26nm, indicating that the wedge mechanism of toughening does not operate in the nacre investigated. Results obtained from the isolated mineral validate the importance of the organic constituent as the mechanical properties decline greatly when the organic component is removed. The results presented herein add to the understanding of the mechanical response of the organic interlayers and growth bands and their effect on the toughness of the abalone nacre.

  16. Effect of a delta-doping green emitting layer in white organic light-emitting device

    NASA Astrophysics Data System (ADS)

    Zhao, Juan; Yu, Junsheng; Jiang, Yadong

    2012-10-01

    White organic light-emitting devices (WOLEDs) based on a double-emitting layer (EML) structure were fabricated, while phosphorescent blue and yellow emitters were employed. An ultra-thin layer of non-doped green tris(2-phenylpyridine) iridium [Ir(ppy)3], which was considered as delta-doping layer, was inserted between the two EMLs for optimization. Furthermore, effect of adjusting thickness of this thin layer on device performance was studied. The results showed that the optimized WOLED consisting of 1-nm Ir(ppy)3 EML achieved a maximum luminance of 29,100 cd/m2, maximum external quantum efficiency of 7%, maximum current efficiency of 25.3 cd/A and maximum power efficiency of 7.8 lm/W, together with low efficiency roll-off over a wide luminance range. Meanwhile, the white emission with Commission Internationale del'Eclariage (CIE) coordinates of (0.382,0.446) at a driving voltage of 10 V were observed. The performance enhancement is ascribed to improved charge carrier balance through introduction the highly efficient Ir(ppy)3 as the thin delta-doping layer.

  17. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    NASA Astrophysics Data System (ADS)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-04-01

    Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag+ ion to Ag0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  18. Uncovering the role of cathode buffer layer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL.

  19. Fluorescence quenching and excitation transfer between semiconducting and metallic organic layers

    NASA Astrophysics Data System (ADS)

    Åsberg, Peter; Nilsson, Peter; Inganäs, Olle

    2004-09-01

    Here we present a simple approach to study the interaction of singlet excitons with polarons in conjugated polymers in organic electronic devices. Interlayer quenching constants KIL of 1.5M-1 between a fluorescent molecule and a doped polymer in a layered sample demonstrates the importance of understanding the quenching of excited states in polymeric devices. A combination of Förster resonance energy transfer and quenching of photoluminescence between a fluorescent molecule and a conjugated polymer in its semiconducting and metallic states were studied. The polymer is a chiral 3-substituted polythiophene (POWT) and the fluorescent molecule is fluorescein bound to dextran (D-FITC). Bilayer samples with fluorescein on top of the POWT were fabricated and studied with absorption spectroscopy, fluorescence microscopy, and electrochemical doping methods. When POWT is electrochemically dedoped it is possible to enhance the photoluminescence in the polymer layer by excitation transfer from the fluorescein layer. Our results demonstrate that PL from the polythiophene disappears rapidly as soon as the layer is doped. As the doping of polymer layer increases the fluorescence from the fluorescein on top of the polymer decreases, due to excitation quenching. Models for excitation transfer and excitation quenching in POWT/FITC bilayer devices have been developed. This model predicts a linear relationship between the PL from the two molecules, in agreement with our experimental findings. These results are relevant for the development of electroluminescent devices or solar cells based on conjugated polymers.

  20. Uncovering the role of cathode buffer layer in organic solar cells

    PubMed Central

    Qi, Boyuan; Zhang, Zhi-Guo; Wang, Jizheng

    2015-01-01

    Organic solar cells (OSCs) as the third generation photovoltaic devices have drawn intense research, for their ability to be easily deposited by low-cost solution coating technologies. However the cathode in conventional OSCs, Ca, can be only deposited by thermal evaporation and is highly unstable in ambient. Therefore various solution processible cathode buffer layers (CBLs) are synthesized as substitute of Ca and show excellent effect in optimizing performance of OSCs. Yet, there is still no universal consensus on the mechanism that how CBL works, which is evidently a critical scientific issue that should be addressed. In this article detailed studies are targeted on the interfacial physics at the interface between active layer and cathode (with and without treatment of a polar CBL) by using ultraviolet photoelectron spectroscopy, capacitance-voltage measurement, and impedance spectroscopy. The experimental data demonstrate that CBL mainly takes effect in three ways: suppressing surface states at the surface of active layer, protecting the active layer from being damaged by thermally evaporated cathode, and changing the energy level alignment by forming dipole moments with active layer and/or cathode. Our findings here provide a comprehensive picture of interfacial physics in devices with and without CBL. PMID:25588623

  1. Improving performance of inverted organic solar cells using ZTO nanoparticles as cathode buffer layer

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Yen; Cheng, Wen-Hui; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-06-01

    In this study, a low-temperature solution-processed zinc tin oxide (ZTO) films are successfully utilized as the cathode buffer layer in the inverted organic P3HT:PCBM bulk heterojunction solar cells. ZTO film cathode buffer layer with an appropriate Sn-doping concentration outperforms the zinc oxide (ZnO) film with an improved power conversion efficiency (1.96% (ZTO film) vs. 1.56% (ZnO film)). Furthermore, ZTO nanoparticles (NPs) are also synthesized via low-temperature solution route and the device with ZTO NPs buffer layer exhibits a significant improvement in device performance to reach a PCE of 2.60%. The crystallinity of the cathode buffer layer plays an influential factor in the performance. From impedance spectroscopy analysis, a correlation between short circuit current (Jsc), carrier life time (τavg) and, thus, PCE is observed. The interplay between composition and crystallinity of the cathode buffer layers is discussed to find their influences on the solar cell performance.

  2. Effect of organic moieties on the scintillation properties of organic-inorganic layered perovskite-type compounds

    NASA Astrophysics Data System (ADS)

    Kawano, Naoki; Koshimizu, Masanori; Horiai, Akiyoshi; Nishikido, Fumihiko; Haruki, Rie; Kishimoto, Shunji; Shibuya, Kengo; Fujimoto, Yutaka; Yanagida, Takayuki; Asai, Keisuke

    2016-11-01

    The effects of organic moieties on the scintillation properties of organic-inorganic layered perovskite-type compounds have been investigated. Three kinds of single crystals were fabricated, namely, (C4H9NH3)2PbBr4 (C4), (C6H5CH2NH3)2PbBr4 (Ben), and (C6H5C2H4NH3)2PbBr4 (Phe). Among the single crystals, the light output of Phe was found to have the greatest value when exposed to X-ray radiation (67.4 keV). The light output of Phe was 0.62 times that of YAP:Ce. The relative values of the light outputs among the fabricated single crystals under X-ray radiation correlated well with those of the quantum efficiencies and the luminescence intensity under ultraviolet radiation.

  3. Geochemical drivers of organic matter decomposition in the active layer of Arctic tundra

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Roy Chowdhury, T.; Mann, B.; Graham, D. E.; Wullschleger, S. D.; Gu, B.; Liang, L.

    2014-12-01

    Arctic tundra soils store large quantities of organic carbon that are susceptible to decomposition and release to the atmosphere as CO2 and CH4. Decomposition rates are limited by cold temperatures and widespread anoxia; however, ongoing changes in soil temperature, thaw depth, and water saturation are expected to influence rates and pathways of organic matter decomposition. In order to predict greenhouse gas releases from high-latitude ecosystems, it is necessary to identify how geochemical factors (e.g. terminal electron acceptors, carbon substrates) influence CO2 and CH4 production in tundra soils. This study evaluates spatial patterns of aqueous geochemistry in the active layer of low- to high-centered polygons located at the Barrow Environmental Observatory in northern Alaska. Pore waters from saturated soils were low in sulfate and nitrate but contained abundant Fe which may serve a major terminal electron acceptor for anaerobic microbial metabolism. Relatively high concentrations of soluble Fe accumulated in the middle of the active layer near the boundary between the organic and mineral horizon, and we infer that Fe-oxide reduction and dissolution in the mineral horizon produced soluble Fe that diffused upwards and was stabilized by complexation with dissolved organic matter. Fe concentrations in the bulk soil were higher in organic than mineral horizons due to the presence of these organic-Fe complexes and Fe-oxide precipitates. Dissolved CH4 increased with increasing proportions of dissolved Fe(III) in saturated soils from transitional and low-centered polygons. The opposite trend was observed in drier soils from flat- and high-centered polygons where deeper oxidation fronts may inhibit methanogenesis. Using multiple spectroscopic and molecular methods (e.g. UV-Vis, Fourier transform infrared, ultrahigh resolution mass spectrometry), we also observed that pore waters from the middle of the active layer contained more aromatic organics than in mineral

  4. Energy-Level Alignment of a Hole-Transport Organic Layer and ITO: Toward Applications for Organic Electronic Devices.

    PubMed

    Arnoux, Quentin; Boucly, Anthony; Barth, Vincent; Benbalagh, Rabah; Cossaro, Albano; Floreano, Luca; Silly, Mathieu; Sirotti, Fausto; Derat, Etienne; Carniato, Stéphane; Bournel, Fabrice; Gallet, Jean-Jacques; Fichou, Denis; Tortech, Ludovic; Rochet, François

    2017-09-13

    2,2',6,6'-Tetraphenyl-4,4'-dipyranylidene (DIPO-Ph4) was grown by vacuum deposition on an indium tin oxide (ITO) substrate. The films were characterized by atomic force microscopy as well as synchrotron radiation UV and X-ray photoelectron spectroscopy to gain an insight into the material growth and to better understand the electronic properties of the ITO/DIPO-Ph4 interface. To interpret our spectroscopic data, we consider the formation of cationic DIPO-Ph4 at the ITO interface owing to a charge transfer from the organic layer to the substrate. Ionization energy DFT calculations of the neutral and cationic species substantiate this hypothesis. Finally, we present the energetic diagram of the ITO/DIPO-Ph4 system, and we discuss the application of this interface in various technologically relevant systems, as a hole-injector in OLEDs or as a hole-collector interfacial layer adjacent to the prototypical OPV layer P3HT:PCBM.

  5. Dielectric Mismatch Mediates Carrier Mobility in Organic-Intercalated Layered TiS2.

    PubMed

    Wan, Chunlei; Kodama, Yumi; Kondo, Mami; Sasai, Ryo; Qian, Xin; Gu, Xiaokun; Koga, Kenji; Yabuki, Kazuhisa; Yang, Ronggui; Koumoto, Kunihito

    2015-10-14

    The dielectric constant is a key parameter that determines both optical and electronic properties of materials. It is desirable to tune electronic properties though dielectric engineering approach. Here, we present a systematic approach to tune carrier mobilities of hybrid inorganic/organic materials where layered two-dimensional transition-metal dichalcogenide TiS2 is electrochemically intercalated with polar organic molecules. By manipulating the dielectric mismatch using polar organic molecules with different dielectric constants, ranging from 10 to 41, the electron mobility of the TiS2 layers was changed three times due to the dielectric screening of the Coulomb-impurity scattering processes. Both the overall thermal conductivity and the lattice thermal conductivity were also found to decrease with an increasing dielectric mismatch. The enhanced electrical mobility along with the decreased thermal conductivity together gave rise to a significantly improved thermoelectric figure of merit of the hybrid inorganic/organic materials at room temperature, which might find applications in wearable electronics.

  6. Engineered Molecular Layers For Organic Electronic Applications: A Confocal Scanning Raman Spectroscopy (CSRS) Investigation

    SciTech Connect

    Paez-Sierra, Beynor-Antonio; Kolotovska, Viktoriia; Rangel-Kuoppa, Victor-Tapio

    2011-12-23

    We present CSRS maps of magnetically modified vanadyl phthalocyanine (VOPc) thin films forming conduction channels in organic field-effect transistors (OFETs). The VOPc films with a nominal thickness of about 100 nm were produced by organic molecular beam deposition in high vacuum. During the growth conditions the substrates were exposed to a magnetic field (B) from a bar magnet. The CSRS maps revealed significant changes of the organic fields upon preparation conditions. The highest field effect mobility, electrical current and anisotropy of the CSRS-topography is achieved in layers grown with B parallel to the substrate plane, while intermediate and lowest values are achieved in devices grown with B perpendicular to the substrate and without, respectively.

  7. Engineered Molecular Layers For Organic Electronic Applications: A Confocal Scanning Raman Spectroscopy (CSRS) Investigation

    NASA Astrophysics Data System (ADS)

    Paez-Sierra, Beynor-Antonio; Kolotovska, Viktoriia; Rangel-Kuoppa, Victor-Tapio

    2011-12-01

    We present CSRS maps of magnetically modified vanadyl phthalocyanine (VOPc) thin films forming conduction channels in organic field-effect transistors (OFETs). The VOPc films with a nominal thickness of about 100 nm were produced by organic molecular beam deposition in high vacuum. During the growth conditions the substrates were exposed to a magnetic field (B) from a bar magnet. The CSRS maps revealed significant changes of the organic fields upon preparation conditions. The highest field effect mobility, electrical current and anisotropy of the CSRS-topography is achieved in layers grown with B parallel to the substrate plane, while intermediate and lowest values are achieved in devices grown with B perpendicular to the substrate and without, respectively.

  8. Inverted Organic Solar Cells with Improved Performance using Varied Cathode Buffer Layers

    NASA Astrophysics Data System (ADS)

    Guan, Zhi-qiang; Yu, Jun-sheng; Zang, Yue; Zeng, Xing-xin

    2012-10-01

    Organic solar cells with inverted planar heterojunction structure based on subphthalocyanine and C60 were fabricated using several kinds of materials as cathode buffer layer (CBL), including tris-8-hydroxy-quinolinato aluminum (Alq3), bathophenanthroline (Bphen), bathocuproine, 2,3,8,9,14,15-hexakis-dodecyl-sulfanyl-5,6,11,12,17,18-hexaazatrinaphthylene (HATNA), and an inorganic compound of Cs2CO3. The influence of the lowest unoccupied molecular orbital level and the electron mobility of organic CBL on the solar cells performance was compared. The results showed that Alq3, Bphen, and HATNA could significantly improve the device performance. The highest efficiency was obtained from device with annealed HATNA as CBL and increased for more than 7 times compared with device without CBL. Furthermore, the simulation results with space charge-limited current theory indicated that the Schottky barrier at the organic/electrode interface in inverted OSC structure was reduced for 27% by inserting HATNA CBL.

  9. Microcantilever sensors coated with a sensitive polyaniline layer for detecting volatile organic compounds.

    PubMed

    Steffens, C; Leite, F L; Manzoli, A; Sandovall, R D; Fatibello, O; Herrmann, P S P

    2014-09-01

    This paper describes a silicon cantilever sensor coated with a conducting polymer layer. The mechanical response (deflection) of the bimaterial (the coated microcantilever) was investigated under the influence of several volatile compounds-methanol, ethanol, acetone, propanol, dichloroethane, toluene and benzene. The variations in the deflection of the coated and uncoated microcantilevers when exposed to volatile organic compounds were evaluated, and the results indicated that the highest sensitivity was obtained with the coated microcantilever and methanol. The uncoated microcantilever was not sensitive to the volatile organic compounds. An increase in the concentration of the volatile organic compound resulted in higher deflections of the microcantilever sensor. The sensor responses were reversible, sensible, rapid and proportional to the volatile concentration.

  10. Nano-organized collagen layers obtained by adsorption on phase-separated polymer thin films.

    PubMed

    Zuyderhoff, Emilienne M; Dupont-Gillain, Christine C

    2012-01-31

    The organization of adsorbed type I collagen layers was examined on a series of polystyrene (PS)/poly(methyl methacrylate) (PMMA) heterogeneous surfaces obtained by phase separation in thin films. These thin films were prepared by spin coating from solutions in either dioxane or toluene of PS and PMMA in different proportions. Their morphology was unraveled combining the information coming from X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurements. Substrates with PMMA inclusions in a PS matrix and, conversely, substrates with PS inclusions in a PMMA matrix were prepared, the inclusions being either under the form of pits or islands, with diameters in the submicrometer range. The organization of collagen layers obtained by adsorption on these surfaces was then investigated. On pure PMMA, the layer was quite smooth with assemblies of a few collagen molecules, while bigger assemblies were found on pure PS. On the heterogeneous surfaces, it appeared clearly that the diameter and length of collagen assemblies was modulated by the size and surface coverage of the PS domains. If the PS domains, either surrounding or surrounded by the PMMA phase, were above 600 nm wide, a heterogeneous distribution of collagen was found, in agreement with observations made on pure polymers. Otherwise, fibrils could be formed, that were longer compared to those observed on pure polymers. Additionally, the surface nitrogen content determined by XPS, which is linked to the protein adsorbed amount, increased roughly linearly with the PS surface fraction, whatever the size of PS domains, suggesting that adsorbed collagen amount on heterogeneous PS/PMMA surfaces is a combination of that observed on the pure polymers. This work thus shows that PS/PMMA surface heterogeneities can govern collagen organization. This opens the way to a better control of collagen supramolecular organization at interfaces, which could in turn allow cell

  11. Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions.

    PubMed

    Tagliazucchi, Mario; de la Cruz, Mónica Olvera; Szleifer, Igal

    2010-03-23

    The competition between chemical equilibrium, for example protonation, and physical interactions determines the molecular organization and functionality of biological and synthetic systems. Charge regulation by displacement of acid-base equilibrium induced by changes in the local environment provides a feedback mechanism that controls the balance between electrostatic, van der Waals, steric interactions and molecular organization. Which strategies do responsive systems follow to globally optimize chemical equilibrium and physical interactions? We address this question by theoretically studying model layers of end-grafted polyacids. These layers spontaneously form self-assembled aggregates, presenting domains of controlled local pH and whose morphologies can be manipulated by the composition of the solution in contact with the film. Charge regulation stabilizes micellar domains over a wide range of pH by reducing the local charge in the aggregate at the cost of chemical free energy and gaining in hydrophobic interactions. This balance determines the boundaries between different aggregate morphologies. We show that a qualitatively new form of organization arises from the coupling between physical interactions and protonation equilibrium. This optimization strategy presents itself with polyelectrolytes coexisting in two different and well-defined protonation states. Our results underline the need of considering the coupling between chemical equilibrium and physical interactions due to their highly nonadditive behavior. The predictions provide guidelines for the creation of responsive polymer layers presenting self-organized patterns with functional properties and they give insights for the understanding of competing interactions in highly inhomogeneous and constrained environments such as those relevant in nanotechnology and those responsible for biological cells function.

  12. Density of states determination in organic donor-acceptor blend layers enabled by molecular doping

    NASA Astrophysics Data System (ADS)

    Fischer, Janine; Ray, Debdutta; Kleemann, Hans; Pahner, Paul; Schwarze, Martin; Koerner, Christian; Vandewal, Koen; Leo, Karl

    2015-06-01

    Charge carrier transport is a key parameter determining the efficiency of organic solar cells, and is closely related to the density of free and trapped states. For trap characterization, impedance spectroscopy is a suitable, non-invasive method, applicable to complete organic semiconductor devices. In order to contribute to the capacitive signal, the traps must be filled with charge carriers. Typically, trap filling is achieved by illuminating the device or by injecting charge carriers through application of a forward bias voltage. However, in both cases, the exact number of charge carriers in the device is not known and depends strongly on the measurement conditions. Here, hole trap states of the model blend layer ZnPc:C60 are filled by weak p-doping, enabling trap characterization in a blend layer at a controlled hole density. We evaluate impedance spectra at different temperatures in order to determine the density of occupied states (DOOS) directly from the capacitance-frequency spectra by assuming a simple energy diagram. The reconstructed DOOS distribution is analyzed at different doping concentrations and device thicknesses and compared to thermally stimulated current measurements performed on the same devices. In both methods, a pronounced Gaussian peak at about 0.4 eV below the transport level is found as well as deep, exponential tail states, providing a deeper insight into the density of states distribution of this donor-acceptor blend layer. Additionally, the effect of doping-induced trap filling on the solar cell characteristics is studied in these devices.

  13. Charge Transport through Organic Molecular Wires Embedded in Ultrathin Insulating Inorganic Layer

    SciTech Connect

    Edri, Eran; Frei, Heinz

    2015-12-07

    Dense phase silica layers with thickness of a few nanometers featuring embedded organic molecular wires of type p-oligo(phenylenevinylene) are shown by visible light sensitized electrochemical measurements to transport charges across the insulating membrane. Here, we find that such hybrid materials combination allows electronic charge transport only through the wires, while blocking molecular transport. Embodiment of the wire molecules in the silica was accomplished by atomic layer deposition under mild temperature conditions. Grown on Co oxide films for water oxidation, with the wire molecules covalently anchored on the oxide surface, the layer functions as a proton conducting separation membrane. Characterization by XPS, FT-IR and STEM/EDX confirms the integrity of the silica-encapsulated organic wires. Cyclic voltammetry with redox couple of selected potential relative to the energy levels of the wire molecules shows that the membrane is free of pinholes. The new type of membrane allows separation of incompatible redox reaction environments on the length scale of nanometers while enabling controlled electron transport between them. Finally, this opens up the coupling of carbon dioxide reduction with water oxidation, the essential reactions of artificial photosynthesis, in an integrated nanoscale photosystem.

  14. Attractive mechanical properties of a lightweight highly sensitive bi layer thermistor: polycarbonate/organic molecular conductor

    NASA Astrophysics Data System (ADS)

    Laukhina, E.; Lebedev, V.; Rovira, C.; Laukhin, V.; Veciana, J.

    2016-03-01

    The paper covers some of the basic mechanical characteristics of a recently developed bi layer thermistor: polycarbonate/(001) oriented layer of organic molecular conductor α’-(BEDT-TTF)2IxBr3-x, were BEDT-TTF=bis(ethylenedithio)tetrathiafulvalen. The nano and macro mechanical properties have been studied in order to use this flexible, low cost thermistor in sensing applications by proper way. The nano-mechanical properties of the temperature sensitive semiconducting layer of α’-(BEDT-TTF)2IxBr3-x were tested using nanoindentation method. The value of Young's modulus in direction being perpendicular to the layer plan was found as 9.0 ±1.4 GPa. The macro mechanical properties of the thermistor were studied using a 5848 MicroTester. The tensile tests showed that basic mechanical characteristics of the thermistor are close to those of polycarbonate films. This indicates a good mechanical strength of the developed sensor. Therefore, the thermistor can be used in technologies that need to be instrumented with highly robustness lightweight low cost temperature sensors. The paper also reports synthetic details on fabricating temperature sensing e-textile. As the temperature control is becoming more and more important in biomedical technologies like healthcare monitoring, this work strongly contributes on the ongoing research on engineering sensitive conducting materials for biomedical applications.

  15. Different configurations of phosphorescent yellow emissive layer in white organic light-emitting device

    NASA Astrophysics Data System (ADS)

    Liu, Shengqiang; Yu, Junsheng; Zhao, Juan; Jiang, Yadong; Ma, Zhu

    2012-10-01

    We fabricated white organic light-emitting devices (WOLEDs) based on three different configurations for yellow emissive layer (Y-EML), using phosphorescent yellow bis[2-(4-tert-butylphenyl)benzothiazolato-N,C2']iridium (acetylacetonate) [(t-bt)2Ir(acac)]. The Y-EML was formed as undoped ultrathin layer, doped ultrathin layer with low (tbt) 2Ir(acac) concentration and doped thin layer with the same amount of (t-bt)2Ir(acac) molecular as the undoped YEML. The results showed that the difference in configurations of the Y-EML affected not only the operating voltage but also the luminance and efficiency characteristics of the devices. Comparing device performance, it was found that devices based on the doped Y-EML showed low efficiency and yellow-dominated light emission, due to triplet exciton hopping caused by different triplet energy. On the other hand, a device with the undoped Y-EML demonstrated the highest efficiency (79.0 cd/A at 1 550 cd/m2 and 40.5 lm/W at 1 000 cd/m2), attributing to well confined charge carriers and excitons.

  16. LETTER TO THE EDITOR: Small molecular white organic light emitting devices with a single emission layer

    NASA Astrophysics Data System (ADS)

    Duan, Yu; Zhao, Yi; Cheng, Gang; Jiang, Wenlong; Li, Jiang; Wu, Zhijun; Hou, Jingying; Liu, Shiyong

    2004-03-01

    An organic white light emitting device has been demonstrated by mixing two colours from a single emissive layer. The device structure included indium tin oxide glass substrate/40 nm N,N-diphenyl-N,N-bis1-naphthyl-1, 1-biphenyl-4,4-diamine as hole transparent layer/20 nm 4,48-bis(2,28-diphenylvinyl)-1,18-biphenyl doped with 0.8% rubrene as emitting layer/30 nm tris-8-hydroxyquinoline aluminium as electron transport layer/0.6 nm LiF/aluminium. A stable white emission Commission Internationale de 1'Eclairage chromaticity coordinate range from (0.34, 0.36) to (0.32, 0.32) for forward bias voltage changes from 5 to 13 V has been achieved. Its maximum luminance was 15840 cd m-2 at 17 V, and the maximum power and current efficiencies were 3.1 lw W-1 and 5.8 cd A-1 at 6 V, respectively.

  17. Analysis of organic colouring and binding components in colour layer of art works.

    PubMed

    Kuckova, S; Nemec, I; Hynek, R; Hradilova, J; Grygar, T

    2005-05-01

    Two methods of analysis of organic components of colour layers of art works have been tested: IR microspectroscopy of indigo, Cu-phthalocyanine, and Prussian blue, and MALDI-TOF-MS of proteinaceous binders and a protein-containing red dye. The IR spectra distortion common for smooth outer surfaces and polished cross sections of colour layer of art works is suppressed by reflectance measurement of microtome slices. The detection limit of the three blue pigments examined is approximately 0.3 wt% in reference colour layers in linseed oil binder with calcite as extender and lead white as a drying agent. The sensitivity has been sufficient to identify Prussian blue in repaints on a Gothic painting. MALDI-TOF-MS has been used to identify proteinaceous binders in two historical paintings, namely isinglass (fish glue) and rabbit glue. MALDI-TOF-MS has also been proposed for identification of an insect red dye, cochineal carmine, according to its specific protein component. The enzymatic cleavage with trypsin before MALDI-TOF-MS seems to be a very gentle and specific way of dissolution of the colour layers highly polymerised due to very long aging of old, e.g. medieval, samples.

  18. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    NASA Astrophysics Data System (ADS)

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-06-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  19. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.

    PubMed

    Choy, Wallace C H; Zhang, Di

    2016-01-27

    Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field.

  20. Improving the efficiency of organic solar cells by varying the material concentration in the photoactive layer

    NASA Astrophysics Data System (ADS)

    Latimer, Kevin Anthony

    increased overall device efficiency. A photoactive layer solution prepared with 30 mg P3HT and 24 mg PC61BM, when implemented in an organic solar cell, produced the optimal electrical, physical, and optical characteristics.

  1. Improved oxidation resistance of organic/inorganic composite atomic layer deposition coated cellulose nanocrystal aerogels

    SciTech Connect

    Smith, Sean W.; Matthews, David J.; Conley, John F.; Buesch, Christian; Simonsen, John

    2014-07-01

    Cellulose nanocrystal (CNC) aerogels are coated with thin conformal layers of Al{sub 2}O{sub 3} using atomic layer deposition to form hybrid organic/inorganic nanocomposites. Electron probe microanalysis and scanning electron microscopy analysis indicated the Al{sub 2}O{sub 3} penetrated more than 1500 μm into the aerogel for extended precursor pulse and exposure/purge times. The measured profile of coated fiber radius versus depth from the aerogel surface agrees well with simulations of precursor penetration depth in modeled aerogel structures. Thermogravimetric analysis shows that Al{sub 2}O{sub 3} coated CNC aerogel nanocomposites do not show significant thermal degradation below 295 °C as compared with 175 °C for uncoated CNC aerogels, an improvement of over 100 °C.

  2. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    NASA Astrophysics Data System (ADS)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob

    2015-07-01

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq)2(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq)2(acac). The lifetime of device (t95: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  3. Characteristics of blue organic light emitting diodes with different thick emitting layers

    NASA Astrophysics Data System (ADS)

    Li, Chong; Tsuboi, Taiju; Huang, Wei

    2014-08-01

    We fabricated blue organic light emitting diodes (called blue OLEDs) with emitting layer (EML) of diphenylanthracene derivative 9,10-di(2-naphthyl)anthracene (ADN) doped with blue-emitting DSA-ph (1-4-di-[4-(N,N-di-phenyl)amino]styryl-benzene) to investigate how the thickness of EML and hole injection layer (HIL) influences the electroluminescence characteristics. The driving voltage was observed to increase with increasing EML thickness from 15 nm to 70 nm. The maximum external quantum efficiency of 6.2% and the maximum current efficiency of 14 cd/A were obtained from the OLED with 35 nm thick EML and 75 nm thick HIL. High luminance of 120,000 cd/m2 was obtained at 7.5 V from OLED with 15 nm thick EML.

  4. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    NASA Astrophysics Data System (ADS)

    Haapanala, S.; Rinne, J.; Hakola, H.; Hellén, H.; Laakso, L.; Lihavainen, H.; Janson, R.; Kulmala, M.

    2006-10-01

    Boundary layer concenrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. Measurements were conducted over boreal forests near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using light aircraft and in 2006 using hot air ballon. Isoprene concentrarions were low, usually below detection limit. This is explained by low biogenic production due to cold weather. Monoterpenes were observed frequently. Average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds e.g. benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using simple mixed box budget methodology. Total monoterpene fluxes varied up to 80 μg m-2 h-1, α-pinene contributing typically more than two thirds of that. Highest fluxes of anthropogenic compounds were those of p/m xylene.

  5. Simulation of mixed-host emitting layer based organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Riku, C.; Kee, Y. Y.; Ong, T. S.; Yap, S. S.; Tou, T. Y.

    2015-04-01

    `SimOLED' simulator is used in this work to investigate the efficiency of the mixed-host organic light emitting devices (MH-OLEDs). Tris-(8-hydroxyquinoline) aluminum(3) (Alq3) and N,N-diphenyl-N,N-Bis(3-methylphenyl)-1,1-diphenyl-4,4-diamine (TPD) are used as the electron transport layer (ETL) material and hole transport layer (HTL) material respectively, and the indium-doped tin oxide (ITO) and aluminum (Al) as anode and cathode. Three MH-OLEDs, A, B and C with the same structure of ITO / HTM (15 nm) / Mixed host (70 nm) / ETM (10 nm) /Al, are stimulated with ratios TPD:Alq3 of 3:5, 5:5, and 5:3 respectively. The Poole-Frenkel model for electron and hole mobilities is employed to compute the current density-applied voltage-luminance characteristics, distribution of the electric field, carrier concentrations and recombination rate.

  6. Development and Organization of the Evolutionarily Conserved Three-Layered Olfactory Cortex

    PubMed Central

    2017-01-01

    Abstract The olfactory cortex is part of the mammalian cerebral cortex together with the neocortex and the hippocampus. It receives direct input from the olfactory bulbs and participates in odor discrimination, association, and learning (Bekkers and Suzuki, 2013). It is thought to be an evolutionarily conserved paleocortex, which shares common characteristics with the three-layered general cortex of reptiles (Aboitiz et al., 2002). The olfactory cortex has been studied as a “simple model” to address sensory processing, though little is known about its precise cell origin, diversity, and identity. While the development and the cellular diversity of the six-layered neocortex are increasingly understood, the olfactory cortex remains poorly documented in these aspects. Here is a review of current knowledge of the development and organization of the olfactory cortex, keeping the analogy with those of the neocortex. The comparison of olfactory cortex and neocortex will allow the opening of evolutionary perspectives on cortical development. PMID:28144624

  7. Automatic inspection of a residual resist layer by means of self-organizing map

    NASA Astrophysics Data System (ADS)

    Philippe, Zaki Sabit Fawzi; Robert, Stéphane; Bayard, Bernard

    2016-05-01

    Photolithography allows large-scale fabrication of nanocomponents in the semiconductor industry. This technique consists of manufacturing a desired pattern on a photoresist film transferred onto the substrate during the etching process. Therefore, the mask quality is essential for reliable etching. For example, the presence of a residual layer of resist might be considered as a mask defect and can lead to the failure of the etching process. We propose the use of a Kohonen self-organizing map for automatic detection of a residual layer from an ellipsometric signature. The feasibility of the suggested inspection by the use of a classification technique is discussed and simulations are carried out on a 750-nm period grating.

  8. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    SciTech Connect

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  9. Aluminum oxide-n-Si field effect inversion layer solar cells with organic top contact

    NASA Astrophysics Data System (ADS)

    Erickson, A. S.; Kedem, N. K.; Haj-Yahia, A. E.; Cahen, D.

    2012-12-01

    We demonstrate a solar cell that uses fixed negative charges formed at the interface of n-Si with Al2O3 to generate strong inversion at the surface of n-Si by electrostatic repulsion. Built-in voltages of up to 755 mV are found at this interface. In order to harness this large built-in voltage, we present a photovoltaic device where the photocurrent generated in this inversion layer is extracted via an inversion layer induced by a high work function transparent organic top contact, deposited on top of a passivating and dipole-inducing molecular monolayer. Results of the effect of the molecular monolayer on device performance yield open-circuit voltages of up to 550 mV for moderately doped Si, demonstrating the effectiveness of this contact structure in removing the Fermi level pinning that has hindered past efforts in developing this type of solar cell with n-type Si.

  10. Phosphorescent white organic light-emitting diodes by electron transporting layer engineering.

    PubMed

    Lee, Seok Jae; Koo, Ja Ryong; Lee, Dong Hyung; Lee, Ho Won; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2014-10-01

    The authors describe the fabrication of white organic light-emitting diodes (WOLEDs) with dual electron transporting layers (D-ETL) using 2,9-dimethyl-4,7-diphenyl-1,10-phenanhroline/ 4,7-diphenyl-1,10-phenanthroline (BPhen) and bis-(2-methyl-8-quinolinolate)-4-(phenylphenolato) aluminum/BPhen. Stepwise D-ETL easily transports electrons easily to the emitting layer and reduces the leakage of electrons. Therefore, WOLEDs with D-ETL show higher external quantum efficiency (EQE) when compared to a control WOLED with a single ETL device. The optimized WOLEDs showed a peak EQE of 13.0%, luminous efficiency of 27.4 cd/A, and Commission Internationale de L'Eclairage coordinates of (0.40, 0.39) at 1000 cd/m2.

  11. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    PubMed Central

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I

    2014-01-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436

  12. Design of Bicontinuous Donor/Acceptor Morphologies for Use as Organic Solar Cell Active Layers

    NASA Astrophysics Data System (ADS)

    Kipp, Dylan; Mok, Jorge; Verduzco, Rafael; Ganesan, Venkat

    Two of the primary challenges limiting the marketability of organic solar cells are i) the smaller device efficiency of the organic solar cell relative to the conventional silicon-based solar cell and ii) the long term thermal instability of the device active layer. The achievement of equilibrium donor/acceptor morphologies with the characteristics believed to yield high device performance characteristics could address each of these two challenges. In this work, we present the results of a combined simulations and experiments-based approach to investigate if a conjugated BCP additive can be used to control the self-assembled morphologies taken on by conjugated polymer/PCBM mixtures. First, we use single chain in mean field Monte Carlo simulations to identify regions within the conjugated polymer/PCBM composition space in which addition of copolymers can lead to bicontinuous equilibrium morphologies with high interfacial areas and nanoscale dimensions. Second, we conduct experiments as directed by the simulations to achieve such morphologies in the PTB7 + PTB7- b-PNDI + PCBM model blend. We characterize the results of our experiments via a combination of transmission electron microscopy and X-ray scattering techniques and demonstrate that the morphologies from experiments agree with those predicted in simulations. Accordingly, these results indicate that the approach utilized represents a promising approach to intelligently design the morphologies taken on by organic solar cell active layers.

  13. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells

    PubMed Central

    Trost, S.; Becker, T.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Heiderhoff, R.; Görrn, P.; Riedl, T.

    2015-01-01

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1–20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated. PMID:25592174

  14. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells.

    PubMed

    Trost, S; Becker, T; Zilberberg, K; Behrendt, A; Polywka, A; Heiderhoff, R; Görrn, P; Riedl, T

    2015-01-16

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1-20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated.

  15. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells

    NASA Astrophysics Data System (ADS)

    Trost, S.; Becker, T.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Heiderhoff, R.; Görrn, P.; Riedl, T.

    2015-01-01

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1-20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated.

  16. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors

    PubMed Central

    Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya

    2015-01-01

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10–2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost. PMID:26416434

  17. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors

    NASA Astrophysics Data System (ADS)

    Matsushima, Toshinori; Sandanayaka, Atula S. D.; Esaki, Yu; Adachi, Chihaya

    2015-09-01

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10-2 cm2/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm2/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost.

  18. Synthesis of carbon nano-structures using organic-molecule intercalated taeniolite layered silicates

    NASA Astrophysics Data System (ADS)

    Maezumi, Takaaki; Wada, Noboru

    2015-03-01

    By calcinating organic-molecule intercalated taeniolite layered silicates, carbon nano-structures were made between the 2:1 layered silicate sheets. Raman scattering, XRD, TGA and SEM were used to characterize the samples. Large taeniolite crystals (NaLiMg2Si4O10F) were first prepared by melting appropriate chemicals at high temperatures using a platinum crucible. Then, the taeniolite crystals made were cation-exchanged with Li+, K+, NH4+,Ca2+ + and Mg2+ in salt solution. Finally, various organic molecules such as ethylene glycol, pyridine and so on were intercalated into the taeniolite crystals, and calcinated under a N2 atmosphere at about 1000K. The resulting crystals are usually gray or black. X-ray (00l) diffraction patterns suggested that the carbon structures may be monolayer thick (i.e., graphene-like). Raman scattering spectra which exhibited a sharp G-band peak with a high G-band/D-band ratio indicated that the carbon structures were relatively well crystallized. Cation and organic-molecule dependence on the carbon structures will be discussed. In addition, evidence for stage-2 taeniolite will be presented.

  19. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors.

    PubMed

    Matsushima, Toshinori; Sandanayaka, Atula S D; Esaki, Yu; Adachi, Chihaya

    2015-09-29

    We demonstrate that cold and hot isostatic pressing (CIP and HIP) is a novel, alternative method for organic semiconductor layer fabrication, where organic powder is compressed into a layer shape directly on a substrate with 200 MPa pressure. Spatial gaps between powder particles and the other particles, substrates, or electrodes are crushed after CIP and HIP, making it possible to operate organic field-effect transistors (OFETs) containing the compressed powder as the semiconductor. The CIP-compressed powder of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) had a hole mobility of (1.6 ± 0.4) × 10(-2) cm(2)/Vs. HIP of C8-BTBT powder increased the hole mobility to an amorphous silicon-like value (0.22 ± 0.07 cm(2)/Vs) because of the growth of the C8-BTBT crystallites and the improved continuity between the powder particles. The vacuum and solution processes are not involved in our CIP and HIP techniques, offering a possibility of manufacturing OFETs at low cost.

  20. Reversible and selective solvent adsorption in layered metal-organic frameworks by coordination control.

    PubMed

    Yin, Xinbo; Chen, Haohong; Song, Yuna; Wang, Yang; Li, Qiaowei; Zhang, Lijuan

    2014-01-01

    With various functionalities in the framework and high thermal stability, metal-organic frameworks (MOFs) have been extensively studied for the applications in adsorption and separation. In last decade, synthesizing new MOFs with desired structures and improved chemical stability to meet these applications has drawn great attention. In this report, by using an organic ligand with azolate moiety, benzo-bis(imidazole) (H2BBI), we synthesized two new 2D layered MOF structures with distinct topologies. Framework 1 {[Zn2Cl2(BBI)(MSM)2]n, MSM=methylsulfonylmethane}, constructed from tetrahedral Zn(II) and BBI, maintains its structure in organic solvents, such as methanol and benzene, and even in water. Meanwhile, framework 2 {[Cd2Cl2(BBI)(DMSO)2]n, DMSO=dimethyl sulfoxide} differs from framework 1, and is assembled from trigonal bipyramidal Cd(II) and square planar BBI. By removing the DMSO molecules coordinated to Cd(II) (25 weight% of the structure), 2 could transform to 3 {[Cd2Cl2(BBI)]n}, which was further characterized by high-resolution powder X-ray diffraction. The solvent-free 3 retains the original connectivity within each layer, and is capable of reversible and selective adsorption of DMSO molecules. The bistable four- and five-coordinated geometry exchange of Cd(II) is the origin of this adsorption with improved selectivity and capacity. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A futuristic approach towards interface layer modifications for improved efficiency in inverted organic solar cells

    SciTech Connect

    Tiwari, J. P. E-mail: tiwarijp@mail.nplindia.org; Ali, Farman; Sharma, Abhishek; Chand, Suresh; Pillai, Sriraj; Parakh, Sonal

    2014-01-27

    Inverted polymer Solar Cells of the classical poly (3-hexylthiophene) (P3HT):(6,6)-phenyl-C{sub 61}butyric acid methyl ester (PC{sub 61}BM) blend on indium tin oxide substrates were fabricated, which shows improved device performance, by using a facile solution–processed ZnO-polyelectrolytes [poly (diallyldimethylammonium chloride) (PDADMAC), Poly (acrylic acid sodium salt) (PAS), poly (4-styrenesulfonic acid) (PSS), and Polyvinylpyrrolidone (PVP)] nanocomposite as a cathode interface layer compared to devices using pristine ZnO as cathode buffer layer in ambient conditions. The devices with different combinations of polyelectrolyte with ZnO show different improvements in the device efficiency. The combinations of ZnO with PVP and PDADMAC show highest amount of improvements in the efficiency by a factor of ∼17–19. The improvement of the efficiency may be due to various phenomena, such as the passivation of ZnO surface as well as bulk traps, work function modification, improved energy level alignment, improved electronic coupling of the inorganic/organic interface, improved light harvesting, and decrease of surface as well as bulk charge recombination in the device. The introduction of polyelectrolyte into ZnO inhibits the aggregation of ZnO nanoparticles yielding the large area ZnO nanoclusters; and hence, forming the uniform film of ZnO resulting in the modifications of morphology as well as electronic structure of ZnO-polyelectrolyte nano-composite favouring better electronic coupling between cathode and active layer and hence enhancing the current and, consequently, the efficiency. This simple low temperature ZnO-polyelectrolyte nanocomposite based protocol proposed for cathode interface layer modification may be very much useful for roll to roll industrial manufacturing of organic solar cells.

  2. [Multiplayer white organic light-emitting diodes with different order and thickness of emission layers].

    PubMed

    Xu, Wei; Lu, Fu-Han; Cao, Jin; Zhu, Wen-Qing; Jiang, Xue-Yin; Zhang, Zhi-Lin; Xu, Shao-Hong

    2008-02-01

    In multilayer OLED devices, the order and thickness of the emission layers have great effect on their spectrum. Based on the three basic colours of red, blue and green, a series of white organic light-emitting diodes(WOLEDS)with the structure of ITO/CuPc(12 nm)/NPB(50 nm)/EML/LiF(1 nm)/Al(100 nm) and a variety of emission layer's orders and thicknesses were fabricated. The blue emission material: 2-t-butyl-9,10-di-(2-naphthyl)anthracene (TBADN) doped with p-bis(p-N, N-diphenyl-amono-styryl)benzene(DSA-Ph), the green emission material: tris-[8-hydroxyquinoline]aluminum(Alq3) doped with C545, and the red emission material: tris-[8-hydroxyquinoline]aluminum( Alq3) doped with 4-(dicyanomethylene)-2-t-butyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) were used. By adjusting the order and thickness of each emission layer in the RBG structure, we got a white OLED with current efficiency of 5.60 cd x A(-1) and Commission Internationale De L'Eclairage (CIE) coordinates of (0. 34, 0.34) at 200 mA x cm(-2). Its maximum luminance reached 20 700 cd x m(-2) at current density of 400 mA x cm(-2). The results were analyzed on the basis of the theory of excitons' generation and diffusion. According to the theory, an equation was set up which relates EL spectra to the luminance efficiency, the thickness of each layer and the exciton diffusion length. In addition, in RBG structure with different thickness of red layer, the ratio of th e spectral intensity of red to that of blue was calculated. It was found that the experimental results are in agreement with the theoretical values.

  3. Layered zirconium phosphonate with inorganic–organic hybrid structure: Preparation and its assembly with DNA

    SciTech Connect

    Liu, Li-Min; Lu, Guo-Yuan; Jiang, Li-Ping; Zhu, Jun-Jie

    2014-07-01

    An aminoethoxy-functionalized zirconium phosphonate (Zr(O{sub 3}POCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}·3H{sub 2}O), abbreviated as ZrRP (R=OCH{sub 2}CH{sub 2}NH{sub 2}), with layered structure has been synthesized. This layered compound possesses the characteristic of inorganic–organic hybrid, due to the covalently linked aminoethoxy in the host layer. The anion exchanged property of this zirconium phosphonate is suitable for the direct intercalation of negatively charged DNA, which is different from these reported zirconium phosphates or zirconium phosphonates. As a precursor, this prepared zirconium phosphonate was utilized to fabricate a novel DNA/ZrRP binary hybrid via a delamination-reassembly procedure. The release behavior of DNA from the DNA/ZrRP composite was investigated at different medium pH, because the combination between zirconium phosphonate sheets and DNA was pH-dependent sensitively. Moreover, the helical conformation of DNA was almost retained after the intercalation and release process. These properties of the DNA/ZrRP composite suggested the potential application of layered zirconium phosphonate as a non-viral vector in gene delivery. - Graphical abstract: The intercalation of DNA into zirconium phosphonate and the release of DNA from the interlayer of zirconium phosphonate. - Highlights: ●A layered aminoethoxy-functionalized zirconium phosphonate has been synthesized. ●DNA was intercalated directly into the prepared zirconium phosphonate. ●A novel zirconium phosphonate/DNA binary hybrid was fabricated. ●DNA can be reversibly released from the interlayer of zirconium phosphonate. ●The intercalation/release processes do not induce the denaturalization of DNA.

  4. High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer

    PubMed Central

    Yu, Xuegong; Shen, Xinlei; Mu, Xinhui; Zhang, Jie; Sun, Baoquan; Zeng, Lingsheng; Yang, Lifei; Wu, Yichao; He, Hang; Yang, Deren

    2015-01-01

    Organic/silicon nanowires (SiNWs) hybrid solar cells have recently been recognized as one of potentially low-cost candidates for photovoltaic application. Here, we have controllably prepared a series of uniform silicon nanowires (SiNWs) with various diameters on silicon substrate by metal-assisted chemical etching followed by thermal oxidization, and then fabricated the organic/SiNWs hybrid solar cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). It is found that the reflective index of SiNWs layer for sunlight depends on the filling ratio of SiNWs. Compared to the SiNWs with the lowest reflectivity (LR-SiNWs), the solar cell based on the SiNWs with low filling ratio (LF-SiNWs) has a higher open-circuit voltage and fill factor. The capacitance-voltage measurements have clarified that the built-in potential barrier at the LF-SiNWs/PEDOT:PSS interface is much larger than that at the LR-SiNWs/PEDOT one, which yields a strong inversion layer generating near the silicon surface. The formation of inversion layer can effectively suppress the carrier recombination, reducing the leakage current of solar cell, and meanwhile transfer the LF-SiNWs/PEDOT:PSS device into a p-n junction. As a result, a highest efficiency of 13.11% is achieved for the LF-SiNWs/PEDOT:PSS solar cell. These results pave a way to the fabrication of high efficiency organic/SiNWs hybrid solar cells. PMID:26610848

  5. Enhanced organic memory devices (OMEM) with a photochromic perhydro DTE as a transduction layer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cordes, Sandra; Kranz, Darius; Maibach, Eduard; Kempf, Maxim; Meerholz, Klaus

    2016-09-01

    In modern electronic systems memory elements are of fundamental importance for data storage. Especially solution-processable nonvolatile organic memories, which are inexpensive and can be manufactured on flexible substrates, are a promising alternative to brittle inorganic devices. Organic photochromic switchable compounds, mostly dithienylethenes (DTEs), are thermally stable, fatigue resistant and can undergo an electrically- or/and photo-induced ring-opening and -closing reaction which results in a change of energy levels. Due to the energetic difference in the highest occupied molecular orbital (HOMO) between the open and closed isomer, the DTE layer can be exploited as a switchable hole injection barrier that controls the electrical current in the diode. We demonstrated that a light-emitting organic memory (LE-OMEM) device with a perfluoro DTE transduction layer can be switched electrically via high current densities pulses and optically by irradiated light, with impressive current ON/OFF Ratios (OOR) of 10Λ2, 10Λ4 respectively. Currently we aim to minimize the barrier of the ON state and maximize the barrier of the OFF state by designing DTE molecules with larger differences in the HOMO energies of the two isomers yielding improved OOR values. By synthesizing perhydro derivates of DTE we achieved molecules with high HOMO levels and large ΔHOMO energies providing OMEM devices with excellent physical properties (OOR 1.4 x higher than perfluoro DTE). Due to the high HOMO level of the perhydro DTE utilization of hole transport layers (HTLs) is not necessary and thus manufacturing of OMEM devices is simplified.

  6. High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer

    NASA Astrophysics Data System (ADS)

    Yu, Xuegong; Shen, Xinlei; Mu, Xinhui; Zhang, Jie; Sun, Baoquan; Zeng, Lingsheng; Yang, Lifei; Wu, Yichao; He, Hang; Yang, Deren

    2015-11-01

    Organic/silicon nanowires (SiNWs) hybrid solar cells have recently been recognized as one of potentially low-cost candidates for photovoltaic application. Here, we have controllably prepared a series of uniform silicon nanowires (SiNWs) with various diameters on silicon substrate by metal-assisted chemical etching followed by thermal oxidization, and then fabricated the organic/SiNWs hybrid solar cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). It is found that the reflective index of SiNWs layer for sunlight depends on the filling ratio of SiNWs. Compared to the SiNWs with the lowest reflectivity (LR-SiNWs), the solar cell based on the SiNWs with low filling ratio (LF-SiNWs) has a higher open-circuit voltage and fill factor. The capacitance-voltage measurements have clarified that the built-in potential barrier at the LF-SiNWs/PEDOT:PSS interface is much larger than that at the LR-SiNWs/PEDOT one, which yields a strong inversion layer generating near the silicon surface. The formation of inversion layer can effectively suppress the carrier recombination, reducing the leakage current of solar cell, and meanwhile transfer the LF-SiNWs/PEDOT:PSS device into a p-n junction. As a result, a highest efficiency of 13.11% is achieved for the LF-SiNWs/PEDOT:PSS solar cell. These results pave a way to the fabrication of high efficiency organic/SiNWs hybrid solar cells.

  7. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-09-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates 1-3. Various approaches including optimizing morphology of the active layers 1, 2, introducing new materials as the donor and acceptor 3,4, new device structures such as tandem structure 5, 6 have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer 5, 7.

  8. Study of the effect of the charge transport layer in the electrical characteristics of the organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Rahimi, Ronak; Roberts, Alex; Narang, V.; Kumbham, Vamsi Krishna; Korakakis, D.

    2013-03-01

    Significant progress in fabrication and optimization of organic photovoltaics (OPVs) has been made during the last decade. The main reason for popularity of OPVs is due to their low production cost, large area devices and compatibility with flexible substrates [1-3]. Various approaches including optimizing morphology of the active layers [1,2], introducing new materials as the donor and acceptor [3,4], new device structures such as tandem structure [5,6] have been adapted to improve the efficiency of the organic photovoltaics. However, electrical characteristics of the OPVs do not only depend on the active layer materials or device structure. They can also be defined by the interface properties between active layers and the charge transport layers or the metal contacts. Within this paper, the effect of the thickness variation of the charge transport layer in the electrical properties of the bilayer heterojunction OPVs has been studied. Several devices with CuPc/PTCDI-C8 as the donor/acceptor layers have been fabricated with different thicknesses of electron transport layer. MoO3 and Alq3 have been used respectively as the hole transport layer (HTL) and the electron transport layer (ETL). It has been shown that the S-shape effect in the current-voltage curve is attributed to the accumulation of the charge carriers at the interface between the active layer and the charge transport layer [5,7].

  9. Characterization of ALD Processed Gallium Doped TiO2 Hole Blocking Layer in an Inverted Organic Solar Cell

    NASA Astrophysics Data System (ADS)

    Lee, Eun Ju; Ryu, Sang Ouk

    2017-02-01

    To improve power conversion efficiency (PCE) of inverted structure organic solar cells a buffer layer, a hole blocking layer (HBL) was introduced between cathode and active photovoltaic layer. Gallium (Ga) doped TiO2 as a HBL was fabricated by means of atomic layer deposition. X-ray photoelectron spectroscopy showed the highest Ga-Ti complex binding characteristics was achieved at 5% doping concentration. Gallium doped TiO2 layer exhibited over 94% of optical transmittance at the process temperature of 200°C. The resulting PCE of inverted structure organic solar cell having 5% doping in the hole block layer was 2.7%. The PCE was improved 35% compared to the cell without gallium doping.

  10. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer

    PubMed Central

    Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R. Dyche; Rao, Madan; Mayor, Satyajit

    2016-01-01

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization. PMID:26929326

  11. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer.

    PubMed

    Köster, Darius Vasco; Husain, Kabir; Iljazi, Elda; Bhat, Abrar; Bieling, Peter; Mullins, R Dyche; Rao, Madan; Mayor, Satyajit

    2016-03-22

    The surface of a living cell provides a platform for receptor signaling, protein sorting, transport, and endocytosis, whose regulation requires the local control of membrane organization. Previous work has revealed a role for dynamic actomyosin in membrane protein and lipid organization, suggesting that the cell surface behaves as an active composite composed of a fluid bilayer and a thin film of active actomyosin. We reconstitute an analogous system in vitro that consists of a fluid lipid bilayer coupled via membrane-associated actin-binding proteins to dynamic actin filaments and myosin motors. Upon complete consumption of ATP, this system settles into distinct phases of actin organization, namely bundled filaments, linked apolar asters, and a lattice of polar asters. These depend on actin concentration, filament length, and actin/myosin ratio. During formation of the polar aster phase, advection of the self-organizing actomyosin network drives transient clustering of actin-associated membrane components. Regeneration of ATP supports a constitutively remodeling actomyosin state, which in turn drives active fluctuations of coupled membrane components, resembling those observed at the cell surface. In a multicomponent membrane bilayer, this remodeling actomyosin layer contributes to changes in the extent and dynamics of phase-segregating domains. These results show how local membrane composition can be driven by active processes arising from actomyosin, highlighting the fundamental basis of the active composite model of the cell surface, and indicate its relevance to the study of membrane organization.

  12. Air processed organic photovoltaic devices incorporating a MoOx anode buffer layer

    NASA Astrophysics Data System (ADS)

    Bovill, Edward S. R.; Griffin, Jonathan; Wang, Tao; Kingsley, James W.; Yi, Hunan; Iraqi, Ahmed; Buckley, Alastair R.; Lidzey, David G.

    2013-05-01

    Molybdenum oxide (MoOx) has been shown to act as an efficient hole extraction layer in organic photovoltaic (OPV) devices. However, exposing MoOx films to air is problematic as it is hygroscopic; the uptake of moisture having a negative impact on its electronic properties. Here, we use spectroscopic ellipsometry to characterise the uptake of water, and fabricate PCDTBT:PC70BM based OPVs to determine its effects on device performance. We then show that thermally annealing MoOx reduces its hygroscopicity, permitting it to be processed in air. Using this process, we create air-processsed OPVs having PCEs (power conversion efficiencies) of up to 5.36%.

  13. Surface plasmon enhanced organic solar cells with a MoO3 buffer layer.

    PubMed

    Su, Zisheng; Wang, Lidan; Li, Yantao; Zhang, Guang; Zhao, Haifeng; Yang, Haigui; Ma, Yuejia; Chu, Bei; Li, Wenlian

    2013-12-26

    High-efficiency surface plasmon enhanced 1,1-bis-(4-bis(4-methyl-phenyl)-amino-phenyl)-cyclohexane:C70 small molecular bulk heterojunction organic solar cells with a MoO3 anode buffer layer have been demonstrated. The optimized device based on thermal evaporated Ag nanoparticles (NPs) shows a power conversion efficiency of 5.42%, which is 17% higher than the reference device. The improvement is attributed to both the enhanced conductivity and increased absorption due to the near-field enhancement of the localized surface plasmon resonance of Ag NPs.

  14. Efficient deep-blue organic light-emitting diodes using double-emitting layer.

    PubMed

    Seo, Ji Hoon; Seo, Bo Min; Lee, Seok Jae; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2012-04-01

    Efficient deep-blue organic light-emitting diodes were demonstrated using 1,4-tetranaphthalene doped in double-emitting layers (D-EMLs) consisting of 2-methyl-9,10-di(2-naphthyl)anthracene and 4'-(dinaphthalen-2-yl)-1,1'-binaphthyl as blue hosts. The device with D-EML exhibits good confinement of holes and electrons, as well as a broad recombination zone. The optimized device showed a peak current efficiency of 3.67 cd/A, a peak external quantum efficiency of 3.97%, and Commission Internationale de L'Eclairage coordinates of (0.16, 0.10).

  15. Temperature and layer thickness dependent in situ investigations on epindolidione organic thin-film transistors.

    PubMed

    Lassnig, R; Striedinger, B; Jones, A O F; Scherwitzl, B; Fian, A; Głowacl, E D; Stadlober, B; Winkler, A

    2016-08-01

    We report on in situ performance evaluations as a function of layer thickness and substrate temperature for bottom-gate, bottom-gold contact epindolidione organic thin-film transistors on various gate dielectrics. Experiments were carried out under ultra-high vacuum conditions, enabling quasi-simultaneous electrical and surface analysis. Auger electron spectroscopy and thermal desorption spectroscopy (TDS) were applied to characterize the quality of the substrate surface and the thermal stability of the organic films. Ex situ atomic force microscopy (AFM) was used to gain additional information on the layer formation and surface morphology of the hydrogen-bonded organic pigment. The examined gate dielectrics included SiO2, in its untreated and sputtered forms, as well as the spin-coated organic capping layers poly(vinyl-cinnamate) (PVCi) and poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE, from the class of polynorbornenes). TDS and AFM revealed Volmer-Weber island growth dominated film formation with no evidence of a subjacent wetting layer. This growth mode is responsible for the comparably high coverage required for transistor behavior at 90-95% of a monolayer composed of standing molecules. Surface sputtering and an increased sample temperature during epindolidione deposition augmented the surface diffusion of adsorbing molecules and therefore led to a lower number of better-ordered islands. Consequently, while the onset of charge transport was delayed, higher saturation mobility was obtained. The highest, bottom-contact configuration, mobilities of approximately 2.5 × 10(-3)cm(2)/Vs were found for high coverages (50 nm) on sputtered samples. The coverage dependence of the mobility showed very different characteristics for the different gate dielectrics, while the change of the threshold voltage with coverage was approximately the same for all systems. An apparent decrease of the mobility with increasing coverage on the

  16. Temperature and layer thickness dependent in situ investigations on epindolidione organic thin-film transistors

    PubMed Central

    Lassnig, R.; Striedinger, B.; Jones, A.O.F.; Scherwitzl, B.; Fian, A.; Głowacl, E.D.; Stadlober, B.; Winkler, A.

    2016-01-01

    We report on in situ performance evaluations as a function of layer thickness and substrate temperature for bottom-gate, bottom-gold contact epindolidione organic thin-film transistors on various gate dielectrics. Experiments were carried out under ultra-high vacuum conditions, enabling quasi-simultaneous electrical and surface analysis. Auger electron spectroscopy and thermal desorption spectroscopy (TDS) were applied to characterize the quality of the substrate surface and the thermal stability of the organic films. Ex situ atomic force microscopy (AFM) was used to gain additional information on the layer formation and surface morphology of the hydrogen-bonded organic pigment. The examined gate dielectrics included SiO2, in its untreated and sputtered forms, as well as the spin-coated organic capping layers poly(vinyl-cinnamate) (PVCi) and poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE, from the class of polynorbornenes). TDS and AFM revealed Volmer-Weber island growth dominated film formation with no evidence of a subjacent wetting layer. This growth mode is responsible for the comparably high coverage required for transistor behavior at 90–95% of a monolayer composed of standing molecules. Surface sputtering and an increased sample temperature during epindolidione deposition augmented the surface diffusion of adsorbing molecules and therefore led to a lower number of better-ordered islands. Consequently, while the onset of charge transport was delayed, higher saturation mobility was obtained. The highest, bottom-contact configuration, mobilities of approximately 2.5 × 10−3cm2/Vs were found for high coverages (50 nm) on sputtered samples. The coverage dependence of the mobility showed very different characteristics for the different gate dielectrics, while the change of the threshold voltage with coverage was approximately the same for all systems. An apparent decrease of the mobility with increasing coverage on the

  17. Self-organized layered structure in epitaxially stabilized FeSi

    NASA Astrophysics Data System (ADS)

    Fanciulli, M.; Weyer, G.; Chevallier, J.; von Känel, H.; Deller, H.; Onda, N.; Miglio, L.; Tavazza, F.; Celino, M.

    1997-01-01

    Conversion electron Mössbauer spectroscopy and transmission electron microscopy investigations of epitaxially stabilized c-FeSi having the CsCl structure reveal a self-organized layered structure. Upon annealing the structural phase transition to the bulk stable epsilon-FeSi phase leaves the superlattice periodicity intact with surprisingly sharp interfaces. A distorted CsCl phase which tranforms into the epsilon-FeSi phase at a temperature slightly higher than that for the partially relaxed c-FeSi is identified in the as-grown sample. Molecular-dynamics simulations have been used to visualize and interpret the distorted phase and the structural phase transition.

  18. Dielectric barrier discharge ionization in characterization of organic compounds separated on thin-layer chromatography plates.

    PubMed

    Cegłowski, Michał; Smoluch, Marek; Babij, Michał; Gotszalk, Teodor; Silberring, Jerzy; Schroeder, Grzegorz

    2014-01-01

    A new method for on-spot detection and characterization of organic compounds resolved on thin layer chromatography (TLC) plates has been proposed. This method combines TLC with dielectric barrier discharge ionization (DBDI), which produces stable low-temperature plasma. At first, the compounds were separated on TLC plates and then their mass spectra were directly obtained with no additional sample preparation. To obtain good quality spectra the center of a particular TLC spot was heated from the bottom to increase volatility of the compound. MS/MS analyses were also performed to additionally characterize all analytes. The detection limit of proposed method was estimated to be 100 ng/spot of compound.

  19. Effect of bathocuproine buffer layer in small molecule organic solar cells with inverted structure

    NASA Astrophysics Data System (ADS)

    Hao, Xia; Wang, Shenghao; Sakurai, Takeaki; Akimoto, Katsuhiro

    2015-04-01

    Inverted organic solar cells (OSCs) based on boron subphthalocynine chloride (SubPc) and fullerene (C60) were fabricated and the device structure was optimized by inserting a bathocuproine (C26H20N2) buffer layer. The power conversion efficiency was greatly improved from 0.8 to 1.6%. The roles of bathocuproine in this inverted device were investigated by photoluminescence and transient photovoltage/photocurrent measurements. The results show that the bathocuproine in the device not only blocks the exciton quenching, but also prohibits the build-up of charge trapping and suppresses the trap-assisted recombination.

  20. Efficiency enhancement of blue phosphorescent organic light-emitting diodes using mixed electron transport layer

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Il; Yoon, Ju-An; Kim, Nam Ho; Kim, Jin Wook; Lee, Ho Won; Kim, Young Kwan; He, Gufeng; Kim, Woo Young

    2015-01-01

    Blue phosphorescent organic light-emitting diodes (OLED) using mixed electron transport layer (ETL) were fabricated with the device structure of ITO/NPB/mCP:Firpic-8%/TPBi:BCP or TPBi:3TPYMB/Liq/Al to observe mixed ETL's influence on their electrical and optical characteristics. OLED device with mixed ETL of TPBi with BCP or 3TPYMB significantly improved its current efficiency to 30.4 and 34.2 cd/A comparing to 19.8 cd/A of single ETL with BCP only. We examined mixed ETL's capability of electron transport and triplet exciton confinement enhancing phosphorescent OLED's luminance and luminous efficiency.

  1. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Ambade, Rohan B.; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S.; Mane, Rajaram S.; Lee, Soo-Hyoung

    2016-02-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM

  2. Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects.

    PubMed

    Liu, Xuan-He; Guan, Cui-Zhong; Wang, Dong; Wan, Li-Jun

    2014-10-29

    Two-dimensional (2D) nanomaterials, such as graphene and transition metal chalcogenides, show many interesting dimension-related materials properties. Inspired by the development of 2D inorganic nanomaterials, single-layered covalent organic frameworks (sCOFs), featuring atom-thick sheets and crystalline extended organic structures with covalently bonded building blocks, have attracted great attention in recent years. With their unique graphene-like topological structure and the merit of structural diversity, sCOFs promise to possess novel and designable properties. However, the synthesis of sCOFs with well-defined structures remains a great challenge. Herein, the recent development of the bottom-up synthesis methods of 2D sCOFs, such as thermodynamic equilibrium control methods, growth-kinetics control methods, and surface-assisted covalent polymerization methods, are reviewed. Finally, some of the critical properties and application prospects of these materials are outlined.

  3. Thermally stable organically modified layered silicates based on alkyl imidazolium salts.

    PubMed

    Goswami, Shailesh K; Ghosh, Smita; Mathias, Lon J

    2012-02-15

    A series of imidazolium salts having various substituents and functional groups were synthesized and characterized by FTIR and NMR spectroscopy. Organic modification of natural and synthetic layered silicates involving montmorillonite (MMT), laponite (lap), and synthetic mica (mica) was carried out by ion-exchange reaction. The obtained organo-clays were characterized by FTIR and powder X-ray diffraction techniques. Results indicate that these organically modified clays have much higher thermal stabilities compared to their corresponding imidazolium halides. It was also observed from TGA analysis that thermal stability does not depend on the functional group present at the 3-position of the imidazolium salts. These studies strongly supports premise that the removal of halide is necessary to improve the thermal stability of the organo-clay produced.

  4. Graphene oxide hole transport layers for large area, high efficiency organic solar cells

    SciTech Connect

    Smith, Chris T. G.; Rhodes, Rhys W.; Beliatis, Michail J.; Imalka Jayawardena, K. D. G.; Rozanski, Lynn J.; Mills, Christopher A.; Silva, S. Ravi P.

    2014-08-18

    Graphene oxide (GO) is becoming increasingly popular for organic electronic applications. We present large active area (0.64 cm{sup 2}), solution processable, poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1, 3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:[6,6]-Phenyl C{sub 71} butyric acid methyl ester (PCDTBT:PC{sub 70}BM) organic photovoltaic (OPV) solar cells, incorporating GO hole transport layers (HTL). The power conversion efficiency (PCE) of ∼5% is the highest reported for OPV using this architecture. A comparative study of solution-processable devices has been undertaken to benchmark GO OPV performance with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) HTL devices, confirming the viability of GO devices, with comparable PCEs, suitable as high chemical and thermal stability replacements for PEDOT:PSS in OPV.

  5. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts.

    PubMed

    Cao, Lingyun; Lin, Zekai; Peng, Fei; Wang, Weiwei; Huang, Ruiyun; Wang, Cheng; Yan, Jiawei; Liang, Jie; Zhang, Zhiming; Zhang, Teng; Long, Lasheng; Sun, Junliang; Lin, Wenbin

    2016-04-11

    Metal-organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal-organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.

  6. Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers

    NASA Astrophysics Data System (ADS)

    Rivnay, Jonathan; Leleux, Pierre; Hama, Adel; Ramuz, Marc; Huerta, Miriam; Malliaras, George G.; Owens, Roisin M.

    2015-06-01

    Impedance sensing of biological systems allows for monitoring of cell and tissue properties, including cell-substrate attachment, layer confluence, and the “tightness” of an epithelial tissue. These properties are critical for electrical detection of tissue health and viability in applications such as toxicological screening. Organic transistors based on conducting polymers offer a promising route to efficiently transduce ionic currents to attain high quality impedance spectra, but collection of complete impedance spectra can be time consuming (minutes). By applying uniform white noise at the gate of an organic electrochemical transistor (OECT), and measuring the resulting current noise, we are able to dynamically monitor the impedance and thus integrity of cultured epithelial monolayers. We show that noise sourcing can be used to track rapid monolayer disruption due to compounds which interfere with dynamic polymerization events crucial for maintaining cytoskeletal integrity, and to resolve sub-second alterations to the monolayer integrity.

  7. Ultraviolet Electroluminescence and Blue-Green Phosphorescence using an Organic Diphosphine Oxide Charge Transporting Layer.

    SciTech Connect

    Burrows, Paul E.; Padmaperuma, Asanga B.; Sapochak, Linda S.; Djurovich, Peter I.; Thompson, Mark E.

    2006-05-01

    We report electroluminescence with a peak wavelength at 338 nm from a simple bilayer organic light emitting device (OLED) made using 4,4’-bis(diphenylphosphine oxide) biphenyl (PO1). In an OLED geometry, the material is preferentially electron transporting. Doping the PO1 layer with iridium(III)bis(4,6-(di-fluorophenyl)-pyridinato-N, C2’)picolinate (FIrpic) gives rise to electrophosphorescence with a peak external quantum efficiency of 7.8% at 0.09 mA/cm2 and 5.8% at 13 mA/cm2. The latter current density is obtained at 6.3 V applied forward bias. This represents a new class of wide-bandgap charge transporting organic materials which may prove useful as host materials for blue electrophosphoresent OLEDs.

  8. Improved efficiency of organic solar cells using Au NPs incorporated into PEDOT:PSS buffer layer

    NASA Astrophysics Data System (ADS)

    Otieno, Francis; Shumbula, Ndivhuwo P.; Airo, Mildred; Mbuso, Mlambo; Moloto, Nosipho; Erasmus, Rudolph M.; Quandt, Alexander; Wamwangi, Daniel

    2017-08-01

    Au based plasmonic phenomenon inside the hole transport layer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) of an organic solar cell based on blend of poly(3-hexylthiophene) (P3HT) and [6:6]-phenyl-C61-butyric acid (PCBM) is investigated. The concentration of the Au nanoparticles synthesized by wet chemical reduction is one of the key factors to strong light trapping when the spherical gold nanoparticles are blended into the PEDOT:PSS solution. Studies of the influence of the concentration of nanoparticles distribution in the PEDOT:PSS were carried out using UV-Vis spectroscopy and atomic force microscopy. Electrical characteristics of the pristine device and of device with metallic nanostructures were analyzed from J -V characteristics to observe the plasmonic effects on the performance in the P3HT:PCBM organic solar cells. The origin of the photocurrent enhancements with varying Au nanoparticles concentrations on PEDOT:PSS are discussed.

  9. Airborne trace organic contaminant removal using thermally regenerable multi-media layered sorbents

    NASA Technical Reports Server (NTRS)

    Atwater, James E.; Holtsnider, John T.

    1991-01-01

    A cyclic two-step process is described which forms the basis for a simple and highly efficient air purification technology. Low molecular weight organic vapors are removed from contaminated airstreams by passage through an optimized sequence of sorbent media layers. The contaminant loaded sorbents are subsequently regenerated by thermal desorption into a low volume inert gas environment. A mixture of airborne organic contaminants consisting of acetone, 2-butanone, ethyl acetate, Freon-113 and methyl chloroform has been quantitatively removed from breathing quality air using this technique. The airborne concentrations of all contaminants have been reduced from initial Spacecraft Maximum Allowable Concentration (SMAC) levels to below the analytical limits of detection. No change in sorption efficiency was observed through multiple cycles of contaminant loading and sorbent regeneration via thermal desorption.

  10. Using white noise to gate organic transistors for dynamic monitoring of cultured cell layers.

    PubMed

    Rivnay, Jonathan; Leleux, Pierre; Hama, Adel; Ramuz, Marc; Huerta, Miriam; Malliaras, George G; Owens, Roisin M

    2015-06-26

    Impedance sensing of biological systems allows for monitoring of cell and tissue properties, including cell-substrate attachment, layer confluence, and the "tightness" of an epithelial tissue. These properties are critical for electrical detection of tissue health and viability in applications such as toxicological screening. Organic transistors based on conducting polymers offer a promising route to efficiently transduce ionic currents to attain high quality impedance spectra, but collection of complete impedance spectra can be time consuming (minutes). By applying uniform white noise at the gate of an organic electrochemical transistor (OECT), and measuring the resulting current noise, we are able to dynamically monitor the impedance and thus integrity of cultured epithelial monolayers. We show that noise sourcing can be used to track rapid monolayer disruption due to compounds which interfere with dynamic polymerization events crucial for maintaining cytoskeletal integrity, and to resolve sub-second alterations to the monolayer integrity.

  11. Large Magnetoresistance at High Bias Voltage in Double-layer Organic Spin Valves

    NASA Astrophysics Data System (ADS)

    Subedi, R. C.; Liang, S. H.; Geng, R.; Zhang, Q. T.; Lou, L.; Wang, J.; Han, X. F.; Nguyen, T. D.

    We report studies of magnetoresistance (MR) in double-layer organic spin valves (DOSV) using tris (8-hydroxyquinolinato) aluminum (Alq3) spacers. The device exhibits three distinct resistance levels depending on the relative magnetizations of the ferromagnetic electrodes. We observed a much weaker bias voltage dependence of MR in the device compared to that in the conventional organic spin valve (OSV). The MR magnitude reduces by the factor of two at 0.7 V bias voltage in the DOSV compared to 0.02 V in the conventional OSV. Remarkably, the MR magnitude reaches 0.3% at 6 V bias in the DOSVs, the largest MR response ever reported in OSVs at this bias. Our finding may have a significant impact on achieving high efficient bipolar OSVs strictly performed at high voltages. University of Georgia start-up fund, Ministry of Education, Singapore, National Natural Science Foundation of China.

  12. Highly efficient uniform ZnO nanostructures for an electron transport layer of inverted organic solar cells.

    PubMed

    Kim, Sarah; Kim, Chul-Hyun; Lee, Sang Kyu; Jeong, Jun-Ho; Lee, Jihye; Jin, Sung-Ho; Shin, Won Suk; Song, Chang Eun; Choi, Jun-Hyuk; Jeong, Jong-Ryul

    2013-07-11

    A highly uniform and predesigned ZnO nanostructure fabricated by single step direct nanoimprinting was used as the efficient electron transport layer (ETL) in inverted bulk heterojunction organic solar cells. Improved photovoltaic cell efficiency with long-term stability can be observed due to the large interface between the active layer and nanostructured ZnO ETL.

  13. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  14. Improved performance of organic light-emitting diode with vanadium pentoxide layer on the FTO surface

    NASA Astrophysics Data System (ADS)

    Saikia, D.; Sarma, R.

    2017-06-01

    Vanadium pentoxide layer deposited on the fluorine-doped tin oxide (FTO) anode by vacuum deposition has been investigated in organic light-emitting diode (OLED). With 12 nm optimal thickness of V2O5, the luminance efficiency is increased by 1.66 times compared to the single FTO-based OLED. The improvement of current efficiency implies that there is a better charge injection and better controlling of hole current. To investigate the performance of OLED by the buffer layer, V2O5 films of different thicknesses were deposited on the FTO anode and their J- V and L- V characteristics were studied. Further analysis was carried out by measuring sheet resistance, optical transmittance and surface morphology with the FE-SEM images. This result indicates that the V2O5 (12 nm) buffer layer is a good choice for increasing the efficiency of FTO-based OLED devices within the tunnelling region. Here the maximum value of current efficiency is found to be 2.83 cd / A.

  15. Multiscale active layer morphologies for organic photovoltaics through self-assembly of nanospheres.

    PubMed

    Gehan, Timothy S; Bag, Monojit; Renna, Lawrence A; Shen, Xiaobo; Algaier, Dana D; Lahti, Paul M; Russell, Thomas P; Venkataraman, Dhandapani

    2014-09-10

    We address here the need for a general strategy to control molecular assembly over multiple length scales. Efficient organic photovoltaics require an active layer comprised of a mesoscale interconnected networks of nanoscale aggregates of semiconductors. We demonstrate a method, using principles of molecular self-assembly and geometric packing, for controlled assembly of semiconductors at the nanoscale and mesoscale. Nanoparticles of poly(3-hexylthiophene) (P3HT) or [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) were fabricated with targeted sizes. Nanoparticles containing a blend of both P3HT and PCBM were also fabricated. The active layer morphology was tuned by the changing particle composition, particle radii, and the ratios of P3HT:PCBM particles. Photovoltaic devices were fabricated from these aqueous nanoparticle dispersions with comparable device performance to typical bulk-heterojunction devices. Our strategy opens a revolutionary pathway to study and tune the active layer morphology systematically while exercising control of the component assembly at multiple length scales.

  16. N-channel field-effect transistors with an organic-inorganic layered perovskite semiconductor

    NASA Astrophysics Data System (ADS)

    Matsushima, Toshinori; Mathevet, Fabrice; Heinrich, Benoît; Terakawa, Shinobu; Fujihara, Takashi; Qin, Chuanjiang; Sandanayaka, Atula S. D.; Ribierre, Jean-Charles; Adachi, Chihaya

    2016-12-01

    Large electron injection barriers and electrode degradation are serious issues that need to be overcome to obtain n-channel operation in field-effect transistors with an organic-inorganic layered perovskite (C6H5C2H4NH3)2SnI4 semiconductor. By employing low-work-function Al source/drain electrodes and by inserting C60 layers between the perovskite semiconductor and the Al electrodes to reduce the injection barrier and to suppress the electrode degradation, we demonstrate n-channel perovskite transistors with electron mobilities of up to 2.1 cm2/V s, the highest value ever reported in spin-coated perovskite transistors. The n-channel transport properties of these transistors are relatively stable in vacuum but are very sensitive to oxygen, which works as electron traps in perovskite and C60 layers. In addition, grazing-incidence X-ray scattering and thermally stimulated current measurements revealed that crystallite size and electron traps largely affect the n-channel transport properties.

  17. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage.

    PubMed

    An, Tiance; Wang, Yuhang; Tang, Jing; Wang, Yang; Zhang, Lijuan; Zheng, Gengfeng

    2015-05-01

    A substantial challenge for direct utilization of metal-organic frameworks (MOFs) as lithium-ion battery anodes is to maintain the rigid MOF structure during lithiation/delithiation cycles. In this work, we developed a flexible, wavy layered nickel-based MOF (C20H24Cl2N8Ni, designated as Ni-Me4bpz) by a solvothermal approach of 3,3',5,5'-tetramethyl-4,4'-bipyrazole (H2Me4bpz) with nickel(II) chloride hexahydrate. The obtained MOF materials (Ni-Me4bpz) with metal azolate coordination mode provide 2-dimensional layered structure for Li(+) intercalation/extraction, and the H2Me4bpz ligands allow for flexible rotation feature and structural stability. Lithium-ion battery anodes made of the Ni-Me4bpz material demonstrate excellent specific capacity and cycling performance, and the crystal structure is well preserved after the electrochemical tests, suggesting the potential of developing flexible layered MOFs for efficient and stable electrochemical storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    NASA Astrophysics Data System (ADS)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  19. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    SciTech Connect

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J.

    2014-06-16

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C{sub 60}. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  20. The metal interlayer in the charge generation layer of tandem organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Hao; Lin, Ming-Wei; Wen, Ten-Chin; Guo, Tzung-Fang

    2013-10-01

    This work studies the interface in the charge generation layer (CGL), consisting of aluminum (Al) doped in poly(ethylene glycol) dimethyl ether as an n-type layer and 2, 3, 5, 6-tetrafluoro-7, 7, 8, 8-tetracyanoquinodimethane (F4-TCNQ) doped in N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine as an p-type layer, in tandem organic light-emitting diodes (OLEDs). Introducing a thin high work function metal interlayer (e.g., Ag or Au) effectively improves the transport and inhibits the accumulation of charges in the CGL, which markedly reduces the operating voltage and enhances the efficiency of tandem OLEDs. We attribute that the high density of surface states on metal clusters (interlayer) reduce the junction barrier to facilitate the transport of carriers through CGL. Experimental results show enhancements of tandem OLEDs by an additional metal interlayer as follows: luminous efficiency increases from 37.2 to 51.4 cd A-1, the light turn-on voltage decreases from 9.2 to 6.6 V, and luminescence at 10 mA cm-2 increases from 3712 to 5211 cd m-2.

  1. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    NASA Astrophysics Data System (ADS)

    Arora, H.; Malinowski, P. E.; Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S.; Heremans, P.

    2015-04-01

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm2 at a bias voltage of -2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 1012 Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiOx as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  2. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors

    SciTech Connect

    Arora, H.; Malinowski, P. E. Chasin, A.; Cheyns, D.; Steudel, S.; Schols, S.; Heremans, P.

    2015-04-06

    Amorphous indium-gallium-zinc-oxide (a-IGZO) is demonstrated as an electron transport layer (ETL) in a high-performance organic photodetector (OPD). Dark current in the range of 10 nA/cm{sup 2} at a bias voltage of −2 V and a high photoresponse in the visible spectrum were obtained in inverted OPDs with poly(3-hexylthiophene) and phenyl-C{sub 61}-butyric acid methyl ester active layer. The best results were obtained for the optimum a-IGZO thickness of 7.5 nm with specific detectivity of 3 × 10{sup 12} Jones at the wavelength of 550 nm. The performance of the best OPD devices using a-IGZO was shown to be comparable to state-of-the-art devices based on TiO{sub x} as ETL, with higher rectification achieved in reverse bias. Yield and reproducibility were also enhanced with a-IGZO, facilitating fabrication of large area OPDs. Furthermore, easier integration with IGZO-based readout backplanes can be envisioned, where the channel material can be used as photodiode buffer layer after additional treatment.

  3. Molecular engineering to improve carrier lifetimes for organic photovoltaic devices with thick active layers

    DOE PAGES

    Oosterhout, Stefan D.; Braunecker, Wade A.; Owczarczyk, Zbyslaw R.; ...

    2017-04-27

    The morphology of the bulk heterojunction absorber layer in an organic photovoltaic (OPV) device has a profound effect on the electrical properties and efficiency of the device. Previous work has consistently demonstrated that the solubilizing side-chains of the donor material affect these properties and device performance in a non-trivial way. Here, using Time-Resolved Microwave Conductivity (TRMC), we show by direct measurements of carrier lifetimes that the choice of side chains can also make a substantial difference in photocarrier dynamics. We have previously demonstrated a correlation between peak photoconductance measured by TRMC and device efficiencies; here, we demonstrate that TRMC photocarriermore » dynamics have an important bearing on device performance in a case study of devices made from donor materials with linear vs. branched side-chains and with variable active layer thicknesses. We use Grazing-Incidence Wide Angle X-ray Scattering to elucidate the cause of the different carrier lifetimes as a function of different aggregation behavior in the polymers. Consequently, the results help establish TRMC as a technique for screening OPV donor materials whose devices maintain performance in thick active layers (>250 nm) designed to improve light harvesting, film reproducibility, and ease of processing.« less

  4. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    PubMed Central

    D'Angelo, Egidio; Solinas, Sergio; Mapelli, Jonathan; Gandolfi, Daniela; Mapelli, Lisa; Prestori, Francesca

    2013-01-01

    The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through both feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of these neurons. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array (MEA) recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain, and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and duration of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research. PMID:23730271

  5. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    NASA Astrophysics Data System (ADS)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-12-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.

  6. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    PubMed Central

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-01-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests. PMID:27974832

  7. Chromatic-stability white organic light emitting diodes based on phosphorescence doped electron transport layer

    NASA Astrophysics Data System (ADS)

    Zhou, Pengchao; Wang, Feifei; Lin, Hong; Li, Xifeng; Tong, Liang; Wei, Na; Gao, Zhixiang; Wei, Bin

    2014-04-01

    The influence of fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] doped into electron transport layer was investigated by a series of electron-only devices, and the mechanism of the reduced field-dependent electron-transporting properties was also discussed. Utilizing the method of optimized doping concentration, a hybrid white organic light emitting diode with high efficiency, low efficiency roll-off and stable spectra was fabricated. Organic layer doped Ir(ppy)3 serves two functions: emit supernumerary green light with excess holes when the applied bias are low; weaken electron-transport ability when the bias increase. Both the two functions can improve the carrier balance and confine the exciton recombination region. For Device B, the maximum current efficiency and power efficiency reach 37.4 cd/A and 28.6 lm/W, respectively. The Commision Internationale de l’Éclairage (CIE) coordinates vary slightly from (0.48, 0.43) at 1.1 cd/m2 to (0.46, 0.43) at 18,600 cd/m2.

  8. Interface modified thermally stable hole transporting layer for efficient organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Grover, Rakhi; Srivastava, Ritu; Dagar, Janardan; Kamalasanan, M. N.; Mehta, D. S.

    2014-08-01

    Electrical transport in thermally stable 2, 7-bis [N, N-bis (4-methoxy-phenyl) amino]-9, 9-spirobifluorene (MeO-Spiro-TPD) thin films has been investigated as a function of temperature and organic layer thickness. ITO/MeO-Spiro-TPD interface was found to be injection limited and has been studied in detail to find barrier height for hole injection. The thickness of tetra-fluoro-tetracyano-quinodimethane thin films were optimized to be used as hole injection buffer layer which resulted in switching of charge transport mechanism from injection limited to space charge limited conduction above a critical thickness of 3 nm. Hole mobility has been measured using transient space charge limited conduction (SCLC), field dependent SCLC, and top contact transistor characteristics. The charge carrier transport in interface modified hole only devices was analysed using Gaussian disorder model. The thermal stability of MeO-Spiro-TPD has been investigated by atomic force microscopy and X-ray diffraction studies. The study indicates a thermally stable and highly efficient hole transport material for application in organic semiconductor based devices.

  9. Preparation of electron buffer layer with crystalline ZnO nanoparticles in inverted organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lee, Donghwan; Kang, Taeho; Choi, Yoon-Young; Oh, Seong-Geun

    2017-06-01

    Zinc oxide (ZnO) nanoparticles synthesized through sol-gel method were used to fabricate the electron buffer layer in inverted organic photovoltaic cells (OPVs) after thermal treatment. To investigate the effect of thermal treatment on the formation of crystalline ZnO nanoparticles, the amorphous ZnO nanoparticles were treated via hydrothermal method. The crystalline phase of ZnO with well-ordered structure could be obtained when the amorphous phase of ZnO was processed under hydrothermal treatment at 170 °C. The crystalline structure of ZnO thin film in inverted organic solar cell could be obtained under relatively low annealing temperature by using thermally treated ZnO nanoparticles. The OPVs fabricated by using crystalline ZnO nanoparticles for electron buffer layer exhibited higher efficiency than the conventional ZnO nanoparticles. The best power conversion efficiency (PCE) was achieved for 7.16% through the ZnO film using the crystalline ZnO nanoparticles. The proposed method to prepared ZnO nanoparticles (NPs) could effectively reduce energy consumption during the fabrication of OPVs, which would greatly contribute to advantages such as lower manufacturing costs, higher productivity and application on flexible substrates.

  10. Self-Organized Information Processing in Neuronal Networks: Replacing Layers in Deep Networks by Dynamics

    NASA Astrophysics Data System (ADS)

    Kirst, Christoph

    It is astonishing how the sub-parts of a brain co-act to produce coherent behavior. What are mechanism that coordinate information processing and communication and how can those be changed flexibly in order to cope with variable contexts? Here we show that when information is encoded in the deviations around a collective dynamical reference state of a recurrent network the propagation of these fluctuations is strongly dependent on precisely this underlying reference. Information here 'surfs' on top of the collective dynamics and switching between states enables fast and flexible rerouting of information. This in turn affects local processing and consequently changes in the global reference dynamics that re-regulate the distribution of information. This provides a generic mechanism for self-organized information processing as we demonstrate with an oscillatory Hopfield network that performs contextual pattern recognition. Deep neural networks have proven to be very successful recently. Here we show that generating information channels via collective reference dynamics can effectively compress a deep multi-layer architecture into a single layer making this mechanism a promising candidate for the organization of information processing in biological neuronal networks.

  11. Distribution and landscape controls of organic layer thickness and carbon within the Alaskan Yukon River Basin

    USGS Publications Warehouse

    Pastick, Neal J.; Rigge, Matthew B.; Wylie, Bruce K.; Jorgenson, M. Torre; Rose, Joshua R.; Johnson, Kristofer D.; Ji, Lei

    2014-01-01

    Understanding of the organic layer thickness (OLT) and organic layer carbon (OLC) stocks in subarctic ecosystems is critical due to their importance in the global carbon cycle. Moreover, post-fire OLT provides an indicator of long-term successional trajectories and permafrost susceptibility to thaw. To these ends, we 1) mapped OLT and associated uncertainty at 30 m resolution in the Yukon River Basin (YRB), Alaska, employing decision tree models linking remotely sensed imagery with field and ancillary data, 2) converted OLT to OLC using a non-linear regression, 3) evaluate landscape controls on OLT and OLC, and 4) quantified the post-fire recovery of OLT and OLC. Areas of shallow (2 = 0.68; OLC: R2 = 0.66), where an average of 16 cm OLT and 5.3 kg/m2 OLC were consumed by fires. Strong predictors of OLT included climate, topography, near-surface permafrost distributions, soil wetness, and spectral information. Our modeling approach enabled us to produce regional maps of OLT and OLC, which will be useful in understanding risks and feedbacks associated with fires and climate feedbacks.

  12. Interface modified thermally stable hole transporting layer for efficient organic light emitting diodes

    SciTech Connect

    Grover, Rakhi; Srivastava, Ritu Dagar, Janardan; Kamalasanan, M. N.; Mehta, D. S.

    2014-08-14

    Electrical transport in thermally stable 2, 7-bis [N, N-bis (4-methoxy-phenyl) amino]-9, 9-spirobifluorene (MeO-Spiro-TPD) thin films has been investigated as a function of temperature and organic layer thickness. ITO/MeO-Spiro-TPD interface was found to be injection limited and has been studied in detail to find barrier height for hole injection. The thickness of tetra-fluoro-tetracyano-quinodimethane thin films were optimized to be used as hole injection buffer layer which resulted in switching of charge transport mechanism from injection limited to space charge limited conduction above a critical thickness of 3 nm. Hole mobility has been measured using transient space charge limited conduction (SCLC), field dependent SCLC, and top contact transistor characteristics. The charge carrier transport in interface modified hole only devices was analysed using Gaussian disorder model. The thermal stability of MeO-Spiro-TPD has been investigated by atomic force microscopy and X-ray diffraction studies. The study indicates a thermally stable and highly efficient hole transport material for application in organic semiconductor based devices.

  13. Anomalous hole injection deterioration of organic light-emitting diodes with a manganese phthalocyanine layer

    SciTech Connect

    Lee, Hyunbok; Lee, Jeihyun; Yi, Yeonjin; Cho, Sang Wan; Kim, Jeong Won

    2015-01-21

    Metal phthalocyanines (MPcs) are well known as an efficient hole injection layer (HIL) in organic devices. They possess a low ionization energy, and so the low-lying highest occupied molecular orbital (HOMO) gives a small hole injection barrier from an anode in organic light-emitting diodes. However, in this study, we show that the hole injection characteristics of MPc are not only determined by the HOMO position but also significantly affected by the wave function distribution of the HOMO. We show that even with the HOMO level of a manganese phthalocyanine (MnPc) HIL located between the Fermi level of an indium tin oxide anode and the HOMO level of a N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine hole transport layer the device performance with the MnPc HIL is rather deteriorated. This anomalous hole injection deterioration is due to the contracted HOMO wave function, which leads to small intermolecular electronic coupling. The origin of this contraction is the significant contribution of the Mn d-orbital to the MnPc HOMO.

  14. Three-Dimensional Self-Organization in Nanocomposite Layered Systems by Ultrafast Laser Pulses.

    PubMed

    Liu, Zeming; Siegel, Jan; Garcia-Lechuga, Mario; Epicier, Thierry; Lefkir, Yaya; Reynaud, Stéphanie; Bugnet, Matthieu; Vocanson, Francis; Solis, Javier; Vitrant, Guy; Destouches, Nathalie

    2017-05-23

    Controlling plasmonic systems with nanometer resolution in transparent films and their colors over large nonplanar areas is a key issue for spreading their use in various industrial fields. Using light to direct self-organization mechanisms provides high-speed and flexible processes to meet this challenge. Here, we describe a route for the laser-induced self-organization of metallic nanostructures in 3D. Going beyond the production of planar nanopatterns, we demonstrate that ultrafast laser-induced excitation combined with nonlinear feedback mechanisms in a nanocomposite thin film can lead to 3D self-organized nanostructured films. The process, which can be extended to complex layered composite systems, produces highly uniform large-area nanopatterns. We show that 3D self-organization originates from the simultaneous excitation of independent optical modes at different depths in the film and is activated by the plasmon-induced charge separation and thermally induced NP growth mechanisms. This laser color marking technique enables multiplexed optical image encoding and the generated nanostructured Ag NPs:TiO2 films offer great promise for applications in solar energy harvesting, photocatalysis, or photochromic devices.

  15. Spatial and temporal evolution of organic foulant layers on reverse osmosis membranes in wastewater reuse applications.

    PubMed

    Farias, Elizabeth L; Howe, Kerry J; Thomson, Bruce M

    2014-07-01

    Advanced treatment to remove trace constituents and emerging contaminants is an important consideration for wastewater treatment for potable reuse, and reverse osmosis (RO) can be a suitable technology to provide the necessary level of treatment. However, membrane fouling by biological and organic matter is a concern. This research examined the development of the RO membrane fouling layer using a bench-scale membrane bioreactor operating at different solids retention times (SRTs), followed by a custom-designed RO test cell. The RO test cell contained stacked plates that sandwich five sheets of RO membrane material, which can be extracted for autopsy at separate times over the course of an experiment without disturbing the remaining membranes. The MBR-RO system was run continuously for 2 weeks at each SRT. The RO membranes were stained for live and dead cells, protein, and carbohydrate-like materials, and visualized using confocal laser scanning microscopy. Images of the stained foulant layers were obtained at different depths within the foulant layer at each time point for all SRT conditions. As the RO foulant layer developed, changes occurred in the distribution and morphology of the live cells and carbohydrates, but not the proteins. These trends were similar for all three SRT conditions tested. RO membrane fouling increased with increased MBR SRT, and the highest SRT had the highest ratios of live to dead cells and carbohydrate-like material to dead cells. The autopsied membranes were also analyzed for protein and carbohydrate content, and it was found that the carbohydrate concentration on the membranes after 14 days increased as the SRT increased.

  16. Barium hydroxide hole blocking layer for front- and back-organic/crystalline Si heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Hossain, Jaker; Kasahara, Koji; Harada, Daisuke; Saiful Islam, A. T. M.; Ishikawa, Ryo; Ueno, Keiji; Hanajiri, Tatsuro; Nakajima, Yoshikata; Fujii, Yasuhiko; Tokuda, Masahide; Shirai, Hajime

    2017-08-01

    We demonstrate the potential of barium hydroxide, Ba(OH)2, as a hole blocking layer on the photovoltaic performance of front- and back-organic/n-type crystalline silicon (n-Si) heterojunction solar cells with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS). The power conversion efficiency (PCE) of the front-PEDOT:PSS/n-Si heterojunction solar cell was increased from 12.8% for pristine to 13.6% with a 2-nm-thick Ba(OH)2 interlayer at the rear n-Si and aluminum (Al) cathode interface due to the enhanced hole blocking as well as electron injection capability to the Al cathode in the infrared region. PCE was further increased to 14.3% with a short-circuit density JSC of 30.27 mA/cm2, an open-circuit voltage VOC of 0.632 V, and a fill factor FF of 0.75 using a 20-nm-thick 4,4'-Cyclohexylidenebis[N,N-bis(4-methylphenyl)benzenamine] as an antireflection layer. PCE of the back-PEDOT:PSS/n-Si heterojunction solar cells was also increased from 4.4% for pristine to 8.1% with a JSC of 33.40 mA/cm2, a VOC of 0.573 V, and an FF of 0.423 by inserting a 2-nm-thick Ba(OH)2 layer at the front-Al and isotropically textured n-Si interface. These findings imply that Ba(OH)2 has great potential as an efficient hole-blocking layer for both front- and back-PEDOT:PSS/n-Si heterojunction solar cells.

  17. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    SciTech Connect

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.

  18. Use of layered double hydroxides and their derivatives as adsorbents for inorganic and organic pollutants

    NASA Astrophysics Data System (ADS)

    You, Youwen

    Contamination of surface and groundwaters by hazardous inorganic and organic pollutants has become an increasing threat to the safety of drinking waters. Cleanup of contaminated surface and groundwaters has, therefore, become a major focus of environmental research. Primary objectives of this dissertation study were to examine the adsorption properties of layered double hydroxides (LDHs) and their derivatives for inorganic and organic contaminants and to identify potential technologies that utilize LDHs and their derivatives for environment remediation. Studies examined the adsorption characteristics of anionic selenium, arsenic and dicamba (3,6 dichloro-2-methoxy benzoic acid) on original LDHs and calcined-LDHs. Adsorption of selenium and arsenic on LDHs was a function of pH. Competing anions in solution strongly affected adsorption of all three contaminants, with divalent anions decreasing adsorption more intensely than monovalent anions. Adsorbed selenium, arsenic and dicamba could be released from LDHs in anion solutions. Adsorption isotherms for selenium and arsenic retention could be fitted to a simple Langmuir equation. Calcination processes significantly increased adsorption capacities of LDHs. Because of adsorption-desorpion characteristics, LDHs could be recycled. X-ray diffraction patterns revealed an increase of d-spacing coupling with adsorption of contaminants, verifying the intercalation of contaminants into layer structure of LDHs. Long chain anionic surfactants intercalated into LDHs modified their surface properties, resulting in organo-LDHs with hydrophobic surface properties. Various organo-LDHs were developed by incorporating different surfactants into LDHs via different synthesis methods. Surfactant intercalation properties were examined and the geometrical arrangements of the intercalated surfactants were characterized. Results revealed that surfactant molecules could adopt various configurations within the LDH interlayer space. Intercalation

  19. Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects

    USGS Publications Warehouse

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-01-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  20. Soil surface organic layers in Arctic Alaska: Spatial distribution, rates of formation, and microclimatic effects

    NASA Astrophysics Data System (ADS)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-06-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500-700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  1. Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light-emitting diode

    PubMed Central

    2014-01-01

    In this paper, we demonstrated the utilization of reduced graphene oxide (RGO) Langmuir-Blodgett (LB) films as high performance hole injection layer in organic light-emitting diode (OLED). By using LB technique, the well-ordered and thickness-controlled RGO sheets are incorporated between the organic active layer and the transparent conducting indium tin oxide (ITO), leading to an increase of recombination between electrons and holes. Due to the dramatic increase of hole carrier injection efficiency in RGO LB layer, the device luminance performance is greatly enhanced comparable to devices fabricated with spin-coating RGO and a commercial conducting polymer PEDOT:PSS as the hole transport layer. Furthermore, our results indicate that RGO LB films could be an excellent alternative to commercial PEDOT:PSS as the effective hole transport and electron blocking layer in light-emitting diode devices. PMID:25298757

  2. Ordered and ultrathin reduced graphene oxide LB films as hole injection layers for organic light-emitting diode.

    PubMed

    Yang, Yajie; Yang, Xiaojie; Yang, Wenyao; Li, Shibin; Xu, Jianhua; Jiang, Yadong

    2014-01-01

    In this paper, we demonstrated the utilization of reduced graphene oxide (RGO) Langmuir-Blodgett (LB) films as high performance hole injection layer in organic light-emitting diode (OLED). By using LB technique, the well-ordered and thickness-controlled RGO sheets are incorporated between the organic active layer and the transparent conducting indium tin oxide (ITO), leading to an increase of recombination between electrons and holes. Due to the dramatic increase of hole carrier injection efficiency in RGO LB layer, the device luminance performance is greatly enhanced comparable to devices fabricated with spin-coating RGO and a commercial conducting polymer PEDOT:PSS as the hole transport layer. Furthermore, our results indicate that RGO LB films could be an excellent alternative to commercial PEDOT:PSS as the effective hole transport and electron blocking layer in light-emitting diode devices.

  3. Synaptic and cellular organization of layer 1 of the developing rat somatosensory cortex

    PubMed Central

    Muralidhar, Shruti; Wang, Yun; Markram, Henry

    2013-01-01

    Layer 1 of the neocortex is sparsely populated with neurons and heavily innervated by fibers from lower layers and proximal and distal brain regions. Understanding the potential functions of this layer requires a comprehensive understanding of its cellular and synaptic organization. We therefore performed a quantitative study of the microcircuitry of neocortical layer 1 (L1) in the somatosensory cortex in juvenile rats (P13–P16) using multi-neuron patch-clamp and 3D morphology reconstructions. Expert-based subjective classification of the morphologies of the recorded L1 neurons suggest 6 morphological classes: (1) the Neurogliaform cells with dense axonal arborizations (NGC-DA) and with sparse arborizations (NGC-SA), (2) the Horizontal Axon Cell (HAC), (3) those with descending axonal collaterals (DAC), (4) the large axon cell (LAC), and (5) the small axon cell (SAC). Objective, supervised and unsupervised cluster analyses confirmed DAC, HAC, LAC and NGC as distinct morphological classes. The neurons were also classified into 5 electrophysiological types based on the Petilla convention; classical non-adapting (cNAC), burst non-adapting (bNAC), classical adapting (cAC), classical stuttering (cSTUT), and classical irregular spiking (cIR). The most common electrophysiological type of neuron was the cNAC type (40%) and the most common morpho-electrical type was the NGC-DA—cNAC. Paired patch-clamp recordings revealed that the neurons were connected via GABAergic inhibitory synaptic connections with a 7.9% connection probability and via gap junctions with a 5.2% connection probability. Most synaptic connections were mediated by both GABAA and GABAB receptors (62.6%). A smaller fraction of synaptic connections were mediated exclusively by GABAA (15.4%) or GABAB (21.8%) receptors. Morphological 3D reconstruction of synaptic connected pairs of L1 neurons revealed multi-synapse connections with an average of 9 putative synapses per connection. These putative synapses

  4. Layer-by-Layer Assembly of Metal-Organic Frameworks in Macroporous Polymer Monolith and Their Use for Enzyme Immobilization.

    PubMed

    Wen, Liyin; Gao, Aicong; Cao, Yao; Svec, Frantisek; Tan, Tianwei; Lv, Yongqin

    2016-03-01

    New monolithic materials comprising zeolitic imidazolate framework (ZIF-8) located on the pore surface of poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith previously functionalized with N-(3-aminopropyl)-imidazole have been prepared via a layer-by-layer self-assembly strategy. These new ZIF-8@monolith hybrids are used as solid-phase carriers for enzyme immobilization. Their performance is demonstrated with immobilization of a model proteolytic enzyme trypsin. The best of the conjugates enable very efficient digestion of proteins that can be achieved in mere 43 s.

  5. Application of the multi-step EPD technique to fabricate thick TiO2 layers: effect of organic medium viscosity on the layer microstructure.

    PubMed

    Sadeghi, A A; Ebadzadeh, T; Raissi, B; Ghashghaie, S; Fateminia, S M A

    2013-02-14

    In the present study, electrophoretic deposition (EPD) was used to obtain dense layers of TiO(2) in four organic media-methanol, ethanol, 1-propanol, and butanol-with different TiO(2) nanoparticle concenterations of 1-8 g/L. Microstructural study of the obtained layers by scanning electron (SEM) and optical microscope (OM) revealed that the multistep EPD technique could effectively prevent crack formation across the layer compared with the single-step method and will consequently increase the critical cracking thickness (CCT). The quality of EPD layers was also affected by viscosity. According to SEM and atomic force microscope (AFM) results, as the viscosity of the medium increased, more compact layers were formed which can be attributed to the lower deposition rates in heavier alcohols. High deposition rate in methanol and ethanol was also confirmed by zeta potential results. Suspension viscosity was interestingly observed to control the threshold concentration above which crack formation would occur. These values were measured to be 3 and 5 g/L for methanol and ethanol, respectively. However, in suspensions based on more viscous alcohols, the threshold concentration increased to 8 g/L which implied the decisive role of medium on concentration limits. It indicates that by employing organic vehicles of higher viscosity it is possible to maintain the CCT values obtained in less viscous media with no need to decrease the colloidal concentration of the suspension.

  6. Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer

    NASA Astrophysics Data System (ADS)

    Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong

    2016-09-01

    Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.

  7. Safety analysis of exothermic reaction hazards associated with the organic liquid layer in tank 241-C-103

    SciTech Connect

    Postma, A.K.; Bechtold, D.B.; Borsheim, G.L.; Grisby, J.M.; Guthrie, R.L.; Kummerer, M.; Turner, D.A.; Plys, M.G.

    1994-03-01

    Safety hazards associated with the interim storage of a potentially flammable organic liquid in waste Tank C-103 are identified and evaluated. The technical basis for closing the unreviewed safety question (USQ) associated with the floating liquid organic layer in this tank is presented.

  8. On the Nature of the Transition Between Roll and Cellular Organization in the Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Salesky, Scott T.; Chamecki, Marcelo; Bou-Zeid, Elie

    2017-04-01

    Both observational and numerical studies of the convective boundary layer (CBL) have demonstrated that when surface heat fluxes are small and mean wind shear is strong, convective updrafts tend to organize into horizontal rolls aligned within 10-20° of the geostrophic wind direction. However, under large surface heat fluxes and weak to negligible shear, convection tends to organize into open cells, similar to turbulent Rayleigh-Bénard convection. Using a suite of 14 large-eddy simulations (LES) spanning a range of -z_i/L between zero (neutral) and 1041 (highly convective), where z_i is the CBL depth and L is the Obukhov length, the transition between roll- and cellular-type convection is investigated systematically for the first time using LES. Mean vertical profiles including velocity variances and turbulent transport efficiencies, as well the "roll factor," which characterizes the rotational symmetry of the vertical velocity field, indicate the transition occurs gradually over a range of -z_i/L; however, the most significant changes in vertical profiles and CBL organization occur from near-neutral conditions up to about -z_i/L ≈ 15-20. Turbulent transport efficiencies and quadrant analysis are used to characterize the turbulent transport of momentum and heat with increasing -z_i/L. It is found that turbulence transports heat efficiently from weakly to highly convective conditions; however, turbulent momentum transport becomes increasingly inefficient as -z_i/L increases.

  9. Low-Temperature, Solution-Processed Molybdenum Oxide Hole-Collection Layer for Organic Photovoltaics

    SciTech Connect

    Hammond, S. R.; Meyer, J.; Widjonarko, N. E.; Ndione, P. F.; Sigdel, A. K.; Garcia, A.; Miedaner, A.; Lloyd, M. T.; Kahn, A.; Ginley, D. S.; Berry, J. J.; Olson, D. C.

    2012-02-21

    We have utilized a commercially available metal-organic precursor to develop a new, low-temperature, solution-processed molybdenum oxide (MoO{sub x}) hole-collection layer (HCL) for organic photovoltaic (OPV) devices that is compatible with high-throughput roll-to-roll manufacturing. Thermogravimetric analysis indicates complete decomposition of the metal-organic precursor by 115 C in air. Acetonitrile solutions spin-cast in a N{sub 2} atmosphere and annealed in air yield continuous thin films of MoO{sub x}. Ultraviolet, inverse, and X-ray photoemission spectroscopies confirm the formation of MoO{sub x} and, along with Kelvin probe measurements, provide detailed information about the energetics of the MoO{sub x} thin films. Incorporation of these films into conventional architecture bulk heterojunction OPV devices with poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester afford comparable power conversion efficiencies to those obtained with the industry-standard material for hole injection and collection: poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The MoO{sub x} HCL devices exhibit slightly reduced open circuit voltages and short circuit current densities with respect to the PEDOT:PSS HCL devices, likely due in part to charge recombination at Mo{sup 5+} gap states in the MoO{sub x} HCL, and demonstrate enhanced fill factors due to reduced series resistance in the MoO{sub x} HCL.

  10. On the Nature of the Transition Between Roll and Cellular Organization in the Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Salesky, Scott T.; Chamecki, Marcelo; Bou-Zeid, Elie

    2016-11-01

    Both observational and numerical studies of the convective boundary layer (CBL) have demonstrated that when surface heat fluxes are small and mean wind shear is strong, convective updrafts tend to organize into horizontal rolls aligned within 10-20° of the geostrophic wind direction. However, under large surface heat fluxes and weak to negligible shear, convection tends to organize into open cells, similar to turbulent Rayleigh-Bénard convection. Using a suite of 14 large-eddy simulations (LES) spanning a range of -z_i/L between zero (neutral) and 1041 (highly convective), where z_i is the CBL depth and L is the Obukhov length, the transition between roll- and cellular-type convection is investigated systematically for the first time using LES. Mean vertical profiles including velocity variances and turbulent transport efficiencies, as well the "roll factor," which characterizes the rotational symmetry of the vertical velocity field, indicate the transition occurs gradually over a range of -z_i/L ; however, the most significant changes in vertical profiles and CBL organization occur from near-neutral conditions up to about -z_i/L ≈ 15-20. Turbulent transport efficiencies and quadrant analysis are used to characterize the turbulent transport of momentum and heat with increasing -z_i/L . It is found that turbulence transports heat efficiently from weakly to highly convective conditions; however, turbulent momentum transport becomes increasingly inefficient as -z_i/L increases.

  11. Polyethylene/organically-modified layered-silicate nanocomposites with antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Songtipya, P.; Jimenez-Gasco, M. M.; Manias, E.

    2009-03-01

    Despite the very intensive research on polymer nanocomposites, the opportunities for new functionalities possible by nanofillers still remain largely untapped. Here, we present polyethylene/inorganic nanocomposites that exhibit strongly enhanced mechanical performance and, at the same time, also an antimicrobial activity originating from the organo-filler nature. Specifically, PE/organically-modified layered-silicate nanocomposites were prepared via melt-processing, and antimicrobial activity was designed by proper choice of their organic modification. Their antimicrobial activity was measured against three micotoxinogen fungal strains (Penicillium roqueforti and claviforme, and Fusarium graminearum) as model soil-borne plant and food contaminants. Montmorillonite-based organofillers, which only differ in their organic modification, were used to exemplify how these surfactants can be designed to render antifungal activity to the nanocomposites. The comparative discussion of the growth of fungi on unfilled PE and nanocomposite PE films is used to demonstrate how the antimicrobial efficacy is dictated by the surfactant chemistry and, further, how the nanocomposites' inhibitory activity compares to that of the organo-fillers and the surfactants.

  12. Improved performances of organic light-emitting diodes with mixed layer and metal oxide as anode buffer

    NASA Astrophysics Data System (ADS)

    Xue, Qin; Liu, Shouyin; Zhang, Shiming; Chen, Ping; Zhao, Yi; Liu, Shiyong

    2013-01-01

    We fabricated organic light-emitting devices (OLEDs) employing 2-methyl-9,10-di(2-naphthyl)-anthracene (MADN) as hole-transport material (HTM) instead of commonly used N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB). After inserting a 0.9 nm thick molybdenum oxide (MoOx) layer at the indium tin oxide (ITO)/MADN interface and a 5 nm thick mixed layer at the organic/organic heterojunction interface, the power conversion efficiency of the device can be increased by 4-fold.

  13. Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Xu, Zhiguang; Wang, Xungai; Lin, Tong

    2013-12-01

    A dual-functional coating with both superhydrophobic and UV-blocking properties was prepared on cotton fabric using a hybrid layered double hydroxide (LDH) nanoplatelet intercalated with 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (HMBS) molecules and an electrostatic layer-by-layer (LbL) assembly technique. The thermal stability of HMBS was greatly enhanced by the host-guest interaction with LDH layers. The as-prepared HMBS@LDH hybrid had a nearly neutral surface charge. To make it carry enough charge for the electrostatic LbL assembly, the HMBS@LDH nanoplatelet was further modified with 3-aminopropyltriethoxy silane. The nanoscale roughness generated by LDH nanoplatelets, together with low-surface-energy fluoroalkylsilane, endowed cotton fabrics with superhydrophobicity. The HMBS@LDH coating showed up to four-fold increase in the UV protection ability of cotton fabrics.

  14. Wrinkled substrate and Indium Tin Oxide-free transparent electrode making organic solar cells thinner in active layer

    NASA Astrophysics Data System (ADS)

    Liu, Kong; Lu, Shudi; Yue, Shizhong; Ren, Kuankuan; Azam, Muhammad; Tan, Furui; Wang, Zhijie; Qu, Shengchun; Wang, Zhanguo

    2016-11-01

    To enable organic solar cells with a competent charge transport efficiency, reducing the thickness of active layer without sacrificing light absorption efficiency turns out to be of high feasibility. Herein, organic solar cells on wrinkled metal surface are designed. The purposely wrinkled Al/Au film with a smooth surface provides a unique scaffold for constructing thin organic photovoltaic devices by avoiding pinholes and defects around sharp edges in conventional nanostructures. The corresponding surface light trapping effect enables the thin active layer (PTB7-Th:PC71BM) with a high absorption efficiency. With the innovative MoO3/Ag/ZnS film as the top transparent electrode, the resulting Indium Tin Oxide-free wrinkled devices show a power conversion efficiency as 7.57% (50 nm active layer), higher than the planner counterparts. Thus, this paper provides a new methodology to improve the performance of organic solar cells by balancing the mutual restraint factors to a high level.

  15. Factors Affecting Moisture Exchange in the Organic Layer of the Forest Floor

    NASA Astrophysics Data System (ADS)

    Raaflaub, L.; Valeo, C.

    2004-05-01

    Virtually all of the mineral soil in the Canadian boreal forest is covered by a layer of decomposing organic matter known as duff. Due to its highly porous nature, only a small portion of incoming precipitation is absorbed by the duff layer, even when it is not completely saturated. The duff layer fosters high percolation rates to the mineral soil below and dries rather quickly; thus, it has a relatively low moisture content. This level of moisture content is not conducive to either seed germination or seedling survival. Duff consumption during forest fires provides areas of exposed mineral soil that are suitable for seed germination. Tree regrowth is much more likely to occur in areas where the mineral soil has been exposed. The location and amount of duff consumed during a fire is a function of several factors including duff density, depth and moisture content. Factors affecting duff moisture content include its physical characteristics, overlying canopy type, hillslope position, soil type and climate. In this study, an investigation is made into the relative significance of capillary suction and other processes influencing the moisture exchange between duff and mineral soil. These processes are analysed in a controlled laboratory experiment using duff collected from different types of canopies. The duff samples, extracted from the boreal forest in central Saskatchewan, were collected from canopies of black spruce, jack pine and trembling aspen. Comparisons are made between the overlying canopy types, as well as between samples from similar canopies at different locations. Physical properties of the duff, such as the porosity and hydraulic conductivity, are analysed in combination with soil-duff interactions. The influence between mineral soil and duff moisture is determined through the use of a soil column that allows for both variable soil moisture and precipitation inputs. Results from this investigation give insight into the relationship between duff and soil

  16. Infrared spectroscopy of large scale single layer graphene on self assembled organic monolayer

    SciTech Connect

    Woo Kim, Nak; Youn Kim, Joo; Lee, Chul; Choi, E. J.; Jin Kim, Sang; Hee Hong, Byung

    2014-01-27

    We study the effect of self-assembled monolayer (SAM) organic molecule substrate on large scale single layer graphene using infrared transmission measurement on Graphene/SAM/SiO{sub 2}/Si composite samples. From the Drude weight of the chemically inert CH{sub 3}-SAM, the electron-donating NH{sub 2}-SAM, and the SAM-less graphene, we determine the carrier density doped into graphene by the three sources—the SiO{sub 2} substrate, the gas-adsorption, and the functional group of the SAM's—separately. The SAM-treatment leads to the low carrier density N ∼ 4 × 10{sup 11} cm{sup −2} by blocking the dominant SiO{sub 2}- driven doping. The carrier scattering increases by the SAM-treatment rather than decreases. However, the transport mobility is nevertheless improved due to the reduced carrier doping.

  17. Dielectric Barrier Discharge Ionization in Characterization of Organic Compounds Separated on Thin-Layer Chromatography Plates

    PubMed Central

    Cegłowski, Michał; Smoluch, Marek; Babij, Michał; Gotszalk, Teodor; Silberring, Jerzy; Schroeder, Grzegorz

    2014-01-01

    A new method for on-spot detection and characterization of organic compounds resolved on thin layer chromatography (TLC) plates has been proposed. This method combines TLC with dielectric barrier discharge ionization (DBDI), which produces stable low-temperature plasma. At first, the compounds were separated on TLC plates and then their mass spectra were directly obtained with no additional sample preparation. To obtain good quality spectra the center of a particular TLC spot was heated from the bottom to increase volatility of the compound. MS/MS analyses were also performed to additionally characterize all analytes. The detection limit of proposed method was estimated to be 100 ng/spot of compound. PMID:25170762

  18. Regioselective atomic layer deposition in metal–organic frameworks directed by dispersion interactions

    DOE PAGES

    Gallington, Leighanne C.; Kim, In Soo; Liu, Wei -Guang; ...

    2016-10-03

    The application of atomic layer deposition (ALD) to metal–organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. As a result, complementary density functional calculations indicate that this startling regioselectivity ismore » driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.« less

  19. Regioselective atomic layer deposition in metal–organic frameworks directed by dispersion interactions

    SciTech Connect

    Gallington, Leighanne C.; Kim, In Soo; Liu, Wei -Guang; Yakovenko, Andrey A.; Platero-Prats, Ana E.; Li, Zhanyong; Wang, Timothy C.; Hupp, Joseph T.; Farha, Omar K.; Truhlar, Donald G.; Martinson, Alex B. F.; Chapman, Karena W.

    2016-10-03

    The application of atomic layer deposition (ALD) to metal–organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. As a result, complementary density functional calculations indicate that this startling regioselectivity is driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.

  20. Regioselective atomic layer deposition in metal–organic frameworks directed by dispersion interactions

    SciTech Connect

    Gallington, Leighanne C.; Kim, In Soo; Liu, Wei-Guang; Yakovenko, Andrey A.; Platero-Prats, Ana E.; Li, Zhanyong; Wang, Timothy C.; Hupp, Joseph; Farha, Omar K.; Truhlar, Donald G.; Martinson, Alex B. F.; Chapman, Karena W.

    2016-10-03

    The application of atomic layer deposition (ALD) to metal–organic frameworks (MOFs) offers a promising new approach to synthesize designer functional materials with atomic precision. While ALD on flat substrates is well established, the complexity of the pore architecture and surface chemistry in MOFs present new challenges. Through in situ synchrotron X-ray powder diffraction, we visualize how the deposited atoms are localized and redistribute within the MOF during ALD. We demonstrate that the ALD is regioselective, with preferential deposition of oxy-Zn(II) species within the small pores of NU-1000. As a result, complementary density functional calculations indicate that this startling regioselectivity is driven by dispersion interactions associated with the preferential adsorption sites for the organometallic precursors prior to reaction.

  1. Cell polarity-driven instability generates self-organized, fractal patterning of cell layers.

    PubMed

    Rudge, Timothy J; Federici, Fernán; Steiner, Paul J; Kan, Anton; Haseloff, Jim

    2013-12-20

    As a model system to study physical interactions in multicellular systems, we used layers of Escherichia coli cells, which exhibit little or no intrinsic coordination of growth. This system effectively isolates the effects of cell shape, growth, and division on spatial self-organization. Tracking the development of fluorescence-labeled cellular domains, we observed the emergence of striking fractal patterns with jagged, self-similar shapes. We then used a large-scale, cellular biophysical model to show that local instabilities due to polar cell-shape, repeatedly propagated by uniaxial growth and division, are responsible for generating this fractal geometry. Confirming this result, a mutant of E. coli with spherical shape forms smooth, nonfractal cellular domains. These results demonstrate that even populations of relatively simple bacterial cells can possess emergent properties due to purely physical interactions. Therefore, accurate physico-genetic models of cell growth will be essential for the design and understanding of genetically programmed multicellular systems.

  2. SpONGE: spontaneous organization of numerous-layer generation by electrospray.

    PubMed

    Jin, Gyuhyung; Shin, Mikyung; Kim, Seung-Hyun; Lee, Haeshin; Jang, Jae-Hyung

    2015-06-22

    Advanced technologies that can mimic hierarchical architectures found in nature can provide pivotal clues for elucidating numerous biological mechanisms. Herein, a novel technology, spontaneous organization of numerous-layer generation by electrospray (SpONGE), was developed to create self-assembled and multilayered fibrous structures. The simple inclusion of salts in a polymer solution prior to electrospraying was key to mediating the structural versatilities of the fibrous structures. The SpONGE matrix demonstrated great potential as a crucial building block capable of inducing sequential, localized drug delivery or orchestrating cellular distribution in vivo, thereby expanding its scope of use to cover a variety of biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. White organic light-emitting devices with mixed interfaces between light emitting layers

    NASA Astrophysics Data System (ADS)

    Lee, Young Gu; Kee, In Seo; Shim, Hong Shik; Ko, Ick Hwan; Lee, Soonil; Koh, Ken Ha

    2007-06-01

    White organic light-emitting devices with mixed interfaces between emitting layers (MI-EML WOLEDs) showed luminance and efficiency as large as 26213cd/m2 and 9.85cd/A. Efficiencies of MI-EML WOLEDs were about 1.5 times better than those of conventional three-EML WOLEDs for luminance of 1000-5000cd/m2, and their half-decay lifetime showed 3.1 times improvement. Note that if the authors operate typical active-matrix mobile-phone displays based on combination of WOLED and color filters to produce standard white emission for high definition televisions and illumination sources, MI-EML WOLEDs will have advantages of 25% less power consumption and 2.8 times longer lifetime over conventional three-EML WOLEDs.

  4. Copper thiocyanate: An attractive hole transport/extraction layer for use in organic photovoltaic cells

    SciTech Connect

    Treat, Neil D. E-mail: t.anthopoulos@imperial.ac.uk; Stingelin, Natalie; Yaacobi-Gross, Nir; Faber, Hendrik; Perumal, Ajay K.; Bradley, Donal D. C.; Anthopoulos, Thomas D. E-mail: t.anthopoulos@imperial.ac.uk

    2015-07-06

    We report the advantageous properties of the inorganic molecular semiconductor copper(I) thiocyanate (CuSCN) for use as a hole collection/transport layer (HTL) in organic photovoltaic (OPV) cells. CuSCN possesses desirable HTL energy levels [i.e., valence band at −5.35 eV, 0.35 eV deeper than poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)], which produces a 17% increase in power conversion efficiency (PCE) relative to PEDOT:PSS-based devices. In addition, a two-fold increase in shunt resistance for the solar cells measured in dark conditions is achieved. Ultimately, CuSCN enables polymer:fullerene based OPV cells to achieve PCE > 8%. CuSCN continues to offer promise as a chemically stable and straightforward replacement for the commonly used PEDOT:PSS.

  5. Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits

    PubMed Central

    Lee, Alice J.; Wang, Guangfu; Jiang, Xiaolong; Johnson, Seraphina M.; Hoang, Elizabeth T.; Lanté, Fabien; Stornetta, Ruth L.; Beenhakker, Mark P.; Shen, Ying; Julius Zhu, J.

    2015-01-01

    Interneurons play a key role in cortical function and dysfunction, yet organization of cortical interneuronal circuitry remains poorly understood. Cortical Layer 1 (L1) contains 2 general GABAergic interneuron groups, namely single bouquet cells (SBCs) and elongated neurogliaform cells (ENGCs). SBCs predominantly make unidirectional inhibitory connections (SBC→) with L2/3 interneurons, whereas ENGCs frequently form reciprocal inhibitory and electric connections (ENGC↔) with L2/3 interneurons. Here, we describe a systematic investigation of the pyramidal neuron targets of L1 neuron-led interneuronal circuits in the rat barrel cortex with simultaneous octuple whole-cell recordings and report a simple organizational scheme of the interneuronal circuits. Both SBCs→ and ENGC ↔ L2/3 interneuronal circuits connect to L2/3 and L5, but not L6, pyramidal neurons. SBC → L2/3 interneuronal circuits primarily inhibit the entire dendritic–somato–axonal axis of a few L2/3 and L5 pyramidal neurons located within the same column. In contrast, ENGC ↔ L2/3 interneuronal circuits generally inhibit the distal apical dendrite of many L2/3 and L5 pyramidal neurons across multiple columns. Finally, L1 interneuron-led circuits target distinct subcellular compartments of L2/3 and L5 pyramidal neurons in a L2/3 interneuron type-dependent manner. These results suggest that L1 neurons form canonical interneuronal circuits to control information processes in both supra- and infragranular cortical layers. PMID:24554728

  6. Band offset of vanadium-doped molybdenum oxide hole transport layer in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Chang, Feng-Kuei; Huang, Yi-Chi; Jeng, Jiann-Shing; Chen, Jen-Sue

    2016-08-01

    Solution-processed vanadium-doped molybdenum oxide films (V)MoOx films with mole ratios of Mo:V = 1:0, 1:0.05, 1:0.2, 1:0.5, 0:1, are fabricated as hole transport layer (HTL) in organic photovoltaics with active layer blend comprising poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM). The device structure is ITO/(V)MoOx/P3HT:PCBM/ZnO NP/Al, and the working area is 0.16 cm2. The result shows that the device using V0.05MoOx HTL has the best performance, including power conversion efficiency of 2.16%, Voc of 0.6 V, Jsc of 6.93 mA/cm2, and FF of 51.9%. Using ultraviolet photoelectron spectroscopy (UPS), we can define the energy levels of valence band edge and Fermi level of (V)MoOx films. UPS analysis indicates that V0.05MoOx has the smallest energy band offset between its valence band edge to the HOMO of P3HT, which is advantageous for hole transporting from P3HT to ITO anode via the V0.05MoOx HTL. In addition, V0.05MoOx film shows the lowest electrical resistivity among all (V)MoOx films, which is further beneficial for hole transportation.

  7. Controlled Modification of Superconductivity in Epitaxial Atomic Layer-Organic Molecule Heterostructures.

    PubMed

    Yoshizawa, Shunsuke; Minamitani, Emi; Vijayaraghavan, Saranyan; Mishra, Puneet; Takagi, Yasumasa; Yokoyama, Toshihiko; Oba, Hiroaki; Nitta, Jun; Sakamoto, Kazuyuki; Watanabe, Satoshi; Nakayama, Tomonobu; Uchihashi, Takashi

    2017-04-12

    Self-assembled organic molecules can potentially be an excellent source of charge and spin for two-dimensional (2D) atomic-layer superconductors. Here we investigate 2D heterostructures based on In atomic layers epitaxially grown on Si and highly ordered metal-phthalocyanine (MPc, M = Mn, Cu) through a variety of techniques: scanning tunneling microscopy, electron transport measurements, angle-resolved photoemission spectroscopy, X-ray magnetic circular dichroism, and ab initio calculations. We demonstrate that the superconducting transition temperature (Tc) of the heterostructures can be modified in a controllable manner. Particularly, the substitution of the coordinated metal atoms from Mn to Cu is found to reverse the Tc shift from negative to positive directions. This distinctive behavior is attributed to a competition of charge and spin effects, the latter of which is governed by the directionality of the relevant d-orbitals. The present study shows the effectiveness of molecule-induced surface doping and the significance of microscopic understanding of the molecular states in these 2D heterostructures.

  8. Air-Stable flexible organic light-emitting diodes enabled by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Yu; Chang, Yi-Neng; Tseng, Ming-Hung; Wang, Ching-Chiun; Tsai, Feng-Yu

    2015-01-01

    Organic light-emitting diodes (OLED) are an energy-efficient light source with many desirable attributes, besides being an important display of technology, but its practical application has been limited by its low air-stability. This study demonstrates air-stable flexible OLEDs by utilizing two atomic-layer-deposited (ALD) films: (1) a ZnO film as both a stable electron-injection layer (EIL) and as a gas barrier in plastics-based OLED devices, and (2) an Al2O3/ZnO (AZO) nano-laminated film for encapsulating the devices. Through analyses of the morphology and electrical/gas-permeation properties of the films, we determined that a low ALD temperature of 70 °C resulted in optimal EIL performance from the ZnO film and excellent gas-barrier properties [water vapor transmission rate (WVTR) <5 × 10-4 g m-2 day-1] from both the ZnO EIL and the AZO encapsulating film. The low-temperature ALD processes eliminated thermal damage to the OLED devices, which were severe when a 90 °C encapsulation process was used, while enabling them to achieve an air-storage lifetime of >10 000 h.

  9. Simulation of mixed-host emitting layer based organic light emitting diodes

    SciTech Connect

    Riku, C.; Kee, Y. Y.; Ong, T. S.; Tou, T. Y.; Yap, S. S.

    2015-04-24

    ‘SimOLED’ simulator is used in this work to investigate the efficiency of the mixed-host organic light emitting devices (MH-OLEDs). Tris-(8-hydroxyquinoline) aluminum(3) (Alq{sub 3}) and N,N-diphenyl-N,N-Bis(3-methylphenyl)-1,1-diphenyl-4,4-diamine (TPD) are used as the electron transport layer (ETL) material and hole transport layer (HTL) material respectively, and the indium-doped tin oxide (ITO) and aluminum (Al) as anode and cathode. Three MH-OLEDs, A, B and C with the same structure of ITO / HTM (15 nm) / Mixed host (70 nm) / ETM (10 nm) /Al, are stimulated with ratios TPD:Alq{sub 3} of 3:5, 5:5, and 5:3 respectively. The Poole-Frenkel model for electron and hole mobilities is employed to compute the current density-applied voltage-luminance characteristics, distribution of the electric field, carrier concentrations and recombination rate.

  10. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    NASA Astrophysics Data System (ADS)

    Haapanala, S.; Rinne, J.; Hakola, H.; Hellén, H.; Laakso, L.; Lihavainen, H.; Janson, R.; O'Dowd, C.; Kulmala, M.

    2007-04-01

    Boundary layer concentrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m-2 h-1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  11. Exciton-blocking phosphonic acid-treated anode buffer layers for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Zimmerman, Jeramy D.; Song, Byeongseop; Griffith, Olga; Forrest, Stephen R.

    2013-12-01

    We demonstrate significant improvements in power conversion efficiency of bilayer organic photovoltaics by replacing the exciton-quenching MoO3 anode buffer layer with an exciton-blocking benzylphosphonic acid (BPA)-treated MoO3 or NiO layer. We show that the phosphonic acid treatment creates buffers that block up to 70% of excitons without sacrificing the hole extraction efficiency. Compared to untreated MoO3 anode buffers, BPA-treated NiO buffers exhibit a ˜ 25% increase in the near-infrared spectral response in diphenylanilo functionalized squaraine (DPSQ)/C60-based bilayer devices, increasing the power conversion efficiency under 1 sun AM1.5G simulated solar illumination from 4.8 ± 0.2% to 5.4 ± 0.3%. The efficiency can be further increased to 5.9 ± 0.3% by incorporating a highly conductive exciton blocking bathophenanthroline (BPhen):C60 cathode buffer. We find similar increases in efficiency in two other small-molecule photovoltaic systems, indicating the generality of the phosphonic acid-treated buffer approach to enhance exciton blocking.

  12. Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer.

    PubMed

    Chang, Sehoon; Han, Ggoch Ddeul; Weis, Jonathan G; Park, Hyoungwon; Hentz, Olivia; Zhao, Zhibo; Swager, Timothy M; Gradečak, Silvija

    2016-04-06

    Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI(3-x)Cl(x)) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air.

  13. Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits.

    PubMed

    Lee, Alice J; Wang, Guangfu; Jiang, Xiaolong; Johnson, Seraphina M; Hoang, Elizabeth T; Lanté, Fabien; Stornetta, Ruth L; Beenhakker, Mark P; Shen, Ying; Julius Zhu, J

    2015-08-01

    Interneurons play a key role in cortical function and dysfunction, yet organization of cortical interneuronal circuitry remains poorly understood. Cortical Layer 1 (L1) contains 2 general GABAergic interneuron groups, namely single bouquet cells (SBCs) and elongated neurogliaform cells (ENGCs). SBCs predominantly make unidirectional inhibitory connections (SBC→) with L2/3 interneurons, whereas ENGCs frequently form reciprocal inhibitory and electric connections (ENGC↔) with L2/3 interneurons. Here, we describe a systematic investigation of the pyramidal neuron targets of L1 neuron-led interneuronal circuits in the rat barrel cortex with simultaneous octuple whole-cell recordings and report a simple organizational scheme of the interneuronal circuits. Both SBCs→ and ENGC ↔ L2/3 interneuronal circuits connect to L2/3 and L5, but not L6, pyramidal neurons. SBC → L2/3 interneuronal circuits primarily inhibit the entire dendritic-somato-axonal axis of a few L2/3 and L5 pyramidal neurons located within the same column. In contrast, ENGC ↔ L2/3 interneuronal circuits generally inhibit the distal apical dendrite of many L2/3 and L5 pyramidal neurons across multiple columns. Finally, L1 interneuron-led circuits target distinct subcellular compartments of L2/3 and L5 pyramidal neurons in a L2/3 interneuron type-dependent manner. These results suggest that L1 neurons form canonical interneuronal circuits to control information processes in both supra- and infragranular cortical layers.

  14. Ultrathin ammonium heptamolybdate films as efficient room-temperature hole transport layers for organic solar cells.

    PubMed

    Qiu, Weiming; Hadipour, Afshin; Müller, Robert; Conings, Bert; Boyen, Hans-Gerd; Heremans, Paul; Froyen, Ludo

    2014-09-24

    Ammonium heptamolybdate (NH4)6Mo7O24·4H2O (AHM) and its peroxo derivatives are analyzed as solution-processed room temperature hole transport layer (HTL) in organic solar cells. Such AHM based HTLs are investigated in devices with three different types of active layers, i.e., solution-processed poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acid methyl ester(P3HT/PC60BM), poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]/[6,6]-phenyl C70-butyric acid methyl ester(PCDTBT/PC70BM) and evaporated small molecule chloro(subphthalocyaninato)boron(III) (SubPc)/C60. By virtue of their high work functions, AHM based HTLs outperform the commonly used poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) HTL for devices employing deep HOMO level active materials. Moreover, devices using AHM based HTLs can achieve higher short circuit current (Jsc) than the ones with evaporated molybdenum oxide(eMoO3), and thus better power conversion efficiency (PCE). In addition, P3HT/PC60BM devices with AHM based HTLs show air stability comparable to those with eMoO3, and much better than the ones with PEDOT:PSS.

  15. Soil carbon stock increases in the organic layer of boreal middle-aged stands

    NASA Astrophysics Data System (ADS)

    Häkkinen, M.; Heikkinen, J.; Mäkipää, R.

    2011-02-01

    Changes in the soil carbon stock can potentially have a large influence on global carbon balance between terrestrial ecosystems and atmosphere. Since carbon sequestration of forest soils is influenced by human activities, reporting of the soil carbon pool is a compulsory part of the national greenhouse gas (GHG) inventories. Various soil carbon models are applied in GHG inventories, however, the verification of model-based estimates is lacking. In general, the soil carbon models predict accumulation of soil carbon in the middle-aged stands, which is in good agreement with chronosequence studies and flux measurements of eddy sites, but they have not been widely tested with repeated measurements of permanent plots. The objective of this study was to evaluate soil carbon changes in the organic layer of boreal middle-aged forest stands. Soil carbon changes on re-measured sites were analyzed by using soil survey data that was based on composite samples as a first measurement and by taking into account spatial variation on the basis of the second measurement. By utilizing earlier soil surveys, a long sampling interval, which helps detection of slow changes, could be readily available. The range of measured change in the soil organic layer varied from -260 to 1260 g m-2 over the study period of 16-19 years and 23 ± 2 g m-2 per year, on average. The increase was significant in 6 out of the 38 plots from which data were available. Although the soil carbon change was difficult to detect at the plot scale, the overall increase measured across the middle-aged stands agrees with predictions of the commonly applied soil models. Further verification of the soil models is needed with larger datasets that cover wider geographical area and represent all age classes, especially young stands with potentially large soil carbon source.

  16. Soil carbon stock increases in the organic layer of boreal middle-aged stands

    NASA Astrophysics Data System (ADS)

    Häkkinen, M.; Heikkinen, J.; Mäkipää, R.

    2011-05-01

    Changes in the soil carbon stock can potentially have a large influence on global carbon balance between terrestrial ecosystems and atmosphere. Since carbon sequestration of forest soils is influenced by human activities, reporting of the soil carbon pool is a compulsory part of the national greenhouse gas (GHG) inventories. Various soil carbon models are applied in GHG inventories, however, the verification of model-based estimates is lacking. In general, the soil carbon models predict accumulation of soil carbon in the middle-aged stands, which is in good agreement with chronosequence studies and flux measurements of eddy sites, but they have not been widely tested with repeated measurements of permanent plots. The objective of this study was to evaluate soil carbon changes in the organic layer of boreal middle-aged forest stands. Soil carbon changes on re-measured sites were analyzed by using soil survey data that was based on composite samples as a first measurement and by taking into account spatial variation on the basis of the second measurement. By utilizing earlier soil surveys, a long sampling interval, which helps detection of slow changes, could be readily available. The range of measured change in the soil organic layer varied from -260 to 1260 g m-2 over the study period of 16-19 years and 23 ± 2 g m-2 per year, on average. The increase was significant in 6 out of the 38 plots from which data were available. Although the soil carbon change was difficult to detect at the plot scale, the overall increase measured across the middle-aged stands agrees with predictions of the commonly applied soil models. Further verification of the soil models is needed with larger datasets that cover wider geographical area and represent all age classes, especially young stands with potentially large soil carbon source.

  17. Influence of active layer and support layer surface structures on organic fouling propensity of thin-film composite forward osmosis membranes.

    PubMed

    Lu, Xinglin; Arias Chavez, Laura H; Romero-Vargas Castrillón, Santiago; Ma, Jun; Elimelech, Menachem

    2015-02-03

    In this study, we investigate the influence of surface structure on the fouling propensity of thin-film composite (TFC) forward osmosis (FO) membranes. Specifically, we compare membranes fabricated through identical procedures except for the use of different solvents (dimethylformamide, DMF and N-methyl-2-pyrrolidinone, NMP) during phase separation. FO fouling experiments were carried out with a feed solution containing a model organic foulant. The TFC membranes fabricated using NMP (NMP-TFC) had significantly less flux decline (7.47 ± 0.15%) when compared to the membranes fabricated using DMF (DMF-TFC, 12.70 ± 2.62% flux decline). Water flux was also more easily recovered through physical cleaning for the NMP-TFC membrane. To determine the fundamental cause of these differences in fouling propensity, the active and support layers of the membranes were extensively characterized for physical and chemical characteristics relevant to fouling behavior. Polyamide surface roughness was found to dominate all other investigated factors in determining the fouling propensities of our membranes relative to each other. The high roughness polyamide surface of the DMF-TFC membrane was also rich in larger leaf-like structures, whereas the lower roughness NMP-TFC membrane polyamide layer contained more nodular and smaller features. The support layers of the two membrane types were also characterized for their morphological properties, and the relation between support layer surface structure and polyamide active layer formation was discussed. Taken together, our findings indicate that support layer structure has a significant impact on the fouling propensity of the active layer, and this impact should be considered in the design of support layer structures for TFC membranes.

  18. The Mesoscale Organization, Dynamics, and Evolution of the Marine Planetary Boundary Layer during Cold Air Outbreaks

    NASA Astrophysics Data System (ADS)

    Walter, Bernard A., Jr.

    Satellite imagery along with aircraft data collected off the east coast of the U.S. and over the Bering Sea are used to study the evolution of organized mesoscale convection with fetch during cold air outbreaks. Comparisons between satellite photos of cloud formations during cold air outbreaks and results from Rayleigh -Benard laboratory experiments show a number of similarities. Satellite photos in general show three distinct regions offshore where particular mesoscale convective regimes dominate, while Rayleigh-Benard studies show a transition to different convective forms as the Rayleigh number is increased. Features associated with the increase of cloud stress spacing with fetch are suggestive of mechanisms which cause roll wavelengths to increase as the Rayleigh number is increased in Rayleigh -Benard studies. Off the east coast, rolls present upstream of the coastline were weakened just offshore but still provided a linearizing tendency to the dominant convective forms which were thermal plume-like structures with horizontal scales of 1.5 z(,i). Further offshore, two dimensional linear rolls with wavelengths of 4 z(,i) were dominant. The strengths of individual rolls were found to vary in the crosswind direction, such that the circulations of some rolls did not reach the top of the boundary layer. Aircraft data from over the Bering Sea show a different situation in that cloud streets present at the ice edge, although broadening with distance downstream, still maintain their two dimensional nature. The aircraft data both near the ice edge and further downstream, show organized roll circulations on scales in addition to those seen in the satellite photos. Calculation of an atmospheric Rayleigh number using a value of the eddy viscosity obtained from the aircraft data resulted in the placement of broad bounds on values of the atmospheric Rayleigh number for different convective regimes. Comparison of aircraft observations of boundary layer growth with fetch

  19. Layer-by-layer assembly of luminescent ultrathin films by Mg-Al-Eu LDHs nanosheets and organic ligand with high transparency

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Li, Yanlin; Fan, Hongxian

    2016-01-01

    We fabricated a kind of luminescent ordered multilayer transparent ultrathin films (OMTFs) based on inorganic rare earth doped layered double hydroxides (Mg-Al-Eu LDHs) nanosheets and the organic ligand 2-thenoyltrifluoroacetone (TTA) via layer-by-layer assembly method. At the same time, Polyvinyl Alcohol (PVA) aqueous solution was used as intermediate linkers. UV-visible absorption spectroscopy, X-ray diffraction, fluorescence spectroscopy and scanning electron microscopy were introduced to investigate the structure and properties of these films. Surprisingly, the uniformity and the fluorescence emission intensity of OMTFs which utilized polyvinyl Alcohol (PVA) as intermediate linkers are significantly enhanced compared with that of OMTFs without PVA. Herein, it was found that the fluorescence emission intensity of this kind of ultrathin film with PVA displays a monotonic increase as the number of deposition cycles increasing, and further the films which are highly transparent, uniform and ultrathin have potential applications in the optical display devices.

  20. Layer-by-layer immobilization of quaternized carboxymethyl chitosan/organic rectorite and alginate onto nanofibrous mats and their antibacterial application.

    PubMed

    Jiang, Linbin; Lu, Yuan; Liu, Xingyun; Tu, Hu; Zhang, Jianwei; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2015-05-05

    Quaternized carboxymethyl chitosan (QCM-chitosan) and organic rectorite (OREC) immobilized nanofibrous mats are fabricated via layer-by-layer (LBL) technique in a self-assembly manner. The negatively charged cellulose nanofibrous mats hydrolyzed from electrospun cellulose acetate (CEL) mats are alternately modified with the positively charged QCM-chitosan and OREC intercalated composites and the negatively charged sodium alginate (ALG) via LBL technique. The morphology and antibacterial activity of the resultant mats are studied by changing the number of deposition bilayers, the compositions of dipping solutions and outermost layer. X-ray photoelectron spectroscopy results imply that QCM-chitosan and OREC are coated on cellulose mats. Besides, wide angle X-ray diffraction and small angle X-ray diffraction are applied to investigate the crystalline of the composite mats and the interlayer distance of OREC, respectively. The antibacterial activity of the mats increases with the incorporation of OREC into LBL films. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Highly efficient tandem organic light-emitting devices utilizing the connecting structure based on n-doped electron-transport layer/HATCN/hole-transport layer.

    PubMed

    Wu, Yi-Lin; Chen, Chien-Yu; Huang, Yi-Hsiang; Lu, Yin-Jui; Chou, Cheng-Hsu; Wu, Chung-Chih

    2014-08-01

    In this work, we conducted studies of tandem organic light-emitting devices (OLEDs) based on the connecting structure consisting of n-doped electron-transport layer (n-ETL)/1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN)/hole-transport layer. We investigated effects of different n-ETL materials and different HATCN thicknesses on characteristics of tandem OLEDs. Results show that the tandem OLEDs with n-BPhen and a 20 nm layer of HATCN in the connecting structure exhibited the best performance. With these, highly efficient and bright green phosphorescent two-emitting-unit tandem OLEDs, with drive voltages significantly lower than twice that of the single-unit benchmark device and current efficiencies higher than twice that of the single-unit benchmark device, were demonstrated.

  2. Influence of PEDOT:PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes

    SciTech Connect

    Wegler, Barbara; Schmidt, Oliver; Hensel, Bernhard

    2015-01-15

    Organic light emitting diodes (OLEDs) are well suited for energy saving lighting applications, especially when thinking about highly flexible and large area devices. In order to avoid the degradation of the organic components by water and oxygen, OLEDs need to be encapsulated, e.g., by a thin sheet of glass. As the device is then no longer flexible, alternative coatings are required. Atomic layer deposition (ALD) is a very promising approach in this respect. The authors studied OLEDs that were encapsulated by 100 nm Al{sub 2}O{sub 3} deposited by ALD. The authors show that this coating effectively protects the active surface area of the OLEDs from humidity. However, secondary degradation processes still occur at sharp edges of the OLED stack where the extremely thin encapsulation layer does not provide perfect coverage. Particularly, the swelling of poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate), which is a popular choice for the planarization of the bottom electrode and at the same time acts as a hole injection layer, affects the effectiveness of the encapsulation layer.

  3. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    PubMed

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  4. Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts

    SciTech Connect

    Cao, Lingyun; Lin, Zekai; Peng, Fei; Wang, Weiwei; Huang, Ruiyun; Wang, Cheng; Yan, Jiawei; Liang, Jie; Zhang, Zhiming; Zhang, Teng; Long, Lasheng; Sun, Junliang; Lin, Wenbin

    2016-03-08

    Metal–organic layers (MOLs) represent an emerging class of tunable and functionalizable two-dimensional materials. In this work, the scalable solvothermal synthesis of self-supporting MOLs composed of [Hf6O4(OH)4(HCO2)6] secondary building units (SBUs) and benzene-1,3,5-tribenzoate (BTB) bridging ligands is reported. The MOL structures were directly imaged by TEM and AFM, and doped with 4'-(4-benzoate)-(2,2',2''-terpyridine)-5,5''-dicarboxylate (TPY) before being coordinated with iron centers to afford highly active and reusable single-site solid catalysts for the hydrosilylation of terminal olefins. MOL-based heterogeneous catalysts are free from the diffusional constraints placed on all known porous solid catalysts, including metal–organic frameworks. This work uncovers an entirely new strategy for designing single-site solid catalysts and opens the door to a new class of two-dimensional coordination materials with molecular functionalities.

  5. Improving quality of textile wastewater with organic materials as multi soil layering

    NASA Astrophysics Data System (ADS)

    Supriyadi; Widijanto, H.; Pranoto; Dewi, AK

    2016-02-01

    On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.

  6. Nanoscale design of multifunctional organic layers for low-power high-density memory devices.

    PubMed

    Nougaret, Laurianne; Kassa, Hailu G; Cai, Ronggang; Patois, Tilia; Nysten, Bernard; van Breemen, Albert J J M; Gelinck, Gerwin H; de Leeuw, Dago M; Marrani, Alessio; Hu, Zhijun; Jonas, Alain M

    2014-04-22

    We demonstrate the design of a multifunctional organic layer by the rational combination of nanosized regions of two functional polymers. Instead of relying on a spontaneous and random phase separation process or on the tedious synthesis of block copolymers, the method involves the nanomolding of a first component, followed by the filling of the resulting open spaces by a second component. We apply this methodology to fabricate organic nonvolatile memory diodes of high density. These are built by first creating a regular array of ferroelectric nanodots by nanoimprint lithography, followed by the filling of the trenches separating the ferroelectric nanodots with a semiconducting polymer. The modulation of the current in the semiconductor by the polarization state of the ferroelectric material is demonstrated both at the scale of a single semiconductor channel and in a microscopic device measuring about 80,000 channels in parallel, for voltages below ca. 2 V. The fabrication process, which combines synergetically orthogonal functional properties with a fine control over their spatial distribution, is thus demonstrated to be efficient over large areas.

  7. Organic inorganic dye filler for polymer: blue-coloured layered double hydroxides into polystyrene.

    PubMed

    Marangoni, Rafael; Taviot-Guého, Christine; Illaik, Abdallah; Wypych, Fernando; Leroux, Fabrice

    2008-10-15

    A series of blue dye molecules, Evans blue (EB), Chicago sky blue (CB), Niagara blue (NB) were incorporated by direct co-precipitation within the galleries of negatively charge layered double hydroxide (LDH). The materials of cation composition Zn/Al = 2 lead to well-defined organic inorganic assemblies. The molecular arrangement of the interleaved dye molecule is proposed by 1D electronic density projection along the stacking direction for the hydrothermally treated samples with alternatively a highly inclined orientation of EB and CB and a parallel-bilayer arrangement for NB. Blue coloured LDH assemblies were subsequently dispersed into polystyrene (PS). It was found that the hybrid fillers do not interfere in the radical polymerization of styrene, giving rise to similar molecular weight and polydispersity than filler free PS, while higher glass transition temperatures were obtained for the nanocomposites. This was consistent with the rheological behaviour with the observation for LDH/NB filler based nanocomposite of shear thinning exponent different from zero, underlining frictional interaction between filler and PS chain. The absorption maximum slightly blue-shifted for the hybrid filler in comparison to the corresponding organic dye was found unmodified for the PS nanocomposite, thus giving rise to blue coloured plastic films, reminiscent somehow of the blue Maya effect.

  8. Laser-induced microstructuring of two-dimensional layered inorganic-organic perovskites.

    PubMed

    Kanaujia, Pawan K; Vijaya Prakash, G

    2016-04-14

    Non-contact bi-directional micropatterning of two-dimensional (2D) layered inorganic-organic (IO) perovskite [(R-NH3)2PbI4, R = organic moiety] thin films by direct laser writing (DLW) has been reported. These 2D materials are in the form of natural multiple quantum well (MQW) structures and show excitonic luminescence at room temperature because of quantum and dielectric confinement effects. Systematic optical and structural analyses of these laser processed hybrid systems provide an insight into laser-matter interaction and a pathway to develop technology to define complex 2D material based devices with new functionalities. These laser-matter interaction studies reveal several concurrent processes: single photon absorption, material ablation, melting and agglomeration of nanostructures and chemical/physical modifications. This study also provides an insight into chemical and optical changes in laser processed 2D perovskites which subsequently can be recovered by chemical processing. Apart from controllable feature sizes, the prolonged laser exposure results in material agglomeration in the form of nano-pillars at the laser track boundaries. Low-cost micro/nano-scaffolding of IO perovskites may have several important advantages in scalable optoelectronic devices, the realisation of luminescent photonic architectures (photonic crystals and waveguides), and light harvesting elements for IO LEDs and solar cells.

  9. Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers

    PubMed Central

    Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya

    2016-01-01

    Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691

  10. Investigation of hole injection enhancement by MoO{sub 3} buffer layer in organic light emitting diodes

    SciTech Connect

    Haitao, Xu; Xiang, Zhou

    2013-12-28

    An MoO{sub 3} buffer layer prepared by thermal evaporation as hole injection layer was investigated in organic light emitting diodes. The MoO{sub 3} film inserted between the anode and hole transport layer decreased the operating voltage and enhanced power efficiency. Introduction of 1 nm MoO{sub 3} film, which was found to be the optimum layer thickness, resulted in 45% increase in efficiency compared with traditional ITO anode. Results from atomic force microscopy and photoemission spectroscopy showed that smooth surface morphology and suitable energy level alignment of ITO/MoO{sub 3} interface facilitated hole injection and transport. The hole injection and transport mechanism at the ITO/MoO{sub 3} interface in thin and thick buffer layers were analyzed.

  11. Out-coupling efficiency enhancement of organic light emitting diode device by SiO2-UV hardener composite layer.

    PubMed

    Ham, Hyo Kyun; Oh, Yong Taeg; Choi, Seok Eui; Park, Jong Woon; Choi, BumHo; Shin, Dong Chan

    2011-02-01

    The enhancement of out-coupling efficiency of organic light emitting diode (OLED) using SiO2-polymer composite layers was investigated. The SiO2-polymer composite was made from a SiO2 nanopowder and commercial UV-hardeners. The composite layer was coated on glass by dip-coating method in a SiO2 suspension, followed by spin-coating of 1 microm thick UV-hardener of was found that the optical properties were depend on the quantity of SiO2 nanopowder in the composite layer and dispersion of SiO2 suspension. 194/440 nm size of SiO2 nanopowders were added to the composite layer to enhance the light scattering effect. The OLED device which the SiO2-polymer composite layer was applied showed enhanced out-coupling efficiency around 30%.

  12. Barrier performance optimization of atomic layer deposited diffusion barriers for organic light emitting diodes using x-ray reflectivity investigations

    SciTech Connect

    Singh, Aarti Schröder, Uwe; Klumbies, Hannes; Müller-Meskamp, Lars; Leo, Karl; Geidel, Marion; Knaut, Martin; Hoßbach, Christoph; Albert, Matthias; Mikolajick, Thomas

    2013-12-02

    The importance of O{sub 3} pulse duration for encapsulation of organic light emitting diodes (OLEDs) with ultra thin inorganic atomic layer deposited Al{sub 2}O{sub 3} layers is demonstrated for deposition temperatures of 50 °C. X-ray reflectivity (XRR) measurements show that O{sub 3} pulse durations longer than 15 s produce dense and thin Al{sub 2}O{sub 3} layers. Correspondingly, black spot growth is not observed in OLEDs encapsulated with such layers during 91 days of aging under ambient conditions. This implies that XRR can be used as a tool for process optimization of OLED encapsulation layers leading to devices with long lifetimes.

  13. Storm runoff generation at a steep pre-alpine hillslope - transmissivity feedback or organic layer interflow?

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Pool, Sandra; Strouhal, Ludek; Seibert, Jan

    2015-04-01

    This study investigated storm runoff generation processes of a pre-alpine hillslope prone to slide. The experimental pasture plot is located in the northern front range of the Swiss Alps on a 30° steep hillslope. A gleysol overlies weathered marlstone and conglomerate of subalpine molasse. We conducted sprinkling experiments on a subplot with variable rainfall intensities. During both experiments fluorescein line-tracer injections into the topsoil, and sodium chloride (NaCl) injections into the sprinkling water were used to monitor flow velocities in the soil. The observed flow velocities for fluorescein in the soil were 1.2 and 1.4 × 10-3 m s-1. The NaCl breakthrough occurred almost simultaneously in all monitored discharge levels (0.05, 0.25 and 1.0 m depth), indicating a high infiltration capacity and efficient lateral drainage of the soil. These initial observations suggested 'transmissivity feedback' (a form of subsurface stormflow described in Nordic catchments by Allan Rhode in 1987) as the dominant storm runoff generation process. However, excavation of dye-stained soil horizons from a brilliant blue tracer experiment completely changed our perceptions of the prevailing storm flow paths and its runoff generation mechanisms. The results highlighted the dominance of 'organic layer interflow', a form of shallow subsurface stormflow at the hillslope. The dye stained the entire topsoil horizon, vertical soil fractures, and macropores (mostly worm burrows) up to 0.5 m depth. Lateral drainage in the subsoil horizons or at the soil-bedrock interface was not observed; drainage was limited to the organic topsoil. The subsoil with its low permeability acted locally as a soil percolation and bedrock exfiltration barrier, producing significant lateral drainage in the organic topsoil and pronounced pore water pressure changes in the bedrock. Reference Rohde, A.: The origin of streamwater traced by Oxygen-18, 260 pp., Uppsala University., 1987.

  14. Well-ordered organic-inorganic hybrid layered manganese oxide nanocomposites with excellent decolorization performance

    SciTech Connect

    Zhou, Junli; Yu, Lin; Sun, Ming; Ye, Fei; Lan, Bang; Diao, Guiqiang; He, Jun

    2013-02-15

    Well-ordered organic-inorganic hybrid layered manganese oxide nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO{sub 2} nanosheets were self-assembled in the presence of CTAB, and subsequently pillared with Keggin ions. The obtained CTAB-Al-MO with the basal spacing of 1.59 nm could be stable at 300 Degree-Sign C for 2 h and also possesses high total pore volumes (0.41 cm Superscript-Three g{sup -1}) and high specific BET surface area (161 m{sup 2} g{sup -1}), which is nine times larger than that of the pristine (19 m{sup 2} g{sup -1}). Possible formation process for the highly thermal stable CTAB-Al-MO is proposed here. The decolorization experiments of methyl orange showed that the obtained CTAB-Al-MO exhibit excellent performance in wastewater treatment and the decolorization rate could reach 95% within 5 min. - Graphical Abstract: Well-ordered organic-inorganic hybrid LMO nanocomposites (CTAB-Al-MO) with excellent decolorization performance were prepared through a two-step process. Specifically, the MnO{sub 2} nanosheets were self-assembled by CTAB, and subsequently pillared with Keggin ions. Highlights: Black-Right-Pointing-Pointer A two-step synthesis method was used to prepare the CTAB-Al-MO. Black-Right-Pointing-Pointer The CTAB-Al-MO has the large basal spacing and high specific BET surface area. Black-Right-Pointing-Pointer The thermal stability of the well-ordered CTAB-Al-MO could obviously improve. Black-Right-Pointing-Pointer The CTAB-Al-MO exhibits excellent oxidation and absorption ability to remove organic pollutants.

  15. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N. J.; Bergeron, Y.; Xu, X.; Welp, L. R.; Medvigy, D.

    2016-09-01

    Previous empirical work has shown that feedbacks between fire severity, soil organic layer thickness, tree recruitment, and forest growth are important factors controlling carbon accumulation after fire disturbance. However, current boreal forest models inadequately simulate this feedback. We address this deficiency by updating the ED2 model to include a dynamic feedback between soil organic layer thickness, tree recruitment, and forest growth. The model is validated against observations spanning monthly to centennial time scales and ranging from Alaska to Quebec. We then quantify differences in forest development after fire disturbance resulting from changes in soil organic layer accumulation, temperature, nitrogen availability, and atmospheric CO2. First, we find that ED2 accurately reproduces observations when a dynamic soil organic layer is included. Second, simulations indicate that the presence of a thick soil organic layer after a mild fire disturbance decreases decomposition and productivity. The combination of the biological and physical effects increases or decreases total ecosystem carbon depending on local conditions. Third, with a 4°C temperature increase, some forests transition from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing total ecosystem carbon by ˜40% after 300 years. However, the presence of a thick soil organic layer due to a persistently mild fire regime can prevent this transition and mediate carbon losses even under warmer temperatures. Fourth, nitrogen availability regulates successional dynamics; broadleaf species are less competitive with needleleaf trees under low nitrogen regimes. Fifth, the boreal forest shows additional short-term capacity for carbon sequestration as atmospheric CO2 increases.

  16. Layer-by-Layer Assemblies in Nanoporous Templates: Nano-Organized Design and Applications of Soft Nanotechnology

    PubMed Central

    Azzaroni, Omar; Lau, K.H. Aaron

    2011-01-01

    The synergistic combination of layer-by-layer (LbL) assembly and nanoporous membrane templating has greatly facilitated the creation of complex and functional nanotubular structures. The approach takes advantage of both the new properties conferred by assembling diverse LbL building blocks and the tight dimensional control offered by nanotemplating to enable new functionalities that arise from the highly anisotropic “one-dimensional” LbL-nanotube format. In this review, we aim to convey the key developments and provide a current snap-shot of such templated LbL nanoarchitectures. We survey recent developments that have enabled the assembly of polymers, biomolecules and inorganic nanoparticles “à la carte”, via electrostatic, covalent and specific (bio)recognition interactions. We also discuss the emerging mechanistic understanding of the LbL assembly process within the nanopore environment. Finally, we present a diverse range of LbL nanotube “devices” to illustrate the versatility of the nanotemplated LbL toolbox for generating functional soft nanotechnology. PMID:22216060

  17. Self-organization of local magnetoplasma structures in the upper layers of the solar convection zone

    SciTech Connect

    Chumak, O. V.

    2013-08-15

    Self-organization and evolution of magnetoplasma structures in the upper layers of the solar convection zone are discussed as a process of diffuse aggregation of magnetic flux tubes. Equations describing the tube motion under the action of magnetic interaction forces, hydrodynamic forces, and random forces are written explicitly. The process of aggregation of magnetic flux tubes into magnetic flux clusters of different shapes and dimensions is simulated numerically. The obtained structures are compared with the observed morphological types of sunspot groups. The quantitative comparison with the observational data was performed by comparing the fractal dimensions of the photospheric magnetic structures observed in solar active regions with those of structures obtained in the numerical experiment. The model has the following free parameters: the numbers of magnetic flux tubes with opposite polarities on the considered area element (Nn and Ns), the average radius of the cross section of the magnetic flux tube (a), its effective length (l), the twist factor of the tube field (k), and the absolute value of the average velocity of chaotic tube displacements (d). Variations in these parameters in physically reasonable limits leads to the formation of structures (tube clusters of different morphological types) having different fractal dimensions. Using the NOAA 10488 active region, which appeared and developed into a complicated configuration near the central meridian, as an example, it is shown that good quantitative agreement between the fractal dimensions is achieved at the following parameters of the model: Nn = Ns = 250 ± 50; a = 150 ± 50 km; l ∼ 5000 km, and d = 80 ± 10 m/s. These results do not contradict the observational data and theoretical estimates obtained in the framework of the Parker “spaghetti” model and provide new information on the physical processes resulting in the origin and evolution of local magnetic plasma structures in the near

  18. Self-organization of local magnetoplasma structures in the upper layers of the solar convection zone

    NASA Astrophysics Data System (ADS)

    Chumak, O. V.

    2013-08-01

    Self-organization and evolution of magnetoplasma structures in the upper layers of the solar convection zone are discussed as a process of diffuse aggregation of magnetic flux tubes. Equations describing the tube motion under the action of magnetic interaction forces, hydrodynamic forces, and random forces are written explicitly. The process of aggregation of magnetic flux tubes into magnetic flux clusters of different shapes and dimensions is simulated numerically. The obtained structures are compared with the observed morphological types of sunspot groups. The quantitative comparison with the observational data was performed by comparing the fractal dimensions of the photospheric magnetic structures observed in solar active regions with those of structures obtained in the numerical experiment. The model has the following free parameters: the numbers of magnetic flux tubes with opposite polarities on the considered area element ( Nn and Ns), the average radius of the cross section of the magnetic flux tube ( a), its effective length ( l), the twist factor of the tube field ( k), and the absolute value of the average velocity of chaotic tube displacements ( d). Variations in these parameters in physically reasonable limits leads to the formation of structures (tube clusters of different morphological types) having different fractal dimensions. Using the NOAA 10488 active region, which appeared and developed into a complicated configuration near the central meridian, as an example, it is shown that good quantitative agreement between the fractal dimensions is achieved at the following parameters of the model: Nn = Ns = 250 ± 50; a = 150 ± 50 km; l ˜ 5000 km, and d = 80 ± 10 m/s. These results do not contradict the observational data and theoretical estimates obtained in the framework of the Parker "spaghetti" model and provide new information on the physical processes resulting in the origin and evolution of local magnetic plasma structures in the near

  19. Dithiapyrannylidenes as efficient hole collection interfacial layers in organic solar cells.

    PubMed

    Berny, Stéphane; Tortech, Ludovic; Véber, Michelle; Fichou, Denis

    2010-11-01

    One inherent limitation to the efficiency of photovoltaic solar cells based on polymer/fullerene bulk heterojunctions (BHJs) is the accumulation of positive charges at the anodic interface. The unsymmetrical charge collection of holes and electrons dramatically decreases the short-circuit current. Interfacial layers (IFLs) such as poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) have no effect on the unbalanced electron/hole transport across the BHJ. We report here on the use of dithiapyrannylidenes (DITPY), a new class of planar quinoid compounds, as efficient hole-transporting/electron-blocking layers in organic solar cells based on poly(3-hexylthiophene)/[6,6]-phenyl-C(61)-butyric acid methyl ester (P3HT:PCBM) BHJs. Inserting a 15-nm-thick IFL of 4,4'-bis(diphenyl-2,6-thiapyrannylidene) (DITPY-Ph(4)) between the indium-tin oxide electrode and the P3HT:PCBM BHJ prevents detrimental space-charge effects and favors recombination-limited currents. Current-sensing atomic force microscopy reveals a drastic increase of the hole-carrying pathways in DITPY-Ph(4) compared to PEDOT:PSS. In ambient conditions, photovoltaic cells using DITPY-Ph(4) exhibit an 8% increase in the current density, although the conversion efficiency remains slightly lower compared to PEDOT:PSS-based devices. Finally, we present a detailed analysis of the photocurrent generation, showing that DITPY-Ph(4) IFLs induce a transition from unproductive space-charge-limited currents to recombination-limited currents.

  20. Organic-geochemical investigations on soil layers affected by theTohoku-oki tsunami (March 2011)

    NASA Astrophysics Data System (ADS)

    Reicherter, Klaus; Schwarzbauer, Jan; Jaffe, Bruce; Szczucinski, Witold

    2014-05-01

    Geochemical investigations on tsunami deposits, in particular palaeotsunamites, have mainly focused on inorganic indicators that have been used to distinguish between terrestrial and marine matter in sedimentary archives. Observable tsunami deposits may also be characterised by organic-geochemical parameters reflecting the mixture and unexpected transport of marine and terrestrial matter. The application of organic substances with indicative properties has so far not been used, although the approach of using specific indicators to determine prehistoric, historic and recent processes and impacts (so-called biomarker and anthropogenic marker approach) already exists. In particular, for recent tsunami deposit the analysis of anthropogenic or even xenobiotic compounds as indicators for assessing the impact of tsunamis has been neglected so far. The Tohoku-oki tsunami in March 2011 showed the huge threat that tsunamis, and subsequent flooding of coastal lowlands, pose to society. The mainly sandy deposits of this mega-tsunami reach more than 4.5 km inland as there were run-up heights of ca. 10 m (wave height). The destruction of infrastructure by wave action and flooding is accompanied by the release of environmental pollutants (e.g. fuels, fats, tarmac, plastics, heavy metals, etc.) contaminating the coastal areas and ocean. To characterize this event in the sedimentary deposits, we analyzed several soil archives from the Bay of Sendai area. Soil layers representing the tsunami deposits have been contrasted with unaffected pre-tsunami samples by means of organic-geochemical analyses based on GC/MS. Natural compounds and their diagenetic transformation products have been tested as marker compounds for monitoring this recent tsunami. The relative composition of fatty acids, n-alkanes, sesquiterpenes and further substances pointed to significant variations before and after the tsunami event. Additionally, anthropogenic marker compounds (such as soil derived pesticides

  1. In vitro growth of flat aragonite crystals between the layers of the insoluble organic matrix of the abalone Haliotis laevigata

    NASA Astrophysics Data System (ADS)

    Gries, Katharina I.; Heinemann, Fabian; Rosenauer, Andreas; Fritz, Monika

    2012-11-01

    Nacre of abalone shells consists of aragonite platelets and organic material, the so-called organic matrix. During the growth process of the shell the aragonite platelets grow into a scaffold formed by the organic matrix. In this work we tried to mimic this growth process by placing a piece of the insoluble organic matrix (which is a part of the organic matrix) of the abalone Haliotis laevigata in a crystallization device which was flowed through by CaCl2 and NaHCO3 solutions. Using this setup amongst others flat aragonite crystals grow on the insoluble organic matrix. When investigating these crystals in a transmission electron microscope it is possible to recognize similarities to the structure of nacre, like the formation of mineral bridges and growth between layers of the insoluble organic matrix. These similarities are presented in this paper.

  2. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance.

    PubMed

    Lee, Sangjun; Mason, Daniel R; In, Sungjun; Park, Namkyoo

    2014-06-30

    We propose and numerically investigate the optical performance of a novel plasmonic organic solar cell with metallic nanowire electrodes embedded within the active layer. A significant improvement (~15%) in optical absorption over both a conventional ITO organic solar cell and a conventional plasmonic organic solar cell with top-loaded metallic grating is predicted in the proposed structure. Optimal positioning of the embedded metal electrodes (EME) is shown to preserve the condition for their strong plasmonic coupling with the metallic back-plane, meanwhile halving the hole path length to the anode which allows for a thicker active layer that increases the optical path length of propagating modes. With a smaller sheet resistance than a typical 100 nm thick ITO film transparent electrode, and an increased optical absorption and hole collection efficiency, our EME scheme could be an excellent alternative to ITO organic solar cells.

  3. One Month Continuous Operation of Organic p-i-n Solar Cells Covered with a Zinc Oxide Protection Layer

    NASA Astrophysics Data System (ADS)

    Hiramoto, Masahiro; Shiokawa, Hiroki

    2010-08-01

    Organic p-i-n solar cells comprising metal-free phthalocyanine and fullerene, which was covered with an aluminum doped zinc oxide protection layer, were successfully operated for 42 days under white light (100 mW cm-2) irradiation. Decreases in the short-circuit photocurrent density and conversion efficiency during this period were just 3 and 5%, respectively. These results suggest that organic solar cells possess sufficient potential for practical long-term durability.

  4. Modeling the impacts of organic layer depth on forest stand recovery from disturbance in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Medvigy, D.; Fenton, N.; Bergeron, Y.

    2014-12-01

    The boreal forest contains over 30 percent of Earth's terrestrial carbon, stored mainly as organic matter in soils. Warming temperatures have decreased the fire return interval at many locations, potentially opening more boreal forest space to early-successional deciduous species. However, previous observational studies have shown that the residual forest organic layer depth after a fire can be directly related to fire severity and that this organic layer depth plays a critical role in determining post-fire secondary succession in the North American boreal forest. In this study, we use a numerical model constrained by field data to evaluate: (1) the extent to which the organic layer inhibits deciduous seedling establishment; (2) whether differences in seedling establishment after mild and severe burns affect mature forest structure and composition on decadal to century time scales. Our modeling experiments were carried out with the Ecosystem Demography model version 2 (ED2) terrestrial biosphere model. ED2 is designed to explicitly track the growth and mortality of individual trees, which compete for light, water, and nutrients using an open nitrogen cycle. Our simulations feature parameterizations for aspen and black spruce species-types as well as a new dynamic soil organic layer module with species-specific litter decay rates. The updated boreal forest model is validated using several datasets across the North American boreal forest that range from daily carbon and energy fluxes to multi-century basal area chronosequences including: (1) sub-daily to monthly eddy covariance measurements taken in Delta Junction, Alaska and Manitoba, Canada; (2) decade-long forest inventory data from the Cooperative Alaska Forest Inventory taken throughout the Alaskan boreal forest; and (3) multi-century basal area chronosequences measured in Manitoba and Quebec. We then use the model to identify the controls that the soil organic layer exerts on secondary succession between aspen

  5. Organic matter in sediment layers of an acidic mining lake as assessed by lipid analysis. Part II: Neutral lipids.

    PubMed

    Poerschmann, Juergen; Koschorreck, Matthias; Górecki, Tadeusz

    2017-02-01

    Natural neutralization of acidic mining lakes is often limited by organic matter. The knowledge of the sources and degradability of organic matter is crucial for understanding alkalinity generation in these lakes. Sediments collected at different depths (surface sediment layer from 0 to 1 cm and deep sediment layer from 4 to 5cm) from an acidic mining lake were studied in order to characterize sedimentary organic matter based on neutral signature markers. Samples were exhaustively extracted, subjected to pre-chromatographic derivatizations and analyzed by GC/MS. Herein, molecular distributions of diagnostic alkanes/alkenes, terpenes/terpenoids, polycyclic aromatic hydrocarbons, aliphatic alcohols and ketones, sterols, and hopanes/hopanoids were addressed. Characterization of the contribution of natural vs. anthropogenic sources to the sedimentary organic matter in these extreme environments was then possible based on these distributions. With the exception of polycyclic aromatic hydrocarbons, combined concentrations across all marker classes proved higher in the surface sediment layer as compared to those in the deep sediment layer. Alkane and aliphatic alcohol distributions pointed to predominantly allochthonous over autochthonous contribution to sedimentary organic matter. Sterol patterns were dominated by phytosterols of terrestrial plants including stigmasterol and β-sitosterol. Hopanoid markers with the ββ-biohopanoid "biological" configuration were more abundant in the surface sediment layer, which pointed to higher bacterial activity. The pattern of polycyclic aromatic hydrocarbons pointed to prevailing anthropogenic input. Pyrolytic makers were likely to due to atmospheric deposition from a nearby former coal combustion facility. The combined analysis of the array of biomarkers provided new insights into the sources and transformations of organic matter in lake sediments.

  6. On electrode pinning and charge blocking layers in organic solar cells

    NASA Astrophysics Data System (ADS)

    Magen, Osnat; Tessler, Nir

    2017-05-01

    We use device modelling for studying the losses introduced by metallic electrodes in organic solar cells' device structure. We first discuss the inclusion of pinning at the integer charge transfer state in device models, with and without using the image charge potential. In the presence of disorder, the space charge introduced due to the image potential enhances the pinning by more than 0.2 eV. The explicit introduction of the image potential creates band-gap narrowing at the contact, thus affecting both dark leakage current and photo conversion efficiency. We find that there are two regimes in which the contacts may limit the performance. For low (moderate) barriers, the contacts introduce minority carrier recombination at the contacts that adds to the bulk recombination channels. Only for high barriers, the contacts directly limit the open circuit voltage and impose a value that is equal to the contact's energy difference. Examining the device structures with blocking layers, we find that these are mainly useful for the low to moderate contacts' barriers and that for the high barrier case, the enhancement of open circuit voltage may be accompanied by the introduction of serial resistance or S shape.

  7. Highly efficient low color temperature organic LED using blend carrier modulation layer

    NASA Astrophysics Data System (ADS)

    Hsieh, Yao-Ching; Chen, Szu-Hao; Shen, Shih-Ming; Wang, Ching-Chiun; Chen, Chien-Chih; Jou, Jwo-Huei

    2012-10-01

    Color temperature (CT) of light has great effect on human physiology and psychology, and low CT light, minimizing melatonin suppression and decreasing the risk of breast, colorectal, and prostate cancer. We demonstrates the incorporation of a blend carrier modulation interlayer (CML) between emissive layers to improve the device performance of low CT organic light emitting diodes, which exhibits an external quantum efficiency of 22.7% and 36 lm W-1 (54 cd A-1) with 1880 K at 100 cd m-2, or 20.8% and 29 lm W-1 (50 cd A-1) with 1940 K at 1000 cd m-2. The result shows a CT much lower than that of incandescent bulbs, which is 2500 K with 15 lmW-1 efficiency, and even as low as that of candles, which is 2000 K with 0.1 lmW-1. The high efficiency of the proposed device may be attributed to its CML, which helps effectively distribute the entering carriers into the available recombination zones.

  8. Self-Doping, O2-Stable, n-Type Interfacial Layer for Organic Electronics

    SciTech Connect

    Reilly, T. H. III; Hains, A. W.; Chen, H. Y.; Gregg, B. A.

    2012-04-01

    Solid films of a water-soluble dicationic perylene diimide salt, perylene bis(2-ethyltrimethylammonium hydroxide imide), Petma{sup +}OH{sup -}, are strongly doped n-type by dehydration and reversibly de-doped by hydration. The hydrated films consist almost entirely of the neutral perylene diimide, PDI, while the dehydrated films contain {approx}50% PDI anions. The conductivity increases by five orders of magnitude upon dehydration, probably limited by film roughness, while the work function decreases by 0.74 V, consistent with an n-type doping density increase of {approx}12 orders of magnitude. Remarkably, the PDI anions are stable in dry air up to 120 C. The work function of the doped film, {phi} (3.96 V vs. vacuum), is unusually negative for an O{sub 2}-stable contact. Petma{sup +} OH{sup -} is also characterized as an interfacial layer, IFL, in two different types of organic photovoltaic cells. Results are comparable to state of the art cesium carbonate IFLs, but may improve if film morphology can be better controlled. The films are stable and reversible over many months in air and light. The mechanism of this unusual self-doping process may involve the change in relative potentials of the ions in the film caused by their deshielding and compaction as water is removed, leading to charge transfer when dry.

  9. “Supersaturated” Self-Assembled Charge-Selective Interfacial Layers for Organic Solar Cells

    DOE PAGES

    Song, Charles Kiseok; Luck, Kyle A.; Zhou, Nanjia; ...

    2014-11-24

    Here, to achieve densely packed charge-selective organosilane-based interfacial layers (IFLs) on the tin-doped indium oxide (ITO) anodes of organic photovoltaic (OPV) cells, a series of Ar2N-(CH2)n-SiCl3 precursors with Ar = 3,4-difluorophenyl, n = 3, 6, 10, and 18, was synthesized, characterized, and chemisorbed on OPV anodes to serve as IFLs. To minimize lateral nonbonded -NAr2···Ar2N- repulsions which likely limit IFL packing densities in the resulting self-assembled monolayers (SAMs), precursor mixtures having both small and large n values are simultaneously deposited. These “heterogeneous” SAMs are characterized by a battery of techniques: contact angle measurements, X-ray reflectivity, X-ray photoelectron spectroscopy, ultraviolet photoelectronmore » spectroscopy (UPS), cyclic voltammetry, and DFT computation. It is found that the headgroup densities of these “supersaturated” heterogeneous SAMs (SHSAMs) are enhanced by as much as 17% versus their homogeneous counterparts. Supersaturation significantly modifies the IFL properties including the work function (as much as 16%) and areal dipole moment (as much as 49%). Bulk-heterojunction OPV devices are fabricated with these SHSAMs: ITO/IFL/poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][2-[[(2-ethylhexyl)oxy]carbonyl]-3-fluorothieno[3,4-b]thiophenediyl

  10. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-01

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N'-diphenyl-N,N'-bis(1-naphthyl)-[1,1'-biphthyl]-4,4'-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq3) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  11. Influence of electron transport layer thickness on optical properties of organic light-emitting diodes

    SciTech Connect

    Liu, Guohong; Liu, Yong; Li, Baojun; Zhou, Xiang

    2015-06-07

    We investigate experimentally and theoretically the influence of electron transport layer (ETL) thickness on properties of typical N,N′-diphenyl-N,N′-bis(1-naphthyl)-[1,1′-biphthyl]-4,4′-diamine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) heterojunction based organic light-emitting diodes (OLEDs), where the thickness of ETL is varied to adjust the distance between the emitting zone and the metal electrode. The devices showed a maximum current efficiency of 3.8 cd/A when the ETL thickness is around 50 nm corresponding to an emitter-cathode distance of 80 nm, and a second maximum current efficiency of 2.6 cd/A when the ETL thickness is around 210 nm corresponding to an emitter-cathode distance of 240 nm. We adopt a rigorous electromagnetic approach that takes parameters, such as dipole orientation, polarization, light emitting angle, exciton recombination zone, and diffusion length into account to model the optical properties of devices as a function of varying ETL thickness. Our simulation results are accurately consistent with the experimental results with a widely varying thickness of ETL, indicating that the theoretical model may be helpful to design high efficiency OLEDs.

  12. Secondary organic aerosol formation of relevance to the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Cai, Xuyi

    The chlorine atom (Cl) is a potential oxidant of volatile organic compounds (VOCs) in the atmosphere and is hypothesized to lead to secondary organic aerosol (SOA) formation in coastal areas. The purpose of this dissertation is to test this hypothesis and quantify the SOA formation potentials of some representative biogenic and anthropogenic hydrocarbons when oxidized by Cl in laboratory chamber experiments. The chosen model compounds for biogenic and anthropogenic hydrocarbons in this study are three monoterpenes (alpha-pinene, beta-pinene, and d-limonene) and two aromatics (m-xylene and toluene), respectively. Results indicate that the oxidation of these monoterpenes and aromatics generates significant amounts of aerosol. The SOA yields of alpha-pinene, beta-pinene, and d-limonene obtained in this study are comparable to those when they are oxidized by ozone, by nitrate radical, and in photooxidation scenarios. For aerosol mass up to 30.0 mug m-3, their yields reach approximately 0.20, 0.20, and 0.30, respectively. The SOA yields for m-xylene and toluene are found to be in the range of 0.035 to 0.12 for aerosol concentrations up to 19 mug m-3. For d-limonene and toluene, data indicate two yield curves that depend on the initial concentration ratios of Cl precursor to hydrocarbon hydrocarbon. Zero-dimensional calculations based on these yields show that SOA formation from the five model compounds when oxidized by Cl in the marine boundary layer could be a significant source of SOA in the early morning. In addition, the mechanistic reaction pathways for Cl oxidation of alpha-pinene, beta-pinene, d-limonene, and toluene with Cl have been developed within the framework of the Caltech Atmospheric Chemistry Mechanisms (CACM). Output from the developed mechanisms is combined with an absorptive partitioning model to predict precursor decay curves and time-dependent SOA concentrations in experiments. Model calculations are able to match (in general within general +/- 50

  13. The Organic-Oxide Interfacial Layer on the Studies of Organic Electronics (Light-Emitting Diodes and Solar Cells)

    DTIC Science & Technology

    2008-10-09

    polymer light - emitting diodes …………….... 6 V. Sulfonated poly(diphenylamine) as a novel hole...oxide cathode buffer layer in fabricating high-performance polymer light - emitting diodes " Adv. Funct. Mater. 18, 3036 (2008). (AOARD-07-4068) SCI...cathode buffer layer in fabricating high-performance polymer light - emitting diodes Abstract Spin-casting or thermal evaporation in vacuum of a

  14. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer

    PubMed Central

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young

    2016-01-01

    Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm2/Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 105. Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles. PMID:27876893

  15. The function of a TiO2 compact layer in dye-sensitized solar cells incorporating "planar" organic dyes.

    PubMed

    Burke, Anthony; Ito, Seigo; Snaith, Henry; Bach, Udo; Kwiatkowski, Joe; Grätzel, Michael

    2008-04-01

    We present a device based study into the operation of liquid electrolyte dye-sensitized solar cells (DSSC's) using organic dyes. We find that, for these systems, it is entirely necessary to employ a compact TiO2 layer between the transparent fluorine doped SnO2 (FTO) anode and the electrolyte in order to reduce charge recombination losses. By incorporation of a compact layer, the device efficiency can be increased by over 160% under simulated full sun illumination and more than doubled at lower light intensities. This is strong evidence that the more widely employed ruthenium based sensitizers act as to "insulate" the anode against recombination losses and that many planar organic dyes employed in DSSC's could greatly benefit from the use of a compact TiO2 blocking layer. This is in strong contrast to DSSC's sensitized with ruthenium based systems, where the introduction of compact TiO2 has only marginal effects on conversion efficiencies.

  16. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer

    NASA Astrophysics Data System (ADS)

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young

    2016-11-01

    Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm2/Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 105. Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles.

  17. Dependence of light-emitting and photovoltaic properties of dual-function organic diodes on carrier-transporting layers

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Nyeon; Choi, Mun Soo

    2013-10-01

    Dual-function photovoltaic organic light-emitting diodes (PVOEDs) have been investigated in this work. The PVOLEDs emit light when forward biased and generate electricity when backward biased. This dual function is based on the half-gap junction composed of 5,6,11,12-tetraphenylnaphthacene (rubrene) and C 60. The device structure was optimized through experiments using various organic materials for the electron-transporting layer (ETL) and electron-injection layer (EIL). Through this work, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), C 60 and LiF were selected as the ETL, electron-accepting layer and EIL, respectively. Using this device structure, we obtained a current efficiency of 0.27 cd/A for the light-emitting mode and a power-conversion efficiency of 1.95% for the photovoltaic mode.

  18. Vapor coating method using small-molecule organic surface modifiers to replace N-type metal oxide layers in inverted polymer solar cells.

    PubMed

    Choi, Hyosung; Kim, Hak-Beom; Ko, Seo-Jin; Kim, Gi-Hwan; Kim, Jin Young

    2014-05-14

    We investigate a simple fabrication method for vapor coating small-molecule organic interlayers as replacements for metal oxide films. The interfacial layers, which serve both as both surface modifiers to reduce the substrate work function and electron selective layers, maximize light absorption within the active layer while improving electron transport and compatibility between the active layer and cathode, leading to a ∼22% enhancement in power conversion efficiency and similar air stability compared to devices using a ZnO layer.

  19. Transect studies on pine litter organic matter: decomposition and chemical properties of upper soil layers in Polish forests

    Treesearch

    Alicja Breymeyer; Marek Degorski; David Reed

    1998-01-01

    The relationship between litter decomposition rate, some chemical properties of upper soil layers (iron, manganese, zinc, copper, lead, mercury, nickel, chrome in humus-mineral horizon-A), and litter (the same eight elements in needle litter fraction) in pine forests of Poland was studied. Heavy metal content in organic-mineral horizon of soils was highly correlated...

  20. Going Beyond, Going Further. Quantitative Application of Thin-Layer Chromatography in the Analysis of Organic Compounds.

    ERIC Educational Resources Information Center

    Giuliano, Vincenzo; Rieck, John Paul

    1987-01-01

    Discusses the use of thin-layer chromatography (TLC) in the chemical laboratory as a quantitative method for determining the molecular weights of organic compounds. Describes a simple method which provides an illustration of the importance of polarity on solubility and demonstrates the effectiveness of TLC as a quantitative tool. (TW)

  1. Going Beyond, Going Further. Quantitative Application of Thin-Layer Chromatography in the Analysis of Organic Compounds.

    ERIC Educational Resources Information Center

    Giuliano, Vincenzo; Rieck, John Paul

    1987-01-01

    Discusses the use of thin-layer chromatography (TLC) in the chemical laboratory as a quantitative method for determining the molecular weights of organic compounds. Describes a simple method which provides an illustration of the importance of polarity on solubility and demonstrates the effectiveness of TLC as a quantitative tool. (TW)

  2. Simplified organic light-emitting devices utilizing ultrathin electron transport layers and new insights on their roles.

    PubMed

    Zhang, Yingjie; Wang, Qi; Aziz, Hany

    2014-02-12

    The lifetime of organic light-emitting devices (OLEDs) can be limited by exciton-polaron interactions at the organic/organic interfaces. In this work, we show that simplified phosphorescent OLEDs (PHOLEDs) are subjected to this phenomenon. By reducing the exciton concentration at the emission layer (EML)/electron transport layer (ETL) interface by means of increasing the EML thickness, hence broadening the recombination zone, the device lifetime can indeed be improved. Moreover, we report a device that displays the same extended lifetime, but with only 1 nm thin ETL. Studying the roles of this ultrathin ETL in increasing device efficiency reveals that electron injection, hole blocking, and triplet exciton blocking are all important factors. Hole blocking of the ETL can be achieved by highest occupied molecular orbitals level mismatch, where a layer thickness as low as 1 nm is sufficient, or by low hole mobility of the ETL, where a much thicker layer is required (> 5 nm). This ultrathin ETL also enables devices with only 50 nm total organic stacks, which is more than 50% thinner than the typical. This structure opens up opportunities for much shorter processing time and lower fabrication costs in the OLED industry.

  3. Thermally activated delayed fluorescence OLEDs with fully solution processed organic layers exhibiting nearly 10% external quantum efficiency.

    PubMed

    Albrecht, Ken; Matsuoka, Kenichi; Yokoyama, Daisuke; Sakai, Yoshiya; Nakayama, Akira; Fujita, Katsuhiko; Yamamoto, Kimihisa

    2017-02-21

    New solution processable and laminatable terminally modified carbazole-triazine thermally activated delayed fluorescence (TADF) dendrimers are reported. An OLED device with fully solution processed organic layers exhibited an external quantum efficiency of up to 9.4% at 100 cd m(-2).

  4. Layer-by-Layer Assembled Films of Perylene Diimide- and Squaraine-Containing Metal-Organic Framework-like Materials: Solar Energy Capture and Directional Energy Transfer.

    PubMed

    Park, Hea Jung; So, Monica C; Gosztola, David; Wiederrecht, Gary P; Emery, Jonathan D; Martinson, Alex B F; Er, Süleyman; Wilmer, Christopher E; Vermeulen, Nicolaas A; Aspuru-Guzik, Alán; Stoddart, J Fraser; Farha, Omar K; Hupp, Joseph T

    2016-09-28

    We demonstrate that thin films of metal-organic framework (MOF)-like materials, containing two perylenediimides (PDICl4, PDIOPh2) and a squaraine dye (S1), can be fabricated by layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.

  5. Solution-processed MoO₃ thin films as a hole-injection layer for organic solar cells.

    PubMed

    Girotto, Claudio; Voroshazi, Eszter; Cheyns, David; Heremans, Paul; Rand, Barry P

    2011-09-01

    We report on a sol-gel-based technique to fabricate MoO(3) thin films as a hole-injection layer for solution-processed or thermally evaporated organic solar cells. The solution-processed MoO(3) (sMoO(3)) films are demonstrated to have equal performance to hole-injection layers composed of either PEDOT:PSS or thermally evaporated MoO(3) (eMoO(3)), and the annealing temperature at which the sol-gel layer begins to work is consistent with the thermodynamic analysis of the process. Finally, the shelf lifetime of devices made with the sMoO(3) is similar to equivalent devices prepared with a eMoO(3) hole-injection layer.

  6. Broadband absorption enhancement in organic solar cells with an antenna layer through surface-plasmon mediated energy transfer

    NASA Astrophysics Data System (ADS)

    Jin, Yu; Feng, Jing; Zhang, Xu-Lin; Xu, Ming; Chen, Qi-Dai; Wu, Zhi-Jun; Sun, Hong-Bo

    2015-06-01

    We demonstrated a strategy to realize broadband enhanced absorption in the top-incident inverted organic solar cells (OSCs) by employing an external antenna layer on top of the periodic corrugated metallic anode. Surface-plasmon polaritons (SPPs) are excited on the opposite interfaces of the periodic corrugated metallic anode, which mediate the energy transfer from the antenna layer to the active layer through the anode. The absorption of the OSCs is significantly broadened and enhanced by tuning the SPP resonance to coincide with both the emission of the antenna and the absorption of the active material. The power conversion efficiency exhibits an enhancement of 16% compared to that of the OSCs without the antenna layer.

  7. Solution-processed 2D niobium diselenide nanosheets as efficient hole-transport layers in organic solar cells.

    PubMed

    Gu, Xing; Cui, Wei; Song, Tao; Liu, Changhai; Shi, Xiaoze; Wang, Suidong; Sun, Baoquan

    2014-02-01

    Thin-layer, two-dimensional NbSe2 nanosheets with lower trap density have been obtained and act as an alternative hole-transporting layer to replace MoO3 in organic solar cells. If poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}):[6,6]-phenyl-C71-butyric acid methyl ester acts as an active layer, a power conversion efficiency of 8.10 % has been achieved without any further thermal treatment. The properties of this hole-transporting layer were investigated and the improvements in the devices are discussed.

  8. Effect of Ti seed layers on structure of self-organized epitaxial face-centered-cubic-Ag(001) oriented nanodots

    SciTech Connect

    Kamiko, M.; Nose, K.; Suenaga, R.; Kyuno, K.; Koo, J.-W.; Ha, J.-G.

    2013-12-28

    The influence of Ti seed layers on the structure of self-organized Ag nanodots, obtained with a Ti seed-layer-assisted thermal agglomeration method, has been investigated. The samples were grown on MgO(001) single crystal substrates by RF magnetron sputter deposition. The samples were deposited at room temperature and post-annealed at 350 °C for 4 h while maintaining the chamber vacuum conditions. The results of atomic force microscopy (AFM) observations indicated that the insertion of the Ti seed layer (0.6–5.0 nm) between the MgO substrate and Ag layer promotes the agglomeration process, forming the nanodot array. Comparisons between the AFM images revealed that the size of the Ag nanodots was increased with an increase in the Ti seed layer thickness. The atomic concentration of the film surface was confirmed by X-ray photoelectron spectroscopy (XPS). The XPS result suggested that the nanodot surface mainly consisted of Ag. Moreover, X-ray diffraction results proved that the initial deposition of the Ti seed layer (0.6–5.0 nm) onto MgO(001) prior to the Ag deposition yielded high-quality fcc-Ag(001) oriented epitaxial nanodots. The optical absorbance spectra of the fabricated Ag nanodots with various Ti seed layer thicknesses were obtained in the visible light range.

  9. Influence of p-doping hole transport layer on the performance of organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Khan, M. A.; Xu, Wei; Khizar-ul-Haq; Bai, Yu; Jiang, X. Y.; Zhang, Z. L.; Zhu, W. Q.

    2008-05-01

    We have demonstrated devices based on a p-doped layer consisting of 4,4',4''-tris(3-methylphenylphenylamono) triphenylamine (m-MTDATA) and tetrafluro-tetracyano-quinodimethane (F4-TCNQ) as a hole transport layer (HTL). The typical device structure is ITO/m-MTDATA: x% F4-TCNQ (40 nm)/N, N'-bis-[1-naphthy(-N, N' diphenyl-1,1'-biphenyl-4,4'-diamine)] (NPB) (10 nm)/tris (8-hydroxyquinoline) aluminum (Alq3) (50 nm)/LiF (10 nm)/Al (100 nm). Hole-only devices, where the current only consists of holes, are fabricated to observe the apparent improvement in the conductivity of the p-doped layers. We have observed that such layers lead to a striking improvement of the electrical properties of organic light-emitting devices. In particular, the electroluminescent onset voltage is observed to decrease continuously with increasing doping ratio and is greatly reduced compared to diodes with undoped layers. We have seen that the driving voltage of device 3 (m-MTDATA:4% F4-TCNQ) is reduced ~56% as compared with that of the control device (undoped). This improvement has been attributed to the increased conductivity of the p-doping hole transport layer. It is found that the current efficiency also decreases with increasing doping ratio. This can be attributed to the charge imbalance in the emission layer due to the excess hole injection.

  10. Optimization of an Electron Transport Layer to Enhance the Power Conversion Efficiency of Flexible Inverted Organic Solar Cells.

    PubMed

    Lee, Kang Hyuck; Kumar, Brijesh; Park, Hye-Jeong; Kim, Sang-Woo

    2010-08-31

    The photovoltaic (PV) performance of flexible inverted organic solar cells (IOSCs) with an active layer consisting of a blend of poly(3-hexylthiophene) and [6, 6]-phenyl C(61)-butlyric acid methyl ester was investigated by varying the thicknesses of ZnO seed layers and introducing ZnO nanorods (NRs). A ZnO seed layer or ZnO NRs grown on the seed layer were used as an electron transport layer and pathway to optimize PV performance. ZnO seed layers were deposited using spin coating at 3,000 rpm for 30 s onto indium tin oxide (ITO)-coated polyethersulphone (PES) substrates. The ZnO NRs were grown using an aqueous solution method at a low temperature (90°C). The optimized device with ZnO NRs exhibited a threefold increase in PV performance compared with that of a device consisting of a ZnO seed layer without ZnO NRs. Flexible IOSCs fabricated using ZnO NRs with improved PV performance may pave the way for the development of PV devices with larger interface areas for effective exciton dissociation and continuous carrier transport paths.

  11. Study of Electrical Conduction Mechanism of Organic Double-Layer Diode Using Electric Field Induced Optical Second Harmonic Generation Measurement.

    PubMed

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-04-01

    By using electric field induced optical second harmonic generation (EFISHG) and current voltage (I-V) measurements, we studied the electrical transport mechanism of organic double-layer diodes with a structure of Au/N, N'-di-[(1-naphthyl)-N, N'-diphenyl]-(1,1'-biphenyl)-4,4'-diamine (a-NPD)/poly(methyl methacrylate) (PMMA)/indium zinc oxide (IZO). Here the α-NPD is a carrier transport layer and the PMMA is an electrical insulating layer. The current level was very low, but the I-V characteristics showed a rectifying behavior. The EFISHG measurement selectively and directly probed the electric field across the α-NPD layer, and showed that the electric field across the a-NPD layer is completely relaxed owing to the charge accumulation at the a-NPD/PMMA interface in the region V > 0, whereas the carrier accumulation was not significant in the region V < 0. On the basis of these experimental results, we proposed a model of the rectification. Further, by coupling the I-V characteristics with the EFISHG measurement, the I-V characteristics of the diodes were well converted into the current-electric field (I-E) characteristics of the α-NPD layer and the PMMA layer. The I-E characteristics suggested the Schottky-type conduction governs the carrier transport. We conclude that the I-V measurement coupled with the EFISHG measurement is very useful to study carrier transport mechanism of the organic double-layer diodes.

  12. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    NASA Astrophysics Data System (ADS)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  13. “Supersaturated” Self-Assembled Charge-Selective Interfacial Layers for Organic Solar Cells

    SciTech Connect

    Song, Charles Kiseok; Luck, Kyle A.; Zhou, Nanjia; Zeng, Li; Heitzer, Henry M.; Manley, Eric F.; Goldman, Samuel; Chen, Lin X.; Ratner, Mark A.; Bedzyk, Michael J.; Chang, Robert P. H.; Hersam, Mark C.; Marks, Tobin J.

    2014-11-24

    Here, to achieve densely packed charge-selective organosilane-based interfacial layers (IFLs) on the tin-doped indium oxide (ITO) anodes of organic photovoltaic (OPV) cells, a series of Ar2N-(CH2)n-SiCl3 precursors with Ar = 3,4-difluorophenyl, n = 3, 6, 10, and 18, was synthesized, characterized, and chemisorbed on OPV anodes to serve as IFLs. To minimize lateral nonbonded -NAr2···Ar2N- repulsions which likely limit IFL packing densities in the resulting self-assembled monolayers (SAMs), precursor mixtures having both small and large n values are simultaneously deposited. These “heterogeneous” SAMs are characterized by a battery of techniques: contact angle measurements, X-ray reflectivity, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy (UPS), cyclic voltammetry, and DFT computation. It is found that the headgroup densities of these “supersaturated” heterogeneous SAMs (SHSAMs) are enhanced by as much as 17% versus their homogeneous counterparts. Supersaturation significantly modifies the IFL properties including the work function (as much as 16%) and areal dipole moment (as much as 49%). Bulk-heterojunction OPV devices are fabricated with these SHSAMs: ITO/IFL/poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][2-[[(2-ethylhexyl)oxy]carbonyl]-3-fluorothieno[3,4-b]thiophenediyl

  14. Flux measurements of volatile organic compounds at SMEAR II using surface layer gradient method

    NASA Astrophysics Data System (ADS)

    Rantala, P.; Taipale, R.; Ruuskanen, T. M.; Aalto, J.; Kajos, M. K.; Patokoski, J.; Schallhart, S.; Rinne, J.

    2012-04-01

    Volatile organic compounds (VOCs) are mostly emitted into atmosphere from natural sources. Some of the compounds, such as monoterpenes, are highly reactive and seem to have major contributions to aerosol particle formation and growth, thus these compounds are also connected to the global climate change. Approximately 50 % of the biogenic emissions is coming from the tropical rain forests, 15-20 % from the boreal forests and the rest from the other sources like fields and oceans. In order to understand seasonal and interannual changes in VOC emissions long term emission measurements would be of great importance. However, long-term VOC emission measurements are extremely sparse. Our aim is to develop reliable and feasible method to measure ecosystem scale VOC emissions by micrometeorological methods. In the past decade the disjunct eddy covariance method with proton transfer reaction quadrupole mass spectrometry (DEC/PTR-QMS) has been the method of choise for VOC flux measurements. However, automatically data post-processing, crucial for long term measurement, remains a challenge, especially in low flux conditions. To by-pass these problems we can apply a surface layer gradient technique with PTR-QMS (SLG/PTR-QMS) for long term VOC flux measurements. In this technique fluxes are obtained using measured vertical profiles on VOC concentrations with Monin-Obukhov similarity theory. Albeit more indirect method than DEC, this classical method holds promise for long term measurement. The measurements wer conducted in Hyytiälä at SMEAR II station (61° 51' N, 24° 17' E, 180 m a.m.s.l.) since summer 2010. Hyytiälä represents a typical boreal region with clear snow covered winters and annual average temperature has been approximately 3.3°C. Clear cumulative positive flux of methanol, acetaldehyde, ethanol/formic acid, acetone, MBO-fragment/isoprene, and monoterpenes were observed.

  15. Rare earth and zinc layered hydroxide salts intercalated with the 2-aminobenzoate anion as organic luminescent sensitizer

    SciTech Connect

    Cursino, Ana Cristina Trindade; Rives, Vicente; Trujillano, Raquel

    2015-10-15

    Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The UV absorption ability was improved after intercalation/grafting in relation to that shown by the parent material. - Highlights: • Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide were synthesized. • Intercalated nitrate anions were exchanged by 2-aminobenzoate. • In all the 2-aminobenzoate containing compounds, the grafting reaction was detected. • The UV absorption ability was improved after the exchange reactions. • Rare earth hydroxide salts are potential matrixes to produce luminescent materials. - Abstract: Rare earth (RE = Eu, Y and Tb) and zinc layered hydroxide salts intercalated with nitrate anions were synthesized, followed by exchange with 2-aminobenzoate. The obtained compounds were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) and ultraviolet visible (UV–vis) spectroscopies, fluorescence measurements and thermal analysis (TGA/DTA). The results from FTIR spectroscopy suggest a direct coordination of 2-aminobenzoate to the metal cations of the inorganic layered structure. The organic derivative products from the intercalation reactions absorb a broader range of UV-light in relation to that shown by the parent material; the photoluminescence measurements present a strong violet, blue and green luminescence under UV-light excitation for layered compounds with, Zn, Y and Tb, respectively. Rare earth hydroxide salts (RE-LHS) are potential alternative matrices for the immobilization of organic species to produce luminescent materials.

  16. Highly efficient, solution processed electrofluorescent small molecule white organic light-emitting diodes with a hybrid electron injection layer.

    PubMed

    Jiang, Zhixiong; Zhong, Zhiming; Xue, Shanfeng; Zhou, Yan; Meng, Yanhong; Hu, Zhanhao; Ai, Na; Wang, Jianbin; Wang, Lei; Peng, Junbiao; Ma, Yuguang; Pei, Jian; Wang, Jian; Cao, Yong

    2014-06-11

    Highly efficient, solution-processed, and all fluorescent white organic light-emitting diodes (WOLEDs) based on fluorescent small molecules have been achieved by incorporating a low-conductivity hole injection layer and an inorganic-organic hybrid electron injection layer. The light-emission layer is created by doping a fluorescent π-conjugated blue dendrimer host (the zeroth generation dendrimer, G0) with a yellow-emitting fluorescent dopant oligo(paraphenylenevinylene) derivative CN-DPASDB with a doping ratio of 100:0.15 (G0:CN-DPASDB) by weight. To suppress excessive holes, the high-conductivity hole injection layer (PEDOT:PSS AI 4083) is replaced by the low-conductivity PEDOT:PSS CH 8000. To facilitate the electron injection, a hybrid electron injection layer is introduced by doping a methanol/water-soluble conjugated polymer poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFNR2) with solution-processed cesium fluoride (CsF). The device achieves a maximum luminous efficiency of 17.0 cd A(-1) and a peak power efficiency of 15.6 lm W(-1) at (0.32, 0.37) with a color rendering index of 64.

  17. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells.

    PubMed

    Liu, Zhike; Li, Jinhua; Sun, Zhen-Hua; Tai, Guoan; Lau, Shu-Ping; Yan, Feng

    2012-01-24

    A single-layer graphene film with high conductance and transparency was realized by effective chemical doping. The conductance of single-layer graphene was increased for more than 400% when it was doped with Au nanoparticles and poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid). Then semitransparent organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) were fabricated with single-layer graphene and indium tin oxide (ITO) as the top and bottom electrodes, respectively. The performance of the devices was optimized by tuning the active layer thickness and doping the single-layer graphene electrodes. The maximum efficiency of 2.7% was observed in the devices with the area of 20 mm(2) illuminated from graphene electrode under the AM1.5 solar simulator. It is notable that all of the devices showed higher efficiency from the graphene than ITO side, which was attributed to the better transmittance of the graphene electrodes. In addition, the influence of the active area of the organic solar cell on its photovoltaic performance was studied. We found that, when the active areas increased from 6 to 50 mm(2), the power conversion efficiencies decreased from 3% to 2.3% because of the increased series resistances and the decreased edge effect of the devices.

  18. High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4-vinyl phenol) charge trapping layer based on a pn-heterojunction active layer

    SciTech Connect

    Xiang, Lanyi; Ying, Jun; Han, Jinhua; Zhang, Letian E-mail: wwei99@jlu.edu.cn; Wang, Wei E-mail: wwei99@jlu.edu.cn

    2016-04-25

    In this letter, we demonstrate a high reliable and stable organic field-effect transistor (OFET) based nonvolatile memory (NVM) with a polymer poly(4-vinyl phenol) (PVP) as the charge trapping layer. In the unipolar OFETs, the inreversible shifts of the turn-on voltage (V{sub on}) and severe degradation of the memory window (ΔV{sub on}) at programming (P) and erasing (E) voltages, respectively, block their application in NVMs. The obstacle is overcome by using a pn-heterojunction as the active layer in the OFET memory, which supplied a holes and electrons accumulating channel at the supplied P and E voltages, respectively. Both holes and electrons transferring from the channels to PVP layer and overwriting the trapped charges with an opposite polarity result in the reliable bidirectional shifts of V{sub on} at P and E voltages, respectively. The heterojunction OFET exhibits excellent nonvolatile memory characteristics, with a large ΔV{sub on} of 8.5 V, desired reading (R) voltage at 0 V, reliable P/R/E/R dynamic endurance over 100 cycles and a long retention time over 10 years.

  19. Effects of Link Annotations on Search Performance in Layered and Unlayered Hierarchically Organized Information Spaces.

    ERIC Educational Resources Information Center

    Fraser, Landon; Locatis, Craig

    2001-01-01

    Investigated the effects of link annotations on high school user search performance in Web hypertext environments having deep (layered) and shallow link structures. Results confirmed previous research that shallow link structures are better than deep (layered) link structures, and also showed that annotations had virtually no effect on search…

  20. Effects of Link Annotations on Search Performance in Layered and Unlayered Hierarchically Organized Information Spaces.

    ERIC Educational Resources Information Center

    Fraser, Landon; Locatis, Craig

    2001-01-01

    Investigated the effects of link annotations on high school user search performance in Web hypertext environments having deep (layered) and shallow link structures. Results confirmed previous research that shallow link structures are better than deep (layered) link structures, and also showed that annotations had virtually no effect on search…

  1. Bulk-heterojunction organic solar cells sandwiched by solution processed molybdenum oxide and titania nanosheet layers

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Goto, Yoshinori; Fukuda, Katsutoshi

    2014-02-01

    The contributions of ultrathin titania nanosheet (TN) crystallites were studied in both an inverted bulk-heterojunction (BHJ) cell in an indium-tin oxide (ITO)/titania nanosheet (TN)/poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methylester (PCBM) active layer/MoOx/Ag multilayered photovoltaic device and a conventional BHJ cell in ITO/MoOx/P3HT:PCBM active layer/TN/Al multilayered photovoltaic device. The insertion of only one or two layers of poly(diallyldimethylammonium chloride) (PDDA) and TN multilayered film prepared by the layer-by-layer deposition technique effectively decreased the leakage current and increased the open circuit voltage (VOC), fill factor (FF), and power conversion efficiency (η). The conventional cell sandwiched between a solution-processed, partially crystallized molybdenum oxide hole-extracting buffer layer and a TN electron extracting buffer layer showed comparable cell performance to a device sandwiched between vacuum-deposited molybdenum oxide and TN layers, whereas the inverted cell with solution-processed molybdenum oxide showed a poorer performance probably owing to the increment in the leakage current across the film. The abnormal S-shaped curves observed in the inverted BHJ cell above VOC disappeared with the use of a polyfluorene-based cationic semiconducting polymer as a substitute for an insulating PDDA film, resulting in the improved cell performance.

  2. High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants

    NASA Astrophysics Data System (ADS)

    Kim, You-Hyun; Wai Cheah, Kok; Young Kim, Woo

    2013-07-01

    Phosphorescent white organic light-emitting diodes (PHWOLEDs) with single emissive layer were fabricated by co-doping phosphorescent blue, green, and red emitters with different concentrations. WOLEDs using Ir(piq)3 and Ir(ppy)3 as red and green dopants along with 8% of Firpic as blue dopant with host materials of 4CzPBP in the emissive layer were compared under various doping ratio between Ir(piq)3 and Ir(ppy)3. Triplet-triplet Dexter energy transfer in single emissive PHWOLEDs including three primary colors was saturated from higher triplet energy levels to lower triplet energy levels directly.

  3. Synthesis, structure and photoluminescent behavior of a novel pillar-layered {Zn3}-based metal-organic framework

    NASA Astrophysics Data System (ADS)

    Song, Xue-Zhi; Mu, Wen-Sheng; Han, Bing-Yan; Yan, Yang

    2016-09-01

    A novel 3D metal-organic framework (MOF) {[Zn3(bpdc)3 (p-4-bpmb)](DMF)2}n ( 1) (H2bpdc=biphenyl-4,4‧-dicarboxylic acid; p-4-bpmb=1,4-bis(pyridine-4-ylmethoxy)benzene) has been solvothermally synthesized and structurally characterized. Compound 1 exhibits a 3D pillar-layered framework based on the trinuclear {Zn3} building blocks, consisting of Zn-dicarboxylate layers and bipyridyl-derivative pillars. Furthermore, it features three-fold interpenetrating 8-connected hex-type topology. In addition, its thermal stability and luminescent property have also been investigated.

  4. Growth of organic films on semiconductor surfaces: Fundamental reactivity studies and molecular layer deposition involving isocyanates and isothiocyanates

    NASA Astrophysics Data System (ADS)

    Loscutoff, Paul W.

    The continued pursuit of smaller device dimensions by the semiconductor industry has led to an increased interest in functional organic films. Organics have great potential as advanced materials, owing to the versatility of organic moieties and vast knowledge base of organic reactivity. In order to implement organic films into semiconductor devices, the inorganic/organic hybrid interfaces must be investigated, so that the reactivity at these pivotal features is well-known. In this work organic films are studied in two environments: the Ge(100)-2x1 surface and the SiO2 surface. The reconstructed Ge(100)-2x1 surface offers a well-defined substrate, ideal for fundamental reactivity studies. Organic reactants are deposited under ultrahigh vacuum conditions, allowing reactions between gas-phase organic molecules and the surface to be isolated and analyzed by in situ spectroscopic techniques. By use of infrared (IR) spectroscopy, x-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) modeling, we investigate the reactivity of phenyl and tert-butyl isocyanate and isothiocyanate at the Ge(100)-2x1 surface. The isocyanate and isothiocyanate moieties are both highly reactive groups consisting of a cumulated double bond containing two heteroatoms, allowing for many potential products with the Ge surface. We find that dative bonding through the heteroatoms plays an important role in the surface reactions, functioning as either reaction intermediates or final products depending on the adsorbate. Various cycloaddition products are also observed at the surface, with prominent reactivity trends resulting from the differences in oxygen and sulfur reactivity. In order to study the practical implementation of organic films, molecular layer deposition (MLD) reactions are studied on the hydroxlyated SiO 2 surface. MLD is a layer-by-layer technique, where films are deposited one molecular unit at a time, allowing for film tailorability and composition control down to

  5. Numerical study on exciton transport and light emission for organic light emitting diodes with an emission layer.

    PubMed

    Kim, K S; Hwang, Y W; Won, T Y

    2013-12-01

    This paper reports the results of a numerical study on carrier injection and exciton transport in an organic light emitting diode (OLED) structure based on tris (8-hydroxyquinolinato) aluminum (Alq3). Because charge accumulation at the interfaces between the emission layer (EML) and transport layer are believed to increase the recombination rate, which also increases the exciton density, a numerical study was performed on the effect of inserting an EML in the bilayer structure. In the first case considered, the lowest unoccupied molecular orbital (LUMO) of the EML was aligned with the LUMO of the hole transport layer (HTL), whereas the highest occupied molecular orbital (HOMO) of the EML was aligned with the HOMO of the electron transport layer (ETL). In the second case, the LUMO of the EML was aligned with the LUMO of the ETL and the HOMO of the EML was aligned with the HOMO of the HTL. In case of a charge-blocking device, most of the recombination appeared to occur at both edges of the EML because the electric field exhibited a peak in these areas. On the other hand, in the case of the charge-confining device, the electric field was confined at the interface between the EML and ETL. This paper also discussed the effect of the insertion of a doping layer as transport layer.

  6. Improving performance and lifetime of small-molecule organic photovoltaic devices by using bathocuproine-fullerene cathodic layer.

    PubMed

    Liu, Shun-Wei; Lee, Chih-Chien; Su, Wei-Cheng; Yuan, Chih-Hsien; Shu, Yi-Sheng; Chang, Wen-Chang; Guo, Jhih-Yan; Chiu, Chien-Feng; Li, Ya-Ze; Su, Tsung-Hao; Chen, Kuan-Ting; Chang, Po-Chien; Yeh, Tzu-Hung; Liu, Yu-Hsuan

    2015-05-06

    In this study, we compared the use of neat bathocuproine (BCP) and BCP:C60 mixed buffer layers in chloroboron subphthalocyanine (SubPc)/C60 bilayer organic photovoltaic (OPV) devices and analyzed their influence on device performance. Replacing the conventional BCP with BCP:C60 enabled manipulating the optical field distribution for optimizing the optical properties of the devices. Estimation of the interfacial barrier indicated that the insertion of the BCP:C60 between the C60 and electrode can effectively reduce the barrier for electrons and enhance electron collection at the electrode. Temperature-dependent measurements of the OPV devices performed to calculate the barrier height at the SubPc/C60 interface suggested that band bending was larger when the BCP:C60 buffer layer was used, reflecting increased exciton dissociation efficiency. In addition, the device lifetime was considerably improved when the BCP:C60 buffer layer was used. The device performance was stabilized after the photodegradation of the active layers, thereby increasing the device lifetime compared with the use of the neat BCP buffer layer. Atomic force microscopy images showed that the neat BCP was easily crystallized and could degrade the cathodic interface, whereas the blend of C60 and BCP suppressed the crystallization of BCP. Therefore, the optimal buffer layer improved both the device performance and the device lifetime.

  7. Fluorene Conjugated Polymer/Nickel Oxide Nanocomposite Hole Transport Layer Enhances the Efficiency of Organic Photovoltaic Devices.

    PubMed

    Chiou, Guan-Chiun; Lin, Ming-Wei; Lai, Yu-Ling; Chang, Chiao-Kai; Jiang, Jian-Ming; Su, Yu-Wei; Wei, Kung-Hwa; Hsu, Yao-Jane

    2017-01-25

    A nanocomposite layer comprising the conjugated polymer poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)fluorene] (PFN) and nickel oxide (NiOx) has been employed as the hole transport layer (HTL) in organic photovoltaics (OPVs) featuring PBDTTBO-C8 and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the active layer. The optimal device incorporating the PFN:NiOx nanocomposite as the HTLs displayed a power conversion efficiency (PCE) to 6.2%, up from 4.5% for the corresponding device incorporating pristine NiOx as the HTL layer: a nearly 40% improvement in PCE. X-ray photoelectron spectroscopy (XPS) was used to determine the types of chemical bonding, ultraviolet photoelectron spectroscopy (UPS) to measure the change in work function, and atomic force microscopy (AFM) to examine the morphology of the composite layers. The growth of nickel trioxide, Ni2O3, in the PFN:NiOx layer played a key role in producing the p-doping effect and in tuning the work function, thereby improving the overall device performance.

  8. Chemical Force Spectroscopy Evidence Supporting the Layer-by-Layer Model of Organic Matter Binding to Iron (oxy)Hydroxide Mineral Surfaces.

    PubMed

    Chassé, Alexander W; Ohno, Tsutomu; Higgins, Steven R; Amirbahman, Aria; Yildirim, Nadir; Parr, Thomas B

    2015-08-18

    The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.

  9. Investigations on soil organic carbon stocks and active layer thickness in West Greenland

    NASA Astrophysics Data System (ADS)

    Gries, Philipp; Wagner, Julia; Kandolf, Lorenz; Henkner, Jessica; Kühn, Peter; Scholten, Thomas; Schmidt, Karsten

    2017-04-01

    The soil organic carbon (SOC) pool in the first 300 cm of arctic soils includes about 50 % of the estimated global terrestrial belowground organic carbon, which makes about 1024 Pg C and up to 496 Pg within the upper permafrost one meter. Being a sensible ecosystem, the Arctic is sensitive to climate change. Hence, thawing of permafrost-affected soils to greater depth and for longer periods increases the release of CO2 and CH4 to the atmosphere, which queries soils as an important carbon pool. Especially in arctic environments, sparse soil data and limited knowledge of soil processes cause underestimation of SOC stocks. Due to different regional climatic conditions, changing soil-environmental conditions result in varying soil organic carbon contents in Greenland. In West Greenland, coastal oceanic conditions turn into continental climate at the ice margin showing less precipitation, higher insolation and increasing permafrost thickness. The objectives of this study are (i) to determine SOC stocks and active layer thickness (ALT), (ii) to identify main environmental factors influencing SOC stocks and ALT, and (iii) to specify differences of SOC stocks, ALT and influencing factors induced by a climatic trend in West Greenland. Respecting different climatic conditions, one study area is situated next to the ice margin in the Kangerlussuaq area and the second one is located near Sisimiut at the coast. Both study areas (2 km2) are representative for each region and have similar environmental settings. Soil samples were taken from depth increments (0-25, 25-50, 50-100, and 100-200 cm) at 80 sampling locations in each study area. Additionally, we addressed soil moisture content (TDR-measurements), ALT, and soil horizons, vegetation (types, coverage), and terrain characteristics (aspect, geomorphology) at each sampling point. As a preliminary result, at the coast the average SOC stock is 13.1 kg/m2 in the upper 25 cm and about 35.9 kg/m2 in the first 200 cm. The amount of

  10. Implications of fire-mediated changes in larch forest structure on leaf litter inputs, organic layer accumulation, and permafrost dynamics

    NASA Astrophysics Data System (ADS)

    Ganzlin, P.; Alexander, H. D.; Petronio, B.; Natali, S.; Davydov, S.

    2012-12-01

    The boreal forest is an expansive biome and stores the majority of the world's above and belowground carbon stocks. These forests are very vulnerable to changes in global climate. As climate warms and dries, boreal forest ecosystems are expected to experience greater fire activity. An increase in fire activity will likely lead to greater consumption of the soil organic layer (SOL), the thick layer of undecomposed mosses and other plant materials lying above the mineral soil. Because the SOL serves as a natural barrier to seed germination, a reduction in SOL depth could increase tree seedling establishment during post-fire succession. This could ultimately lead to stands of greater density, with potentially cascading effects on belowground carbon dynamics due to density-driven changes in understory microenvironment and leaf litter inputs, especially in forests dominated by deciduous species. In permafrost-affected regions, organic soil materials - especially mosses - are important insulators of permafrost and the high content of thermally protected carbon it contains. In order to assess the importance of fire-mediated changes in stand density on permafrost dynamics, we surveyed forests of Cajander Larch (Larix cajander) surrounding the Northeast Science Station in far northeastern Siberia. Two sets of low and high-density stands were selected to establish a natural density gradient in these forests. In each stand we evaluated stand density effects on aboveground biomass, leaf litter inputs, moss abundance, organic layer depth, and permafrost thaw depth. Here we show that the low-density larch stands had significantly higher moss abundance, green moss depth, and organic layer depth. The insulating organic layer was nearly 25% shallower in high-density stands, which was accompanied by a nearly 50% increase in depth of seasonal permafrost thaw. In addition to density, stand biomass and landscape position may also be very important factors in determining litter inputs

  11. Monin-Obukhov similarity and convective organization in the unstable atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Salesky, Scott Thomas

    this scatter is debated in the literature and, although many researchers attribute the scatter to random errors (i.e. due to an insufficient averaging period for the time average to converge to the true ensemble mean), others suggest that the scatter is physically meaningful and is due to physical processes that are neglected by MOST. In order to determine the extent to which random errors and physical processes each contribute to the observed scatter in experimental measurements, it is necessary to have a reliable method for estimating random errors. Using the new error estimation method, together with error propagation analysis, the influence of random errors on the observed scatter in MOST functions calculated from experimental data is explored. Errors in the turbulent fluxes and gradients are propagated to z/L, φ m, and the dimensionless mean temperature gradient φ h. Errors in the MOST stability parameter z/L are found to be large for unstable conditions, reaching values of 40% or more. Statistical hypothesis tests are used to demonstrate that random errors in z/L and φm or φ h do not explain the observed scatter. In addition, deviations of φm from empirical curves are found to have strong diurnal variation and to increase with height, which suggests that physical processes related to the daytime growth of the convective boundary layer are responsible for the observed deviations from MOST. Finally, the large scale structure of convective organization in the unstable atmospheric boundary layer is investigated using large eddy simulation. Both observational and numerical studies have revealed that convective updrafts are organized into longitudinal rolls for slightly convective conditions and into open cells for highly convective conditions. However, the physical processes responsible for the transition from roll- to cellular- type convection, the nature of the transition (i.e. whether it occurs rapidly or gradually), and the criteria for the transition are not

  12. Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL campaign

    NASA Astrophysics Data System (ADS)

    Ganzeveld, L.; Eerdekens, G.; Feig, G.; Fischer, H.; Harder, H.; Königstedt, R.; Kubistin, D.; Martinez, M.; Meixner, F. X.; Scheeren, H. A.; Sinha, V.; Taraborrelli, D.; Williams, J.; Vilöguerau de Arellano, J.; Lelieveld, J.

    2008-10-01

    We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model (SCM) along a zonal transect. Simulated concentrations of O3 and NO as well as NO2 photolysis rates over the forest agree well with observations when a small soil-biogenic NO emission flux was applied. This suggests that the photochemical conditions observed during GABRIEL reflect a pristine tropical low-NOx regime. The SCM uses a compensation point approach to simulate nocturnal deposition and daytime emissions of acetone and methanol and produces daytime boundary layer mixing ratios in reasonable agreement with observations. The area average isoprene emission flux, inferred from the observed isoprene mixing ratios and boundary layer height, is about half the flux simulated with commonly applied emission algorithms. The SCM nevertheless simulates too high isoprene mixing ratios, whereas hydroxyl concentrations are strongly underestimated compared to observations, which can at least partly explain the discrepancy. Furthermore, the model substantially overestimates the isoprene oxidation products methlyl vinyl ketone (MVK) and methacrolein (MACR) partly due to a simulated nocturnal increase due to isoprene oxidation. This increase is most prominent in the residual layer whereas in the nocturnal inversion layer we simulate a decrease in MVK and MACR mixing ratios, assuming efficient removal of MVK and MACR. Entrainment of residual layer air masses, which are enhanced in MVK and MACR and other isoprene oxidation products, into the growing boundary layer poses an additional sink for OH which is thus not available for isoprene oxidation. Based on these findings, we suggest pursuing measurements of the tropical residual layer chemistry with a focus on the nocturnal depletion

  13. Surface and boundary layer exchanges of volatile organic compounds, nitrogen oxides and ozone during the GABRIEL Campaign

    NASA Astrophysics Data System (ADS)

    Ganzeveld, L.; Eerdekens, G.; Feig, G.; Fischer, H.; Harder, H.; Königstedt, R.; Kubistin, D.; Martinez, M.; Meixner, F. X.; Scheeren, B.; Sinha, V.; Taraborrelli, D.; Williams, J.; Vilöguerau de Arellano, J.; Lelieveld, J.

    2008-06-01

    We present an evaluation of sources, sinks and turbulent transport of nitrogen oxides, ozone and volatile organic compounds (VOC) in the boundary layer over French Guyana and Suriname during the October 2005 GABRIEL campaign by simulating observations with a single-column chemistry and climate model (SCM) along a zonal transect. Simulated concentrations of O3 and NO as well as NO2 photolysis rates over the forest agree well with observations when a small soil-biogenic NO emission flux was applied. This suggests that the photochemical conditions observed during GABRIEL reflect a pristine tropical low-NOx regime. The SCM uses a compensation point approach to simulate nocturnal deposition and daytime emissions of acetone and methanol and produces daytime boundary layer mixing ratios in reasonable agreement with observations. The area average isoprene emission flux, inferred from the observed isoprene mixing ratios and boundary layer height, is about half the flux simulated with commonly applied emission algorithms. The SCM nevertheless simulates too high isoprene mixing ratios, whereas hydroxyl concentrations are strongly underestimated compared to observations, which can at least partly explain the discrepancy. Furthermore, the model substantially overestimates the isoprene oxidation products methlyl vinyl ketone (MVK) and methacrolein (MACR) partly due to a simulated nocturnal increase due to isoprene oxidation. This increase is most prominent in the residual layer whereas in the nocturnal inversion layer we simulate a decrease in MVK and MACR mixing ratios, assuming efficient removal of MVK and MACR. Entrainment of residual layer air masses, which are enhanced in MVK and MACR and other isoprene oxidation products, into the growing boundary layer poses an additional sink for OH which is thus not available for isoprene oxidation. Based on these findings, we suggest pursuing measurements of the tropical residual layer chemistry with a focus on the nocturnal depletion

  14. Recombination zone in white organic light emitting diodes with blue and orange emitting layers

    NASA Astrophysics Data System (ADS)

    Tsuboi, Taiju; Kishimoto, Tadashi; Wako, Kazuhiro; Matsuda, Kuniharu; Iguchi, Hirofumi

    2012-10-01

    White fluorescent OLED devices with a 10 nm thick blue-emitting layer and a 31 nm thick orange-emitting layer have been fabricated, where the blue-emitting layer is stacked on a hole transport layer. An interlayer was inserted between the two emitting layers. The thickness of the interlayer was changed among 0.3, 0.4, and 1.0 nm. White emission with CIE coordinates close to (0.33, 0.33) was observed from all the OLEDs. OLED with 0.3 nm thick interlayer gives the highest maximum luminous efficiency (11 cd/A), power efficiency (9 lm/W), and external quantum efficiency (5.02%). The external quantum efficiency becomes low with increasing the interlayer thickness from 0 nm to 1.0 nm. When the location of the blue- and orange-emitting layers is reversed, white emission was not obtained because of too weak blue emission. It is suggested that the electron-hole recombination zone decreases nearly exponentially with a distance from the hole transport layer.

  15. Electroluminescence of a Multi-Layered Organic Light-Emitting Diode Utilizing Trans-4-[p-[N-methyl-N-(hydroxymethyl)amino]styryl]-N-Methylphridinium Tetraphenylborate as the Active Layer

    NASA Astrophysics Data System (ADS)

    Feng, Xue-Yuan; Zhang, Jia-Yu; Xu, Chun-Xiang; Qiao, Yi; Cui, Yi-Ping

    2006-06-01

    Employing an organic dye salt of trans-4-[p-[N-methyl-N-(hydroxymethyl)amino]styryl]-N-methylphridinium tetraphenylborate (ASPT) as the active layer, 8-hydrocyquinoline aluminium (Alq3) as the electron transporting layer and N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine (TPD) as the hole transporting layer, respectively, we fabricate a multi-layered organic light-emitting diode and observe the colour tunable electroluminescence (EL). The dependence of the EL spectra on the applied voltage is investigated in detail, and the recombination mechanism is discussed by considering the variation of the hole-electron recombination region.

  16. Improving an organic photodiode by incorporating a tunnel barrier between the donor and acceptor layers

    NASA Astrophysics Data System (ADS)

    Campbell, I. H.; Crone, B. K.

    2012-07-01

    We demonstrate increased photocurrent quantum efficiency in a model donor/acceptor (tetracene/C60) photodiode by incorporating an insulating tunnel barrier between the tetracene and C60 layers. Photodiode efficiency results from the interplay of a number of processes which add to or subtract from the overall device efficiency. The positive rates are those of exciton dissociation and charge separation, the negative rates include exciton and charge transfer complex recombination. We show that by introducing a thin insulating layer between the donor and acceptor layers in a photodiode, we can modify the exciton dissociation and charge transfer complex recombination rates and improve device performance.

  17. Tamarack and black spruce adventitious root patterns are similar in their ability to estimate organic layer depths in northern temperate forests

    Treesearch

    Timothy J. Veverica; Evan S. Kane; Eric S. Kasischke

    2012-01-01

    Organic layer consumption during forest fires is hard to quantify. These data suggest that the adventitious root methods developed for reconstructing organic layer depths following wildfires in boreal black spruce forests can also be applied to mixed tamarack forests growing in temperate regions with glacially transported soils.

  18. Highly efficient, deep-blue phosphorescent organic light emitting diodes with a double-emitting layer structure

    NASA Astrophysics Data System (ADS)

    Fukagawa, H.; Watanabe, K.; Tsuzuki, T.; Tokito, S.

    2008-09-01

    We have demonstrated a highly efficient, deep-blue organic light-emitting diode (OLED) using a host material with a high triplet energy. The OLED device that we have prepared utilizes a phosphorescent guest material, iridium(III)bis(4',6',-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate, exhibits a peak quantum efficiency of about 15.7%. We employed a double-emitting layer (DEL) structure that distributes the carrier recombination region within the device. In this DEL structure, the emission mechanism is such that the energy transfers from the host material in one emitting layer, and the other emitting layer provides for direct charge trapping in the guest material. This DEL structure proved to be quite useful in achieving the reported device characteristics.

  19. Impedance spectroscopy of organic hetero-layer OLEDs as a probe for charge carrier injection and device degradation

    NASA Astrophysics Data System (ADS)

    Nowy, Stefan; Ren, Wei; Wagner, Julia; Weber, Josef A.; Brütting, Wolfgang

    2009-08-01

    Impedance spectroscopy (IS) is a powerful method for characterizing the electrical properties of materials and their interfaces. In this study we use IS to investigate the charge carrier injection properties of different anodes and anode treatments in bottom-emitting organic light-emitting diodes (OLEDs). These are ITO-based (indium tin oxide) hetero-layer devices with TPD (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4-diamine) as hole transporting layer (HTL) and Alq3 (tris-(8-hydroxyquinoline) aluminum) as emission and electron transporting layer (EML and ETL, respectively). A detailed analysis of the capacitance as function of frequency and DC bias yields information about trapped and interfacial charges as well as the dynamics of injected charges. Furthermore, we use IS to study degradation processes in OLEDs.

  20. Improved 14C dating of a tephra layer (AT tephra, Japan) using AMS on selected organic fractions

    NASA Astrophysics Data System (ADS)

    Miyairi, Y.; Yoshida, K.; Miyazaki, Y.; Matsuzaki, H.; Kaneoka, I.

    2004-08-01

    Tephra (volcanic ash) layers provide unique chronostratigraphic maker beds in geosciences, allowing ages to be transferred to adjacent units and across regions. Therefore, it is important to establish the application of radiocarbon dating of tephra layers with high levels of reliability. We have examined the reliability of radiocarbon dating by dating three samples of organic material associated with the Aira-Tn (AT) tephra layer. AT tephra, ≈25,000 14C BP, is one of the major widespread tephras in Japan. We demonstrate that by using detailed pre-treatment on samples, closely examined samples, measurements with higher precision are possible. New high precision 14C age for the AT tephra of 25,120 ± 270 BP is presented.

  1. A low-temperature processed environment-friendly full-organic carrier collection layer for polymer solar cells

    SciTech Connect

    Shi, Ai-Li; Li, Yan-Qing E-mail: zhangdd@suda.edu.cn Jiang, Xiao-Chen; Ma, Zhong-Sheng; Wang, Qian-Kun; Guo, Zhen-Yu; Zhang, Dan-Dan E-mail: zhangdd@suda.edu.cn Lee, Shuit-Tong; Tang, Jian-Xin E-mail: zhangdd@suda.edu.cn

    2014-08-04

    We constructed a concept of the full-organic carrier collection layer (CCL) used for polymer solar cells. The CCL is composed of dipyrazino[2,3-f:2′,3′-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile as hole collection layer (HCL) and chlorine-free solvents (formic acid (FA)) processed 4,7-Diphenyl-1,10-phenanthroline (Bphen) as electron collection layer, exhibiting good solubility, and environmental protection. The FA based device shows ideal power conversion efficiency (3.75%), which is higher than that of control device (3.6%). Besides, the HCL shows a different mechanism in hole extraction by functioning as a charge recombination zone for electrons injected from anode and holes extracted from the donor materials.

  2. Evidence for self-organized formation of logarithmic spirals during explosive crystallization of amorphous Ge:Mn layers

    NASA Astrophysics Data System (ADS)

    Bürger, Danilo; Baunack, Stefan; Thomas, Jürgen; Oswald, Steffen; Wendrock, Horst; Rebohle, Lars; Schumann, Thomas; Skorupa, Wolfgang; Blaschke, Daniel; Gemming, Thomas; Schmidt, Oliver G.; Schmidt, Heidemarie

    2017-05-01

    Logarithmic spirals are found on different length scales in nature, e.g., in nautilus shells, cyclones, and galaxies. The underlying formation laws can be related to different growth mechanisms, pressure gradients, and density waves. Here, we report on the self-organized formation of symmetric logarithmic crystallization spirals in a solid material on the micrometer length scale, namely, in an amorphous Ge:Mn layer on a Ge substrate. After exposure to a single light pulse of a flashlamp array, the Ge:Mn layer is crystallized and reveals a partially rippled surface and logarithmic microspirals. Finally, we present a model describing the formation of the crystallization spirals by directional explosive crystallization of the amorphous Ge:Mn layer, which is triggered by the flashlamp light pulse.

  3. Green phosphorescent organic light-emitting devices based on different electron transport layers combining with fluorescent sub-monolayer

    NASA Astrophysics Data System (ADS)

    Yang, Hui-shan; Guo, Hui-yu; Wu, Li-shuang

    2017-03-01

    We report a small molecule host of 4,4(-N,N)-dicarbazole-biphenyl (CBP) doped with 8% tris(2-phenylpyridine) iridium (Irppy3) for use in efficient green phosphorescent organic light-emitting devices (PHOLEDs) combined with different electron transport layers of Alq and BAlq. The PHOLEDs exhibit maximum current efficiency and power efficiency of 19.8 cd/A and 6.21 lm/W, respectively. The high performance of such PHOLEDs is attributed to the better electron mobile ability of BAlq and sub-monolayer quinacridone (QAD) as carrier trapping layer and equal charge carrier mobilities of hole and electron to form the broad carrier recombination zone in the emitting layer, which can reduce the triplet-triplet annihilation and improve the efficiency of the device.

  4. Low-Damage Indium Tin Oxide Formation on Organic Layers Using Unique Cylindrical Sputtering Module and Application in Transparent Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hidetoshi; Oyamada, Takahito; Hale, William; Aoshima, Shoichi; Sasabe, Hiroyuki; Adachi, Chihaya

    2006-02-01

    We demonstrate a low-damage technique for forming an indium tin oxide (ITO) layer on an organic layer by using a unique cylindrical sputtering module and the fabrication of high-performance transparent organic light-emitting diodes (TOLEDs). The ITO target has an off-axis alignment to the substrate, and it confines plasma to the inside of the module, thereby forming ITO with little damage to the underlying organic layers. We found that the composition ratio of In2O3 (90%) and SnO2 (10%) in the deposited film is the same as the target composition ratio, and that the composition ratio distribution was spatially uniform, showing no angular dependence. We fabricated an ITO [110 nm]/4,4'-bis[N(1-naphthyl)-N-phenyl-amino]biphenyl (α-NPD) [50 nm]/tris-(8-hydroxy-quinoline)aluminum (Alq3) [30 nm]/Cs:phenyldipyrenylphosphine oxide (POPy2) [20 nm]/ITO [100 nm] device, using a cylindrical target for the top ITO cathode fabrication. The device showed excellent J-V characteristics, with a current density of J=883 mA/cm2 at an applied voltage of 10 V and a maximum external quantum efficiency of ηext=0.76%.

  5. Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification

    NASA Astrophysics Data System (ADS)

    Peck, Victoria L.; Tarling, Geraint A.; Manno, Clara; Harper, Elizabeth M.; Tynan, Eithne

    2016-05-01

    Scarred shells of polar pteropod Limacina helicina collected from the Greenland Sea in June 2012 reveal a history of damage, most likely failed predation, in earlier life stages. Evidence of shell fracture and subsequent re-growth is commonly observed in specimens recovered from the sub-Arctic and further afield. However, at one site within sea-ice on the Greenland shelf, shells that had been subject to mechanical damage were also found to exhibit considerable dissolution. It was evident that shell dissolution was localised to areas where the organic, periostracal sheet that covers the outer shell had been damaged at some earlier stage during the animal's life. Where the periostracum remained intact, the shell appeared pristine with no sign of dissolution. Specimens which appeared to be pristine following collection were incubated for four days. Scarring of shells that received periostracal damage during collection only became evident in specimens that were incubated in waters undersaturated with respect to aragonite, ΩAr≤1. While the waters from which the damaged specimens were collected at the Greenland Sea sea-ice margin were not ΩAr≤1, the water column did exhibit the lowest ΩAr values observed in the Greenland and Barents Seas, and was likely to have approached ΩAr≤1 during the winter months. We demonstrate that L. helicina shells are only susceptible to dissolution where both the periostracum has been breached and the aragonite beneath the breach is exposed to waters of ΩAr≤1. Exposure of multiple layers of aragonite in areas of deep dissolution indicate that, as with many molluscs, L. helicina is able to patch up dissolution damage to the shell by secreting additional aragonite internally and maintain their shell. We conclude that, unless breached, the periostracum provides an effective shield for pteropod shells against dissolution in waters ΩAr≤1, and when dissolution does occur the animal has an effective means of self-repair. We suggest

  6. Organic solar cells with graphene electrodes and vapor printed poly(3,4-ethylenedioxythiophene) as the hole transporting layers.

    PubMed

    Park, Hyesung; Howden, Rachel M; Barr, Miles C; Bulović, Vladimir; Gleason, Karen; Kong, Jing

    2012-07-24

    For the successful integration of graphene as a transparent conducting electrode in organic solar cells, proper energy level alignment at the interface between the graphene and the adjacent organic layer is critical. The role of a hole transporting layer (HTL) thus becomes more significant due to the generally lower work function of graphene compared to ITO. A commonly used HTL material with ITO anodes is poly(3,4-ethylenedioxythiophene) (PEDOT) with poly(styrenesulfonate) (PSS) as the solid-state dopant. However, graphene's hydrophobic surface renders uniform coverage of PEDOT:PSS (aqueous solution) by spin-casting very challenging. Here, we introduce a novel, yet simple, vapor printing method for creating patterned HTL PEDOT layers directly onto the graphene surface. Vapor printing represents the implementation of shadow masking in combination with oxidative chemical vapor deposition (oCVD). The oCVD method was developed for the formation of blanket (i.e., unpatterened) layers of pure PEDOT (i.e., no PSS) with systematically variable work function. In the unmasked regions, vapor printing produces complete, uniform, smooth layers of pure PEDOT over graphene. Graphene electrodes were synthesized under low-pressure chemical vapor deposition (LPCVD) using a copper catalyst. The use of another electron donor material, tetraphenyldibenzoperiflanthene, instead of copper phthalocyanine in the organic solar cells also improves the power conversion efficiency. With the vapor printed HTL, the devices using graphene electrodes yield comparable performances to the ITO reference devices (η(p,LPCVD) = 3.01%, and η(p,ITO) = 3.20%).

  7. Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability.

    PubMed

    Courtright, Brett A E; Jenekhe, Samson A

    2015-12-02

    We report a comparative study of polyethylenimine (PEI) and ethoxylated-polyethylenimine (PEIE) cathode buffer layers in high performance inverted organic photovoltaic devices. The work function of the indium-tin oxide (ITO)/zinc oxide (ZnO) cathode was reduced substantially (Δφ = 0.73-1.09 eV) as the molecular weight of PEI was varied from 800 g mol(-1) to 750 000 g mol(-1) compared with the observed much smaller reduction when using a PEIE thin film (Δφ = 0.56 eV). The reference inverted polymer solar cells based on the small band gap polymer PBDTT-FTTE (ITO/ZnO/PBDTT-FTTE:PC70BM/MoO3/Ag), without a cathode buffer layer, had an average power conversion efficiency (PCE) of 6.06 ± 0.22%. Incorporation of a PEIE cathode buffer layer in the same PBDTT-FTTE:PC70BM blend devices gave an enhanced performance with a PCE of 7.37 ± 0.53%. In contrast, an even greater photovoltaic efficiency with a PCE of 8.22 ± 0.10% was obtained in similar PBDTT-FTTE:PC70BM blend solar cells containing a PEI cathode buffer layer. The temporal stability of the inverted polymer solar cells was found to increase with increasing molecular weight of the cathode buffer layer. The results show that PEI is superior to PEIE as a cathode buffer layer in high performance organic photovoltaic devices and that the highest molecular weight PEI interlayer provides the highest temporal stability.

  8. The preparation of a Eu3+-doped ZnO bi-functional layer and its application in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Wu, Na; Luo, Qun; Qiao, Xvsheng; Ma, Chang-Qi

    2015-12-01

    Recently, spectra conversion has been used to minimize energy loss in photovoltaic devices. In this work, we explore the development of a novel Eu3+-doped ZnO bi-functional layer for use in organic solar cells. The bi-functional layer acts as both a spectra conversion and an electron transporting layer. Compared to conventional spectra conversion layers, it has a simpler device structure, is easier to fabricate, and has a wider spectrum-sensitized region. A series of Eu3+-doped ZnO nanocrystals were synthesized using the simple solution route. X-ray powder diffraction patterns (XRD), transmission electron microscopy (TEM), and UV-visible absorbance spectra were used to characterize the obtained ZnO nanocrystals. The results reveal that the size and bandgap of ZnO nanocrystals can be controlled through regulation of the doping concentration of Eu3+ ions. The energy transfer of ZnO → Eu3+ is observed by photoluminescence (PL) spectra. At a bandgap excitation of around 300-400 nm, a typical emission band from the Eu3+ is obtained. By employing the Eu3+- doped ZnO nanocrystals as a buffer layer in a P3HT:PC61BM bulk heterojunction device, the obtained performance is similar to the undoped ZnO device, indicating that the electrical properties of ZnO are not affected by Eu3+ doping. Due to the down-conversion energy transfer between ZnO and Eu3+, the external quantum efficiency of the ZnO:Eu3+ device at 300-400 nm is higher than that of the pure ZnO device, which subsequently leads to an increase in short circuit current density (J SC). This work proves that it is possible to improve the solar spectrum response in the ultraviolet region of organic solar cells effectively by incorporating the bi-functional layer.

  9. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    SciTech Connect

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol; Kim, Hyo Jung; Lee, Hyun Hwi

    2015-01-21

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low that a large proportion of the substrate surface is bare.

  10. Sedimentary sources of old high molecular weight dissolved organic carbon from the ocean margin benthic nepheloid layer

    SciTech Connect

    Guo, L. Santschi, P.H.

    2000-02-01

    Average {sup 14}C ages of dissolved organic carbon (DOC) in the ocean are 3--6,000 years, and are influenced by old DOC from continental margins. However, sources of DOC from terrestrial, autochthonous, and sedimentary organic carbon seem to be too young to be responsible for the old DOC observed in the ocean. Since colloidal organic carbon (COC, i.e., high molecular weight DOC), which is chemically very similar to that of bulk DOC, can be effectively isolated from seawater using cross-flow ultrafiltration, it can hold clues to sources and pathways of DOC turnover in the ocean. Radiocarbon measurements on COC in the water column and benthic nepheloid layer (BNL) from two continental margin areas (the Middle Atlantic Bight and the Gulf of Mexico) and controlled laboratory experiments were carried out to study sources of old DOC in the ocean margin areas. Vertical distributions of suspended particulate matter (SPM), particulate organic carbon (POC), nitrogen (PON), and DOC in the water column and bottom waters near the sediment-water interface all demonstrate a well developed benthic nepheloid layer in both ocean margin areas. COC from the BNL was much older than COC from the overlying water column. These results, together with strong concentration gradients of SPM, POC, PON, and DOC, suggest a sedimentary source for organic carbon species and possibly for old COC as well in BNL waters. This is confirmed by the results from controlled laboratory experiments. The heterogeneity of {Delta}{sup 14}C signatures in bulk SOC thus points to a preferential release of old organic components from sediment resuspension, which can be the transport mechanism of the old benthic COC observed in ocean margin areas. Old COC from continental margin nepheloid layers may thus be a potential source of old DOC to the deep ocean.

  11. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO₃ and ZnO Charge Transport Buffer Layers.

    PubMed

    Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori

    2010-11-08

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO₃) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO₃ by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers.

  12. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Schneidenbach, D.; Winkler, T.; Hamwi, S.; Weimann, T.; Hinze, P.; Ammermann, S.; Johannes, H.-H.; Riedl, T.; Kowalsky, W.

    2009-06-01

    We report on highly efficient gas diffusion barriers for organic light emitting diodes (OLEDs). Nanolaminate (NL) structures composed of alternating Al2O3 and ZrO2 sublayers grown by atomic layer deposition at 80 °C are used to realize long-term stable OLED devices. While the brightness of phosphorescent p-i-n OLEDs sealed by a single Al2O3 layer drops to 85% of the initial luminance of 1000 cd/m2 after 1000 h of continuous operation, OLEDs encapsulated with the NL retain more than 95% of their brightness. An extrapolated device lifetime substantially in excess of 10 000 h can be achieved, clearly proving the suitability of the NLs as highly dense and reliable thin film encapsulation of sensitive organic electronic devices.

  13. Controlled surface oxidation of multi-layered graphene anode to increase hole injection efficiency in organic electronic devices

    NASA Astrophysics Data System (ADS)

    Han, Tae-Hee; Kwon, Sung-Joo; Seo, Hong-Kyu; Lee, Tae-Woo

    2016-03-01

    Ultraviolet ozone (UVO) surface treatment of graphene changes its sp2-hybridized carbons to sp3-bonded carbons, and introduces oxygen-containing components. Oxidized graphene has a finite energy band gap, so UVO modification of the surface of a four-layered graphene anode increases its surface ionization potential up to ∼5.2 eV and improves the hole injection efficiency (η) in organic electronic devices by reducing the energy barrier between the graphene anode and overlying organic layers. By controlling the conditions of the UVO treatment, the electrical properties of the graphene can be tuned to improve η. This controlled surface modification of the graphene will provide a way to achieve efficient and stable flexible displays and solid-state lighting.

  14. Organization of the intermediate gray layer of the superior colliculus. I. Intrinsic vertical connections.

    PubMed

    Helms, Matthew C; Ozen, Gülden; Hall, William C

    2004-04-01

    A pathway from the superficial visual layers to the intermediate premotor layers of the superior colliculus has been proposed to mediate visually guided orienting movements. In these experiments, we combined photostimulation using "caged" glutamate with in vitro whole cell patch-clamp recording to demonstrate this pathway in the rat. Photostimulation in the superficial gray and optic layers (SGS and SO, respectively) evoked synaptic responses in intermediate gray layer (SGI) cells. The responses comprised individual excitatory postsynaptic currents (EPSCs) or EPSC clusters. Blockade of these EPSCs by TTX confirmed that they were synaptically mediated. Stimulation within a column (approximately 500 microm diam) extending superficially from the recorded cell evoked the largest and most reliable responses, but off-axis stimuli were effective as well. The EPSCs could be evoked by stimuli 1,000 microm off-axis from the postsynaptic neuron. The dimensions of this wider region (approximately 2 mm diam) corresponded to those of the dendrites of superficial layer wide-field neurons. SGI neurons differed in their input from SGS and SO; neurons in the middle of the intermediate layer (SGIb) were less likely to respond to visual layer photostimulation than were those in sublayers just above and below them. However, focal stimulation within SGIa did evoke responses within SGIb, indicating that SGIb neurons may receive input from the visual layers indirectly. These results demonstrate a columnar pathway that may mediate visually guided orienting movements, but the results also reveal spatial attributes of the pathway which imply that it also plays a more complex role in visuomotor integration.

  15. Improvement of organic solar cell efficiency by solution-processed doping of pentacene in PEDOT:PSS layer

    NASA Astrophysics Data System (ADS)

    Chilvery, A. K.; Batra, A. K.; Surabhi, R.; Lal, R. B.

    2014-12-01

    In the current research, organic solar cells (OSCs) with various concentrations of pentacene in Poly(ethylenedioxythiopene):Poly(styrenesulfonate) (PEDOT:PSS) interface layer were investigated for better hole extraction. The ITO/Pentacene + PEDOT:PSS/P3HT:PCBM/Al-fabricated solar cell fabricated via brush coating provides superior photovoltaic, electrical and optical characteristics when compared with the ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell. The ITO/Pentacene + PEDOT:PSS/P3HT:PCBM/Al solar cells deliver a VOC ~350 mV and 2.57% efficiency. It is observed that the optimized concentration of pentacene doping in PEDOT:PSS layer, along with an active layer of P3HT and PC60BM, doubles the efficiency of the device, when compared with pristine PEDOT:PSS layer. The degradation studies of the fabricated bulk heterojunction OSCs reveal that the degrading abilities of ITO/Pentacene + PEDOT:PSS/P3HT:PCBM/Al solar cells are 60% more better than those of ITO/PEDOT:PSS/P3HT:PCBM/Al devices. Thus, this work will ultimately contribute toward fully solution processed painted device, which will provide low-cost manufacturing and improved stability of pentacene-based organic photovoltaics.

  16. Few-Layer MoS2-Organic Thin-Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate.

    PubMed

    Lee, Hee Sung; Shin, Jae Min; Jeon, Pyo Jin; Lee, Junyeong; Kim, Jin Sung; Hwang, Hyun Chul; Park, Eunyoung; Yoon, Woojin; Ju, Sang-Yong; Im, Seongil

    2015-05-13

    Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel.

  17. Highly efficient solution-processed phosphorescent organic light-emitting devices with double-stacked hole injection layers

    NASA Astrophysics Data System (ADS)

    Chen, Yuehua; Hao, Lin; Zhang, Xinwen; Zhang, Xiaolin; Liu, Mengjiao; Zhang, Mengke; Wang, Jiong; Lai, Wen-Yong; Huang, Wei

    2017-08-01

    In this paper, solution-processed nickel oxide (NiOx) is used as hole-injection layers (HILs) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). Serious exciton quenching is verified at the NiOx/emitting layer (EML) interface, resulting in worse device performance. The device performance is significantly improved by inserting a layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) between the EML and NiOx. The solution-processed blue PhOLED with the double-stacked NiOx/PEDOT:PSS HILs shows a maximum current efficiency of 30.5 cd/A, which is 75% and 30% higher than those of the devices with a single NiOx HIL and a PEDOT:PSS HIL, respectively. Improvement of device efficiency can be attributed to reducing exciton quenching of the PEDOT:PSS layer as well as the electron blocking effect of the NiOx layer.

  18. Organic/inorganic hybrid pn-junction between copper phthalocyanine and CdSe quantum dot layers as solar cells

    NASA Astrophysics Data System (ADS)

    Saha, Sudip K.; Guchhait, Asim; Pal, Amlan J.

    2012-08-01

    We have introduced an organic/inorganic hybrid pn-junction for solar cell applications. Layers of II-VI quantum dots and a metal-phthalocyanine in sequence have been used as n- and p-type materials, respectively, to form a junction. The film of quantum dots has been formed through a layer-by-layer process by replacing the long-chain ligands of the nanoparticles in each ultrathin layer or a monolayer with short-chain ones so that interparticle distance becomes small leading to a decrease in resistance of the quantum dot layer. With indium tin oxide and Au as electrodes, we have formed an inverted sandwiched structure. These electrodes formed ohmic contacts with the neighboring materials. From the current-voltage characteristics of the hybrid heterostructure, we have inferred formation of a depletion region at the pn-junction that played a key role in charge separation and correspondingly a photocurrent in the external circuit. For comparison, we have also formed and characterized Schottky devices based on components of the pn-junction keeping the electrode combination same. From capacitance-voltage characteristics, we have observed that the depletion region of the hybrid pn-junction was much wider as compared to that in Schottky devices based on components of the junction.

  19. Accurate optical simulation of nano-particle based internal scattering layers for light outcoupling from organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Egel, Amos; Gomard, Guillaume; Kettlitz, Siegfried W.; Lemmer, Uli

    2017-02-01

    We present a numerical strategy for the accurate simulation of light extraction from organic light emitting diodes (OLEDs) comprising an internal nano-particle based scattering layer. On the one hand, the light emission and propagation through the OLED thin film system (including the scattering layer) is treated by means of rigorous wave optics calculations using the T-matrix formalism. On the other hand, the propagation through the substrate is modeled in a ray optics approach. The results from the wave optics calculations enter in terms of the initial substrate radiation pattern and the bidirectional reflectivity distribution of the OLED stack with scattering layer. In order to correct for the truncation error due to a finite number of particles in the simulations, we extrapolate the results to infinitely extended scattering layers. As an application example, we estimate the optimal particle filling fraction for an internal scattering layer in a realistic OLED geometry. The presented treatment is designed to emerge from electromagnetic theory with as few additional assumptions as possible. It could thus serve as a baseline to validate faster but approximate simulation approaches.

  20. Efficiency enhancement of solution-processed inverted organic solar cells with a carbon-nanotube-doped active layer

    NASA Astrophysics Data System (ADS)

    Lin, Wen-Kai; Su, Shui-Hsiang; Yeh, Meng-Cheng; Huang, Yang-Chan; Yokoyama, Meiso

    2016-01-01

    Solution-processed titanium-doped ZnO (TZO) is synthesized by the sol-gel method to be the electron-transporting layer (ETL) in an inverted organic solar cell (IOSC). Carbon nanotubes (CNTs) are doped into an active layer of poly(3-hexylthiophene):[6,6]-phenyl C 61 butyric acid methyl ester (P3HT:PCBM). The addition of CNTs in the P3HT:PCBM composite increases the conjugation length of P3HT:PCBM:CNTs, which simultaneously enhances the capacity of the composite to absorb solar energy radiation. Vanadium oxide (V2O5) was spin-coated onto the active layer to be a hole-transporting layer (HTL). The power conversion efficiency (PCE) results indicate that the V2O5 nanobelt structure possesses better phase separation and provides a more efficient surface area for the P3HT:PCBM:CNT active layer to increase photocurrent. The optimized IOSCs exhibited an open circuit voltage (Voc), a short-circuit current density (Jsc), a fill factor (FF), and a PCE of 0.55 V, 6.50 mA/cm2, 58.34%, and 2.20%, respectively, under simulated AM1.5G illumination of 100 mW/cm2.

  1. Manipulating the dipole layer of polar organic molecules on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.

  2. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    PubMed

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Driving voltage reduction in white organic light-emitting devices from selectively doping in ambipolar blue-emitting layer

    NASA Astrophysics Data System (ADS)

    Hsiao, Chih-Hung; Lin, Chi-Feng; Lee, Jiun-Haw

    2007-11-01

    White organic light-emitting devices (OLEDs) consisting of ambipolar 9,10-bis(2'-naphthyl) anthracene (ADN) as a host of blue-emitting layer (EML) were investigated. A thin codoped layer of yellow 5,6,11,12-Tetraphenylnaphthacene (rubrene) served as a probe for detecting the position of maximum recombination rate in the 4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl (DPAVBi) doped-ADN EML. Due to the energy barrier and bipolar carrier transport, the maximum recombination rate was found to be close to but not exactly at the interface of the hole-transporting layer and the EML. With appropriate tuning in the thickness, position, and dopant concentrations of the codoped layer (rubrene:DPAVBi:ADN) in the EML, the device driving voltage decreased by 21.7%, nearly 2 V in reduction, due to the increased recombination current from the faster exciton relaxation induced by the yellow dopants. Among the advantages of introducing the codoped layer over conventional single-doped layers are the elimination of the trapping effect to avoid increasing the device driving voltage, the alleviation of the dependence of the recombination zone on the applied voltage for improving color stability, and the utilization of excitons in a more efficient way to enhance device efficiency. Without using any electrically conductive layers such as the p-i-n structure, we were able to successfully generate 112 cd/m2 at 4 V from our white OLED simply by engineering the structure of the EML.

  4. Unusual retinal layer organization in HPC-1/syntaxin 1A knockout mice.

    PubMed

    Kaneko, Yuko; Suge, Rie; Fujiwara, Tomonori; Akagawa, Kimio; Watanabe, Shu-Ichi

    2011-10-01

    HPC-1/syntaxin 1A (STX1A) is abundantly expressed in neurons. STX1A is believed to regulate exocytosis in synaptic vesicles. In our recent studies, STX1A knockout (KO) mice showed normal development, and basal synaptic transmission in cultured hippocampal neurons appeared to be normal. However, behavioral abnormalities were observed in STX1A KO mice. In the normal rodent retina, the STX1A protein is expressed in two synaptic layers (plexiform layers). Here, to evaluate the effects of the loss of STX1A on retinal structure, we examined the retinal layer structure in STX1A KO mice using hematoxylin staining and immunostaining. We found that the general layer structures in the retina were preserved in all genotypes. However, the outer plexiform layer (OPL) was significantly thicker in KO and heterozygous mutant (HT) mice compared with that in wild-type (WT) mice. No significant differences were observed in the thicknesses of the other layers. Immunostaining for protein kinase C α showed that the alignment of rod bipolar cell bodies in the inner nuclear layer (INL) was slightly disrupted in HT and KO retinas. Furthermore, the dendrites of these cells in the OPL of KO mice were sparse, compared to those in WT mice. Our results show that STX1A KO mice have increased thickness of the OPL and changes in the morphology of the INL that may contribute to the change in OPL thickness. We suggest that STX1A may play a role in the structural formation of the INL and OPL in the retina.

  5. Structural transformation and photoluminescence behavior during calcination of the layered europium-doped yttrium hydroxide intercalate with organic-sensitizer

    SciTech Connect

    Sun, Yahong; Pan, Guohua; Gu, Qingyang; Li, Xinxin; Sun, Genban; Ma, Shulan; Yang, Xiaojing

    2013-11-15

    Graphical abstract: Calcination of organic sensitizer intercalated layered europium-doped yttrium hydroxide displayed tunable luminescent performance dependent on calcined temperatures. The 200 °C-calcined sample revealed an optimal fluorescence behavior with respect to TA-LYH:Eu composite and the as-transformed oxide. - Highlights: • We report the calcinations process of organic/LYH:Eu nanocomposite materials. • We study structural transformation and fluorescence behavior of the calcined samples. • Calcined samples displayed tunable luminescent performance dependent on temperatures. • The optimal fluorescence was found in 200 °C-calcined sample. • This material can provide valuable guide for developing tunable luminescent materials. - Abstract: We report, for the first time, structural transformation and photoluminescence behavior by calcination of layered europium-doped yttrium hydroxide (LYH:Eu) intercalate with organic sensitizer terephthalate (TA). The calcined samples displayed tunable luminescent performance dependent on calcined temperatures. Calcination under low temperatures (200 and 300 °C) retained layered structure, while high temperatures (>400 °C) yielded oxide phase. The optimal fluorescence occurred in 200 °C-calcination, possibly resulting from an optimal arrangement of TA. Above 200 °C, the luminescence intensity was first weakened and then enhanced, due to gradual departure of TA and following occurrence of oxide phase. The energy transfer presented an intrinsic transition from TA-to-Eu{sup 3+} in the organic intercalate to O{sup 2−}-to-Eu{sup 3+} charge transfer in as-transformed oxide. The predominant luminescence property of the hybrid material can provide valuable guide for developing tunable luminescent materials, especially flexible materials resulting from the containing organic component.

  6. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion.

    PubMed

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-03-01

    To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.

  7. Metal-organic coordination-enabled layer-by-layer self-assembly to prepare hybrid microcapsules for efficient enzyme immobilization.

    PubMed

    Wang, Xiaoli; Jiang, Zhongyi; Shi, Jiafu; Liang, Yanpeng; Zhang, Chunhong; Wu, Hong

    2012-07-25

    A novel layer-by-layer self-assembly approach enabled by metal-organic coordination was developed to prepare polymer-inorganic hybrid microcapsules. Alginate was first activated via N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxy succinimide (NHS) coupling chemistry, and subsequently reacted with dopamine. Afterward, the dopamine modified alginate (Alg-DA) and titanium(IV) bis(ammonium lactato) dihydroxide (Ti(IV)) were alternatively deposited onto CaCO3 templates. The coordination reaction between the catechol groups of Alg-DA and the Ti(IV) allowed the alternative assembly to form a series of multilayers. After removing the templates, the alginate-titanium hybrid microcapsules were obtained. The high mechanical stability of hybrid microcapsules was demonstrated by osmotic pressure experiment. Furthermore, the hybrid microcapsules displayed superior thermal stability due to Ti(IV) coordination. Catalase (CAT) was used as model enzyme, either encapsulated inside or covalently attached on the surface of the resultant microcapsules. No CAT leakage from the microcapsules was detected after incubation for 48 h. The encapsulated CAT, with a loading capacity of 450-500 mg g(-1) microcapsules, exhibited desirable long-term storage stability, whereas the covalently attached CAT, with a loading capacity of 100-150 mg g(-1) microcapsules, showed desirable operational stability.

  8. Hydrophobic interactions leading to a complex interplay between bioelectrocatalytic properties and multilayer meso-organization in layer-by-layer assemblies.

    PubMed

    Lorena Cortez, M; De Matteis, Nicolás; Ceolín, Marcelo; Knoll, Wolfgang; Battaglini, Fernando; Azzaroni, Omar

    2014-10-14

    The present study explores the development of mesostructured bioelectrochemical interfaces with accurate compositional and topological control of the supramolecular architecture through the layer-by-layer assembly of ternary systems based on poly(allylamine) containing an osmium polypyridyl complex (OsPA), an anionic surfactant, sodium dodecyl sulfate (SDS) or sodium octodecyl sulfate (ODS), and glucose oxidase (GOx). We show that the introduction of the anionic surfactant allows a sensitive increase of the polyelectrolyte and the enzyme uptake at pH 7.0, enhancing its catalytic behavior in the presence of glucose as compared to the surfactant-free system (OsPA/GOx)n constructed at the same pH. Structural characterization of the multilayer films was performed by means of grazing-incidence small-angle X-ray scattering (GISAXS), which showed the formation of mesostructured domains within the composite assemblies. Experimental results indicate that the balance between ionic and hydrophobic interactions plays a leading role not only in the construction of the self-assembled system but also in the functional properties of the bioactive interface. The structure of the ternary multilayered films depends largely on the length of the alkyl chain of the surfactant. We show that surfactants incorporated into the film also play a role as chemical entities capable of tuning the hydrophobicity of the whole assembly. In this way, the deliberate introduction of short-range hydrophobic forces was exploited as an additional variable to manipulate the adsorption and coverage of protein during each assembly step. However, the integration of long-chain surfactants may lead to the formation of very well-organized interfacial architectures with poor electron transfer properties. This, in turn, leads to a complex trade-off between enzyme coverage and redox wiring that is governed by the meso-organization and the hydrophobic characteristics of the multilayer assembly.

  9. Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes

    NASA Astrophysics Data System (ADS)

    Dumitriu, Cristina; Popescu, Marian; Ungureanu, Camelia; Pirvu, Cristian

    2015-06-01

    Using easy and cheap potential step anodization in electrolytes with different molar mass and water content, a Ti substrate was covered with a nanostructured TiO2 layer. Surface characterization of the prepared samples was conducted using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and contact angle analysis. The formation mechanism and surface morphologies are very different, depending on the molar mass and water percent of electrolyte solutions used for anodizing Ti substrate. The electrochemical behavior of the samples was studied using Tafel plots, and electrochemical impedance spectroscopy recorded in a simulated body fluid. All used anodizing treatments have conducted to samples with increased corrosion protection. The paper illustrates the antibacterial efficiencies of TiO2 nanostructured layers (shielded nanotubes, nanoporous oxide layer and some remaining PEG electrolyte) quantitatively estimated using gram-negative bacterium Escherichia coli ATCC 8738.

  10. Retinal prosthesis that incorporates the organization of the nerve fibre layer.

    PubMed

    FitzGibbon, Thomas

    2017-01-30

    Recent efforts to restore partial vision in blind patients have made significant progress. Currently, prosthetic design concentrates on stimulating as many foveal retinal ganglion cells as possible but is hampered by stimulation of the nerve fibre layer. This results in a nonvisuotopic arrangement of phosphenes (stimulation percepts). This article suggests that by extending the stimulation area well beyond the fovea and stimulating the nerve fibre layer, axons from any remaining ganglion cells in more peripheral regions of the retina (low acuity) can be used to generate a visuotopic map. Stimulation of the fibre layer will generate a large number of stimulation percepts; however, it is unlikely that these will have sufficient topographic order to be immediately useful to the patient. Thus, it will be necessary to recreate an ordered visuotopic map by using appropriate computer algorithms and interactions between the patient and the clinician.

  11. Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers.

    PubMed

    Zhao, Xin; Zhao, Jingwen; Lin, Zhi Yuan William; Pan, Guoqing; Zhu, Yueqi; Cheng, Yingsheng; Cui, Wenguo

    2015-06-01

    Implantable tissue engineering scaffolds with temporally programmable multi-drug release are recognized as promising tools to improve therapeutic effects. A good example would be one that exhibits initial anti-inflammatory and long-term anti-tumor activities after tumor resection. In this study, a new strategy for self-coated interfacial layer on drug-loaded mesoporous silica nanoparticles (MSNs) based on mussel-mimetic catecholamine polymer (polydopamine, PDA) layer was developed between inorganic and organic matrix for controlling drug release. When the interface PDA coated MSNs were encapsulated in electrospun poly(L-lactide) (PLLA) fibers, the release rates of drugs located inside/outside the interfacial layer could be finely controlled, with short-term release of anti-inflammation ibuprofen (IBU) for 30 days in absence of interfacial interactions and sustained long-term release of doxorubicin (DOX) for 90 days in presence of interfacial interactions to inhibit potential tumor recurrence. The DOX@MSN-PDA/IBU/PLLA hybrid fibrous scaffolds were further found to inhibit proliferation of inflammatory macrophages and cancerous HeLa cells, while supporting the normal stromal fibroblast adhesion and proliferation at different release stages. These results have suggested that the interfacial obstruction layer at the organic/inorganic phase was able to control the release of drugs inside (slow)/outside (rapid) the interfacial layer in a programmable manner. We believe such interface polymer strategy will find applications in where temporally controlled multi-drug delivery is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-assembled Monolayers

    SciTech Connect

    Alaboson, Justice M. P.; Wang, Qing Hua; Emery, Jonathan D.; Lipson, Albert L.; Bedzyk, Michael J.; Elam, Jeffrey W.; Pellin, Michael J.; Hersam, Mark C.

    2011-06-28

    The development of high-performance graphene-based nanoelectronics requires the integration of ultrathin and pinhole-free high-k dielectric films with graphene at the wafer scale. Here, we demonstrate that self-assembled monolayers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) act as effective organic seeding layers for atomic layer deposition (ALD) of HfO₂ and Al₂O₃ on epitaxial graphene on SiC(0001). The PTCDA is deposited via sublimation in ultrahigh vacuum and shown to be highly ordered with low defect density by molecular-resolution scanning tunneling microscopy. Whereas identical ALD conditions lead to incomplete and rough dielectric deposition on bare graphene, the chemical functionality provided by the PTCDA seeding layer yields highly uniform and conformal films. The morphology and chemistry of the dielectric films are characterized by atomic force microscopy, ellipsometry, cross-sectional scanning electron microscopy, and X-ray photoelectron spectroscopy, while high-resolution X-ray reflectivity measurements indicate that the underlying graphene remains intact following ALD. Using the PTCDA seeding layer, metal-oxide-graphene capacitors fabricated with a 3 nm Al₂O₃ and 10 nm HfO₂ dielectric stack show high capacitance values of ~700 nF/cm² and low leakage currents of ~5 × 10{sup –9} A/cm² at 1 V applied bias. These results demonstrate the viability of sublimated organic self-assembled monolayers as seeding layers for high-k dielectric films in graphene-based nanoelectronics.

  13. Low temperature tunneling magnetoresistance on (La,Sr)MnO3/Co junctions with organic spacer layers

    NASA Astrophysics Data System (ADS)

    Vinzelberg, H.; Schumann, J.; Elefant, D.; Gangineni, R. B.; Thomas, J.; Büchner, B.

    2008-05-01

    This paper concerns with giant magnetoresistance (MR) effects in organic spin valves, which are realized as layered (La,Sr)MnO3 (LSMO)-based junctions with tris-(8, hydroxyquinoline) aluminum (Alq3)-spacer and ferromagnetic top layers. The experimental work was focused on the understanding of the transport behavior in this type of magnetic switching elements. The device preparation was carried out in an ultrahigh vacuum chamber equipped with a mask changer by evaporation and sputtering on SrTiO3 substrates with LSMO stripes deposited by pulsed laser technique. The field and temperature dependences of the MR of the prepared elements are studied. Spin-valve effects at 4.2K have been observed in a broad resistance interval from 50Ω to MΩ range, however, without systematic dependence on spacer layer thickness and device area. In some samples, the MR changes sign as a function of the bias voltage. The observed similarity in the bias voltages dependences of the MR in comparison with conventional magnetic tunnel junctions with oxide barriers suggests a description of the found effects within the classical tunneling concept. This assumption is also confirmed by a similar switching behavior observed on ferromagnetically contacted carbon nanotube devices. The proposed model implies the realization of the transport via local Co chains embedded in the Alq3 layer and spin dependent tunneling over barriers at the interface Co grains/Alq3/LSMO. The existence of conducting Co chains within the organics is supported by transmission electron microscopic/electron energy loss spectroscopic studies on cross-sectional samples from analogous layer stacks.

  14. Indium Tin Oxide Electrode with an Ultrathin Al Buffer Layer for Flexible Organic Light Emitting Diode

    NASA Astrophysics Data System (ADS)

    Sim, Boyeon; Hwang, Hyeonseok; Ryu, Seungyoon; Baik, Hongkoo; Lee, Myeongkyu

    2010-06-01

    This paper reports that the mechanical and electrical stability of indium tin oxide (ITO) film deposited on flexible plastic substrate can be much enhanced with a thin Al buffer layer while maintaining a visible transmittance over 75%. The improved stability is attributed to the effective elastic mismatch between the film and the substrate reduced by a ductile interlayer. A polymer light emitting diode fabricated using an ITO/Al anode exhibited a luminance of 13,000 cd/m2 with a current efficiency of 16 cd/A. Bending-induced degradation of the device performance was also alleviated when a mechanical buffer layer was inserted.

  15. Non-cellulosic polysaccharides help to reveal the history of thick organic surface layers on calcareous Alpine soils

    NASA Astrophysics Data System (ADS)

    Prietzel, Jörg; Spielvogel, Sandra

    2015-04-01

    We investigated the potential of non-cellulosic polysaccharides (NCP) as biomarkers to identify the plant types that dominate present and past litter input into organic surface covers on calcareous Alpine soils and to reveal historic vegetation changes. At two sites in the Alps, NCP monomers were quantified in different organs of site-dominating plants, the Oa horizon of four Folic Leptosols, and different sections of thick organic surface layers of four Folic Histosols on calcareous bedrock. The dominating plant types at our study sites differ markedly in their NCP composition and (galactose + mannose)/(arabinose + xylose) [GM/AX] ratio (grasses and sedges: 0.2; dicots Fagus and Vaccinium: 0.2-0.6; conifers Abies, Picea, Pinus: 0.7-2.4; mosses: 5). For all except one soil, the NCP signature of the uppermost Oa horizon reflects the present vegetation. For all Histosol O horizons, NCP signatures indicate a dominance of conifer litter throughout their development (up to 1,500 years). Different NCP and GM/AX depth profiles reflect specific patterns of O layer genesis. From those results we conclude that NCP and GM/AX depth profiles in organic surface covers of soils provide important information about dominating litter sources in the past and can be valuable tools to reveal historic vegetation and/ or land use changes.

  16. Surprising Electronic-Magnetic Properties of Close Packed Organized Organic Layers- Magnetization of Chiral Monolayers of Polypeptide

    NASA Astrophysics Data System (ADS)

    Naaman, Ron; Carmeli, Itai; Skakalova, Viera; Vager, Zeev

    2002-03-01

    It is usually assumed that the electronic properties of the adsorbed molecules are similar to that of the isolated molecule or of the molecule embedded in an isotropic medium. The weak coupling between the molecules in a monolayer seems to support this notion. This is taken as a justification to use molecular based calculations for predicting the properties of the monolayer. We present theoretical and experimental results that point to the fact that this assumption is generally not justified and that properties of molecules can vary significantly upon adsorption to a close packed layer. This observation may result in new electro-magnetic properties of the adsorbed film and be of importance in understanding physical properties of natural membranes. In the present work, by studying well-characterized monolayers of polyalanine we are able to obtain an insight on the details of a mechanism.

  17. Comparative Study of MIL-96(Al) as Continuous Metal-Organic Frameworks Layer and Mixed-Matrix Membrane.

    PubMed

    Knebel, Alexander; Friebe, Sebastian; Bigall, Nadja Carola; Benzaqui, Marvin; Serre, Christian; Caro, Jürgen

    2016-03-23

    MIL-96(Al) layers were prepared as supported metal-organic frameworks membrane via reactive seeding using the α-alumina support as the Al source for the formation of the MIL-96(Al) seeds. Depending on the solvent mixture employed during seed formation, two different crystal morphologies, with different orientation of the transport-active channels, have been formed. This crystal orientation and habit is predefined by the seed crystals and is kept in the subsequent growth of the seeds to continuous layers. In the gas separation of an equimolar H2/CO2 mixture, the hydrogen permeability of the two supported MIL-96(Al) layers was found to be highly dependent on the crystal morphology and the accompanied channel orientation in the layer. In addition to the neat supported MIL-96(Al) membrane layers, mixed-matrix membranes (MMMs, 10 wt % filler loading) as a composite of MIL-96(Al) particles as filler in a continuous Matrimid polymer phase have been prepared. Five particle sizes of MIL-96(Al) between 3.2 μm and 55 nm were synthesized. In the preparation of the MIL-96(Al)/Matrimid MMM (10 wt % filler loading), the following preparation problems have been identified: The bigger micrometer-sized MIL-96(Al) crystals show a trend toward sedimentation during casting of the MMM, whereas for nanoparticles aggregation and recrystallization to micrometer-sized MIL-96(Al) crystals has been observed. Because of these preparation problems for MMM, the neat supported MIL-96(Al) layers show a relatively high H2/CO2 selectivity (≈9) and a hydrogen permeance approximately 2 magnitudes higher than that of the best MMM.

  18. Evaluating Mechanisms of Dihydroxylation by Thin-Layer Chromatography: A Microscale Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Burlingham, Benjamin T.; Rettig, Joseph C.

    2008-01-01

    A microscale experiment is presented in which cyclohexene is dihydroxylated under three sets of conditions: epoxidation-hydrolysis, permanganate oxidation, and the Woodward dihydroxylation. The products of the reactions are determined by the use of thin-layer chromatography. Teams of students are presented with proposed mechanisms for each…

  19. Evaluating Mechanisms of Dihydroxylation by Thin-Layer Chromatography: A Microscale Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Burlingham, Benjamin T.; Rettig, Joseph C.

    2008-01-01

    A microscale experiment is presented in which cyclohexene is dihydroxylated under three sets of conditions: epoxidation-hydrolysis, permanganate oxidation, and the Woodward dihydroxylation. The products of the reactions are determined by the use of thin-layer chromatography. Teams of students are presented with proposed mechanisms for each…

  20. Solvent effects of a dimethyldicyanoquinonediimine buffer layer as N-type material on the performance of organic photovoltaic cells.

    PubMed

    Yang, Eui Yeol; Oh, Se Young

    2014-08-01

    In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.

  1. Sum-Frequency Generation Spectroscopy for Studying Organic Layers at Water-Air Interfaces: Microlayer Monitoring and Surface Reactivity

    NASA Astrophysics Data System (ADS)

    Laß, Kristian; Kleber, Joscha; Bange, Hermann; Friedrichs, Gernot

    2015-04-01

    The sea surface microlayer, according to commonly accepted terminology, comprises the topmost millimetre of the oceanic water column. It is often enriched with organic matter and is directly influenced by sunlight exposure and gas exchange with the atmosphere, hence making it a place for active biochemistry and photochemistry as well as for heterogeneous reactions. In addition, surface active material either is formed or accumulates directly at the air-water interface and gives rise to very thin layers, sometimes down to monomolecular thickness. This "sea surface nanolayer" determines the viscoelastic properties of the seawater surface and thus may impact the turbulent air-sea gas exchange rates. To this effect, this small scale layer presumably plays an important role for large scale changes of atmospheric trace gas concentrations (e.g., by modulating the ocean carbon sink characteristics) with possible implications for coupled climate models. To date, detailed knowledge about the composition, structure, and reactivity of the sea surface nanolayer is still scarce. Due to its small vertical dimension and the small amount of material, this surfactant layer is very difficult to separate and analyse. A way out is the application of second-order nonlinear optical methods, which make a direct surface-specific and background-free detection of this interfacial layer possible. In recent years, we have introduced the use of vibrational sum frequency generation (VSFG) spectroscopy to gain insight into natural and artificial organic monolayers at the air-water interface. In this contribution, the application of VSFG spectroscopy for the analysis of the sea surface nanolayer will be illustrated. Resulting spectra are interpreted in terms of layer composition and surfactant classes, in particular with respect to carbohydrate-containing molecules such as glycolipids. The partitioning of the detected surfactants into soluble and non-soluble ("wet" and "dry") surfactants will be

  2. Effect of Injection Layer Sub-Bandgap States on Electron Injection in Organic Light-Emitting Diodes.

    PubMed

    Hinzmann, Carsten; Magen, Osnat; Hofstetter, Yvonne J; Hopkinson, Paul E; Tessler, Nir; Vaynzof, Yana

    2017-02-22

    It is generally considered that the injection of charges into an active layer of an organic light-emitting diode (OLED) is solely determined by the energetic injection barrier formed at the device interfaces. Here, we demonstrate that the density of surface states of the electron-injecting ZnO layer has a profound effect on both the charge injection and the overall performance of the OLED device. Introducing a dopant into ZnO reduces both the energy depth and density of surface states without altering the position of the energy levels-thus, the magnitude of the injection barrier formed at the organic/ZnO interface remains unchanged. Changes observed in the density of surface states result in an improved electron injection and enhanced luminescence of the device. We implemented a numerical simulation, modeling the effects of energetics and the density of surface states on the electron injection, demonstrating that both contributions should be considered when choosing the appropriate injection layer.

  3. Control of the dipole layer of polar organic molecules adsorbed on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Su, Kai-Jun; Wang, Chin-Yung; Pi, Tun-Wen; Metz, Sebastian; Papadopoulos, Theodoros A.; Chiang, T.-C.; Ishii, Hisao; Tang, S.-J.

    2017-02-01

    Organic molecules with a permanent electric dipole moment have been widely used as a template for further growth of molecular layers in device structures. Key properties of the resulting organic films such as energy level alignment (ELA), work function, and injection/collection barrier are linked to the magnitude and direction of the dipole moment at the interface. Using angle-resolved photoemission spectroscopy (ARPES), we have systematically investigated the coverage-dependent work function and spectral line shapes of occupied molecular energy states (MESs) of chloroaluminium-phthalocyanine (ClAlPc) grown on Ag(111). We demonstrate that the dipole orientation of the first ClAlPc layer can be controlled by adjusting the deposition rate and postannealing conditions, and we find that the ELA at the interface differs by ˜0.4 eV between the Cl up and down configurations of the adsorbed ClAlPc molecules. These observations are rationalized by density functional theory (DFT) calculations based on a realistic model of the ClAlPc/Ag(111) interface, which reveal that the different orientations of the ClAlPc dipole layer lead to different charge-transfer channels between the adsorbed ClAlPc and Ag(111) substrate. Our findings provide a useful framework toward method development for ELA tuning.

  4. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    PubMed

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  5. Interface investigation of the alcohol-/water-soluble conjugated polymer PFN as cathode interfacial layer in organic solar cells

    NASA Astrophysics Data System (ADS)

    Zhong, Shu; Wang, Rui; Ying Mao, Hong; He, Zhicai; Wu, Hongbin; Chen, Wei; Cao, Yong

    2013-09-01

    In this work, in situ ultraviolet photoelectron spectroscopy measurements were used to investigate the working mechanism of an alcohol-/water-soluble conjugated polymer poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode interfacial layer in organic solar cells from the view of interfacial energy level alignment. Fullerene (C60) was chosen as the model acceptor material in contact with PFN as well as two other cathode interfacial layers ZnO and TiO2 in the configuration of an inverted solar cell structure. Significant charge transfer between PFN modified ITO (indium tin oxide) electrode and C60 is observed due to the low work function of PFN. This results in the Fermi level of the substrate pinned very close to the lowest unoccupied molecular orbital of C60 as well as an additional electric field at the cathode/acceptor interface. Both of them facilitate the electron extraction from the acceptor C60 to the ITO cathode, as confirmed by the electrical measurements of the electron-only devices with PFN modification. The better electron extraction originated from the Fermi level pinning and the additional interface electric field are believed to contribute to the efficiency enhancement of the inverted organic solar cells employing PFN as cathode interfacial layer.

  6. Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer

    NASA Astrophysics Data System (ADS)

    Poon, C. O.; Wong, F. L.; Tong, S. W.; Zhang, R. Q.; Lee, C. S.; Lee, S. T.

    2003-08-01

    The use of silicon oxy-nitride (SiOxNy) as an anode buffer layer in organic light-emitting devices (OLEDs) with a configuration of indium tin oxide (ITO)/SiOxNy/α-naphtylphenyliphenyl diamine (NPB)/8-hydroxyquinoline aluminum/Mg:Ag has been studied. With a SiOxNy buffer layer several angstroms thick, the device efficiency increased from 3.0 to 3.8 cd/A. The buffer layer also protected the ITO surface from contamination due to air exposure. Upon exposing the cleaned ITO substrate to air for one day before device fabrication, the device current efficiency and turn-on voltage degraded to 2.1 cd/A and 4.3 V, respectively, from 3 cd/A and 3.3 V for the device fabricated on an as-cleaned ITO surface. In contrast, devices prepared on air-exposed SiOxNy/ITO surface had almost the same current efficiency (3.85 cd/A) and turn on voltage (3.7 V) comparing to devices (3.8 cd/A and 3.7 V) fabricated on freshly prepared SiOxNy/ITO surface. The results suggested that SiOxNy is a promising anode buffer layer for OLEDs, for both efficiency and stability enhancements.

  7. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.

    PubMed

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.

  8. A Light Scattering Layer for Internal Light Extraction of Organic Light-Emitting Diodes Based on Silver Nanowires.

    PubMed

    Lee, Keunsoo; Shin, Jin-Wook; Park, Jun-Hwan; Lee, Jonghee; Joo, Chul Woong; Lee, Jeong-Ik; Cho, Doo-Hee; Lim, Jong Tae; Oh, Min-Cheol; Ju, Byeong-Kwon; Moon, Jaehyun

    2016-07-13

    We propose and fabricate a random light scattering layer for light extraction in organic light-emitting diodes (OLEDs) with silver nanodots, which were obtained by melting silver nanowires. The OLED with the light scattering layer as an internal light extraction structure was enhanced by 49.1% for the integrated external quantum efficiency (EQE). When a wrinkle structure is simultaneously used for an external light extraction structure, the total enhancement of the integrated EQE was 65.3%. The EQE is maximized to 65.3% at a current level of 2.0 mA/cm(2). By applying an internal light scattering layer and wrinkle structure to an OLED, the variance in the emission spectra was negligible over a broad viewing angle. Power mode analyses with finite difference time domain (FDTD) simulations revealed that the use of a scattering layer effectively reduced the waveguiding mode while introducing non-negligible absorption. Our method offers an effective yet simple approach to achieve both efficiency enhancement and spectral stability for a wide range of OLED applications.

  9. A Glucose Sensor Based on an Organic Electrochemical Transistor Structure Using a Vapor Polymerized Poly(3,4-ethylenedioxythiophene) Layer

    NASA Astrophysics Data System (ADS)

    Kim, Yuna; Do, Jaekwon; Kim, Jeonghun; Yang, Sang Yoon; Malliaras, George G.; Ober, Christopher K.; Kim, Eunkyoung

    2010-01-01

    A glucose sensor based on an organic electrochemical transistor (OECT) structure was prepared by vapor phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT). The poly(3,4-ethylenedioxythiophene) (PEDOT) film was introduced as the conducting polymer channel and a platinum wire was used as a gate electrode in the OECT. The redox enzyme glucose oxidase (GOx) was introduced into the electrolyte of the OECT. The sensitivity and detection range of the sensor could be tuned by adjusting the source-drain and gate bias. The OECT showed high sensitivity to glucose in the low concentration region below 10 µM. An acid sensitive fluorescent layer was easily coated on top of the vapor polymerized PEDOT to obtain a double-layered OECT sensor. The optical sensitivity of the double-layered OECT sensor correlated linearly with the electrochemical sensitivity. Furthermore, the fluorescence intensity change of the double-layered OECT sensor was linearly dependent on pH, providing the OECT sensor with dual sensitivity of electrochemical and optical sensitivity.

  10. UV-ozone-treated ultra-thin NaF film as anode buffer layer on organic light emitting devices.

    PubMed

    Chen, Yu-Cheng; Kao, Po-Ching; Chu, Sheng-Yuan

    2010-06-21

    An ultra-thin NaF film was thermally deposited between ITO and NPB as the buffer layer and then treated with the ultraviolet (UV) ozone, in the fabrication of organic light emitting diodes (ITO/NaF/NPB/Alq(3)/LiF/Al) to study its effect on hole-injection properties. The treatment drastically transforms the role of NaF film from hole-blocking to hole-injecting. This transformation is elucidated using hole-only devices, energy band measurement, surface energy, surface polarity, and X-ray photoelectron spectra. With the optimal thickness (3 nm) of the UV-ozone-treated NaF layer, the device performance is significantly improved, with a turn-on voltage, maximum luminance, and maximum current efficiency of 2.5 V, 15700 cd/m(2), and 4.9 cd/A, respectively. Results show that NaF film is not only a hole-blocking layer, but also a promising hole-injecting layer after UV-ozone treatment.

  11. Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction

    NASA Astrophysics Data System (ADS)

    El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J. C.

    2016-11-01

    Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.

  12. Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell

    NASA Astrophysics Data System (ADS)

    Lebedev, V. S.; Medvedev, A. S.

    2013-11-01

    This paper examines the optical properties of two types of spherical three-component nanoparticles: (1) particles comprising a metallic core, outer organic dye J-aggregate shell and passive intermediate layer and (2) metallic nanoshells having an insulator or semiconductor core and coated with a molecular J-aggregate layer. The two types of nanoparticles are shown to differ significantly in the behaviour of electromagnetic fields and photoabsorption spectra. As a result of additional possibilities to control the magnitude and nature of the coupling between Frenkel excitons and localised surface plasmons in these systems, the spectral properties of the three-layer particles have radically new inherent features in comparison with earlier studied metal/J-aggregate bilayer particles. In the case of J-aggregate-coated metallic nanoshells, particular attention is paid to the strong plasmon - exciton coupling regime, which takes place when the plasmon resonance frequency of the nanoshell approaches the centre frequency of the J-band of the dye forming the outer layer of the particle.

  13. A magnetic organic-inorganic composite: Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides

    SciTech Connect

    Zhang Hui . E-mail: huizhang67@gst21.com; Zou Kang; Sun Hui; Duan Xue . E-mail: duanx@mail.buct.edu.cn

    2005-11-15

    A core-shell structured magnetic layered organic-inorganic material involving 5-aminosalicylic acid (5-ASA) intercalated Zn-Al layered double hydroxides (LDHs) and magnesium ferrite (MgFe{sub 2}O{sub 4}) is assembled by a coprecipitation method. The powder X-ray diffraction results show the coexistence of the clear but weak diffractions of MgFe{sub 2}O{sub 4} and ordered relatively stronger reflections of 5-ASA intercalated LDHs. The TEM image of magnetic 5-ASA intercalated LDHs reveals that the LDHs layer covers the MgFe{sub 2}O{sub 4} particles or their aggregates with particle size of 50-80 nm. The vibration sample magnetization (VSM) measurements exhibit the increase in saturation magnetization of magnetic 5-ASA intercalated LDHs samples with increasing amount of magnetic core. The XPS analyses account for a majority of Zn, Al and O atoms on the surface of magnetic particles. It is suggested that the magnetic core MgFe{sub 2}O{sub 4} was coated with LDHs layer probably through Zn-O-Mg and Al-O-Mg linkages, and a core-shell structured model is tentatively proposed.

  14. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers

    PubMed Central

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Abstract Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlOx), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers. PMID:28634499

  15. Optical properties of three-layer metal-organic nanoparticles with a molecular J-aggregate shell

    SciTech Connect

    Lebedev, V S; Medvedev, A S

    2013-11-30

    This paper examines the optical properties of two types of spherical three-component nanoparticles: (1) particles comprising a metallic core, outer organic dye J-aggregate shell and passive intermediate layer and (2) metallic nanoshells having an insulator or semiconductor core and coated with a molecular J-aggregate layer. The two types of nanoparticles are shown to differ significantly in the behaviour of electromagnetic fields and photoabsorption spectra. As a result of additional possibilities to control the magnitude and nature of the coupling between Frenkel excitons and localised surface plasmons in these systems, the spectral properties of the three-layer particles have radically new inherent features in comparison with earlier studied metal/J-aggregate bilayer particles. In the case of J-aggregate-coated metallic nanoshells, particular attention is paid to the strong plasmon – exciton coupling regime, which takes place when the plasmon resonance frequency of the nanoshell approaches the centre frequency of the J-band of the dye forming the outer layer of the particle. (optics of nanoparticles)

  16. Charge generation layers for all-solution processed organic tandem light emitting diodes with regular device architecture

    NASA Astrophysics Data System (ADS)

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Colsmann, Alexander

    2015-10-01

    We present multi-photon OLEDs where enhanced light emission was achieved by stacking two OLEDs utilizing a regular device architecture (top cathode) and an intermediate charge carrier generation layer (CGL) for monolithic device interconnection. With respect to future printing processes for organic optoelectronic devices, all functional layers were deposited from solution. The CGL comprises a low-work function zinc oxide layer that was applied from solution under ambient conditions and at moderate processing temperatures and a high-work function interlayer that was realized from various solution processable precursor-based metal oxides, like molybdenum-, vanadium- and tungsten-oxide. Since every injected electron-hole pair generates two photons, the luminance and the current efficiency of the tandem OLED at a given device current are doubled while the power efficiency remains constant. At a given luminance, the lower operating current in the tandem device reduces electrical stress and improves the device life-time. ToF-SIMS, TEM/FIB and EDX analyses provided evidence of a distinct layer sequence without intermixing upon solution deposition.

  17. A magnetic organic inorganic composite: Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zou, Kang; Sun, Hui; Duan, Xue

    2005-11-01

    A core-shell structured magnetic layered organic-inorganic material involving 5-aminosalicylic acid (5-ASA) intercalated Zn-Al layered double hydroxides (LDHs) and magnesium ferrite (MgFe 2O 4) is assembled by a coprecipitation method. The powder X-ray diffraction results show the coexistence of the clear but weak diffractions of MgFe 2O 4 and ordered relatively stronger reflections of 5-ASA intercalated LDHs. The TEM image of magnetic 5-ASA intercalated LDHs reveals that the LDHs layer covers the MgFe 2O 4 particles or their aggregates with particle size of 50-80 nm. The vibration sample magnetization (VSM) measurements exhibit the increase in saturation magnetization of magnetic 5-ASA intercalated LDHs samples with increasing amount of magnetic core. The XPS analyses account for a majority of Zn, Al and O atoms on the surface of magnetic particles. It is suggested that the magnetic core MgFe 2O 4 was coated with LDHs layer probably through Zn-O-Mg and Al-O-Mg linkages, and a core-shell structured model is tentatively proposed.

  18. High Spatial Resolution Laser Desorption/Ionization Mass Spectrometry Imaging of Organic Layers in an Organic Light-Emitting Diode

    PubMed Central

    Tachibana, Yuko; Nakajima, Yoji; Isemura, Tsuguhide; Yamamoto, Kiyoshi; Satoh, Takaya; Aoki, Jun; Toyoda, Michisato

    2016-01-01

    To improve the durability of organic materials in electronic devices, an analytical method that can obtain information about the molecular structure directly from specific areas on a device is desired. For this purpose, laser desorption/ionization mass spectrometry imaging (LDI-MSI) is one of the most promising methods. The high spatial resolution stigmatic LDI-MSI with MULTUM-IMG2 in the direct analysis of organic light-emitting diodes was shown to obtain a detailed mass image of organic material in the degraded area after air exposure. The mass image was observed to have a noticeably improved spatial resolution over typical X-ray photoelectron spectroscopy, generally used technique in analysis of electronic devices. A prospective m/z was successfully deduced from the high spatial resolution MSI data. Additionally, mass resolution and accuracy using a spiral-orbit TOF mass spectrometer, SpiralTOF, were also investigated. The monoisotopic mass for the main component, N,N′-di-1-naphthalenyl-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (m/z 588), was measured with a mass resolution of approximately 80,000 and a mass error of about 5 mDa using an external calibrant. This high mass resolution and accuracy data successfully deduced a possible elemental composition of partially remained material in the degraded area, C36H24, which was determined as anthracene, 9-[1,1′-biphenyl]-4-yl-10-(2-naphthalenyl) by combining structural information with high-energy CID data. The high spatial resolution of 1 μm in LDI-MSI along with high mass resolution and accuracy could be useful in obtaining molecular structure information directly from specific areas on a device, and is expected to contribute to the evolution of electrical device durability. PMID:28101440

  19. Application of metal-doped organic layer both as exciton blocker and optical spacer for organic photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Chan, M. Y.; Lai, S. L.; Lau, K. M.; Lee, C. S.; Lee, S. T.

    2006-10-01

    An effective optical spacer based on doping of ytterbium (Yb) metal into bathophenanthroline (BPhen) has been developed for applications in organic photovoltaic (OPV) devices. Utilizing Yb:BPhen as an optical spacer in standard copper phthalocyanine/C60 photovoltaic devices, power efficiency can be increased by four times to 3.42%. Ultraviolet photoemission spectroscopy measurements reveal that the good electron transport between C60 and Yb:BPhen is mainly related to the suitable energy level alignment at the interface. Combining with its high optical transparency and electrical conductivity, the Yb:BPhen film provides a useful means for maximizing the power conversion efficiency of OPV devices.

  20. A comparative study of the influence of nickel oxide layer on the FTO surface of organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Saikia, Dhrubajyoti; Sarma, Ranjit

    2017-09-01

    The influence of thin layer of nickel oxide (NiO) over the fluorine-doped tin oxide (FTO) surface on the performance of Organic light-emitting diode (OLED) is reported. With an optimal thickness of NiO (10 nm), the luminance efficiency is found to be increased as compared to the single FTO OLED. The performance of OLED is studied by depositing NiO films at different thicknesses on the FTO surface and analyzed their J-V and L-V characteristics. Further analysis is carried out by measuring sheet resistance and optical transmittance. The surface morphology is studied with the help of FE-SEM images. Our results indicate that NiO (10 nm) buffer layer is an excellent choice to increase the efficiency of FTO based OLED devices within the charge tunneling region. The maximum value of current efficiency is found to be 7.32 Cd/A.