Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Kent, A.J.R.
2006-01-01
Textures of hydrothermal quartz revealed by cathodoluminescence using a scanning electron microscope (SEM-CL) reflect the physical and chemical environment of quartz formation. Variations in intensity of SEM-CL can be used to distinguish among quartz from superimposed mineralization events in a single vein. In this study, we present a technique to quantify the cathodoluminescent intensity of quartz within individual and among multiple samples to relate luminescence intensity to specific mineralizing events. This technique has been applied to plutonic quartz and three generations of hydrothermal veins at the porphyry copper deposit in Butte, Montana. Analyzed veins include early quartz-molybdenite veins with potassic alteration, pyrite-quartz veins with sericitic alteration, and Main Stage veins with intense sericitic alteration. CL intensity of quartz is diagnostic of each mineralizing event and can be used to fingerprint quartz and its fluid inclusions, isotopes, trace elements, etc., from specific mineralizing episodes. Furthermore, CL intensity increases proportional to temperature of quartz formation, such that plutonic quartz from the Butte quartz monzonite (BQM) that crystallized at temperatures near 750 ??C luminesces with the highest intensity, whereas quartz that precipitated at ???250 ??C in Main Stage veins luminesces with the least intensity. Trace-element analyses via electron microprobe and laser ablation-ICP-MS indicate that plutonic quartz and each generation of hydrothermal quartz from Butte is dominated by characteristic trace amounts of Al, P, Ti, and Fe. Thus, in addition to CL intensity, each generation of quartz can be distinguished based on its unique trace-element content. Aluminum is generally the most abundant element in all generations of quartz, typically between 50 and 200 ppm, but low-temperature, Main Stage quartz containing 400 to 3600 ppm Al is enriched by an order of magnitude relative to all other quartz generations. Phosphorous is present in abundances between 25 and 75 ppm, and P concentrations in quartz show little variation among quartz generations. Iron is the least abundant of these elements in most quartz types and is slightly enriched in CL-dark quartz in pyrite-quartz veins with sericitic alteration. Titanium is directly correlated with both temperature of quartz precipitation, and intensity of quartz luminescence, such that BQM quartz contains hundreds of ppm Ti, whereas Main Stage quartz contains less than 10 ppm Ti. Our results suggest that Ti concentration in quartz is controlled by temperature of quartz precipitation and that increased Ti concentrations in quartz may be responsible for increased CL intensities.
Lineation-parallel c-axis Fabric of Quartz Formed Under Water-rich Conditions
NASA Astrophysics Data System (ADS)
Wang, Y.; Zhang, J.; Li, P.
2014-12-01
The crystallographic preferred orientation (CPO) of quartz is of great significance because it records much valuable information pertinent to the deformation of quartz-rich rocks in the continental crust. The lineation-parallel c-axis CPO (i.e., c-axis forming a maximum parallel to the lineation) in naturally deformed quartz is generally considered to form under high temperature (> ~550 ºC) conditions. However, most laboratory deformation experiments on quartzite failed to produce such a CPO at high temperatures up to 1200 ºC. Here we reported a new occurrence of the lineation-parallel c-axis CPO of quartz from kyanite-quartz veins in eclogite. Optical microstructural observations, fourier transform infrared (FTIR) and electron backscattered diffraction (EBSD) techniques were integrated to illuminate the nature of quartz CPOs. Quartz exhibits mostly straight to slightly curved grain boundaries, modest intracrystalline plasticity, and significant shape preferred orientation (SPO) and CPOs, indicating dislocation creep dominated the deformation of quartz. Kyanite grains in the veins are mostly strain-free, suggestive of their higher strength than quartz. The pronounced SPO and CPOs in kyanite were interpreted to originate from anisotropic crystal growth and/or mechanical rotation during vein-parallel shearing. FTIR results show quartz contains a trivial amount of structurally bound water (several tens of H/106 Si), while kyanite has a water content of 384-729 H/106 Si; however, petrographic observations suggest quartz from the veins were practically deformed under water-rich conditions. We argue that the observed lineation-parallel c-axis fabric in quartz was inherited from preexisting CPOs as a result of anisotropic grain growth under stress facilitated by water, but rather than due to a dominant c-slip. The preservation of the quartz CPOs probably benefited from the preexisting quartz CPOs which renders most quartz grains unsuitably oriented for an easy a-slip at lower temperatures and the weak deformation during subsequent exhumation. This hypothesis provides a reasonable explanation for the observations that most lineation-parallel c-axis fabrics of quartz were found in veins and that deformation experiments on quartz-rich rocks at high temperature failed to produce such CPOs.
NASA Astrophysics Data System (ADS)
Skamnitskaya, Lubov; Rakov, Leonid; Bubnova, Tatyana; Shchiptsov, Vladimir
2017-12-01
Despite the significant reserves of quartz raw materials, there is a deficit of high purity quartz. It is due to the strict technical requirements imposed by standards for this type of raw materials and technological properties of quartz, which are determined by the features of the crystal structure. The crystalline structure is of particular importance for the technological properties of quartz, since such important characteristics as the limit of raw material enrichment, dissolution rate in acid, melting point of quartz, etc., are determined. The formation of the crystal structure of quartz under natural conditions is associated with the successive dynamic recrystallization of the mineral. The degree of dynamic recrystallization of quartz reflects the distribution of dispersed impurities. If it is weakly manifested, the dispersed impurities are not displaced from one zone to another, and all quartz microblocks contain approximately the same concentration. In this case, more or less uniform dissolution of various regions of quartz is observed, and the pattern of distribution of submicroscopic inhomogeneities is monotonic. If intensive dynamic recrystallization of quartz takes place, then it causes a significant redistribution of the scattered impurities. Then the treatment in HF leads to the appearance of a contrast pattern of the distribution of submicroscopic inhomogeneities. The details of the crystal structure of quartz in this work were investigated by the electron paramagnetic resonance (EPR) method using the ER-420 “Bruker” spectrometer. In the selected samples of quartz, the concentrations of isomorphic impurities Al and Ti were measured, and the degree of crystallinity D of the mineral was estimated from the EPR spectra of each of them. Thus, the technological properties of quartz are determined by various geological processes. The results of the studies show that when evaluating the prospects of quartz raw materials, it is necessary to take into account the staged dynamic dynamical recrystallization of quartz in natural conditions. This factor can play both a positive and a negative role at various stages of mineral formation. Its influence is reflected in the state of the crystal structure of quartz, which should be taken into account when developing effective technologies for its enrichment. The intermediate stage of dynamic recrystallization corresponding to the end of the second stage-the beginning of the third stage of quartz recrystallization-is optimal for the formation of high-purity quartz. When choosing a site for the first-stage quartz mining at large deposits in the Karelian-Kola region, one should be guided by the stage of dynamic recrystallization.
TitaniQ in reverse: backing out the equilibrium solubility of titanium in quartz
NASA Astrophysics Data System (ADS)
Thomas, J. B.
2014-12-01
There is close agreement among three of the four experimental studies that have 'calibrated' the P-T dependencies of Ti-in-quartz solubility. New experiments were conducted to identify potential experimental disequilibrium, and determine which Ti-in-quartz solubility calibration is most accurate. Quartz and rutile were synthesized from SiO2- and TiO2saturated aqueous fluids in a forward-type experiment at 925°C and 10 kbar in a piston-cylinder apparatus. A range of crystal sizes was examined to determine if growth rate affected Ti incorporation in quartz. Cathodoluminescence (CL) images and electron microprobe measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the forward-type experiment is 392±1 ppm Ti, which is within 95% confidence interval of data from the 10 kbar isobar of Wark and Watson (2006) and Thomas et al. (2010). Quartz from the forward-type experiment was used as starting material for reversal-type experiments. The high-Ti quartz starting material was recrystallized at 925°C and 20 kbar to reduce the solubility of Ti in recrystallized quartz to the equilibrium solubility concentration of the reversed P-T condition. The 'dry' and 'wet' reversal experiments produced polycrystalline quartzites. Rutile occurs as inclusions in quartz, and as individual crystals dispersed along quartz/quartz grain boundaries. Quartz that recrystallized during the reversal-type experiment has substantially lower Ti concentrations than the quartz starting material because Ti solubility at 20 kbar is significantly lower than at 10 kbar. Dark cathodoluminescent quartz with low Ti concentrations shows that extensive quartz recrystallization occurred at the reversal P-T condition. The average Ti concentration in quartz from reversal experiments is 94±2 ppm Ti, which is within the 95% confidence interval of a linear fit to the 20 kbar data of Thomas et al. (2010). Thomas JB, Watson EB, Spear FS, Shemella FS, Nayak SK, Lanzirotti A (2010) Contrib Mineral Petrol 160:743-759 Wark DA, Watson EB (2006) Contrib Mineral Petrol 152:743-754
NASA Astrophysics Data System (ADS)
Thomas, Jay B.; Spear, Frank S.
2018-05-01
Garnet crystals with quartz inclusions were hydrothermally crystallized from oxide starting materials in piston-cylinder apparatuses at pressures from 0.5 to 3 GPa and temperatures ranging from 700 to 800 °C to study how entrapment conditions affect remnant pressures of quartz inclusions used for quartz-in-garnet (QuiG) elastic thermobarometry. Systematic changes of the 128, 206 and 464 cm-1 Raman band frequencies of quartz were used to determine pressures of quartz inclusions in garnet using Raman spectroscopy calibrations that describe the P-T dependencies of Raman band shifts for quartz under hydrostatic pressure. Within analytical uncertainties, inclusion pressures calculated for each of the three Raman band frequencies are equivalent, which suggests that non-hydrostatic stress effects caused by elastic anisotropy in quartz are smaller than measurement errors. The experimental quartz inclusions have pressures ranging from - 0.351 to 1.247 GPa that span the range of values observed for quartz inclusions in garnets from natural rocks. Quartz inclusion pressures were used to model P-T conditions at which the inclusions could have been trapped. The accuracy of QuiG thermobarometry was evaluated by considering the differences between pressures measured during experiments and pressures calculated using published equation of state parameters for quartz and garnet. Our experimental results demonstrate that Raman measurements performed at room temperature can be used without corrections to estimate garnet crystallization pressures. Calculated entrapment pressures for quartz inclusions in garnet are less than 10% different from pressures measured during the experiments. Because the method is simple to apply with reasonable accuracy, we expect widespread usage of QuiG thermobarometry to estimate crystallization conditions for garnet-bearing silicic rocks.
Shocked Quartz Aggregates of the Cretaceous-Tertiary Boundary at Colorado, USA
NASA Astrophysics Data System (ADS)
Miura, Y.; Okamoto, M.; Iancu, O. G.
1993-07-01
Shock-metamorphosed quartz (i.e., shocked quartz) at the Cretaceous-Tertiary boundary (K/T) at Colorado [1,2] reveals the following mineralogical data by X-ray diffractometry and high-resolution electron micrograph with energy- dispersive spectrometry. 1. Shocked quartz is not normal (perfect crystalline) quartz mineral but various quartz aggregates that show relatively low X-ray intensity (i.e., imperfect crystalline) and shock lamellae with crystalline quartz and amorphous glass [3]. 2. Analytical electron micrographs indicate that crystalline quartz silica with spotty dislocation features is included in dendritic amorphous glasses of potassium (K) feldspar composition. Various compositions of glassy materials are found in shocked quartz aggregates as matrix or alternate shock lamellae, which is important to estimate the target rock of impact. The composition of glassy matrix is dendritic K-feldspar in the K/T boundary at Clear Creak North (CCN), Colorado, whereas that in the Barringer Crater is quartz-rich composition from the target rock of sandstone (or some mixture with iron meteorite), and that in artificial impact rock [3] is dendritic silica composition. It is found in this study that shocked quartz aggregates from the CCN K/T boundary samples are supplied from quartz and K-feldspar-bearing target rock at impact event (Table 1). Table 1, which appears here in the hard copy, shows the compositions, texture, and origin of shocked quartz aggregates. References: [1] Alvarez L. W. et al. (1980) Science, 208, 1095-1107. [2] Izett G. (1989) GSA Spec. Pap. 249, 1-194. [3] Miura Y. (1991) Shock Waves, 1, 35-41, Springer-Verlag.
Investigation of quartz diagenesis in mudstones of the Spraberry and Wolfcamp Formations
NASA Astrophysics Data System (ADS)
Eakin, A.; Reece, J. S.
2016-12-01
Here we present preliminary core analysis of the diagenetic variability existing within a siliceous mudstone facies of the Permian Spraberry and Wolfcamp Formations in the Midland Basin, Texas. Within this mudstone facies, the carbonate content varies from absent in several Wolfcamp Formation samples to >40 wt. % in the Spraberry Formation. A normalized ratio of quartz to clay content with carbonate removed reveals a systematic decrease in quartz content with increasing clay content. This relationship is typical of rocks with variable amounts of detrital quartz content. However, in this siliceous mudstone facies, the abundance of detrital quartz silt grains does not vary widely. Additionally, for the same clay content, the Wolfcamp Formation shows a higher concentration of quartz than the Spraberry Formation. Scanning electron microscopy (SEM) reveals the presence of microcrystalline quartz cement that likely accounts for the increased quartz content in the Wolfcamp Formation. This research tests the hypothesis that the increased quartz cement in the Wolfcamp Formation may occur at the expense of the carbonate cement present in the overlying Spraberry Formation. Furthermore, the deviation in quartz content for the same clay concentration only occurs once the ratio of quartz to clay content increases beyond 1.2. This ratio may represent a threshold of detrital quartz in the clay matrix required to have enough porosity and nucleation surface area for authigenic quartz growth. The presence of matrix cement may impact the mechanical properties to favor fracturing and cataclasis over more ductile deformation. This would enhance development of secondary porosity, while also increasing permeability through the connection of primary pores. Acquiring a fundamental understanding of diagenesis in the Spraberry and Wolfcamp Formations will aid in better prediction of mechanical behavior during drilling and optimized resource recovery.
Lü, Wen-Chao; Yang, Zhi-Jun; Zhou, Yong-Zhang; Li, Hong-Zhong; Zeng, Xiang-Qing; Chen, Qing; Liang, Jin; Zeng, Chang-Yu
2013-05-01
The XRD, FTIR and Raman spectrum were employed to study the characters of quartz from three types of rock samples, which are mineralized rock sample, near ore body rock sample and far away from ore body rock sample in Heliao lead-zinc polymetallic ore district. The research shows that the quartz in the mineralized rock and far away from ore body rock is pure, while the quartz in near ore body rock contains a small amount of impurities. But such small amounts of impurities did not cause apparent change in the quartz lattice parameters. From far away from ore body rock-->near ore body rock-->mineralized rock, the crystallinity and order degree of quartz are higher and higher. And the quartz in the mineralized rock has a trend to change into low symmetry quartz. It's a unique to mineralized rock that the quartz's absorption peak at 1 050 cm(-1) was split into two strongest ones. It can be used as the signs of whether exists mineralization. The cause for the quartz microstructure changes may be related to the activities of late mineralized hydrothermal fluids. Late hydrothermal influence was very weak to the quartz far away from ore body rock. And through the impact of the multi-stage hydrothermal effect, the quartz in mineralized rock may be purified by recrystallization and structural adjustment. However the quartz in near ore body rock didn't have enough hydrothermal influence, so it's not pure. Genealogy research technology is a useful technique for in-depth exploration of study area mineralization process and metallogenic regularity.
2014-11-24
layere, which was a thin plate bonded to a solid block of fused quartz. The plate was also made of fused quartz so the entire “assembly” may be... thin plate and a block of fused quartz. Residues of the lacquer Quartz plate Metal strip Epoxy layer Block of quartz Fig. 2.4.4. Specimen...depth therefore it was made as a combination of two pieces of fused quartz, a block and a thin plate , and a foreign inclusion between them. The plate was
Optical processing furnace with quartz muffle and diffuser plate
Sopori, Bhushan L.
1995-01-01
An optical furnace for annealing a process wafer comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the door or wall of the muffle is also provided for controlling the source of optical energy. The quartz for the diffuser plate is surface etched (to give the quartz diffusive qualities) in the furnace during a high intensity burn-in process.
NASA Astrophysics Data System (ADS)
Renjith, A. R.; Mamtani, Manish A.; Urai, Janos L.
2016-01-01
We ask the question whether petrofabric data from anisotropy of magnetic susceptibility (AMS) analysis of deformed quartzites gives information about shape preferred orientation (SPO) or crystallographic preferred orientation (CPO) of quartz. Since quartz is diamagnetic and has a negative magnetic susceptibility, 11 samples of nearly pure quartzites with a negative magnetic susceptibility were chosen for this study. After performing AMS analysis, electron backscatter diffraction (EBSD) analysis was done in thin sections prepared parallel to the K1K3 plane of the AMS ellipsoid. Results show that in all the samples quartz SPO is sub-parallel to the orientation of the magnetic foliation. However, in most samples no clear correspondance is observed between quartz CPO and K1 (magnetic lineation) direction. This is contrary to the parallelism observed between K1 direction and orientation of quartz c-axis in the case of undeformed single quartz crystal. Pole figures of quartz indicate that quartz c-axis tends to be parallel to K1 direction only in the case where intracrystalline deformation of quartz is accommodated by prism
Stability limits and transformation pathways of α-quartz under high pressure
NASA Astrophysics Data System (ADS)
Hu, Q. Y.; Shu, J.-F.; Yang, W. G.; Park, C.; Chen, M. W.; Fujita, T.; Mao, H.-K.; Sheng, H. W.
2017-03-01
Ubiquitous on Earth, α-quartz plays an important role in modern science and technology. However, despite extensive research in the past, the mechanism of the polymorphic transitions of α-quartz at high pressures remains poorly understood. Here, combining in situ single-crystal x-ray diffraction experiment and advanced ab initio modeling, we report two stability limits and competing transition pathways of α-quartz under high pressure. Under near-equilibrium compression conditions at room temperature, α-quartz transits to a new P 2 /c silica phase via a structural intermediate. If the thermally activated transition is kinetically suppressed, the ultimate stability of α-quartz is controlled by its phonon instability and α-quartz collapses into a different crystalline phase. Our studies reveal that pressure-induced solid-state transformation of α-quartz undergoes a succession of structural stability limits, due to thermodynamic and mechanical catastrophes, and exhibits a hierarchy of transition pathways contingent upon kinetic conditions.
Escrig, Alberto; Bonvicini, Giuliana; Ibáñez, Maria Jesús; Monfort, Eliseo; Salomoni, Arturo; Creutzenberg, Otto
2017-01-01
Abstract The exposure to respirable crystalline silica (RCS), e.g. quartz, in industrial settings can induce silicosis and may cause tumours in chronic periods. Consequently, RCS in the form of quartz and cristobalite has been classified as human lung carcinogen category 1 by the International Agency for Research on Cancer in 1997, acknowledging differences in hazardous potential depending on source as well as chemical, thermal, and mechanical history. The physico-chemical determinants of quartz toxicity are well understood and are linked to density and abundance of surface silanol groups/radicals. Hence, poly-2-vinylpyridine-N-oxide and aluminium lactate, which effectively block highly reactive silanol groups at the quartz surface, have formerly been introduced as therapeutic approaches in the occupational field. In the traditional ceramics industry, quartz-containing raw materials are indispensable for the manufacturing process, and workers are potentially at risk of developing quartz-related lung diseases. Therefore, in the present study, two organosilanes, i.e. Dynasylan® PTMO and Dynasylan® SIVO 160, were tested as preventive, covalent quartz-coating agents to render ceramics production safer without loss in product quality. Coating effectiveness and coating stability (up to 1 week) in artificial alveolar and lysosomal fluids were first analysed in vitro, using the industrially relevant quartz Q1 as RCS model, quartz DQ12 as a positive control, primary rat alveolar macrophages as cellular model system (75 µg cm−2; 4 h of incubation ± aluminium lactate to verify quartz-related effects), and lactate dehydrogenase release and DNA strand break induction (alkaline comet assay) as biological endpoints. In vitro results with coated quartz were confirmed in a 90-day intratracheal instillation study in rats with inflammatory parameters as most relevant readouts. The results of the present study indicate that in particular Dynasylan® SIVO 160 (0.2% w/w of quartz) was able to effectively and stably block toxicity of biologically active quartz species without interfering with technical process quality of certain ceramic products. In conclusion, covalent organosilane coatings of quartz might represent a promising strategy to increase workers’ safety in the traditional ceramics industry. PMID:28355417
Microbially induced separation of quartz from hematite using sulfate reducing bacteria.
Prakasan, M R Sabari; Natarajan, K A
2010-07-01
Cells and metabolic products of Desulfovibrio desulfuricans were successfully used to separate quartz from hematite through environmentally benign microbially induced flotation. Bacterial metabolic products such as extracellular proteins and polysaccharides were isolated from both unadapted and mineral-adapted bacterial metabolite and their basic characteristics were studied in order to get insight into the changes brought about on bioreagents during adaptation. Interaction between bacterial cells and metabolites with minerals like hematite and quartz brought about significant surface-chemical changes on both the minerals. Quartz was rendered more hydrophobic, while hematite became more hydrophilic after biotreatment. The predominance of bacterial polysaccharides on interacted hematite and of proteins on quartz was responsible for the above surface-chemical changes, as attested through adsorption studies. Surface-chemical changes were also observed on bacterial cells after adaptation to the above minerals. Selective separation of quartz from hematite was achieved through interaction with quartz-adapted bacterial cells and metabolite. Mineral-specific proteins secreted by quartz-adapted cells were responsible for conferment of hydrophobicity on quartz resulting in enhanced separation from hematite through flotation. 2010 Elsevier B.V. All rights reserved.
Rusk, B.G.; Lowers, H.A.; Reed, M.H.
2008-01-01
High-resolution electron microprobe maps show the distribution of Ti, Al, Ca, K, and Fe among quartz growth zones revealed by scanning electron microscope-cathodoluminescence (SEM-CL) from 12 hydrothermal ore deposits formed between ???100 and e1750 ??C. The maps clearly show the relationships between trace elements and CL intensity in quartz. Among all samples, no single trace element consistently correlates with variations in CL intensity. However in vein quartz from five porphyry-Cu (Mo-Au) deposits, CL intensity always correlates positively with Ti concentrations, suggesting that Ti is a CL activator in quartz formed at >400 ??C. Ti concentrations in most rutile-bearing vein quartz from porphyry copper deposits indicate reasonable formation temperatures of 2000 ppm, but in high-temperature quartz, Al concentrations are consistently in the range of several hundred ppm. Aluminum concentrations in quartz refl ect the Al solubility in hydrothermal fluids, which is strongly dependent on pH. Aluminum concentrations in quartz therefore reflect fluctuations in pH that may drive metal-sulfide precipitation in hydrothermal systems. ?? 2008 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Roedder, Edwin
1990-11-01
This paper presents arguments against the statement made by Koeberl et al. (1989) to the effect that various differences between the quartz of the three quartz pebbles from the Roter Kamm impact crater (Namibia) and the quartz of the pegmatites present in the basement rocks of this crater can be best interpreted as evidence that the pebbles were formed (or 'recrystallized') by a post-impact hydrothermal system. Arguments are presented that suggest that the three quartz pebbles are, most likely, fragments of a preimpact vein quartz of hydrothermal origin.
NASA Astrophysics Data System (ADS)
Yilmaz, T.; Prosser, G.; Liotta, D.; Kruhl, J. H.
2012-12-01
The Bavarian Pfahl shear zone is a WNW-ESE trending dextral strike-slip shear zone at the SW margin of the Bohemian Massif (Central Europe). It was discontinuously active during decreasing PT-conditions, i.e. from ductile to brittle, from the late-Carboniferous to the late-Cretaceous - Paleocene times. Triassic hydrothermal activity produced a 150 km long and 30-100 m wide quartz dyke along the main fault, surrounded by sheared basement rocks. Within a zone of >10 m metasomatism transformed the wall rocks to mostly kaolinite, chlorite and phyllosilicates. The quartz dyke exhibits a layered to lenticular and partly symmetric structure with different types of quartz masses, transected by a complex quartz vein network. This already indicates pulses of fluid flux and fragmentation during the lifetime of the shear zone. Analyses by optical microscopy, cathodoluminescence (CL) and SEM-EDX reveal at least four subsequent stages of quartz crystallization and fragmentation. (i) The oldest generation of quartz is represented by a homogeneous dark grey to reddish quartz mass made up by ~10-20 μm-sized crystals. It contains mm- to cm-sized angular wall-rock fragments, completely altered to kaolinite, indicating intense wall-rock alteration prior to the earliest event of silica precipitation. This rules out the possibility that the quartz mass developed from silicification of the wall rocks. This first type of quartz occurs as cm- to dm-large angular fragments in (ii) a light grey to pink quartz mass formed by ~10-50 μm-sized crystals. The different colours result from variable types and amounts of inclusions. Quartz of both generations shows random crystallographic orientations and complex inclusion structures. It probably developed during two fragmentation events and possibly from a silica gel precursor that crystallized after precipitation. (iii) The third quartz generation formed as a set of mm- to dm-wide veins roughly parallel to the trend of the Pfahl zone, crosscutting the first generations of fine-grained quartz mass and the wall rocks, in connection to intense fracturing and brecciation. The complex geometry of the vein sets points to multiple fluid injections and brecciation, as additionally indicated by coarse quartz with different inclusion and CL intensity. Temporal changes of strain rate are indicated by crystal plastic deformation structures in quartz, which overprint brittle structures. (iv) The fourth quartz generation occurs in mm- to dm-thick quartz veins, partly open as geodes, filling N-S oriented cm- to dm-spaced fractures that crosscut the earlier quartz masses and veins and extend at least several meters into the wall rock. They indicate the last activity of the shear-zone in a constant kinematic framework. Summarizing, the Pfahl shear zone shows brittle-ductile deformation during the long-term activity of a large-scale hydrothermal system. Consequently, it represents an excellent example where different generations of quartz precipitation can be connected to fluctuations of fluid flow and strain rate.
NASA Astrophysics Data System (ADS)
Lee, Sungkyu
2001-08-01
Quartz tuning fork blanks with improved impact-resistant characteristics for use in Qualcomm mobile station modem (MSM)-3000 central processing unit (CPU) chips for code division multiple access (CDMA), personal communication system (PCS), and global system for mobile communication (GSM) systems were designed using finite element method (FEM) analysis and suitable processing conditions were determined for the reproducible precision etching of a Z-cut quartz wafer into an array of tuning forks. Negative photoresist photolithography for the additive process was used in preference to positive photoresist photolithography for the subtractive process to etch the array of quartz tuning forks. The tuning fork pattern was transferred via a conventional photolithographical chromium/quartz glass template using a standard single-sided aligner and subsequent negative photoresist development. A tightly adhering and pinhole-free 600/2000 Å chromium/gold mask was coated over the developed photoresist pattern which was subsequently stripped in acetone. This procedure was repeated on the back surface of the wafer. With the protective metallization area of the tuning fork geometry thus formed, etching through the quartz wafer was performed at 80°C in a ± 1.5°C controlled bath containing a concentrated solution of ammonium bifluoride to remove the unwanted areas of the quartz wafer. The quality of the quartz wafer surface finish after quartz etching depended primarily on the surface finish of the quartz wafer prior to etching and the quality of quartz crystals used. Selective etching of a 100 μm quartz wafer could be achieved within 90 min at 80°C. A selective etching procedure with reproducible precision has thus been established and enables the photolithographic mass production of miniature tuning fork resonators.
Schulz, M.S.; White, A.F.
1999-01-01
The paucity of weathering rates for quartz in the natural environment stems both from the slow rate at which quartz dissolves and the difficulty in differentiating solute Si contributed by quartz from that derived from other silicate minerals. This study, a first effort in quantifying natural rates of quartz dissolution, takes advantage of extremely rapid tropical weathering, simple regolith mineralogy, and detailed information on hydrologic and chemical transport. Quartz abundances and grain sizes are relatively constant with depth in a thick saprolite. Limited quartz dissolution is indicated by solution rounding of primary angularity and by the formation of etch pits. A low correlation of surface area (0.14 and 0.42 m2 g-1) with grain size indicates that internal microfractures and pitting are the principal contributors to total surface area. Pore water silica concentration increases linearly with depth. On a molar basis, between one and three quarters of pore water silica is derived from quartz with the remainder contributed from biotite weathering. Average solute Si remains thermodynamically undersaturated with respect to recently revised estimates of quartz solubility (17-81 ??M). Etch pitting is more abundant on grains in the upper saprolite and is associated with pore waters lower in dissolved silica. Rate constants describing quartz dissolution increase with decreasing depth (from 10-14.5-10-15.1 mol m-2 s-1), which correlate with both greater thermodynamic undersaturation and increasing etch pit densities. Unlike for many aluminosilicates, the calculated natural weathering rates of quartz fall slightly below the rate constants previously reported for experimental studies (10-12.4-10-14.2 mol m-2 s-1). This agreement reflects the structural simplicity of quartz, dilute solutes, and near-hydrologic saturation.
NASA Astrophysics Data System (ADS)
Yilmaz, Tim I.; Blenkinsop, Tom; Duschl, Florian; Kruhl, Jörn H.
2015-04-01
Silicified fault rocks typically show structures resulting from various stages of fragmentation and quartz crystallization. Both processes interact episodically and result in complex structures on various scales, which require a wide spectrum of analysis tools. Based on field and microstructural data, the spatial-temporal connection between deformation, quartz crystallization and fluid and material flow along the Rusey fault zone was investigated. The fault can be examined in detail in three dimensions on the north Cornwall coast, UK. It occurs within Carboniferous sandstones, siltstones, mudstones and slates of the Culm basin, and is likely to have had a long history. The fault rocks described here formed during the younger events, possibly due to Tertiary strike-slip reactivation. Frequent fragmentation, flow and crystallization events and their interaction led to various generations of complex-structured quartz units, among them quartz-mantled and partly silicified wall-rock fragments, microcrystalline quartz masses of different compositions and structures, and quartz vein patterns of various ages. Lobate boundaries of quartz masses indicate viscous flow. Fragments are separated by quartz infill, which contains cm-sized open pores, in which quartz crystals have pyramidal terminations. Based on frequent occurrence of feathery textures and the infill geometry, quartz crystallization from chalcedony appears likely, and an origin from silica gel is discussed. Fragmentation structures are generally fractal. This allows differentiation between various processes, such as corrosive wear, wear abrasion and hydraulic brecciation. Material transport along the brittle shear zone, and displacement of the wall-rocks, were at least partly governed by flow of mobile fluid-quartz-particle suspensions. The complex meso- to microstructures were generated by repeated processes of fragmentation, quartz precipitation and grain growth. In general, the brittle Rusey fault zone represents a zone of multiple fragmentation, fluid flow, crystallization and quartz dissolution and precipitation, and is regarded as key example of large-scale cyclic interaction of these processes. The geological evidence of interactions between processes implies that feedbacks and highly non-linear mechanical behaviour generated the complex meso- and microstructures. The fault zone rheology may also therefore have been complex.
Colorado quartz: occurrence and discovery
Kile, D.E.; Modreski, P.J.; Kile, D.L.
1991-01-01
The many varieties and associations of quartz found throughout the state rank it as one of the premier worldwide localities for that species. This paper briefly outlines the historical importance of the mineral, the mining history and the geological setting before discussing the varieties of quartz present, its crystallography and the geological enviroments in which it is found. The latter include volcanic rocks and near surface igneous rocks; pegmatites; metamorphic and plutonic rocks; hydrothermal veins; skarns and sedimentary deposits. Details of the localities and mode of occurrence of smoky quartz, amethyst, milky quartz, rock crystal, rose quartz, citrine, agate and jasper are then given. -S.J.Stone
Ziemann, Christina; Escrig, Alberto; Bonvicini, Giuliana; Ibáñez, Maria Jesús; Monfort, Eliseo; Salomoni, Arturo; Creutzenberg, Otto
2017-05-01
The exposure to respirable crystalline silica (RCS), e.g. quartz, in industrial settings can induce silicosis and may cause tumours in chronic periods. Consequently, RCS in the form of quartz and cristobalite has been classified as human lung carcinogen category 1 by the International Agency for Research on Cancer in 1997, acknowledging differences in hazardous potential depending on source as well as chemical, thermal, and mechanical history. The physico-chemical determinants of quartz toxicity are well understood and are linked to density and abundance of surface silanol groups/radicals. Hence, poly-2-vinylpyridine-N-oxide and aluminium lactate, which effectively block highly reactive silanol groups at the quartz surface, have formerly been introduced as therapeutic approaches in the occupational field. In the traditional ceramics industry, quartz-containing raw materials are indispensable for the manufacturing process, and workers are potentially at risk of developing quartz-related lung diseases. Therefore, in the present study, two organosilanes, i.e. Dynasylan® PTMO and Dynasylan® SIVO 160, were tested as preventive, covalent quartz-coating agents to render ceramics production safer without loss in product quality. Coating effectiveness and coating stability (up to 1 week) in artificial alveolar and lysosomal fluids were first analysed in vitro, using the industrially relevant quartz Q1 as RCS model, quartz DQ12 as a positive control, primary rat alveolar macrophages as cellular model system (75 µg cm-2; 4 h of incubation ± aluminium lactate to verify quartz-related effects), and lactate dehydrogenase release and DNA strand break induction (alkaline comet assay) as biological endpoints. In vitro results with coated quartz were confirmed in a 90-day intratracheal instillation study in rats with inflammatory parameters as most relevant readouts. The results of the present study indicate that in particular Dynasylan® SIVO 160 (0.2% w/w of quartz) was able to effectively and stably block toxicity of biologically active quartz species without interfering with technical process quality of certain ceramic products. In conclusion, covalent organosilane coatings of quartz might represent a promising strategy to increase workers' safety in the traditional ceramics industry. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
NASA Astrophysics Data System (ADS)
Kuşcu, Mustafa; Cengiz, Oya; Işık, Kayhan; Gül, E. Kübra
2018-07-01
Rutile occur in important amounts within Quaternary detrital sediments, and quartz veins which cut down the Paleozoic aged Eşme formation in the Menderes Massif on the Neoproterozoic Pan-Afrikan Belt in the west of Turkey. As a result of erosion, transport and accumulation of rutile-bearing quartz veins in the mica schists of the Eşme formation outcropped between Eşme (Uşak) and Kula (Manisa), the placer rutile occurrences occur in terraces, fluvial-alluvial and eluvial deposits. This study investigates the element content of rutile, oxygen isotope ratios of rutile and quartz, and formation temperature of rutile related to titanium source rock. Field observations show that rutiles are located in quartz veins that cut the schists. After these veins were fragmented and eroded, blocks of quartz with rutile and rutile grains are transported into clastic sediments in slope debris (eluvial), terraces and recent fluvial-alluvial deposits. Whereas quartz, rutile, ilmenite, and albite are found in the paragenesis of the rutile-bearing quartz vein fragments, the placers forming the terraces and current fluvial-alluvial deposits contain quartz, albite, muscovite, orthoclase, kaolinite, rutile, dravite, ilmenite, and zircon. The rutile grains in the examined placers and quartz vein fragments have grain sizes ranging from mm fractions to 5-6 cm. The major oxide compositions of the rutile grains have average values of 94 wt.% TiO2, 1.5 wt.% Fe2O3, 0.5 wt.% SiO2, and 0.3 wt.% Al2O3. The rutile samples have average values Nb of 1424 ppm, V of 980 ppm, W of 192 ppm, Ta of 94 ppm, and Zr of 73 ppm. The rutiles in the study area are defined as iron-rich rutile "nigrine" due to high iron content. Quartz veins are host rocks of rutile grains in the terrace and fluvial-aluvial sediments. The rutile-bearing quartz veins may be sourced from the Lower-Middle Miocene aged granites which are intruded the rocks in the Menderes Massif. Based on the analysis results of the methods of Zr thermometer from Zr values containing rutile and quartz-rutile geothermometer from oxygen isotope results (13.5‰ and 6‰) of quartz and rutile samples, the formation temperature of the rutile-bearing quartz veins were found to be at temperatures of 537 °C and 561 °C, respectively. These temperatures indicate that the rutile-bearing quartz veins may be in a temperature range between pegmatitic and/or hydrothermal stages.
Millimeter And Submillimeter-Wave Integrated Circuits On Quartz
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter
1995-01-01
Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.
75 FR 30282 - Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes AGENCY: Federal Aviation... airworthiness directive (AD) for all Quartz Mountain Aerospace, Inc. Model 11E airplanes. This AD requires you... reference of certain publications listed in this AD. ADDRESSES: Quartz Mountain Aerospace, Inc. is in...
Walker, B.M.; Ben Talib, Majed; El Komi, Mohamed; Hussain, M.A.; Christian, R.P.
1990-01-01
Quartz veins intersected by drill holes are surrounded by mylonite schist. Quartz and carbonate veins less than 5 mm thick are boudined, whereas thick quartz veins (£ 1.2 m) have disrupted and brecciated margins; mylonitized country rock envelops quartz-vein fragments. Sulfide mineralization associated with vein formation predates this rock-deformation event. Contemporaneous brittle and ductile deformation of quartz veins and country rocks occurred during the Nabitah orogeny. Supergene gold enrichment took place much later.
Mechanical and optical nanodevices in single-crystal quartz
NASA Astrophysics Data System (ADS)
Sohn, Young-Ik; Miller, Rachel; Venkataraman, Vivek; Lončar, Marko
2017-12-01
Single-crystal α-quartz, one of the most widely used piezoelectric materials, has enabled a wide range of timing applications. Owing to the fact that an integrated thin-film based quartz platform is not available, most of these applications rely on macroscopic, bulk crystal-based devices. Here, we show that the Faraday cage angled-etching technique can be used to realize nanoscale electromechanical and photonic devices in quartz. Using this approach, we demonstrate quartz nanomechanical cantilevers and ring resonators featuring Qs of 4900 and 8900, respectively.
A search for shocked quartz grains in the Allerød-Younger Dryas boundary layer
NASA Astrophysics Data System (ADS)
Hoesel, Annelies; Hoek, Wim Z.; Pennock, Gillian M.; Kaiser, Knut; Plümper, Oliver; Jankowski, Michal; Hamers, Maartje F.; Schlaak, Norbert; Küster, Mathias; Andronikov, Alexander V.; Drury, Martyn R.
2015-03-01
The Younger Dryas impact hypothesis suggests that multiple airbursts or extraterrestrial impacts occurring at the end of the Allerød interstadial resulted in the Younger Dryas cold period. So far, no reproducible, diagnostic evidence has, however, been reported. Quartz grains containing planar deformation features (known as shocked quartz grains), are considered a reliable indicator for the occurrence of an extraterrestrial impact when found in a geological setting. Although alleged shocked quartz grains have been reported at a possible Allerød-Younger Dryas boundary layer in Venezuela, the identification of shocked quartz in this layer is ambiguous. To test whether shocked quartz is indeed present in the proposed impact layer, we investigated the quartz fraction of multiple Allerød-Younger Dryas boundary layers from Europe and North America, where proposed impact markers have been reported. Grains were analyzed using a combination of light and electron microscopy techniques. All samples contained a variable amount of quartz grains with (sub)planar microstructures, often tectonic deformation lamellae. A total of one quartz grain containing planar deformation features was found in our samples. This shocked quartz grain comes from the Usselo palaeosol at Geldrop Aalsterhut, the Netherlands. Scanning electron microscopy cathodoluminescence imaging and transmission electron microscopy imaging, however, show that the planar deformation features in this grain are healed and thus likely to be older than the Allerød-Younger Dryas boundary. We suggest that this grain was possibly eroded from an older crater or distal ejecta layer and later redeposited in the European sandbelt. The single shocked quartz grain at this moment thus cannot be used to support the Younger Dryas impact hypothesis.
Quartz-molybdenite veins in the Priestly Lake granodiorite, north-central Maine
Ayuso, Robert A.; Shank, Stephen G.
1983-01-01
Quartz-molybdenite veins up to 15 cm in width occur in fine to medium-grained porphyritic biotite-hornblende granodiorite at Priestly Lake north-central Maine. An area of about 150 m x 150 m contains quartz-molybdenite veins; a larger area is characterized by barren quartz veins. Quartz-molybdenite veins are concentrated within the most felsic variants of the intrusion as suggested by lower mafic mineral contents. The pluton has a narrow range in SiO2 (67-70 wt.%), major oxides, and in trace-element compositions. Molybdenite occurs as coarse grained clusters in pockets within the quartz veins, and fills fractures in the quartz veins and host rocks. Disseminated molybdenite in the granodiorite is relatively rare and occurs only in the area characterized by a high density of quartz veins (up to 50 veins per square meter). Alteration envelopes along the quartz veins are very thin or absent, although in some areas the granodiorite appears to be selectively and pervasively altered. Sericite, chlorite, epidote, calcite, pyrite, and quartz are concentrated near the quartz-molybdenite veins. Many of the field and geochemical characteristics of the Priestly Lake pluton are unlike those of major molybdenum-producing areas (Climax, Henderson, Urad). For example, the area of alteration seems to be of limited extent, the host rock is not intensely altered hydrothermally at the surface, the density of fractures is rather low in the mineralized area, and the amount of disseminated molybdenite appears to be small. However, the Priestly Lake pluton may be a small fraction of a concealed batholith as suggested by geophysical data. It is conceivable that the type of mineralization at the surface might be the expression of more extensive molybdenite mineralization at depth. The quartz-molybdenite veins in the Priestly Lake pluton are significant because they indicate that potential molybdenum sources for producing mineralized granites were available at depth. Future studies should be aimed at delineating the area of quartz-molybdenite mineralization, documenting hydrothermal alteration and zonation, determining fracture density, and evaluating the sulfide assemblage.
The Root of the Butte Porphyry Cu Deposit: A Zone of Fluid Accumulation, Discharge and Collapse
NASA Astrophysics Data System (ADS)
Acosta, M. D.; Reed, M. H.; Watkins, J. M.
2017-12-01
The deep zones of porphyry Cu deposits are the focus of the hydrothermal-magmatic transition, where hydrothermal fluid emerges from crystallizing magma. In the Butte, MT porphyry Cu deposit at a paleodepth of 8 km, we observe a zone of intense silicification and brecciation. This deep in the system, where the distinction between hydrothermal and magmatic processes is ambiguous, we obtain a rare look into how a magma and its coeval fluid phase feed into porphyry Cu deposits. We characterize this zone through a suite of analyses. We used rock pulps from 15m lengths of drill core to estimate the volume percentage of quartz veins. Estimates based upon Si, Ti, and Zr are 2-12%, 14-41%, and 15-48%, respectively. In thin section, three texturally distinct populations of quartz are present: quartz that permeates altered granite such that the sample consists of 40-50% quartz of variable grain size, quartz in veins with diffuse and non-planar boundaries, and quartz in quartz-pyrite veins with sharp walls that merge with quartz-pyrite veins with irregular and diffuse boundaries. The concentrations of Ti in of each of the quartz populations do not exceed 50 ppm, and the lowest is below the detection limit of 4 ppm. Temperature estimates based on the TitaniQ thermobarometer for 50 ppm Ti range from 583 °C at hydrostatic pressure (0.7 kb), to 665 °C at lithostatic pressure (2.5 kb). Cathodoluminescence (CL) images of each population are also remarkably similar, being almost entirely homogeneous/mottled cut by CL-dark later quartz veinlets. Only the quartz-pyrite veinlet with planar walls contained euhedral CL oscillations. The large abundance of quartz in these deep samples, combined with the lack of sharp, planar boundaries, and the temperature estimates suggest that the rock was at least locally ductile as the quartz veins formed, and afterwards. The large quartz abundance further indicates that the base of the porphyry Cu deposit underwent intermittent fluid accumulation and expulsion. Together, these observations suggest that this region of intense silicification is the volume where fluid exsolving from a magma repeatedly collected and discharged to the upward, brittle portion of the deposit.
NASA Astrophysics Data System (ADS)
Shulaker, D. Z.; Schmitt, A. K.; Zack, T.; Bindeman, I. N.
2013-12-01
Rutilated quartz, aka Venus' hair, is finely-acicular rutile intergrown with host quartz generated by fluid-mediated co-crystallization. It is commonly found in hydrothermal veins, including the renown cleft mineral locations of the Swiss Alps. Previous studies of Alpine cleft mineralizations used rare hydrothermal monazite [1] and titanite [2] to constrain vein formation to ~13.5-15.2 Ma, postdating peak metamorphism by ~2-4 Ma. Temperature (T) estimates of 150-450°C are based on fluid inclusions and bulk quartz-mineral oxygen isotope exchange equilibria, and formation pressures (P) are 0.5-2.5 kbar (for a geothermal gradient of 30°C/km) [2]. The potential of rutilated quartz as a thermochronometer, however, has not been harnessed previously. Here, we present the first results of age and P-T determinations for rutilated quartz from six locations in the Swiss Alps (San Gottardo; Feldbach, Binntal; Pi Aul, Vals; Faido, Leventina; Elm, Steinbach; Binntal). Samples were cut and mounted in epoxy discs to expose rutile (0.03 to 1 mm in diameter) and its host quartz which was also imaged in cathodoluminescence (CL). CL images for half of the samples' host quartz exhibited strong sector zoning, while others reveal only weak CL zonation. Isotopic and trace element analyses were carried out by SIMS using a CAMECA ims1270 for U-Pb, O-isotopes, and Ti-in-quartz, and a LA-ICP-MS system (213 nm New Wave laser coupled to an Agilent 7500a) for Zr-in-rutile. U-Pb rutile ages average 15.5×2.0 Ma (2σ). T estimates are 352-575°C (rutile-quartz oxygen isotopes in touching domains), 470-530°C (Zr-in-rutile assuming P = 0.5 and equilibrium with host-rock zircon), and 251-391°C (Ti-in-quartz at assumed P = 0.5 kbar and aTiO2 = 1). CL zones are isotopically unzoned. Rutile-quartz oxygen isotopes are pressure insensitive, whereas Zr-in-rutile and Ti-in-quartz are minimum temperatures. These results demonstrate that rutilated quartz can constrain timing and conditions of post-metamorphic hydrothermal fluid flow and mineralization. Discrepancies in thermometers are attributed to differences between experimental calibrations of isotopic and trace element thermometers, and the conditions of post-metamorphic hydrothermal fluid flow. Only rutile-quartz oxygen isotope exchange [3] has been calibrated close to natural T conditions for rutilated quartz (500°C). This may help to extend the applicability of the Ti-in-quartz and Zr-in-rutile to T below experimental calibrations (>600°C; [4] and >700°C; [5], resp.). [1] Janots et al., 2012, Chem. Geol., 326-327, 61-71 [2] Mullis, 1996, Schweiz. Mineral. Petrogr. Mitt., 76, 159-164 [3] Matthews, 1994, J. Met. Geol., 12, 211-219 [4] Thomas et al., 2010, Contrib. Mineral. Petrol., 160, 743-759 [5] Ferry and Watson, 2007, Contrib. Mineral. Petrol., 154, 429-437
TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations
NASA Astrophysics Data System (ADS)
Thomas, Jay B.; Watson, E. Bruce; Spear, Frank S.; Wark, D. A.
2015-03-01
Several studies have reported the P- T dependencies of Ti-in-quartz solubility, and there is close agreement among three of the four experimental calibrations. New experiments were conducted in the present study to identify potential experimental disequilibrium, and to determine which Ti-in-quartz solubility calibration is most accurate. Crystals of quartz, rutile and zircon were grown from SiO2-, TiO2-, and ZrSiO4-saturated aqueous fluids in an initial synthesis experiment at 925 °C and 10 kbar in a piston-cylinder apparatus. A range of quartz crystal sizes was produced in this experiment; both large and small examples were analyzed by electron microprobe to determine whether Ti concentrations are correlated with crystal size. Cathodoluminescence images and EPMA measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the synthesis experiment is 392 ± 1 ppmw Ti, which is within 95 % confidence interval of data from the 10 kbar isobar of Wark and Watson (Contrib Mineral Petrol 152:743-754, 2006) and Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010). As a cross-check on the Ti-in-quartz calibration, we also measured the concentration of Zr in rutile from the synthesis experiment. The average Zr-in-rutile concentration is 4337 ± 32 ppmw Zr, which is also within the 95 % confidence interval of the Zr-in-rutile solubility calibration of Ferry and Watson (Contrib Mineral Petrol 154:429-437, 2007). The P- T dependencies of Ti solubility in quartz and Zr solubility in rutile were applied as a thermobarometer to the experimental sample. The average Ti-in-quartz isopleth calculated from the calibration of Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010) and the average Zr-in-rutile isopleth calculated from the calibration of Tomkins et al. (J Metamorph Geol 25:703-713, 2007) cross at 9.5 kbar and 920 °C, which is in excellent agreement with the P- T conditions of the synthesis experiment. Separates of the high-Ti quartz from the initial synthesis experiment described above were used as starting material in subsequent experiments at 20 kbar, at which pressure the solubility of Ti in quartz is expected to be significantly lower in the recrystallized quartz. These recrystallization experiments were conducted under wet and dry conditions at 925 °C, and under wet conditions at 850 °C. Both wet and dry recrystallization experiments produced polycrystalline quartzites. Rutile occurs as inclusions in quartz, and as individual crystals dispersed along quartz grain boundaries. Quartz that grew during the recrystallization experiments has dark cathodoluminescence indicating substantially lower Ti concentrations. The average Ti concentrations in quartz from the recrystallization experiments are within the 95 % confidence interval of a linear fit to the 20 kbar data of Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010). Collectively, the results from the synthesis and recrystallization experiments confirm that the Ti-in-quartz concentrations used to calibrate the P- T dependencies of Ti-in-quartz solubility in Thomas et al.'s (Contrib Mineral Petrol 160:743-759, 2010) calibration represent the equilibrium concentrations of Ti in quartz.
NASA Astrophysics Data System (ADS)
Nachlas, William O.; Whitney, Donna L.; Teyssier, Christian; Bagley, Brian; Mulch, Andreas
2014-04-01
Results of high precision analysis of Ti concentration ([Ti]) in quartz representing different recrystallization microstructures in a suite of progressively deformed quartzite mylonites show the effect of recrystallization on distribution of Ti in quartz. Petrographic observations and ion microprobe analysis reveals three texturally and geochemically distinct quartz microstructures in mylonites: (1) cores of recrystallized quartz ribbons preserve the highest [Ti] and are interpreted to have recrystallized via grain boundary migration recrystallization, (2) recrystallized rims and grain margins preserve a lower and more variable [Ti] and are interpreted to reflect the combined influence of subgrain rotation and bulging recrystallization, and (3) neocrystallized quartz precipitated in dilatancy sites has low (˜1 ppm) [Ti], reflecting the Ti content of the syndeformational fluid. Muscovite in nonmylonitic quartzite (at the base of the sampling traverse) is compositionally zoned, whereas muscovite in mylonitic quartzite shows a progressive decreasing in zoning in higher strain samples. Three-dimensional phase distribution mapping using X-ray computed tomography analysis of rock hand samples reveals that Ti-bearing accessory phases are less abundant and more dispersed in higher strained mylonites compared to nonmylonitic quartzite. This study demonstrates the influence of dynamic recrystallization on Ti substitution in quartz and evaluates the Ti buffering capacity of aqueous fluids (meteoric versus metamorphic/magmatic) as well as the distribution and reactivity of Ti-bearing accessory phases in a deforming quartzite. Results of this study suggest that Ti-in-quartz thermobarometry of deformed quartz is a sensitive technique for resolving the multistage history of quartz deformation and recrystallization in crustal shear zones.
Li, Gang; Li, Yingming; Zhang, Hongxing; Li, Honghua; Gao, Guanjun; Zhou, Qian; Gao, Yuan; Li, Wenjuan; Sun, Huizhong; Wang, Xiaoke; Zhang, Qinghua
2016-01-01
Quartz particles are a toxic component of airborne particulate matter (PM). Quartz concentrations were analyzed by X-ray diffraction in eighty-seven airborne PM samples collected from three locations in Beijing before, during, and after the Asia-Pacific Economic Cooperation (APEC) Leaders' Meeting in 2014. The results showed that the mean concentrations of quartz in PM samples from the two urban sites were considerably higher than those from the rural site. The quartz concentrations in samples collected after the APEC meeting, when the pollution restriction lever was lifted, were higher than those in the samples collected before or during the APEC meeting. The quartz concentrations ranged from 0.97 to 13.2 μg/m(3), which were among the highest values amid those reported from other countries. The highest quartz concentration exceeded the Californian Office of Environmental Health Hazard Assessment reference exposure level and was close to the occupational threshold limit values for occupational settings. Moreover, a correlation analysis showed that quartz concentrations were positively correlated with concentrations of pollution parameters PM10, PM2.5, SO2 and NOx, but were negatively correlated with O3 concentration. The results suggest that the airborne quartz particles may potentially pose health risks to the general population of Beijing. Copyright © 2015. Published by Elsevier B.V.
Correct interpretation of diffraction properties of quartz crystals for X-ray optics applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Xian-Rong; Gog, Thomas; Kim, Jungho
Quartz has hundreds of strong Bragg reflections that may offer a great number of choices for making fixed-angle X-ray analyzers and polarizers at virtually any hard X-ray energies with selectable resolution. However, quartz crystals, unlike silicon and germanium, are chiral and may thus appear in two different forms of handedness that are mirror images. Furthermore, because of the threefold rotational symmetry along thecaxis, the {h 1h 2h 3L} and {h 2h 1h 3L} Bragg reflections may have quite different Darwin bandwidth, reflectivity and angular acceptance, although they have the same Bragg angle. The design of X-ray optics from quartz crystalsmore » therefore requires unambiguous determination of the orientation, handedness and polarity of the crystals. The Laue method and single-axis diffraction technique can provide such information, but the variety of conventions used in the literature to describe quartz structures has caused widespread confusion. The current studies give detailed guidelines for design and fabrication of quartz X-ray optics, with special emphasis on the correct interpretation of Laue patterns in terms of the crystallography and diffraction properties of quartz. Meanwhile, the quartz crystals examined were confirmed by X-ray topography to have acceptably low densities of dislocations and other defects, which is the foundation for developing high-resolution quartz-based X-ray optics.« less
Hydrogen speciation in synthetic quartz
Aines, R.D.; Kirby, S.H.; Rossman, G.R.
1984-01-01
The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.
The effect of SiO 2-doped boron nitride multiple coatings on mechanical properties of quartz fibers
NASA Astrophysics Data System (ADS)
Zheng, Yu; Wang, Shubin
2012-01-01
SiO2-doped boron nitride multiple coatings (SiO2/BN multiple coatings) were prepared on quartz fibers surface at 700 °C. Single fiber tensile test was employed to evaluate fiber tensile strength; Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were employed to evaluate morphology and structure of the fibers. Fiber tensile test results indicated that the strength of quartz fibers with SiO2/BN multiple coatings was about twice of the fibers with BN coatings and original fibers which were heated at 700 °C for 10 h. The SiO2/BN multiple coatings would provide compressive stress on quartz fibers, which would help to seal the defects on fiber surface. Furthermore, TEM images showed that the nano-SiO2 powders crystallized in advance of quartz fibers, which would suppress crystallization of quartz fibers and reduce damage from crystallization. Thus, nano-SiO2 powders would help to keep mechanical properties of quartz fibers.
Quartz cement in sandstones: a review
NASA Astrophysics Data System (ADS)
McBride, Earle F.
Quartz cement as syntaxial overgrowths is one of the two most abundant cements in sandstones. The main factors that control the amount of quartz cement in sandstones are: framework composition; residence time in the "silica mobility window"; and fluid composition, flow volume and pathways. Thus, the type of sedimentary basin in which a sand was deposited strongly controls the cementation process. Sandstones of rift basins (arkoses) and collision-margin basins (litharenites) generally have only a few percent quartz cement; quartzarenites and other quartzose sandstones of intracratonic, foreland and passive-margin basins have the most quartz cement. Clay and other mineral coatings on detrital quartz grains and entrapment of hydrocarbons in pores retard or prevent cementation by quartz, whereas extremely permeable sands that serve as major fluid conduits tend to sequester the greatest amounts of quartz cement. In rapidly subsiding basins, like the Gulf Coast and North Sea basins, most quartz cement is precipitated by cooling, ascending formation water at burial depths of several kilometers where temperatures range from 60° to 100° C. Cementation proceeds over millions of years, often under changing fluid compositions and temperatures. Sandstones with more than 10% imported quartz cement pose special problems of fluid flux and silica transport. If silica is transported entirely as H 4SiO 4, convective recycling of formation water seems to be essential to explain the volume of cement present in most sandstones. Precipitation from single-cycle, upward-migrating formation water is adequate to provide the volume of cement only if significant volumes of silica are transported in unidentified complexes. Modeling suggests that quartz cementation of sandstones in intracratonic basins is effected by advecting meteoric water, although independent petrographic, isotopic or fluid inclusion data are lacking. Silica for quartz cement comes from both shale and sandstone beds within the depositional basin, including possibly deeply buried rocks undergoing low-grade metamorphism, but the relative importance of potential sources remains controversial and likely differs for different formations. The most likely important silica sources within unmetamorphosed shales include clay transformation (chiefly illitization of smectite), dissolution/pressure solution of detrital grains, and dissolution of opal skeletal grains; the most likely important sources of silica within unmetamorphosed sandstones include pressure solution of detrital quartz grains at grain contacts and at stylolites, feldspar alteration/dissolution, and perhaps carbonate replacement of silicate minerals and the margins of some quartz grains. Silica released by pressure solution in many sandstones post-dates the episode of cementation by quartz; thus, this silica must migrate and cement shallower sandstones in the basin or escape altogether. Some quartz-cemented sandstones are separated vertically from potential silica source beds by a kilometer or more, requiring silica transport over long distances. The similarity of diagenetic sequences in sandstones of different composition and ages apparently is the result of the normal temperature and time-dependent maturation of sediments, organic matter and pore fluids during burial in sedimentary basins. Silica that forms overgrowths is released by one or more diagenetic processes that apparently are controlled by temperature and time. Most cementation by quartz takes place when sandstone beds were in the silica mobility window specific to a particular sedimentary basin. Important secondary controls are introduced by compartmentalized domains produced by faults (e.g., North Sea) or overpressure boundaries (e.g., Gulf Coast Tertiary). Shallow meteoric water precipitates only small amounts of silica cement (generally less than 5% in most fluvial and colian sandstones), except in certain soils and at water tables in high-flux sand aquifers. Soil silcretes are chiefly cemented by opal and microcrystalline quartz, whereas water-table silcretes have abundant normal syntaxial quartz overgrowths. Silica for silcrete cements and replacements comes from quartz, silicate minerals, and locally volcanic glass, in alluvium and bedrock.
Microwave GaAs Integrated Circuits On Quartz Substrates
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara
1994-01-01
Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.
NASA Astrophysics Data System (ADS)
Kelly, Jacque L.; Fu, Bin; Kita, Noriko T.; Valley, John W.
2007-08-01
A detailed oxygen isotope study of detrital quartz and authigenic quartz overgrowths from shallowly buried (<1 km) quartz arenites of the St. Peter Sandstone (in SW Wisconsin) constrains temperature and fluid sources during diagenesis. Quartz overgrowths are syntaxial (optically continuous) and show complex luminescent zonation by cathodoluminescence. Detrital quartz grains were separated from 53 rocks and analyzed for oxygen isotope ratio by laser fluorination, resulting in an average δ 18O of 10.0 ± 0.2‰ (1SD, n = 109). Twelve thin sections were analyzed by CAMECA-1280 ion microprobe (6-10 μm spot size, analytical precision better than ±0.2‰, 1SD). Detrital quartz grains have an average δ 18O of 10.0 ± 1.4‰ (1SD, n = 91) identical to the data obtained by laser fluorination. The ion microprobe data reveal true variability that is otherwise lost by homogenization of powdered samples necessary for laser fluorination. Laser fluorination uses samples that are one million times larger than the ion microprobe. Whole rock (WR) samples from the 53 rocks were analyzed by laser fluorination, giving δ 18O between 9.8‰ and 16.7‰ ( n = 110). Quartz overgrowths in thin sections from 10 rocks were analyzed by ion microprobe and average δ 18O = 29.3 ± 1.0‰ (1SD, n = 161). Given the similarity, on average, of δ 18O for all detrital quartz grains and for all quartz overgrowths, samples with higher δ 18O(WR) values can be shown to have more cement. The quartz cement in the 53 rocks, calculated by mass balance, varies from <1 to 21 vol.% cement, with one outlier at 33 vol.% cement. Eolian samples have an average of 11% cement compared to marine samples, which average 4% cement. Two models for quartz cementation have been investigated: high temperature (50-110 °C) formation from ore-forming brines related to Mississippi Valley Type (MVT) mineralization and formation as silcretes at low temperature (10-30 °C). The homogeneity of δ 18O for quartz overgrowths determined by ion microprobe rules out a systematic regional variation of temperature as predicted for MVT brines and there are no other known heating events in these sediments that were never buried to depths >1 km. The data in this study suggest that quartz overgrowths formed as silcretes in the St. Peter Sandstone from meteoric water with δ 18O values of -10‰ to -5‰ at 10-30 °C. This interpretation runs counter to conventional wisdom based on fibrous or opaline silica cements suggesting that the formation of syntaxial quartz overgrowths requires higher temperatures. While metastable silica cements commonly form at high degrees of silica oversaturation following rapid break-down reactions of materials such as of feldspars or glass, the weathering of a clean quartz arenite is slower facilitating chemical equilibrium and precipitation of crystallographically oriented overgrowths of α-quartz.
Liu, Zhao-Dong; Wang, Hai-Cui; Li, Jiu-Yu; Xu, Ren-Kou
2017-10-01
The interaction between rice roots and Fe/Al oxide-coated quartz was investigated through zeta potential measurements and column leaching experiments in present study. The zeta potentials of rice roots, Fe/Al oxide-coated quartz, and the binary systems containing rice roots and Fe/Al oxide-coated quartz were measured by a specially constructed streaming potential apparatus. The interactions between rice roots and Fe/Al oxide-coated quartz particles were evaluated/deduced based on the differences of zeta potentials between the binary systems and the single system of rice roots. The zeta potentials of the binary systems moved in positive directions compared with that of rice roots, suggesting that there were overlapping of diffuse layers of electric double layers on positively charged Fe/Al oxide-coated quartz and negatively charged rice roots and neutralization of positive charge on Fe/Al oxide-coated quartz with negative charge on rice roots. The greater amount of positive charges on Al oxide led to the stronger interaction of Al oxide-coated quartz with rice roots and the more shift of zeta potential compared with Fe oxide. The overlapping of diffuse layers on Fe/Al oxide-coated quartz and rice roots was confirmed by column leaching experiments. The greater overlapping of diffuse layers on Al oxide and rice roots led to more simultaneous adsorptions of K + and NO 3 - and greater reduction in leachate electric conductivity when the column containing Al oxide-coated quartz and rice roots was leached with KNO 3 solution, compared with the columns containing rice roots and Fe oxide-coated quartz or quartz. When the KNO 3 solution was replaced with deionized water to flush the columns, more K + and NO 3 - were desorbed from the binary system containing Al oxide-coated quartz and rice roots than from other two binary systems, suggesting that the stronger electrostatic interaction between Al oxide and rice roots promoted the desorption of K + and NO 3 - from the binary system and enhanced overlapping of diffuse layers on these oppositely charged surfaces compared with other two binary systems. In conclusion, the overlapping of diffuse layers occurred between positively charged Fe/Al oxides and rice roots, which led to neutralization of opposite charge and affected adsorption and desorption of ions onto and from the charged surfaces of Fe/Al oxides and rice roots.
Rutilated quartz: combining Ti-in-quartz thermometry and lattice diffusion
NASA Astrophysics Data System (ADS)
Tailby, N.; Towbin, H.; Ackerson, M. R.
2017-12-01
The Ti content of quartz can be used to evaluate crystallization temperatures in silicic magmas like the S-type Jillamatong granodiorite of the Lachlan Fold Belt. Additionally, the presence of crystallographically-aligned exsolved rutile needles in quartz from this granodiorite suggests that post-crystallization modification of Ti in quartz can be used to assess magmatic cooling rates. In this study we report Ti-in-quartz temperatures that indicate crystallization between 600-700 °C at this location (i.e., 25-60 ppmw Ti, P = 5 kbar, aTiO2= 0.46-0.66). After crystallization, Ti in quartz can be reset via lattice diffusion, a process that can be quantified or evaluated from experimentally-determined values [Cherniak et al., 2007; where DTi = 7x10-8exp (-273±12kJmol-1/RT) m2sec-1)]. The slow diffusivity of Ti through the quartz lattice is one factor that contributes to the general use of quartz thermometry - this is to say that unrealistically long time periods are required in order for a cooling quartz crystal to re-equilibrate with the new thermal regime. This is particularly true of crystal cores (generally on the mm scale), where the diffusive length scale from the core to rim of the crystal could be used to suggest core retention is likely in even the slowest cooling granitic systems. In the Jillamatong pluton - as we predict is possible in a significant body of granitoids - coupling of slow diffusion and decreasing Ti solubility in quartz upon cooling can lead to a situation where a quartz crystal becomes saturated in Ti (i.e., aTiO2=1) and rutile exsolutions develop. The radius ( 0.6 microns) and distribution of these needles, coupled with the diffusive draw down well ( 11 microns) around these exsolutions, can be used to evaluate the cooling history of the pluton, thus providing a comprehensive time-integrated crystallization and cooling history of plutonic rocks. ReferencesCherniak et al., 2007. Chem. Geol. 236, 65-74 Thomas et al., 2010. Contrib. Mineral. Petr. 160, 743-759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izett, G.A.; Pillmore, C.L.
1985-01-01
Unique quartz grains as large as 0.5 mm and having up to 6 sets of closely spaced microfractures (CSM) occur at the palynological K-T boundary at 9 scattered sites from Trinidad, Colorado, south 50 km to Raton, New Mexico. Similar quartz grains at the K-T boundary in Montana and Europe were ascribed a shock-metamorphic origin by B. Bohor and colleagues in 1984-85. In the Raton Basin, quartz grains with CSM are concentrated at the top and base of a 2.5-cm-tick kaolinite bed in a nonmarine sequence of somber-colored sandstone, siltstone, shale, and coal. No quartz grains with CSM have yetmore » been found below the K-T bed in the Raton Basin, but a few have been found about 25 cm below the K-T bed at Brownie Butte, Montana. Most quartz grains having CSM are single optical units, but some are compound grains showing sutured boundaries (metaquartzite). Nearly all quartz grains with CSM have refractive indices and birefringence normal for quartz which suggests they formed at not more than 100 kb (low shock); however, a few have n/sub 0/ lowered to 1.538, but have normal birefringence. About half of 100 measured CSM in quartz make an angle of 15-25 degrees with the base (0001). The K-T kaolinite bed in the Raton Basin contains anomalously large amounts of Ir and is possibly coeval with marine, Ir-bearing K-T claystone beds in Europe described in 1980 by W. Alvarez and his associated who suggested they formed when a large bolide struck the Earth causing mass extinction of certain animals and plants. The shocked quartz and metaquartzite at the K-T boundary is compelling evidence that a bolide struck an onland-area of quartz-rich crustal rocks--not in an ocean.« less
NASA Astrophysics Data System (ADS)
Noronha, F.; Doria, A.; Dubessy, J.; Charoy, B.
1992-01-01
The Panasqueira W-Sn deposit is the largest quartz-vein type deposit of the Iberian Peninsula and the most important wolframite deposit in Western Europe. The ore-veins are almost exclusively sub-horizontal. Besides ore-bearing sub-horizontal veins, the Panasqueira mine also contains barren quartz veins. There are essentially two generations of barren quartz: quartz, contemporaneous with the earliest regional metamorphism (QI), and recrystallized quartz, contemporaneous with the thermal metamorphism related to the granite intrusion (QII). Fluid inclusion studies (microthermometry and Raman) were undertaken in order to distinguish fluids contemporaneous with the barren quartz from those contemporaneous with the ore-bearing quartz (QIII). Fluid inclusion data indicate that the barren and ore-bearing quartz fluids are dominantly aqueous (93 to 98 mol% H2O), with a nearly constant bulk salinity (8 to 12 wt% eq. NaCl), with the quantity of volatile component (determined by Raman spectrometry) higher in QIII, but never greater than 5 mol%. However, the CO2/CH4 + N2 ratio is different for each type of quartz. Volatiles are dominated by CH4 (10 to 96 mol% ZCH4 and/or N2 (3 to 87 mol% ZN2) in the barren quartz and by CO2 (60 to 73 mol% ZCO2) in ore-bearing quartz. The bulk chemical composition of the fluids in QIII is comparable to that found commonly in hydrothermal fluids associated with wolframite mineralization, where Na>K>Ca and HCO3>Cl>SO4. A dispersion in TH (226 to 350 °C) found in QIII, together with a variation in the degree of filling (0.5 to 0.7) and with the consequent variation of fluid densities (0.70 to 0.79), may result from changes in the fluid pressure regime below lithostatic pressure, suggesting vein filling related to tectonic events.
Rusk, Brian; Koenig, Alan; Lowers, Heather
2011-01-01
Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.
Aluminum Solubility Mechanisms in Quartz: Implications for Al-in-Quartz Thermobarometry
NASA Astrophysics Data System (ADS)
Was, E.; Thomas, J. B.; Nachlas, W. O.
2016-12-01
Trace element thermobarometers in minerals are becoming increasingly important tools for studying geologic processes in many different geologic environments. The solubility of some trace-level (i.e. <1000 ppmw) components in minerals can be measured and used to estimate the pressure (P) and/or temperature (T) of mineral crystallization. To date, quartz has been useful for trace element thermobarometry (based on its Ti content) due to its common occurrence in many rock types and therefore can provide information on a wide range of petrologic processes. However, this technique relies on an independent constraint on T (or P) to calculate P (or T), which can be difficult to obtain in some rocks. To add to the utility of quartz as a thermobarometer, we have experimentally co-crystallized quartz and aluminosilicates at elevated P-T conditions to determine Al solubilities in quartz, which will allow use of the crossing isopleths method to determine a unique P and T solution from two independent techniques (using Ti and Al) in the same mineral. Preliminary experiments demonstrate that Al concentrations in quartz vary systematically with P and T, and also show that Al is soluble at greater levels than Ti. The success of an Al-in-quartz thermobarometer relies on determining both the variations in Al solubility across P-T space as well as the solubility mechanism for Al substitution into the quartz structure. To determine these parameters, we use Fourier transform infrared spectroscopy (FTIR) to quantify H+ contents as a charge-balancing ion for Al3+ to replace Si4+, electron microprobe (EPMA) to measure Al concentrations, and nuclear magnetic resonance spectroscopy (NMR) to determine the coordination environment of Al in quartz.
Ruppert, Leslie F.; Cecil, C. Blaine; Stanton, Ronald W.
1984-01-01
Both a scanning electron microscope and an electron microprobe (EMP) were used in this study to analyze the cathodoluminescence properties of quartz grains in samples of the Upper Freeport coal bed because quartz grains in coal are small (silt sized) and below the resolution capabilities of a standard luminoscope. Quartz grains were identified by the detection of silicon alone with energy dispersive X-ray units attached to both the SEM and the EMP.
Optical processing furnace with quartz muffle and diffuser plate
Sopori, B.L.
1996-11-19
An optical furnace for annealing a process wafer is disclosed comprising a source of optical energy, a quartz muffle having a door to hold the wafer for processing, and a quartz diffuser plate to diffuse the light impinging on the quartz muffle; a feedback system with a light sensor located in the wall of the muffle is also provided for controlling the source of optical energy. 5 figs.
NASA Technical Reports Server (NTRS)
Bahadur, H.; Parshad, R.
1983-01-01
The paper reports some new results on irradiation characteristics of synthetic quartz crystals and their application to radiation hardening. The present results show how the frequency shift in quartz crystals can be influenced by heat processing prior to irradiation and how this procedure can lead to radiation hardening for obtaining precise frequencies and time intervals from quartz oscillators in space.
Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates.
Silva, Chinthaka M; Rosseel, Thomas M; Kirkegaard, Marie C
2018-03-19
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18 , 4 × 10 19 , and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasing neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2 , with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. The cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.
Exposures to quartz, diesel, dust, and welding fumes during heavy and highway construction.
Woskie, Susan R; Kalil, Andrew; Bello, Dhimiter; Virji, M Abbas
2002-01-01
Personal samples for exposure to dust, diesel exhaust, quartz, and welding fume were collected on heavy and highway construction workers. The respirable, thoracic, and inhalable fractions of dust and quartz exposures were estimated from 260 personal impactor samples. Respirable quartz exposures exceeded the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit (REL) in 7-31% of cases for the trades sampled. More than 50% of the samples in the installation of drop ceilings and wall tiles and concrete finish operations exceeded the NIOSH REL for quartz. Thoracic exposures to quartz and dust exceeded respirable exposures by a factor of 4.5 and 2.8, respectively. Inhalable exposures to quartz and dust exceeded respirable exposures by a factor of 25.6 and 9.3, respectively. These findings are important due to the identification of quartz as a carcinogen by the National Toxicology Program and the International Agency for Research on Cancer. Fourteen percent of the personal samples for EC (n = 261), collected as a marker for diesel exhaust, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) for diesel exhaust. Seventeen of the 22 (77%) samples taken during a partially enclosed welding operation reached or exceeded the ACGIH TLV of 5 mg/m3 for welding fume.
Farahat, Mohsen; Hirajima, Tsuyoshi; Sasaki, Keiko; Doi, Katsumi
2009-11-01
The adhesion of Escherichia coli onto quartz, hematite and corundum was experimentally investigated. A strain of E. coli was used that had the genes for expressing protein for silica precipitation. The maximum cell adhesion was observed at pH <4.3 for quartz and at pH 4.5-8.5 for corundum. For hematite, cell adhesion remained low at all pH values. The microbe-mineral adhesion was assessed by the extended DLVO theory approach. The essential parameters for calculation of microbe-mineral interaction energy (Hamaker constants and acid-base components) were experimentally determined. The extended DLVO approach could be used to explain the results of the adhesion experiments. The effect of E. coli on the floatability of three oxide minerals was determined and the results showed that E. coli can act as a selective collector for quartz at acidic pH values, with 90% of the quartz floated at 1.5 x 10(9)cells/ml. However, only 9% hematite and 30% corundum could be floated under similar conditions. By using E. coli and no reagents, it was possible to separate quartz from a hematite-quartz mixture with Newton's efficiency of 0.70. Removal of quartz from the corundum mixture was achieved by E. coli with Newton's efficiency of 0.62.
Application of hydrometallurgy techniques in quartz processing and purification: a review
NASA Astrophysics Data System (ADS)
Lin, Min; Lei, Shaomin; Pei, Zhenyu; Liu, Yuanyuan; Xia, Zhangjie; Xie, Feixiang
2018-04-01
Although there have been numerous studies on separation and purification of metallic minerals by hydrometallurgy techniques, applications of the chemical techniques in separation and purification of non-metallic minerals are rarely reported. This paper reviews disparate areas of study into processing and purification of quartz (typical non-metallic ore) in an attempt to summarize current work, as well as to suggest potential for future consolidation in the field. The review encompasses chemical techniques of the quartz processing including situations, progresses, leaching mechanism, scopes of application, advantages and drawbacks of micro-bioleaching, high temperature leaching, high temperature pressure leaching and catalyzed high temperature pressure leaching. Traditional leaching techniques including micro-bioleaching and high temperature leaching are unequal to demand of modern glass industry for quality of quartz concentrate because the quartz products has to be further processed. High temperature pressure leaching and catalyzed high temperature pressure leaching provide new ways to produce high-grade quartz sand with only one process and lower acid consumption. Furthermore, the catalyzed high temperature pressure leaching realizes effective purification of quartz with extremely low acid consumption (no using HF or any fluoride). It is proposed that, by integrating the different chemical processes of quartz processing and expounding leaching mechanisms and scopes of application, the research field as a monopolized industry would benefit.
NASA Technical Reports Server (NTRS)
Gratz, Andrew J.; Bird, Peter
1993-01-01
The range of the measured quartz dissolution rates, as a function of temperature and pOH, extent of saturation, and ionic strength, is extended to cover a wider range of solution chemistries, using the negative crystal methodology of Gratz et al. (1990) to measure the dissolution rate. A simple rate law describing the quartz dissolution kinetics above the point of zero charge of quartz is derived for ionic strengths above 0.003 m. Measurements were performed on some defective crystals, and the mathematics of step motion was developed for quartz dissolution and was compared with rough-face behavior using two different models.
Risks of respiratory disease in the heavy clay industry
Love, R. G.; Waclawski, E. R.; Maclaren, W. M.; Wetherill, G. Z.; Groat, S. K.; Porteous, R. H.; Soutar, C. A.
1999-01-01
OBJECTIVES: Little information is available on the quantitative risks of respiratory disease from quartz in airborne dust in the heavy clay industry. Available evidence suggested that these risks might be low, possibly because of the presence in the dust of other minerals, such as illite and kaolinite, which may reduce the harmful effects of quartz. The aims of the present cross sectional study were to determine among workers in the industry (a) their current and cumulative exposures to respirable mixed dust and quartz; (b) the frequencies of chest radiographic abnormalities and respiratory symptoms; (c) the relations between cumulative exposure to respirable dust and quartz, and risks of radiographic abnormality and respiratory symptoms. METHODS: Factories were chosen where the type of process had changed as little as possible during recent decades. 18 were selected in England and Scotland, ranging in size from 35 to 582 employees, representing all the main types of raw material, end product, kilns, and processes in the manufacture of bricks, pipes, and tiles but excluding refractory products. Weights of respirable dust and quartz in more than 1400 personal dust samples, and site histories, were used to derive occupational groups characterised by their levels of exposure to dust and quartz. Full size chest radiographs, respiratory symptoms, smoking, and occupational history questionnaires were administered to current workers at each factory. Exposure-response relations were examined for radiographic abnormalities (dust and quartz) and respiratory symptoms (dust only). RESULTS: Respirable dust and quartz concentrations ranged from means of 0.4 and 0.04 mg.m-3 for non-process workers to 10.0 and 0.62 mg.m-3 for kiln demolition workers respectively. Although 97% of all quartz concentrations were below the maximum exposure limit of 0.4 mg.m-3, 10% were greater than this among the groups of workers exposed to most dust. Cumulative exposure calculations for dust and quartz took account of changes of occupational group, factory, and kiln type at study and non-study sites. Because of the importance of changes of kiln type additional weighting factors were applied to concentrations of dust and quartz during previous employment at factories that used certain types of kiln. 85% (1934 employees) of the identified workforce attended the medical surveys. The frequency of small opacities in the chest radiograph, category > or = 1/0, was 1.4% (median reading) and seven of these 25 men had category > or = 2/1. Chronic bronchitis was reported by 14.2% of the workforce and breathlessness, when walking with someone of their own age, by 4.4%. Risks of having category > or = 0/1 small opacities differed by site and were also influenced by age, smoking, and lifetime cumulative exposure to respirable dust and quartz. Although exposures to dust and to quartz were highly correlated, the evidence suggested that radiological abnormality was associated with quartz rather than dust. A doubling of cumulative quartz exposure increased the risk of having category > or = 0/1 by a factor of 1.33. Both chronic bronchitis and breathlessness were significantly related to dust exposure. CONCLUSIONS: Although most quartz concentrations at the time of this study were currently below regulatory limits in the heavy clay industry, high exposures regularly occurred in specific processes and occasionally among most occupational groups. However, there are small risks of pneumoconiosis and respiratory symptoms in the industry, although frequency of pneumoconiosis is low in comparison to other quartz exposed workers. PMID:10448318
Quartz: heat capacities from 340 to 1000 K and revised values for the thermodynamic properties.
Hemingway, B.S.
1987-01-01
New heat-capacity data for quartz have been measured over the T interval 340-1000 K by differential scanning calorimetry. The data were combined with recent heat-content and heat-capacity data to provide a significantly revised set of thermodynamic properties for alpha -quartz and to resolve the problem of disparate heat-content and heat-capacity data for alpha - and beta -quartz.-J.A.Z.
Application of Electron Backscatter Diffraction to evaluate the ASR risk of concrete aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rößler, C., E-mail: christiane.roessler@uni-weimar.de; Möser, B.; Giebson, C.
Alkali-Silica Reaction (ASR) is a frequent cause of reduced concrete durability. Eliminating the application of alkali reactive aggregates would reduce the quantity of ASR concrete deterioration in the field. This study introduces an Electron Backscatter Diffraction (EBSD) technique to distinguish the ASR risk of slow-late reacting aggregates by measuring microstructural properties of quartz. Quantifying the amount of quartz grain boundaries and the associated misorientation of grains can thereby be used to differentiate microstructures bearing an ASR risk. It is also shown that dissolution of quartz in high pH environments occurs along quartz grain and subgrain boundaries. Results of EBSD analysismore » are compared with ASR performance testing on concrete prisms and optical light microscopy characterization of quartz microstructure. EBSD opens new possibilities to quantitatively characterize microstructure of quartz in concrete aggregates with respect to ASR. This leads to a better understanding on the actual cause of ASR.« less
Kiyokawa, Masatoshi; Sakuma, Toshiro; Hatano, Noriko; Mizota, Atsushi; Tanaka, Minoru
2009-06-01
The purpose of this article is to report the characteristics and advantages of using a newly designed quartz contact lens with slit illumination from an operating microscope for intraocular surgery. The new contact lens is made of quartz. The lens is convex-concave and is used in combination with slit illumination from an operating microscope. The optical properties of quartz make this lens less reflective with greater transmittance. The combination of a quartz contact lens with slit illumination provided a brighter and wider field of view than conventional lenses. This system enabled us to perform bimanual vitrectomy and scleral buckling surgery without indirect ophthalmoscope. Small intraocular structures in the posterior pole or in the periphery were detected more easily. In conclusion, the newly designed quartz lens with slit beam illumination from an operating microscope provided a bright, clear and wide surgical field, and allowed intraocular surgery to be performed more easily.
NASA Astrophysics Data System (ADS)
Menegon, Luca; Pennacchioni, Giorgio; Heilbronner, Renee; Pittarello, Lidia
2008-11-01
We have studied quartz microstructures and the c-axis crystallographic preferred orientations (CPOs) in four granitoid samples representative of increasing ductile shear deformation, from a weakly deformed granitoid (stage 1) to a mylonitic granitoid (stage 4). The quartz c-axis CPO measured in the mylonitic granitoid has been compared with the one observed in a fully recrystallized quartz mylonite from the same area. All the samples belong to the Austroalpine Arolla unit (Western Alps) and were deformed at greenschist facies conditions. The quartz c-axis CPO was analyzed using a U-stage and the optical orientation imaging technique. The magmatic plagioclase, forming more than 50% of the volume of the granitoid, is extensively replaced by a mica-rich aggregate even in weakly deformed samples of stage 1. These aggregates flow to form an interconnected weak matrix with increasing deformation, wrapping relatively less strained quartz grains that undergo dominantly coaxial strain. Recrystallization of quartz ranges from less than 1% in the weakly deformed granitoid to up to 85% in the mylonitic granitoid, with average grain strain of 41% and 64%, respectively. With increasing strain and recrystallization, quartz grains in the granitoids show a sequence of transient microstructures and CPOs. Crystal plastic deformation is initially accomplished by dislocation glide with limited recovery, and at 50% grain strain it results in a CPO consistent with dominantly basal < a> slip. At 60% grain strain, recrystallization is preferentially localized along shear bands, which appear to develop along former intragranular cracks, and the recrystallized grains develop a strong c-axis CPO with maxima orthogonal to the shear band boundaries and independent of the host grain orientation. Within the granitoid mylonite, at an average quartz grain strain of 64%, recrystallization is extensive and the c-axis CPO of new grains displays maxima overlapping the host c-axis orientation and, therefore, unrelated to the bulk sense of shear. The host-controlled CPO is inferred to reflect pervasive recrystallization by progressive subgrain rotation. The switch from 'shear band-control' to 'host-control' on c-axis CPO occurred between 40% and 70% of recrystallization. In the quartz mylonite, the quartz c-axis CPO develops an asymmetric single girdle consistent with the bulk sense of shear and the synkinematic greenschist facies conditions. This study indicates that the CPO evolution of quartz may significantly differ in cases of polymineralic vs. monomineralic rocks under the same deformation conditions, if quartz in the polymineralic rock behaves as a 'strong' phase.
Tembe, Sheryl; Lockner, David A.; Wong, Teng-Fong
2010-01-01
We investigated the frictional sliding behavior of simulated quartz-clay gouges under stress conditions relevant to seismogenic depths. Conventional triaxial compression tests were conducted at 40 MPa effective normal stress on saturated saw cut samples containing binary and ternary mixtures of quartz, montmorillonite, and illite. In all cases, frictional strengths of mixtures fall between the end-members of pure quartz (strongest) and clay (weakest). The overall trend was a decrease in strength with increasing clay content. In the illite/quartz mixture the trend was nearly linear, while in the montmorillonite mixtures a sigmoidal trend with three strength regimes was noted. Microstructural observations were performed on the deformed samples to characterize the geometric attributes of shear localization within the gouge layers. Two micromechanical models were used to analyze the critical clay fractions for the two-regime transitions on the basis of clay porosity and packing of the quartz grains. The transition from regime 1 (high strength) to 2 (intermediate strength) is associated with the shift from a stress-supporting framework of quartz grains to a clay matrix embedded with disperse quartz grains, manifested by the development of P-foliation and reduction in Riedel shear angle. The transition from regime 2 (intermediate strength) to 3 (low strength) is attributed to the development of shear localization in the clay matrix, occurring only when the neighboring layers of quartz grains are separated by a critical clay thickness. Our mixture data relating strength degradation to clay content agree well with strengths of natural shear zone materials obtained from scientific deep drilling projects.
NASA Astrophysics Data System (ADS)
Richter, B.; Stünitz, H.; Heilbronner, R.
2016-11-01
Coesite was found in quartz aggregates, experimentally deformed at confining pressures of 1.0-1.5 GPa and temperatures between 600°C and 900°C. The confining pressure (Pc) and, in most cases, the mean stress (σm) of the experiments were below those of the quartz-to-coesite phase transformation. Yet coesite formed when the maximum principal stress (σ1) was within the P-T range of the coesite stability field. In one sample, the euhedral coesite grains were corroded indicating that coesite started to transform back to quartz. It is inferred that this sample started to deform with σ1 above the quartz-to-coesite phase transformation and, with ongoing deformation, σ1 decreased to values in the quartz stability field due to strain weakening. In all cases, σ1 triggered the quartz-to-coesite reaction as well as the reverse reaction, suggesting that σ1 is the critical parameter for the quartz-to-coesite transformation—not Pc or σm. With progressive deformation, the coesite laths rotated toward the shear plane as more rigid particles with the sense of shear. In case of back reaction, new quartz grains exhibit no systematic crystallographic relationship with respect to old coesite. The experiments cover different degrees of pressure "overstepping," different temperatures, and different experimental durations at P and T, and deformation always enhances the reaction kinetics. The observation that σ1 is critical for a pressure-dependent phase transformation (also for reversals) poses questions for the thermodynamic treatment of such phase transformations.
NASA Astrophysics Data System (ADS)
May, E.; Vennemann, T. W.; Baumgartner, L. P.; Meisser, N.
2014-12-01
Quartz is the most abundant mineral in the Earth's crust and is found in virtually every geological context. Despite its ubiquity and the detailed studies on the conditions of quartz crystallization, some questions concerning its growth and sector zoning with regard to trace element incorporation and oxygen isotope fractionations and the implications thereof for interpretations on the conditions of formation remain (e.g., Jourdan et al., 2009). This study presents new in-situ measurements of trace element and oxygen isotope ratios on natural hydrothermal quartz from an extensional gold-bearing quartz vein in the western Swiss Alps. The temperature of formation of the veins is estimated by quartz-hematite oxygen isotope thermometry to be about 360°C. A detailed SEM-CL study of this sample shows cyclic lamellar growth, alternating with phases of dissolution that are directly followed by macro-mosaic growth of the quartz, before returning to a cyclic lamellar growth again. Trace element concentrations (measured for Na, K, Li, Al, and Ti) notably showed Al/Si variations of three orders of magnitude and coupled Al and Li variations, likely substituting for Si in different growth zones with lower values in macro-mosaic zones precipitating after the period of dissolution. The oxygen isotope composition of the crystal, in contrast, is homogeneous through all growth zones (δ18O values between 15.6‰ and 16.2‰) indicating that the fluid must have been buffered by the host-rock and/or the source of the fluid remained the same despite the period of quartz dissolution. Furthermore, the temperature during crystallization of the quartz crystal has likely also remained similar. The fact that no variations are measured in oxygen isotope compositions but some variations in trace element contents may suggest that changes in pressure were important during the formation of this quartz crystal. Give the pressure effects on the solubility of quartz (Fournier and Potter, 1982), both the cyclic character of quartz growth and perhaps also the changes in Al/Si may be related to pressure variations caused by seismic activity during retrograde Alpine metamorphism. A-L. Jourdan et al. (2009) Mineralogical Magazine, 73, 615-632. R.O. Fournier and R.W. Potter (1982) Geochimica et Cosmochimica Acta, 46, 1969-1973.
Miller, Arthur L.; Murphy, Nathaniel C.; Bayman, Sean J.; Briggs, Zachary P.; Kilpatrick, Andrew D.; Quinn, Courtney A.; Wadas, Mackenzie R.; Cauda, Emanuele G.; Griffiths, Peter R.
2015-01-01
The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers’ pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100–600 μg and 600–5300 μg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of −log R correlate linearly with known amounts of quartz on filters, with R2 values of approximately 0.99 and 0.94, respectively, for samples loaded up to ~4000 μg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is “free,” as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive interference, making quartz quantification impossible. It was concluded that, while the DR/FT-IR method is potentially useful for on-filter measurement of quartz in dust samples, the use of PVC filters produced the most accurate results. PMID:25636081
Miller, Arthur L; Murphy, Nathaniel C; Bayman, Sean J; Briggs, Zachary P; Kilpatrick, Andrew D; Quinn, Courtney A; Wadas, Mackenzie R; Cauda, Emanuele G; Griffiths, Peter R
2015-01-01
The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers' pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100-600 μg and 600-5300 μg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of -log R correlate linearly with known amounts of quartz on filters, with R(2) values of approximately 0.99 and 0.94, respectively, for samples loaded up to ∼4000 μg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is "free," as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive interference, making quartz quantification impossible. It was concluded that, while the DR/FT-IR method is potentially useful for on-filter measurement of quartz in dust samples, the use of PVC filters produced the most accurate results.
Shocked quartz in the cretaceous-tertiary boundary clays: Evidence for a global distribution
Bohor, B.F.; Modreski, P.J.; Foord, E.E.
1987-01-01
Shocked quartz grains displaying planar features were isolated from Cretaceous-Tertiary boundary days at five sites in Europe, a core from the north-central Pacific Ocean, and a site in New Zealand. At all of these sites, the planar features in the shocked quartz can be indexed to rational crystallographic planes of the quartz lattice. The grains display streaking indicative of shock in x-ray diffraction photographs and also show reduced refractive indices. These characteristic features of shocked quartz at several sites worldwide confirm that an impact event at the Cretaceous-Tertiary boundary distributed ejecta products in an earth-girdling dust cloud, as postulated by the Alvarez impact hypothesis.
Mineral resource of the month: cultured quartz crystal
,
2008-01-01
The article presents information on cultured quartz crystals, a mineral used in mobile phones, computers, clocks and other devices controlled by digital circuits. Cultured quartz, which is synthetically produced in large pressurized vessels known as autoclaves, is useful in electronic circuits for precise filtration, frequency control and timing for consumer and military use. Several ingredients are used in producing cultured quartz, including seed crystals, lascas, a solution of sodium hydroxide or sodium carbonate, lithium salts and deionized water.
Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Chinthaka M.; Rosseel, Thomas M.; Kirkegaard, Marie C.
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasingmore » neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.« less
Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates
Silva, Chinthaka M.; Rosseel, Thomas M.; Kirkegaard, Marie C.
2018-03-07
Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasingmore » neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.« less
Additive manufacturing of glass for optical applications
NASA Astrophysics Data System (ADS)
Luo, Junjie; Gilbert, Luke J.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.
2016-04-01
Glasses including fused quartz have significant scientific and engineering applications including optics, communications, electronics, and hermetic seals. This paper investigates a filament fed process for Additive Manufacturing (AM) of fused quartz. Additive manufacturing has several potential benefits including increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research in AM of glasses is limited and has focused on non-optical applications. Fused quartz is studied here because of its desirability for high-quality optics due to its high transmissivity and thermal stability. Fused quartz also has a higher working temperature than soda lime glass which poses a challenge for AM. In this work, fused quartz filaments are fed into a CO2 laser generated melt pool, smoothly depositing material onto the work piece. Single tracks are printed to explore the effects that different process parameters have on the morphology of printed fused quartz. A spectrometer is used to measure the thermal radiation incandescently emitted from the melt pool. Thin-walls are printed to study the effects of layer-to-layer height. Finally, a 3D fused quartz cube is printed using the newly acquired layer height and polished on each surface. The transmittance and index homogeneity of the polished cube are both measured. These results show that the filament fed process has the potential to print fused quartz with optical transparency and of index of refraction uniformity approaching bulk processed glass.
Passivation of quartz for halogen-containing light sources
Falkenstein, Zoran
1999-01-01
Lifetime of halogen containing VUV, UV, visible or IR light sources can be extended by passivating the quartz or glass gas containers with halogens prior to filling the quartz with the halogen and rare gas mixtures used to produce the light.
NASA Astrophysics Data System (ADS)
Ma, X.; Lowry, A. R.; Ravat, D.
2014-12-01
Thickness andseismic velocity of crustal layers are useful for understanding the history and evolution of continental lithosphere. Lowry and Pérez-Gussinyé (2011) observed that low bulk crustal seismic velocity ratio, Vp/Vs, strongly correlates with high geothermal gradient and active deformation, indicating quartz (to which Vp/Vs is most sensitive) plays a role in these processes. The lower crust (where ductile flow occurs which might explain the relationship) is commonly thought to be quartz-poor. However, layering of the crust may represent changes in either lithology or the phase of quartz. Laboratory strain-stress experiments on quartz indicate that near the a- to b-quartz phase transition, both Vp and Vp/Vs initially drop dramatically but then increase relative to the a-quartz regime because Young's modulus initially decreases by 30% before increasing by a net ~20%. Shear modulus varies only ~3% across the transition. Crustal structure is commonly represented by an upper, mid- and lower layer (e.g., Crust1.0) and conceptualized as primarily reflecting a change to more mafic lithology at greater depth, but estimates of Moho temperature indicate a quartz phase transition should be present in much of the western and central U.S. We have imaged multiple layering of the contiguous U.S. by applying a new cross-correlation and stacking method to USArray receiver functions. Synthetic models of a multiple layer crust indicate 'splitting' of converted-phase arrivals would be expected if a quartz phase transition were responsible. Preliminary imaging using cross-correlation of observed receiver functions with multiple layer synthetics demonstrates a marked improvement in correlation coefficients relative to a single-layer crust. In this presentation we will examine observational evidence for possible a- to b- phase transition layering (indicating quartz at depth) and compare with depths predicted for the quartz phase transition based on Pn-derived Moho temperatures and estimates of magnetic Curie depths.
NASA Technical Reports Server (NTRS)
Ahearn, J. S.; Venables, J. D.
1992-01-01
Factors determining the radiation sensitivity of quartz crystal oscillators were studied on NASA's LDEF. Quartz materials were examined in the transmission electron microscope (TEM) and classified as to their sensitivity to radiation damage by establishing the rate of damage caused by the electron beam in the microscope. Two types of materials, i.e., swept premium Q quartz and natural quartz were chosen because clear differences were observed in their response to the electron beam in the TEM studies. Quartz resonators were then fabricated from them, tested for frequency stability over a greater than 6 mo. period and flown on the LDEF satellite. After retrieval (more than 7 yrs in space) the stability of the resonators was again determined. All of the space exposed resonators fabricated with swept premium Q material exhibited a frequency shift above that of the control resonators: none of the resonators fabricated from the natural quartz materials exhibited such a shift. The significant differences observed between the two types of materials in both the ground-based TEM studies and the space radiation induced frequency changes suggest that there may be a correlation between the two observations.
2006-11-06
Transverse shear wave of a quartz crystal with an applied thin film�..�.31 Figure 2.4 Butterworth van - Dyke model for a quartz crystal near...resonance��..�.32 Figure 2.5 Butterworth van - Dyke model for a loaded quartz crystal at resonance...�.34 Figure 2.6 Butterworth van - Dyke model for a...surface chemistry . A thorough understanding of the reaction pathways of CWAs will aid in the development of CWA sensors, environmentally friendly
NASA Astrophysics Data System (ADS)
Cheng, Yong; Liu, Cong; Lu, Ping; Zhang, Yu; Nie, Qi; Wen, Yiming
2018-01-01
The surfaces of quartz grains contain characteristic textures formed during the process of transport, due to their stable physical and chemical properties. The surface textures include the information about source area, transporting force, sedimentary environment and evolution history of sediment. Surface textures of quartz grains from modern point bar deposits in the lower reaches of the Yellow River are observed and studied by scanning electron microscopy (SEM). Results indicate that there are 22 kinds of surface textures. The overall surface morphology of quartz grains shows short transporting time and distance and weak abrasive action of the river water. The combined surface textures caused by mechanical action indicate that quartz grains are transporting in a high-energy hydrodynamic condition and suffer a strong mechanical impact and abrasion. The common solution pits prove that the chemical property of transportation medium is very active and quartz grains receive an obvious chemical action. The combination of these surface textures can be an identification mark of fluvial environment, and that is: quartz grains are main subangular outline, whose roundness is higher with the farther motion distance; Surface fluctuation degree of quartz grains is relatively high, and gives priority to high and medium relief; V-shaped percussion marks are very abundant caused by mechanical action; The conchoidal of different sizes and steps are common-developed with paragenesis relationship; Solution pits are common-developed as well. The study makes up for the blank of surface textures analysis of quartz grains from modern fluvial deposits in China. It provides new ideas and evidence for studies of the sedimentary process and environmental significance, although the deep meanings of these micro textures remain to be further researched.
NASA Astrophysics Data System (ADS)
Jezek, L.; Law, R. D.; Jessup, M. J.; Searle, M. P.; Kronenberg, A. K.
2017-12-01
OH absorption bands due to water in deformed quartz and feldspar grains of mylonites from the low-angle Lhotse Detachment (of the South Tibetan Detachment System, Rongbuk Valley north of Mount Everest) have been measured by Fourier Transform Infrared (FTIR) Spectroscopy. Previous microstructural studies have shown that these rocks deformed by dislocation creep at high temperature conditions in the middle crust (lower - middle amphibolite facies), and oxygen isotope studies suggest significant influx of meteoric water. OH absorption bands at 3400 cm-1 of quartz mylonites from the footwall of the Lhotse Detachment Fault are large, with the character of the molecular water band due to fluid inclusions in milky quartz. Mean water contents depend on structural position relative to the core of the Lhotse Detachment, from 1000 ppm (OH/106 Si) at 420 m below the fault to 11,350 (+/-1095) ppm near its center. The gradient in OH content shown by quartz grains implies influx of meteoric water along the Lhotse Detachment from the Tibetan Plateau ground surface to middle crustal depths, and significant fluid penetration into the extruding Himalayan slab by intergranular, permeable fluid flow processes. Feldspars of individual samples have comparable water contents to those of quartz and some are wetter. Large water contents of quartz and feldspar may have contributed to continued deformation and strain localization on the South Tibetan Detachment System. Dislocation creep in quartz is facilitated by water in laboratory experiments, and the water contents of the Lhotse fault rocks are similar to (and even larger than) water contents of quartz experimentally deformed during water weakening. Water contents of feldspars are comparable to those of plagioclase aggregates deformed experimentally by dislocation and diffusion creep under wet conditions.
Worden, Richard H.; Morad, Sadoon; Spötl, C.; Houseknecht, D.W.; Riciputi, L.R.
2000-01-01
The Spiro Sandstone, a natural gas play in the central Arkoma Basin and the frontal Ouachita Mountains preserves excellent porosity in chloritic channel-fill sandstones despite thermal maturity levels corresponding to incipient metamorphism. Some wells, however, show variable proportions of a late-stage, non-syntaxial quartz cement, which post-dated thermal cracking of liquid hydrocarbons to pyrobitumen plus methane. Temperatures well in excess of 150°C and possibly exceeding 200°C are also suggested by (i) fluid inclusions in associated minerals; (ii) the fact that quartz post-dated high-temperature chlorite polytype IIb; (iii) vitrinite reflectance values of the Spiro that range laterally from 1.9 to ≥ 4%; and (iii) the occurrence of late dickite in these rocks. Oxygen isotope values of quartz cement range from 17.5 to 22.4‰ VSMOW (total range of individual in situ ion microprobe measurements) which are similar to those of quartz cement formed along high-amplitude stylolites (18.4–24.9‰). We favour a model whereby quartz precipitation was controlled primarily by the availability of silica via deep-burial stylolitization within the Spiro Sandstone. Burial-history modelling showed that the basin went from a geopressured to a normally pressured regime within about 10–15 Myr after it reached maximum burial depth. While geopressure and the presence of chlorite coats stabilized the grain framework and inhibited nucleation of secondary quartz, respectively, stylolites formed during the subsequent high-temperature, normal-pressured regime and gave rise to high-temperature quartz precipitation. Authigenic quartz growing along stylolites underscores their role as a significant deep-burial silica source in this sandstone.
Chisholm, Jim
2005-06-01
A further comparison of the Health and Safety Executive (HSE) standard quartz, A9950 (Sikron F600), and the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1878, standard respirable alpha-quartz, has been carried out for the four principal diffraction peaks. In the earlier comparison by Jeyaratnam and Nagar (1993, Ann Occup Hyg; 37: 167-79), the standards were both treated in ways which might change the particle size distribution and therefore the proportion of crystalline quartz. The two standards have now been compared in the most direct way possible with the minimum of sample treatment. There are no significant differences in the diffraction peak positions for the two standards. Nor do the peak area intensities differ significantly. The peak height intensities are consistently and significantly higher for Sikron F600 than for NIST SRM 1878. The particle size broadening of the diffraction peaks is evidently greater for NIST 1878, whose mass median diameter is quoted as 1.6 microm against 2.6 microm for Sikron F600. Taking the certified reference value for SRM 1878 as 95.5 +/- 1.1% crystalline quartz, the HSE standard A9950 (Sikron F600) contains 96.3 +/- 1.4% crystalline quartz based on a comparison of peak area intensities. On the same basis but using peak height intensities, the nominal crystalline quartz content of A9950 (Sikron F600) is 101.2 +/- 1.8%. Results obtained by comparison of quartz standards may not be generally applicable because of the effect of sample treatment on particle size and crystalline quartz content.
Evaluating the influence of stress on the dislocation creep flow law for quartz
NASA Astrophysics Data System (ADS)
Tokle, L.; Hirth, G.
2017-12-01
Due to the abundance of quartz in the continental crust, quartz rheology is fundamental to our understanding of many geodynamic processes. Microstructures in many naturally deformed quartzites deformed at ductile conditions, indicate that dislocation creep is a common deformation mechanism in quartz at crustal conditions. The dislocation creep flow laws for quartz were constructed based on deformation experiments on aggregates at temperatures from 900 to 1100°C and strain rates of 10-5-10-6 s-1. Hirth et al. (2001) point out that these flow laws underestimate sample strengths for experiments conducted below 900°C; yet samples deformed as low as 700°C exhibit dislocation creep microstructures. To address this discrepancy, we compared 14 different studies on experimentally deformed wet quartzite aggregates ranging in temperature from 700 to 1100°C. Our analysis shows that two clear trends develop, one with a power-law stress exponent of n = 4 and the other, at a higher stress, with a stress exponent of n = 3. This change suggests a transition in the rate-limiting process; further, the conditions where the transition in stress exponent occurs correlate well with changes in quartz c-axis fabrics in general shear experiments. At low stresses, quartz fabrics are defined by a Y-max, indicating prism slip, while at higher stresses quartz fabrics are defined by basal slip. Our interpretation is that the c-axis fabrics represent the easy slip system in quartz and hypothesize that basal slip is rate-limiting at low stresses while prism is rate-limiting at high stresses. A change in the stress exponent has significant consequences for our understanding of high stress tectonic environments, such as the brittle-ductile transition and sediment rheology in a subducting slab.
Role of Substrate on Quartz Cementation in Quartz Aggregates
NASA Astrophysics Data System (ADS)
Farver, J. R.; Winslow, D.; Onasch, C.
2010-12-01
Quartz cementation in quartz aggregates has been experimentally investigated. The starting material was disaggregated detrital quartz grains from the well-sorted, mature St. Peter Sandstone. The ‘as-is’ grains have patches of iron oxide coatings and some have euhedral overgrowths that contain iron oxide dust rims. In addition a set of experiments was run using grains that were cleaned by soaking in sodium hydrosulfite and sodium bisulfate solutions to remove exposed iron oxide coatings. Experimental charges consisted of amorphous silica powder (≈30 mg) to provide a source of silica for the quartz cement, AlCl3 powder (≈3 mg) to provide a tracer for Cathodoluminescence (CL) identification of cement formed during the experiment, 25 wt% NaCl brine solution (≈25 mg) to increase the silica solubility and to better mimic oil field brines, and the natural quartz grains (100-130 mg). The charges were weld-sealed in Au capsules and run in cold-seal pressure vessels at 250°C to 450°C at 150 MPa confining pressure for up to 8 weeks. After the experiments, the samples were vacuum impregnated with a low viscosity epoxy containing a blue dye. After curing, the sample charge was sawn in half along its long axis and one half was polished (to 1 micron diamond paste) for analysis. The nature and amount of quartz cement in the samples were determined by a combination of CL, light microscopy, and scanning electron microscopy. Photomosaics of the samples were created and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement formed during the experiment was easily recognized from the quartz grains (and previous overgrowths) by the difference in luminescence. The results indicate the amorphous silica powder provides a ready source for silica for quartz cementation due to its greater solubility than the quartz. The cementation rates are rapid (>14% cement formed in 2 weeks at 450°C and >7% in 8 weeks at 250°C). Compared to experiments using crushed fragments of synthetic quartz (Pepple, 2007), the amount of cement in these natural samples was greater. Cementation followed a common pattern in all samples. Microfractures, which formed during pressurization of the charges, healed very rapidly followed by overgrowths on the quartz grains. Cementation began closest to the amorphous silica, then progressed away. There was no measurable difference in the amount of quartz cement formed in samples of the as-is and cleaned St. Peter Sandstone indicating that iron played no role in the rate of cementation. Although the amount of cement formed increased with increasing temperature and duration of the experiments, the rate of cementation decreased dramatically in longer duration (8 weeks) experiments suggesting a change in the precipitation mechanism/rate. This apparent change in precipitation rate may reflect a decrease in available surfaces for nucleation and/or a decrease in growth rate as euhedral faces develop as proposed by Lander et al (2008).
Abu Bakar, Norhayati; Mat Salleh, Muhamad; Ali Umar, Akrajas; Shapter, Joseph George
2017-01-01
Silver nanoparticles deposited on quartz substrates are widely used as SERS substrates. The nanoparticles can be deposited directly from colloidal solution by dipping technique. However, the adhesion of the particles on the quartz surface is very poor. Normally the substrate is pre-treated with hydroxylation or silanisation process. In this paper, we have demonstrated that the application of the sequence pre-treatment hydroxylation and silanisation have improved the density of silver nanoplates desposited on the quartz surface. •Sequence hydroxylation and silanisation pre-treatment assists the deposition of the nanoplate on the surface.•Various immersion times of the quartz surface into the colloidal nanoplates determined size distributions and density surface of the nanoplates on the surface.
Performance and Results for Quartz Detector for the SuperHMS Spectrometer at Hall C Jefferson Lab
NASA Astrophysics Data System (ADS)
Griego, Benjamin F., Jr.
A quartz detector has been constructed to be part of the trigger system for the Super High Momentum Spectrometer (SHMS). The SHMS will play a pivotal role in carrying out the 12 -- GeV physics program at Hal -- C Jefferson Lab. The quartz hodoscope consists of twenty one fused silica bars. Each bar is 125 cm long, 5.5 cm wide, 2.5 cm thick, and is viewed by a UV -- sensitive PMT on each end. The quartz hodoscope's task is to provide a clean detection of charged particles, a high level of background suppression, and an accurate tracking efficiency determination. Initial test results of the quartz detectors which include light yield and position resolution will be presented.
Second-harmonic phonon spectroscopy of α -quartz
NASA Astrophysics Data System (ADS)
Winta, Christopher J.; Gewinner, Sandy; Schöllkopf, Wieland; Wolf, Martin; Paarmann, Alexander
2018-03-01
We demonstrate midinfrared second-harmonic generation as a highly sensitive phonon spectroscopy technique that we exemplify using α -quartz (SiO2) as a model system. A midinfrared free-electron laser provides direct access to optical phonon resonances ranging from 350 to 1400 cm-1 . While the extremely wide tunability and high peak fields of a free-electron laser promote nonlinear spectroscopic studies—complemented by simultaneous linear reflectivity measurements—azimuthal scans reveal crystallographic symmetry information of the sample. Additionally, temperature-dependent measurements show how damping rates increase, phonon modes shift spectrally and in certain cases disappear completely when approaching Tc=846 K where quartz undergoes a structural phase transition from trigonal α -quartz to hexagonal β -quartz, demonstrating the technique's potential for studies of phase transitions.
NASA Astrophysics Data System (ADS)
Omer, Muhamed F.; Friis, Henrik
2014-03-01
The Ordovician deltaic to shallow marine Khabour Formation in Northern Iraq consists mainly of sandstone with minor siltstone and interbedded shale. The sandstones are pervasively cemented by quartz that resulted in very little preserved primary porosity. Cathodoluminescence and petrographic studies showed that the silica cementation occurred in five successive phases which can be distinguished by their luminescence pattern. The precipitations of two phases have predated the major compaction process while the other phases are younger. The successive phases represent a sequence of changes in silica supply which were classified as very early and early, derived from dissolved biogenic silica that precipitated as opal/microquartz, possibly pre-compactional and of non-luminescent quartz overgrowth type. This was followed by phases whose silica supply derived from pressure solution of quartz, dissolution of feldspar, and hydrothermal fluids related to major thrust fault event. These successive quartz cement phases showed an increase in luminescence and the development of complicated zonation pattern in late-stage quartz cementation.
NASA Astrophysics Data System (ADS)
Kato, Fumihito; Noguchi, Hiroyuki; Kodaka, Yukinari; Oshida, Naoya; Ogi, Hirotsugu
2018-07-01
We developed a quartz-crystal-microbalance (QCM) biosensor chip that operates wirelessly via electromagnetic waves, using poly(dimethylsiloxane) (PDMS). An AT-cut quartz oscillator (22–30 µm) is packaged in a microchannel, where it is supported by micropillars without mechanical fixing. As a result, the quartz oscillator is little affected by the thermal stress caused by the difference in the thermal expansion coefficients of the components, and the leakage of the vibration energy of the quartz oscillator is reduced. Consequently, high-frequency (∼56 MHz) measurement with a stable baseline (±∼2 ppm) is realized. We succeeded in repeatedly monitoring the binding reaction between immunoglobulin G (IgG) and Staphylococcus aureus protein A (SPA) with the quartz oscillator on which SPA molecules were immobilized nonspecifically. In addition, the affinity between SPA and IgG was calculated from the association and dissociation curves, and the usefulness of our wireless PDMS QCM biosensor was demonstrated.
Conduit for high temperature transfer of molten semiconductor crystalline material
NASA Technical Reports Server (NTRS)
Fiegl, George (Inventor); Torbet, Walter (Inventor)
1983-01-01
A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.
Petrogenesis of low-δ18O quartz porphyry dykes, Koegel Fontein complex, South Africa
NASA Astrophysics Data System (ADS)
Harris, Chris; Mulder, Kwenidyn; Sarkar, Saheli; Whitehead, Benjamin; Roopnarain, Sherissa
2018-04-01
This paper investigates the origin of low-δ18O quartz porphyry dykes associated with the 144-133 Ma Koegel Fontein Igneous Complex, which was intruded during the initial phase of breakup of Africa and South America. The 25-km diameter Rietpoort Granite is the largest and youngest phase of activity, and is roofed by a 10-km diameter pendant of gneiss. Quartz porphyry (QP) dykes, up to 15 m in width, strike NW-SE across the complex. The QP dykes that intruded outside the granite have similar quartz phenocryst δ18O values (average 8.0‰, ± 0.7, n = 33) to the granite (average 8.3 ± 1.0, n = 7). The QP dykes that intruded the roof pendant have quartz phenocrysts with more variable δ18O values (average 1.6‰, ± 2.1, n = 55). In some cases quartz phenocrysts have δ18O values as low as - 2.5‰. The variation in δ18O value within the quartz crystal population of individual dykes is small relative to the overall range, and core and rim material from individual quartz phenocrysts in three samples are identical within error. There is no evidence that quartz phenocryst δ18O values have been affected by fluid-rock interaction. Based on a Δquartz-magma value of 0.6‰, magma δ18O values must have been as low as - 3.1‰. Samples collected along the length of the two main QP dykes that traverse the roof pendant have quartz phenocryst δ18O values that range from + 1.1 to + 4.6‰, and - 2.3 to + 5.6‰, respectively. These δ18O values correlate negatively ( r = - 0.96) with initial 87Sr/86Sr, which can be explained by the event that lowered δ18O values of the source being older than the dykes. We suggest that the QP dykes were fed by magma produced by partial melting of gneiss, which had been variably altered at high temperature by 18O-depleted meteoric water during global glaciation at 550 Ma. The early melts had variable δ18O value but as melt pockets interconnected during melting, the δ18O values approached that of average gneiss. Variable quartz phenocryst δ18O values in the same dyke can be explained by vertical emplacement, at variable rates of ascent along the dyke. The lateral variation in quartz, and hence magma δ18O value at a particular point along a single dyke would depend on the rate of ascent of magma at that point along the dyke, and the `age' of the particular magma batch.
NASA Astrophysics Data System (ADS)
Audétat, A.; Pettke, T.; Dolejš, D.
2004-02-01
A quartz-monzodioritic dike associated with the porphyry-Cu mineralized stock at Santa Rita, NM, has been studied to constrain physico-chemical factors ( P, T, fO 2, and volatile content) responsible for mineralization. The dike contains a low-variance mineral assemblage of amphibole, plagioclase (An 30-50), quartz, biotite, sphene, magnetite, and apatite, plus anhydrite and calcite preserved as primary inclusions within the major phenocryst phases. Petrographic relationships demonstrate that anhydrite originally was abundant in the form of phenocrysts (1-2 vol.%), but later was replaced by either quartz or calcite. Hornblende-plagioclase thermobarometry suggests that several magmas were involved in the formation of the quartz-monzodiorite, with one magma having ascended directly from ≥14 km depth. Rapid magma ascent is supported by the presence of intact calcite inclusions within quartz phenocrysts. The assemblage quartz+sphene+magnetite+Mg-rich amphibole in the quartz-monzodiorite constrains magmatic oxygen fugacity at log fO 2>NNO+1, in agreement with the presence of magmatic anhydrite and a lack of magmatic sulfides. The same reasoning generally applies for rocks hosting porphyry-Cu deposits, seemingly speaking against a major role of magmatic sulfides in the formation of such mineralizations. There is increasing evidence, however, that magmatic sulfides play an important role in earlier stages of porphyry-Cu evolution, the record of which is often obliterated by later processes.
NASA Astrophysics Data System (ADS)
Wohlgemuth, Christoph; Hellmann, André; Meyer, Franz Michael
2013-04-01
The Siegerland District is located in the fold-and-thrust-belt of the Rhenish Massif and hosts various syn- late orogenic vein-hosted hydrothermal mineralization types. Peak-metamorphism and deformation occurred at 312-316 ± 10 Ma (Ahrendt et al., 1978) at pT-conditions of 280 - 320 °C and 0.7 - 1.4 kbar (Hein, 1993). The district is known for synorogenic siderite-quartz mineralization formed during peak-metamorphic conditions. At least 4 syn-late orogenic mineralization types are distinguished: Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au and hematite-digenite-bornite mineralization (Hellmann et al., 2012b). Co-Ni-Cu-Au mineralization of the Siegerland District belongs to the recently defined class of metasediment hosted synorogenic Co-Cu-Au deposits (i.e. Slack et al, 2010). Ore minerals are Fe-Co-Ni sulpharsenides, bearing invisible gold, chalcopyrite, and minor As-bearing pyrite. The gangue is quartz. The alteration mineralogy comprises chlorite, illite-muscovite and quartz. The epigenetic quartz veins are closely related to the formation of reverse faults (Hellmann et al., 2011a). Microthermometric studies of fluid inclusions concerning the relationship between mineralization and microstructures have not been done so far for this deposit-class and this will be addressed here. Fluid inclusions are investigated in hydrothermally formed vein-quartz, selected from Co-Ni-Cu-Au mineralization bearing veins showing only minor overprints by later mineralization types. Two quartz generations are distinguished: subhedral quartz-I showing growth zonation and fine grained, recrystallized- and newly formed quartz-II grains forming irregular masses and fracture fillings in quartz-I. Co-Ni-Fe sulpharsenides and chalcopyrite are closely intergrown with quartz-II, implying their contemperaneous formation. However, fluid inclusions in quartz-II are often small, therefore fluid inclusions in quartz-I have been mostly investigated. In total, 180 inclusions from 4 different deposits have been studied. The fluid inclusions are located on healed intragranular trails in quartz-I grains and subordinate in quartz-II. The inclusions are 5-20 μm in size and are aqueous biphase (L+V) showing a constant L/V ratio of 4. Homogenization is always to the liquid with Th (L) = 170-250°C (202°C mean). The salinity is moderate, with a range in Tm between -8 to -3°C, corresponding to 5 - 10 mass-% NaCl eq. (8.2 mass-% mean). There is no difference between fluid inclusions investigated in quartz-I and quartz-II. Despite the common occurrence of siderite in synorogenic siderite-quartz-veins, carbonate is absent in the alteration assemblage, implying a low CO2-activity in the fluids. Isochore calculations, combined with the paleo-geothermal gradient deduced for peak metamorphic conditions (Oncken, 1991) shows that the trapping temperature of the fluid is likely in the range between 220-300°C. The study shows that Co-Ni-Cu-Au mineralization has formed at the district scale from a relative homogeneous, aqueous fluid of moderate salinity, which may have been derived from the devolatilization of the sedimentary pile in deeper crustal regions. Ahrendt, H., Hunziker, J.C. and Weber, K. (1978). Z.dt.geol.Ges.129, 229-247. Hein, U.F. (1993). Min. Mag. 57, 451-476. Hellmann, A., Wagner, T., Meyer, F.M. (2012b). Tagungsband Geologica Belgica 2012. Hellmann, A., Meyer F.M., Cormann, A., Peters, M. (2011a). Referate-Band MinPet 2011, 40. Oncken, O (1991). Annales de la Société géologique de Belgique 2, 139-159. Slack, J.F., et al. (2010). USGS Open File Report 2010-2012, 13 pp.
75 FR 12468 - Airworthiness Directives; Quartz Mountain Aerospace, Inc. Model 11E Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-16
... Aerospace, Inc. Model 11E Airplanes AGENCY: Federal Aviation Administration (FAA), Department of... airworthiness directive (AD) for all Quartz Mountain Aerospace, Inc. Model 11E airplanes. This proposed AD would... 5 p.m., Monday through Friday, except Federal holidays. Quartz Mountain Aerospace, Inc. is in...
Henderson, R.P.
1957-09-17
An instrument carried unobtrusively about the person such as in a finger ring to indicate when that person has been exposed to an unusual radiation hazard is described. A metallized quartz fiber is electrically charged to indicate a full scale reading on an etched glass background. The quartz fiber and the scale may be viewed through a magnifying lens for ease of reading. Incident radiation will ionize gaseous particles in the sealed structure thereby allowing the charge to leak off the quartz fiber with its resulting movement across the scale proportionally indicating the radiation exposure.
TT-Cut Torsional Quartz Crystal Resonators of Free-Free Bar-Type
NASA Astrophysics Data System (ADS)
Kawashima, Hirofumi; Nakazato, Mitsuhiro
1994-05-01
This paper describes a TT-cut torsional quartz crystal resonator of free-free bar type. An object of this paper is to clarify the frequency temperature behavior, series resistance and a quality factor for TT-cut torsional quartz crystal resonators of free-free bar-type. The analysis results are then compared with the measured data. The principal results indicate that the calculated values of frequency temperature behavior for resonators of free-free bar-type agree comparatively well with the measured ones. Similar to the torsional resonators of tuning fork-type, a torsional quartz crystal resonator of free-free bar-type is also found to have an absolute value of the second order temperature coefficient β smaller than half a value of that for a flexural mode quartz crystal resonator.
Quartz Knapping Strategies in the Howiesons Poort at Sibudu (KwaZulu-Natal, South Africa)
de la Peña, Paloma; Wadley, Lyn
2014-01-01
The variability associated with Sibudu's Howiesons Poort Industry highlights the unpredictable trajectory of technology in the Middle Stone Age. We reach this conclusion through a study of the technology on quartz from one of the Howiesons Poort layers (Grey Sand) from Sibudu rock shelter. Quartz bifacial technology has previously been described at the site, but this new in-depth study of the quartz technology reveals other strategies. First is the recurring employment of bipolar knapping, formerly considered as a defining feature of the Later Stone Age. Secondly, we highlight a laminar technology with emphasis on small quartz bladelets. Bipolar cores are most common, followed by prismatic cores. The knapping strategies in Grey Sand seem to involve systematic recycling and the deliberate production of microliths. PMID:25014352
Nomura, Kouji; Nakaji-Hirabayashi, Tadashi; Gemmei-Ide, Makoto; Kitano, Hiromi; Noguchi, Hidenori; Uosaki, Kohei
2014-09-01
Surfaces of both a cover glass and the flat plane of a semi-cylindrical quartz prism were modified with a mixture of positively and negatively charged silane coupling reagents (3-aminopropyltriethoxysilane (APTES) and 3-(trihydroxysilyl)propylmethylphosphonate (THPMP), respectively). The glass surface modified with a self-assembled monolayer (SAM) prepared at a mixing ratio of APTES:THPMP=4:6 was electrically almost neutral and was resistant to non-specific adsorption of proteins, whereas fibroblasts gradually adhered to an amphoteric (mixed) SAM surface probably due to its stiffness, though the number of adhered cells was relatively small. Sum frequency generation (SFG) spectra indicated that total intensity of the OH stretching region (3000-3600cm(-1)) for the amphoteric SAM-modified quartz immersed in liquid water was smaller than those for the positively and negatively charged SAM-modified quartz prisms and a bare quartz prism in contact with liquid water. These results suggested that water molecules at the interface of water and an amphoteric SAM-modified quartz prism are not strongly oriented in comparison with those at the interface of a lopsidedly charged SAM-modified quartz prism and bare quartz. The importance of charge neutralization for the anti-biofouling properties of solid materials was strongly suggested. Copyright © 2014 Elsevier B.V. All rights reserved.
Developing quartz wafer mold manufacturing process for patterned media
NASA Astrophysics Data System (ADS)
Chiba, Tsuyoshi; Fukuda, Masaharu; Ishikawa, Mikio; Itoh, Kimio; Kurihara, Masaaki; Hoga, Morihisa
2009-04-01
Recently, patterned media have gained attention as a possible candidate for use in the next generation of hard disk drives (HDD). Feature sizes on media are predicted to be 20-25 nm half pitch (hp) for discrete-track media in 2010. One method of fabricating such a fine pattern is by using a nanoimprint. The imprint mold for the patterned media is created from a 150-millimeter, rounded, quartz wafer. The purpose of the process introduced here was to construct a quartz wafer mold and to fabricate line and space (LS) patterns at 24 nmhp for DTM. Additionally, we attempted to achieve a dense hole (HOLE) pattern at 12.5 nmhp for BPM for use in 2012. The manufacturing process of molds for patterned media is almost the same as that for semiconductors, with the exception of the dry-etching process. A 150-millimeter quartz wafer was etched on a special tray made from carving a 6025 substrate, by using the photo-mask tool. We also optimized the quartz etching conditions. As a result, 24 nmhp LS and HOLE patterns were manufactured on the quartz wafer. In conclusion, the quartz wafer mold manufacturing process was established. It is suggested that the etching condition should be further optimized to achieve a higher resolution of HOLE patterns.
Quantum Monte Carlo Simulations of the Quartz to Stishovite Transition in SiO2
NASA Astrophysics Data System (ADS)
Cohen, R. E.; Towler, Mike; Lopez Rios, Pablo; Drummond, Neil; Needs, Richard
2007-03-01
The quartz-stishovite transition has been a long standing problem for density functional theory (DFT). Although conventional DFT computations within the local density approximation (LDA) give reasonably good properties of silica phases individually, they do not give the energy difference between quartz and stishovite accurately. The LDA gives stishovite as a lower energy structure than quartz at zero pressure, which is incorrect. The generalized gradient approximation (GGA) has been shown to give the correct energy difference between quartz and stishovite (about 0.5 eV/formula unit) (Hamann, PRL 76, 660, 1996; Zupan et al., PRB 58, 11266, 1998), and it was generally thought that the GGA was simply a better approximation than the LDA. However, closer inspection shows that other properties are not better for the GGA than the LDA, so there is room for improvement. A new density functional that is an improvement for most materials unfortunately does not improve the quartz-stishovite transition (Wu and Cohen, PRB 73, 235116, 2006). We are performing QMC computations using the CASINO code to obtain the accurate energy difference between quartz and stishovite to obtain more accurate high pressure properties, and to better understand the errors on DFT and how DFT can be improved.
NASA Astrophysics Data System (ADS)
Hulsbosch, Niels; Van Daele, Johanna; Reinders, Nathan; Dewaele, Stijn; Jacques, Dominique; Muchez, Philippe
2017-10-01
The Nb-Ta-Sn pegmatites and Sn quartz veins of the Rwamagana-Musha-Ntunga area in eastern Rwanda are part of the Mesoproterozoic Karagwe-Ankole Belt. These commodities are on a regional scale spatiotemporally associated to the early Neoproterozoic fertile G4-granite generation. Although a transition from the lithium-cesium-tantalum pegmatites to cassiterite-microcline-quartz veins has been observed in the Rwamagana-Musha-Ntunga area, the structural control and the paragenetic relationship between the mineralized pegmatites and the Sn bearing quartz veins is largely unknown. Consequently, this study investigates the occurrence of pegmatites and quartz veins and the structural and lithological controls on their emplacement. The metasediments in the area are affected by a regional compressional regime with a shortening direction oriented N70E, which resulted in a N20W-oriented fold sequence. The Lake Muhazi granite is present in center of the Karehe anticline. The structural orientations of pegmatites and quartz veins show that two important factors control their emplacement. The first control is the reactivation of pre-existing discontinuities such as the bedding, bedding-parallel joints or strike-slip fault planes. In view of the regional structural grain in the Rwamagana-Musha-Ntunga area, this corresponds with abundant N20W-oriented pegmatites and quartz veins. The reactivation is strongly related to the lithology of the host rocks. The Musha Formation, which mainly consists of decimeter- to meter-scale lithological alternations of metapelite, metasiltstone and metasandstone, represents the most suitable environment for bedding reactivation. This is reflected in the predominance of bedding-parallel pegmatites and quartz veins hosted by the Musha Formation. Strike-parallel joints were mainly observed in the competent lithologies. The second controlling factor is related to the regional post-compressional stress regime. New joints initiated upon emplacement of the pegmatites and quartz veins. The orientations of these joints are influenced by the regional stress regime and resulted in steep EW-oriented pegmatites and quartz veins in the Rwamagana-Musha-Ntunga area. The pegmatites and quartz veins are interpreted as being initiated upon emplacement under influence of the prevailing regional stress regime. This post-compressional stress regime is characterized by a subvertical maximum compressive stress.
Synthesis and deformation of a Ti doped quartz aggregate
NASA Astrophysics Data System (ADS)
Nachlas, William O.; Hirth, Greg; Teyssier, Christian; Whitney, Donna L.; Zimmerman, Mark
2013-04-01
A primary advantage of studying mylonites for thermobarometric reconstructions of tectonic events is that it enables direct comparison of P-T estimates with the mechanics of quartz deformation. Quartz is a common phase in crustal mylonites and is a particularly sensitive recorder of metamorphic and rheologic conditions in shear zones, owing to its responsiveness to dynamic recrystallization, involvement in metamorphic reaction, and propensity for dissolution and precipitation. The signature of its trace element chemistry, particularly Ti, can reflect involvement from each of these processes. The concentration of Ti in mylonites is typically heterogeneous at the thin section scale, providing a rich record of the different factors that influence the incorporation of Ti in quartz. Observations of quartz in deformed mylonite and undeformed protolith from an extensional shear zone in the North American Cordillera (Shuswap Complex, Canada) show that an originally uniform Ti distribution was modified during deformation to form zoned crystals in which the core preserves a higher Ti concentration than the rim. The zoned Ti concentration likely records a continuum of deformation conditions during extension-related exhumation, and this presents a challenge in resolving the effect of deformation on the equilibrium solubility of Ti in quartz in natural settings. By conducting deformation experiments on synthetic quartz aggregates with known Ti concentration at a constant, elevated temperature and pressure under high strain conditions, we investigate the influence of progressive dynamic recrystallization on Ti solubility in quartz. This study applies a novel doping technique that enables the synthesis of a large population of quartz crystals with a precisely controlled Ti concentration and distribution. This produces a sample that most closely replicates the protolith of extensional shear zones that typically develop under retrograde conditions. This strategy can be used to generate the equilibrium concentration predicted by previous solubility calibrations for selected P-T conditions. Experiments were performed using a shear assembly to deform quartz samples to high shear strain in dislocation creep at constant temperature, pressure, and strain rate for 24, 48, and 72 h with and without the addition of 0.1 wt% H2O. Experiments were also run under hydrostatic conditions for equivalent lengths of time for comparison with deformed samples. Experimental specimens were prepared as a two layer sample with a doped half and an undoped half to study Ti mobility during deformation. Experimental samples are analyzed with EMPA and SIMS to determine the Ti concentration of quartz in the sample, SEM-CL to observe the distribution of Ti in quartz grains, and SEM-EBSD to evaluate crystallographic fabrics and grain size. Results suggest that the duration of dynamic recrystallization influences the final Ti concentration, implying the importance of kinetics and diffusion even at the elevated temperatures of the experiments. Water content affects Ti concentration, potentially owing to the importance of point defect concentration on the solubility of Ti in quartz. Furthermore, recrystallized grain size shows a dependence on Ti concentration, as samples doped at supersaturated levels recrystallize with finer grain sizes relative to undoped samples. This suggests that exceeding the equilibrium solubility of Ti in quartz may pin grain boundary migration. The ultimate expression of Ti supersaturation in quartz is strain-induced rutilation and the progressive rotation and boudinage of exsolved rutile needles.
NASA Astrophysics Data System (ADS)
Jeřábek, Petr; Bukovská, Zita
2015-04-01
The South Armorican Shear Zone in France represents a major right-lateral strike slip shear zone formed in the late stages of Variscan orogeny. The active deformation in this shear zone is associated with the development of S-C fabrics in granitoids where thin shear bands (C) overprint an earlier higher grade metamorphic foliation (S). In the studied samples covering low to high intensity of shear band overprint, we identified three stages of shear band evolution associated with distinct microstructures and deformation mechanisms. The initiation of shear bands stage I is associated with the formation of microcracks crosscutting the S fabric and detected namely in the recrystallized quartz aggregates. The microcracks of suitable orientation are filled by microcline, albite, muscovite and chlorite which is a typical assemblage also for the well developed shear bands. Phase equilibrium modeling in PERPLEX indicates that this assemblage formed at pressure-temperature range of 0.1-0.4 GPa and 300-340 °C. Stage II of shear band evolution is characterized by dynamic recrystallization and grain size reduction of quartz aggregates along the microcracks and replacement of quartz by microcline along grain boundaries. This process leads to disintegration of quartz aggregate fabric and phase mixing in the shear bands. The inferred deformation mechanism for this stage is solution-precipitation creep although recrystallization of quartz is still active at the contact between quartz aggregates and shear bands. The coarse grained microstructure of quartz aggregates with ca ~250 microns average grain size reduces to ~10 microns grain size when recrystallized along extremely thin shear bands/microcracks and to ~20 microns grain size when recrystallized along the thicker shear bands. By using the flow law of Patterson and Luan (1990) for dislocation creep in quartz and the quartz piezometer of Stipp and Tullis (2003) corrected after Holyoke and Kronenberg (2010), the quartz recrystallization along thin shear bands records strain rates of ~10^-14 whereas the recrystallization along thick shear bands records strain rates of ~10^-15. The contemporaneous operation of solution-precipitation creep in shear bands and dislocation creep in quartz along the shear band boundary suggests low viscosity contrast between the mixed phase shear band matrix and pure quartz aggregate implying that the solution-precipitation creep reflect similar stress and strain rate conditions as the dislocation creep in quartz. Stage III of shear band evolution is characterized by interconnection of dispersed muscovite grains and the deformation becomes accommodated by dislocation creep in thin muscovite bands separating the inactive domains of stage II microstructure. References: Holyoke III, C. W., & Kronenberg, A. K. (2010). Accurate differential stress measurement using the molten salt cell and solid salt assemblies in the Griggs apparatus with applications to strength, piezometers and rheology. Tectonophysics, 494(1-2), 17-31. Paterson, M. S., & Luan, F. C. (1990). Quartzite rheology under geological conditions. In R. J. Knipe & E. H. Rutter (Eds.), Deformation Mechanisms, Rheology and Tectonics (pp. 299-307). London: Geological Society Special Publications. Stipp, M., & Tullis, J. (2003). The recrystallized grain size piezometer for quartz. Geophysical Research Letters, 30(21), 1-5.
NASA Astrophysics Data System (ADS)
Dachs, E.; Benisek, Artur
1995-10-01
Reversals for the reaction 2 annite+3 quartz=2 sanidine+3 fayalite+2 H2O have been experimentally determined in cold-seal pressure vessels at pressures of 2, 3, 4 and 5 kbar, limiting annite +quartz stability towards higher temperatures. The equilibrium passes through the temperature intervals 500 540° C (2 kbar), 550 570° C (3 kbar), 570 590° C (4 kbar) and 590 610° C (5 kbar). Starting materials for most experiments were mixtures of synthetic annite +fayalite+sanidine+quartz and in some runs annite+quartz alone. Microprobe analyses of the reacted mixtures showed that the annites deviate slightly from their ideal Si/Al ratio (Si per formula unit ranges between 2.85 and 2.92, AlVI between 0.06 and 0.15). As determined by Mössbauer spectroscopy, the Fe3+ content of annite in the assemblage annite+fayalite +sanidine+quartz is around 5 7%. The experimental data were used to extract the thermodynamic standard state enthalpy and entropy of annite as follows: H 0 f, Ann =-5125.896±8.319 [kJ/mol] and S 0 Ann=432.62±8.89 [J/mol/K] (consistent with the Holland and Powell 1990 data set), and H 0 f,Ann =-5130.971±7.939 [kJ/mol] and S 0 Ann=424.02±8.39 [J/mol/K] (consistent with the TWEEQ data base, Berman 1991). The preceeding values are close to the standard state properties derived from hydrogen sensor data of the redox reaction annite=sanidine+magnetite+ H 2 (Dachs 1994). The experimental half-reversal of Eugster and Wones (1962) on the annite +quartz breakdown reaction could not be reproduced experimentally (formation of annite from sanidine+fayalite+quartz at 540° C/1.035 kbar/magnetite-iron buffer) and probable reasons for this discrepancy remain unclear. The extracted thermodynamic standard state properties of annite were used to calculate annite and annite+quartz stabilities for pressures between 2 and 5 kbar.
Soil chemistry in lithologically diverse datasets: the quartz dilution effect
Bern, Carleton R.
2009-01-01
National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.
Treated and untreated rock dust: Quartz content and physical characterization.
Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin
2016-11-01
Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.
Oxygen isotope exchange with quartz during pyrolysis of silver sulfate and silver nitrate.
Schauer, Andrew J; Kunasek, Shelley A; Sofen, Eric D; Erbland, Joseph; Savarino, Joel; Johnson, Ben W; Amos, Helen M; Shaheen, Robina; Abaunza, Mariana; Jackson, Terri L; Thiemens, Mark H; Alexander, Becky
2012-09-30
Triple oxygen isotopes of sulfate and nitrate are useful metrics for the chemistry of their formation. Existing measurement methods, however, do not account for oxygen atom exchange with quartz during the thermal decomposition of sulfate. We present evidence for oxygen atom exchange, a simple modification to prevent exchange, and a correction for previous measurements. Silver sulfates and silver nitrates with excess (17)O were thermally decomposed in quartz and gold (for sulfate) and quartz and silver (for nitrate) sample containers to O(2) and byproducts in a modified Temperature Conversion/Elemental Analyzer (TC/EA). Helium carries O(2) through purification for isotope-ratio analysis of the three isotopes of oxygen in a Finnigan MAT253 isotope ratio mass spectrometer. The Δ(17)O results show clear oxygen atom exchange from non-zero (17)O-excess reference materials to zero (17)O-excess quartz cup sample containers. Quartz sample containers lower the Δ(17)O values of designer sulfate reference materials and USGS35 nitrate by 15% relative to gold or silver sample containers for quantities of 2-10 µmol O(2). Previous Δ(17)O measurements of sulfate that rely on pyrolysis in a quartz cup have been affected by oxygen exchange. These previous results can be corrected using a simple linear equation (Δ(17)O(gold) = Δ(17)O(quartz) * 1.14 + 0.06). Future pyrolysis of silver sulfate should be conducted in gold capsules or corrected to data obtained from gold capsules to avoid obtaining oxygen isotope exchange-affected data. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Holm-Alwmark, S.; Ferrière, L.; Alwmark, C.; Poelchau, M. H.
2018-01-01
Planar deformation features (PDFs) in quartz are the most widely used indicator of shock metamorphism in terrestrial rocks. They can also be used for estimating average shock pressures that quartz-bearing rocks have been subjected to. Here we report on a number of observations and problems that we have encountered when performing universal stage measurements and crystallographically indexing of PDF orientations in quartz. These include a comparison between manual and automated methods of indexing PDFs, an evaluation of the new stereographic projection template, and observations regarding the PDF statistics related to the c-axis position and rhombohedral plane symmetry. We further discuss the implications that our findings have for shock barometry studies. Our study shows that the currently used stereographic projection template for indexing PDFs in quartz might induce an overestimation of rhombohedral planes with low Miller-Bravais indices. We suggest, based on a comparison of different shock barometry methods, that a unified method of assigning shock pressures to samples based on PDFs in quartz is necessary to allow comparison of data sets. This method needs to take into account not only the average number of PDF sets/grain but also the number of high Miller-Bravais index planes, both of which are important factors according to our study. Finally, we present a suggestion for such a method (which is valid for nonporous quartz-bearing rock types), which consists of assigning quartz grains into types (A-E) based on the PDF orientation pattern, and then calculation of a mean shock pressure for each sample.
The Quartz Analog Watch: A Wonder Machine.
ERIC Educational Resources Information Center
Crane, H. Richard, Ed.
1993-01-01
Summarizes how a quartz watch works. Discusses the quartz crystal, its form, and how its frequency is set to a standard; the integrated circuit chip that drives the crystal in vibration, scales its frequency down, and forms pulses that turn the motor; and the motor that drives the gear train that turns the hands. (ZWH)
Coesite in suevites from the Chesapeake Bay impact structure
Jackson, John C.; Horton, J. Wright; Chou, I-Ming; Belkin, Harvey E.
2016-01-01
The occurrence of coesite in suevites from the Chesapeake Bay impact structure is confirmed within a variety of textural domains in situ by Raman spectroscopy for the first time and in mechanically separated grains by X-ray diffraction. Microtextures of coesite identified in situ investigated under transmitted light and by scanning electron microscope reveal coesite as micrometer-sized grains (1–3 μm) within amorphous silica of impact-melt clasts and as submicrometer-sized grains and polycrystalline aggregates within shocked quartz grains. Coesite-bearing quartz grains are present both idiomorphically with original grain margins intact and as highly strained grains that underwent shock-produced plastic deformation. Coesite commonly occurs in plastically deformed quartz grains within domains that appear brown (toasted) in transmitted light and rarely within quartz of spheroidal texture. The coesite likely developed by a mechanism of solid-state transformation from precursor quartz. Raman spectroscopy also showed a series of unidentified peaks associated with shocked quartz grains that likely represent unidentified silica phases, possibly including a moganite-like phase that has not previously been associated with coesite.
A New Multiphase Equation of State for SiO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maerzke, Katie A.; Gammel, J. Tinka
SiO 2 is found as α-quartz at ambient conditions. Under shock compression, it transforms into a much higher density stishovite-like phase around 20 GPa, then into a liquid phase above 100 GPa. The SESAME library contains older equations of state for α-quartz, polycrystalline quartz, and fused quartz. These equations of state model the material as a single phase; i.e., there is no high pressure phase transition. Somewhat more recently (in 1992), Jon Boettger published equations of state for α-quartz, coesite, and stishovite, along with a phase transition model to mix them. However, we do not have a multiphase EOS thatmore » captures the phase transitions in this material. Others are working on a high-accuracy model for very high pressure SiO 2, since liquid quartz is used as an impedance matching standard above 100 GPa; however, we are focused on the 10-50 GPa range. This intermediate pressure range is most relevant for modeling the decomposition products of silicone polymers such as Sylgard 184 and SX358.« less
Starecki, Tomasz
2017-01-01
All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude. PMID:29099765
Starecki, Tomasz; Wieczorek, Piotr Z
2017-11-03
All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude.
Lin, Cheng; Zhu, Yong; Wei, Wei; Zhang, Jie; Tian, Li; Xu, Zu-Wen
2013-05-01
An all-optical quartz-enhanced photoacoustic spectroscopy system, based on the F-P demodulation, for trace gas detection in the open environment was proposed. In quartz-enhanced photoacoustic spectroscopy (QEPAS), an optical fiber Fabry-Perot method was used to replace the conventional electronic demodulation method. The photoacoustic signal was obtained by demodulating the variation of the Fabry-Perot cavity between the quartz tuning fork side and the fiber face. An experimental system was setup. The experiment for detection of water vapour in the open environment was carried on. A normalized noise equivalent absorption coefficient of 2.80 x 10(-7) cm(-1) x W x Hz(-1/2) was achieved. The result demonstrated that the sensitivity of the all-optical quartz-enhanced photoacoustic spectroscopy system is about 2.6 times higher than that of the conventional QEPAS system. The all-optical quartz-enhanced photoacoustic spectroscopy system is immune to electromagnetic interference, safe in flammable and explosive gas detection, suitable for high temperature and high humidity environments and realizable for long distance, multi-point and network sensing.
Dew point fast measurement in organic vapor mixtures using quartz resonant sensor
NASA Astrophysics Data System (ADS)
Nie, Jing; Liu, Jia; Meng, Xiaofeng
2017-01-01
A fast dew point sensor has been developed for organic vapor mixtures by using the quartz crystal with sensitive circuits. The sensor consists of the quartz crystal and a cooler device. Proactive approach is taken to produce condensation on the surface of the quartz crystal, and it will lead to a change in electrical features of the quartz crystal. The cessation of oscillation was measured because this phenomenon is caused by dew condensation. Such a phenomenon can be used to detect the dew point. This method exploits the high sensitivity of the quartz crystal but without frequency measurement and also retains the stability of the resonant circuit. It is strongly anti-interfered. Its performance was evaluated with acetone-methanol mixtures under different pressures. The results were compared with the dew points predicted from the universal quasi-chemical equation to evaluate the performance of the proposed sensor. Though the maximum deviations of the sensor are less than 1.1 °C, it still has a fast response time with a recovery time of less than 10 s, providing an excellent dehumidifying performance.
Dew point fast measurement in organic vapor mixtures using quartz resonant sensor.
Nie, Jing; Liu, Jia; Meng, Xiaofeng
2017-01-01
A fast dew point sensor has been developed for organic vapor mixtures by using the quartz crystal with sensitive circuits. The sensor consists of the quartz crystal and a cooler device. Proactive approach is taken to produce condensation on the surface of the quartz crystal, and it will lead to a change in electrical features of the quartz crystal. The cessation of oscillation was measured because this phenomenon is caused by dew condensation. Such a phenomenon can be used to detect the dew point. This method exploits the high sensitivity of the quartz crystal but without frequency measurement and also retains the stability of the resonant circuit. It is strongly anti-interfered. Its performance was evaluated with acetone-methanol mixtures under different pressures. The results were compared with the dew points predicted from the universal quasi-chemical equation to evaluate the performance of the proposed sensor. Though the maximum deviations of the sensor are less than 1.1 °C, it still has a fast response time with a recovery time of less than 10 s, providing an excellent dehumidifying performance.
NASA Astrophysics Data System (ADS)
Dauphin, J. P.
1983-09-01
Northeast Atlantic - Grain size analysis of the quartz silt fraction defines the spatial and temporal variability of windblown Saharan dust. Comparison of an eolian transport model for Saharan dust (Parkin, 1974) with the quartz grain size data shows general agreement between predicted and observed values. Central North Pacific - Quartz in deep-sea sediments of the North Pacific is derived from Asia by eolian transport in the westerlies. The average mean mass diameter of the silt-size quartz decreases from about 10um at 150 degrees E to 7um at 140 degrees W. Southeast Pacific - Quartz from South America is the dominant source to the southeast Pacific. A northern source is evident near the equator (RC10-65; 0 degrees 41 minutes N, 108 degrees 37 minutes W). This source was most prominent during interglacial stage 5, suggesting enhanced dust production in Central America. During glacial periods the impact of bottom transport increased at the site of core V19-29 (3 degrees 35 minutes S, 83 degrees 56 minutes W).
ESEEM of industrial quartz powders: insights into crystal chemistry of Al defects
NASA Astrophysics Data System (ADS)
Romanelli, Maurizio; Di Benedetto, Francesco; Bartali, Laura; Innocenti, Massimo; Fornaciai, Gabriele; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio
2012-06-01
A set of raw industrial materials, that is, pure quartz and quartz-rich mixtures, were investigated through electron paramagnetic resonance and electron spin echo-envelope modulation spectroscopies, with the aim of evaluating the effective role played by defect centres and of assessing whether they can be used to monitor changes in the physical properties of quartz powders with reference to their health effects. The obtained results point to two interactions of the Al defect centres with H+, hosted in sites within the channels parallel and perpendicular to the c axis of quartz, respectively. These two Al/H+ (hAl) centres exhibit a weak chemical bond, and their relative amounts appear to be modified/controlled by the thermo-mechanical processes underwent by powders. Indeed, a mechanically promoted inter-conversion between the two kinds of site is suggested. As a consequence, the hAl centres are effective in monitoring even modest activations of powders, through thermal or mechanical processes, and they are also supposed to play a specific, relevant role in quartz reactivity during the considered industrial processes.
Rb, Sr, Nd, and Sm concentrations in quartz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossman, G.R.; Weis, D.; Wasserburg, G.J.
1987-09-01
The concentrations of Rb, Sr, Nd and Sm in quartz crystals from Crystal Peak, Colorado; Steward Mine, California; Tomas Gonzaga, Minas Gerais, Brazil; and Coleman Mines, Arkansas, were determined by isotope dilution mass spectrometry. Concentrations ranged from: 1.17 to 177 ppb Rb; 3.26 to 1027 ppm Sr; 0.0159 to 0.48 ppm Sm; 0.127 to 2.81 ppb Nd. In the Brazilian crystal, concentrations of these elements were correlated with the amount of fluid inclusion water measured visually by turbidity and quantitatively with infrared adsorption spectroscopy. The highest Rb content was found for a crystal free of visible inclusions, indicating that smallmore » amounts of Rb can also occur in quartz itself. Rb and Sr contents are much lower in synthetic quartz grown commercially from the Arkansas quartz.« less
APPLICATIONS OF CATHODOLUMINESCENCE OF QUARTZ AND FELDSPAR TO SEDIMENTARY PETROLOGY.
Ruppert, Leslie F.
1987-01-01
Cathodoluminescence (CL), the emission of visible light during electron bombardment, was first used in sandstone petrology in the mid-1960's. CL techniques are especially useful for determining the origin and source of quartz and feldspar, two of the most common constituents in clastic rocks. CL properties of both minerals are dependent on their temperature of crystallization, duration of cooling, and/or history of deformation. Detrital quartz and feldspar are typically derived from igneous and metamorphic sources and luminesce in the visible range whereas authigenic quartz and feldspar form at low temperatures and do not luminesce. Quantification of luminescent and non-luminescent quartz and feldspar with the scanning electron microscope, electron microprobe, or a commercial CL device can allow for the determination of origin, diagenesis, and source of clastic rocks when used in conjunction with field and other petrographic analyses.
Asymmetric adsorption by quartz - A model for the prebiotic origin of optical activity
NASA Technical Reports Server (NTRS)
Bonner, W. M.; Kavasmaneck, P. R.; Martin, F. S.; Flores, J. J.
1975-01-01
One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D- and L-alanine on powdered d- and l-quartz, using change in radioactivity level as a criterion for both gross and differential adsorption, d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, and l-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.
Label-free, real-time interaction and adsorption analysis 2: quartz crystal microbalance.
Fee, Conan J
2013-01-01
In this chapter, a second biosensor technique is described: the quartz crystal microbalance (QCM). The quartz crystal microbalance is a physical technique that detects changes in the resonance frequency of an electrically driven quartz crystal with changes in mass. Unlike surface plasmon resonance (SPR), QCM is affected by both the water that may be associated with the adsorbed layer and by conformational changes in the adsorbed species, while SPR is insensitive to both effects. Thus QCM can both corroborate the findings of an SPR experiment and provide some complementary information. Also, the QCM surface is highly versatile and can range from plain quartz, through gold and other metal surfaces (e.g., titanium or stainless steel) to polymeric materials. Thus, the QCM technique has wide utility in tracking interactions with a variety of materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, C.M.; Valley, J.W.; Winter, B.L.
1996-12-01
The oxygen isotopic compositions of authigenic quartz cements in sandstones provide a monitor of the temperatures, compositions, and origins of pore-occluding fluids during diagenesis, but quartz overgrowths are too fine-grained to be amenable to conventional isotopic analysis. We have used a Cameca ims-4f ion microprobe to determine oxygen isotopic variations in authigenic and detrital quartz in four samples of the Ordovician St. Peter Sandstone from the Michigan Basin and Wisconsin Arch, midwestern USA. Ion microprobe isotopic analyses have been successfully accomplished with an internal precision of {+-}1{per_thousand} (1{sigma}) and a spatial resolution of 20-30 {mu}m at low mass resolution usingmore » a high voltage offset technique. Repeated analyses of the quartz standard demonstrate a reproducibility of close to {+-}1{per_thousand} (1 sd) in good agreement with that expected from counting statistics. Conventional and ion microprobe analyses are mutually consistent, supporting the accuracy of the ion microprobe analyses. Within-sample isotopic variations of up to 13{per_thousand} and micro-scale isotopic variations of at least 4{per_thousand} over a distance of 100 {mu}m have been measured within quartz overgrowths in a sandstone from the Wisconsin Arch. Overgrowths are uniformly higher in {delta}{sup 18}O than detrital grains, and gradients of up to 25% exist across a few microns. {sup 18}O-enriched quartz overgrowths in sandstones from the Wisconsin Arch show complex CL zonation and reflect one of two possible processes: (1) low-temperature quartz precipitation during mixing of meteoric waters with upwelling basinal fluids; (2) higher temperature quartz precipitation during episodic gravity-driven upwelling of warm basinal fluids (of comparable isotopic composition to Michigan Basin fluids) from the Illinois Basin, related to evolution of Mississippi Valley type Pb-Zn ore-forming fluids. 59 refs., 7 figs., 4 tabs.« less
Oxygen isotopic ratios in quartz as an indicator of provenance of dust
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, M L
1977-01-01
Quartz was isolated in the long range aerosol size range (fine silt, 1-10 ..mu..m in diameter) from atmospheric aerosols, wind-erosive soils, soil silts, shales, and Pacific pelagic sediments of the Northern and Southern Hemispheres, to trace their provenance or origin, as part of a study of dust mineral sequestering of /sup 137/Cs and other products of nuclear fission. The oxygen isotopic ratio (/sup 18/O//sup 16/O) was determined by mass spectrometry. The provenance has been established for this fine silt fraction which reflects the relative proportion of two classes of quartz source: (a) weathering of igneous and metamorphic rocks (high temperaturemore » origin and low /sup 18/O//sup 16/O ratio) and (b) of quartz crystallized in cherts and overgrowths (low temperature origin and high /sup 18/O//sup 16/O ratio). This quartz mixing ratio is a basic model or paradigm. Analyses of present day atmospheric aerosols and eolian-derived soils, Pacific pelagic sediments, and now-raised Phanerozoic marine sediments show that the Northern and Southern Hemispheres have separate large-scale reservoirs of the fine grain sizes that contribute to aerosol dusts. These can be identified by distinctive values of /sup 18/O//sup 16/O ratios of the quartz therein. The difference in quartz delta/sup 18/O value in parts per thousand per ml (/sup 0///sub 00/ of about 12 +- 2 /sup 0///sub 00/ in Southern Hemisphere mixed detrital sediments and about 19 +- 2 /sup 0///sub 00/ in those of the Northern Hemisphere (for constant size, the 1-10 ..mu..m size fraction) results from the presence of a considerably larger proportion of quartz having low-temperature origin and higher delta/sup 18/O values (chert, silica overgrowths, etc.) in the Northern Hemisphere reservoirs. The early paleoclimatic and paleogeochemical differences remain the control of the North-South Hemisphere difference in delta/sup 18/O values in long-range aerosol sized quartz.« less
Geology of the Wood and East Calhoun mines, Central City District, Gilpin County, Colorado
Drake, Avery Ala
1955-01-01
The Wood-East Calhoun mine area is underlain by complexly folded Precambrian gneiss and pegmatite. The major fold in the area is an anticline that trends about N. 60° E. The Precambrian rocks are intruded by bostonite porphyry dikes of Tertiary age. All the rocks are cut by east- to northeast - trending faults that have been filled by precious metal-sulfide veins which have been worked chiefly for gold. The Wood vein occurs in an east-trending fault; the Calhoun vein occurs in a northeast-trending fault. Much of the uranium production of the Central City district has come from the Wood vein on Quartz Hill. The veins consist chiefly of quartz; pyrite is the chief metallic mineral and chalcopyrite is next in abundance. Sphalerite, galena, tetrahedrite-tennantite, and pitchblende are locally present. Deposition began with alteration-stage quartz and pyrite followed in order by pitchblend, light-yellow pyrite, massive quartz, yellow pyrite, shalerite, comb quartz, chalcopyrite, tetrahedrite-tennantite, galena, chalcopyrite, pyrite, and gray to light-brown fine-grained quartz. The veins of the Central City district are zoned, with quartz-pyrite veins near the center and galena-sphalerite veins on the periphery. The known pitchblende bodies are in the transition between these, but paragenetically, the pitchblende is earlier than all other metallic minerals. A trace element study of the ore indicates an association of zirconium and molybdenum with uranium, of bismuth, antimony, and arsenic with copper, and of cadmium with zinc. The pitchblende and other ore minerals are concentrated in ore shoots. The shoots are in open spaces controlled by the competency of the wall rocks, the presence of a prevailing direction of weakness in the rocks, and changes in strike and dip of the vein. The pitchblende is thought to be a local constituent of the quartz-pyrite ores and to owe its origin to residual solutions from the quartz bostonite magma.
Quartz Crystal Microbalance (QCM) monitor of contamination for LES-8/9
NASA Technical Reports Server (NTRS)
Lynch, J. T.
1977-01-01
A Quartz Crystal Microbalance (QCM) was used to monitor condensable contamination during the launching of two Lincoln Laboratory Experimental Satellites--LES-8 and LES-9. The QCM was installed on the dispenser truss and measured contamination by means of a frequency shift of a quartz crystal oscillator. By using a special crystal cut and a second reference quartz crystal, the sensor had extreme sensitivity and remarkable temperature independence. A 1-Hz frequency shift, which corresponds to 3.5 x 10 to the -9th power g/sq cm was resolved by the flight instrumentation.
NASA Astrophysics Data System (ADS)
Yu, Zhangfa; Chen, Maohong; Zhao, Haijie
2015-05-01
The Dajinshan tungsten-tin polymetallic deposit is a quartz-vein-type ore deposit located in Western Guangdong Province. The ore bodies show a fairly simple shape and mainly occur as tungsten-tin polymetallic-bearing sulfide quartz veins, including quartz vein, quartz-greisens, and sulfide quartz veins, and their distribution is spatially related to Dajinshan granitoids. The formation of the deposit experienced three stages: a wolframite-molybdenite-quartz stage, a wolframite-cassiterite-sulfide-quartz stage, and a fluorite-calcite-carbonate stage. Based on detailed petrographic observations, we conducted microthermometric and Raman microspectroscopic studies of fluid inclusions formed at different ore-forming stages in the Dajinshan tungsten-tin polymetallic deposit, identifying four dominant types of fluid inclusions: aqueous two-phase inclusions, CO2-bearing inclusions, solid or daughter mineral-bearing inclusions, and gas-rich inclusions. The gas compositions of ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit are mostly CO2, CH4, and H2O. The hydrogen, oxygen, and sulfur isotopic data imply that the ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit were mainly derived from magmatic fluids, mixed with meteoric water in the ore-formation process. These results indicate that the fluid mixing and boiling led to the decomposition of the metal complex in ore-forming fluids and ore deposition.
Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz
Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.
2017-01-01
Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core−rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems. PMID:28120860
Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz.
Budd, David A; Troll, Valentin R; Deegan, Frances M; Jolis, Ester M; Smith, Victoria C; Whitehouse, Martin J; Harris, Chris; Freda, Carmela; Hilton, David R; Halldórsson, Sæmundur A; Bindeman, Ilya N
2017-01-25
Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ 18 O values. Overall, Toba quartz crystals exhibit comparatively high δ 18 O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ 18 O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆ core-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ 18 O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ 18 O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.
Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz
NASA Astrophysics Data System (ADS)
Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.
2017-01-01
Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum Δcore-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.
Studies of LA-ICP-MS on quartz glasses at different wavelengths of a Nd:YAG laser.
Becker, J S; Tenzler, D
2001-07-01
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.
Pei, Haiyan; Jin, Yan; Xu, Hangzhou; Ma, Chunxia; Sun, Jiongming; Li, Hongmin
2017-10-19
In this study, low-cost and non-polluting quartz sand was respectively mixed with AlCl 3 , FeCl 3 and PAFC to synergistically remove Microcystis aeruginosa. Results showed that quartz sand could markedly increase the algae removal efficiency and decrease the coagulant doses. The increase of removal efficiency with AlCl 3 and FeCl 3 was only due to the enhancement of floc density by the quartz sand. However, the removal efficiency with PAFC was increased not only by the enhanced floc density, but also by the enlarged floc size. Flocs from 50 mg/L sand addition were larger than that with other sand doses, which was on account of the appropriate enhancement of collision efficiency at this dose. After coagulation, the extracellular organic matter (EOM) and microcystins (MCs) in system with quartz sand was remarkably reduced. That's because quartz sand can enhance the coagulation so as to improve capping the EOM and MCs in flocs during coagulation process. Owing to 200 mg/L quartz sand could damage the cell's membrane during coagulation proces, algal cells in the system lysed two days earlier than with 50 mg/L sand during flocs storage. In addition, cells with PAFC incurred relatively moderate cellular oxidative damage and could remain intact for longer time.
NASA Astrophysics Data System (ADS)
Lambrecht, Glenn; Diamond, Larryn William
2014-09-01
Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.
Swanepoel, Andrew J; Kromhout, Hans; Jinnah, Zubair A; Portengen, Lützen; Renton, Kevin; Gardiner, Kerry; Rees, David
2011-07-01
To quantify personal time-weighted average respirable dust and quartz exposure on a sandy, a sandy loam, and a clay soil farm in the Free State and North West provinces of South Africa and to ascertain whether soil type is a determinant of exposure to respirable quartz. Three farms, located in the Free State and North West provinces of South Africa, had their soil type confirmed as sandy, sandy loam, and clay; and, from these, a total of 298 respirable dust and respirable quartz measurements were collected between July 2006-November 2009 during periods of major farming operations. Values below the limit of detection (LOD) (22 μg · m(-3)) were estimated using multiple 'imputation'. Non-parametric tests were used to compare quartz exposure from the three different soil types. Exposure to respirable quartz occurred on all three farms with the highest individual concentration measured on the sandy soil farm (626 μg · m(-3)). Fifty-seven, 59, and 81% of the measurements on the sandy soil, sandy loam soil, and clay soil farm, respectively, exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 μg · m(-3). Twelve and 13% of respirable quartz concentrations exceeded 100 μg · m(-3) on the sandy soil and sandy loam soil farms, respectively, but none exceeded this level on the clay soil farm. The proportions of measurements >100 μg · m(-3) were not significantly different between the sandy and sandy loam soil farms ('prop.test'; P = 0.65), but both were significantly larger than for the clay soil farm ('prop.test'; P = 0.0001). The percentage of quartz in respirable dust was determined for all three farms using measurements > the limit of detection. Percentages ranged from 0.5 to 94.4% with no significant difference in the median quartz percentages across the three farms (Kruskal-Wallis test; P = 0.91). This study demonstrates that there is significant potential for over-exposure to respirable quartz in farming and even clay soil farming may pose a risk. Soil type may determine whether exposure is >100 μg · m(3), but the job type and the manner in which the task is performed (e.g. mechanical or manual) may be important determinants of exposure. Identifying quartz exposure determinants (e.g. type of job) and modifiers will be of value to focus implementation of controls of particular importance in developing countries.
Carmody, Onuma; Frost, Ray L; Kristóf, János; Kokot, Serge; Kloprogge, J Theo; Makó, Eva
2006-12-01
Studies of kaolinite surfaces are of industrial importance. One useful method for studying the changes in kaolinite surface properties is to apply chemometric analyses to the kaolinite surface infrared spectra. A comparison is made between the mechanochemical activation of Kiralyhegy kaolinites with significant amounts of natural quartz and the mechanochemical activation of Zettlitz kaolinite with added quartz. Diffuse reflectance infrared Fourier transform (DRIFT) spectra were analyzed using principal component analysis (PCA) and multi-criteria decision making (MCDM) methods, the preference ranking organization method for enrichment evaluations (PROMETHEE) and geometrical analysis for interactive assistance (GAIA). The clear discrimination of the Kiralyhegy spectral objects on the two PC scores plots (400-800 and 800-2030 cm(-1)) indicated the dominance of quartz. Importantly, no ordering of any spectral objects appeared to be related to grinding time in the PC plots of these spectral regions. Thus, neither the kaolinite nor the quartz are systematically responsive to grinding time according to the spectral criteria investigated. The third spectral region (2600-3800 cm(-1), OH vibrations), showed apparent systematic ordering of the Kiralyhegy and, to a lesser extent, Zettlitz spectral objects with grinding time. This was attributed to the effect of the natural quartz on the delamination of kaolinite and the accompanying phenomena (i.e., formation of kaolinite spheres and water). The mechanochemical activation of kaolinite and quartz, through dry grinding, results in changes to the surface structure. Different grinding times were adopted to study the rate of destruction of the kaolinite and quartz structures. This relationship (i.e., grinding time) was classified using PROMETHEE and GAIA methodology.
Petrography and physicomechanical properties of rocks from the Ambela granitic complex, NW Pakistan.
Arif, Mohammad; Bukhari, S Wajid Hanif; Muhammad, Noor; Sajid, Muhammad
2013-01-01
Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz.
Petrography and Physicomechanical Properties of Rocks from the Ambela Granitic Complex, NW Pakistan
Arif, Mohammad; Bukhari, S. Wajid Hanif; Muhammad, Noor; Sajid, Muhammad
2013-01-01
Petrography and physicomechanical properties of alkali granites, alkali quartz syenite, and nepheline syenite from Ambela, NW Pakistan, have been investigated. Whereas the alkali quartz syenite and most of the alkali granites are megaporphyritic, the nepheline syenite and some of the alkali granites are microporphyritic. Their phenocryst shape and size and abundance of groundmass are also different. The values of unconfined compressive strength (UCS) are the lowest and highest for megaporphyritic alkali granite and alkali quartz syenite, respectively. However, all the four rock types are moderately strong. Correspondingly, their specific gravity and water absorption values are within the permissible range for use as construction material. The UCS for the alkali quartz syenite is the highest, most probably because (i) it has roughly equal amounts of phenocryst and groundmass, (ii) it displays maximum size contrast between phenocryst and groundmass, (iii) its phenocrysts are highly irregular, and (iv) it contains substantial amounts of quartz. PMID:23861654
Quartz-Enhanced Photoacoustic Spectroscopy: A Review
Patimisco, Pietro; Scamarcio, Gaetano; Tittel, Frank K.; Spagnolo, Vincenzo
2014-01-01
A detailed review on the development of quartz-enhanced photoacoustic sensors (QEPAS) for the sensitive and selective quantification of molecular trace gas species with resolved spectroscopic features is reported. The basis of the QEPAS technique, the technology available to support this field in terms of key components, such as light sources and quartz-tuning forks and the recent developments in detection methods and performance limitations will be discussed. Furthermore, different experimental QEPAS methods such as: on-beam and off-beam QEPAS, quartz-enhanced evanescent wave photoacoustic detection, modulation-cancellation approach and mid-IR single mode fiber-coupled sensor systems will be reviewed and analysed. A QEPAS sensor operating in the THz range, employing a custom-made quartz-tuning fork and a THz quantum cascade laser will be also described. Finally, we evaluated data reported during the past decade and draw relevant and useful conclusions from this analysis. PMID:24686729
Extension of the Hugoniot and analytical release model of α-quartz to 0.2–3 TPa
Desjarlais, M. P.; Knudson, M. D.; Cochrane, K. R.
2017-07-21
In recent years, α-quartz has been used prolifically as an impedance matching standard in shock wave experiments in the multi-Mbar regime (1 Mbar = 100 GPa = 0.1 TPa). This is due to the fact that above ~90–100 GPa along the principal Hugoniot α-quartz becomes reflective, and thus, shock velocities can be measured to high precision using velocity interferometry. The Hugoniot and release of α-quartz have been studied extensively, enabling the development of an analytical release model for use in impedance matching. However, this analytical release model has only been validated over a range of 300–1200 GPa (0.3–1.2 TPa). Furthermore,more » we extend this analytical model to 200–3000 GPa (0.2–3 TPa) through additional α-quartz Hugoniot and release measurements, as well as first-principles molecular dynamics calculations.« less
Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching
Gratz, A.J.; Fisler, D.K.; Bohor, B.F.
1996-01-01
Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.
Fabrication of a novel quartz micromachined gyroscope
NASA Astrophysics Data System (ADS)
Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong
2015-04-01
A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.
Fubini, B; Bolis, V; Cavenago, A; Volante, M
1995-01-01
The effect of grinding, heating, and etching was investigated on polymorphs of silicon dioxide exhibiting different biological responses. Diatomaceous earths were converted into cristobalite at 1000 degrees C. Dusts obtained by grinding crystalline minerals exhibited different micromorphology and a propensity to originate surface radicals which decrease in the sequence cristobalite --> quartz --> coesite --> stishovite. The production of surface radicals was suppressed by grinding in the presence of water. Thermal treatments selectively quenched the radicals and decreased surface hydrophilicity. Quartz treated with aluminum lactate exhibited higher surface acidity when compared with pure quartz, with a reduction in fibrogenicity. Etching by hydrofluoric acid smoothed the particles with loss of specific surface. Adsorption of water on three cristobalite dusts of different origin (ground mineral, ex-diatomite, heated quartz) indicated a loss in heated quartz (1300 degrees C) that was relatable to the corresponding reduction in fibrogenicity.
Jain, M; Bøtter-Jensen, L; Murray, A S; Jungner, H
2002-01-01
In the assessment of dose received from a nuclear accident, considerable attention has been paid to retrospective dosimetry using heated materials such as household ceramics and bricks. However, unheated materials such as mortar and concrete are more commonly found in industrial sites and particularly in nuclear installations. These materials contain natural dosemeters such as quartz, which usually is less sensitive than its heated counterpart. The potential of quartz extracted from mortar in a wall of a low-level radioactive-waste storage facility containing distributed sources of 60Co and 137Cs has been investigated. Dose-depth proliles based on small aliquots and single grains from the quartz extracted from the mortar samples are reported here. These are compared with results from heated quartz and polymineral fine grains extracted from an adjacent brick, and the integrated dose recorded by environmental TLDs.
NASA Astrophysics Data System (ADS)
Qin, Zhiyong; Li, Wentao; Liu, Jiansheng; Liu, Jiaqi; Yu, Changhai; Wang, Wentao; Qi, Rong; Zhang, Zhijun; Fang, Ming; Feng, Ke; Wu, Ying; Ke, Lintong; Chen, Yu; Wang, Cheng; Li, Ruxin; Xu, Zhizhan
2018-04-01
A hydrogen-filled capillary discharge waveguide made of quartz is presented for high-energy laser wakefield acceleration (LWFA). The experimental parameters (discharge current and gas pressure) were optimized to mitigate ablation by a quantitative analysis of the ablation plasma density inside the hydrogen-filled quartz capillary. The ablation plasma density was obtained by combining a spectroscopic measurement method with a calibrated gas transducer. In order to obtain a controllable plasma density and mitigate the ablation as much as possible, the range of suitable parameters was investigated. The experimental results demonstrated that the ablation in the quartz capillary could be mitigated by increasing the gas pressure to ˜7.5-14.7 Torr and decreasing the discharge current to ˜70-100 A. These optimized parameters are promising for future high-energy LWFA experiments based on the quartz capillary discharge waveguide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yufei, E-mail: mayufei@hit.edu.cn; Post-doctoral Mobile Station of Power Engineering and Engineering Thermophysics, Harbin Institute of Technology, Harbin 150001; He, Ying
An ultra compact all-fiber quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor using quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was demonstrated. Such a sensor architecture has the advantages of easier optical alignment, lower insertion loss, lower cost, and more compact compared with a conventional QEPAS sensor using discrete optical components for laser delivery and coupling to the QTF. A fiber beam splitter and three QTFs were employed to perform multi-point detection and demonstrated the potential of spatially resolved measurements.
Carmichael, H.
1952-11-11
The manufacture of electrode insulators that are mechanically strong, shock-proof, vacuum tight, and are capable of withstanding gas pressures of many atmospheres under intense neutron bombardment, such as may be needed in an ionization chamber, is described. The ansulator comprises a bolt within a quartz tube, surrounded by a bushing held in place by two quartz rings, and tightened to a pressure of 1,000 pounds per square inch by a nut and washer. Quartz is the superior material to meet these conditions, however, to withstand this pressure the quartz must be fire polished, lapped to form smooth and parallel surfaces, and again fire polished to form an extremely smooth and fracture resistant mating surface.
NASA Astrophysics Data System (ADS)
Shrivastava, Prakash K.; Asthana, Rajesh; Roy, Sandip K.; Swain, Ashit K.; Dharwadkar, Amit
2012-07-01
The scientific study of quartz grains is a powerful tool in deciphering the depositional environment and mode of transportation of sediments, and ultimately the origin and classification of sediments. Surface microfeatures, angularity, chemical features, and grain-size analysis of quartz grains, collectively reveal the sedimentary and physicochemical processes that acted on the grains during different stages of their geological history. Here, we apply scanning electron microscopic (SEM) analysis to evaluating the sedimentary provenance, modes of transport, weathering characteristics, alteration, and sedimentary environment of selected detrital quartz grains from the peripheral part of two epi-shelf lakes (ESL-1 and ESL-2) of the Schirmacher Oasis of East Antarctica. Our study reveals that different styles of physical weathering, erosive signatures, and chemical precipitation variably affected these quartz grains before final deposition as lake sediments. Statistical analysis (central tendencies, sorting, skewness, and kurtosis) indicates that these quartz-bearing sediments are poorly sorted glaciofluvial sediments. Saltation and suspension seem to have been the two dominant modes of transportation, and chemical analysis of these sediments indicates a gneissic provenance.
Additive manufacturing of transparent fused quartz
NASA Astrophysics Data System (ADS)
Luo, Junjie; Hostetler, John M.; Gilbert, Luke; Goldstein, Jonathan T.; Urbas, Augustine M.; Bristow, Douglas A.; Landers, Robert G.; Kinzel, Edward C.
2018-04-01
This paper investigates a filament-fed process for additive manufacturing (AM) of fused quartz. Glasses such as fused quartz have significant scientific and engineering applications, which include optics, communications, electronics, and hermetic seals. AM has several attractive benefits such as increased design freedom, faster prototyping, and lower processing costs for small production volumes. However, current research into glass AM has focused primarily on nonoptical applications. Fused quartz is studied here because of its desirability for use in high-quality optics due to its high transmissivity and thermal stability. Fused quartz filaments are fed into a CO2 laser-generated molten region, smoothly depositing material onto the workpiece. Spectroscopy and pyrometry are used to measure the thermal radiation incandescently emitted from the molten region. The effects of the laser power and scan speed are determined by measuring the morphology of single tracks. Thin walls are printed to study the effects of layer-to-layer height. This information is used to deposit solid pieces including a cylindrical-convex shape capable of focusing visible light. The transmittance and index homogeneity of the printed fused quartz are measured. These results show that the filament-fed process has the potential to print transmissive optics.
Dong, Juncai; Zhu, Hailiang; Chen, Dongliang
2015-01-01
As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed. PMID:26099720
Dong, Juncai; Zhu, Hailiang; Chen, Dongliang
2015-06-23
As a fundamental property of pressure-induced amorphization (PIA) in ice and ice-like materials (notably α-quartz), the occurrence of mechanical instability can be related to violation of Born criteria for elasticity. The most outstanding elastic feature of α-quartz before PIA has been experimentally reported to be the linear softening of shear modulus C44, which was proposed to trigger the transition through Born criteria B3. However, by using density-functional theory, we surprisingly found that both C44 and C66 in α-quartz exhibit strong nonlinearity under compression and the Born criteria B3 vanishes dominated by stiffening of C14, instead of by decreasing of C44. Further studies of archetypal quartz homeotypes (GeO2 and AlPO4) repeatedly reproduced the same elastic-hardening-driven mechanical instability, suggesting a universal feature of this family of crystals and challenging the long-standing idea that negative pressure derivatives of individual elastic moduli can be interpreted as the precursor effect to an intrinsic structural instability preceding PIA. The implications of this elastic anomaly in relation to the dispersive softening of the lowest acoustic branch and the possible transformation mechanism were also discussed.
Characterization of impurities present on Tihimatine (Hoggar) quartz, Algeria
NASA Astrophysics Data System (ADS)
Anas Boussaa, S.; Kheloufi, A.; Boutarek Zaourar, N.
2017-11-01
Many of today's advanced materials depend on quartz as a raw material. Quartz usually contains abundant inclusions, both solid and liquid, and due to the number of these inclusions and their small size, complete separation is most difficult. Typical properties of raw quartz that must be characterized are: Size and Chemical composition of inclusions, their spatial distribution, localization of isomorphic substitutional elements (e.g. Al, Fe). The aim of this study has been to test experimental methods for investigating some inclusions (impurities) present in the Tihimatine quartz from El Hoggar region deposits (southern Algeria) using X Ray Fluorescence, scanning electron microscopy, optical Microscopy with reflected and transmitted lights, infra-red spectrometer, Raman spectrometer. Despite the high concentration of SiO2 in studied quartz reaching 98%, several harmful inclusions were found and identified as hematite, anatase, muscovite, graphite, it contains: Fe, Ti, Al, K, Ca. Some fluid inclusions were found. We detect the presence of carbon dioxide and water using raman spectroscopy. The repartition of solid impurities is aleatory and not homogeneous with maximum size of 10 μm. Concerning the fluid impurities, their diameter vary between 5 and 20 μm and their repartition is aleatory.
Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition.
Carretero-Genevrier, Adrián; Gich, Martí
2015-12-21
This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr(2+) act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth.
NASA Astrophysics Data System (ADS)
Grishin, Yu M.; Miao, Long
2017-05-01
Numerical simulations of heat and evaporation processes of quartz particles in Ar radio frequency inductively coupled plasma (ICP) are investigated. The quartz particles are supplied by the carrier gas into the ICP within gas-cooling. It is shown that with the increase of amplitude of discharge current above critical value there is a toroidal vortex in the ICP torch at the first coil. The conditions for the formation of vortex and the parameters of the vortex tube have been evaluated and determined. The influence of vortex, discharge current, coil numbers and feed rate of carrier gas on the evaporation efficiency of quartz particles have been demonstrated. It was found that the optimal discharge current is close to the critical value when the quartz particles with initial sizes up to 130 μm can be fully vaporized in the ICP torch with thermal power of 10kW. The heat and evaporation processes of quartz particles in the ICP torch have significant importance for the study of one-step plasma chemical reaction method directly producing silicon from silicide (SiO2) in the argon-hydrogen plasma.
Maskless and low-destructive nanofabrication on quartz by friction-induced selective etching
2013-01-01
A low-destructive friction-induced nanofabrication method is proposed to produce three-dimensional nanostructures on a quartz surface. Without any template, nanofabrication can be achieved by low-destructive scanning on a target area and post-etching in a KOH solution. Various nanostructures, such as slopes, hierarchical stages and chessboard-like patterns, can be fabricated on the quartz surface. Although the rise of etching temperature can improve fabrication efficiency, fabrication depth is dependent only upon contact pressure and scanning cycles. With the increase of contact pressure during scanning, selective etching thickness of the scanned area increases from 0 to 2.9 nm before the yield of the quartz surface and then tends to stabilise after the appearance of a wear. Refabrication on existing nanostructures can be realised to produce deeper structures on the quartz surface. Based on Arrhenius fitting of the etching rate and transmission electron microscopy characterization of the nanostructure, fabrication mechanism could be attributed to the selective etching of the friction-induced amorphous layer on the quartz surface. As a maskless and low-destructive technique, the proposed friction-induced method will open up new possibilities for further nanofabrication. PMID:23531381
Principles and Applications of the qPlus Sensor
NASA Astrophysics Data System (ADS)
Giessibl, Franz J.
The concept of the atomic force microscope (AFM) is a very simple one: map the surface of a sample by a sharp probe that scans over the surface similar to the finger of a blind person that reads Braille characters. In AFM, the role of that finger is taken by the probe tip that senses the presence of the sample surface by detecting the force between the tip of the probe and a sample. The qPlus sensor is a self sensing cantilever based on a quartz tuning fork that supplements the traditional microfabricated cantilevers made of silicon. Quartz tuning forks are used in the watch industry in quantities of billions annually, with the positive effects on quality and perfection. Three properties of these quartz-based sensors simplify the AFM significantly: (1) the piezoelectricity of quartz allows simple self sensing, (2) the mechanical properties of quartz show very small variations with temperature, and (3) the given stiffness of many quartz tuning forks is close to the ideal stiffness of cantilevers. The key properties of the qPlus sensor are a large stiffness that allows small amplitude operation, the large size that allows to mount single-crystal probe tips, and the self-sensing piezoelectric detection mechanism.
Modeling the interface of platinum and α-quartz(001): Implications for sintering
Plessow, Philipp N.; Sánchez-Carrera, Roel S.; Li, Lin; ...
2016-05-04
We present a first-principles study which aims to understand the metal–support interaction of platinum nanoparticles on α-quartz(001) and, more generally, silica. The thermodynamic stability of the α-quartz(001) surface and its interface with Pt(111) are investigated as a function of temperature and partial pressure of H 2O and O 2. Potential defects in the α-quartz(001) surface as well as the adsorption energies of the Pt atom are also studied. This allows us to draw conclusions concerning nanoparticle shape and the resistance toward particle migration based on the interface free energies. We find that, as for the clean α-quartz(001) surface, a dry,more » reconstructed interface is expected at temperatures that are high but within experimentally relevant ranges. On an ideal, dry, reconstructed surface, particle migration is predicted to be a fast sintering mechanism. On real surfaces, defects may locally prevent reconstruction and act as anchoring points. Finally, the energetics of the adsorption of platinum atoms on α-quartz(001) do not support surface-mediated single-atom migration as a viable path for sintering on the investigated surfaces.« less
Preparation of Macroporous Epitaxial Quartz Films on Silicon by Chemical Solution Deposition
Carretero-Genevrier, Adrián; Gich, Martí
2015-01-01
This work describes the detailed protocol for preparing piezoelectric macroporous epitaxial quartz films on silicon(100) substrates. This is a three-step process based on the preparation of a sol in a one-pot synthesis which is followed by the deposition of a gel film on Si(100) substrates by evaporation induced self-assembly using the dip-coating technique and ends with a thermal treatment of the material to induce the gel crystallization and the growth of the quartz film. The formation of a silica gel is based on the reaction of a tetraethyl orthosilicate and water, catalyzed by HCl, in ethanol. However, the solution contains two additional components that are essential for preparing mesoporous epitaxial quartz films from these silica gels dip-coated on Si. Alkaline earth ions, like Sr2+ act as glass melting agents that facilitate the crystallization of silica and in combination with cetyl trimethylammonium bromide (CTAB) amphiphilic template form a phase separation responsible of the macroporosity of the films. The good matching between the quartz and silicon cell parameters is also essential in the stabilization of quartz over other SiO2 polymorphs and is at the origin of the epitaxial growth. PMID:26710210
NASA Astrophysics Data System (ADS)
Essarraj, S.; Boiron, M.-C.; Cathelineau, M.; Fourcade, S.
2001-07-01
The relative chronology of fluid migration, quartz and Au-deposition in a silicified fault from the main Au-district (Laurieras, St Yrieix district) from northern French Massif Central has been determined from microstructural, fluid inclusion, isotopic and ore mineral evidences. Three main stages of fluid circulation, microfracturing and quartz crystallization, and ore deposition were distinguished on the basis of textural relationships and the pressure, temperature and composition of the palaeo-fluids: (1) a series of early fluid events was responsible for the localized drainage of retrograde metamorphic fluids along the main fault and the subsequent sealing by milky and microcrystalline quartz preceeded the main Au-ore stages. Early fluids were aqueous-carbonic, trapped under lithostatic to sublithostatic pressures at temperatures in the range 350-500°C. Subsequently, several types of microstructures were developed in the early quartz matrix. (2) NS microfractures filled by clear quartz, arsenopyrite and boulangerite (I) contain significant refractory gold concentrations. Clear quartz formed from aqueous-carbonic fluids of lower densities than those of the earlier fluids. Significant pressure drops, down to pressures around 55 MPa were responsible for a local immiscibility of the aqueous-carbonic fluids at temperatures of 340±20°C. (3) The main ore stage is characterized by the formation of dense sets of sub-vertical (EW) microfractures, healed fluid inclusion planes in quartz, and filled by ore minerals (native gold, galena and boulangerite II) when they crosscut earlier sulfides. The fluids are aqueous with low and decreasing salinity, and probable trapping temperatures around 230°C. Isotopic data, obtained on microfissured quartz, indicate these dilute aqueous fluids may be considered as meteoric waters that deeply infiltrated the crust. Late microfissuring of a mesothermal quartz vein, originally barren (only with pyrite and arsenopyrite), appears to be the main factor controlling gold enrichment. It can be related to late Hercynian deformational stages, disconnected from the early fault formation and silicification. These late stages which affected the Hercynian basement during its uplift, are of critical importance for the formation of Au-ores. We concluded that this type of Au-ore formed under rather shallow conditions, is distinct from those generally described in most mesothermal Au-veins.
Optical detectors based on thermoelastic effect in crystalline quartz
NASA Astrophysics Data System (ADS)
Chelibanov, V. P.; Ishanin, G. G.
2015-06-01
Optical detectors developed on base of thermo elastic effect In quartz crystalline (PTEK) attributed to the thermal detectors group. Such detectors occurred very effective for the registration of pulsed light energy or power of harmonically modulated laser radiation flux in a wide spectral (from UV to far IR) and dynamic ranges (from 10-6 to 300 W / cm2 with cooling) with a time constant up to10-6 seconds. When exposed to electromagnetic radiation occurs at the receiver thermal field which causes mechanical stress in the transient crystalline quartz, which in turn leads to a change in the polarization of crystalline quartz and, as a consequence, to an electric potential difference at the electrodes (the front surface with a conductive coating and damper). The capacitive characteristic of the detector, based on a thermo elastic effect in crystalline quartz, eliminates the possibility of working with constant flow of radiation, which also affects at the frequency response of the detector, since the potential difference appearance in the piezoelectric plate depends on the direction of the forces relative to the axes X, Y, Z of the crystal. Therefore, a certain choice of orientation of the receiving element is necessary in accordance with the physical properties of crystalline quartz. In this paper, a calculation of the sensitivity and frequency characteristics of optical detectors based on the thermo elastic effect in crystalline quartz at the harmonic effects of electromagnetic radiation flux are reported.
NASA Astrophysics Data System (ADS)
Liu, Wengang; Liu, Wenbao; Dai, Shujuan; Wang, Benying
2018-06-01
In order to clarify the effect of polar group modification on flotation performance of amine collector, flotation properties of quartz and hematite using bis(2-hydroxy-3-chloropropyl) dodecylamine (N23) as a collector were investigated. And the adsorption mechanism of N23 on quartz surface was established by zeta potential measurements, SEM/EDS measurements, and molecular structure analysis. Single mineral flotation results indicated that N23 showed stronger collecting ability on quartz and hematite than DDA-CH3COOH. However, starch could depress the flotation of hematite. Flotation recovery of 98.10% for quartz could be achieved, when N23 concentration was 43.33 mg/L and starch concentration was 16.67 mg/L at natural slurry pH. Separation of artificially mixed minerals of hematite and quartz was achieved effectively using N23 as the collector. The optimized separation result with 66.29% iron grade and 90.06% iron recovery in concentrate was obtained when slurry pH was 7.34 with 43.33 mg/L N23 and 23.33 mg/L starch. The interaction energies of N23 with mineral surface also showed well consistency with flotation results. SEM/EDS analyses and zeta potential measurements revealed that N23 could absorb on quartz surface in the forms of strong electrostatic and hydrogen bonding interaction. Compared with DDA, N23 had a higher HLB value and better water-solubility, which resulted in better dispersion in water and stronger adsorption on mineral surface.
NASA Astrophysics Data System (ADS)
Ashley, K. T.; Webb, L. E.; Spear, F. S.; Thomas, J. B.
2010-12-01
Geochemical, microstructural and petrological analyses were conducted on metapelites from the Strafford Dome, Vermont. Samples record metamorphic conditions from biotite to peak kyanite/staurolite grade and preserve microstructures related to two nappe emplacement events. The Ti-in-quartz (“TitaniQ”) thermobarometer was used on quartz in different microstructural settings throughout the Strafford Dome, where the petrologic and structural framework is well established, to examine the ability to more precisely constrain pressure-temperature-time-deformation (P-T-t-D) histories. Cathodoluminescence (CL) imaging of quartz was conducted to qualitatively assess the distribution of Ti in a single crystal and/or compare neighboring crystals. In addition to [Ti], strain in the crystal lattice also appears to influence CL intensity. Quartz inclusions in garnet porphyroblasts typically have brighter rims (typically <5 μm) when observed in CL and is attributed to diffusion of Ti from the garnet. X-ray mapping of a snowball garnet (staurolite/kyanite zone) reveals, from core to rim, increasing X_{prp}, decreasing X_{sps}, and constant X_{alm}; Ca increase is limited to near the rim. This spatial variation in chemistry suggests garnet growth during increasing pressure and slightly decreasing temperature most likely associated with nappe emplacement. Most quartz inclusions contain bright bands in CL correlating to planar defects. Preliminary analysis shows [Ti] in quartz near the core of the snowball garnet to be 10.5-13.0 ppm, ≥12.5 ppm near the garnet rim, 8.0-11.0 ppm in the matrix grains, and 17.0 ppm near foam texture triple junctions. Rotated garnets locally contain inclusions that appear brecciated in CL images (kyanite/staurolite zone). In samples where the dominant foliation is a bedding parallel schistosity (S_{1}), ribbon quartz grains and subgrains are present (kyanite/staurolite zone). The subgrains typically have sharp, dark rims with brighter mantles. Some grains contain dark cores near the center. Larger ribbon grains still have the dark rims, but are more homogeneous internally. Crenulated matrix quartz (S_{2}), where present, contains bright rims with darker mantles (garnet zone). In some cases, bright cores are found in the center of these grains. Quartz veins that post-date the foliation within the samples are typically homogeneous, with only minor patchy bright spots present and no observable zoning. Deformed quartz veins in some samples contain ribbon quartz and preserve subgrain rotation recrystallization microstructures (kyanite/staurolite zone). The ribbon quartz is very patchy where subgrains are beginning to consume the ribbon grain. Data from secondary ion mass spectrometry will be presented for spot analyses of [Ti] from locations selected based on microstructural and CL textural significance, and P-T-t-D histories evaluated in the context of previous studies. These findings will further elucidate the potential of TitaniQ for use in studies of metamorphic tectonites, continental tectonics and rheology.
King, James Claude
1976-01-13
The disclosure is directed to a method for processing quartz used in fabricating crystal resonators such that transient frequency change of resonators exposed to pulse irradiation is virtually eliminated. The method involves heating the crystal quartz in a hydrogen-free atmosphere while simultaneously applying an electric field in the Z-axis direction of the crystal. The electric field is maintained during the cool-down phase of the process.
A Naturally-Calibrated Flow Law for Quartz
NASA Astrophysics Data System (ADS)
Lusk, A. D.; Platt, J. P.
2017-12-01
Flow laws for power-law behavior of quartz deforming by crystal-plastic processes with grain size sensitive creep included take the general form: ė = A σn f(H2O) exp(-Q/RT) dmWhere A - prefactor; σ - differential stress; n - stress exponent; f(H2O) - water fugacity; Q - activation energy; R - gas constant; T - temperature (K); d - grain size sensitivity raised to power m. Assuming the dynamically recrystallized grain size for quartz follows the peizometric relationship, substitute dm = (K σ-p)m, where K - piezometric constant; σ - differential stress; p - piezometric exponent. Rearranging the above flow law: ė = A K σ(n-pm) f(H2O) exp(-Q/RT)We use deformation temperatures, paleo-stresses, and strain rates calculated from rocks deformed in the Caledonian Orogeny, NW Scotland, along with existing experimental data, to compare naturally-calibrated values of stress exponent (n-pm) and activation energy (Q) to those determined experimentally. Microstructures preserved in the naturally-strained rocks closely resemble those produced by experimental work, indicating that quartz was deformed by the same mechanism(s). These observations validate the use of predetermined values for A as well as the addition of experimental data to calculate Q. Values for f(H2O) are based on calculated pressure and temperature conditions. Using the abovementioned constraints, we compare results, discuss challenges, and explore implications of naturally- vs. experimentally-derived flow laws for dislocation creep in quartz. Rocks used for this study include quartzite and quartz-rich psammite of the Cambrian-Ordovician shelf sequence and tectonically overlying Moine Supergroup. In both cases, quartz is likely the primary phase that controlled rheological behavior. We use the empirically derived piezometer for the dynamically recrystallized grain size of quartz to calculate the magnitude of differential stress, along with the Ti-in-quartz thermobarometer and the c-axis opening angle thermometer to determine temperatures of deformation. Tensor strain rates are calculated from plate convergence rate, based on total displacement and duration of thrusting within the Moine thrust zone, and shear zone thickness calculated from four detailed structural and microstructural transects taken parallel to the direction of displacement.
NASA Astrophysics Data System (ADS)
Viegas, G.; Menegon, L. M.; Archanjo, C. J.
2016-12-01
Quartz axis fabrics are a valuable tool to investigate strain partitioning/distribution in both naturally- and experimentally deformed quartz. Previous works have shown that slip dominates at high temperatures (> 600º C) and water-rich, commonly sub-magmatic conditions, typically associated with large grain sizes and grain boundary migration microstructures. In the Pernambuco shear zone, sheared quartz veins from a protomylonitic granitoid formed during the main amphibolite facies event constrained at mid-crustal conditions (550-600ºC, 5 kbar). The veins contain heterogeneously-deformed primary quartz grains, which typically form both flattened and elongated ribbons as well as more equant porphyroclasts surrounded by aggregates of fine-grained (ca. 20 µm) recrystallized aggregates. Recrystallized quartz with the same fine grain size may also occur in intracrystalline bands within the porphyroclasts. Chessboard extinction is widely observed in the porphyroclasts, and subgrain boundaries are either parallel or normal to the (0001) direction, suggesting slip on both basal and prismatic planes during recrystallization. Crystallographic preferred orientations (CPOs) of porphyroclasts (≥ 100 µm) show maxima of (0001) axes subparallel to Z and X, suggesting coeval glide along both basal and prism planes during shearing. In the recrystallized aggregates, fabric strength tends to become weaker, but still records glide along and directions. These preliminary results suggest that naturally deformed quartz veins record coeval activity of and slip during dynamic recrystallization under amphibolite facies conditions. The microstructure suggests that the CPO of the fine-grained aggregates is host-controlled and results from dominant subgrain rotation recrystallization. To our knowledge, activity of slip in fine-grained recrystallized aggregates has never been reported before. Thus, these preliminary results call into question the general view that slip is expected to be active only during dominant high-T grain boundary migration in the lower crust. In our samples, a fine grain size of dynamically recrystallized quartz associated with slip might indicate high differential stress/strain rates during high-T viscous creep along the Pernambuco shear zone.
NASA Astrophysics Data System (ADS)
Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio
2010-05-01
Pre-Cambrian and unconformable earliest Cambrian rocks from the Sierra de la Demanda (N Spain) exhibit field and microstructural relationships that attest to orogenic events recorded by concealed basement rocks. Neoproterozoic foliated slates ("Anguiano Schists") crop out under up to 300 m thick, unfoliated quartz-rich conglomerates ("Anguiano Conglomerates") and quartzites which are stratigraphically ca. 600 m below the oldest, paleontologically dated, pre-trilobitic Cambrian layers (likely older than 520 Ma). The Anguiano Conglomerates contain mm to cm grainsized well-rounded pebbles of various types including monocrystalline quartz, detrital zircon and tourmaline-bearing sandstones, black cherts and metamorphic poly-crystalline quartz aggregates. The undeformed matrix is made of much smaller (diagenetically overgrown) monocrystaline quartz grains and minor amounts of accesory zircon, tourmaline and mica. Black chert pebbles exhibit microstructural evidence of brittle deformation (microfaults and thin veins of syntaxial fibrous quartz). These and the fine-grained sandstone pebbles can also exhibit ductile deformations (microfolds with thickened hinges and axial planar continuous foliations), too. Polycrystalline quartz pebbles exhibit a variety of microstructures that resulted from syn-metamorphic ductile deformations. These are recognisable under the petrographic microscope and include continuous foliations, quartz shape fabrics, various types of subgrain or recrystallized new grain microtextures, and lattice preferred orientations (LPOs). Conventional characterization of quartz fabrics (after oriented structural sections) is challenged in conglomerate pebble thin sections by the difficulty of unraveling in them the complete structural reference framework provided by foliation (whose trace can be unraveled) and lineation orientation (which cannot be directly identified). Quartz in various metamorphic polycrystalline pebbles was studied with the Electron Back-Scatter Diffraction (EBSD) technique. The identification of quartz c-axis point maxima or girdles and their geometrical relationships with respect to -axis arrangements and pebble foliation traces enabled us to identify the operation of basal and prism- and occasionally prism-[c] intracrystalline slip systems. This points to upper-greenschists and amphibolite facies syn-metamorphic deformations. By contrast, black chert and sandstone pebbles and matrix quartz aggregates lack any LPO. The source area of the conglomerates was likely a pre-Cambrian basement that contained penetratively deformed low- to medium-grade metamorphic rocks. Radiometric dating of this metamorphism has not been accomplished so far though it is known that inherited Precambrian sources in the Iberian Peninsula relate notably to Neoproterozoic (Pan-African and Cadomian) orogens, and to a lesser extent to Paleoproterozoic (1.8-2.1 Ga) or Neoarchean (2.4-2.8 Ga) ones. Neoproterozoic (Cadomian) metamorphism of this grade has only been recognized in SW Iberia. If the fabrics here studied were Cadomian, they might be related to the arc-related igneous suites that have been detected or inferred in other realms of the northern Iberian Massif.
A Fully Integrated Quartz MEMS VHF TCXO.
Kubena, Randall L; Stratton, Frederic P; Nguyen, Hung D; Kirby, Deborah J; Chang, David T; Joyce, Richard J; Yong, Yook-Kong; Garstecki, Jeffrey F; Cross, Matthew D; Seman, S E
2018-06-01
We report on a 32-MHz quartz temperature compensated crystal oscillator (TCXO) fully integrated with commercial CMOS electronics and vacuum packaged at wafer level using a low-temperature MEMS-after quartz process. The novel quartz resonator design provides for stress isolation from the CMOS substrate, thereby yielding classical AT-cut f/T profiles and low hysteresis which can be compensated to < ±0.2 parts per million over temperature using on-chip third-order compensation circuitry. The TCXO operates at low power of 2.5 mW and can be thinned to as part of the wafer-level eutectic encapsulation. Full integration with large state-of-the-art CMOS wafers is possible using carrier wafer techniques.
Dodge, F.C.; Helaby, A.M.
1975-01-01
Anomalous amounts of tungsten, molybdenum, and bismuth were found previously in surficial debris collected from the Uyaijah-Thaaban area in the west-central part of the Precambrian Al Uyaijah ring structure. The area is mostly underlain by quartz monzonite. Countless quartz veins ranging from a knife edge to more than 3 m in thickness cut the quartz monzonite; many of these veins contain molybdenite. Detailed mapping and intensive sampling of the molybdenite-bearing quartz veins indicate that their grade and quantity are probably inadequate to permit present-day mining; however, they represent a potential future resource. The tungsten of the area appears to be negligible.
Density functional study of the adsorption of aspirin on the hydroxylated (0 0 1) α-quartz surface
NASA Astrophysics Data System (ADS)
Abbasi, A.; Nadimi, E.; Plänitz, P.; Radehaus, C.
2009-08-01
In this study the adsorption geometry of aspirin molecule on a hydroxylated (0 0 1) α-quartz surface has been investigated using DFT calculations. The optimized adsorption geometry indicates that both, adsorbed molecule and substrate are strongly deformed. Strong hydrogen bonding between aspirin and surface hydroxyls, leads to the breaking of the original hydroxyl-hydroxyl hydrogen bonds (Hydrogenbridges) on the surface. In this case new hydrogen bonds on the hydroxylated (0 0 1) α-quartz surface appear which significantly differ from those at the clean surface. The 1.11 eV adsorption energy reveals that the interaction of aspirin with α-quartz is an exothermic chemical interaction.
NASA Astrophysics Data System (ADS)
Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio
2013-04-01
The Badajoz-Córdoba Shear Zone is a is 30-40 km wide and 400 km long, NW-SE trending structure located at the boundary between the Ossa-Morena and Central-Iberian Zones of the Iberian Massif. Two elongated domains can be differentiated inside: the Obejo-Valsequillo domain to the NE and the Ductile Shear Belt (DSB) to the SW. The former exhibits Precambrian to Cambrian volcano-sedimentary rocks unconformably overlaying a Neoproterozoic basement formed by the "Serie Negra". The latter, 5-15 km wide, is composed mainly of metamorphic tectonites including the "Serie Negra" and other units located structurally under it. The petrofabric of "Serie Negra" black quartzites from the DSB is analyzed in this study with the Electron Back-Scattered Diffraction technique (EBSD). Black quartzites represent originally siliceous, chemical-biochemical shallow-water marine deposits, currently composed almost exclusively of quartz and graphite. Macroscopically they exhibit an outstanding planolinear tectonic fabric. Petrographically, coarse- and fine-grained dynamically recrystallized quartz bands alternate. The former contain quartz grains with irregular shapes, mica inclusions and "pinning" grain boundaries. Oriented mica grains and graphite particles constrain irregular quartz grain shapes. Quartz ribbons with chessboard microstructures also occur, indicating recrystallization under elevated temperatures coeval with extreme stretching. Fine-grained recrystallized quartz bands are dominated by quartz grains with straight boundaries, triple junctions, a scarcer evidence of bulging, and a higher concentration of dispersed, minute graphite grains. Quartz lattice-preferred orientation (LPO) patterns permit to identify two well-developed maxima for [c] axes: one close to the Y structural direction and the other one around Z, and -axes girdles normal to Y and Z. Although both [c] axis maxima appear in the coarse- and fine-grained bands, subsets can be isolated with grain cluster orientations around Y and Z. Quartz [c]-axis orientations close to Y predominate in coarser-grained bands, whereas [c]-axes scatter around Z in fine-grained zones. A relationship between microstructure and crystal orientation can thus be unraveled. In both fabric types the asymmetry of the LPOs with respect to the external XYZ reference unravel non-coaxial deformation components. Microstructural and LPO evidences indicate that two intracrystalline quartz deformation modes have operated in the "Serie Negra" black quartzites in parallel domains interleaved at the mm- to cm scale. Unless one of them took place under higher-temperature conditions ({m} slip in the high-T amphibolite-facies) and is a relic feature, both modes should have operated simultaneously. Thus, high-temperature boundary migration and the dispersed inclusion pattern of small mica and graphite grains constrained the pinning grain boundary microstructures, the {m} intracrystalline slip, and the larger size of some quartz crystals. Simultaneously, a larger concentration of disseminated graphite led to formation of finer-grained quartz aggregates (due to grain growth) deformed by the (0001) intracrystalline slip systems, that dominate lower-T quartz plasticity (under greenschist- to amphibolite-facies conditions). Arguably, this intracrystalline slip system partitioning was initially constrained by primary variations in inclusion concentration. Likely, these induced a domainal variation in the rate of plastic strain accommodation that led to the current banded microstructural and fabric organization.
Effective optical constants of anisotropic materials
NASA Technical Reports Server (NTRS)
Aronson, J. R.; Emslie, A. G.
1980-01-01
The applicability of a technique for determining the optical constants of soil or aerosol components on the basis of measurements of the reflectance or transmittance of inhomogeneous samples of component material is investigated. Optical constants for a sample of very pure quartzite were obtained by a specular reflection technique and line parameters were calculated by classical dispersion theory. Predictions of the reflectance of powdered quartz were then derived from optical constants measured for the anisotropic quartz and for pure quartz crystals, and compared with experimental measurements. The calculated spectra are found to resemble each other moderately well in shape, however the reflectance level calculated from the psuedo-optical constants (quartzite) is consistently below that calculated from quartz values. The spectrum calculated from the quartz optical constants is also shown to represent the experimental nonrestrahlen features more accurately. It is thus concluded that although optical constants derived from inhomogeneous materials may represent the spectral features of a powdered sample qualitatively a quantitative fit to observed data is not likely.
Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine
2003-06-10
Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.
NASA Astrophysics Data System (ADS)
Victor, Sunita Prem; Sharma, Chandra P.; Sreenivasan, K.
2011-12-01
This study reports the use of quartz crystal nanobalance (QCN) to study the adsorption of two model molecules namely albumin and doxycycline by hydroxyapatite (HA). The work focuses on the deposition of a stable coating of HA on the quartz crystal, modification of the coating using doxycycline and its subsequent effects on albumin adsorption. The uniformity and thickness of the HA coating has been studied using atomic force microscopy (AFM). The functional groups to ascertain the presence of the selected moieties have been characterized by Raman spectroscopy. The results indicate that the mass of albumin deposited on the surface of the HA coated quartz crystal functionalized with doxycycline shows a substantial increase when compared to the standard HA coated quartz crystal. The adsorbed albumin has also been found to be retained for an enhanced period of time. This surface immobilization of doxycycline and subsequent albumin adsorption seem to be a promising approach to confer biomaterials with antithrombogenic and antibacterial surfaces.
Guided growth of horizontal GaN nanowires on quartz and their transfer to other substrates.
Goren-Ruck, Lior; Tsivion, David; Schvartzman, Mark; Popovitz-Biro, Ronit; Joselevich, Ernesto
2014-03-25
The guided growth of horizontal nanowires has so far been demonstrated on a limited number of substrates. In most cases, the nanowires are covalently bonded to the substrate where they grow and cannot be transferred to other substrates. Here we demonstrate the guided growth of well-aligned horizontal GaN nanowires on quartz and their subsequent transfer to silicon wafers by selective etching of the quartz while maintaining their alignment. The guided growth was observed on different planes of quartz with varying degrees of alignment. We characterized the crystallographic orientations of the nanowires and proposed a new mechanism of "dynamic graphoepitaxy" for their guided growth on quartz. The transfer of the guided nanowires enabled the fabrication of back-gated field-effect transistors from aligned nanowire arrays on oxidized silicon wafers and the production of crossbar arrays. The guided growth of transferrable nanowires opens up the possibility of massively parallel integration of nanowires into functional systems on virtually any desired substrate.
Hudson, T.; Smith, James G.; Elliott, R.L.
1979-01-01
A large porphyry molybdenum deposit (Quartz Hill deposit) was recently discovered in the heart of the Coast Range batholithic complex about 70 km E of Ketchikan, SE Alaska. Intrusive rocks associated with the mineral deposit form two composite epizonal to hypabyssal stocks and many dikes in country rocks. All observed metallization and alteration is within the Quartz Hill stock. Molybdenite forms fracture coatings and occurs in veins with quartz. Alteration is widespread and includes development of secondary quartz, pyrite, K-feldspar, biotite, white mica, chlorite, and zeolite. Field relations indicate that the stocks were emplaced after regional uplift and erosion of the Coast Range batholithic complex, and K-Ar data show that intrusion and alteration took place in late Oligocene time, about 27 to 30 Ma ago. Data from the Ketchikan quadrangle indicate that porphyry molybdenum metallization in the Coast Range batholithic complex is associated with regionally extensive but spotty, middle Tertiary or younger, felsic magmatism. -from Authors
NASA Astrophysics Data System (ADS)
Kwon, Su-Yong; Kim, Jong-Chul; Choi, Buyng-Il
2008-11-01
Quartz crystal microbalance (QCM) dew-point sensors are based on frequency measurement, and so have fast response time, high sensitivity and high accuracy. Recently, we have reported that they have the very convenient attribute of being able to distinguish between supercooled dew and frost from a single scan through the resonant frequency of the quartz resonator as a function of the temperature. In addition to these advantages, by using three different types of heat sinks, we have developed a QCM dew/frost-point sensor with a very wide working temperature range (-90 °C to 15 °C). The temperature of the quartz surface can be obtained effectively by measuring the temperature of the quartz crystal holder and using temperature compensation curves (which showed a high level of repeatability and reproducibility). The measured dew/frost points showed very good agreement with reference values and were within ±0.1 °C over the whole temperature range.
Aeolian comminution experiments revealing surprising sandball mineral aggregates
NASA Astrophysics Data System (ADS)
Nørnberg, P.; Bak, E.; Finster, K.; Gunnlaugsson, H. P.; Iversen, J. J.; Jensen, S. Knak; Merrison, J. P.
2014-06-01
We have undertaken a set of wind erosion experiments on a simple and well defined mineral, quartz. In these experiments wind action is simulated by end over end tumbling of quartz grains in a sealed quartz flask. The tumbling induces collisions among the quartz grains and the walls of the flask. This process simulates wind action impact speed of ∼1.2 m/s. After several months of tumbling we observed the formation of a large number of spherical sand aggregates, which resemble small snowballs under optical microscopy. Upon mechanical load the aggregates are seen to be more elastic than quartz and their mechanical strength is comparable, though slightly lower than that of sintered silica aerogels. Aggregates of this kind have not been reported from field sites or from closed circulation systems. However, sparse occurrence might explain this, or in nature the concentration of the aggregate building particles is so low that they never meet and just appear as the most fine grained tail of the sediment particle size distribution.
Breyer, Maria G.; Kilroe-Smith, T. A.; Prinsloo, H.
1964-01-01
Kilroe-Smith and Breyer (1963) reported that in the early stages of silicosis in guinea-pigs exposed to the inhalation of quartz dust, before the formation of collagen, there were increases in the specific activities of the complete succinate oxidase system and succinate dehydrogenase. The effects on these enzymes of quartz dust have now been compared with the effects of the fibrogenically `inert' lampblack. Lampblack causes a slight increase in the specific activities of these enzymes but the effects are small compared to those caused by quartz. Lampblack also causes a much smaller increase in lung weight than quartz, thus the enzyme increases are roughly parallel to the rise in lung weight. It appears that the effects observed on the enzymes are part of the general pattern associated with the early stages of the development of silicosis. PMID:14106132
X-Ray Performance of Multilayer Diffraction Diagnostics
1989-11-13
wafers to fused quartz and superpolished Zerodur were used. Multilayers were deposited onto Si wafer substrates nd cleaved to rectangular sections 3.2...except it was noted that for depositions made on the supersmooth quartz and Zerodur substrates that the multilayer surfaces were slightly smoother than...values from the multilavers deposited on supersmooth quartz and Zerodur substrates were noticeabLe Lower than the U/Si multilav;ers on silicon
The solubility of quartz in water in the temperature interval from 25° to 300° C
Morey, G.W.; Fournier, R.O.; Rowe, J.J.
1962-01-01
the very slow rate at which dissolved silica polymerizes to species appropriate to act as nuclei for quartz growth. At the termination of the runs rotated at 75 rev/min, spikelike projections were present on many of the quartz grains. These are interpreted as indicating that abrasion was not the dominant cause for the great supersaturations which were obtained.
Saturation spectroscopy of calcium atomic vapor in hot quartz cells with cold windows
NASA Astrophysics Data System (ADS)
Vilshanskaya, E. V.; Saakyan, S. A.; Sautenkov, V. A.; Murashkin, D. A.; Zelener, B. B.; Zelener, B. V.
2018-01-01
Saturation spectroscopy of calcium atomic vapor was performed in hot quartz cells with cold windows. The Doppler-free absorption resonances with spectral width near 50 MHz were observed. For these experiments and future applications long-lived quartz cells with buffer gas were designed and made. A cooling laser for calcium magneto-optical trap will be frequency locked to the saturation resonances in the long-lived cells.
Quasi-equilibrium melting of quartzite upon extreme friction
NASA Astrophysics Data System (ADS)
Lee, Sung Keun; Han, Raehee; Kim, Eun Jeong; Jeong, Gi Young; Khim, Hoon; Hirose, Takehiro
2017-06-01
The friction on fault planes that controls how rocks slide during earthquakes decreases significantly as a result of complex fault-lubrication processes involving frictional melting. Fault friction has been characterized in terms of the preferential melting of minerals with low melting points--so-called disequilibrium melting. Quartz, which has a high melting temperature of about 1,726 °C and is a major component of crustal rocks, is not expected to melt often during seismic slip. Here we use high-velocity friction experiments on quartzite to show that quartz can melt at temperatures of 1,350 to 1,500 °C. This implies that quartz within a fault plane undergoing rapid friction sliding could melt at substantially lower temperatures than expected. We suggest that depression of the melting temperature is caused by the preferential melting of ultra-fine particles and metastable melting of β-quartz at about 1,400 °C during extreme frictional slip. The results for quartzite are applicable to complex rocks because of the observed prevalence of dynamic grain fragmentation, the preferential melting of smaller grains and the kinetic preference of β-quartz formation during frictional sliding. We postulate that frictional melting of quartz on a fault plane at temperatures substantially below the melting temperature could facilitate slip-weakening and lead to large earthquakes.
Synthesis and structure of a stuffed derivative of α-quartz, Mg 0.5AlSiO 4
Xu, Hongwu; Heaney, Peter J.; Yu, Ping; ...
2015-10-01
A structural derivative of quartz with the composition Mg 0.5AlSiO 4 has been grown from glass and characterized using synchrotron X-ray diffraction (XRD), transmission electron microscopy (TEM), and 29Si nuclear magnetic resonance (NMR) spectroscopy. Rietveld analysis of the XRD data indicates that the framework of Mg 0.5AlSiO 4 is isostructural with α-quartz, rather than β-quartz, as is consistent with previous theoretical modeling (Sternitzke and Müller 1991). Al and Si exhibit long-range disorder over the framework tetrahedral sites, indicated by the absence of the superlattice reflections corresponding to the doubling of c relative to that of quartz. Nevertheless, 29Si NMR measurementsmore » show that Al and Si exhibit partial short-range order with an ordering degree of 56%. Electron diffraction reveals superlattice reflections indicative of doubled periodicities along the a-axes. In conclusion, Fourier electron density maps show that Mg occupies channel sites that each are bonded to six O atoms, in contrast to the tetrahedral coordination of Li in the β-quartz-type framework for β-eucryptite, LiAlSiO 4. Furthermore, the concentrations of Mg in adjacent channels are different, resulting in framework distortions that generate the superstructures along a.« less
NASA Astrophysics Data System (ADS)
Randive, Kirtikumar; Hurai, Vratislav
2015-09-01
Unusual mafic dykes occur in the proximity of the Ambadongar Carbonatite Complex, Lower Narmada Valley, Gujarat, India. The dykes contain dense population of quartz xenocrysts within the basaltic matrix metasomatised by carbonate-rich fluids. Plagioclase feldspars, relict pyroxenes, chlorite, barite, rutile, magnetite, Fe-Ti oxides and glass were identified in the basaltic matrix. Quartz xenocrysts occur in various shapes and sizes and form an intricate growth pattern with carbonates. The xenocrysts are fractured and contain several types of primary and secondary, single phase and two-phase fluid inclusions. The two-phase inclusions are dominated by aqueous liquid, whereas the monophase inclusions are composed of carbonic gas and the aqueous inclusions homogenize to liquid between 226°C and 361°C. Majority of the inclusions are secondary in origin and are therefore unrelated to the crystallization of quartz. Moreover, the inclusions have mixed carbonic-aqueous compositions that inhibit their direct correlation with the crustal or mantle fluids. The composition of dilute CO2-rich fluids observed in the quartz xenocrysts appear similar to those exsolved during the final stages of evolution of the Amba Dongar carbonatites. However, the carbonates are devoid of fluid inclusions and therefore their genetic relation with the quartz xenocrysts cannot be established.
The role of macrophage mediators in respirable quartz-elicited inflammation
NASA Astrophysics Data System (ADS)
van Berlo, D.; Albrecht, C.; Knaapen, A. M.; van Schooten, F. J.; Schins, R. P. F.
2009-02-01
The instigation and persistence of an inflammatory response is widely considered to be critically important in quartz-induced lung cancer and fibrosis. Macrophages have been long recognised as a crucial player in pulmonary inflammation, but evidence for the role of type II epithelial cells is accumulating. Investigations were performed in the rat lung type II cell line RLE and the rat alveolar macrophage cell line NR8383 using Western blotting, NF-κB immunohistochemistry and qRT-PCR of the pro-inflammatory genes iNOS and COX-2, as well as the cellular stress gene HO-1. The direct effect of quartz on pro-inflammatory signalling cascades and gene expression in RLE cells was compared to the effect of conditioned media derived from quartz-treated NR8383 cells. Conditioned media activated the NF-κB signalling pathway and induced a far stronger upregulation of iNOS mRNA than quartz itself. Quartz elicited a stronger, progressive induction of COX-2 and HO-1 mRNA. Our results suggest a differentially mediated inflammatory response, in which reactive particles themselves induce oxidative stress and activation of COX-2, while mediators released from particle-activated macrophages trigger NF-κB activation and iNOS expression in type II cells.
Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids.
Uttenthaler, E; Schräml, M; Mandel, J; Drost, S
2001-12-01
Quartz crystal microbalance (QCM) sensors are widely used for determining liquid properties or probing interfacial processes. For some applications the sensitivity of the QCM sensors typically used (5-20 MHz) is limited compared with other biosensor methods. In this study ultrasensitive QCM sensors with resonant frequencies from 39 to 110 MHz for measurements in the liquid phase are presented. The fundamental sensor effect of a QCM is the decrease of the resonant frequency of an oscillating quartz crystal due to the binding of mass on a coated surface during the measurement. The sensitivity of QCM sensors increases strongly with an increasing resonant frequency and, therefore, with a decreasing thickness of the sensitive area. The new kind of ultrasensitive QCM sensors used in this study is based on chemically milled shear mode quartz crystals which are etched only in the center of the blank, forming a thin quartz membrane with a thick, mechanically stable outer ring. An immunoassay using a virus specific monoclonal antibody and a M13-Phage showed an increase in the signal to noise ratio by a factor of more than 6 for 56 MHz quartz crystals compared with standard 19 MHz quartz crystals, the detection limit was improved by a factor of 200. Probing of acoustic properties of glycerol/water mixtures resulted in an increase in sensitivity, which is in very good agreement with theory. Chemically milled QCM sensors strongly improve the sensitivity in biosensing and probing of acoustic properties and, therefore, offer interesting new application fields for QCM sensors.
Eguro, Toru; Aoki, Akira; Maeda, Toru; Takasaki, Aristeo Atsushi; Hasegawa, Mitsuru; Ogawa, Masaaki; Suzuki, Takanori; Yonemoto, Kazuaki; Ishikawa, Isao; Izumi, Yuichi; Katsuumi, Ichiroh
2009-10-01
Despite the recent increase in application of Er:YAG laser for various dental treatments, limited information is available regarding the contact tips. This study examined the changes in energy output and surface condition of quartz and sapphire contact tips after Er:YAG laser contact irradiation for tooth enamel ablation. Ten sets of unused quartz or sapphire contact tips were employed for contact irradiation to sound enamel of extracted teeth. The teeth were irradiated with Er:YAG laser at approximately 75 J/cm(2)/pulse and 20 Hz under water spray for 60 minutes. The energy output was measured before and every 5 minutes after irradiation, and the changes in morphology and chemical composition of the contact surface were analyzed. The energy output significantly decreased with time in both tips. The energy output from the sapphire tips was generally higher on average than that of the quartz. The contact surfaces of all the used quartz tips were concave and irregular. Most of the sapphire tips also appeared rough with crater formation and fractures, except for a few tips in which a high energy output and the original smooth surface were maintained. Spots of melted tooth substances were seen attached to the surface of both tips. In contact enamel ablation, the sapphire tip appeared to be more resistant than the quartz tip. The quartz tips showed similar patterns of energy reduction and surface alteration, whereas the sapphire tips revealed a wider and more characteristic variation among tips. Lasers Surg. Med. 41:595-604, 2009. (c) 2009 Wiley-Liss, Inc.
Additives for reducing the toxicity of respirable crystalline silica. SILIFE project
NASA Astrophysics Data System (ADS)
Monfort, Eliseo; López-Lilao, Ana; Escrig, Alberto; Jesus Ibáñez, Maria; Bonvicini, Guliana; Creutzenberg, Otto; Ziemann, Christina
2017-10-01
Prolonged inhalation of crystalline silica particles has long been known to cause lung inflammation and development of the granulomatous and a fibrogenic lung disease known as silicosis. The International Agency for Research on Cancer (IARC) has classified Respirable Crystalline Silica (RCS) in the form of quartz and cristobalite from occupational sources as carcinogenic for humans (category 1). In this regard, numerous studies suggest that the toxicity of quartz is conditioned by the surface chemistry of the quartz particles and by the density and abundance of silanol groups. Blocking these groups to avoid their interaction with cellular membranes would theoretically be possible in order to reduce or even to eliminate the toxic effect. In this regard, the main contribution of the presented research is the development of detoxifying processes based on coating technologies at industrial scale, since the previous studies reported on literature were carried out at lab scale. The results obtained in two European projects showed that the wet method to obtain quartz surface coatings (SILICOAT project) allows a good efficiency in inhibiting the silica toxicity, and the preliminary results obtained in an ongoing project (SILIFE) suggest that the developed dry method to coat quartz surface is also very promising. The development of both coating technologies (wet and a dry) should allow these coating technologies to be applied to a high variety of industrial activities in which quartz is processed. For this reason, a lot of end-users of quartz powders will be potentially benefited from a reduced risk associated to the exposure to RCS.
Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz
Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.
2015-01-01
Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.
NASA Astrophysics Data System (ADS)
Sawakuchi, A. O.; Jain, M.; Mineli, T. D.; Nogueira, L.; Bertassoli, D. J.; Häggi, C.; Sawakuchi, H. O.; Pupim, F. N.; Grohmann, C. H.; Chiessi, C. M.; Zabel, M.; Mulitza, S.; Mazoca, C. E. M.; Cunha, D. F.
2018-06-01
The Amazon region hosts the world's largest watershed spanning from high elevation Andean terrains to lowland cratonic shield areas in tropical South America. This study explores variations in optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL) signals in suspended silt and riverbed sands retrieved from major Amazon rivers. These rivers drain Pre-Cambrian to Cenozoic source rocks in areas with contrasting denudation rates. In contrast to the previous studies, we do not observe an increase in the OSL sensitivity of quartz with transport distance; for example, Tapajós and Xingu Rivers show more sensitive quartz than Solimões and Madeira Rivers, even though the latter have a significantly larger catchment area and longer sediment transport distance. Interestingly, high sensitivity quartz is observed in rivers draining relatively stable Central Brazil and Guiana shield areas (denudation rate ξ = 0.04 mmyr-1), while low sensitivity quartz occurs in less stable Andean terrains (ξ = 0.24 mmyr-1). An apparent linear correlation between quartz OSL sensitivity and denudation rate suggests that OSL sensitivity may be used as a proxy for erosion rates in the Amazon basin. Furthermore, luminescence sensitivity measured in sand or silt arises from the same mineral components (quartz and feldspar) and clearly discriminates between Andean and shield sediments, avoiding the grain size bias in provenance analysis. These results have implications for using luminescence sensitivity as a proxy for Andean and shield contributions in the stratigraphic record, providing a new tool to reconstruct past drainage configurations within the Amazon basin.
Consideration of Kaolinite Interference Correction for Quartz Measurements in Coal Mine Dust
Lee, Taekhee; Chisholm, William P.; Kashon, Michael; Key-Schwartz, Rosa J.; Harper, Martin
2015-01-01
Kaolinite interferes with the infrared analysis of quartz. Improper correction can cause over- or underestimation of silica concentration. The standard sampling method for quartz in coal mine dust is size selective, and, since infrared spectrometry is sensitive to particle size, it is intuitively better to use the same size fractions for quantification of quartz and kaolinite. Standard infrared spectrometric methods for quartz measurement in coal mine dust correct interference from the kaolinite, but they do not specify a particle size for the material used for correction. This study compares calibration curves using as-received and respirable size fractions of nine different examples of kaolinite in the different correction methods from the National Institute for Occupational Safety and Health Manual of Analytical Methods (NMAM) 7603 and the Mine Safety and Health Administration (MSHA) P-7. Four kaolinites showed significant differences between calibration curves with as-received and respirable size fractions for NMAM 7603 and seven for MSHA P-7. The quartz mass measured in 48 samples spiked with respirable fraction silica and kaolinite ranged between 0.28 and 23% (NMAM 7603) and 0.18 and 26% (MSHA P-7) of the expected applied mass when the kaolinite interference was corrected with respirable size fraction kaolinite. This is termed “deviation,” not bias, because the applied mass is also subject to unknown variance. Generally, the deviations in the spiked samples are larger when corrected with the as-received size fraction of kaolinite than with the respirable size fraction. Results indicate that if a kaolinite correction with reference material of respirable size fraction is applied in current standard methods for quartz measurement in coal mine dust, the quartz result would be somewhat closer to the true exposure, although the actual mass difference would be small. Most kinds of kaolinite can be used for laboratory calibration, but preferably, the size fraction should be the same as the coal dust being collected. PMID:23767881
NASA Astrophysics Data System (ADS)
Gruber, D.; Gootee, B.
2016-12-01
Citizen-scientists of the McDowell Sonoran Conservancy Field Institute originated and led this project to study milky quartz deposits. Milky quartz veins of all sizes are visible throughout the McDowell Sonoran Preserve (Scottsdale, Arizona) and are commonly found in Arizona Proterozoic rocks. No research on milky quartz has been done locally and little is known about its formation and emplacement history. Working with Brian Gootee, research geologist with the Arizona Geological Survey (AZGS), a citizen science team identified candidate study sites with large quartz veins and then conducted aerial balloon photography followed by geologic mapping, basic data collection, photo-documentation, and sampling from two sites. Samples were analyzed with a UV lamp, Geiger counter, and x-ray fluorescence spectrometer. Petroscopic analysis and interpretation of the samples were done by Gootee. Daniel Gruber, the citizen-science project leader, and Gootee summarized methodology, sample analyses, and interpretation in a report including detailed geologic maps. Analysis of samples from one site provided evidence of several events of Proterozoic quartz formation. The other site hosted pegmatite, cumulates, graphic granite and orbicular granite in association with milky quartz, all discovered by citizen scientists. The milky quartz and surrounding pegmatites in granite at this site trace the progression of late-stage crystallization at the margin of a fractionated granite batholith, providing an exemplary opportunity for further research into batholith geochemistry and evolution. The project required 1000 hours of citizen-science time for training, field work, data organization and entry, mapping, and writing. The report by Gootee and Gruber was reviewed and published by AZGS as an Open File Report in its online document repository. The citizen scientist team leveraged the time of professional geologists to expand knowledge of an important geologic feature of the McDowell Mountains.
Pollington, Anthony D.; Kozdon, Reinhard; Anovitz, Lawrence M.; ...
2015-12-01
The interpretation of silicon isotope data for quartz is hampered by the lack of experimentally determined fractionation factors between quartz and fluid. Further, there is a large spread in published oxygen isotope fractionation factors at low temperatures, primarily due to extrapolation from experimental calibrations at high temperature. We report the first measurements of silicon isotope ratios from experimentally precipitated quartz and estimate the equilibrium fractionation vs. dissolved silica using a novel in situ analysis technique applying secondary ion mass spectrometry to directly analyze experimental products. These experiments also yield a new value for oxygen isotope fractionation. Quartz overgrowths up tomore » 235 μm thick were precipitated in silica–H 2O–NaOH–NaCl fluids, at pH 12–13 and 250 °C. At this temperature, 1000lnα 30Si(Qtz–fluid) = 0.55 ± 0.10‰ and 1000lnα 18O(Qtz–fluid) = 10.62 ± 0.13‰, yielding the relations 1000lnα 30Si(Qtz–fluid) = (0.15 ± 0.03) * 10 6/T 2 and 1000lnα 18O(Qtz–fluid) = (2.91 ± 0.04) * 10 6/T 2 when extended to zero fractionation at infinite temperature. Values of δ 30Si(Qtz) from diagenetic cement in sandstones from the basal Cambrian Mt. Simon Formation in central North America range from 0 to ₋5.4‰. Paired δ 18O and δ 30Si values from individual overgrowths preserve a record of Precambrian weathering and fluid transport. In conclusion, the application of the experimental quartz growth results to observations from natural sandstone samples suggests that precipitation of quartz at low temperatures in nature is dominated by kinetic, rather than equilibrium, processes.« less
NASA Astrophysics Data System (ADS)
Frias, S. M. P.; Takahashi, R.; Imai, A.; Blamey, N.
2017-12-01
The Kay Tanda epithermal deposit in Lobo, Batangas, Philippines is mainly hosted in quartz-rich hydrothermal breccia and quartz veins. These contain varying gold grades with some reaching bonanza gold grades as high as 200 ppm Au. They also contain varying amounts of base metal sulfides such as sphalerite, galena, chalcopyrite and pyrite whose abundances increase with depth. Petrographic analysis of the samples revealed different quartz textures such as colloform textures in quartz veins at shallow levels and feathery, flamboyant and mosaic textures in the matrix of hydrothermal breccias at deeper levels. These textures are indicative of boiling conditions. To elucidate the fluid conditions, fluid source, composition and processes during the formation of the deposit, fluid inclusion microthermometry, quantitative fluid inclusion gas analysis and laser Raman spectroscopy were conducted. Doubly polished thin wafers prepared from the quartz veins and quartz crystals in the matrix of hydrothermal breccias. Microthermometric analysis of primary fluid inclusions included measurements of the freezing temperature Tf, the temperature of ice melting Tm, and the homogenization temperature of the fluid phase by disappearance of vapor Th. Liquid-to-vapor (L-V) ratios are variable, thus, liquid-rich liquid-vapor inclusions and vapor-rich liquid-vapor inclusions coexist in some samples. The sizes of the primary fluid inclusions may reach 100 micrometers. The homogenization temperatures range 200 °C to 380 °C, with the mode around 250 °C to 280 °C. Salinities range from 2 to 7 wt% NaCl equivalent, with the mode around 4 to 5 wt% NaCl equivalent. Trends of the distribution of fluid inclusion populations based on their homogenization temperature and salinity suggest boiling which is consistent with the variable liquid to vapor ratios, i.e. coexistence of liquid-rich inclusions and vapor-rich inclusions.
Consideration of kaolinite interference correction for quartz measurements in coal mine dust.
Lee, Taekhee; Chisholm, William P; Kashon, Michael; Key-Schwartz, Rosa J; Harper, Martin
2013-01-01
Kaolinite interferes with the infrared analysis of quartz. Improper correction can cause over- or underestimation of silica concentration. The standard sampling method for quartz in coal mine dust is size selective, and, since infrared spectrometry is sensitive to particle size, it is intuitively better to use the same size fractions for quantification of quartz and kaolinite. Standard infrared spectrometric methods for quartz measurement in coal mine dust correct interference from the kaolinite, but they do not specify a particle size for the material used for correction. This study compares calibration curves using as-received and respirable size fractions of nine different examples of kaolinite in the different correction methods from the National Institute for Occupational Safety and Health Manual of Analytical Methods (NMAM) 7603 and the Mine Safety and Health Administration (MSHA) P-7. Four kaolinites showed significant differences between calibration curves with as-received and respirable size fractions for NMAM 7603 and seven for MSHA P-7. The quartz mass measured in 48 samples spiked with respirable fraction silica and kaolinite ranged between 0.28 and 23% (NMAM 7603) and 0.18 and 26% (MSHA P-7) of the expected applied mass when the kaolinite interference was corrected with respirable size fraction kaolinite. This is termed "deviation," not bias, because the applied mass is also subject to unknown variance. Generally, the deviations in the spiked samples are larger when corrected with the as-received size fraction of kaolinite than with the respirable size fraction. Results indicate that if a kaolinite correction with reference material of respirable size fraction is applied in current standard methods for quartz measurement in coal mine dust, the quartz result would be somewhat closer to the true exposure, although the actual mass difference would be small. Most kinds of kaolinite can be used for laboratory calibration, but preferably, the size fraction should be the same as the coal dust being collected.
High exposure to respirable dust and quartz in a labour-intensive coal mine in Tanzania.
Mamuya, Simon H D; Bråtveit, Magne; Mwaiselage, Julius; Mashalla, Yohana J S; Moen, Bente E
2006-03-01
Labour-intensive mines are numerous in several developing countries, but dust exposure in such mines has not been adequately characterized. The aim of this study was to identify and quantify the determinants of respirable dust and quartz exposure among underground coal mine workers in Tanzania. Personal respirable dust samples (n = 134) were collected from 90 underground workers in June-August 2003 and July-August 2004. The development team had higher exposure to respirable dust and quartz (geometric means 1.80 and 0.073 mg m(-3), respectively) than the mining team (0.47 and 0.013 mg m(-3)), the underground transport team (0.14 and 0.006 mg m(-3)) and the underground maintenance team (0.58 and 0.016 mg m(-3)). The percentages of samples above the threshold limit values (TLVs) of 0.9 mg m(-3) for respirable bituminous coal dust and 0.05 mg m(-3) for respirable quartz, respectively, were higher in the development team (55 and 47%) than in the mining team (20 and 9%). No sample for the underground transport team exceeded the TLV. Drilling in the development was the work task associated with the highest exposure to respirable dust and quartz (17.37 and 0.611 mg m(-3), respectively). Exposure models were constructed using multiple regression model analysis, with log-transformed data on either respirable dust or quartz as the dependent variable and tasks performed as the independent variables. The models for the development section showed that blasting and pneumatic drilling times were major determinants of respirable dust and quartz, explaining 45.2 and 40.7% of the variance, respectively. In the mining team, only blasting significantly determined respirable dust. Immediate actions for improvements are suggested to include implementing effective dust control together with improved training and education programmes for the workers. Dust and quartz in this underground mine should be controlled by giving priority to workers performing drilling and blasting in the development sections of the mine.
Quartz phenocrysts preserve volcanic stresses at Long Valley and Yellowstone calderas
NASA Astrophysics Data System (ADS)
Befus, K. S.; Leonhardi, T. C.; Manga, M.; Tamura, N.; Stan, C. V.
2016-12-01
Magmatic processes and eruptions are the consequence of stresses active in volcanic environments. Few techniques are presently available to quantify those stresses because they operate in subsurface and/or hazardous environments, and thus new techniques are needed to advance our understanding of key processes. Here, we provide a dataset of volcanic stresses that were imparted to quartz crystals that traveled through, and were hosted within, pyroclastic and effusive eruptions from Long Valley and Yellowstone calderas. We measured crystal lattice deformation with submicron spatial resolution using the synchrotron X-ray microdiffraction beamline (12.3.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Quartz from all units produces diffraction patterns with residual strains locked in the crystal lattice. We used Hooke's Law and the stiffness constants of quartz to calculate the stresses that caused the preserved residual strains. At Long Valley caldera, quartz preserves stresses of 187±80 MPa within pumice clasts in the F1 fall unit of the Bishop Tuff, and preserves stresses of 120±45 MPa from the Bishop Tuff welded ignimbrite. At Yellowstone caldera quartz preserves stresses of 115±30 and 140±60 MPa within pumices from the basal fall units of the Mesa Falls Tuff and the Tuff of Bluff Point, respectively. Quartz from near-vent and flow-front samples from Summit Lake lava flow preserves stresses up to 130 MPa, and show no variation with distance travelled. We believe that subsurface processes cause the measured residual stresses, but it remains unclear if they are relicts of fragmentation or from the magma chamber. The residual stresses from both Long Valley and Yellowstone samples roughly correlate to lithostatic pressures estimated for the respective pre-eruption magma storage depths. It is possible that residual stress in quartz provides a new geobarometer for crystallization pressure. Moving forward, we will continue to perform analyses and experiments on natural and synthetic crystals to better determine the source of residual stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hui; Berlo, Damien van; Shi Tingming
2008-02-15
Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reducesmore » hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1{beta}) and tumour necrosis factor-alpha (TNF{alpha}). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure.« less
Shocked quartz and more: Impact signatures in K-T boundary clays and claystones
NASA Technical Reports Server (NTRS)
Bohor, Bruce F.
1988-01-01
Quartz grains displaying multiple sets of planar features are described from numerous Cretaceous-Tertiary (K-T) boundary clays and claystones at both marine and nonmarine depositional sites around the world. All these sites also show anomalously high amounts of iridium and enrichments of other siderophile elements in cosmic ratios within these boundary units. This combination of mineralogical and geochemical features are used in support of an impact hypothesis for the end-Cretaceous event. Recently, it was suggested that some combination of explosive and nonexplosive volcanism associated with the formation of the Deccan traps in India could be responsible for the mineralogy and geochemistry seen in the K-T boundary units. Besides the obvious contradition of simultaneous explosive and nonexplosive volcanism from one locality during an instant of geologic time, there remains the difficulty of spreading both iridium (and trace elements in cosmic proportions) and quartz grains around the world by volcanic (atmospheric) transport. In addition, the ability of volcanism to produce the type of shock metamorphism seen in minerals at the K-T boundary was not demonstrated. Multiple sets of shock lamellae in quartz are considered characteristic of shock metamorphism in rocks at the sites of known impact craters and are the type of deformation seen in quartz from K-T boundary clays and claystones. Single sets of poorly defined lamellae described from rare quartz grains in certain volcanic deposits are characteristic of tectonic deformation and do not correspond to the shock lamellae in quartz from K-T sediments and impact structures. So-called shock mosaicism in quartz and feldspar grains described from volcanic deposits can result from many processes other than shock metamorphism, and therefore is not considered to be an effect characteristic solely of shock. The mineralogy of shock-metamorphosed grains at the K-T boundary also argues against a volcanic origin.
NASA Astrophysics Data System (ADS)
Ernst, W. G.; Rumble, D.
2001-12-01
The White-Inyo Range + Owens Valley marks the western limit of the Basin and Range province, directly east of the Sierra Nevada. At Mount Barcroft, mid-Mesozoic, alkaline, bimodal White Mountain Peak metavolcanic + metaclastic rocks on the N are separated from Lower Cambrian siliciclastic + carbonate metasedimentary strata on the S by the NE-trending Middle Jurassic Barcroft mafic granodioritic pluton. It consists of mineralogically/chemically intergradational gabbro/diorite, granodiorite, metadiorite, and alaskite. Eastward, the section is intruded by the Late Cretaceous, ternary-minimum McAfee Creek Granite. Ignoring altered dikes, bulk-rock analyses of plutonic rocks indicate that metaluminous, I-type rocks of the Barcroft comagmatic suite possess an av(12) d18O value of 7.5. Slightly peraluminous, apparently S-type granitic rocks sensu stricto of the McAfee Creek series have an av(8) d18O value of 8.6. Evidence is lacking for large-scale bulk-rock interaction with near-surface waters, suggesting intermediate crustal depths of intrusion and cooling for these plutons. Coexisting Barcroft minerals exhibit consistent oxygen isotopic partitioning from high to low d18O in the sequence quartz > plagioclase > K-feldspar >> amphibole = biotite. Wall-rock quartz and biotite are richer in 18O than analogous phases in the plutonic rocks, and show slightly greater fractionations than igneous counterparts. Along its borders, late-stage exchange with heated aqueous fluids, derived from recrystallized wall rocks due to emplacement of the Middle Jurassic magma, increased 18O/16O ratios of dikes, and some Barcroft igneous plagioclase and subsolidus tremolite-actinolite. Oxygen isotope geothermometry for Barcroft quartz-amphibole and quartz-biotite pairs yields broadly similar temperatures; the combined average of 13 pairs is 519oC. A single quartz-biotite pair analyzed from a Lower Cambrian quartzite within the inner metamorphic aureole of the Barcroft pluton yields a temperature of 511oC, in agreement with values based on wall-rock metamorphic parageneses. Barcroft quartz, feldspars, biotite, and clinoamphiboles were subjected to exchange with deuteric fluid, and re-equilibrated under subsolidus conditions. Quartz-plagioclase pairs from two Barcroft granodiorites possess similar temperatures of 519 and 515oC, so also re-equilibrated at subsolidus temperatures. Areal distributions for quartz-plagioclase, quartz-clinoamphibole, and quartz-biotite pairs reveal that annealing temperatures are lowest in axial portions of the Barcroft granodioritic pluton. Late Cretaceous emplacement of the McAfee Creek Granite had little effect on d18O values of Barcroft minerals and bulk rocks.
Synchrotron generated X-ray Excited Optical Luminescence (XEOL) from Quartz
NASA Astrophysics Data System (ADS)
King, Georgina; Finch, Adrian; Robinson, Ruth
2010-05-01
Quartz is the preferred mineral for optically stimulated luminescence (OSL) dating, due to its well constrained behaviour as a radiation dosimeter. However, despite the plethora of successful quartz OSL applications, no solution has been found to the problem that some quartz luminesce more brightly than others, which has limited the application of OSL in certain settings. This has been addressed through examination of the luminescence emission using a variety of excitation techniques and emission spectroscopy. X-ray Excited Optical Luminescence (XEOL) is luminescence excited by x-rays produced by a synchrotron. XEOL analyses were conducted upon a suite of quartz samples at Diamond, Great Britain, which had previously been analysed with Ionoluminescence (IL), at Sussex University. The samples were selected to include quartz of both poor and excellent OSL sensitivities. Therefore, two Scottish glacial outwash samples prepared at St Andrews, and a calibration quartz sample, prepared at the Risø National Laboratory in Denmark were analysed for these properties respectively. The XEOL emission spectra comprised three major emissions at 3.32, 3.81 and 4.05 eV, and one weaker emission at 1.94 eV in all samples. The calibration quartz sample had the most intense emission by an order of magnitude. Throughout increased exposure to x-rays, the intensity of the UV emission reduced, and an increase in the red (1.94 eV) emission was recorded. The derived XEOL spectra complement the IL spectra obtained previously. The IL spectra were dominated by only two broad emissions at 3.2-3.1 eV and 1.8-1.7 eV. However, throughout the IL experiments a dose dependent effect was also observed, whereby the UV emission was depleted to the benefit of the red with increasing exposure. Furthermore the gradient of the power law relationship between the UV and red emission change with dose is similar for both the IL and XEOL data: at -1.15 and -1.05 respectively for calibration quartz, when plotted on a log-log scale. IL and XEOL are complimentary techniques, as although the radiation dose rate of XEOL is three orders of magnitude greater than that of IL, the total experimental administered dose is similar. This contrast in dose rate is caused by the significant variation is dose per carrier for each technique. Within IL each ion delivers 1E-01 J whereas each photon delivers 1E-15 J in XEOL. It is the much greater flux of photons relative to ions, which makes XEOL the more energetic mode of analysis. Thus these complimentary techniques enable investigation of radiation dose rate, as well as cumulative dose effects. The observed variations in the XEOL and IL derived emission spectra are therefore attributed to the differences in radiation dose rate. The radiation sensitivity of the quartz emission may provide an explanation for the varied luminescence response of different quartz. The quartz luminescence emission thus may not just record the most recent period of irradiation, but rather its entire radiation history.
Geospatializing The Klang Gate Quartz Ridge in Malaysia: A Technological Perspective
NASA Astrophysics Data System (ADS)
Azahari Razak, Khamarrul; Mohamad, Zakaria; Zaki Ibrahim, Mohd; Azad Rosle, Qalam; Hattanajmie Abd Wahab, Mohd; Abu Bakar, Rabieahtul; Mohd Akib, Wan Abdul Aziz Wan
2015-04-01
Establishment of inventories on geological heritage, or geoheritage resources is a step forward for a comprehensive geoheritage management leading to a better conservation at national and global levels. Compiling and updating inventory of geoheritage is a tedious process and even so in a tropical environment. Malaysia has a tremendous list of geodiversity and generating its national database is a multi-institutional effort and worthwhile investment. However, producing accurate and reliable characteristics of such landform and spectacular geological features remained elusive. The advanced and modern mapping techniques have revolutionized the mapping, monitoring and modelling of the earth surface processes and landforms. Yet the methods for quantification of geodiversity physical features are not fully utilized in Malaysia for a better understanding its processes and activity. This study provides a better insight into the use of advanced active remote sensing technology for characterizing the forested Quartz Ridge in Malaysia. We have developed the novel method and tested in the Klang Gates Quartz Ridge, Selangor. The granitic country rock made up by quartz mineral is known as the longest quartz ridge in Malaysia and characterized by rugged topography, steep slopes, densely vegetated terrain and also rich-biodiversity area. This study presents an integrated field methodological framework and processing scheme by taking into account the climatic, topographic, geologic, and anthropogenic challenges in an equatorial region. Advanced terrestrial laser scanning system was used to accurately capture, map and model the ridge carried out within a relatively stringent time period. The high frequency Global Navigation Satellite System and modern Total Station coupled with the optical satellite and radar imageries and also advanced spatial analysis were fully utilized in the field campaign and data assessment performed during the recent monsoon season. As a result, the mapping and characterization of Quartz Ridge has shown promising results and advancing some hypothesis. The modern topographic laser scanning system proved suitable for such complex environment. The Quartz Ridge in Genting Klang, Selangor, believed to be the longest ridge in the world are now preserved in a digital form and can be quantitatively analysed. Many primary and secondary data can be generated and contributed to other studies, e.g. the determination of instability slope zone and rock-fall assessment along the ridge. Remarkably, this study is a first scientific exploration on the use of advanced geo-information tool, notably laser-based mapping to record, identify, and characterize the Quartz Ridge in Genting Klang, Selangor. The recent and modern geospatial data of tropical quartz in an urban forested environment provides technical and scientific spatial data of the longest quartz ridge. The geodatabase of Klang Gate Quartz Ridge allows the integration of multi-sensor-scales of remotely sensed data with other flora and fauna data in the area. As a conclusion, this study provides an accurate physical characteristic of prominent geological structures in Selangor, and its geospatial data is leading to a better compilation of comprehensive digital record of Quartz Ridge for conserving national geoheritage, promoting geotourism, and supporting its listing effort to the UNESCO's World Heritage Site in the near future.
Surface-Cycling of Rhenium and its Isotopes
2009-06-01
Fisher Scientific) in the WHOI plasma facility. Samples were introduced using a PFA MicroFlow nebulizer (Elemental Scientific Incorporated), a quartz...Samples were introduced using a PFA MicroFlow nebulizer (Elemental Scientific Incorporated), a quartz spray chamber, and regular cones. Analyses are done in...189Os. Samples dissolved in 1 mL of 0.5 molL−1 HNO3 are introduced using a PFA MicroFlow nebulizer (Elemental Scientific Incorporated), a quartz spray
Enhanced red photoluminescence of quartz by silicon nanocrystals thin film deposition
NASA Astrophysics Data System (ADS)
Momeni, A.; Pourgolestani, M.; Taheri, M.; Mansour, N.
2018-03-01
The room-temperature photoluminescence properties of silicon nanocrystals (SiNCs) thin film on a quartz substrate were investigated, which presents the red emission enhancement of quartz. We show that the photoluminescence intensity of quartz, in the wavelength range of 640-700 nm, can be enhanced as much as 15-fold in the presence of the SiNCs thin film. Our results reveal that the defect states at the SiNCs/SiO2 interface can be excited more efficiently by indirect excitation via the SiNCs, leading to the prominent red photoluminescence enhancement under the photo-excitation in the range of 440-470 nm. This work suggests a simple pathway to improve silicon-based light emitting devices for photonic applications.
1988-01-01
the AT-Cut - C.R. Tellier 1-38-3 The Growth of High Purity Low 1-40-26 Computer Modeling of Point Defects Dislocation Quartz - A.F. in Quartz - T.M...and Etch Rate in AT, BT, X, and Y-cut Plates - C.R. 1-40-70 Developmental Results for the Tellier Production of High Quality Quartz - J.F. Balascio and...Material in High Simulation of Quartz Crystal Etched Temperature, High Stress Figures - C.R. Tellier , N. Vialle Applications - J.A. Kusters and G.S. and
NASA Astrophysics Data System (ADS)
Grim, Gary; Eckart, Mark; Hartouni, Edward; Hatarik, Robert; Moore, Alastair; Root, Jaben; Sayre, Daniel; Schlossberg, David; Waltz, Cory
2017-10-01
In mid-2017 the NIF implemented quartz based neutron time-of-flight (nToF) detectors which have a faster and narrower impulse response function (IRF) relative to traditional scintillator detectors. In this presentation we report on comparisons between fusion neutron first moments as measured by quartz and scintillator based detectors using DT layered implosions at the NIF. We report on the change in precision presaged by the quartz converter and quantify the change in both in shot, line-of-site velocity variability. as well as, shot-to-shot variation. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-734511-DRAFT.
Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado
Harrison, J.E.; Wells, J.D.
1956-01-01
The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite gneiss, granite gneiss and pegmatite, granodiorite, and quartz diorite and associated hornblendite are metamorphosed during this period. The second period of folding appears to have been the reflection at depth of faulting nearer the surface; it resulted in crushing as well as some folding of the already folded rocks into terrace and monoclinal folds that plunge gently east-northeast. The biotite-muscovite granite, which is the youngest major Precambrian rock unit, is both concordant (phacolithic) and crosscutting along the older fold system and has been fractured by the younger fold system.
NASA Astrophysics Data System (ADS)
Zeng, Qingdong; He, Huaiyu; Zhu, Rixiang; Zhang, Song; Wang, Yongbin; Su, Fei
2017-08-01
The Haigou lode deposit contains 40 t of gold at an average grade of 3.5 g/t, and is one of the largest deposits in the Jiapigou gold belt located along the eastern segment of the northern margin of the North China Craton. The deposit comprises 15 gold-bearing quartz veins hosted in a Carboniferous monzonite-monzogranite stock. Cretaceous dikes consisting of diorite, diabase, and granodiorite porphyries are well developed in the deposit. The diorite porphyry dikes (130.4 ± 6.3 Ma) occur together with gold-bearing quartz veins in NNE- and NE-striking faults. Gold-bearing quartz veins crosscut the diorite porphyry dikes, and the veins are in turn crosscut by E-W-striking 124.6 ± 2.2 Ma granodiorite porphyry dikes. The mineralization mainly occurs as auriferous quartz veins with minor amounts of sulfide minerals, including pyrite, galena, chalcopyrite, and molybdenite. Gold occurs as either native gold or calaverite. Common gangue minerals in the deposit include quartz, sericite, and calcite. The deposit is characterized by various types of hydrothermal alteration, including silicification, sericitization, chloritization, potassic alteration, and carbonatization. Three stages of hydrothermal activity have been recognized in the deposit: (1) a barren quartz stage; (2) a polymetallic sulfide (gold) stage; (3) a calcite stage. Fluid inclusions in hydrothermal pyrites have 3He/4He ratios of 0.3 to 3.3 Ra and 40Ar/36Ar ratios of 351 to 1353, indicating mixing of fluids of mantle and crustal origin. Hydrothermal quartz yielded δ18O values of -1.3‰ to +7.2‰ and δD values of fluid inclusions in the quartz vary between -80‰ and -104‰. These stable isotope data also suggest mixing of magmatic and meteoric fluids. Noble gas and stable isotopic data suggest that the ore fluids have a predominant mantle source with a significant crustal component. Based on the spatial association of gold-bearing quartz veins with early Cretaceous intrusions, and the H-O-He-Ar isotopic data from the deposit and intrusions, we propose that gold mineralization in the Haigou deposit was formed in an extensional setting and was related to the early Cretaceous, mantle-derived intrusions.
Interpreting Assemblages with Titanite (Sphene): It Does not have to be Greek to You.
NASA Technical Reports Server (NTRS)
Xirouchakis, Dimitrios M.; Lindsley, Donald H.; McKay, Gordon A. (Technical Monitor)
2000-01-01
Assemblages with titanite, pyroxene(s), olivine, ilmenite, magnetite, and quartz can be used to constrain the intensive and compositional variables that operate during crystallization. Such assemblages are relatively rare in metamorphic rocks, but they are more common in igneous rocks and more frequently reported in plutonic than volcanic rocks. We used the program QUILF, enhanced with thermodynamic data for titanite, to compute stable reactions among titanite (CaTiOSiO4), Fe-Mg-Ti ilmenite and magnetite (hereafter ilmenite and magnetite), Ca-Mg-Fe pyroxenes and olivine, and quartz, and to evaluate some of the factors that control titanite stability. Calculations at 1, 3, and 6 Kbar and 650, 850, 1100 0 C, in the system CaO - MgO - FeO Fe2O3 - TiO2 - SiO2, suggest that the reactions: Augitc + Ilmenite = Titanite + Magnetite + Quartz and Augite + Ilmenite + Quartz = Titanite + Orthopyroxene, impose well defined fugacity of O2, alpha(sub SiO2), , and compositional restrictions to the assemblages: (1) Titanite + Magnetite + Quartz, (2) Titanite + Orthopyroxene, (3) Augite + Ilmenite, and consequently titanite stability. From our calculations in this system we can draw the following general conclusions: (1) The assemblage Titanite + Magnetite + Quartz is always a good indicator of relatively high fugacity of O2, and it is likely more common in relatively iron-rich bulk compositions and for decreasing temperature and pressure conditions. (2) At high temperatures (>= 650 C) titanite is not stable in quartz-saturated rocks that contain the assemblage Orthopyroxene + Augite + Ilmenite + Magnetite. (3) In quartz-saturated rocks the coexistence of titanite and magnetite with either orthopyroxene or olivine requires a confluence of conditions relating bulk composition, fugacity of O2, and slow cooling. Thus, such assemblages must be rare. (4) Regardless of T and fugacity of O2 conditions, and bulk-composition, titanite is not stable in quartz-absent rocks that contain Olivine + Orthopyroxene + Augite + Ilmenite + Magnetite. Decreasing temperature and pressure conditions appear to favor titanite crystallization, thus, it is not unsurprising that titanite is frequently observed in slowly cooled rocks, albeit, in association with amphibole. We argue that the titanite + amphibole association is likely favored by high water activity, regardless of oxygen fugacity. Because water activity increases during crystallization of a pluton, the association titanite + amphibole, and consequently titanite, is likely to be more common in plutonic rocks than in volcanic rocks.
Genomic instability in quartz dust exposed rat lungs: Is inflammation responsible?
NASA Astrophysics Data System (ADS)
Albrecht, C.; Knaapen, A. M.; Cakmak Demircigil, G.; Coskun, Erdem; van Schooten, F. J.; Borm, P. J. A.; Schins, R. P. F.
2009-02-01
Exposure to quartz dusts has been associated with lung cancer and fibrosis. Although the responsible mechanisms are not completely understood, progressive inflammation with associated induction of persistent oxidative stress has been discussed as a key event for these diseases. Previously we have evaluated the kinetics of pulmonary inflammation in the rat model following a single intratracheal instillation of 2mg DQ12 quartz, either in its native form or upon its surface modification with polyvinylpyridine-N-oxide or aluminium lactate. This model has been applied now to evaluate the role of inflammation in the kinetics of induction of DNA damage and response at 3, 7, 28, and 90 days after treatment. Bronchoalveolar lavage (BAL) cell counts and differentials as well as BAL fluid myeloperoxidase activity were used as markers of inflammation. Whole lung homogenate was investigated to determine the induction of the oxidative and pre-mutagenic DNA lesion 8-hydroxy-2-deoxy-guanosine (8-OHdG) by HPLC/ECD, while mRNA and protein expression of oxidative stress and DNA damage response genes including hemeoxygenase-1 (HO-1) and apurinic/apyrimidinic endonuclease (APE/Ref-1) were evaluated using Western blotting and real time PCR. Isolated lung epithelial cells from the treated rats were used for DNA strand breakage analysis using the alkaline comet assay as well as for micronucleus scoring in May-Gruenwald-Giemsa stained cytospin preparations. In the rats that were treated with quartz, no increased 8-OHdG levels were observed, despite the presence of a marked and persistent inflammation. However, DNA strand breakage in the lung epithelial cells of the quartz treated rats was significantly enhanced at 3 days, but not at 28 days. Moreover, significantly enhanced micronucleus frequencies were observed for all four time points investigated. In the animals that were treated with the PVNO modified quartz, micronuclei scores did not differ from controls, while in those treated with the aluminium coated quartz intermediate effects were found. These findings were in line with the kinetics of inflammation and epithelial proliferation in the rat lungs for the different treatments. Notably, a highly significant correlation was observed between neutrophil numbers and micronucleus frequencies, indicative for a role of inflammation in eliciting genomic instability in target cells of quartz-induced carcinogenesis. Our ongoing investigations focus on the evaluation of the causality between both in relation to quartz exposure.
NASA Astrophysics Data System (ADS)
Tomioka, N.; Tani, R.; Kayama, M.; Chang, Y.; Nishido, H.; Kaushik, D.; Rae, A.; Ferrière, L.; Gulick, S. P. S.; Morgan, J. V.
2017-12-01
The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, was drilled by the joint IODP-ICDP Expedition 364 in April-May 2016. This expedition is the first attempt to obtain materials from the topographic peak ring within the crater previously identified by seismic imaging. A continuous core was successfully recovered from the peak ring at depths between 505.7 and 1334.7 mbsf. Uplifted, fractured, and shocked granitic basement rocks forming the peak ring were found below, in the impact breccia and impact melt rock unit (747.0-1334.7 mbsf; Morgan et al. 2016). In order to constrain impact crater formation, we investigated shock pressure distribution in the peak-ring basement rocks. Thin sections of the granitic rocks were prepared at intervals of 60 m. All the samples contains shocked minerals, with quartz grains frequently showing planar deformation features (PDFs). We determined shock pressures based on the cathodoluminescence (CL) spectroscopy of quartz. The strong advantage of the CL method is its applicability to shock pressure estimation for individual grains for both quartz and diaplectic SiO2 glass with high-spatial resolution ( 1 μm) (Chang et al. 2016). CL spectra of quartz shows a blue emission band caused by shock-induced defect centers, where its intensity increases with shock pressure. A total of 108 quartz grains in ten thin sections were analyzed using a scanning electron microscope with a CL spectrometer attached (an acceleration voltage of 15 kV and a beam current of 2 nA were used). Natural quartz single crystals, which were experimentally shocked at 0-30 GPa, were used for pressure calibration. CL spectra of all the quartz grains in the basement rocks showed broad blue emission band at the wavelength range of 300-500 nm and estimated shock pressures were in the range of 15-20 GPa. The result is consistent with values obtained from PDFs analysis in quartz using the universal stage (Ferrière et al. 2017; Rae et al. 2017). Although shock pressure gradient in the drilled section is small, the pressure slightly increases at depths of 1113.7 and 1167.0 m. The shock pressure variation could be due to dynamic perturbation of the basement rock during peak ring formation.
NASA Astrophysics Data System (ADS)
Romanelli, Maurizio; Di Benedetto, Francesco; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio
2015-05-01
A study is undertaken to ascertain whether changes in the speciation of inorganic radicals are occurring during the ceramic industrial production that involves abundant silica powders as raw material. Industrial dusts were sampled in two ceramic firms, immediately after the wet mixing stage, performed with the aid of a relevant pressure. The dusts were then characterised by means of X-ray diffraction, analysis of the trace elements through chemical methods, granulometry, continuous-wave electron paramagnetic resonance (EPR) and pulsed electron spin echo envelope modulation (ESEEM) spectroscopies. The results of the characterisation point to a relevant change in the speciation of the two samples; namely, a prevailing contribution due to an inorganic radical different from that pertaining to pure quartz is pointed out. The combined interpretation of EPR and ESEEM data suggests the attribution of the main paramagnetic contribution to the A-centre in kaolinite, a constituent that is added to pure quartz at the initial stage of the ceramic production. In one of the two samples, a second weak EPR signal is attributed to the quartz's hAl species. By taking into account the relative quantities of quartz and kaolinite mixed in the two samples, and the relative abundances of the two radical species, we propose that the partial or complete suppression of the hAl species in favour of the A-centre of kaolinite has occurred. Although this change is apparently fostered by the mixture between quartz and another radical-bearing raw material, kaolinite, the suppression of the hAl centre of quartz is ascribed to the role played by the pressure and the wet environment during the industrial mixing procedure. This suppression provides a net change of radical speciation associated with quartz, when this phase is in contact with workers' respiratory system.
NASA Astrophysics Data System (ADS)
Mecchia, Marco; Sauro, Francesco; Piccini, Leonardo; De Waele, Jo; Sanna, Laura; Tisato, Nicola; Lira, Jesus; Vergara, Freddy
2014-04-01
In situ measurements of discharge, pH, electric conductivity (EC), temperature, and SiO2 content have been carried out during five expeditions in the last 20 years on the summit plateaus, inside caves and along the rivers of the surrounding lowlands of three tepui massifs in Venezuela (Auyan, Roraima, and Chimanta). Additionally, detailed chemical analyses were performed on waters sampled in a newly discovered extensive quartz-sandstone cave system on the Auyan Tepui. Rock samples of the quartz-sandstone bedrock from different locations have been analysed to obtain their chemical composition with a wavelength dispersive X-ray fluorescence spectrometer. These data show that the majority of silica present in surface and subsurface water comes from dissolution of quartz and only in minor amount from hydrolysis of other silicate minerals. Probably the presence of a hardened crust of iron hydroxides limits the dissolution of silica on the top surface of tepuis. Dissolution in the subsurface, instead, is more significant and causes, in the long term, the “arenisation” of the quartz-sandstone and its subsequent removal by mechanical erosion. On the other hand, waters flowing on the arkosic rock outcropping on the lowland below the tepuis obtain their high dissolved silica content mainly from hydrolysis of silicates. The morphological evolution of these table mountains appears thus to be controlled mainly by the underground weathering of the quartz-sandstone, with the opening of deep fractures (grietas) and the collapse of large underground horizontal cave systems. Scarp retreat, instead, seems to be related to the higher weathering rate of the more arkosic formations underlying the quartz-sandstones.
Aluminum affects heterogeneous Fe(III) (Hydr)oxide nucleation, growth, and ostwald ripening.
Hu, Yandi; Li, Qingyun; Lee, Byeongdu; Jun, Young-Shin
2014-01-01
Heterogeneous coprecipitation of iron and aluminum oxides is an important process for pollutant immobilization and removal in natural and engineered aqueous environments. Here, using a synchrotron-based small-angle X-ray scattering technique, we studied heterogeneous nucleation and growth of Fe(III) (hydr)oxide on quartz under conditions found in acid mine drainage (at pH = 3.7 ± 0.2, [Fe(3+)] = 10(-4) M) with different initial aqueous Al/Fe ratios (0:1, 1:1, and 5:1). Interestingly, although the atomic ratios of Al/Fe in the newly formed Fe(III) (hydr)oxide precipitates were less than 1%, the in situ particle size and volume evolutions of the precipitates on quartz were significantly influenced by aqueous Al/Fe ratios. At the end of the 3 h experiments, with aqueous Al/Fe ratios of 0:1, 1:1, and 5:1, the average radii of gyration of particles on quartz were 5.7 ± 0.3, 4.6 ± 0.1, and 3.7 ± 0.3 nm, respectively, and the ratio of total particle volumes on quartz was 1.7:3.4:1.0. The Fe(III) (hydr)oxide precipitates were poorly crystallized, and were positively charged in all solutions. In the presence of Al(3+), Al(3+) adsorption onto quartz changed the surface charge of quartz from negative to positive, which caused the slower heterogeneous growth of Fe(III) (hydr)oxide on quartz. Furthermore, Al affected the amount of water included in the Fe(III) (hydr)oxides, which can influence their adsorption capacity. This study yielded important information usable for pollutant removal not only in natural environments, but also in engineered water treatment processes.
NASA Astrophysics Data System (ADS)
Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie
2015-05-01
Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.
NASA Astrophysics Data System (ADS)
Prakash, Abhishek; Piazolo, Sandra; Saha, Lopamudra; Bhattacharya, Abhijit; Pal, Durgesh Kumar; Sarkar, Saheli
2018-03-01
In the present study we investigate the microstructural development in mullite, quartz and garnet in an anatectic migmatite hosted within a Grenvillian-age shear zone in the Aravalli-Delhi Fold Belt. The migmatite exhibits three main deformation structures and fabrics (S1, S2, S3). Elongated garnet porphyroblasts are aligned parallel to the metatexite S2 layers and contain crenulation hinges defined by biotite-sillimanite-mullite-quartz (with S1 axial planar foliation). Microstructural evidence and phase equilibrium relations establish the garnet as a peritectic phase of incongruent melting by breakdown of biotite, sillimanite ± mullite and quartz at peak P-T of 8 kbar, 730 °C along a tight-loop, clockwise P-T path. Monazite dating establishes that the partial melting occurred between 1000 and 870 Ma. The absence of subgrains and systematic crystal lattice distortions in these garnets despite their elongation suggests growth pseudomorphing pre-existing 3-D networks of S1 biotite aggregates rather than high-temperature crystal plastic deformation which is noted in the S1 quartz grains that exhibit strong crystallographic preferred orientation (CPO), undulatory extinction and subgrains. Mode-I fractures in these garnet porphyroblasts induced by high melt pressure during late stage of partial melt crystallization are filled by retrograde biotite-sillimanite. Weak CPO and non-systematic crystal lattice distortions in the coarse quartz grains within the S2 leucosome domains indicate these crystallized during melt solidification without later crystal plastic deformation overprint. In the later stages of deformation (D3), strain was mostly accommodated in the mullite-biotite-sillimanite-rich restite domains forming S3 which warps around garnet and leucosome domains; consequently, fine-grained S3 quartz does not exhibit strong CPOs.
Investigations on Local Quartz Sand for Application in Glass Industry
NASA Astrophysics Data System (ADS)
Dararutana, Pisutti; Chetanachan, Prukswan; Wathanakul, Pornsawat; Sirikulrat, Narin
2009-03-01
Silica or glass sand is a special type of quartz sand that is suitable for glass-making, because of its high silica content, and its low content of iron oxide and other compounds. In Thailand, deposits of quartz sand are found as the beach and the river sands in many areas; eastern, southern, northeastern and northern. In this work, grain-size distribution and chemical analyses were carried out on 10 sand samples taken from various localities in Thailand such as Chanthaburi, Trat, Rayong, Chumphon, Nakhon Si, Pattani, Phuket, Songkhla, Nong Khai, and Tak provinces. The geological resources show that most of them are the surface-to-near-surface glass sand deposits. The sand grains in most deposits were mainly angular-to-rounded, except in some areas of either angular or rounded grains. Chemical analysis showed that the sands contained more than 95wt% silica and low content of Fe, Al, Ca, Mg, Na, and K. The concentration levels of these components in the samples confirm with internationally acceptable standard for glass production. The quartz sand dressing plants that used the spiral classifier to improve the properties of the quartz sands to meet the standard specifications are mostly located in the eastern area. It can be concluded that most of the quartz sand deposits in Thailand investigated show well-sorted grain-size with considerable purity, i.e. high-grade quality. The advanced works resulted in that these raw quartz sands can be used as raw material for fabrication of soda-lime, lead crystal, and lead-free high refractive index glasses. The colorless and various colored glass products have been satisfactorily used in the domestic art and glass manufactures.
Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy.
Farcas, Daniel; Lee, Taekhee; Chisholm, William P; Soo, Jhy-Charm; Harper, Martin
2016-01-01
The objective of this article is to compare and characterize nylon, polypropylene (PP), and polyvinyl chloride (PVC) membrane filters that might be used to replace the vinyl/acrylic co-polymer (DM-450) filter currently used in the Mine Safety and Health Administration (MSHA) P-7 method (Quartz Analytical Method) and the National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods 7603 method (QUARTZ in coal mine dust, by IR re-deposition). This effort is necessary because the DM-450 filters are no longer commercially available. There is an impending shortage of DM-450 filters. For example, the MSHA Pittsburgh laboratory alone analyzes annually approximately 15,000 samples according to the MSHA P-7 method that requires DM-450 filters. Membrane filters suitable for on-filter analysis should have high infrared (IR) transmittance in the spectral region 600-1000 cm(-1). Nylon (47 mm, 0.45 µm pore size), PP (47 mm, 0.45 µm pore size), and PVC (47 mm, 5 µm pore size) filters meet this specification. Limits of detection and limits of quantification were determined from Fourier transform infrared spectroscopy (FTIR) measurements of blank filters. The average measured quartz mass and coefficient of variation were determined from test filters spiked with respirable α-quartz following MSHA P-7 and NIOSH 7603 methods. Quartz was also quantified in samples of respirable coal dust on each test filter type using the MSHA and NIOSH analysis methods. The results indicate that PP and PVC filters may replace the DM-450 filters for quartz measurement in coal dust by FTIR. PVC filters of 5 µm pore size seemed to be suitable replacement although their ability to retain small particulates should be checked by further experiment.
NASA Astrophysics Data System (ADS)
Kubač, Alexander; Chovan, Martin; Koděra, Peter; Kyle, J. Richard; Žitňan, Peter; Lexa, Jaroslav; Vojtko, Rastislav
2018-03-01
The Au-Ag-Pb-Zn-Cu epithermal deposit Banská Hodruša of intermediate-sulphidation type is located in the Middle Miocene Štiavnica stratovolcano on the inner side of the Carpathian arc in Slovakia. This deposit represents an unusual subhorizontal multi-stage vein system, related to processes of underground cauldron subsidence and exhumation of a subvolcanic granodiorite pluton. Veins are developed on a low-angle normal shear zone, possibly representing a detachment zone in andesitic wall rocks that formed during emplacement and exhumation of the granodiorite pluton. The deposit consists of two parts, separated by a thick sill of quartz-diorite porphyry. The eastern part is currently mined, and the western part has already been depleted. The Banská Hodruša mineralization was formed during four stages: (1) low-grade silicified breccia at subhorizontal structures at the base of the deposit; (2) stockwork of steep veins with rhodonite-rhodochrosite, quartz-sulphide-carbonate and quartz-gold assemblages; (3) thin quartz-gold veins with medium dip in tension cracks inside the shear zone and complementary detachment hosted quartz-base metals-gold veins; (4) Post-ore veins. Gold and electrum (920-730) occur as intergrowths with base metal sulphides or hosted in quartz and carbonates, accompanied by Au-Ag tellurides (hessite, petzite). Rare Te-polybasite and Cu-cervelleite result from re-equilibration of early Te-bearing minerals during cooling. Sulphide minerals include low Fe sphalerite ( 1.25 wt%), galena, chalcopyrite, and pyrite. The wall rock alteration is represented mostly by adularia, illite, chlorite, quartz, calcite and pyrite. Precipitation of gold, Au-Ag tellurides, Mn-bearing minerals and adularia resulted from boiling of fluids due to hydraulic fracturing, as well as opening of dilatational structures within the shear zone.
Microbially induced separation of quartz from calcite using Saccharomyces cerevisiae.
Padukone, S Usha; Natarajan, K A
2011-11-01
Cells of Saccharomyces cerevisiae and their metabolites were successfully utilized to achieve selective separation of quartz and calcite through microbially induced flotation and flocculation. S. cerevisiae was adapted to calcite and quartz minerals. Adsorption studies and electrokinetic investigations were carried out to understand the changes in the surface chemistry of yeast cells and the minerals after mutual interaction. Possible mechanisms in microbially induced flotation and flocculation are outlined. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Payne, L. L.
1982-01-01
The strength of the bond between optically contacted quartz surfaces was investigated. The Gravity Probe-B (GP-B) experiment to test the theories of general relativity requires extremely precise measurements. The quartz components of the instruments to make these measurements must be held together in a very stable unit. Optical contacting is suggested as a possible method of joining these components. The fundamental forces involved in optical contacting are reviewed and relates calculations of these forces to the results obtained in experiments.
NASA Astrophysics Data System (ADS)
Zheng, Huadan; Dong, Lei; Wu, Hongpeng; Yin, Xukun; Xiao, Liantuan; Jia, Suotang; Curl, Robert F.; Tittel, Frank K.
2018-01-01
During the past 15 years since the first report of quartz enhanced photoacoustic spectroscopy (QEPAS), QEPAS has become one of the leading optical techniques for trace chemical gas sensing. This paper is a review of the current state-of-the art of QEPAS. QEPAS based spectrophones with different acoustic micro-resonators (AmR) configurations employing both standard quartz tuning forks (QTFs) and custom-made QTFs are summarized and discussed in detail.
Anisotropy of synthetic quartz electrical conductivity at high pressure and temperature
NASA Astrophysics Data System (ADS)
Wang, Duojun; Li, Heping; Yi, Li; Matsuzaki, Takuya; Yoshino, Takashi
2010-09-01
AC measurements of the electrical conductivity of synthetic quartz along various orientations were made between 0.1 and 1 MHz, at ˜855˜1601 K and at 1.0 GPa. In addition, the electrical conductivity of quartz along the c axis has been studied at 1.0-3.0 GPa. The impedance arcs representing bulk conductivity occur in the frequency range of 103-106 Hz, and the electrical responses of the interface between the sample and the electrode occur in the 0.1˜103 Hz range. The pressure has a weak effect on the electrical conductivity. The electrical conductivity experiences no abrupt change near the α - β phase transition point. The electrical conductivity of quartz is highly anisotropic; the electrical conductivity along the c axis is strongest and several orders of magnitude larger than in other directions. The activation enthalpies along various orientations are determined to be 0.6 and 1.2 eV orders of magnitude, respectively. The interpretation of the former is based on the contribution of alkali ions, while the latter effect is attributed to additional unassociated aluminum ions. Comparison of determined anisotropic conductivity of quartz determined with those from field geophysical models shows that the quartz may potentially provide explanations for the behavior of electrical conductivity of anisotropy in the crust that are inferred from the transverse magnetic mode.
Electrodeless QCM-D for lipid bilayer applications.
Kunze, Angelika; Zäch, Michael; Svedhem, Sofia; Kasemo, Bengt
2011-01-15
An electrodeless quartz crystal microbalance with dissipation monitoring (QCM-D) setup is used to monitor the formation of supported lipid bilayers (SLBs) on bare quartz crystal sensor surfaces. The kinetic behavior of the formation of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) SLB on SiO(2) surfaces is discussed and compared for three cases: (i) a standard SiO(2) film deposited onto the gold electrode of a quartz crystal, (ii) an electrodeless quartz crystal with a sputter-coated SiO(2) film, and (iii) an uncoated electrodeless quartz crystal sensor surface. We demonstrate, supported by imaging the SLB on an uncoated electrodeless surface using atomic force microscopy (AFM), that a defect-free, completely covering bilayer is formed in all three cases. Differences in the kinetics of the SLB formation on the different sensor surfaces are attributed to differences in surface roughness. The latter assumption is supported by imaging the different surfaces using AFM. We show furthermore that electrodeless quartz crystal sensors can be used not only for the formation of neutral SLBs but also for positively and negatively charged SLBs. Based on our results we propose electrodeless QCM-D to be a valuable technique for lipid bilayer and related applications providing several advantages compared to electrode-coated surfaces like optical transparency, longer lifetime, and reduced costs. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tavani, Stefano; Granado, Pablo; Cantanero, Irene; Balsamo, Fabrizio; Corradetti, Amerigo; Muñoz, Josep
2017-04-01
In this contribution we describe deformation bands developed due to the interplay between shearing and mechanical and chemical compaction in Paleocene quartz-rich calcarenites. The studied structures are located in the footwall of the Cotiella Thrust (Spanish Pyrennes) and form anastomosed, mm-thick tabular bands, composed of high concentration of quartz grains. The bands strike perpendicular to the local transport direction of the regional thrust sheet, thus indicating a tectonic origin, and are organized in three sets. One set is perpendicular to the shallow-dipping bedding surface, while the other two are roughly perpendicular to each other and form an angle of 45°, in opposite directions, with the bedding. No macroscopic evidence of shearing is found along these bands. Optical microscope and SEM investigations on both undeformed and deformed rocks indicate that the high concentration of quartz within the deformation bands was caused by the localized pressure-enhanced dissolution of calcite grains, which determined the enrichment of the less soluble quartz grains. Quartz grains fracturing, fragmentation and crushing was observed along in all deformation bands, whereas cataclasis and shear occurs only along oblique oblique-to-bedding sets. All these features indicate that studied deformation bands are hybrid structures most likely developed during layer-parallel shortening. In detail, bedding perpendicular and bedding oblique structures can be interpreted as pure compaction and shear-enhanced compaction bands, respectively.
Improving Resonance Characteristics of Gas Sensors by Chemical Etching of Quartz Plates
NASA Astrophysics Data System (ADS)
Raicheva, Z.; Georgieva, V.; Grechnikov, A.; Gadjanova, V.; Angelov, Ts; Vergov, L.; Lazarov, Y.
2012-12-01
The paper presents the results of the influence of the etching process of AT-cut quartz plates on the resonance parameters and the QCM sensors. Quartz wafers (100 μm thick, with a diameter of 8 mm), divided into five groups, have been etched in [NH4]2 F2: H2O = 1:1 solution at temperatures in the range from 70°C to 90°C. The influence of etching temperature on the surface morphology of quartz wafers has been estimated by Atomic Force Microscopy (AFM). A correlation between the etching temperature and the dynamic characteristics is obtained. The optimal etching conditions for removing the surface damages caused by the mechanical treatment of the quartz wafers and for obtaining a clean surface were determined. The typical parameters of fabricated resonators on the quartz plates etched in the temperature range from 70°C to 90°C are as follows: Frequency, Fs 16 MHz ± 100 kHz Motional resistance, Rs less 10 Ω Motional inductance, Lq higher than 3 mH Motional capacitance, Cq less 30 fF Static capacitance, Co around 5 pF Quality factor, Q from 46 000 to 70 000 Sorption properties of QCM - MoO3 are evaluated at NH3 concentrations in the interval from 100 ppm to 500 ppm.
Quartz-like Crystals Found in Planetary Disks
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Spitzer Space Telescope has, for the first time, detected tiny quartz-like crystals sprinkled in young planetary systems. The crystals, which are types of silica minerals called cristobalite and tridymite, can be seen close-up in the black-and-white insets (cristobalite is on the left, and tridymite on the right). The main picture is an artist's concept of a young star and its swirling disk of planet-forming materials. Cristobalite and tridymite are thought to be two of many planet ingredients. On Earth, they are normally found as tiny crystals in volcanic lava flows and meteorites from space. These minerals are both related to quartz. For example, if you were to heat the familiar quartz crystals often sold as mystical tokens, the quartz would transform into cristobalite and tridymite. Because cristobalite and tridymite require rapid heating and cooling to form, astronomers say they were most likely generated by shock waves traveling through the planetary disks. The insets are Scanning Electron Microscope pictures courtesy of George Rossman of the California Institute of Technology, Pasadena, Calif.DOE Office of Scientific and Technical Information (OSTI.GOV)
Trukhin, A. N., E-mail: truhins@cfi.lu.lv
2014-10-21
Stishovite, coesite, oxygen deficient silica glass as well as irradiated α-quartz, exhibit two luminescence bands: a blue one and an UV one both excitable in the range within optical gap. There are similarities in spectral position and in luminescence decay kinetics among centers in these materials. The interpretation was done on the model of Oxygen Deficient Centers (ODC) [1]. The ODC(II) or twofold coordinated silicon and ODC(I) are distinguished. ODC(I) is object of controversial interpretation. The Si-Si oxygen vacancy [2] and complex defect including latent twofold coordinated silicon [3] are proposed. Remarkably, this luminescence center does not exist in asmore » grown crystalline α-quartz. However, destructive irradiation of α-quartz crystals with fast neutrons, γ rays, or dense electron beams [4–6] creates ODC(I) like defect. In tetrahedron structured coesite the self trapped exciton (STE) luminescence observed with high energetic yield (∼30%) like in α-quartz crystals. STE in coesite coexists with oxygen deficient-like center. In octahedron structured stishovite STE was not found and only ODC exists.« less
The R package 'RLumModel': Simulating charge transfer in quartz
NASA Astrophysics Data System (ADS)
Friedrich, Johannes; Kreutzer, Sebastian; Schmidt, Christoph
2017-04-01
Kinetic models of quartz luminescence have gained an important role for predicting experimental results and for understanding charge transfers in (natural) quartz as well as for other dosimetric materials, e.g., Al2O3:C. We present the R package 'RLumModel', offering an easy-to-use tool for simulating quartz luminescence signals (TL, OSL, LM-OSL and RF) based on five integrated and published parameter sets as well as the possibility to use own parameters. Simulation commands can be created (a) using the Risø Sequence Editor, (b) a built-in SAR sequence generator or (c) self-explanatory keywords for customised sequences. Results can be analysed seamlessly using the R package 'Luminescence' along with a visualisation of concentrations of electrons and holes in every trap/centre as well as in the valence and conduction band during all stages of the simulation. Modelling luminescence signals can help understanding charge transfer processes occurring in nature or during measurements in the laboratory. This will lead to a better understanding of several processes concerning geoscientific questions, because quartz is the second most abundant mineral in the Earth's continental crust.
Phase-referenced nonlinear spectroscopy of the α-quartz/water interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Paul E.; Saslow, Sarah A.; Wang, Hong-fei
2016-12-13
Probing the polarization of water molecules at charged interfaces by second harmonic generation spectroscopy has been heretofore limited to isotropic materials. Here we report non-resonant nonlinear optical measurements at the interface of anisotropic z-cut α-quartz and water under conditions of dynamically changing ionic strength and bulk solution pH. We find that the product of the third-order susceptibility and the interfacial potential, χ (3) × Φ(0), is given by (χ1 (3)–iχ2 (3)) × Φ(0), and that the interference between this product and the second-order susceptibility of bulk quartz depends on the rotation angle of α-quartz around the z axis. Our experimentsmore » show that this newly identified term, iχ (3) × Φ(0), which is out of phase from the surface terms, is of bulk origin. Lastly, the possibility of internally phase referencing the interfacial response for the interfacial orientation analysis of species or materials in contact with α-quartz is discussed along with the implications for conditions of resonance enhancement.« less
Geology of Saipan, Mariana Islands; Part 2, Petrology and soils
Schmidt, R.G.; Johnson, J. H.; McCracken, R.J.
1957-01-01
The rocks that comprise the volcanic formations of Saipan are of two principal types: dacites, which are characteristically glassy, and andesites, which are comparatively crystalline. The dacites consist primarily of silicic glass, oligoclase, and silica minerals (quartz, tridymite, cristobalite, chalcedony, and opal). Minor constituents in these rocks are green hornblende, biotite, magnetite, and hematite. The andesites are composed principally of labradorite, hypersthene, augite, and subcalcrc augite. Minor but also characteristic constituents of the andesites are quartz, tridymite, cristobalite, anorthoclase, and accessory magnetite, ilmenite, rutile, and apatite. Nine varieties of dacite and andesite are recognized on the basis of chemical composition, mineralogy, and texture. These are dacite, dacite vitrophyre, dacite perlite, hornblende-bearing dacite porphyry, augite-hypersthene andesite, quartz-bearing augite-hypersthene andesite, quartz-bearing augite-hypersthene andesite porphyry, augite andesite, and hypersthene andesite.
Application of Ti-in-quartz solubility as a thermobarometer in rutile-free rocks
NASA Astrophysics Data System (ADS)
Thomas, J. B.; Watson, E. B.
2011-12-01
Application of Ti-in-quartz solubility as a thermobarometer (TitaniQ; Thomas et al. 2010) may profoundly influence interpretations of crustal rocks. Complex Ti zoning patterns observed in cathodoluminescence (CL) images of crystals can be associated with changes in P-T conditions that prevailed during quartz crystallization. In rocks lacking rutile application of TitaniQ is challenging because Ti activity (aTiO2) during quartz crystallization must be constrained. Many felsic rocks contain minerals in which Ti is an essential stoichiometric constituent (e.g. ilmenite) that will buffer aTiO2 at a fixed value. To use Ti-in-quartz solubility in rocks lacking rutile (or sphene) the P-T dependencies of Ti-in-quartz solubility must be combined with an independent constraint on either P or T to estimate quartz crystallization conditions. Values for aTiO2 in melts can be calculated using (1) melt compositions and the rutile-saturation model of Hayden et al. (2007), (2) melt compositions and the MELTS algorithms to yield rutile affinity (i.e. degree of saturation) and liquidus T (TL; Ghiorso and Sack, 1995; Asimov and Ghiorso, 1998), and (3) mineral reaction equilibria, such as 2FeTiO3=TiO2+Fe2TiO4, measured mineral compositions, tabulated thermodynamic data, and an input temperature constrained by phase equilibria (or MELTS). The rutile-saturation model was calibrated at 10 kbar only, and intended for applications in which alternatives for calculating aTiO2 are unavailable. This should not be used for quantitative interpretations concerning rocks formed at other pressures because it is likely that Ti solubility in a melt is strongly pressure dependent. Consequently, the 10 kbar rutile-saturation model will underestimate the Ti required for rutile saturation at lower pressures, thereby yielding impossible aTiO2 values that exceed unity. We used a range of published rhyolite melt and Fe-Ti oxide compositions as inputs for aTiO2 calculations using MELTS and mineral reaction equilibria. Both approaches yield reasonable aTiO2 values. MELTS also yields TL values well aligned with phase equilibria. Rutile affinities obtained from MELTS can be used to calculate a range of aTiO2=0.2-0.5. Titanium activities calculated from mineral reaction equilibria have a range of aTiO2=0.3-0.5. Using published Ti of rhyolitic quartz and aTiO2 calculated above, TitaniQ yields P and T estimates that are strikingly similar to those expected based on phase equilibria. Many quartz crystals from rhyolites have CL dark cores with ~50 ppm Ti and CL bright rims with ~100-120 ppm Ti (e.g., Bishop, Oruanui, Yellowstone, Katmai, Bandelier). It is plausible that a common process produced quartz crystals with similar zoning patterns. Previous interpretations suggested that mafic input increased magma T and quartz rims with high Ti grew at higher temperatures. However, increasing T would cause dissolution instead of growth, at all possible CO2 contents (i.e., XH2O>0.9). TitaniQ provides a new interpretation in which the dark CL cores of quartz crystals (low Ti) grew at pressures greater than the final emplacement level, followed by entrainment during emplacement to an upper-crustal reservoir where the bright CL rims (high Ti) grew at lower P and T.
Physical processes of quartz amorphization due to friction
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Muto, J.; Nagahama, H.; Miura, T.; Arakawa, I.; Shimizu, I.
2011-12-01
Solid state amorphization of minerals occurs in indentations, in shock experiments, and in high pressure metamorphic quartz rock. A production of amorphous material is also reported in experimentally created silicate gouges (Yund et al., 1990), and in San Andreas Fault core samples (Janssen et al., 2010). Rotary-shear friction experiments of quartz rocks imply dynamic weakening at seismic rates (Di Toro et al., 2004). These experiments have suggested that weakening is caused by formation and thixotropic behavior of a silica gel layer which comprises of very fine particles of hydrated amorphous silica on fault gouges (Goldsby & Tullis, 2002; Hayashi & Tsutsumi, 2010). Therefore, physical processes of amorphization are important to better understand weakening of quartz bearing rocks. In this study, we conducted a pin-on-disk friction experiment to investigate details of quartz amorphization (Muto et al, 2007). Disks were made of single crystals of synthetic and Brazilian quartz. The normal load F and sliding velocity V were ranged from 0.01 N to 1 N and from 0.01 m/s to 2.6 m/s, respectively. The friction was conducted using quartz and diamond pins (curvature radii of 0.2 ~ 3 mm) to large displacements (> 1000 m) under controlled atmosphere. We analyzed experiment samples by Raman spectroscopy and FT-IR. Raman spectroscopy (excitation wavelength 532.1 nm) provides lattice vibration modes, and was used to investigate the degree of amorphization of samples. Raman spectra of friction tracks on the disk show clear bands at wavenumbers of 126, 204, 356, 394, and 464 cm-1, characteristic of intact α-quartz. Remarkably, in experiments using diamond pins (F = 0.8 N, normal stress σr calculated by contact area = 293 ~ 440 MPa, V = 0.12 ~ 0.23 m/s), the bands at 204 and 464 cm-1 gradually broaden to reveal shoulders on the higher-wavenumber sides of these peaks. Especially, two distinguished peaks at 490 and 515 cm-1 and a weak broad peak at 606 cm-1 appear sporadically on the track after the slip distance of 43 m. The bands at 490 and 606 cm-1 can be assigned to the symmetric stretching of four-membered Si-O ring (D1 band) and planar three-membered Si-O ring (D2 band) in amorphous silica, respectively. The peak at 515 cm-1 corresponds to the strongest coesite A1 mode arising from four-membered Si-O ring structure. On the other hand, the bands at 464 cm-1 broaden to reveal a shoulder adjacent to the main peak in experiments using quartz pins (F = 1 N, σr = 1 MPa, V = 0.01 ~ 2.6 m/s) after a large displacement (>1000m). These results indicate that quartz change intermediate range structure of SiO2 network during friction, and four or three-membered Si-O rings gradually increase in six-membered quartz. The results of FT-IR analyses on friction tracks showed a broad peak at 3000 -3600 cm-1 which indicates the -OH symmetric stretching band of molecular H2O. It shows that hydration of quartz on friction tracks occur due to friction. The results of Raman spectroscopy and FT-IR imply that Si-O-Si bridging of strained rings preferentially react with water to form hydrated amorphous silica layer on friction surfaces, which is likely to occur weakening.
NASA Astrophysics Data System (ADS)
Lira, Raul; Ripley, Edward M.
1990-03-01
The Rodeo de Los Molles rare earth element (REE) and thorium deposit is located in granitic rocks of the Las Chacras-Piedras Coloradas Batholith, in the southern block of the Eastern Pampean Ranges, Central Argentina. Mineralization occurs within an elongate (2 km × 0.6 km) body of alkalifeldspar granite (alaskite) localized along the northeastern edge of a composite batholith. The surrounding lithology is predominantly a biotite monzogranite. Both the alaskite and localized areas of quartz alkalifeldspar syenite within the alaskite have been produced by hydrothermal alteration of a late-crystallizing phase of the monzogranite. REE minerals are primarily of the cerium group and include britholite and allanite, both partially replaced by bastnaesite or thorbastnaesite. These minerals occur as nodules with quartz, fluorite, aegirine-augite, sphene, and Fe-Ti oxides within aplitic to pegmatoidal quartz alkalifeldspar syenite. Uranothorite, along with a second generation of fluorite and minor amounts of MnBa oxides, occurs in the alaskite as nodules, or within quartz-lined miarolitic cavities, but is not found with the Ce-mineralization. Studies of fluid inclusions contained in quartz and fluorite indicate a complex history of open-system fluid migration and interaction with monzogranite host rocks. Fluids responsible for REE mineralization and quartz deposition, along with initial alteration of the monzogranite to alaskite and quartz alkalifeldspar syenite, were of relatively high temperature (T h of fluid inclusions in quartz = 356-535°C) and moderate salinity (15-25 eq. wt% NaCl). Mixed CO 2H 2O fluids (XCO 2 = .13-.07) found as both primary and secondary inclusions within fluorite are representative of fluids involved in the replacement of britholite-allanite by bastnaesite and sphene, aegirine-augite, and plagioclase by calcite. Minimum pressures of mineral deposition estimated from H 2OCO 2NaCl phase relations range from 1 to 2 kbars. Secondary aqueous fluid inclusions in quartz define a trend of low salinity-high temperature to high salinity-low temperature, thought to be a result of hydration reactions occurring in alaskite and quartz alkali-feldspar syenite. The highest salinity fluids (35-37 eq. wt% NaCl) detected in the area are associated with the formation of uranothorite and late fluorite. Multiple periods of hydrothermal fluid introduction are consistent with recent geological data that indicate that the batholith is composed of several stock-like bodies. The location of the mineralized area near the top of the magma chamber, the presence of numerous miarolitic cavities, and the bulk composition of inclusion fluids (Na ≥ K > Ca) suggest that the fluids responsible for REE and Th mineralization were of magmatic origin.
Lamp bulb with integral reflector
Levin, Izrail; Shanks, Bruce; Sumner, Thomas L.
2001-01-01
An improved electrodeless discharge lamp bulb includes an integral ceramic reflector as a portion of the bulb envelope. The bulb envelope further includes two pieces, a reflector portion or segment is cast quartz ceramic and a light transmissive portion is a clear fused silica. In one embodiment, the cast quartz ceramic segment includes heat sink fins or stubs providing an increased outside surface area to dissipate internal heat. In another embodiment, the quartz ceramic segment includes an outside surface fused to eliminate gas permeation by polishing.
ANSYS simulation of the capacitance coupling of quartz tuning fork gyroscope
NASA Astrophysics Data System (ADS)
Zhang, Qing; Feng, Lihui; Zhao, Ke; Cui, Fang; Sun, Yu-nan
2013-12-01
Coupling error is one of the main error sources of the quartz tuning fork gyroscope. The mechanism of capacitance coupling error is analyzed in this article. Finite Element Method (FEM) is used to simulate the structure of the quartz tuning fork by ANSYS software. The voltage output induced by the capacitance coupling is simulated with the harmonic analysis and characteristics of electrical and mechanical parameters influenced by the capacitance coupling between drive electrodes and sense electrodes are discussed with the transient analysis.
Method of making a quartz resonator
Vig, John R.; Filler, Raymond L.; Peters, R. Donald; Frank, James M.
1981-01-01
A quartz resonator is made from a chemically polished quartz plate. The plate is placed in an enclosure fitted with at least three mounting clips to receive the plate. The plate is secured to the clips with an electrically conductive adhesive capable of withstanding operation at 350 degrees C. The assembly is cleaned and a metallic electrode deposited onto the plate until the desired frequency is reached. The enclosure is then hermetically sealed. The resulting resonator can consistently withstand extremely high shocks.
Quartz-like Crystals Found in Planetary Disks
2008-11-11
NASA Spitzer Space Telescope has, for the first time, detected tiny quartz-like crystals sprinkled in young planetary systems. The crystals, which are types of silica minerals called cristobalite and tridymite.
NASA Astrophysics Data System (ADS)
Mestan, J.; Alvarez Polanco, E. I.
2014-12-01
Ultrasound is a form of mechanical energy with a frequency greater than ≈ 20 kHz (upper human hearing limit). It is used in many scientific as well as industrial fields. Most modern applications of ultrasound utilize sources which are either piezoelectric or magnetostrictive (Benwell et Bly 1987). A meteorite impact has been considered to be an ultrasound source during last years (Rajlich 2011). Rajlich (2014) is coming with a hypothesis that white planes made of microcavities in Bohemian quartz have their origin in an impact-related ultrasonic sounding. The Bohemian Massif has been considered to be one of the largest impact craters in whole of the world (Papagiannis et El-Baz 1988, Papagiannis 1989, Rajlich 2014). Rajlich's hypothesis implies a liquid behavior of quartz during the impact event. We state that then there have to exist planes of slightly higher density than their surroundings together with planes of microcavities. They should intersect each other without mutual influencing (as in a case of planes made of microcavities). Because physics of ultrasound during an impact event is a brand new and unknown field, we try to choose a simple way of its cognition. It is possible to take the sine wave and set 3 requirements. (1) There exist some surroundings of points of peak amplitudes. (2) These surroundings are of higher density (compression) or lower density (rarefaction) than the mean density of quartz. (3) The difference between the higher/lower and surrounding density is measurable. There was done an experimental study of Bohemian quartz using QCT bone densitometry at the Radiology Munich. Quartz with a size of ≈ 5 x 8 cm absorbed too much RTG radiation (kV 140, mAs 330), which made a picture of internal structure impossible. We propose another techniques and appeal to other scientists to face this challenge. If Bohemian quartz has a harmonically distributed density, we consider it to be a support for Rajlich's hypothesis. AcknowledgementsWe would like to thank to Prof. Martin Mack for the fact he enabled an irradiation of quartz sample at the Radiology Munich.
NASA Astrophysics Data System (ADS)
Wallis, D.; Parsons, A. J.; Hansen, L. N.
2017-12-01
Chessboard subgrains in quartz, with boundaries composed of {m}[c] edge dislocations, are widely used as evidence for high-temperature deformation and have been suggested to form only in β-quartz. However, the origins and dislocation structure of chessboard subgrains remain poorly constrained and, without precise constraints on axes of misorientations across subgrain boundaries, other subgrain types formed at lower temperatures can be misidentified as chessboard subgrains. The technique most commonly employed to investigate subgrain structures, electron backscatter diffraction, can only resolve misorientation angles and axes for a portion of the substructure. This limitation hinders detailed interpretation of the dislocation types, densities, and processes that generate characteristic subgrain structures. We overcome these limitations by employing high-angular resolution electron backscatter diffraction (HR-EBSD), which employs cross-correlation of diffraction patterns to achieve angular resolution on the order of 0.01° with well-constrained misorientation axes. We analyse chessboard subgrains in samples from the Greater Himalayan Sequence, Nepal, which were deformed along well constrained pressure-temperature paths confined to the stability field of α-quartz. HR-EBSD analysis demonstrates that the subgrain boundaries consist of two sets. One set consists primarily of {m}[c] edge dislocations and the other consists of dislocations primarily with Burgers vectors. Apparent densities of geometrically necessary dislocations vary from > 1013 m-2 within some subgrain boundaries to < 1012 m-2 within subgrain interiors. This analysis provides new insight into the structure of chessboard subgrain boundaries, and a new tool to distinguish them from superficially similar deformation microstructures formed by other dislocation types at lower temperatures. Application of HR-EBSD to quartz from the Greater Himalayan Sequence confirms the activity of {m}[c] slip in the α-quartz stability field and demonstrates that formation of chessboard subgrains is not restricted to the stability field of β-quartz. Most importantly, this study demonstrates the potential of HR-EBSD as an improved method for analysis of quartz microstructures used as indicators of deformation conditions.
Micro-Raman spectroscopy of gem-quality chrysoprase from the Biga-Çanakkale region of Turkey
NASA Astrophysics Data System (ADS)
Hatipoğlu, Murat; Ören, Ufuk; Kibici, Yaşar
2011-11-01
The commercial quantities of gem-quality dark green chrysoprase are found as the fracture fillings covered with a weathering crust in the silicified serpentinites throughout the border of a metamorphic zone in the Biga-Çanakkale region of Turkey. However, the green-stained opaque quartz materials are also present in the same deposit, but these materials are common and in low-demand according to chrysoprase in terms of gemmological importance. Thus, it is necessary to distinguish these two similar materials from each other non-destructively. In addition, all chrysoprase roughs in this deposit also have alpha-quartz and moganite inclusions. Accordingly, dispersive (visible) confocal micro-Raman spectroscopy (DCμRS) allows us to distinguish clearly the chalcedonic-quartz silica phase (fibrous quartz (chalcedony)) from the crystalline-quartz silica phase (fine-grained alpha-quartz) in the case of both quartz inclusions in the chrysoprase material and itself of the green-stained quartz material in the same deposit. This study characterizes the Biga chrysoprase (Turkey) in terms of silica building phases, chemical content, and individual Raman bands, using several destructive and non-destructive analytical techniques. The Raman spectra show that the most characteristic intensive and the widest Raman bands peaked at about 498 and 460 cm -1 can be inferred to ν2 doubly symmetric bending mode of [SiO 4/M] centers. The "M" includes the some cationic substitutions of Si by Fe, Cr, Mn, As, Ni, Pb, Sb, and Zn, and K and Na as well. The second characteristic Raman band peaked at about 206 cm -1 can be inferred to single translational libration mode. The last readable Raman bands peaked at about 139 and 126 cm -1 can be inferred to doubly translational libration modes as well. In addition, the weaker Raman bands peaked at about 1577, 1430, 1303, 1160, 1082, 549, 394, 352, and 259 cm -1 are also present. As a result, the dispersive confocal micro-Raman spectrum of chrysoprase is directly related to its silica building phases and trace element implications.
Jones, Daniel S.; Barnes, Calvin G.; Premo, Wayne R.; Snoke, Arthur W.
2013-01-01
The presence of ca. 1.63 Ga monzogranite (the “white quartz monzonite”) in the southern Sierra Madre, southeastern Wyoming, is anomalous given its distance from the nearest documented plutons of similar age (central Colorado) and the nearest contemporaneous tectonic margin (New Mexico). It is located immediately south of the Cheyenne belt—a ca. 1.75 Ga Archean-Proterozoic tectonic suture. New geochronological, isotopic, and geochemical data suggest that emplacement of the white quartz monzonite occurred between ca. 1645 and 1628 Ma (main pulse ca. 1628 Ma) and that the white quartz monzonite originated primarily by partial melting of the Big Creek Gneiss, a modified arc complex. There is no evidence that mafic magmas were involved. Open folds of the ca. 1750 Ma regional foliation are cut by undeformed white quartz monzonite. On a regional scale, rocks intruded by the white quartz monzonite have experienced higher pressure and temperature conditions and are migmatitic as compared to the surrounding rocks, suggesting a genetic relationship between the white quartz monzonite and tectonic exhumation. We propose that regional shortening imbricated the Big Creek Gneiss, uplifting the now-exposed high-grade rocks of the Big Creek Gneiss (hanging wall of the thrust and wall rock to the white quartz monzonite) and burying correlative rocks, which partially melted to form the white quartz monzonite. This tectonism is attributed to the ca. 1.65 Ga Mazatzal orogeny, as foreland shortening spread progressively into the Yavapai Province. Mazatzal foreland effects have also been described in the Great Lakes region and have been inferred in the Black Hills of South Dakota. We suggest that the crustal-scale rheologic contrast across the Archean-Proterozoic suture, originally developed along the southern margin of Laurentia, and including the Cheyenne belt, facilitated widespread reactivation of that boundary during the Mazatzal orogeny. This finding emphasizes the degree to which crustal heterogeneities can localize subsequent deformation in accretionary orogens, producing significant crustal melting in the distal foreland—a region not typically associated with orogenic magmatism.
NASA Astrophysics Data System (ADS)
Pamukcu, A. S.; Ghiorso, M. S.; Gualda, G. A. R.
2015-12-01
Quartz commonly displays cathodoluminescence (CL) zoning correlated with elevated Ti concentrations. This zoning has been attributed to changes in magmatic intensive variables, suggesting for example, that in the Bishop Tuff (BT) magma bodies, bright-CL rims on quartz phenocrysts grew during a late-stage eruption-triggering thermal event. Yet, these rims are not ubiquitous, discounting their origin by variation in equilibrium growth conditions. Huang & Audetat (2012) suggest that Ti contents in quartz depend strongly on growth rate. Diffusion chronometry indicates that BT bright-CL quartz rims crystallized rapidly (days-weeks) at growth rates of 10-7-10-8 m/s, while interiors grew over centennial-millennial timescales (10-11-10-13 m/s). This result is consistent with CSD analyses that suggest eruptive decompression began <1 year before eruption. We use a numerical model based on the crystal growth equation of Lasaga (1982) to test if BT bright-CL rims could have resulted from elevated syn-eruptive growth rates. Results indicate that Ti contents at the quartz-melt boundary are strongly dependent on growth rate if it exceeds ~10-9 m/s. At 10-8 m/s, enrichment of 1.5-2.5 times the initial concentration is achieved at the boundary in a time frame of days-a week. At 10-7 m/s, enrichment jumps to 4-8 times over the same period. BT quartz interiors contain ~50 ppm Ti, while bright-CL rims have ~75-100 ppm (Wark et al. 2007). Our modeling successfully reproduces these concentrations using the growth rates, and over the timescales, indicated by diffusion chronometry. It also suggests that the rims grew chiefly at a rate of ~10-8 m/s; slower rates do not produce enrichment, and faster rates result in over-enrichment, relative to that observed in natural crystals. We conclude that high-Ti, bright-CL rims on BT quartz resulted from increased growth rates due to eruptive decompression, rather than late-stage fluctuations in magmatic intensive variables, over timescales of days to weeks.
Quartz sand as "blank" compound in rehabilitation experience of industrial barren
NASA Astrophysics Data System (ADS)
Gorbacheva, T. T.; Ivanova, L. A.; Kikuchi, R.; Gerardo, R.
2010-05-01
During 2008 the field test was performed near the smelter complex Monchegorsk (67°51'N, 32°48'E) to estimate suitability of innovate method for site remediation in severe conditions such as in industrial barren. The method is based on cultivation of perennial grasses using hydroponics with thermally inflated vermiculite from local deposit (Kovdor) followed by rolled lawn placement on very contaminated sites near Monchegorsk. Growing in very contaminated ground resulted in 50% rolled lawn surface loss during first year but with biodiversity maintenance. Field experiment was carried out in three variants (1- mineral ground - flat site; 2- mineral ground- slope sites; 3- organogenic ground - flat site in depression in five replicates. More comprehensive results were received for mineral ground due to better natural washing compared to organogenic ground. In all variants we observed secondary roots formation. It seems obvious that plant roots choose the best zones of soils to grow, and that they avoided toxic zones. Observations continued during 2009 to follow freezing influence and nutrient loss rate. We observed grass survival of about 20-30% during second year of field test but grass roots proliferated very slowly in contaminated ground. Affinity to the ground is one of most important estimate of rolled lawn efficiency for grass cover creation. One of possible measure to improve rolled lawn affinity is to establish additional permeable barrier for grass roots isolation from toxic ground. Simultaneously with rolled lawn placement litterbag experiment was carried out with quartz sand as filling. Quartz was chosen as blank compound and as possible material for permeable barrier creation. Original quartz have some initial nutritional status: pH 6.87, available forms of K 1.9 mg g-1, Ca 9.5 mg g-1, Mg 2.8 mg g-1, P 0.4 mg g-1. There was both increasing and decreasing of quartz nutritional status during 2008-2009 period. Besides quartz is recognized to be some barrier for pollution load due to organic matter and related heavy metals and Al sorption onto a quartz sand surface. Laboratory pot experiment are planed to be carry out to estimate quartz barrier function efficiency for grass survival.
Lund, K.; Aleinikoff, J.N.; Kunk, Michael J.; Unruh, D.M.; Zeihen, G.D.; Hodges, W.C.; du Bray, E.A.; O'Neill, J. M.
2002-01-01
The composite Boulder batholith, Montana, hosts a variety of mineral deposit types, including important silver-rich polymetallic quartz vein districts in the northern part of the batholith and the giant Butte porphyry copper-molybdenum pre-Main Stage system and crosscutting copper-rich Main Stage vein system in the southern part of the batholith. Previous dating studies have identified ambiguous relationships among igneous and mineralizing events. Mineralizing hydrothermal fluids for these types of deposits and magma for quartz porphyry dikes at Butte have all been considered to be late-stage differentiates of the Boulder batholith. However, previous dating studies indicated that the Boulder batholith plutons cooled from about 78 to 72 Ma, whereas copper-rich Main Stage veins at Butte were dated at about 61 Ma. Recent efforts to date the porphyry copper-molybdenum pre-Main Stage deposits at Butte resulted in conflicting estimates of both 64 and 76 Ma for the mineralizing events. Silver-rich polymetallic quartz vein deposits elsewhere in the batholith have not been dated previously. To resolve this controversy, we used the U.S. Geological Survey, Stanford, SHRIMP RG ion mic??roprobe to date single-age domains within zircons from plutonic rock samples and 40Ar/39Ar geochronology to date white mica, biotite, and K-feldspar from mineral deposits. U-Pb zircon ages are Rader Creek Granodiorite, 80.4 ?? 1.2 Ma; Unionville Granodiorite, 78.2 ?? 0.8 Ma; Pulpit Rock granite, 76.5 ?? 0.8 Ma; Butte Granite, 74.5 ?? 0.9 Ma; altered Steward-type quartz porphyry dike (I-15 roadcut), 66.5 ?? 1.0 Ma; altered Steward-type quartz porphyry dike (Continental pit), 65.7 ?? 0.9 Ma; and quartz monzodiorite of Boulder Baldy (Big Belt Mountains), 66.2 ?? 0.9 Ma. Zircons from Rader Creek Granodiorite and quartz porphyry dike samples contain Archean inheritance. The 40Ar/39Ar ages are muscovite, silver-rich polymetallic quartz vein (Basin district), 74.4 ?? 0.3 Ma; muscovite, silver-rich polymetallic quartz vein (Boulder district), 74.4 ?? 1.2 Ma; muscovite, early dark micaceous vein (Continental pit), 63.6 ?? 0.2 Ma; biotite, early dark micaceous vein (Continental pit), 63.6 ?? 0.2 Ma; potassium feldspar, early dark micaceous vein (Continental pit), 63 to 59 Ma; and biotite, biotite breccia dike (Continental pit), 63.6 ?? 0.2 Ma. Outlying silver-rich polymetallic quartz veins of the Basin and Boulder mining districts probably are directly related to the 74.5 Ma Butte Granite, whereas Steward-type east-west quartz porphyry dikes and Butte pre-Main Stage deposits are parts of a 66 to 64 Ma magmatic-mineralization system unrelated to emplacement of the Boulder batholith. The age of the crosscutting Main Stage veins may be about 61 Ma as originally reported but can only be bracketed as younger than the 64 Ma pre-Main Stage mineralization and older than the about 50 Ma Eocene Lowland Creek intrusions. The 66 Ma age for the quartz monzodiorite of Boulder Baldy and consideration of previous dating studies in the region indicate that small ca. 66 Ma plutonic systems may be common in the Boulder batholith region and especially to the east. The approximately 64 Ma porphyry copper systems at Butte and gold mineralization at Miller Mountain are indicative of regionally important mineralizing systems of this age in the Boulder batholith region. Resolution of the age and probable magmatic source of the Butte pre-Main Stage porphyry copper-molybdenum system and of the silver-rich polymetallic quartz vein systems in the northern part of the Boulder batholith documents that these deposits formed from two discrete periods of hydrothermal mineralization related to two discrete magmatic events.
NASA Astrophysics Data System (ADS)
Jin, Xiao-ye; Li, Jian-wei; Hofstra, Albert H.; Sui, Ji-xiang
2017-08-01
The Xiahe-Hezuo district in the West Qinling orogen contains numerous Au-(As-Sb) and Cu-Au-(W) deposits. The district is divided into eastern and western zones by the Xiahe-Hezuo Fault. The western zone is exposed at a shallow level and contains sediment-hosted disseminated Au-(As-Sb) deposits, whereas the eastern zone is exposed at a deeper level and contains Cu-Au-(W) skarn and lode gold deposits within or close to granitic intrusions. The Laodou gold deposit in the eastern zone consists of auriferous quartz-sulfide-tourmaline and minor quartz-stibnite veins that are structurally controlled by fault zones transecting the Laodou quartz diorite porphyry stock and enveloped by potassic and phyllic alteration. Both the veins and alteration halos commonly contain quartz, sericite, tourmaline, pyrite, and arsenopyrite, with minor galena, sphalerite, chalcopyrite, tetrahedrite, and enargite. Gold occurs mainly as invisible gold in pyrite or arsenopyrite and locally as inclusions less than 50 μm in diameter. The zircon U-Pb age of 247.6 ± 1.3 Ma (2 σ) on the host quartz diorite porphyry and the sericite 40Ar/39Ar plateau ages of 249.1 ± 1.6 and 249.0 ± 1.5 Ma (2 σ) on two ore-related hydrothermal sericite samples are within analytical errors of one another. At the formation temperature (275 °C) inferred from microthermometric measurements of fluid inclusion, sericite and tourmaline yield calculated δDH2O values of -70 to -45‰ and δ 18OH2O of 5.8 to 9.7‰, while quartz yields calculated δ 18OH2O values of 5.1˜5.7‰. Hydrothermal tourmaline in quartz-sulfide-tourmaline veins has δ 11B of -11.2 to -0.9‰ (mean of -6.3‰) that are similar to the values of magmatic tourmaline (-8.9 to -5.5‰ with a mean of -6.8‰) in the host quartz diorite porphyry. The δ 34S values of sulfide minerals range from -5.9 to +5.8‰ with a mean of -0.6‰ that is typical of magmatic sulfur. Pyrite from hydrothermally altered quartz diorite porphyry and quartz-sulfide-tourmaline veins have relatively homogeneous lead isotopic compositions, compatible with granitic intrusions in the district. The geochronological and isotopic data combined support a magmatic origin for the Laodou gold deposit, most likely formed from fluids exsolved from the Laodou quartz diorite porphyry or associated intrusive phases at deeper levels beneath the stock. Orogenic and Carlin-like gold deposits in the West Qinling orogen have been commonly thought to have formed from metamorphic fluids. This study, however, highlights the role of magmatic-derived fluids in the formation of lode gold deposits. Synthesis of geochronological, geological, and geochemical data on magmatic rocks and ore deposits in and surrounding the Xiahe-Hezuo district indicates that gold mineralization predominantly occurred within a subduction-related magmatic arc prior to collision between the Yangtze and North China cratons that produced the West Qinling orogen.
Carbothermal Reduction of Quartz and Carbon Pellets at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Li, Fei; Tangstad, Merete; Ringdalen, Eli
2018-06-01
In this study, the carbothermal reduction of pellets composed of quartz and carbon at temperatures between 1898 K and 1948 K (1625 °C and 1675 °C) are investigated. The main product from this reaction is silicon carbide (SiC). The reduction of quartz with carbon black, charcoal, coke, coal, and pre-heated coal in the pellet were compared to investigate the different carbon resources used in silicon production. Charcoal and coke have high SiO reactivity, while carbon black and coal (pre-heated coal) have low SiO reactivity. Charcoal and carbon black show better matching between quartz/carbon reactivity and SiO reactivity, and will lose less SiO gas than coke and pre-heated coal. Coal has a high volatile content and is thus not recommended as a raw material for the pellets.
Ma, Yufei; Yu, Guang; Zhang, Jingbo; Yu, Xin; Sun, Rui; Tittel, Frank K
2015-03-27
A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. A 1.395 μm continuous wave (CW), distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs) with a resonant frequency (f0) of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.
NASA Astrophysics Data System (ADS)
Di Benedetto, Francesco; D'Acapito, Francesco; Capacci, Fabio; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Oberhauser, Werner; Pardi, Luca A.; Romanelli, Maurizio
2014-03-01
We investigated the speciation of Fe in bulk and in suspended respirable quartz dusts coming from ceramic and iron-casting industrial processes via X-ray absorption spectroscopy, with the aim of contributing to a better understanding of the variability of crystalline silica toxicity. Four different bulk industrial quartz powders, nominally pure quartz samples with Fe contents below 200 ppm, and three respirable dusts filters were selected. Fe speciation was determined in all samples through a coupled study of the X-ray absorption near-edge structure and extended X-ray absorption fine structure regions, operating at the Fe-K edge. Fe speciation revealed common features at the beginning of the different production processes, whereas significant differences were observed on both respirable dusts and bulk dusts exiting from the production process. Namely, a common pollution of the raw quartz dusts by elemental Fe was evidenced and attributed to residuals of the industrial production of quartz materials. Moreover, the respirable samples indicated that reactivity occurs after the suspension of the powders in air. The gravitational selection during the particle suspension consistently allowed us to clearly discriminate between suspended and bulk dusts. On the basis of the obtained results, we provide an apparent spectroscopic discrimination between the raw materials used in the considered industrial processes, and those that are effectively inhaled by workers. In particular, an amorphous FeIII oxide, with an unsaturated coordination sphere, can be related to silica reactivity (and health consequences).
NASA Astrophysics Data System (ADS)
Tang, Cuihua; Zhu, Jianxi; Li, Zhaohui; Zhu, Runliang; Zhou, Qing; Wei, Jingming; He, Hongping; Tao, Qi
2015-11-01
Silica minerals are widely used in environmental remediation for their prevalence in soil and sediment. Two common SiO2 polymorphs, α-quartz and α-cristobalite, were investigated for the removal of a typical cationic dye, methylene blue (MB), from aqueous solutions. Their adsorption behaviors were studied in batch experiments as a function of specific surface area (SSA), pH, and temperature. The surface site density of α-quartz (10.6 sites/nm2) was higher than that of α-cristobalite (6.2 sites/nm2) with the Gran plot method, and the adsorption maxima of MB on the two were 0.84 mg/m2 and 0.49 mg/m2, respectively, at 303 K and pH 8. The potentiometric titration showed the capacity of proton-donating by α-quartz was stronger than that by α-cristobalite. A drastic increase of adsorption amount on α-quartz at pH < 3 was caused by its greater quantity of isolated silanols. The negative ΔG and positive ΔH values suggested adsorption of MB on both minerals was spontaneous and endothermic. At three different temperatures (288 K, 298 K, and 303 K), the adsorption capacities of two polymorphs increased with increasing temperature. The surface heterogeneity of α-quartz and α-cristobalite corresponds to their different adsorption behavior, and our work also provides some referential significance in evaluating the overall quality of soils and sediments.
Timescales of quartz crystallization and the longevity of the Bishop giant magma body.
Gualda, Guilherme A R; Pamukcu, Ayla S; Ghiorso, Mark S; Anderson, Alfred T; Sutton, Stephen R; Rivers, Mark L
2012-01-01
Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.
Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body
Gualda, Guilherme A. R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Alfred T.; Sutton, Stephen R.; Rivers, Mark L.
2012-01-01
Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∼760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies. PMID:22666359
High-Precision Hysteresis Sensing of the Quartz Crystal Inductance-to-Frequency Converter
Matko, Vojko; Milanović, Miro
2016-01-01
A new method for the automated measurement of the hysteresis of the temperature-compensated inductance-to-frequency converter with a single quartz crystal is proposed. The new idea behind this method is a converter with two programmable analog switches enabling the automated measurement of the converter hysteresis, as well as the temperature compensation of the quartz crystal and any other circuit element. Also used is the programmable timing control device that allows the selection of different oscillating frequencies. In the proposed programmable method two different inductances connected in series to the quartz crystal are switched in a short time sequence, compensating the crystal’s natural temperature characteristics (in the temperature range between 0 and 50 °C). The procedure allows for the measurement of the converter hysteresis at various values of capacitance connected in parallel with the quartz crystal for the converter sensitivity setting at selected inductance. It, furthermore, enables the measurement of hysteresis at various values of inductance at selected parallel capacitance (sensitivity) connected to the quartz crystal. The article shows that the proposed hysteresis measurement of the converter, which converts the inductance in the range between 95 and 100 μH to a frequency in the range between 1 and 200 kHz, has only 7 × 10−13 frequency instability (during the temperature change between 0 and 50 °C) with a maximum 1 × 10−11 hysteresis frequency difference. PMID:27367688
Measurement of Size-dependent Dynamic Shape Factors of Quartz Particles in Two Flow Regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Jennifer M.; Bell, David M.; Imre, D.
2016-08-02
Understanding and modeling the behavior of quartz dust particles, commonly found in the atmosphere, requires knowledge of many relevant particles properties, including particle shape. This study uses a single particle mass spectrometer, a differential mobility analyzer, and an aerosol particle mass analyzer to measure quartz aerosol particles mobility, aerodynamic, and volume equivalent diameters, mass, composition, effective density, and dynamic shape factor as a function of particle size, in both the free molecular and transition flow regimes. The results clearly demonstrate that dynamic shape factors can vary significantly as a function of particle size. For the quartz samples studied here, themore » dynamic shape factors increase with size, indicating that larger particles are significantly more aspherical than smaller particles. In addition, dynamic shape factors measured in the free-molecular (χv) and transition (χt) flow regimes can be significantly different, and these differences vary with the size of the quartz particles. For quartz, χv of small (d < 200 nm) particles is 1.25, while χv of larger particles (d ~ 440 nm) is 1.6, with a continuously increasing trend with particle size. In contrast χt, of small particles starts at 1.1 increasing slowly to 1.34 for 550 nm diameter particles. The multidimensional particle characterization approach used here goes beyond determination of average properties for each size, to provide additional information about how the particle dynamic shape factor may vary even for particles with the same mass and volume equivalent diameter.« less
NASA Astrophysics Data System (ADS)
Derez, Tine; Van Der Donck, Tom; Plümper, Oliver; Muchez, Philippe; Pennock, Gill; Drury, Martyn R.; Sintubin, Manuel
2017-07-01
Fine extinction bands (FEBs) (also known as deformation lamellae) visible with polarized light microscopy in quartz consist of a range of nanostructures, inferring different formation processes. Previous transmission electron microscopy studies have shown that most FEB nanostructures in naturally deformed quartz are elongated subgrains formed by recovery of dislocation slip bands. Here we show that three types of FEB nanostructure occur in naturally deformed vein quartz from the low-grade metamorphic High-Ardenne slate belt (Belgium). Prismatic oriented FEBs are defined by bands of dislocation walls. Dauphiné twin boundaries present along the FEB boundaries probably formed after FEB formation. In an example of two sub-rhombohedral oriented FEBs, developed as two sets in one grain, the finer FEB set consists of elongated subgrains, similar to FEBs described in previous transmission electron microscopy studies. The second wider FEB set consists of bands with different dislocation density and fluid-inclusion content. The wider FEB set is interpreted as bands with different plastic strain associated with the primary growth banding of the vein quartz grain. The nanometre-scale fluid inclusions are interpreted to have formed from structurally bounded hydroxyl groups that moreover facilitated formation of the elongate subgrains. Larger fluid inclusions aligned along FEBs are explained by fluid-inclusion redistribution along dislocation cores. The prismatic FEB nanostructure and the relation between FEBs and growth bands have not been recognized before, although related structures have been reported in experimentally deformed quartz.
Buss, Heather L.; White, Arthur F.; Murphy, Sheila F.; Stallard, Robert F.
2012-01-01
Streams draining watersheds of the two dominant lithologies (quartz diorite and volcaniclastic rock) in the Luquillo Experimental Forest of eastern Puerto Rico have very high fluxes of bedrock weathering products. The Río Blanco quartz diorite in the Icacos watershed and the Fajardo volcaniclastic rocks in the Mameyes watershed have some of the fastest documented rates of chemical weathering of siliceous rocks in the world. Rapid weathering produces thick, highly leached saprolites in both watersheds that lie just below the soil and largely isolate subsurface biogeochemical and hydrologic processes from those in the soil. The quartz diorite bedrock in the Icacos watershed weathers spheroidally, leaving large, relatively unweathered corestones that are enveloped by slightly weathered rock layers called rindlets. The rindlets wrap around the corestones like an onionskin. Within the corestones, biotite oxidation is thought to induce the spheroidal fracturing that leads to development of rindlets; plagioclase in the rindlets dissolves, creating additional pore spaces. Near the rindlet-saprolite interface, the remaining plagioclase dissolves, hornblende dissolves to completion, and precipitation of kaolinite, gibbsite, and goethite becomes pervasive. In the saprolite, biotite weathers to kaolinite and quartz begins to dissolve. In the soil layer, both quartz and kaolinite dissolve. The volcaniclastic bedrock of the Mameyes watershed weathers even faster than the quartz diorite bedrock of the Icacos watershed, leaving thicker saprolites that are devoid of all primary minerals except quartz. The quartz content of volcaniclastic bedrock may help to control watershed geomorphology; high-quartz rocks form thick saprolites that blanket ridges. Hydrologic flow paths within the weathering profiles vary with total fluid flux, and they influence the chemistry of streams. Under low-flow conditions, the Río Icacos and its tributaries are fed by rainfall and by groundwater from the fracture zones; during storm events, intense rainfall rapidly raises stream levels and water is flushed through the soil as shallow flow. As a result, weathering constituents that shed into streamwaters are dominated by rindlet-zone weathering processes during base flow and by soil weathering processes during stormflow. The upper reaches of the Mameyes watershed are characterized by regolith more than 35 meters thick in places that contains highly fractured rock embedded in its matrix. Weathering contributions to stream chemistry at base flow are predicted to be more spatially variable in the Mameyes watershed than in the Icacos watershed owing to the more complex subsurface weathering profile of the volcaniclastic bedrocks of the Mameyes watershed.
Amorphization of quartz by friction: Implication to silica-gel lubrication of fault surfaces
NASA Astrophysics Data System (ADS)
Nakamura, Yu; Muto, Jun; Nagahama, Hiroyuki; Shimizu, Ichiko; Miura, Takashi; Arakawa, Ichiro
2012-11-01
To understand physico-chemical processes at real contacts (asperities) on fault surfaces, we conducted pin-on-disk friction experiments at room temperature, using single crystalline quartz disks and quartz pins. Velocity weakening from friction coefficient μ ˜ 0.6 to 0.4 was observed under apparent normal stresses of 8-19 (18 > 19), when the slip rate was increased from 0.003 to 2.6 m/s. Frictional surfaces revealed ductile deformation of wear materials. The Raman spectra of frictional tracks showed blue shifts and broadening of quartz main bands, and appearance of new peaks at 490-520 and 610 cm-1. All these features are indicative of pressure- and strain-induced amorphization of quartz. The mapping analyses of Fourier transform infrared (FT-IR) spectroscopy at room dry conditions suggest selective hydration of wear materials. It is possible that the strained Si-O-Si bridges in amorphous silica preferentially react with water to form silica-gel. In natural fault systems, amorphous materials would be produced at real fault contacts and accumulate over the fault surfaces with displacements. Subsequent hydration would lead to significant reduction of fault strength during slip.
High Resolution Switching Mode Inductance-to-Frequency Converter with Temperature Compensationti
Matko, Vojko; Milanović, Miro
2014-01-01
This article proposes a novel method for the temperature-compensated inductance-to-frequency converter with a single quartz crystal oscillating in the switching oscillating circuit to achieve better temperature stability of the converter. The novelty of this method lies in the switching-mode converter, the use of additionally connected impedances in parallel to the shunt capacitances of the quartz crystal, and two inductances in series to the quartz crystal. This brings a considerable reduction of the temperature influence of AT-cut crystal frequency change in the temperature range between 10 and 40 °C. The oscillator switching method and the switching impedances connected to the quartz crystal do not only compensate for the crystal's natural temperature characteristics but also any other influences on the crystal such as ageing as well as from other oscillating circuit elements. In addition, the method also improves frequency sensitivity in inductance measurements. The experimental results show that through high temperature compensation improvement of the quartz crystal characteristics, this switching method theoretically enables a 2 pH resolution. It converts inductance to frequency in the range of 85–100 μH to 2–560 kHz. PMID:25325334
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bu; Yu, Yingtian; Bauchy, Mathieu, E-mail: bauchy@ucla.edu
Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist ofmore » over-coordinated Si and O, as well as Si–O connectivity defects, e.g., small Si–O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E′ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.« less
The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C
Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.
1988-01-01
The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.
Petrographic Analysis of Selected Core Materials from the Manson (Iowa) Impact Structure
NASA Astrophysics Data System (ADS)
Short, N. M.; Gold, D. P.
1993-07-01
The Manson impact structure, largest (36 km) in the U.S., is inferred to have produced shocked materials found in the upper layer of some K-T Boundary deposits, mainly because its radiometric age (66 my) is compatible. Short, in 1966 [1], was first to show that Manson is an impact crater through casual analysis then of 22 samples from a 1953 drill hole (2-A). These samples have now been studied in detail, with these key results: (1) the lithology of clasts within 2-A is dominantly granitic; (2) most quartz is strongly shocked (many planar deformation features, PDFs) and shows a pervasive alteration (clay minerals?; iron stain); (3) a unique texture (single crystals broken into hundreds of small fragments [polycrystalline]) occurs in some heavily shocked quartz; and (4) feldspars display a wide range of shock features from multiple PDFs to incipient melting (internal flow) and extensive recrystallization. Table 1 summarizes the major shock features arranged in stages of progressive shock metamorphism for the three principal minerals: quartz, feldspars, and biotite. The predominant mode of PDF occurrence in quartz within leucogranitic clasts, and in most quartz fragments in matrix material is marked by light, orange-brown to grayish-brown in plane-transmitted light, and a deeper reddish-brown, with reduced birefringence, cross-polarized light. At high magnification, the alteration consists of tiny specks of unknown identity that often obscure but do not destroy the sets of PDFs. The effect under the microscope sometimes resembles the "texture" of toasted bread. This hallmark of Manson shocked quartz is rarely seen in shocked quartz from other impact structures (occasional in materials examined by NMS from West Hawk Lake and Steen River in Canada). Sharpton et al [2] describe similar quartz in their examination of Manson materials, stating the origin of this alteration to be due to in-crater postimpact hydrothermal alteration; if so, such a condition would not be diagnostic of shocked quartz grains in K-T deposits and is therefore not a criterion for relating these deposits to the Manson event. Single (larger) crystals of "toasted" quartz contain an average of 5.5 sets of PDFs whose principal crystallographic orientation is pi-1012 (omega-1013 is second most common). Much less frequent in clasts and matrix grains are untoasted but decorated PDFs in quartz, with omega predominant in the average 2.2 sets per grain. In some strongly shocked leucogranites, and in occasional matrix fragments, single crystals have been broken into numerous small (100 micrometers) interlocking quartz grains (toasted), containing an average of only 1.4 PDF sets, in which omega is prevalent. These sets do not cross individual micrograin boundaries and orientations vary between grains. This highly distinctive texture, which we interpret as shock-induced shattering of single crystals accompanied by rotations, may be unique to Manson: a similar texture has been described by Schreyer [3] in Vredefort Central Core granites, but in those quartzes the PDFs pass across grain boundaries. In highly shocked Manson quartz, recrystallization may completely remove PDFs and the toasted effect is absent. Manson feldspars show a range of PDFs, some resembling those in quartz, others arranged en echelon in alternating albite twins, others concentrated in deformation bands. Feldspars may partially isotropize or display internal flow banding in thetomorphic crystals or may be recrystallized. Biotite responds by intricate kinking progressing through nearly complete decomposition. Un-devitrified glass is rare in 2-A. In 1991-92, the U.S.G.S. drill-cored 12 holes to depths under 380 m along a zone from crater center to assumed rim. Hole M-1 lies about 4 km northeast of 2-A within the central peak (probably a ring). Materials in the upper 100 m or so are mainly shales and some carbonates that show indecisive shock effects except for occasional melting. Crystalline clasts below the sedimentary materials have proportionately less leucogranites and more dioritic and amphibolitic clasts. The variety and characteristics of shock effects in these rocks are often notably different from those in crystalline 2-A clasts. References: [1] Short N. M. (1966) J. Geol. Educ., 14, 149-166. [2] Sharpton V. L. et al (1990) GSA Spec. Paper 247, 349-357. [3] Schreyer, W. (1983) J. Petrol., 14, 26-37. Table 1, which appears here in the hard copy, shows stages of progressive metamorphism of 2-A Manson minerals.
Publications - GMC 53A | Alaska Division of Geological & Geophysical
quartz sand grains from ARCO Alaska, Inc. West Mikkelsen St. #1 Authors: Unknown Publication Date Reference Unknown, [n.d.], Scanning electron micrographs of selected radiolarians and quartz sand grains
Electron microscopic and optical studies of prism faces of synthetic quartz
NASA Technical Reports Server (NTRS)
Buzek, B. C.; Vagh, A. S.
1977-01-01
Application of electron and optical microscopic techniques to the study of growth spirals on quartz crystal faces is described. Attention is centered on the centers of the spirals and on screw ledges; overhanging kinks are revealed on one side of the spiral centers. The possibility that these special features may have developed after growth of the crystals went to completion is explored. The conjecture is raised that such structures might result from adsorption of growth-inhibiting impurities at the center of the growth spiral on the quartz habit faces.
Polycrystalline silicon thin-film transistors on quartz fiber
NASA Astrophysics Data System (ADS)
Sugawara, Yuta; Uraoka, Yukiharu; Yano, Hiroshi; Hatayama, Tomoaki; Fuyuki, Takashi; Nakamura, Toshihiro; Toda, Sadayuki; Koaizawa, Hisashi; Mimura, Akio; Suzuki, Kenkichi
2007-11-01
We demonstrate the fabrication of polycrystalline silicon (poly-Si) thin-film transistors (TFTs) on a thin quartz fiber for the first time. The poly-Si used in the active layer of the TFTs was prepared by excimer laser annealing of an amorphous Si thin film deposited on the fiber. Top-gated TFTs were fabricated on the fiber, and a field effect mobility of 10cm2/Vs was obtained. The proposed TFTs on a thin quartz fiber, named fiber TFTs, have potential application in microelectronic devices using TFTs fabricated on one-dimensional substrates.
Measuring the properties of shock released Quartz and Parylene-N
NASA Astrophysics Data System (ADS)
Hawreliak, James; Karasik, Max; Oh, Jaechul; Aglitskiy, Yefim
2016-10-01
The high pressure and temperature properties of Quartz and hydrocarbons are important to high energy density (HED) research and inertial confinement fusion (ICF) science. The bulk of HED material research studies the single shock Hugoniot. Here, we present experimental results from the NIKE laser where quartz and parylene-N are shock compressed to high pressure and temperature and the release state is measured through x-ray imaging. The shock state is characterized by shock front velocity measurements using VISAR and the release state is characterized by using side-on streaked x-ray radiography.
NASA Astrophysics Data System (ADS)
Verevkin, Yu K.; Klimov, A. Yu; Gribkov, B. A.; Petryakov, V. N.; Koposova, E. V.; Olaizola, Santiago M.
2008-11-01
By using the interference of pulsed radiation and a complete lithographic cycle, phase masks on quartz and antireflection structures on quartz and silicon are produced. The transmission of radiation through a corrugated vacuum—solid interface is calculated by solving rigorously an integral equation with the help of a computer program for parameters close to experimental parameters. The results of measurements are in good agreement with calculations. The methods developed in the paper can be used for manufacturing optical and semiconductor devices.
NASA Astrophysics Data System (ADS)
Marsala, Achille; Wagner, Thomas
2016-08-01
Element mobility and fluid-rock interaction related to the formation of late-metamorphic quartz veins have been studied by combination of mineral chemistry, whole-rock geochemistry, mass balance analysis and fluid-mineral equilibria modeling. The quartz veins are hosted by very low-grade metasedimentary rocks of the fold-and-thrust belt of the Rhenish Massif (Germany). The veins record two stages of evolution, a massive vein filling assemblage with elongate-blocky quartz, chlorite, apatite and albite, and a later open space filling assemblage with euhedral crystals of quartz, ankerite-dolomite and minor calcite and sulfides. Detailed mass balance analysis of an alteration profile adjacent to a representative quartz vein demonstrates that element mobility is restricted to the proximal zone. The most important element changes are gain of Ca, Fe, Mg, Mn, P and CO2, and loss of Si, K and Na. The data demonstrate that wall-rock carbonation is one of the main alteration features, whereas mobility of Si, K and Na are related to dissolution of quartz and destruction of detrital feldspar and muscovite. The whole-rock geochemical data, in conjunction with fluid composition data and pressure-temperature estimates, were used as input for fluid-mineral equilibria modeling in the system Si-Al-Fe-Mg-Ca-Na-K-C-S-O-H-B-F-Cl. Modeling involved calculation of rock-buffered fluid compositions over the temperature interval 100-500 °C, and reaction-path simulations where a rock-buffered high-temperature fluid reacts with fresh host-rocks at temperatures of 400, 300 and 200 °C. Calculated rock-buffered fluid compositions demonstrate that retrograde silica solubility is a strong driving force for quartz leaching in the temperature-pressure window of 380-450 °C and 0.5 kbar. These conditions overlap with the estimated temperatures for the initial stage of vein formation. Reaction-path models show that high-temperature alteration can produce the observed silica leaching, suggesting that fast advection of external hot fluids from deeper crustal levels was essential for the early stage of vein formation. Fluid advection must have occurred as multiple pulses, which allowed for periods of influx of fluids that leached quartz, alternating with periods of cooling and quartz precipitation in the veins. Reaction-path models at high temperatures (300-400 °C) do not produce carbonate alteration, whereas fluid-rock reaction at 200 °C produces carbonate alteration, consistent with the temperature estimates for the late-stage vein carbonate assemblage. Comparison between modeling results and geochemical data suggests that the observed alteration features are the product of fluid-rock reaction under conditions where the external fluid gradually cooled down and evolved with time. The results of this study highlight the importance of late-orogenic fluid migration for the formation of quartz vein arrays in fold-and-thrust belts.
Dai, S.; Ren, D.; Li, D.; Chou, C.-L.; Luo, K.
2006-01-01
Mineralogy and geochemistry of the No. 11 Coal bed were investigated by using inductively-coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDX), sequential chemical extraction procedure (SCEP), and optical microscopy. The results show that the No. 11 Coal bed has very high contents of veined quartz (Vol. 11.4%) and veined ankerite (Vol. 10.2 %). The veined ankerite was generally coated by goethite and the veined quartz embraced chalcopyrite, sphalerite, and selenio-galena. In addition, a trace amount of kaolinite was filled in the veins. These seven minerals often occur in the same veins. The formation temperatures of the veined ankerite and quartz are 85??C and 180??C respectively, indicating their origins of iron-rich calcic and siliceous low-temperature hydrothermal fluids in different epigenetic periods. Studies have also found that the veined quartz probably formed earlier than the veined ankerite, and at least three distinct ankerite formation stages were observed by the ration of Ca/Sr and Fe/Mn of ankerite. The mineral formation from the early to late stage is in order of sulfide, quartz, kaolinite, ankerite, and goethite. The veined ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn, which are as high as 0.09%, 74.0 ??g/g, 33.6 ??g/g, 185 ??g/g, and 289 ??g/g in this coal seam, respectively. However, the veined quartz is the main carrier of Pd, Pt, and Ir, which are 1.57 ??g/g, 0.15 ??g/g, and 0.007 ??g/g in this coal seam, respectively. In addition, chalcopyrite, sphalerite, and selenio-galena of hydrothermal origin were determined in the veined quartz, and these three sulfide minerals are also important carriers of Cu, Zn and Pb in the No. 11 Coal bed.
Brittle-viscous deformation of vein quartz under fluid-rich lower greenschist facies conditions
NASA Astrophysics Data System (ADS)
Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.
2015-06-01
We studied by Electron BackScatter Diffraction (EBSD) and optical microscopy a coarse-grained (ca. 0.5-6 mm) quartz vein embedded in a phyllonitic matrix to gain insights into the recrystallization mechanisms and the processes of strain localization in quartz deformed under lower greenschist facies conditions, broadly coincident with the brittle-viscous transition. The vein deformed during faulting along a phyllonitic thrust of Caledonian age within the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The phyllonite hosting the vein formed at the expense of a metabasaltic protolith through feldspar breakdown to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the quartz vein acted as a relatively rigid body. Viscous deformation in the vein was initially accommodated by quartz basal slip. Under the prevailing deformation conditions, however, dislocation glide- and possibly creep-accommodated deformation of quartz was inefficient, and this resulted in localized strain hardening. In response to the (1) hardening, (2) progressive and cyclic increase of the fluid pressure, and (3) increasing competence contrast between the vein and the weakly foliated host phyllonite, vein quartz crystals began to deform by brittle processes along specific, suitably oriented lattice planes, creating microgouges along microfractures. Nucleated new grains rapidly sealed these fractures as fluids penetrated the actively deforming system. The grains grew initially by solution precipitation and later by grain boundary migration. We suggest that the different initial orientation of the vein crystals led to strain accommodation by different mechanisms in the individual crystals, generating remarkably different microstructures. Crystals suitably oriented for basal slip, for example, accommodated strain mainly viscously and experienced only minor fracturing. Instead, crystals misoriented for basal slip hardened and deformed predominantly by domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms may vary through time in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.
The Year Leading to a Supereruption.
Gualda, Guilherme A R; Sutton, Stephen R
2016-01-01
Supereruptions catastrophically eject 100s-1000s of km3 of magma to the surface in a matter of days to a few months. In this study, we use zoning in quartz crystals from the Bishop Tuff (California) to assess the timescales over which a giant magma body transitions from relatively quiescent, pre-eruptive crystallization to rapid decompression and eruption. Quartz crystals in the Bishop Tuff have distinctive rims (<200 μm thick), which are Ti-rich and bright in cathodoluminescence (CL) images, and which can be used to calculate Ti diffusional relaxation times. We use synchrotron-based x-ray microfluorescence to obtain quantitative Ti maps and profiles along rim-interior contacts in quartz at resolutions of 1-5 μm in each linear dimension. We perform CL imaging on a scanning electron microscope (SEM) using a low-energy (5 kV) incident beam to characterize these contacts in high resolution (<1 μm in linear dimensions). Quartz growth times were determined using a 1D model for Ti diffusion, assuming initial step functions. Minimum quartz growth rates were calculated using these calculated growth times and measured rim thicknesses. Maximum rim growth times span from ~1 min to 35 years, with a median of ~4 days. More than 70% of rim growth times are less than 1 year, showing that quartz rims have mostly grown in the days to months prior to eruption. Minimum growth rates show distinct modes between 10-8 and 10-10 m/s (depending on sample), revealing very fast crystal growth rates (100s of nm to 10s of μm per day). Our data show that quartz rims grew well within a year of eruption, with most of the growth happening in the weeks or days preceding eruption. Growth took place under conditions of high supersaturation, suggesting that rim growth marks the onset of decompression and the transition from pre-eruptive to syn-eruptive conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualda, Guilherme A. R.; Sutton, Stephen R.
Supereruptions catastrophically eject 100s-1000s of km 3 of magma to the surface in a matter of days to a few months. In this study, we use zoning in quartz crystals from the Bishop Tuff (California) to assess the timescales over which a giant magma body transitions from relatively quiescent, pre-eruptive crystallization to rapid decompression and eruption. Quartz crystals in the Bishop Tuff have distinctive rims (<200 μm thick), which are Ti-rich and bright in cathodoluminescence (CL) images, and which can be used to calculate Ti diffusional relaxation times. We use synchrotron-based x-ray microfluorescence to obtain quantitative Ti maps and profilesmore » along rim-interior contacts in quartz at resolutions of 1–5 μm in each linear dimension. We perform CL imaging on a scanning electron microscope (SEM) using a low-energy (5 kV) incident beam to characterize these contacts in high resolution (<1 μm in linear dimensions). Quartz growth times were determined using a 1D model for Ti diffusion, assuming initial step functions. Minimum quartz growth rates were calculated using these calculated growth times and measured rim thicknesses. Maximum rim growth times span from ~1 min to 35 years, with a median of ~4 days. More than 70% of rim growth times are less than 1 year, showing that quartz rims have mostly grown in the days to months prior to eruption. Minimum growth rates show distinct modes between 10 -8 and 10 -10 m/s (depending on sample), revealing very fast crystal growth rates (100s of nm to 10s of μm per day). Our data show that quartz rims grew well within a year of eruption, with most of the growth happening in the weeks or days preceding eruption. Growth took place under conditions of high supersaturation, suggesting that rim growth marks the onset of decompression and the transition from pre-eruptive to syn-eruptive conditions.« less
The Year Leading to a Supereruption
Gualda, Guilherme A. R.; Sutton, Stephen R.
2016-07-20
Supereruptions catastrophically eject 100s-1000s of km 3 of magma to the surface in a matter of days to a few months. In this study, we use zoning in quartz crystals from the Bishop Tuff (California) to assess the timescales over which a giant magma body transitions from relatively quiescent, pre-eruptive crystallization to rapid decompression and eruption. Quartz crystals in the Bishop Tuff have distinctive rims (<200 μm thick), which are Ti-rich and bright in cathodoluminescence (CL) images, and which can be used to calculate Ti diffusional relaxation times. We use synchrotron-based x-ray microfluorescence to obtain quantitative Ti maps and profilesmore » along rim-interior contacts in quartz at resolutions of 1–5 μm in each linear dimension. We perform CL imaging on a scanning electron microscope (SEM) using a low-energy (5 kV) incident beam to characterize these contacts in high resolution (<1 μm in linear dimensions). Quartz growth times were determined using a 1D model for Ti diffusion, assuming initial step functions. Minimum quartz growth rates were calculated using these calculated growth times and measured rim thicknesses. Maximum rim growth times span from ~1 min to 35 years, with a median of ~4 days. More than 70% of rim growth times are less than 1 year, showing that quartz rims have mostly grown in the days to months prior to eruption. Minimum growth rates show distinct modes between 10 -8 and 10 -10 m/s (depending on sample), revealing very fast crystal growth rates (100s of nm to 10s of μm per day). Our data show that quartz rims grew well within a year of eruption, with most of the growth happening in the weeks or days preceding eruption. Growth took place under conditions of high supersaturation, suggesting that rim growth marks the onset of decompression and the transition from pre-eruptive to syn-eruptive conditions.« less
Locking the waveform with a quartz crystal
NASA Astrophysics Data System (ADS)
Ghimire, Shambhu
2018-05-01
High-order harmonics in the extreme-ultraviolet regime can be produced and a stable waveform-locked attosecond pulse can be formed when quartz is excited by a strong short-pulsed laser, providing a robust path towards attosecond photonics.
Sintered composite medium and filter
Bergman, Werner
1987-01-01
A particulate filter medium is formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers. A preferred composition is about 40 vol. % quartz and about 60 vol. % stainless steel fibers. The media is sintered at about 1100.degree. C. to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550.degree. C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.
Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.
1993-03-30
A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.
Synthesis of boron nitride coatings on quartz fibers: Thickness control and mechanism research
NASA Astrophysics Data System (ADS)
Zheng, Yu; Wang, Shubin
2011-10-01
Boron nitride (BN) coatings were successfully synthesized on quartz fibers by dip-coating in boric acid and urea solutions at 700 °C. The SEM micrographs indicated that the quartz fibers were fully covered by coatings with smooth surface. The XRD, FT-IR, XPS spectra and HR-TEM results showed that the composition of the coatings which combined closely with the quartz fibers was polycrystalline h-BN. By changing the dip circles, the coating thickness was well controlled. The thicknesses of samples dipped less than six circles increased linearly with dipping-circles; and the increment of coating thickness would slow down when the fibers were dipped 10 circles. After being dipped for 10 circles, the thickness was about 300 nm. The coating thickness was also established by calculation and the calculated results were consistent with the results measured by micrograph.
Luminescence quartz dating of lime mortars. A first research approach.
Zacharias, N; Mauz, B; Michael, C T
2002-01-01
Lime mortars mixed with sand are well suited for connecting structural materials, like stones and bricks, due to the mechanical properties this material exhibits. Their extensive use in architectural and decorative works during the last 4000 years motivated the introduction of the 'Luminescence clock' for age determination of mortars. The same principles as for quartz optically stimulated luminescence (OSL) dating of sediments were applied for age estimation of a mortar fragment removed from a Byzantine church monument dated by archaeological means to 1050-1100 years ago (the first half of the 10th century). The OSL from the quartz was monitored under blue light stimulation and UV detection, using a single-aliquot-regenerative-dose protocol. The quartz-OSL dating of the mortar resulted in 870 +/- 230 a. TL polymineral fine grain dating was also performed on a brick fragment which was connected to the mortar, resulting in a TL age of 1095 +/- 190 a.
Chen, Zhensheng; Riciputi, Lee R.; Mora, Claudia I.; Fishman, Neil S.
2001-01-01
Oxygen isotope compositions of widespread, authigenic K-feldspar and quartz overgrowths and cements in the Upper Cambrian Mount Simon Sandstone were measured by ion microprobe in 11 samples distributed across the Illinois basin and its periphery. Average K-feldspar δ18O values increase systematically from +14‰ ± 1‰ in the southernmost and deepest samples in Illinois to +24‰ ± 2‰ in the northernmost outcrop sample in Wisconsin. A similar trend was observed for quartz overgrowths (22‰ ± 2‰ to 28‰ ± 2‰). Constant homogenization temperatures (100–130 °C) of fluid inclusions associated with quartz overgrowths throughout the basin suggest that the geographic trend in oxygen isotope compositions is a result of diagenetic modification of a south to north migrating basinal fluid.
Martin, S P; Lynch, J M; Reddy, S M
2002-09-01
The benzidines, 3,3'-diaminobenzidine (DAB), 3,3'-dimethoxybenzidine (DMOB) and 3,3',5,5'-tetramethylbenzidine (TMB) were enzymatically oxidised to detect hydrogen peroxide, using the quartz crystal. The oxidised product mainly remains in suspension, resulting in a limited quartz sensor signal. We have used two non-ionic surfactants, Tween 80 and Triton X-100 to interact with the oxidised amphiphilic products to increase their solubility and surface activity, and their ability to adsorb to the crystal surface. Tween 80 exhibits optimised response effects for DAB, DMOB and TMB at 0.012, 0.005, and 0.002% (v/v), respectively, whereas Triton X-100 is optimum at 0.1, 0.2, and 0.006% (v/v), respectively. As a result, we have improved the quartz crystal sensor sensitivity to peroxide. The use of Triton X-100 gave an improved response time.
Bergman, W.
1986-05-02
A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.
Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.
1993-01-01
A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.
Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke
2011-05-01
The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.
Mielke, Stefan; Taeger, Dirk; Weitmann, Kerstin; Brüning, Thomas; Hoffmann, Wolfgang
2018-05-04
Inhaled crystalline quartz is a carcinogen. Analyses show differences in the distribution of lung cancer types depending on the status of silicosis. Using 2,524 lung tumor cases from the WISMUT autopsy repository database, silicosis was differentiated into cases without silicosis in lung parenchyma and its lymph nodes, with lymph node-only silicosis, or with lung silicosis including lymph node silicosis. The proportions of adenocarcinoma, squamous cell carcinoma, and small-cell lung carcinoma mortality for increasing quartz exposures were estimated in a multinomial logistic regression model. The relative proportions of the lung cancer subtypes in lymph node-only silicosis were more similar to lung silicosis than without any silicosis. The results support the hypothesis that quartz-related carcinogenesis in case of lymph node-only silicosis is more similar to that in lung silicosis than in without silicosis.
Adsorption of goethite onto quartz and kaolinite
Goldberg, M.C.; Weiner, Eugene R.; Boymel, P.M.
1984-01-01
The adsorption of colloidal goethite onto quartz and kaolinite substrates has been studied as a function of pH and NaCl concentration. Goethite adsorption was measured quantitatively by Fourier-transform infrared spectroscopy. The results indicate that adsorption onto both substrates is due primarily to coulombic forces; however, the pH dependence of adsorption is very different for the two substrates. This is explained by the fact that the surface charge on quartz is entirely pH-dependent, while kaolinite has surface faces which carry a permanent negative charge. Adsorption of goethite on to kaolinite increases markedly with increasing NaCl concentration, while adsorption onto quartz is relatively independent of NaCl concentration. This can be explained by the influence of NaCl concentration upon the development of surface charge on the substrates. A method is described for separating surface-bound goethite from free goethite.
NASA Astrophysics Data System (ADS)
Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik; Rezeau, Hervé
2016-04-01
The Lesser Caucasus belongs to the Central segment of the Tethyan metallogenic belt and it is a key area to understand the metallogenic evolution between the Western & Central parts of the Tethyan belt and its extension into Iran. Zangezur is the most important mineral district in the southernmost Lesser Caucasus. It is a component of the South Armenian block, and it was generated during the convergence and collision of the southern margin of the Eurasian plate and the northern margin of the Arabian plate, and terranes of Gondwana origin (Moritz et al., in press). The Zangezur ore district consists of the Tertiary Meghri-Ordubad composite pluton, which is characterized by a long-lasting Eocene to Pliocene magmatic, tectonic and metallogenic evolution. It hosts major porphyries Cu-Mo and epithermal Au - polymetallic deposits and occurrences, including the giant world class Kadjaran porphyry Cu-Mo deposit (2244 Mt reserves, 0.3% Cu, 0.05% Mo and 0.02 g/t Au). The Kadjaran deposit is hosted by a monzonite intrusion (31.83±0.02Ma; Moritz et al., in press). Detailed field studies of the porphyry stockwork and veins of the different mineralization stages, their crosscutting and displacement relationships and the age relationship between different paragenetic mineral associations were the criteria for distinction of the main stages of porphyry mineralization at the Kadjaran deposit. The economic stages being: quartz- molybdenite, quartz-molybdenite-chalcopyrite, and quartz-chalcopyrite. The main paragenetic association of the Kadjaran porphyry deposit includes pyrite, molybdenite, chalcopyrite, bornite, chalcocite, pyrrhotite, covellite, sphalerite, and galena. Recent field observations in the Kadjaran open pit revealed the presence of epithermal veins with late vuggy silica and advanced argillic alteration in the north-eastern and eastern parts of the deposit. They are distributed as separate veins and have also been recognized in re-opened porphyry veins and in stockwork. One of them is the east-west-oriented 6th vein zone in the northern part of the deposit, which contains quartz-molybdenite veins and late quartz-galena-sphalerite veins. This is interpreted as a telescoping between porphyry and epithermal environments. It is supported by microscopic studies of mineral paragenesis, which reveal the presence of enargite and tennantite-tetrahedrite, luzonite, sphalerite, and galena, generally in a gangue of quartz, followed by a late carbonate and gypsum stage. On-going fluid inclusion studies are being carried out on quartz samples from the different mineralization stages. Five types of fluid inclusions were distinguished according to their nature, bubble size, and daughter mineral content: vapor-rich, aqueous-carbonic, brine, polyphase brine and liquid-rich inclusions. Cathodoluminescence images from the porphyry veins reveal four generations of quartz. Molybdenite and chalcopyrite are associated with two different dark luminescent quartz generations, which contain typical brine, aqueous-carbonic and vapour-rich H2O fluid inclusions, with some of them coexisting locally as boiling assemblages. Epithermal veins are mainly characterized by liquid-rich H2O fluid inclusions. Microthermometric studies of fluid inclusions reveal a major difference in homogenisation temperatures between the early quartz-molybdenite- chalcopyrite stage (Thtotal between 3600 and 4250C) and the late quartz-galena-sphalerite vein stage (Thtotal 300-2700C), which is attributed to the transition from a porphyry to an epithermal environment in the Kadjaran deposit.
Piezoelectrically forced vibrations of rectangular SC-cut quartz plates
NASA Astrophysics Data System (ADS)
Lee, P. C. Y.; Lin, W. S.
1998-06-01
A system of two-dimensional first-order equations for piezoelectric crystal plates with general symmetry and with electroded faces was recently deduced from the three-dimensional equations of linear piezoelectricity. Solutions of these equations for AT-cut plates of quartz were shown to give accurate dispersion curves without corrections, and the resonances predicted agree closely with the experimental data of Koga and Fukuyo [I. Koga and H. Fukuyo, J. Inst. Electr. Commun. Eng. Jpn. 36, 59 (1953)] and that of Nakazawa, Horiuchi, and Ito (M. Nakazawa, K. Horiuchi, and H. Ito, Proceedings of the 1990 IEEE Ultrasonics Symposium, pp. 547-555). In this article, these equations are employed to study the free as well as the forced vibrations of doubly rotated quartz plates. Solutions of straight-crested vibrational modes varying in the x1 and x3 directions of SC-cut quartz plates of infinite extent are obtained and from which dispersion curves are computed. Comparison of those dispersion curves with those from the three-dimensional equations shows that the agreement is very close without any corrections. Resonance frequencies for free vibrations and capacitance ratios for piezoelectrically forced vibrations are computed and examined for various length-to-thickness or width-to-thickness ratios of rectangular SC-cut quartz plates. The capacitance ratio as a function of forcing frequency is computed for a rectangular AT-cut quartz and compared with the experimental data of Seikimoto, Watanabe, and Nakazawa (H. Sekimoto, Y. Watanabe, and M. Nakazawa, Proceedings of the 1992 IEEE Frequency Control Symposium, pp. 532-536) and is in close agreement.
Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather
2015-01-01
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, C. S. N.; Weidner, D. J.; Li, L.
We report new experimental results that quantify the stress distribution within a quartz aggregate during pore collapse and grain crushing. The samples were probed with synchrotron X-ray diffraction as they were compressed in a multianvil deformation apparatus at room temperature from low pressure (tens of megapascal) to pressures of a few gigapascal. In such a material, stress is likely to concentrate at grain-to-grain contacts and vanish where grains are bounded by open porosity. Therefore, internal stress is likely to vary significantly from point to point in such an aggregate, and hence, it is important to understand both the heterogeneity andmore » anisotropy of such variation with respect to the externally applied stress. In our quartz aggregate (grain size of ~4 μm), the measured diffraction peaks broaden asymmetrically at low pressure (tens of megapascal), suggesting that open pores are still a dominant characteristic of grain boundaries. In contrast, a reference sample of novaculite (a highly dense quartz polycrystal, grain size of ~6–9 μm) showed virtually no peak broadening with increasing pressure. In the quartz aggregate, we observed significant deviation in the pressure-volume curves in the range of P = 400–600 MPa. We suggest that this marks the onset of grain crushing (generally denoted as P* in the rock mechanic literature), which is commonly reported to occur in sandstones at pressures of this order, in general agreement with a Hertzian analysis of fracturing at grain contacts.« less
NASA Astrophysics Data System (ADS)
Sheppard, S.
1996-01-01
Metasedimentary and minor metavolcanic rocks of the Early Proterozoic Pine Creek Inlier rest unconformably on Late Archaean granitic basement. Three basin-wide, regional deformation events at ca.1885 1870 Ma are recognised: I) W- to NW-verging thrusts and recumbent folds (D2), II) upright, open to tight, doubly-plunging, NNE- to NNW-trending folds (D3), and III) open, upright, E-trending folds (D4). In the centre of the Pine Creek Inlier, post-tectonic granites (1835 1820 Ma) are spatially, temporally and probably genetically associated with mesothermal gold-quartz vein deposits. The Tom's Gully deposit consists of a shallowly S-dipping quartz reef in graphitic shale and siltstone within the thermal aureole of the post-tectonic (1831 ± 6 Ma) Mt Bundey pluton. Gold mineralisation comprises two(?) SSW-plunging sulphidic ore-shoots which are intimately associated with brecciation and recrystallisation of early barren quartz. Where early quartz is absent from the thrust, gold mineralisation is not developed, indicating that this secondary brittle fracturing was essential to sulphide and gold deposition. The ore-shoots plunge parallel to the trend of D3 fold axes. The reef is hosted by a D2 thrust fault with transport to the NW. D3 folds in the hangingwall and footwall decrease in amplitude toward the reef indicating that, during continued E-W compression, the thrust acted as a décollement zone. Field relationships and microstructural studies suggest that quartz and sulphide were deposited in a reactivated thrust during wrench shear along several NNE-trending faults associated with emplacement of the Mt Bundey pluton.
Rodriguez, Mark A.; Griego, James J. M.; Dai, Steve
2016-08-22
The sequence of crystallization in a recrystallizable lithium silicate sealing glass-ceramic Li 2O–SiO 2–Al 2O 3–K 2O–B 2O 3–P 2O 5–ZnO was analyzed by in situ high-temperature X-ray diffraction (HTXRD). Glass-ceramic specimens have been subjected to a two-stage heat-treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalitemore » resulted in a glass-ceramic having a near-linear thermal strain, as opposed to the highly nonlinear glass-ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass-ceramics. While the inversion in cristobalite resembles the character of a first-order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Furthermore, localized tensile stresses on quartz and possible solid-solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass-ceramics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piggott, N.; Vear, A.; Warren, E.A.
1996-08-01
Detailed quantification of cements and rock texture, fluid inclusion microthermometry, thermal maturity data, oil-source rock correlations and structural restorations have been integrated to reveal the porosity and hydrocarbon charge evolution of reservoirs in the Piedemonte Llanero thrustbelt of Colombia. Active exploration of deeply buried structures in different thrust sheets of the Piedemonte Llanero has encountered quartz arenites of widely varying average porosities (4-15%). Porosity has been reduced by mechanical compaction and quartz cementation during burial, and by pressure solution during structural deformation. The relative importance and timing of these processes varies between thrust sheets controlling the observed porosity variation. Thermalmore » maturity data indicate that all thrust sheets have been deeply buried and uplifted in several stages of compression. Detailed structural restorations indicate significant differences in the burial histories of individual thrust sheets. Oil-source rock correlations suggest two major hydrocarbon components in the thrustbelt: a Late Cretaceous oil-prone source and a Tertiary oil- and gas-prone source. Initial generation charged early structures leading to partial inhibition of quartz cementation. For most structures quartz cementation predated major hydrocarbon migration. Average quartz cementation temperature is uniform within a structure, but varies between thrust sheets. These variations appear to reflect differences in burial depths during quartz cementation rather than variations in timing. Integration of all data reveals a complex but predictable evolution of porosity and hydrocarbon charge in both space and time which is being applied to current exploration in the Piedemonte Llanero and is relevant to thrustbelt exploration elsewhere.« less
Phototoxic maculopathy induced by quartz infrared heat lamp
Zheng, Xinhua; Xie, Ping; Hu, Zizhong; Zhang, Weiwei; Liang, Kang; Wang, Xiuying; Liu, Qinghuai
2017-01-01
Abstract Rationale: A large proportion of the output of quartz infrared heat lamps is emitted as infrared radiation (IR). Retinal damage induced by IR-A and visible light on arc welders has been reported. However, case reports of retinal damage caused by quartz infrared heat lamps are rare. To the best of our knowledge, this is the first reported case of phototoxic maculopathy induced by quartz infrared heat lamps. Patient concerns: We report a female with a 1-month history of progressive blurred vision and dysmorphopsia in her right eye after improper staring at the tubes of a quartz infrared heater. Her best corrected visual acuity of the right eye was 20/32. Optical coherence tomography revealed a defect from the ellipsoid zone to retinal pigment epithelium (RPE)/Bruch's complex layer with a diameter of 360mmat its widest. P1 amplitudes in the two central concentric rings were reduced as assessed by multifocal electroretinography. Diagnoses: The patient was diagnosed with phototoxic maculopathy. Interventions: The patient was advised to cease all exposure to the infrared heater and was treated with peribulbar injections of methylprednisolone, oral Pancreatic Kininogenase, and oral Mecobalamin. Outcomes: Ten months later, her BCVA improved to 20/20. All examination results returned to normal except for a small residual defect in the interdigitation zone and RPE/Bruch's complex layer in her optical coherence tomography. Lessons: Light emitted by quartz infrared heat lamps may cause damage to the retina through photothermal and photochemical means. The public is insufficiently aware of the hazard potential of infrared heat lamps and other IR-A sources on human retina. PMID:28099337
Influence of particles on sonochemical reactions in aqueous solutions.
Keck, A; Gilbert, E; Köster, R
2002-05-01
Numerous publications deal with the possible application of ultrasound for elimination of organic pollutants as a tool for water pollution abatement. Most of the experiments were performed in pure water under laboratory conditions. For developing technologies that hold promise it is necessary to investigate the effect of ultrasound in natural systems or waste water where particulate matter could play an important role. In this paper the influence of quartz particles (2-25 microm) on the chemical effects of ultrasound in aqueous system using a high power ultrasound generator (68-1028 kHz, 100 W, reactor volume 500 ml) is reported. In pure water in dependence on particle size, concentration and frequency the formation rate of hydrogen peroxide under Ar/O2 (4:1) shows a maximum using 206 kHz in presence of 3-5 microm quartz particles (4-8 g/l). Under these conditions the yield of peroxide is higher than without quartz. Additionally under N2/O2 (4:1) besides hydrogen peroxide the formation of nitrite/nitrate was measured. Compared to pure water quartz particle depressed the formation of nitrite/nitrate up to 10-fold but not the formation of H2O2. According to the results of H2O2 formation the elimination of organic compounds by sonolysis (206 kHz) and the influence of quartz particles were investigated. As organic compounds salicylic acid, 2-chlorobenzoic acid and p-toluenesulfonic acid were used. The influence of quartz on the oxidation of organic compounds (206 kHz) is similar to that on the formation of H2O2.
Aşçi, Yeliz; Nurbaş, Macid; Sağ Açikel, Yeşim
2010-01-01
In the present study, the sorption characteristics of Cd(II) and Zn(II) ions on quartz, a representative soil-component, and the desorption of these metal ions from quartz using rhamnolipid biosurfactant were investigated. In the first part of the studies, the effects of initial metal ion concentration and pH on sorption of Cd(II) and Zn(II) ions by a fixed amount of quartz (1.5g) were studied in laboratory batch mode. The equilibrium sorption capacity for Cd(II) and Zn(II) ions was measured and the best correlation between experimental and model predicted equilibrium uptake was obtained using the Freundlich model. Although investigations on the desorption of heavy metal ions from the main soil-components are crucial to better understand the mobility and bioavailability of metals in the environment, studies on the description of desorption equilibrium were performed rarely. In the second part, the desorption of Cd(II) and Zn(II) from quartz using rhamnolipid biosurfactant was investigated as a function of pH, rhamnolipid concentration, and the amounts of sorbed Cd(II) and Zn(II) ions by quartz. The Freundlich model was also well fitted to the obtained desorption isotherms. Several indexes were calculated based on the differences of the quantity of Cd-Zn sorbed and desorbed. A desorption hysteresis (irreversibility) index based on the Freundlich exponent, concentration-dependent metal distribution coefficients, and the irreversibility index based on the metal distribution coefficient were used to quantify hysteretic behavior observed in the systems. 2009 Elsevier Ltd. All rights reserved.
Neil S. Fishman,; Sven O. Egenhoff,; Boehlke, Adam; Lowers, Heather A.
2015-01-01
The organic-rich upper shale member of the upper Devonian–lower Mississippian Bakken Formation (Williston Basin, North Dakota, USA) has undergone significant diagenetic alteration, irrespective of catagenesis related to hydrocarbon generation. Alteration includes precipitation of numerous cements, replacement of both detrital and authigenic minerals, multiple episodes of fracturing, and compaction. Quartz authigenesis occurred throughout much of the member, and is represented by multiple generations of microcrystalline quartz. Chalcedonic quartz fills radiolarian microfossils and is present in the matrix. Sulfide minerals include pyrite and sphalerite. Carbonate diagenesis is volumetrically minor and includes thin dolomite overgrowths and calcite cement. At least two generations of fractures are observed. Based on the authigenic minerals and their relative timing of formation, the evolution of pore waters can be postulated. Dolomite and calcite resulted from early postdepositional aerobic oxidation of some of the abundant organic material in the formation. Following aerobic oxidation, conditions became anoxic and sulfide minerals precipitated. Transformation of the originally opaline tests of radiolaria resulted in precipitation of quartz, and quartz authigenesis is most common in more distal parts of the depositional basin where radiolaria were abundant. Because quartz authigenesis is related to the distribution of radiolaria, there is a link between diagenesis and depositional environment. Furthermore, much of the diagenesis in the upper shale member preceded hydrocarbon generation, so early postdepositional processes were responsible for occlusion of significant original porosity in the member. Thus, diagenetic mineral precipitation was at least partly responsible for the limited ability of these mudstones to provide porosity for storage of hydrocarbons.
Study of Pellets and Lumps as Raw Materials in Silicon Production from Quartz and Silicon Carbide
NASA Astrophysics Data System (ADS)
Dal Martello, E.; Tranell, G.; Gaal, S.; Raaness, O. S.; Tang, K.; Arnberg, L.
2011-10-01
The use of high-purity carbon and quartz raw materials reduces the need for comprehensive refining steps after the silicon has been produced carbothermically in the electric reduction furnace. The current work aims at comparing the reaction mechanisms and kinetics occurring in the inner part of the reduction furnace when pellets or lumpy charge is used, as well as the effect of the raw material mix. Laboratory-scale carbothermic reduction experiments have been carried out in an induction furnace. High-purity silicon carbide and two different high-purity hydrothermal quartzes were charged as raw materials at different molar ratios. The charge was in the form of lumps (size, 2-5 mm) or as powder (size, 10-20 μm), mixed and agglomerated as pellets (size, 1-3 mm) and reacted at 2273 K (2000 °C). The thermal properties of the quartzes were measured also by heating a small piece of quartz in CO atmosphere. The investigated quartzes have different reactivity in reducing atmosphere. The carbothermal reduction experiments show differences in the reacted charge between pellets and lumps as charge material. Solid-gas reactions take place from the inside of the pellets porosity, whereas reactions in lumps occur topochemically. Silicon in pellets is produced mainly in the rim zone. Larger volumes of silicon have been found when using lumpy charge. More SiO is produced when using pellets than for lumpy SiO2 for the same molar ratio and heating conditions. The two SiC polytypes used in the carbothermal reduction experiments as carbon reductants presented different reactivity.
Phototoxic maculopathy induced by quartz infrared heat lamp: A clinical case report.
Zheng, Xinhua; Xie, Ping; Hu, Zizhong; Zhang, Weiwei; Liang, Kang; Wang, Xiuying; Liu, Qinghuai
2017-01-01
A large proportion of the output of quartz infrared heat lamps is emitted as infrared radiation (IR). Retinal damage induced by IR-A and visible light on arc welders has been reported. However, case reports of retinal damage caused by quartz infrared heat lamps are rare. To the best of our knowledge, this is the first reported case of phototoxic maculopathy induced by quartz infrared heat lamps. We report a female with a 1-month history of progressive blurred vision and dysmorphopsia in her right eye after improper staring at the tubes of a quartz infrared heater. Her best corrected visual acuity of the right eye was 20/32. Optical coherence tomography revealed a defect from the ellipsoid zone to retinal pigment epithelium (RPE)/Bruch's complex layer with a diameter of 360mmat its widest. P1 amplitudes in the two central concentric rings were reduced as assessed by multifocal electroretinography. The patient was diagnosed with phototoxic maculopathy. The patient was advised to cease all exposure to the infrared heater and was treated with peribulbar injections of methylprednisolone, oral Pancreatic Kininogenase, and oral Mecobalamin. Ten months later, her BCVA improved to 20/20. All examination results returned to normal except for a small residual defect in the interdigitation zone and RPE/Bruch's complex layer in her optical coherence tomography. Light emitted by quartz infrared heat lamps may cause damage to the retina through photothermal and photochemical means. The public is insufficiently aware of the hazard potential of infrared heat lamps and other IR-A sources on human retina.
Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gualda, Guilherme A.R.; Pamukcu, Ayla S.; Ghiorso, Mark S.
Supereruptions violently transfer huge amounts (100 s-1000 s km{sup 3}) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted {approx}760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain themore » timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.« less
NASA Astrophysics Data System (ADS)
Tierney, C. R.; Reid, M. R.; Burns, D. H.; Costa Rodriguez, F.; Chesner, C. A.
2017-12-01
The enormous 74 ka Youngest Toba Tuff (YTT) ejected 2800 km3 of compositionally zoned (68-77 wt.% SiO2) ignimbrite and co-ignimbrite ash. Titanium zoning within YTT quartz records a dynamic growth history, and sometimes concludes with a final growth stage under different conditions. We investigated the timescales of quartz growth using diffusion chronometry, and determined whether the last stage of crystallization was the result of a discrete and chamber-wide magmatic event. This work offers insight into the dynamics and timescales of storage and remobilization of voluminous silicic magmas - an important consideration for hazards assessment. High-resolution (1 µm steps) hyperspectral CL was mapped from 5-20 quartz crystals from each of five pumices spanning the YTT compositional spectrum. CL intensity was calibrated to Ti concentration via EPMA, and numerically modeled time-dependent diffusional relaxation curves where fit to concentration profiles across zone boundaries. CL-bright/high-Ti rims are found in quartz from all samples, but become less common and have lower Ti concentrations with increasing host pumice silica content (e.g., 70 ppm vs 50 ppm). Some large crystals contain distinct CL-bright interior zones with similar Ti concentration to the rims. Onset of growth of CL-bright rims commenced between 15 and 100 years before eruption, and interior bands between 30 and 1500 years. Neither rim nor interior ages correlate significantly with host pumice silica. Rim growth on quartz evidently occurred closer to eruption than a previous estimate of several decades to centuries for quartz from a single YTT pumice (Matthews et al., 2012). The similar timing for the onset of high-Ti quartz rim growth across all samples suggests a marked and temporally discrete magmatic event in the years to decades prior to eruption and may be recording the chamber-wide influence of magmatic recharge or remobilization. High-Ti interior zones likely record older recharge events that did not lead to eruption. The lower abundance and lower Ti concentrations of CL-bright rims in high-silica pumices indicates that the agent of recharge/remobilization may not have chemically impacted the more evolved parts of the system appreciably, potentially due to thermal buffering by the near-eutectoid composition of the magmatic system.
'Micro-hole' optical dating of quartz from HOTRAX-05 Arctic Ocean cores
NASA Astrophysics Data System (ADS)
Berger, G. W.; Polyak, L. V.
2011-12-01
For Quaternary Arctic Ocean cores, numeric dating methods are needed spanning and exceeding the age range of the widely used radiocarbon (C-14) method. Previously, luminescence sediment dating of 4-11 μm diameter quartz and feldspar grains from core tops has often produced large burial-age overestimates (e.g., by >7 kyr) due to failure to resolve mixed-age histories. However, application of micro-focused-laser ('micro-hole') photon-stimulated-luminescence (PSL) applied to quartz grains of 11-90 μm diameters from the tops (upper 2 cm) of high-sedimentation- rate HOTRAX-05 multi-cores at the Alaska margin provides expected near zero ages (0-200 a), thus overcoming the earlier problem of large PSL age over-estimation. This micro-hole PSL dating approach has also been applied to >11 μm quartz grains from multi-cores at two sites on the central Lomonosov Ridge. For a core top within a perched basin, a burial-age estimate of ~2 ka for 11-62 μm quartz was obtained, in accord with published C-14 age estimates from foraminifera, demonstrating the efficacy of the micro-hole approach to this ridge area. At a nearby 'erosive' ridge-top site, the micro-hole PSL approach paradoxically produces two different burial-age estimates from the same core-top horizon. The >90 μm quartz grains yield a burial age of ~25 ka, in accord with a C-14 age estimate of ~26 ka from >250 μm foraminifers from the same horizon. However, the 11-90 μm quartz produces a burial-age estimate of ~9 ka, indicating a differently preserved burial history for the medium silt grains than for the sand grains within a single horizon. This unexpected result provides a unique insight into past, complicated, depositional processes on this ridge top over a time range spanning the LGM. These results from the micro-hole PSL approach thus indicate a clear potential for dating times of detrital quartz deposition at other ridge tops in the Arctic Ocean, and for providing perhaps new insights into local preservation of burial ages. These PSL procedures are being applied also to sediment above and below a diamicton in a HOTRAX-05 core from the Northwind Ridge, with the aim of dating indirectly the diamicton. Preliminary results from this core will be presented.
Significance of Dauphiné twins in crystallographic fabrics of quartz tectonites
NASA Astrophysics Data System (ADS)
Eske Sørensen, Bjørn
2014-05-01
Dauphine twins are commonly found in quartz tectonites, however their role in deformation processes are not completely understood. This study represents a new attempt to understand the interaction between slip systems and Dauphine twins in deforming quartz-rich rocks at different temperatures. There is no doubt that Dauphine twins are mobilized under stress as this has been shown by experiments for single crystals and in polycrystalline aggregates where distinct crystallographic fabrics develop in previously randomly oriented aggregates related to minimization of elastic energy (Tullis 1972). However in quartz tectonites the Dauphine twin process is a part of interplay between plastic deformation and recovery processes which depends on PT, strain-rate and fluid composition and availability. In quartz tectonites with Y-girdle C-axis (GBM-regime) fabrics Dauphiné twins are abundant, relating different parts of r- and z rhomb "comet" distributions. This is interpreted as completion between prism slip and Dauphiné twinning. Slip rotates grains such that CRSS is low on the prism planes, but then Dauphiné twin boundaries sweeps through the grain back to the orientation giving lower stored elastic energy. The faster recovery at higher temperatures gives subgrain walls slowing down twin movement across the mm-sized grain of the GBM regime. At lower temperatures in the SGR-regime grain-size is reduced and different rotations of the grains are happening due to the domination of rhomb and basal slip. Because recrystallization is effective relative to grain-size the grains are commonly free of internal strain and subgrain walls, allowing the favorably oriented Dauphiné twin member to sweep across the whole grain overwhelming the unfavorably oriented Dauphiné twin member. As a consequence high strain reduces the number of Dauphiné twins and quartz rhomb fabrics appear trigonal, missing the "comet" shape of the GBM regime rhomb fabrics. Since Dauphiné twinning is also efficient at low temperatures rocks deformed in the brittle regime may also display stress-induced movement of Dauphiné twins. Though still highly debated Dauphiné twins and quartz rhombs fabrics may evolve as critical tools for determining paleostress orientation. Tullis, J. and Tullis, T. E., 1972, Preferred orientation of quartz produced by mechanical Dauphine twinning: thermodynamics and axial experiments in H. Heard et al., eds., Flow and Fracture of Rocks, Am. Geophys. Union Monograph 16, 67-82.
Installation and evaluation of weigh-in-motion utilizing quartz-piezo sensor technology.
DOT National Transportation Integrated Search
2016-06-28
The objective of the research study was: to install a quartz-piezo based WIM system, and to : determine sensor survivability, accuracy and reliability under actual traffic conditions in : Connecticuts environment. If the systems prove dependable a...
NASA Technical Reports Server (NTRS)
Goetz, C.; Ingle, W. M. (Inventor)
1980-01-01
A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.
Wu, Dung-Sheng
2018-01-01
Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time. PMID:29565303
Ho, Chao-Ching; Wu, Dung-Sheng
2018-03-22
Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.
NASA Astrophysics Data System (ADS)
Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M.; Alyamani, Ahmed Y.; Ng, Tien Khee; Ooi, Boon S.
2018-02-01
Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color ( 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.
NASA Astrophysics Data System (ADS)
Pignatelli, Isabella; Kumar, Aditya; Field, Kevin G.; Wang, Bu; Yu, Yingtian; Le Pape, Yann; Bauchy, Mathieu; Sant, Gaurav
2016-01-01
Concrete, used in the construction of nuclear power plants (NPPs), may be exposed to radiation emanating from the reactor core. Until recently, concrete has been assumed immune to radiation exposure. Direct evidence acquired on Ar+-ion irradiated calcite and quartz indicates, on the contrary, that, such minerals, which constitute aggregates in concrete, may be significantly altered by irradiation. More specifically, while quartz undergoes disordering of its atomic structure resulting in a near complete lack of periodicity, calcite only experiences random rotations, and distortions of its carbonate groups. As a result, irradiated quartz shows a reduction in density of around 15%, and an increase in chemical reactivity, described by its dissolution rate, similar to a glassy silica. Calcite however, shows little change in dissolution rate - although its density noted to reduce by ≈9%. These differences are correlated with the nature of bonds in these minerals, i.e., being dominantly ionic or covalent, and the rigidity of the mineral’s atomic network that is characterized by the number of topological constraints (nc) that are imposed on the atoms in the network. The outcomes have major implications on the durability of concrete structural elements formed with calcite or quartz bearing aggregates in nuclear power plants.
Pignatelli, Isabella; Kumar, Aditya; Field, Kevin G.; Wang, Bu; Yu, Yingtian; Le Pape, Yann; Bauchy, Mathieu; Sant, Gaurav
2016-01-01
Concrete, used in the construction of nuclear power plants (NPPs), may be exposed to radiation emanating from the reactor core. Until recently, concrete has been assumed immune to radiation exposure. Direct evidence acquired on Ar+-ion irradiated calcite and quartz indicates, on the contrary, that, such minerals, which constitute aggregates in concrete, may be significantly altered by irradiation. More specifically, while quartz undergoes disordering of its atomic structure resulting in a near complete lack of periodicity, calcite only experiences random rotations, and distortions of its carbonate groups. As a result, irradiated quartz shows a reduction in density of around 15%, and an increase in chemical reactivity, described by its dissolution rate, similar to a glassy silica. Calcite however, shows little change in dissolution rate - although its density noted to reduce by ≈9%. These differences are correlated with the nature of bonds in these minerals, i.e., being dominantly ionic or covalent, and the rigidity of the mineral’s atomic network that is characterized by the number of topological constraints (nc) that are imposed on the atoms in the network. The outcomes have major implications on the durability of concrete structural elements formed with calcite or quartz bearing aggregates in nuclear power plants. PMID:26822012
Prabaswara, Aditya; Min, Jung-Wook; Zhao, Chao; Janjua, Bilal; Zhang, Daliang; Albadri, Abdulrahman M; Alyamani, Ahmed Y; Ng, Tien Khee; Ooi, Boon S
2018-02-06
Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color (~ 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.
Nitrate-cancrinite precipitation on quartz sand in simulated Hanford tank solutions.
Bickmore, B R; Nagy, K L; Young, J S; Drexler, J W
2001-11-15
Caustic NaNO3 solutions containing dissolved Al were reacted with quartz sand at 89 degrees C to simulate possible reactions between leaked nuclear waste and primary subsurface minerals at the U.S. Department of Energy's Hanford site in Washington. Nitrate-cancrinite began to precipitate onto the quartz after 2-10 days, cementing the grains together. Estimates of the equilibrium constant for the precipitation reaction differ for solutions with 0.1 or 1.0 m OH- (log Keq = 30.4 +/- 0.8 and 36.2 +/- 0.6, respectively). The difference in solubility may be attributable to more perfect crystallinity (i.e., fewer stacking faults) in the higher-pH cancrinite structure. This is supported by electron micrographs of crystal morphology and measured rates of Na volatilization under an electron beam. Precipitate crystallinity may affect radionuclide mobility, because stacking faults in the cancrinite structure can diminish its zeolitic cation exchange properties. The precipitation rate near the onset of nucleation depends on the total Al and Si concentrations in solution. The evolution of experimental Si concentrations was modeled by considering the dependence of quartz dissolution rate on AI(OH)4- activity, cancrinite precipitation, and the reduction of reactive surface area of quartz due to coverage by cancrinite.
NASA Astrophysics Data System (ADS)
Quilichini, Antoine; Siebenaller, Luc; Nachlas, William O.; Teyssier, Christian; Vennemann, Torsten W.; Heizler, Matthew T.; Mulch, Andreas
2015-02-01
We document the interplay between meteoric fluid flow and deformation processes in quartzite-dominated lithologies within a ductile shear zone in the footwall of a Cordilleran extensional fault (Kettle detachment system, Washington, USA). Across 150 m of shear zone section, hydrogen isotope ratios (δD) from synkinematic muscovite fish are constant (δD ˜ -130‰) and consistent with a meteoric fluid source. Quartz-muscovite oxygen isotope thermometry indicates equilibrium fractionation temperatures of ˜365 ± 30 °C in the lower part of the section, where grain-scale quartz deformation was dominated by grain boundary migration recrystallization. In the upper part of the section, muscovite shows increasing intragrain compositional zoning, and quartz microstructures reflect bulging recrystallization, solution-precipitation, and microcracking that developed during progressive cooling and exhumation. The preserved microstructural characteristics and hydrogen isotope fingerprints of meteoric fluids developed over a short time interval as indicated by consistent mica 40Ar/39Ar ages ranging between 51 and 50 Ma over the entire section. Pervasive fluid flow became increasingly channelized during detachment activity, leading to microstructural heterogeneity and large shifts in quartz δ18O values on a meter scale. Ductile deformation ended when brittle motion on the detachment fault rapidly exhumed the mylonitic footwall.
Jia, Zhenyuan; Jin, Lei; Liu, Wei; Ren, Zongjin
2016-01-01
Piezoelectric dynamometers are out of use in high humidity. Experimental results showed that piezoelectric coefficients measured by the force-induced charges method initially fluctuated in a small range and then was unstable, and they could not be measured at high relative humidity (RH). The traditional shielding method-insulation paste was not quiet convenient, and it even added the weight of piezoelectric dynamometers. In this paper, a novel strategy that eliminates the influence of water adsorption with quartz surfaces on piezoelectric dynamometers was proposed. First, a water-quartz model was developed to analyze the origin of the RH effect. In the model, water vapor, which was adsorbed by the quartz sheet side surface, was considered. Second, equivalent sheet resistor of the side surface was researched, while the relationship of the three R’s (Roughness, RH, and Resistor) was respectively discussed based on the adsorption mechanism. Finally, fluorination technology was skillfully adapted to each surface of quartz sheets to shield the water vapor. The experiment verified the fluorination strategy and made piezoelectric dynamometers work in high humidity up to 90%RH successfully. The results showed that the presented model above was reasonable. In addition, these observations also drew some useful insights to change the structure of piezoelectric dynamometers and improve the properties. PMID:27399719
Kiliç, Mehtap Gülsün; Hoşten, Cetin; Demirci, Sahinde
2009-11-15
This paper attempts to compare electrocoagulation using aluminum anodes and stainless steel cathodes with conventional coagulation by aluminum sulfate dosing on aqueous suspensions of ultrafine quartz. Several key parameters affecting the efficiency of electrocoagulation and coagulation were investigated with laboratory scale experiments in search of optimal parameter values. Optimal values of the parameters were determined on the basis of the efficiency of turbidity removal from ultrafine quartz suspensions. The parameters investigated in the study were suspension pH, electrical potential, current density, electrocoagulation time, and aluminum dosage. A comparison between electrocoagulation and coagulation was made on the basis of total dissolved aluminum, revealing that electrocoagulation and coagulation were equally effective at the same aluminum dosage for the removal of quartz particles from suspensions. Coagulation, however, was more effective in a wider pH range (pH 6-9) than electrocoagulation which yielded optimum effectiveness in a relatively narrower pH range around 9, where, in both methods, these pH values corresponded to near-zero zeta potentials of quartz particles. Furthermore, experimental results confirmed that electrocoagulation could display some pH buffering capacity. The kinetics of electrocoagulation was very fast (<10 min) in approaching a residual turbidity, which could be modeled with a second-order rate equation.
NASA Astrophysics Data System (ADS)
Lafuente, B.; Bishop, J. L.; Fenton, L. K.; King, S. J.; Blake, D.; Sarrazin, P.; Downs, R.; Horgan, B. H.
2013-12-01
A field portable X-ray Diffraction (XRD) instrument was used at White Sands National Monument to perform in-situ measurements followed by laboratory analyses of the gypsum-rich dunes and to determine its modal mineralogy. The field instrument is a Terra XRD (Olympus NDT) based on the technology of the CheMin (Chemistry and Mineralogy) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity which is providing the mineralogical and chemical composition of scooped soil samples and drilled rock powders collected at Gale Crater [1]. Using Terra at White Sands will contribute to 'ground truth' for gypsum-bearing environments on Mars. Together with data provided by VNIR spectra [2], this study clarifies our understanding of the origin and history of gypsum-rich sand dunes discovered near the northern polar region of Mars [3]. The results obtained from the field analyses performed by XRD and VNIR spectroscopy in four dunes at White Sands revealed the presence of quartz and dolomite. Their relative abundance has been estimated using the Reference Intensity Ratio (RIR) method. For this study, particulate samples of pure natural gypsum, quartz and dolomite were used to prepare calibration mixtures of gypsum-quartz and gypsum-dolomite with the 90-150μm size fractions. All single phases and mixtures were analyzed by XRD and RIR factors were calculated. Using this method, the relative abundance of quartz and dolomite has been estimated from the data collected in the field. Quartz appears to be present in low amounts (2-5 wt.%) while dolomite is present at percentages up to 80 wt.%. Samples from four dunes were collected and prepared for subsequent XRD analysis in the lab to estimate their composition and illustrate the changes in mineralogy with respect to location and grain size. Gypsum-dolomite mixtures: The dolomite XRD pattern is dominated by an intense diffraction peak at 2θ≈36 deg. which overlaps a peak of gypsum, This makes low concentrations of dolomite difficult to quantify in mixtures with high concentration of gypsum. Dolomite has been detected in some locations at dune 3 as high as 80 wt.%. Gypsum-quartz mixtures: The intensity of the main diffraction peak of quartz at 2θ≈31 deg. decreases progressively with the decrease of the amount of quartz in the mixtures. Samples from dune 1 and 2 show quartz abundance at 5.6 and 2.6 wt.% respectively . [1] Blake et al. Space Sci. Rev. (2012). doi:10.1007/s11214-012-9905-1. [2] King et al. (2013) AGU, submitted. [3] Langevin et al. (2005). Science 307, 1584-1586.
NASA Astrophysics Data System (ADS)
Wohlers, Anke; Manning, Craig E.; Thompson, Alan B.
2011-05-01
The solubilities of the assemblages albite + paragonite + quartz and jadeite + paragonite + quartz in H 2O were determined at 500 and 600 °C, 1.0-2.25 GPa, using hydrothermal piston-cylinder methods. The three minerals are isobarically and isothermally invariant in the presence of H 2O, so fluid composition is uniquely determined at each pressure and temperature. A phase-bracketing approach was used to achieve accurate solubility determinations. Albite + quartz and jadeite + quartz dissolve incongruently in H 2O, yielding residual paragonite which could not be retrieved and weighed. Solution composition fixed by the three-mineral assemblage at a given pressure and temperature was therefore bracketed by adding NaSi 3O 6.5 glass in successive experiments, until no paragonite was observed in run products. Solubilities derived from experiments bounding the appearance of paragonite thus constrain the equilibrium fluid composition. Results indicate that, at a given pressure, Na, Al, and Si concentrations are higher at 600 °C than at 500 °C. At both 500 and 600 °C, solubilities of all three elements increase with pressure in the albite stability field, to a maximum at the jadeite-albite-quartz equilibrium. In the jadeite stability field, element concentrations decline with continued pressure increase. At the solubility maximum, Na, Al, and Si concentrations are, respectively, 0.16, 0.05, and 0.48 molal at 500 °C, and 0.45, 0.27, and 1.56 molal at 600 °C. Bulk solubilities are 3.3 and 10.3 wt% oxides, respectively. Observed element concentrations are everywhere greater than those predicted from extrapolated thermodynamic data for simple ions, monomers, ion pairs, and the silica dimer. The measurements therefore require the presence of additional, polymerized Na-Al-Si-bearing species in the solutions. The excess solubility is >50% at all conditions, indicating that polymeric structures are the predominant solutes in the P- T region studied. The solubility patterns likely arise from combination of the large solid volume change associated with the albite-jadeite-quartz equilibrium and the rise in Na-Al-Si polymerization with approach to the hydrothermal melting curves of albite + quartz and jadeite + quartz. Our results indicate that polymerization of Na-Al-Si solutes is a fundamental aspect of fluid-rock interaction at high pressure. In addition, the data suggest that high-pressure metamorphic isograds can impose unexpected controls on metasomatic mass transfer, that significant metasomatic mass transfer prior to melting should be considered in migmatitic terranes, and that polymeric complexes may be an important transport agent in subduction zones.
Evolution of the Bucium Rodu and Frasin magmatic-hydrothermal system, Metaliferi Mountains, Romania
NASA Astrophysics Data System (ADS)
Iatan, Elena Luisa; Berbeleac, Ion; Visan, Madalina; Minut, Adrian; Nadasan, Laurentiu
2013-04-01
The Miocene Bucium Rodu and Frasin maar-diatreme structures and related Au-Ag epithermal low sulfidation with passing to mesothermal mineralizations are located in the Bucium-Rosia Montana-Baia de Aries metallogenetic district, within so called the "Golden Quatrilaterum", in the northeastern part of the Metaliferi Mountains. These structures are situated at about 5 km southeast from Rosia Montana, the largest European Au-Ag deposit. The total reserves for Bucium Rodu-Frasin are estimated at 43.3 Mt with average contents of 1.3 g/t Au and 3 g/t Ag. The Miocene geological evolution of Bucium Rodu and Frasin magmatic-hydrothermal system took place in closely relationships with tectonic, magmatic and metallogenetic activity from Bucium-Rosia Montana-Baia de Aries district in general, and adjacent areas, in special. The hydrothermal alteration is pervasive; adularia followed by phyllic, carbonatization and silicification alterations, usually show a close relationship with the mineralizations. Propylitic alteration occurs dominantly towards the depth; argillic alteration shows a local character. The mineralization occurs in veins, breccias, stockworks and disseminations and is hosted within two volcanic structures emplaced into a sequence of Cretaceous sediments in closely genetically relations with the Miocene phreatomagmatic fracturing and brecciation events. Within Rodu maar-diatreme structure the mineralizations follow especially the contact between the diatreme and Cretaceous flysch. The vein sets with low, moderately and near vertical dippings, cover 400x400m with N-S trend. The most important mineralization style is represented by veins, accompanied by hydrothermal breccias and disseminations. The veins spatial distribution relives as "en echelon" tension veins. They carry gold, minor base metal sulphides (pyrite, chalcopyrite, sphalerite, galena, tetrahedrite, arsenopyrite). Gangue is represented by carbonates (calcite, dolomite, ankerite, siderite, rhodochrosite) and quartz. In contrast, in Frasin maar-diatreme structure, the mineralizations are focused especially along the northeastern contact between the andesite dome and polimictic breccias. Stockwork is the main style of mineralization and consists of pyrite, small amounts of chalcopyrite, sphalerite, galena, arsenopyrite and gold within a gangue of quartz and carbonates similar to Rodu mineralizations. The ore minerals deposition from hydrothermal fluids have pulsated character with a three stage evolution and mineral assemblages: 1) magnetite (hematite) - pyrite (marcasite) - quartz in the first stage, epithermal low sulfidation with passing to mesothermal; 2) arsenopyrite (Au) - (-base metal sulfides) - quartz, "Chinga" (pyrite (Au)-quartz-adularia) - carbonates (calcite, aragonite, dolomite, ankerite, ± rhodochrosite ± kutnahorite) - quartz - adularia in the second stage, epithermal low sulfidation and 3) pyrite - marcasite - carbonates - quartz, (Au) - carbonates (dominant rhodochrosite) - quartz - adularia and alabandite - rhodochrosite - quartz in the third stage, epithermal low sulfidation. The mineralizing hydrothermal fluids had near neutral pH with the gold transported probably as a bisulfide complex; boiling seems to be the main way of gold precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyne, C.D.
1987-05-01
Petrologic analysis of 24 medium to coarse-grained sandstone samples, collected from a 2950-m submarine fan complex of late Campanian-early Maestrichtian age exposed within Mono Creek Canyon, reveal commonly calcite cemented, poorly sorted, subangular biotic arkoses. Framework averages 86.0%. Matrix - primarily detrital quartz, feldspar, and lithic fragments finer than 0.03 mm and mechanically and chemically altered phyllosilicates and labile aphanites - averages 8.9%. Calcite cement averages 4.2%. Porosity averages 0.9%. Gazzi-Dickinson point counts of 400 framework grains per slide yield modal averages of Q/sub 37.7/ F/sub 49.8/ L/sub 12.5/; Qm/sub 27.4/ F/sub 49.8/ Lt/sub 22.8/; Qm/sub 35.6/ P/sub 43.7/ K/submore » 20.7/; and Qp/sub 49.4/ Lv/sub 22.1/ Ls/sub 28.5/. P/F averages 0.68, Lv/L averages 0.45, Qp/Q averages 0.27, and detrital phyllosilicate, predominantly biotite, averages 5.7% of total framework. Neither primary nor secondary parameters vary systematically with stratigraphic position. Miscellaneous constituents average 1.3% of framework and include epidote, garnet, amphibole, pyroxene, zircon, and tourmaline as well as carbonaceous blebs, opaque minerals, and unidentifiable lithic fragments. Separate analysis of 100 medium sized quartz grains per slide indicates a mean population of 63.0% non-undulatory monocrystalline quartz, 9.1% undulatory monocrystalline quartz, 10.1% polycrystalline quartz of 2 to 3 crystals, and 17.9% polycrystalline quartz composed of more than 3 crystals. Modal data, plotted upon provenance discrimination diagrams, indicate a plutonic provenance transitional between a dissected magmatic arc and uplifted basement terrane. Paleocurrent data, neglecting possible clockwise rotation, indicate sediment transport from the north.« less
NASA Astrophysics Data System (ADS)
Zoeller, Ludwig; Richter, Daniel; Klinger, Philip; van den Bogaard, Paul
2013-04-01
Middle to Upper Pleistocene and Holocene volcanic eruptions are difficult to date by Ar/Ar techniques when K-rich minerals such as sanidines are not present, as is the case in mafic and some intermediate rocks. However, these may contain phlogopite crystals suitable for Ar/Ar dating. Direct luminescence dating of volcanic feldspar is hampered by a poorly understood phenomenon of long-term signal instability called "anomalous fading" which, however, is apparently not present in quartz. To circumvent the fading problem involved in luminescence dating of volcanic rocks lacking quartz we sampled quartz-bearing crustal xenoliths from the Quaternary West and the East Eifel Volcanic Fields. Sufficient heating for zeroing of the acquired geological TL during eruption is sometimes but not always visible in the field and among others depends on the size of the xenolith. Quartz grains were extracted from the xenoliths by crushing, density separation and etching in HF or H2SiF6. The orange-red TL emission from quartz is known to have a very high saturation dose and was therefore employed using a new "lexsyg" luminescence reader equipped with a special detection unit for measuring this orange-red TL emission. Additionally, the existing data base of Ar/Ar dating results is increased by a series of new laser ablation step heating Ar/Ar dating results from samples extracted from identical volcanic eruptions. These can serve as verification of the luminescence dating attempts. Some first preliminary TL dating results in the range up to ca. 500 ka will be presented and discussed. Apparently, some TL ages from quartz extracts underestimate the Ar/Ar ages significantly. Possible explanations of age underestimates will be presented for discussion.
New piezoelectric materials for SAW filters
NASA Astrophysics Data System (ADS)
Anghelescu, Adrian; Nedelcu, Monica
2010-11-01
Scientific research of surface acoustic wave (SAW) devices had an early start by the end of 1960s and led to the development of high frequency and small size piezo devices. A sustained effort was dedicated for these components to be transformed into many more interesting applications for telecom market. Recently the employment of new piezo materials and crystallographic orientations open new opportunities for SAW filters. New piezoelectric crystals of gallium orthophosphate (GaPO4) provide higher electromechanical coupling than quartz, while maintaining temperature compensated characteristics similar to quartz. Based on this material phase transition of 970°C, development of new piezo devices to operate at higher temperatures up to 800°C can be done. SAW velocities about 30% lower than ST-X quartz, favors smaller and more compact devices. Other advantages of GaPO4 are: stability with high resistance to stress induced twinning, 3~4 times higher electromechanical coupling than quartz and existence of SAW temperature compensated orientations. Another family of new materials of the trigonal 32 class has received much attention recently because of their temperature behavior similar to quartz and the promise of higher electromechanical coupling coefficients. It is the family of langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (La3Ga5.5Nb0.5O14). Langasite crystals, easier to obtain and with the value of electromechanical coupling coefficient intermediate between quartz and lithium tantalate (k2=0.32% for 0°, 140°, 22.5° orientation and k2=0.38% for 0°, 140°, 25° orientation), enable us to design SAW filters with a relative pass band of 0.3% to 0.85%. Other piezoelectric materials are reviewed for comparison.
NASA Astrophysics Data System (ADS)
Watanabe, Tsuyoshi; Taniguchi, Kazutake; Suzuki, Kouta; Iyama, Hiromasa; Kishimoto, Shuji; Sato, Takashi; Kobayashi, Hideo
2016-06-01
Fine hole and dot patterns with bit pitches (bp’s) of less than 40 nm were fabricated in the circular band area of a quartz substrate by R-θ electron beam lithography (EBL), reactive ion etching (RIE), and nanoimprinting. These patterning processes were studied to obtain minimum pitch sizes of hole and dot patterns without pattern collapse. The patterning on the circular band was aimed to apply these patterning processes to future high-density bit-patterned media (BPM) for hard disk drive (HDD) and permanent memory for the long life archiving of digital data. In hole patterning, a minimum-22-nm-bp and 8.2-nm-diameter pattern (1.3 Tbit/in.2) was obtained on a quartz substrate by optimizing the R-θ EBL and RIE processes. Dot patterns were replicated on another quartz substrate by nanoimprinting using a hole-patterned quartz substrate as a master mold followed by RIE. In dot patterning, a minimum-30-nm-bp and 18.5-nm-diameter pattern (0.7 Tbit/in.2) was obtained by introducing new descum conditions. It was observed that the minimum bp of successful patterning increased as the fabrication process proceeded, i.e., from 20 nm bp in the first EBL process to 30 nm bp in the last quartz dot patterning process. From the measured diameters of the patterns, it was revealed that pattern collapse was apt to occur when the value of average diameter plus 3 sigma of diameter was close to the bp. It was suggested that multiple fabrication processes caused the degradation of pattern quality; therefore, hole patterning is more suitable than dot patterning for future applications owing to the lower quality degradation by its simple fabrication process.
Silicon self-diffusion in single-crystal natural quartz and feldspar
NASA Astrophysics Data System (ADS)
Cherniak, D. J.
2003-09-01
Silicon diffusion was measured in natural quartz and anorthitic feldspar under dry, low-pressure (0.1 MPa) conditions using a 30Si tracer. Sources of diffusant consisted of 30Si-enriched silica powder for experiments on quartz and microcrystalline 30Si-doped synthetic feldspar of composition comparable to the feldspar specimens. Distributions of 30Si were measured with Rutherford backscattering spectrometry and nuclear reaction analysis, using the reaction 30Si (p,γ) 31P. The following Arrhenius relations were obtained for anneals at 1 atm in air. For quartz: transport normal to c: Dqtz,⊥c=7.97×10 -6 exp (-447±31 kJ mol -1/ RT) m 2 s -1; transport parallel to c: Dqtz,∥c=6.40×10 -6 exp (-443±22 kJ mol -1/ RT) m 2 s -1. For anorthitic feldspar (An 93): DAn=3.79×10 -7 exp (-465±50 kJ mol -1/ RT) m 2 s -1. The few successful experiments on diffusion in plagioclase of more albitic compositions (An 67 and An 23) reveal Si diffusivities a few orders of magnitude faster than that in the anorthite. The results for these feldspars bracket the determination of CaAl-NaSi interdiffusion under dry conditions by Grove et al. [Geochim. Cosmochim. Acta 48 (1984) 2113-2121], suggesting that the rate-limiting process is indeed Si diffusion. Si diffusion in quartz under more reducing conditions (NNO) is slightly slower (by about half an order of magnitude) than diffusion in samples annealed in air. This is consistent with observations made in studies of synthetic quartz [Béjina and Jaoul, Phys. Earth Planet. Inter. 50 (1988) 240-250].
Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C
2016-02-01
Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles. Copyright © 2015 Elsevier Ltd. All rights reserved.
Genesis of the hydrothermal gold deposits in the Canan area, Lepaguare District, Honduras
NASA Astrophysics Data System (ADS)
Mattioli, Michele; Menichetti, Marco; Renzulli, Alberto; Toscani, Lorenzo; Salvioli-Mariani, Emma; Suarez, Pedro; Murroni, Alessandro
2014-04-01
The Canan area (Honduras) is characterized by a gold-bearing ore deposit that is associated with quartz-veined shear zones. Gold mineralization occurs in low-to medium-grade metamorphic host-rocks (graphitic and sericitic schists). Hydrothermal fluids, which are associated with the emplacement of Cretaceous-Tertiary granodioritic intrusions, are responsible for the formation of quartz veins and the hydrothermal alteration of wall-rocks. Three main altered zones have been detected in the wall-rocks as far as 150 cm from the quartz veins. The distal zone (up to 50-cm thick) contains quartz, chlorite and illite. The intermediate zone is the thickest (up to 80 cm) and is marked by quartz, muscovite, sulphides, kaolinite and native elements such as Au and Ag. The proximal zone, which is close to the quartz veins, is rather thin (up to 25 cm) and contains clay minerals, Al-oxides-hydroxides and sulphides. The transition from the distal to the proximal zone is accompanied by the enrichment of SiO2 and the depletion of all other major elements, except for Fe2O3(tot). Precious metals occur in the highest concentrations in the intermediate zone (Au up to 7.6 ppm and Ag up to 11 ppm). We suggest that gold was transported as a reduced sulphur complex and was precipitated from the hydrothermal solution by the reaction of the sulphur complexes with Fe2+ from the alteration of the mafic minerals of the host-rock. Fluid-wall-rock interactions seem to be the main cause of gold mineralization. Genetic relationships with a strike-slip fault system, hydrothermal alteration zones within the metamorphic wall-rocks, and an entire set of geochemical anomalies are consistent with orogenic-type gold deposits of the epizonal class.
NASA Astrophysics Data System (ADS)
Radmard, Kaikhosrov; Zamanian, Hassan; Hosseinzadeh, Mohamad Reza; Khalaji, Ahmad Ahmadi
2017-12-01
Situated about 130 km northeast of Tabriz (northwest Iran), the Mazra'eh Shadi deposit is in the Arasbaran metallogenic belt (AAB). Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb), Pb (21100 ppm), Ag (9.43ppm), Cu (611ppm) and Zn (333 ppm). Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra'eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra'eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb). In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.
NASA Astrophysics Data System (ADS)
Yun, Seong-Taek; So, Chil-Sup; Choi, Sang-Hoon; Shelton, Kevin L.; Koo, Ja-Hak
1993-04-01
The Wolyu mine is one of the largest vein-type gold-silver-bearing epithermal systems in the Youngdong district and is the first gold-silver deposit in Korea found to contain significant germanium, in the form of argyrodite (Ag8GeS6). Mineralized veins (78.9 ± 1.2 Ma) crosscutting Late Cretaceous hostrock tuff and quartz porphyry (81.5 ± 1.8 Ma) consist of three stages of quartz and carbonates, the first of which contains pyrite, basemetal sulfides and Au-Ag-minerals. Stage I Au-Ag-Ge-mineralized veins show a systematic variation of mineral assemblage with time: (1) quartz + pyrite; (2) quartz + pyrite + sphalerite + electrum + argentite; (3) carbonate + quartz + sphalerite + electrum + argentite; (4) carbonate + native silver + argentite + Ag-sulfosalts + argyrodite + sphalerite. Calculated values of temperature and sulfur activity are: assemblage (1), 360-280°C and 10-7-10-10; (2), 280-210°C and 10-10-10-14; (3), 210-180°C and 10-14-10-16; (4), 180-155°C and 10-17-10-18. These data, the frequent association of gold with sulfides, and the abundance of pyrite in alteration zones indicate that decreasing sulfur activity and cooling were important in triggering gold deposition. Hydrogen and oxygen isotope compositions of ore fluids display a systematic variation with increasing time. Within the main Ag-Au-Ge mineralization, δD and δ 18O values decrease with the transition from quartz to carbonate deposition (from -78 and -2.8% to -90 and -8.7%., respectively), indicating increasing involvement (mixing) of less evolved meteoric water which resulted in progressive cooling and dilution of ore fluids in the shallow (≈ 370 600 m) Wolyu epithermal system.
Investigation of quartz grain surface textures by atomic force microscopy for forensic analysis.
Konopinski, D I; Hudziak, S; Morgan, R M; Bull, P A; Kenyon, A J
2012-11-30
This paper presents a study of quartz sand grain surface textures using atomic force microscopy (AFM) to image the surface. Until now scanning electron microscopy (SEM) has provided the primary technique used in the forensic surface texture analysis of quartz sand grains as a means of establishing the provenance of the grains for forensic reconstructions. The ability to independently corroborate the grain type classifications is desirable and provides additional weight to the findings of SEM analysis of the textures of quartz grains identified in forensic soil/sediment samples. AFM offers a quantitative means of analysis that complements SEM examination, and is a non-destructive technique that requires no sample preparation prior to scanning. It therefore has great potential to be used for forensic analysis where sample preservation is highly valuable. By taking quantitative topography scans, it is possible to produce 3D representations of microscopic surface textures and diagnostic features for examination. Furthermore, various empirical measures can be obtained from analysing the topography scans, including arithmetic average roughness, root-mean-square surface roughness, skewness, kurtosis, and multiple gaussian fits to height distributions. These empirical measures, combined with qualitative examination of the surfaces can help to discriminate between grain types and provide independent analysis that can corroborate the morphological grain typing based on the surface textures assigned using SEM. Furthermore, the findings from this study also demonstrate that quartz sand grain surfaces exhibit a statistically self-similar fractal nature that remains unchanged across scales. This indicates the potential for a further quantitative measure that could be utilised in the discrimination of quartz grains based on their provenance for forensic investigations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Atsushi; Nonaka, Hidehiko
2009-09-15
A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicabilitymore » of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.« less
NASA Astrophysics Data System (ADS)
Gu, Yu; Li, Qiang; Xu, Bao-Jun; Zhao, Zhe
2014-01-01
We present a new polymer quartz piezoelectric crystal sensor that takes a quartz piezoelectric crystal as the basal material and a nanometer nonmetallic polymer thin film as the surface coating based on the principle of quartz crystal microbalance (QCM). The new sensor can be used to detect the characteristic materials of a volatile liquid. A mechanical model of the new sensor was built, whose structure was a thin circle plate composing of polytef/quartz piezoelectric/polytef. The mechanical model had a diameter of 8 mm and a thickness of 170 μm. The vibration state of the model was simulated by software ANSYS after the physical parameters and the boundary condition of the new sensor were set. According to the results of experiments, we set up a frequency range from 9.995850 MHz to 9.997225 MHz, 17 kinds of frequencies and modes of vibration were obtained within this range. We found a special frequency fsp of 9.996358 MHz. When the resonant frequency of the new sensor's mechanical model reached the special frequency, a special phenomenon occurred. In this case, the amplitude of the center point O on the mechanical model reached the maximum value. At the same time, the minimum absolute difference between the simulated frequency based on the ANSYS software and the experimental measured stable frequency was reached. The research showed that the design of the new polymer quartz piezoelectric crystal sensor perfectly conforms to the principle of QCM. A special frequency value fsp was found and subsequently became one of the most important parameters in the new sensor design.
Townsend, G.N.; Gibson, R.L.; Horton, J. Wright; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.
2009-01-01
The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.
Eypert-Blaison, Céline; Moulut, Jean-Claude; Lecaque, Thierry; Marc, Florian; Kauffer, Edmond
2011-05-01
Sampling the respirable fraction to measure exposure to crystalline silica is most often carried out using cyclones. However, low flow rates (<4 l min(-1)) and continuing improvement in workplace hygiene means less and less material is sampled for analysis, resulting in increased analytical uncertainty. Use of the CIP 10-R sampler, working at a flow rate of 10 l min(-1), is one attempt to solve current analytical difficulties. To check the ability of the analysis of quartz sampled on foams, known amounts of quartz associated with a matrix have been injected into foams. The results obtained show that the proposed protocol, with prior acid attack and ashing of the foams, satisfies the recommendations of EN 482 Standard [CEN. (2006) Workplace atmospheres-general requirements for the performance of procedures for the measurements of chemical agents. Brussels, Belgium: EN 482 Comité Européen de normalization (CEN).], namely an expanded uncertainty of <50% for quartz weights between 0.1 and 0.5 times the 8-h exposure limit value and <30% for quartz weights between 0.5 and 2 times the 8-h exposure limit value, assuming an exposure limit value equal to 0.1 mg m(-3). Results obtained show that the 101 reflection line allows a quartz quantity of the order of 25 μg to be satisfactorily measured, which corresponds to a 10th of the exposure limit value, assuming an exposure limit value of 0.05 mg m(-3). In this case, the 100 and 112 reflection lines with expanded uncertainties of ~50% would also probably lead to satisfactory quantification. Particular recommendations are also proposed for the preparation of calibration curves to improve the method.
Isotope geochemistry of hydrothermal alteration in East of Esfahan, Central Iran
NASA Astrophysics Data System (ADS)
Taghipour, Sedigheh; Taghipour, Batoul
2010-05-01
In the Cenozoic magmatic belt of Central Iran, the Eocene volcanics and pyroclastics from the East of Esfahan underwent extensive hydrothermal alteration. The Eocene volcanics composed mostly of andesite lava and tuffs have been altered. The survey area is laterally zoned from an inner quartz-sericite alteration zone to an outer propylitic zone. Quartz-sericite alteration is predominant (>95%), but smaller zones of alunite-jarosite and silicified zones are present and superimposed onto a quartz-sericite alteration. In the quartz-sericite zone all altered rocks are light grayish to whitish in color and porphyritic with aphanitic groundmass. Concentrations of alunite and jarosite veinlets and stockworks are dispersed irregularly in this zone. Alunite and jarosite occur also as coatings on fractured rocks. All types of alunite occurrences are brick-red, cream, white and buff in colors, while jarosite is brown to rusty in colors. To verify, chemical composition of alunite and jarosite were identified by X-ray diffraction in mineral assemblages. Major alteration zones show inclusions of propylite, quartz sericite, advanced argillic and silicified zones. These alunites are mainly porcelaneous and their compositions show a solid solution between alunite and jarosite. In alteration zones, the mineral assemblage is characterized by alunite-jarosite + quartz + sericite + alkali feldspars + chlorite ± turquoise ± barite ± iron oxides. There are numerous alunite and jarosite occurrences, mainly as veinlets, in parts of the advanced argillic zone. Alunite δ18O and δ D values range from -1.76 to 8.81‰ and from -52.86 to -129.26‰ respectively. Field observations, mineralogical evidence and results from light element stable isotope data (δ18O, δ D and δ34S); indicate that in this area alunitization is supergene in origin.
NASA Astrophysics Data System (ADS)
Jiao, Xin; Liu, Yiqun; Yang, Wan; Zhou, Dingwu; Wang, Shuangshuang; Jin, Mengqi; Sun, Bin; Fan, Tingting
2018-01-01
The cycling of various isomorphs of authigenic silica minerals is a complex and long-term process. A special type of composite quartz (Qc) grains in tuffaceous shale of Permian Lucaogou Formation in the sediment-starved volcanically and hydrothermally active intracontinental lacustrine Santanghu rift basin (NW China) is studied in detail to demonstrate such processes. Samples from one well in the central basin were subject to petrographic, elemental chemical, and fluid inclusion analyses. About 200 Qc-bearing laminae are 0.1-2 mm and mainly 1 mm thick and intercalated within tuffaceous shale laminae. The Qc grains occur as framework grains and are dispersed in igneous feldspar-dominated matrix, suggesting episodic accumulation. The Qc grains are bedding-parallel, uniform in size (100 s µm), elongate, and radial in crystal pattern, suggesting a biogenic origin. Qc grains are composed of a core of anhedral microcrystalline quartz and an outer part of subhedral mega-quartz grains, whose edges are composed of small euhedral quartz crystals, indicating multiple episodic processes of recrystallization and overgrowth. Abundance of Al and Ti in quartz crystals and estimated temperature from fluid inclusions in Qc grains indicate that processes are related to hydrothermal fluids. Finally, the Qc grains are interpreted as original silica precipitation in microorganism (algae?) cysts, which were reworked by bottom currents and altered by hydrothermal fluids to recrystalize and overgrow during penecontemporaneous shallow burial. It is postulated that episodic volcanic and hydrothermal activities had changed lake water chemistry, temperature, and nutrient supply, resulting in variations in microorganic productivities and silica cycling. The transformation of authigenic silica from amorphous to well crystallized had occurred in a short time span during shallow burial.
Zhang, Shouliang; Kent, Douglas B.; Elbert, David C.; Shi, Zhi; Davis, James A.; Veblen, David R.
2011-01-01
Mineralogical studies of coatings on quartz grains and bulk sediments from an aquifer on Western Cape Cod, Massachusetts, USA were carried out using a variety of transmission electron microscopy (TEM) techniques. Previous studies demonstrated that coatings on quartz grains control the adsorption properties of these sediments. Samples for TEM characterization were made by a gentle mechanical grinding method and focused ion beam (FIB) milling. The former method can make abundant electron-transparent coating assemblages for comprehensive and quantitative X-ray analysis and the latter technique protects the coating texture from being destroyed. Characterization of the samples from both a pristine area and an area heavily impacted by wastewater discharge shows similar coating textures and chemical compositions. Major constituents of the coating include Al-substituted goethite and illite/chlorite clays. Goethite is aggregated into well-crystallized domains through oriented attachment resulting in increased porosity. Illite/chlorite clays with various chemical compositions were observed to be mixed with goethite aggregates and aligned sub-parallel to the associated quartz surface. The uniform spatial distribution of wastewater-derived phosphorus throughout the coating from the wastewater-contaminated site suggests that all of the coating constituents, including those adjacent to the quartz surface, are accessible to groundwater solutes. Both TEM characterization and chemical extraction results indicate there is a significantly greater amount of amorphous iron oxide in samples from wastewater discharge area compared to those from the pristine region, which might reflect the impact of redox cycling of iron under the wastewater-discharge area. Coating compositions are consistent with the moderate metal and oxy-metalloid adsorption capacities, low but significant cation exchange capacities, and control of iron(III) solubility by goethite observed in reactive transport experimental and modeling studies conducted at the site.
NASA Astrophysics Data System (ADS)
Wilson, Colin J. N.; Seward, Terry M.; Allan, Aidan S. R.; Charlier, Bruce L. A.; Bello, Léa
2012-08-01
Trace concentrations of Ti in quartz are used to indicate the pressure and temperature conditions of crystallization in the `TitaniQ' geothermobarometer of Thomas et al. (Contrib Miner Petrol 160:743-759, 2010). It utilises the partitioning of Ti into quartz as an indicator of the pressures and/or temperatures of crystal growth. For a given value of TiO2 activity in the system, if temperatures are inferred to ±20 °C, pressure is constrained to ±1 kbar and vice versa. There are significant contrasts, however, between the conclusions from TitaniQ and those for natural quartz (as well as other mineral phases) in volcanic rocks. Application of the TitaniQ model to quartz from the 27 ka Oruanui and 760 ka Bishop high-silica rhyolites, where the values of T, P and TiO2 activity are constrained by other means (Fe-Ti oxide equilibria, melt inclusion entrapment pressures in gas-saturated melts, melt and amphibole compositions), yields inconsistent results. If realistic values are given to any two of these three parameters, then the value of the third is wholly unrealistic. The model yields growth temperatures at or below the granite solidus, pressures in the lower crust or upper mantle, or TiO2 activities inconsistent with the mineralogical and chemical compositions of the magmas. CL imagery and measurements of Ti (and other elements) in quartz are of great value in showing the growth histories and changes in conditions experienced by crystals, but direct linkages to P, T conditions during crystal growth cannot be achieved.
ERIC Educational Resources Information Center
Tsionsky, Vladimir
2007-01-01
The fundamentals, as well as the instrumentation of the quartz-crystal microbalance (QCM) technique that is used in an undergraduate laboratory experiment are being described. The QCM response can be easily used to change the properties of any system.
Comparative Petrographic Maturity of River and Beach Sand, and Origin of Quartz Arenites.
ERIC Educational Resources Information Center
Ferree, Rob A.; And Others
1988-01-01
Describes a deterministic computer model that incorporates: (1) initial framework composition; (2) abrasion factors for quartz, feldspar, and rock fragments; and (3) a fragmentation ratio for rock fragments to simulate the recycling of coastal sands by rivers and beaches. (TW)
DOT National Transportation Integrated Search
1999-11-01
The objective of this study is to determine the sensor survivability, accuracy and reliability of quartz-piezoelectric weigh-in-motion (WIM) sensors under actual traffic conditions in Connecticut's environment. This second interim report provides a s...
Code of Federal Regulations, 2014 CFR
2014-07-01
... designated area. (m) Quartz means crystalline silicon dioxide (SiO2) not chemically combined with other... produced and routine day-to-day activities are occurring in the DA. Quartz. Crystalline silicon dioxide (SiO2) not chemically combined with other substances and having a distinctive physical structure...
Application of quartz crystal microbalance technology in tribological investigation
USDA-ARS?s Scientific Manuscript database
The last fifteen years have seen considerable growth in the application of quartz crystal microbalance (QCM) to explore the tribological characteristics of materials. This article reviews some of the advances made in characterizing frictional properties of materials using the QCM, especially with di...
The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment II: Measuring Viscosity
ERIC Educational Resources Information Center
Tsionsky, Vladimir
2007-01-01
Various water-alcohol and alcohol-alcohol based experiments are used to demonstrate how the quartz-crystal microbalance (QCM) technique is used for measuring the viscosity of a system. The technique is very advantageous, as it is inexpensive and provides digital output.
NASA Astrophysics Data System (ADS)
Pati, J. K.; Panigrahi, M. K.; Chakarborty, M.
2014-06-01
The dominantly high-K, moderate to high SiO2 containing, variably fractionated, volcanic-arc granitoids (± sheared) from parts of Bundelkhand craton, northcentral India are observed to contain molybdenite (Mo) in widely separated 23 locations in the form of specks, pockets, clots and stringers along with quartz ± pyrite ± arsenopyrite ± chalcopyrite ± bornite ± covellite ± galena ± sphalerite and in invisible form as well. The molybdenite mineralization is predominantly associated with Bundelkhand Tectonic Zone, Raksa Shear Zone, and localized shear zones. The incidence of molybdenite is also observed within sheared quartz and tonalite-trondhjemite-granodiorite (TTG) gneisses. The fluid inclusion data show the presence of bi-phase (H2O-CO2), hypersaline and moderate temperature (100°-300°C) primary stretched fluid inclusions suggesting a possible hydrothermal origin for the Mo-bearing quartz occurring within variably deformed different granitoids variants of Archean Bundelkhand craton.
Baughman, Richard J.
1992-01-01
A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.
Viswanathan, S.
1974-01-01
Oxygen isotope studies of granitic rocks from the 2.7 b.y.-old composite Giants Range batholith show that: (1) ??(O18)quartz values of 9 to 10 permil characterize relatively uncontaminated Lower Precambrian, magmatic granodiorites and granites; (2) granitic rocks thought to have formed by static granitization have ??(O18)quartz values that are 1 to 2 permil higher than magmatic granitic rocks; (3) satellite leucogranite bodies have values nearly identical to those of the main intrusive phases even where they transect O18-rich metasedimentary wall rocks; (4) oxygen isotopic interaction between the granitic melts and their O18-rich wall rocks was minimal; and (5) O18/O18 ratios of quartz grains in a metasomatic granite are largely inherited from the precursor rock, but during the progression - sedimentary parent ??? partially granitized parent ??? metasomatic granite ??? there is gradual decrease in ??(O18)quartz by 1 to 2 permil. ?? 1974.
Quartz grainsize evolution during dynamic recrystallization across a natural shear zone boundary
NASA Astrophysics Data System (ADS)
Xia, Haoran; Platt, John P.
2018-04-01
Although it is widely accepted that grainsize reduction by dynamic recrystallization can lead to strain localization, the details of the grainsize evolution during dynamic recrystallization remain unclear. We investigated the bulge size and grainsizes of quartz at approximately the initiation and the completion stages of bulging recrystallization across the upper boundary of a 500 m thick mylonite zone above the Vincent fault in the San Gabriel Mountains, southern California. Within uncertainty, the average bulge size of quartz, 4.7 ± 1.5 μm, is the same as the recrystallized grainsize, 4.5 ± 1.5 μm, at the incipient stage of dynamic recrystallization, and also the same within uncertainties as the recrystallized grainsize when dynamic recrystallization is largely complete, 4.7 ± 1.3 μm. These observations indicate that the recrystallized grainsize is controlled by the nucleation process and does not change afterwards. It is also consistent with the experimental finding that the quartz recrystallized grainsize paleopiezometer is independent of temperature.
Mirmohseni, Abdolreza; Olad, Ali
2010-01-01
A polystyrene coated quartz crystal nanobalance (QCN) sensor was developed for use in the determination of a number of linear short-chain aliphatic aldehyde and ketone vapors contained in air. The quartz crystal was modified by a thin-layer coating of a commercial grade general purpose polystyrene (GPPS) from Tabriz petrochemical company using a solution casting method. Determination was based on frequency shifts of the modified quartz crystal due to the adsorption of analytes at the surface of modified electrode in exposure to various concentrations of analytes. The frequency shift was found to have a linear relation to the concentration of analytes. Linear calibration curves were obtained for 7-70 mg l(-1) of analytes with correlation coefficients in the range of 0.9935-0.9989 and sensitivity factors in the range of 2.07-6.74 Hz/mg l(-1). A storage period of over three months showed no loss in the sensitivity and performance of the sensor.
Deep-UV Based Acousto-Optic Tunable Filter for Spectral Sensing Applications
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.
2006-01-01
In this paper, recent progress made in the development of quartz and KDP crystal based acousto-optic tunable filters (AOTF) are presented. These AOTFs are developed for operation over deep-UV to near-UV wavelengths of 190 nm to 400 nm. Preliminary output performance measurements of quartz AOTF and design specifications of KDP AOTF are presented. At 355 nm, the quartz AOTF device offered approx.15% diffraction efficiency with a passband full-width-half-maximum (FWHM) of less than 0.0625 nm. Further characterization of quartz AOTF devices at deep-UV wavelengths is progressing. The hermetic packaging of KDP AOTF is nearing completion. The solid-state optical sources being used for excitation include nonlinear optics based high-energy tunable UV transmitters that operate around 320 nm and 308 nm wavelengths, and a tunable deep-UV laser operating over 193 nm to 210 nm. These AOTF devices have been developed as turn-key devices for primarily for space-based chemical and biological sensing applications using laser induced Fluorescence and resonance Raman techniques.
Substrate dependent hierarchical structures of RF sputtered ZnS films
NASA Astrophysics Data System (ADS)
Chalana, S. R.; Mahadevan Pillai, V. P.
2018-05-01
RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.
Wallace, W E; Keane, M J; Mike, P S; Hill, C A; Vallyathan, V; Regad, E D
1992-11-01
Respirable-sized quartz, a well-established fibrogenic mineral dust, is compared with kaolin in erythrocyte hemolysis assays after treatment with saline dispersion of dipalmitoyl phosphatidylcholine, a primary phospholipid component of pulmonary surfactant. Both dusts are rendered inactive after treatment, but the membranolytic activity is partly to fully restored after treatment with phospholipase A2, an enzyme normally associated with cellular plasma membranes and lysosomes. Phospholipid-coated dusts were incubated for periods of 2-72 h at a series of applied enzyme concentrations, and the adsorbed lipid species and hemolytic activity were quantitated at each time for both dusts. Surfactant was lost more readily from quartz than from kaolin, with consequent more rapid restoration of mineral surface hemolytic activity for quartz. Interactions of surfactant and mineral surface functional groups responsible for the mineral-specific rate differences, and implications for determining the mineral surface bioavailability of silica and silicate dusts, are discussed.
Microstructural evolution and rheology of quartz in a mid-crustal shear zone
NASA Astrophysics Data System (ADS)
Rahl, Jeffrey M.; Skemer, Philip
2016-06-01
We present microstructural and crystallographic preferred orientation (CPO) data on quartz deformed in the middle crust to explore the interaction and feedback between dynamic recrystallization, deformation processes, and CPO evolution. The sample investigated here is a moderately deformed quartz-rich mylonite from the Blue Ridge in Virginia. We have created high-resolution crystallographic orientation maps using electron backscatter diffraction (EBSD) of 51 isolated quartz porphyroclasts with recrystallized grain fractions ranging from 10 to 100%. Recrystallized grains are internally undeformed and display crystallographic orientations dispersed around the orientation of the associated parent porphyroclast. We document a systematic decrease in fabric intensity with recrystallization, suggesting that progressive deformation of the recrystallized domains involves processes that can weaken a pre-existing CPO. Relationships between recrystallization fraction and shear strain suggest that complete microstructural re-equilibration requires strains in excess of γ = 5. Variation in the degree of recrystallization implies that strain was accumulated heterogeneously, and that a steady-state microstructure and rheology were not achieved.
Melt inclusion shapes: Timekeepers of short-lived giant magma bodies
Pamukcu, Ayla S.; Gualda, Guilherme A. R.; Bégué, Florence; ...
2015-09-24
The longevity of giant magma bodies in the Earth’s crust prior to eruption is poorly constrained, but recognition of short time scales by multiple methods suggests that the accumulation and eruption of these giant bodies may occur rapidly. We describe a new method that uses textures of quartz-hosted melt inclusions, determined using quantitative three-dimensional propagation phase-contrast X-ray tomography, to estimate quartz crystallization times and growth rates, and we compare the results to those from Ti diffusion profiles. We investigate three large-volume, high-silica rhyolite eruptions: the 240 ka Ohakuri-Mamaku and 26.5 ka Oruanui (Taupo Volcanic Zone, New Zealand), and the 760more » ka Bishop Tuff (California, USA). Our results show that (1) longevity estimates from melt inclusion textures and Ti diffusion profiles are comparable, (2) quartz growth rates average ∼10−12 m/s, and (3) quartz melt inclusions give decadal to centennial time scales, revealing that giant magma bodies can develop over notably short historical time scales.« less
Overstreet, William C.; Mousa, Hassan; Matzko, John J.
1985-01-01
Crystals of magnetite as large as 30 mm long and 7 mm thick are locally present in quartz-rich zones of interior and exterior pegmatite dikes related to plutons of quartz monzonite in the Jabal Lababa area. Niobium, tin, and yttrium are strongly enriched in six specimens of magnetite from interior pegmatite dikes in a small pluton where these elements form geochemical anomalies in nonmagnetic heavy-mineral concentrates from wadi sediment. Less abundant anomalous elements in the magnetite are molybdenum, lead, and zirconium, which also tend to be present in anomalous amounts in the nonmagnetic concentrates from the niobium-bearing pluton. The most anomalous trace element in the magnetite is zinc, which is at least 10 times as abundant as it is in the quartz monzonite plutons or in the nonmagnetic concentrates. The capacity of magnetite to scavenge molybdenum, zinc, niobium, lead, tin, yttrium, and zirconium suggests the possible utility of magnetite as a geochemical sample medium.
Measurements of the Shock Release Of Quartz and Paralyene-N
NASA Astrophysics Data System (ADS)
Hawreliak, James; Karasik, Max; Oh, Jaechul; Aglitskiy, Yefim
2017-06-01
The shock and release properties of Quartz and hydrocarbons are important to high energy density (HED) research and inertial confinement fusion (ICF) science. The bulk of HED material research studies single shock or multiple shock conditions. The challenge with measuring release properties is unlike shocks which have a single interface from which to measure the properties, the release establishes gradients in the sample. The streaked x-ray imaging capability of the NIKE laser allow the interface between quartz and CH to be measured during the release, giving measurements of the interface velocity and CH density. Here, we present experimental results from the NIKE laser where quartz and parylene-N are shock compressed to high pressure and temperature and the release state is measured through x-ray imaging. The shock state is characterized by shock front velocity measurements using VISAR and the release state is characterized by using side-on streaked x-ray radiography Work supported by DOE/NNSA.
NASA Astrophysics Data System (ADS)
Shen, Ping; Pan, Hongdi; Seitmuratova, Eleonora; Jakupova, Sholpan
2016-02-01
Nurkazgan, located in northeastern Kazakhstan, is a super-large porphyry Cu-Au deposit with 3.9 Mt metal copper and 229 tonnage gold. We report in situ zircon U-Pb age and Hf-O isotope data, whole rock geochemical and Sr-Nd isotopic data for the ore-bearing intrusions from the Nurkazgan deposit. The ore-bearing intrusions include the granodiorite porphyry, quartz diorite porphyry, quartz diorite, and diorite. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating indicates that the granodiorite porphyry and quartz diorite porphyry emplaced at 440 ± 3 Ma and 437 ± 3 Ma, respectively. All host rocks have low initial 87Sr/86Sr ratios (0.70338-0.70439), high whole-rock εNd(t) values (+5.9 to +6.3) and very high zircon εHf(t) values (+13.4 to +16.5), young whole-rock Nd and zircon Hf model ages, and consistent and slightly high zircon O values (+5.7 to +6.7), indicating that the ore-bearing magmas derived from the mantle without old continental crust involvement and without marked sediment contamination during magma emplacement. The granodiorite porphyry and quartz diorite porphyry are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) and depleted in high-field strength elements (HFSE), Eu, Ba, Nb, Sr, P and Ti. The diorite and quartz diorite have also LILE and LREE enrichment and HFSE, Nb and Ti depletion, but have not negative Eu, Ba, Sr, and P anomalies. These features suggest that the parental magma of the granodiorite porphyry and quartz diorite porphyry originated from melting of a lithospheric mantle and experienced fractional crystallization, whereas the diorite and quartz diorite has a relatively deeper lithospheric mantle source region and has not experienced strong fractional crystallization. Based on these, together with the coeval ophiolites in the area, we propose that a subduction of the Balkhash-Junggar oceanic plate took place during the Early Silurian and the ore-bearing intrusions and associated Nurkazgan porphyry Cu-Au deposit occurred in an intra-oceanic arc setting.
Positron Interactions with Oriented Polymers and with Chiral Quartz Crystals
NASA Astrophysics Data System (ADS)
Wu, Fei
Positron annihilation in various materials has been applied to characterize microstructure for decades. In this work, PALS was used to study material nanostructure, with a focus on the size and density of free volume and hole relaxation properties in polycarbonate (PC) and polymethylmethacrylate (PMMA); fundamental studies of polarized positron interaction with chiral crystals were also studied. Free volume relaxation in PC and PMMA with different levels of simple shear orientation was studied by PALS. Effects of applied pressure on the free volume recovery were evaluated. Combining the bulk- and pressure-dependent PALS analyses, the removal of applied pressure led to free-volume relaxation in all samples studied. The alignment of the polymer chains and free-volume holes imposes molecular restrictions on the molecular mobility of both PC and PMMA in their glassy states. Results indicated that the relaxation of the free volume holes at temperatures below glass transition is mostly reversible. Longitudinally polarized positron particles were used to reveal asymmetric interactions in chiral quartz crystals. Experimental results showed a significant intensity difference in free positronium annihilation for left handed (LH) and right handed (RH) chiral quartz crystals. Doppler broadening energy spectra (DBES) of z-cut LH or RH quartz disks at different angles were also measured by an "S parameter" to probe the observed difference. It was found that obtained annihilation energy difference of DBES was in agreement with the result of positron annihilation in bulk chiral crystals. PALS was used to compare different orientations and confirm asymmetric interactions in natural versus synthetic quartz LH and RH crystals in z and non-z orientations. Significant lifetime and intensity differences in free positronium annihilation for LH and RH quartz crystals were observed. The trend was found to be same in the related crystallographic orientations of the LH or RH crystals; the direction of incident positrons, z or non-z, did not affect the observed differences in lifetime and intensity trends. The results confirmed the existence of differential interactions of positronium with the asymmetric lattice structures of LH and RH quartz crystals.
Brittle-viscous deformation of vein quartz under fluid-rich low greenschist facies conditions
NASA Astrophysics Data System (ADS)
Kjøll, H. J.; Viola, G.; Menegon, L.; Sørensen, B. E.
2015-01-01
A coarse grained, statically crystallized quartz vein, embedded in a phyllonitic matrix, was studied by EBSD and optical microscopy to gain insights into the processes of strain localization in quartz deformed under low-grade conditions, broadly coincident with the frictional-viscous transition. The vein is from a high strain zone at the front of the Porsa Imbricate Stack in the Paleoproterozoic Repparfjord Tectonic Window in northern Norway. The vein was deformed under lower greenschist facies conditions during deformation along a large out-of-sequence phyllonitic thrust of Caledonian age. The host phyllonite formed at the expense of metabasalt wherein feldspar broke down to form interconnected layers of fine, synkinematic phyllosilicates. In the mechanically weak framework of the phyllonite, the studied quartz vein acted as a relatively rigid body deforming mainly by coaxial strain. Viscous deformation was initially accommodated by basal ⟨a⟩ slip of quartz during the development of a mesoscopic pervasive extensional crenulation cleavage. Under the prevailing boundary conditions, however, dislocation glide-accommodated deformation of quartz resulted inefficient and led to dislocation tangling and strain hardening of the vein. In response to hardening, to the progressive increase of fluid pressure and the increasing competence contrast between the vein and the weak foliated host phyllonite, quartz crystals began to deform frictionally along specific, optimally oriented lattice planes, creating microgouges along microfractures. These were, however, rapidly sealed by nucleation of new grains as transiently over pressured fluids penetrated the deforming system. The new nucleated grains grew initially by solution-precipitation and later by grain boundary migration. Due to the random initial orientation of the vein crystals, strain was accommodated differently in the individual crystals, leading to the development of remarkably different microstructures. Crystals oriented optimally for basal slip accommodated strain mainly viscously and experienced only minor fracturing. Instead, the crystals misoriented for basal slip hardened and deformed by pervasive domainal fracturing. This study indicates the importance of considering shear zones as dynamic systems wherein the activated deformation mechanisms vary transiently in response to the complex temporal and spatial evolution of the shear zone, often in a cyclic fashion.
Livo, K. Eric; Watson, Ken
2002-01-01
Sand and soils southwest of Greeley, Colorado, were characterized for mineral composition and industrial quality. Radi-ance data from the thermal channels of the MASTER simulator were calibrated using estimated atmospheric parameters. Chan-nel emissivities were approximated using an estimated ground temperature. Subsequently, a decorrelation algorithm was used to calculate inverse wave emissivity images. Six soil classes, one vegetation class, water, and several small classes were defined using an unsupervised classification algorithm. Ground covered by each of the derived emissivity spectral classes was studied using color-infrared air photos, color-infrared composite MAS-TER data, geologic maps, NASA/JPL Airborne Visible and Infra-red Imaging Spectrometer (AVIRIS) data, and field examination. Spectral classes were characterized by their responses and related to their mineral content through field examination. Classes with a minimum at channel 44, and having a similar spectral shape to quartz, field checked as containing abundant quartz. Classes with a minimum at channel 45, and having a spectral shape similar to the sheet minerals, were found in the field to contain abundant mica and clay. Sandy soil was found to have a positive slope at the longer wavelengths; the more clay rich soils had a negative slope. Spectra with a strong downturn at channel 50 generally indicated low vegetation cover, whereas an upturn indicated more vegetation cover. Mapping revealed a range of classified soils with varying amounts of quartz, silt, clay, and plant humus. Sand and gravel operations along the St. Vrain River, gravel lots, and some fields spectrally classified as quartz-rich sands were confirmed through field examination. Other fields mapped as sandy soils, ranging from quartz-rich sandy soil to quartz-rich silt-sand soil with clay. Flood plains mapped as sandy-silty-organic-rich clay. The city of Greeley contained all classes of materials, with the sand classes mapping as various types of asphalt. Abundant quartz gravel was apparent within the asphalt during field check-ing. The clay classes mapped silt-clay soils in areas of irrigated grass landscaping, some fields, and roofing materials.
A method of calculating quartz solubilities in aqueous sodium chloride solutions
Fournier, R.O.
1983-01-01
The aqueous silica species that form when quartz dissolves in water or saline solutions are hydrated. Therefore, the amount of quartz that will dissolve at a given temperature is influenced by the prevailing activity of water. Using a standard state in which there are 1,000 g of water (55.51 moles) per 1,000 cm3 of solution allows activity of water in a NaCl solution at high temperature to be closely approximated by the effective density of water, pe, in that solution, i.e. the product of the density of the NaCl solution times the weight fraction of water in the solution, corrected for the amount of water strongly bound to aqueous silica and Na+ as water of hydration. Generally, the hydration of water correction is negligible. The solubility of quartz in pure water is well known over a large temperature-pressure range. An empirical formula expresses that solubility in terms of temperature and density of water and thus takes care of activity coefficient and pressure-effect terms. Solubilities of quartz in NaCl solutions can be calculated by using that equation and substituting pe, for the density of pure water. Calculated and experimentally determined quartz solubilities in NaCl solutions show excellent agreement when the experiments were carried out in non-reactive platinum, gold, or gold plus titanium containers. Reactive metal containers generally yield dissolved silica concentrations higher than calculated, probably because of the formation of metal chlorides plus NaOH and H2. In the absence of NaOH there appears to be no detectable silica complexing in NaCl solutions, and the variation in quartz solubility with NaCl concentration at constant temperature can be accounted for entirely by variations in the activity of water. The average hydration number per molecule of dissolved SiO2 in liquid water and NaCl solutions decreases from about 2.4 at 200??C to about 2.1 at 350??C. This suggests that H4SiO4 may be the dominant aqueous silica species at 350??C, but other polymeric forms become important at lower temperatures. ?? 1983.
NASA Astrophysics Data System (ADS)
Lv, T.; Sun, J.; Gong, Z.
2017-12-01
The provenance of the eolian deposits on the Loess Plateau has long been one of the most important issues. Although the luminescence sensitivity of the quartz grains of desert sands has been used in tracing provenance, and the vertical variation of OSL sensitivity of Loess in the central Chinese Loess plateau (CLP) has been studied, it still remains uncertain about the temporal and spatial scale variations of luminescence sensitivity of loess. This paper chose the eolian deposits of Shimao (SM) section in the northern margin of the Chinese Loess Plateau and of Luochuan (LC) section in the central Chinese Loess Plateau. Firstly, the temporal scale variations of luminescence sensitivity of different quartz grians (38-64 and 64-90μm) from sand/loess of SM section have been studied respectively. Our results indicate that they both have similar trend in the strength of luminescence sensitivity, characterized by lower values in sand/loess beds and higher values in soils. The OSL sensitivity of quartz grains of the sand-loess-soil sequence shows very similar trend to the magnetic susceptibility fluctuations. Secondly, the spatial scale variations of luminescence sensitivity of loess in the Chinese Loess Plateau since the last interglacial were studied by comparing the values of SM section and LC section. The OSL sensitivity of quartz grains from the two sections since the last interglacial change synchronously. However, the OSL sensitivity values of quartz grains from the same loess/paleosol beds of LC section are higher than these values of SM section. We suggest that the temporal variation of OSL sensitivity of SM is main influenced by the retreat-advance of deserts. The spatial variation of OSL sensitivity mainly is due to the different sedimentary history, containing of repeated erosion, transport and deposition cycles which controlled by cyclic climatic change. The higher OSL sensitivity values of quartz grains in LC section relates of longer transport distance and of more sedimentary history than these values in SM section. Keywords: Luminescence sensitivity; Quartz; provenance; Loess Plateau
Ion-beam-induced nanodots formation from Au/Si thin films on quartz surface
NASA Astrophysics Data System (ADS)
Datta, D. P.; Siva, V.; Singh, A.; Joshi, S. R.; Kanjilal, D.; Sahoo, P. K.
2016-07-01
We report the synthesis of Si nanodots on quartz surface using ion irradiation. When a bi-layer of ultrathin Au and Si on quartz surface is irradiated by 500 keV Xe-ion beam, the bi-layer spontaneously transforms into nanodots at a fluence of 5 × 1014 ions cm-2. The spatial density and diameter of the nanodots are reduced with increase in applied ion fluence. The nanostructures exhibit photoluminescence in the visible range at room temperature where the intensity and wavelength depends upon ion fluence. The observed evolution seems to be correlated to ion beam mixing induced silicide formation at Au-Si interface.
Gas loading of graphene-quartz surface acoustic wave devices
NASA Astrophysics Data System (ADS)
Whitehead, E. F.; Chick, E. M.; Bandhu, L.; Lawton, L. M.; Nash, G. R.
2013-08-01
Graphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlacek, J. A.; Kim, E.; Rittenhouse, S. T.
We investigate the (0001) surface of single crystal quartz with a submonolayer of Rb adsorbates. Using Rydberg atom electromagnetically induced transparency, we investigate the electric elds resulting from Rb adsorbed on the quartz surface, and measure the activation energy of the Rb adsorbates. We show that the Rb induces a negative electron affnity (NEA) on the quartz surface. The NEA surface allows for low energy electrons to bind to the surface and cancel the electric eld from the Rb adsorbates. Our results have implications for integrating Rydberg atoms into hybrid quantum systems and the fundamental study of atom-surface interactions, asmore » well as applications for electrons bound to a 2D surface.« less
Allan Deviation Plot as a Tool for Quartz-Enhanced Photoacoustic Sensors Noise Analysis.
Giglio, Marilena; Patimisco, Pietro; Sampaolo, Angelo; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo
2016-04-01
We report here on the use of the Allan deviation plot to analyze the long-term stability of a quartz-enhanced photoacoustic (QEPAS) gas sensor. The Allan plot provides information about the optimum averaging time for the QEPAS signal and allows the prediction of its ultimate detection limit. The Allan deviation can also be used to determine the main sources of noise coming from the individual components of the sensor. Quartz tuning fork thermal noise dominates for integration times up to 275 s, whereas at longer averaging times, the main contribution to the sensor noise originates from laser power instabilities.
Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate
NASA Astrophysics Data System (ADS)
Li, Lixia; Hao, Haiqing; Yuan, Zhitao; Liu, Jiongtian
2017-10-01
Models of sodium oleate adsorption on siderite, hematite and quartz were investigated by molecular dynamic simulation, respectively. Surface energy was calculated to confirm the cleavage plan of hematite and quartz. Both natural cleavage plane of siderite and calculated plane were used to investigate the flotation of the three minerals. Based on the molecular simulation in solution with water as medium, adsorption quantity and interaction capability of oleate ions on the three minerals indicated that siderite could be collected efficiently by sodium oleate at neutral pH. Results of flotation experiments were further demonstrated by analysis of relative concentration of carbon atoms and oxygen atoms.
Inexpensive but accurate driving circuits for quartz crystal microbalances
NASA Astrophysics Data System (ADS)
Bruschi, L.; Delfitto, G.; Mistura, G.
1999-01-01
The quartz crystal microbalance (QCM) is a common technique which finds a wide variety of applications in many different areas like adsorption, catalysis, analytical chemistry, biochemistry, etc., and more generally as a sensor in the investigation of viscoelastic films. In this article we describe some driving circuits of the quartz which we have realized and tested in our laboratory. These can be assembled with standard components which can be easily found. Their performance, in some cases, is as good as that of the much more expensive frequency modulation technique employed in very precise QCM measurements and which requires high-quality commercial radiofrequency generators and amplifiers.
Float polishing of optical materials.
Bennett, J M; Shaffer, J J; Shibano, Y; Namba, Y
1987-02-15
The float-polishing technique has been studied to determine its suitability for producing supersmooth surfaces on optical materials, yielding a roughness of <2 A rms. An attempt was made to polish six different materials including fused quartz, Zerodur, and sapphire. The low surface roughness was achieved on fused quartz, Zerodur, and Corning experimental glass-ceramic materials, and a surface roughness of <1 A rms was obtained on O-cut single-crystal sapphire. Presumably, similar surface finishes can also be obtained on CerVit and ULE quartz, which could not be polished satisfactorily in this set of experiments because of a mismatch between sample mounting and machine configuration.
The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: Measuring Mass
ERIC Educational Resources Information Center
Tsionsky, Vladimir
2007-01-01
The study explains the quartz-crystal microbalance (QCM) technique, which is often used as an undergraduate laboratory experiment for measuring the mass of a system. QCM can be used as a mass sensor only when the measured mass is rigidly attached to the surface.
NASA Astrophysics Data System (ADS)
Nachlas, William; Teyssier, Christian; Whitney, Donna
2015-04-01
We document rutile needles that were in the process of exsolving from quartz during ductile shearing, and we apply the Arrhenius parameters for Ti diffusion in quartz to extract the timescales over which diffusion transpired. By constraining temperature conditions of deformation using multiple independent thermometers in the same rocks (Ti-in-quartz, Zr-in-rutile, quartz fabrics and microstructures), we estimate the longevity of a ductile shear zone that accommodated extensional collapse in the North American Cordillera. Eocene exhumation of the Pioneer core complex, Idaho, USA, was accommodated by the brittle-ductile Wildhorse detachment system that localized in a zone of sheared metasediments and juxtaposes lower crustal migmatite gneisses with upper crustal Paleozoic sedimentary units. Deformation in the Wildhorse detachment was partly accommodated within a continuous sequence (~200 m) of quartzite mylonites, wherein quartz grains are densely rutilated with microscopic rutile needles that are pervasively oriented into the lineation direction. We apply high-resolution spectroscopic CL analysis to map the Ti concentration field in quartz surrounding rutile needles, revealing depletion halos that indicate exsolution as Ti unmixes from quartz. Linear transects through depletion halos show that concentration profiles exhibit a characteristic diffusion geometry. We apply an error-function diffusion model to fit the measured profiles to extract the temperature or time recorded in the profile. Assuming modest temperature estimates from our combined thermometry analysis, results of diffusion modeling suggest that the quartzite shear zone was deforming over an integrated 0.8 - 3.1 Myr. If samples are permitted to have deformed in discrete intervals, our results suggest deformation of individual samples for timescales as short as 100 kyr. By comparing samples from different levels of the shear zone, we find that deformation was sustained in higher levels of the shear zone for longer duration than in samples deeper into the footwall, which we interpret to reflect progressive downward propagation of a widening ductile zone. Considering the complex nonlinear feedbacks between the temperature- and time-dependence of both lattice diffusion and work hardening of microstructures, our approach introduces a unique opportunity to link timing with kinematics to reconstruct the thermomechanical evolution of a deforming shear zone. As a parallel test of this method, we have applied it to rock deformation experiments where it reproduces the approximate number of hours over which the experiment was conducted, further exemplifying the validity of this approach for constraining earth events.
Baù, Marco; Ferrari, Marco; Ferrari, Vittorio
2017-01-01
A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary coil connected to the electrodes of the resonator. The interrogation technique periodically switches between interleaved excitation and detection phases. During the excitation phase, the resonator is set into vibration by a driving voltage applied to the primary coil, whereas in the detection phase, the excitation signal is turned off and the transient decaying response of the resonator is sensed without contact by measuring the voltage induced back across the primary coil. This approach ensures that the readout frequency of the sensor signal is to a first order approximation independent of the interrogation distance between the primary and secondary coils. A detailed theoretical analysis of the interrogation principle based on a lumped-element equivalent circuit is presented. The analysis has been experimentally validated on a 4.432 MHz AT-cut quartz crystal resonator, demonstrating the accurate readout of the series resonant frequency and quality factor over an interrogation distance of up to 2 cm. As an application, the technique has been applied to the measurement of liquid microdroplets deposited on a 4.8 MHz AT-cut quartz crystal. More generally, the proposed technique can be exploited for the measurement of any physical or chemical quantities affecting the resonant response of quartz resonator sensors. PMID:28574459
Baù, Marco; Ferrari, Marco; Ferrari, Vittorio
2017-06-02
A technique for contactless electromagnetic interrogation of AT-cut quartz piezoelectric resonator sensors is proposed based on a primary coil electromagnetically air-coupled to a secondary coil connected to the electrodes of the resonator. The interrogation technique periodically switches between interleaved excitation and detection phases. During the excitation phase, the resonator is set into vibration by a driving voltage applied to the primary coil, whereas in the detection phase, the excitation signal is turned off and the transient decaying response of the resonator is sensed without contact by measuring the voltage induced back across the primary coil. This approach ensures that the readout frequency of the sensor signal is to a first order approximation independent of the interrogation distance between the primary and secondary coils. A detailed theoretical analysis of the interrogation principle based on a lumped-element equivalent circuit is presented. The analysis has been experimentally validated on a 4.432 MHz AT-cut quartz crystal resonator, demonstrating the accurate readout of the series resonant frequency and quality factor over an interrogation distance of up to 2 cm. As an application, the technique has been applied to the measurement of liquid microdroplets deposited on a 4.8 MHz AT-cut quartz crystal. More generally, the proposed technique can be exploited for the measurement of any physical or chemical quantities affecting the resonant response of quartz resonator sensors.
A Z-Axis Quartz Cross-Fork Micromachined Gyroscope Based on Shear Stress Detection
Xie, Liqiang; Wu, Xuezhong; Li, Shengyi; Wang, Haoxu; Su, Jianbin; Dong, Peitao
2010-01-01
Here we propose a novel quartz micromachined gyroscope. The sensor has a simple cross-fork structure in the x-y plane of quartz crystal. Shear stress rather than normal stress is utilized to sense Coriolis’ force generated by the input angular rate signal. Compared to traditional quartz gyroscopes, which have two separate sense electrodes on each sidewall, there is only one electrode on each sidewall of the sense beam. As a result, the fabrication of the electrodes is simplified and the structure can be easily miniaturized. In order to increase sensitivity, a pair of proof masses is attached to the ends of the drive beam, and the sense beam has a tapered design. The structure is etched from a z-cut quartz wafer and the electrodes are realized by direct evaporation using the aperture mask method. The drive mode frequency of the prototype is 13.38 kHz, and the quality factor is approximately 1,000 in air. Therefore, the gyroscope can work properly without a vacuum package. The measurement ability of the shear stress detection design scheme is validated by the Coriolis’ force test. The performance of the sensor is characterized on a precision rate table using a specially designed readout circuit. The experimentally obtained scale factor is 1.45 mV/°/s and the nonlinearity is 3.6% in range of ±200 °/s. PMID:22294887
NASA Astrophysics Data System (ADS)
Bayesteh, S.; Mortazavi, S. Z.; Reyhani, A.
2018-03-01
In this study, MoS2 was directly synthesized by one-step thermal chemical vapour deposition (TCVD), on different substrates including Si/SiO2 and quartz, using MoO3 and sulfide powders as precursor. The XRD patterns demonstrate the high crystallinity of MoS2 on Si/SiO2 and quartz substrates. SEM confirmed the formation of MoS2 grown on both substrates. According to line width and frequency difference between the E1 2g and A1g in Raman spectroscopy, it is inferred that the MoS2 grown on Si/SiO2 substrate is monolayer and the MoS2 grown on quartz substrate is multilayer. Moreover, by assessment of MoS2 nanoflake band gap via UV-visible analysis, it verified the formation of few layer structures. In addition, the open-aperture and close-aperture Z-scan techniques were employed to study the nonlinear optical properties including nonlinear absorption and nonlinear refraction of the synthesized MoS2. All experiments were performed using a diode laser with a wavelength of 532 nm as light source. The monolayer MoS2 synthesized on Si/SiO2, display considerable two-photon absorption. However, the multilayer MoS2 synthesized on quartz displayed saturable absorption (SA). It is noticeable that both samples demonstrate obvious self-defocusing behaviour.
NASA Astrophysics Data System (ADS)
Putlitz, Benita; Valley, John; Matthews, Alan; Katzir, Yaron
2002-04-01
Diffusion models predict that peak metamorphic temperatures are best recorded by the oxygen isotope fractionation between minerals in a bi-mineralic rock in which a refractory accessory mineral with slow oxygen diffusion rate is modally minor to a mineral with a faster diffusion rate. This premise is demonstrated for high-grade metamorphism on the island of Naxos, Greece, where quartz-kyanite oxygen isotope thermometry from veins in high-grade metamorphic pelites gives temperatures of 635-690 °C. These temperatures are in excellent agreement with independent thermometry for the regional M2 peak metamorphic conditions and show that the vein minerals isotopically equilibrated at the peak of metamorphism. Quartz-sillimanite fractionations in the same veins give similar temperatures (680+/-35 °C) and suggest that the veins grew near to the kyanite-sillimanite boundary, corresponding to pressures of 6.5 to 7.5 kbar for temperatures of 635-685 °C. By contrast, quartz-kyanite and quartz-biotite pairs in the host rocks yield lower temperature estimates than the veins (590-600 and 350-550 °C, respectively). These lower apparent temperatures are also predicted from calculations of diffusional resetting in the polyphase host-rock system. The data demonstrate that bimineralic vein assemblages can be used as accurate thermometers in high-temperature rocks whereas retrograde exchange remains a major problem in many polymineralic rocks.
NASA Astrophysics Data System (ADS)
Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; Danilewsky, Andreas; Langenhorst, Falko; Ehm, Lars; Trullenque, Ghislain; Kenkmann, Thomas
2017-07-01
Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. Here, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions of α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s-1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO6 octahedra rather than the rearrangement of the SiO4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.
Sorption Mechanisms of Antibiotic Cephapirin onto Quartz and Feldspar by Raman Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Jonathan; Wang, Wei; Gu, Baohua
2009-01-01
Raman spectroscopy was used to investigate the sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO2) and feldspar (KAlSi3O8) at different pH values. Depending on the charge and surface properties of the mineral, different reaction mechanisms including electrostatic attraction, monodentate and bidentate complexation were found to be responsible for CHP sorption. The zwitterion (CHPo) adsorbs to a quartz(+) surface by electrostatic attraction of the carboxylate anion group ( COO-) at a low pH, but adsorbs to a quartz(-) surface through electrostatic attraction of the pyridinium cation and possibly COO- bridge complexes at relatively higher pH conditions. CHP- bondsmore » to a quartz(-) surface by bidentate complexation between one oxygen of COO- and oxygen from the carbonyl (C=O) of the acetoxymethyl group. On a feldspar surface of mixed charge, CHPo forms monodentate complexes between C=O as well as COO- bridging complexes or electrostatically attached to localized edge (hydr)oxy-Al surfaces. CHP- adsorbs to feldspar(-) through monodentate C=O complexation, and similar mechanisms may operate for the sorption of other cephalosporins. This research demonstrates, for the first time, that Raman spectroscopic techniques can be effective for evaluating the sorption processes and mechanisms of cephalosporin antibiotics even at relatively low sorbed concentrations (97-120 μmol/kg).« less
Jüschke, M; Koch, C; Dreyer, T
2014-09-01
The efficiency of ultrasonic cleaning vessels cannot be measured directly in an easy way. In the presented work, a sensor is developed which quantitatively measures the ablation of a test layer. The sensor element is a quartz crystal which is coated with a sacrificial layer. Small changes in mass of this layer can be measured by a frequency shift of the crystal oscillation. For measurements, a 10 MHz AT-cut quartz crystal was used in a cleaning vessel working at 44.9 kHz. To determine the frequency shift by the ablation of the test layer, the quartz crystal was driven by a frequency generator sweeping the frequency in the range of the resonance frequency and a characteristic frequency was determined. The test layer which was applied to the quartz crystal consisted of silica microparticles suspended in varnish. In a preliminary experiment using a commercial cleaner it could be shown that significant changes in resonance frequency by cavitation effect could be detected. The initial frequency shift of the sacrificial layer is reproducible within 10%. The test layer can be adapted to the conditions of the cleaning vessel. By changing the electrical input power of the vessel, a threshold in the cavitation erosion was found. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
von Suchodoletz, H.; Fuchs, M.; ZöLler, L.
2008-02-01
Lava flow dammed valleys (Vegas) on Lanzarote (Canary Islands) represent unique sediment traps, filled with autochthonous volcanic material and allochthonous Saharan dust. These sediments and the intercalated palaeosoil sediments document past environmental change of the last glacial-interglacial cycles, both on Lanzarote and in NW Africa. A reliable chronology must be established to use these sediment archives for palaeoclimate reconstructions. Owing to the lack of organic material and the limiting time range of the 14C-dating method, luminescence dating is the most promising method for these sediments. However, the fluvio-eolian character of these sediments is a major problem for luminescence dating, because these sediments are prone to insufficient resetting of the parent luminescence signal (bleaching) prior to sedimentation. To check for the best age estimates, we compare the bleaching behavior of (1) different grain sizes (coarse- versus fine-grain quartz OSL) and (2) different minerals (fine-grain feldspar IRSL versus fine-grain quartz OSL). The results show that owing to its bleaching characteristics, quartz is the preferable mineral for luminescence dating. On the basis of the fine- and coarse-grain quartz OSL age estimates, a chronostratigraphy up to 100 ka could be established. Beyond this age limit for OSL quartz, the chronostratigraphy could be extended up to 180 ka by correlating the vega sediments with dated marine sediment archives.
NASA Astrophysics Data System (ADS)
Wang, Guohui; Um, Wooyong
2012-11-01
Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the US Department of Energy's Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89 °C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineral phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.
On the defensive action of glutamate against the cytotoxicity and fibrogenicity of quartz dust.
Morosova, K I; Aronova, G V; Katsnelson, B A; Velichkovski, B T; Genkin, A M; Elnichnykh, L N; Privalova, L I
1982-01-01
The cytotoxic action of quartz (DQ12) particles on cultures of rat peritoneal macrophages, as estimated by the inhibition of the TTC-reductase activity, is considerably reduced by preincubation with glutamic acid and by adding sodium glutamate (15 mg/ml) to the drinking water of the rats donating the macrophages. This increase in macrophage resistance under the influence of glutamate is the most probable cause of the delay in the development of silicotic fibrosis shown in several experiments on rats intratracheally injected with quartz and then treated by prolonged administration of glutamate. This effect is probably connected with the influence of glutamate on the stability of the macrophage membranes, which can in its turn be explained by different mechanisms, including the influence on the synthesis and phosphorylation of adenosine nucleotides. Such an influence was shown in rats receiving glutamate by the change of the ATP/ADP ratio in macrophages, but not in erythrocytes. The resistance of rat erythrocytes to the haemolytic action of quartz is also not influenced by the action of glutamate neither in vitro nor in vivo. Such differences in the influences of glutamate on two types of cells, equally susceptible to quartz cytotoxicity but considerably differing in the character of energy metabolism, is an indirect proof of the role of the latter in the realisation of the anticytotoxic, and thereby antifibrogenic, effect of glutamate. PMID:6124270
Determination of the sonic properties of a Nigerian quartz for ultrasonic transducer.
Nwadike, Uchechukwu I; Agwu, Kenneth K; Eze, Charles U; Kani, Duke; Agu, Gregory; Enwereuzo, Emmanuel; Obika, Mike; Umoh, Effiong; Ufomba, Emmanuel
2018-03-15
There is abundant quartz deposit in Nigeria which has been used for export and building purposes. However, its electrical and piezoelectric properties have not been studied. Thus, whether it can be used as raw material for the indigenous electric industries is unknown to date. This study aims to characterize the piezoelectric properties of smoky quartz for ultrasonic transducer and determine its sonic properties. In the research approach, the raw quartz was cut into six crystals of rectangular shape using a universal cutter. The crystals were purified with a 100 ml hydrofluoric and hydrochloric acid solution under a temperature of 250°C in a furnace. The sizes, weights, and capacitance of crystals were determined using the standard measuring instruments. The resonance method was used for the determination of the frequency of minimum and maximum impedance of the crystals. The piezoelectric constants of the crystals were derived using the standard formula for determination of piezoelectric constants. The results show that the sonic properties represented by the piezoelectric charge constant (d31) and the piezoelectric voltage constant (g31) values are 2.52 (±1.075) ×10-8c/m2 and 1030.6114 ± 250.89v/m2 respectively. The present study has characterized Nigerian quartz for its piezoelectric properties and found that it was suitable for use in the construction of ultrasonic transducers.
QUANTIFYING THE MICROMECHANICAL EFFECTS OF VARIABLE CEMENT IN GRANULAR POROUS MEDIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boutt, David F; Goodwin, Laurel B
2010-03-01
The mechanical and hydrologic behavior of clastic rocks and sediments is fundamentally controlled by variables such as grain size and shape, sorting, grain and cement mineralogy, porosity, and %cement - parameters that are not used directly in field-scale models of coupled flow and deformation. To improve our understanding of the relationship between these micromechanical properties and bulk behavior we focused on (1) relating detailed, quantitative characterization of the grain-pore systems to both hydrologic and mechanical properties of a suite of variably quartz-cemented quartz arenite samples and (2) the use of a combination of discrete element method (DEM) and poroelastic modelsmore » parameterized by data from the natural samples to isolate and compare the influence of changes in the mechanical and hydrologic properties of granular porous media due to changes in degree of cementation. Quartz overgrowths, the most common form of authigenic cements in sandstones, are responsible for significant porosity and permeability reduction. The distribution of quartz overgrowths is controlled by available pore space and the crystallographic orientations of individual quartz grains. Study of the St. Peter Sandstone allowed evaluation of the relative effects of quartz cementation and compaction on final grain and pore morphology, showing that progressive quartz cementation modifies the grain framework in consistent, predictable ways. Detailed microstructural characterization and multiple regression analyses show that with progressive diagenesis, the number and length of grain contacts increases as the number of pores increases, the number of large, well-connected pores decreases, and pores become rounder. These changes cause a decrease in pore size variability that leads to a decrease in bulk permeability and both stiffening and strengthening of the grain framework. The consistent nature of these changes allows us to predict variations in hydrologic and mechanical properties with progressive diagenesis, and explore the impact of these changes on aquifer behavior. Several examples of this predictive capability are offered. In one application, data from natural sandstones are used to calibrate the proportionality constant of the Kozeny- Carman relationship, improving the ability to predict permeability in quartz-cemented quartz arenites. In another, the bond-to-grain ratio (BGR) is used to parameterize a discrete element model with data acquired from sandstone samples. The DEM results provide input to poroelastic models used to explore the hydrologic, mechanical, and coupled hydrologic and mechanical response of the sandstone to pumping stresses. This modeling exercise shows that at the macroscale, changes in mechanical and hydrologic properties directly influence the magnitude and area of aquifer deformation. The significant difference in sensitivity of the system to the mechanical properties alone versus its sensitivity to coupled mechanical and hydrologic properties demonstrates the importance of including hydrologic properties that are adjusted for changes in cementation in fluid storage and deformation studies. The large magnitude of radial deformation compared to vertical deformation in these models emphasizes the importance of considering three dimensional deformation in fluid flow and deformation studies.« less
NASA Astrophysics Data System (ADS)
Seward, R. J.; Reed, M. H.; Grist, H. R.; Fridriksson, T.; Danielsen, P.; Thorhallsson, S.; Elders, W. A.; Fridleifsson, G. O.
2011-12-01
In July of 2011 a fluid inclusion tool (FIT) was deployed in well RN-17b of the Reykjanes geothermal system, Iceland, with the goal of sampling fluids in situ at the deepest feed point in the well. The tool consists of a perforated stainless steel pipe containing eight stainless steel mesh canisters, each loaded with 10mm-scale blocks of thermally fractured quartz. Except for one control canister, in each canister the fractured quartz blocks were surrounded by a different grain size of SiO¬2 glass that ranged in size from 10μm-scale glass wool to cm-scale glass shards. The FIT was left in the well on a wireline at a depth of 2768m and retrieved after three weeks. The fluid at 2768m depth is known from November 2010 well logs to have a temperature of about 330°C and pressure of 170 bars, a pressure ~40 bar too high for boiling at that temperature. After retrieval, quartz in all of the canisters contained liquid-dominated fluid inclusions, but their quantity and size differed by canister. Groups of inclusions occur in healed fractures and both healed and open fracture surfaces are visible within single quartz blocks. Measurements on a heating and cooling stage yield approximant inclusion homogenization temperatures of 332°C and freezing points of -2.0°C. These measurements and a pressure of 170 bars yield trapping temperatures of 335°C and a NaCl weight percent of 3.4, both of which match known values, thus verifying that the device trapped fluids as intended. In upcoming studies, these fluids will be analyzed using bulk methods and LA-ICP-MS on individual inclusions. The glass added to the quartz blocks in the canisters allowed the Reykjanes fluids to precipitate enough quartz to heal fractures and trap fluids despite the fluid undersaturation in quartz. Almost all of the glass that was added to the canisters, 27 to 66 grams in each (except glass wool), was consumed in the experiment. Remaining glass was in the non-mesh bottom caps of the canisters where fluid flux may have been minimal, indicating that most of the dissolved SiO2 was carried away with flowing fluid. This may explain why not all fractures were healed, as they were in our previous closed-system laboratory experiments. Upon recovery from the well, the FIT and the canister contents were covered in fine black particles, the greatest quantity by far occurring in canisters that had contained glass wool as the SiO2 source. Preliminary SEM-EDS analyses show that the particles contain silica, iron, magnesium, and small amounts of zinc sulfide. The precipitation of sulfides from the fluid sampled in the quartz fractures provides a valuable constraint on interpretation of the fluid inclusion compositions.
NASA Astrophysics Data System (ADS)
Periferakis, Argyrios; Voudouris, Panagiotis; Melfos, Vasilios; Mavrogonatos, Constantinos; Alfieris, Dimitrios
2017-04-01
Lesvos Island is located at the NE part of the Aegean Sea and mostly comprises post-collisional Miocene volcanic rocks of shoshonitic to calc-alkaline geochemical affinities. In the northern part of the Island, the Stypsi Cu-Mo±Au porphyry prospect, part of the Stypsi caldera, is hosted within hydrothermally altered intrusives and volcanics [1]. Porphyry-style mineralization is developed in a microgranite porphyry that has intruded basaltic trachyandesitic lavas. Propylitic alteration occurs distal to the mineralization, whereas sodic-calcic alteration related to quartz-actinolite veinlets, and a phyllic overprint associated with a dense stockwork of banded black quartz±carbonate veinlets, characterizes the core of the system. Alunite-kaolinite advanced argillic alteration occurs at higher topographic levels and represents a barren lithocap to the porphyry mineralization. Intermediate-sulfidation (IS) milky quartz-carbonate veins overprint the porphyry mineralization along a NNE-trending fault that extends further northwards to Megala Therma, where it hosts IS base metal-rich Ag-Au mineralization [2]. New mineralogical data from the Megala Therma deposit suggest Ag-famatinite, Te-polybasite and Ag-tetrahedrite as the main carriers of Ag in the mineralization. Porphyry-style ores at Stypsi consist of magnetite postdated by pyrite and then by chalcopyrite, molybdenite, sphalerite, galena and bismuthinite within the black quartz stockworks or disseminated in the wallrock [1]. The dark coloration of quartz in the veinlets is due to abundant vapor-rich fluid inclusions. Quartz is granular and fine-grained and locally elongated perpendicular to the vein walls. Botryoidal textures are continuous through quartz grains, suggesting quartz recrystallization from a silica gel, a feature already described by [3] from banded quartz veinlets in porphyry Au deposits at Maricunga, Chile. Bulk ore analyses from porphyry-style mineralization at Stypsi displayed similar geochemical anomalies to those previously reported by [1] but also provide additional information in a series of elements: Cu (up to 843 ppm), Mo (up to 76 ppm), Au (up to 120 ppb), Pb (up to 339ppm), Zn (up to 815ppm), Se (up to 10ppm), Te (up to 4 ppm), Bi (up to 4 ppm) and Sn (up to 23 ppm). The Lesvos Island may be interpreted as the westward extension of the Eocene-Miocene Biga peninsula Cu-Au porphyry belt, with potential for future discoveries of Cu-Mo±Au deposits in the Aegean area. [1] Voudouris P, Alfieris D (2005) New porphyry-Cu±Mo occurrences in northeastern Aegean/Greece: Ore mineralogy and transition to epithermal environment. In: Mao J, Bierlein FP (eds) Mineral deposit research: Meeting the global challenge. Springer Verlag, 473-476; [2] Kontis E, Kelepertsis AE, Skounakis S (1994) Geochemistry and alteration facies associated with epithermal precious metal mineralization in an active geothermal system, northern Lesvos, Greece. Min Deposita, 29:430-433; [3] Muntean JL, Einaudi MT (2000) Porphyry Gold Deposits of the Refugio District, Maricunga Belt, Northern Chile. Econ. Geology, 95, 1445-1472.
Radon gas, useful for medical purposes, safely fixed in quartz
NASA Technical Reports Server (NTRS)
Fields, P. R.; Stein, L.; Zirin, M. H.
1966-01-01
Radon gas is enclosed in quartz or glass ampules by subjecting the gas sealed at a low pressure in the ampules to an ionization process. This process is useful for preparing fixed radon sources for radiological treatment of malignancies, without the danger of releasing radioactive gases.
A radiative transfer scheme that considers absorption, scattering, and distribution of light-absorbing elemental carbon (EC) particles collected on a quartz-fiber filter was developed to explain simultaneous filter reflectance and transmittance observations prior to and during...
ERIC Educational Resources Information Center
Xie, Qingji; Li, Zhili; Deng, Chunyan; Liu, Meiling; Zhang, Youyu; Ma, Ming; Xia, Shaoxi; Xiao, Xiaoming; Yin, Dulin; Yao, Shouzhuo
2007-01-01
A real-time, labeled-free and nanogram-sensitive mass sensor, electrochemical quartz crystal microbalance (EQCM) is used to monitor a cyclic voltammetric deposition of polyaniline (PANI). The results determined that the efficiency for PANI deposition and the anion-doping ratio is calculated in one single cyclic voltammetric.
30 CFR 71.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2012 CFR
2012-07-01
... respirable dust in the mine atmosphere of the active workings contains more than 5 percent quartz, the operator shall continuously maintain the average concentration of respirable dust in the mine atmosphere... 20%, Therefore, the average concentration of respirable dust in the mine atmosphere associated with...
30 CFR 71.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2011 CFR
2011-07-01
... respirable dust in the mine atmosphere of the active workings contains more than 5 percent quartz, the operator shall continuously maintain the average concentration of respirable dust in the mine atmosphere... 20%, Therefore, the average concentration of respirable dust in the mine atmosphere associated with...
30 CFR 71.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2014 CFR
2014-07-01
... respirable dust in the mine atmosphere of the active workings contains more than 5 percent quartz, the operator shall continuously maintain the average concentration of respirable dust in the mine atmosphere... 20%, Therefore, the average concentration of respirable dust in the mine atmosphere associated with...
30 CFR 71.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2010 CFR
2010-07-01
... respirable dust in the mine atmosphere of the active workings contains more than 5 percent quartz, the operator shall continuously maintain the average concentration of respirable dust in the mine atmosphere... 20%, Therefore, the average concentration of respirable dust in the mine atmosphere associated with...
30 CFR 71.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2013 CFR
2013-07-01
... respirable dust in the mine atmosphere of the active workings contains more than 5 percent quartz, the operator shall continuously maintain the average concentration of respirable dust in the mine atmosphere... 20%, Therefore, the average concentration of respirable dust in the mine atmosphere associated with...
NASA Astrophysics Data System (ADS)
Iatan, E. L.; Berbeleac, I.
2012-04-01
Bucium Rodu maar-diatreme and Frasin dome volcanic structures and related Au-Ag epithermal deposits are located in the northeastern part of the South Apuseni Mountains, and belong to Bucium-Rosia Montana-Baia de Aries metallogenic district, within so called "Golden Quadrilateral". The microthermometric measurements were carried out using double polished sections, on bipyramidal magmatic quartz phenocrysts and hydrothermal quartz phenocrysts. Depending on the clarity of the quartz, samples were polished down to 200 - 400 μm thick. A standard microscope for transmitted and reflected light was used for the sample petrography. Linkam THM SG600 heating-freezing stage, combined with a Nikon E 400 microscope and a Nikon DXM 1200F digital camera, were used to measure the fluid inclusions homogenization temperatures. The Frasin magmatic quartz phenocrysts, occurs as well-formed bipyramidal β -form quartz phenocrysts and contain apatite, zircon, melt inclusions and fluid inclusions. They reach up to 1 cm in diameter and their cracks are re-filled with carbonate, sericite and sulfides. The size of fluid inclusions ranges from very fine (2-3 μm) up to 25 μm. Primary and pseudosecondary fluid inclusions are not common, they occur in small groups with sizes ranging between 5-20 μm, having two phases: liquid and vapor. Based on the homogenization temperatures and phase proportions at room temperature, we could separate 2 types/fields of range for primary and pseudosecondary fluid inclusions as follows: 1. Liquid rich fluid inclusions (50-60 vol. % liquid) with Th=370-406°C and 2. Vapor rich fluid inclusions (10-30 vol. % liquid) with Th=420-519°C. All of the fluid inclusions homogenize by the disappearance of the vapor phase. Microthermometric data from hydrothermal quartz crystals were obtained from quartz phenocrysts of carbonate-quartz-base metal sulfides-gold veins of the dacite breccias. Primary fluid inclusions from hydrothermal quartz crystals have sizes up to 50 μm and comprise two phases: liquid and vapor. Liquid rich inclusions comprise 70% of fluid inclusion population and have the proportion of two liquid phase ranging between 60-90 vol. % liquid. Based on the homogenization temperatures and phase proportions at room temperature, we could separate 3 types/fields of range of hydrothermal fluid inclusions as follows: 1. Liquid rich fluid inclusions (80-90 vol. % liquid) with Th=234-293°C, 2. Liquid rich fluid inclusions (50-80 vol. % liquid) with Th=324-399°C; 3. Vapor rich inclusions (95-70 vol. % vapor) Th=424-497°C. Vapor rich inclusions comprise 30% of fluid inclusions population and have the proportion of vapor ranging between 95-70%. The microthermometric measurements showed high Th ranging between 424-497°C. The presence of high temperature fluids trapped in hydrothermal quartz that are not common with epithermal stage (<300°C) suggests the existence of a second vent of reheated fluids showing a polistadial activity in the region. Acknowledgements: This work was supported by the strategic grant POSDRU/89/1.5/S58852, Project "Postdoctoral program for training scientific researches" co-financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007-2013".
Plastic Deformation of Quartz: Unfinished business?
NASA Astrophysics Data System (ADS)
Paterson, M. S.
2011-12-01
Starting at Harvard in the mid-1930's, David Griggs built a series of high pressure machines for experimental rock deformation. One persistent aim was to achieve the plastic deformation of quartz. Each time he built a new machine for higher pressure and/or temperature, one of the first materials he tested would be quartz. This search went on through a 500 MPa liquid-medium machine at temperatures up to 300°C, then with a gas-medium machine for temperatures up to 800°C, and finally with a solid-medium machine for higher pressures and temperatures. Quartz proved stubbornly resistant to deformation except at extremely high stresses until, finally and somewhat serendipitously, it was found possible to deform quartz at relatively low stresses in the presence of water under special conditions. The breakthrough came in an experiment in a 1500 MPa solid-medium apparatus in which talc was used as pressure medium. At the temperature of the experiment, the talc dehydrated and so released water. Under these conditions, natural quartz proved to be very weak and to readily undergo plastic deformation, a phenomenon that became known as "hydrolytic weakening". Soon after this discovery, it was also found that certain synthetic single crystals could be easily deformed ab initio. These crystals were from a particular set that had been grown rapidly under hydrothermal conditions and had incorporated water during growth. Attempts in our laboratory to weaken crystals in a gas-medium apparatus at around 300 MPa by cooking dry quartz in the presence of added water were all unsuccessful, although we could deform wet synthetic crystals. There was considerable speculation about a role of high pressure in promoting hydrolytic weakening, but the dilemma was eventually clarified by electron microscope studies by Fitz Gerald and coworkers. These studies showed that crystals that had been subjected to high pressure and temperature in the solid-medium apparatus were extensively microcracked, presumably due to non-hydrostatic stresses generated from the solid medium during raising the pressure, thus evidently promoting the ingress of water. From our gas-medium experiments it would seem that both the solubility and the rate of diffusion of water-related species in dry quartz must be very low, such that at 300 MPa and around 500 - 1000 °C the water penetrates less than a few micrometres in the course of a few hours. Thus the sluggishness of diffusion and the low equilibrium solubility of water-related species in quartz probably explain the failure to achieve hydrolytic weakening in the gas-medium apparatus. However, the documentation of these properties remains inadequate. The initial, and still current, Frank-Griggs hypothesis for the origin of hydrolytic weakening is that the water plays a role in the breaking of the covalent silicon-oxygen bonds as a dislocation is propagated. It is a corollary that the dislocation must be saturated with water or that the water must migrate with the dislocation as it moves. Heggie and Jones have done a number of ab initio calculations on the role of the water in the migration of dislocations in quartz which support the idea that the motion of dislocations is aided by the presence of water-related species in the dislocation core.
Sasagawa, Yohei; Danno, Hiroki; Takada, Hitomi; Ebisawa, Masashi; Tanaka, Kaori; Hayashi, Tetsutaro; Kurisaki, Akira; Nikaido, Itoshi
2018-03-09
High-throughput single-cell RNA-seq methods assign limited unique molecular identifier (UMI) counts as gene expression values to single cells from shallow sequence reads and detect limited gene counts. We thus developed a high-throughput single-cell RNA-seq method, Quartz-Seq2, to overcome these issues. Our improvements in the reaction steps make it possible to effectively convert initial reads to UMI counts, at a rate of 30-50%, and detect more genes. To demonstrate the power of Quartz-Seq2, we analyzed approximately 10,000 transcriptomes from in vitro embryonic stem cells and an in vivo stromal vascular fraction with a limited number of reads.
OGO-6 gas-surface energy transfer experiment
NASA Technical Reports Server (NTRS)
Mckeown, D.; Dummer, R. S.; Bowyer, J. M., Jr.; Corbin, W. E., Jr.
1973-01-01
The kinetic energy flux of the upper atmosphere was analyzed using OGO-6 data. Energy transfer between 10 microwatts/sq cm and 0.1 W/sq cm was measured by short-term frequency changes of temperature-sensitive quartz crystals used in the energy transfer probe. The condition of the surfaces was continuously monitored by a quartz crystal microbalance to determine the effect surface contamination had on energy accommodation. Results are given on the computer analysis and laboratory tests performed to optimize the operation of the energy transfer probe. Data are also given on the bombardment of OGO-6 surfaces by high energy particles. The thermoelectrically-cooled quartz crystal microbalance is described in terms of its development and applications.
NASA Astrophysics Data System (ADS)
Phetchakul, Toempong; Phuvanatai, Pavaris
2017-07-01
The application of 18-crown-6 ether film for 2, 4, 6-trinitrotolurene (TNT) vapor detection by using quartz crystal microbalance (QCM) is studied. The film is coated on the quartz electrodes as sensitive material for capture TNT molecule. The parameters that are studied are concentration and mass or thickness of film. When the explosive adheres to surface of the crystal oscillator, the weight is changed and the resonance frequency of the crystal oscillator is shifted lower. The frequency shift (Δf) relates to concentration and mass or thickness. The high concentration and mass/thickness of film enhance the TNT detection.
Distribution of biogenic silica and quartz in recent deep-sea sediments
NASA Astrophysics Data System (ADS)
Leinen, Margaret; Cwienk, Douglas; Heath, G. Ross; Biscaye, Pierre E.; Kolla, V.; Thiede, Jørn; Dauphin, J. Paul
1986-03-01
All available quartz and biogenic silica concentrations from deep-sea surface sediments were intercalibrated, plotted, and contoured on a calcium-carbonate-free basis. The maps show highest concentrations of biogenic silica (opal) along the west African coast, along equatorial divergences in all oceans, and at the Polar Front in the southern Indian Ocean. These are all areas where upwelling is strong and there is high biological productivity. Quartz in pelagic sediments deposited far from land is generally eolian in origin. Its distribution reflects dominant wind systems in the Pacific, but in much of the Atlantic and Indian oceans the distribution pattern is strongly modified by turbidite deposition and bottom current processes.
Behavior of Quartz and Carbon Black Pellets at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Li, Fei; Tangstad, Merete
This paper studies the quartz and carbon black pellets at elevated temperature with varying temperature and gas atmosphere. High-purity quartz and commercial ultra-pure carbon black was mixed (carbon content vet. 15%), and then pelletized into particles of l-3mm in diameter. The stoichiometric analysis of the pellet during heating is studied in thermogravimetric analysis (TGA) furnace at different temperature in CO and Ar atmosphere. The microstructure, phase changes and element content of sample before/after heating is characterized by X-ray diffraction, scanning electron microscope, X-ray fluorescence and LECO analyzer. The reaction process can be divided into two stages. Higher temperature and argon atmosphere are the positive parameters for SiC formation.
Mineralogic evidence for an impact event at the cretaceous-tertiary boundary
Bohor, B.F.; Foord, E.E.; Modreski, P.J.; Triplehorn, Don M.
1984-01-01
A thin claystone layer found in nonmarine rocks at the palynological Cretaceous-Tertiary boundary in eastern Montana contains an anomalously high value of iridium. The nonclay fraction is mostly quartz with minor feldspar, and some of these grains display planar features. These planar features are related to specific crystallographic directions in the quartz lattice. The shocked quartz grains also exhibit asterism and have lowered refractive indices. All these mineralogical features are characteristic of shock metamorphism and are compelling evidence that the shocked grains are the product of a high velocity impact between a large extraterrestrial body and the earth. The shocked minerals represent silicic target material injected into the stratosphere by the impact of the projectile.
NASA Astrophysics Data System (ADS)
Dinh, Toan; Viet Dao, Dzung; Phan, Hoang-Phuong; Wang, Li; Qamar, Afzaal; Nguyen, Nam-Trung; Tanner, Philip; Rybachuk, Maksym
2015-06-01
We report on the temperature dependence of the charge transport and activation energy of amorphous silicon carbide (a-SiC) thin films grown on quartz by low-pressure chemical vapor deposition. The electrical conductivity as characterized by the Arrhenius rule was found to vary distinctly under two activation energy thresholds of 150 and 205 meV, corresponding to temperature ranges of 300 to 450 K and 450 to 580 K, respectively. The a-SiC/quartz system displayed a high temperature coefficient of resistance ranging from -4,000 to -16,000 ppm/K, demonstrating a strong feasibility of using this material for highly sensitive thermal sensing applications.
Thickness-shear and thickness-twist modes in an AT-cut quartz acoustic wave filter.
Zhao, Zinan; Qian, Zhenghua; Wang, Bin; Yang, Jiashi
2015-04-01
We studied thickness-shear and thickness-twist vibrations of a monolithic, two-pole crystal filter made from a plate of AT-cut quartz. The scalar differential equations derived by Tiersten and Smythe for electroded and unelectroded quartz plates were employed which are valid for both the fundamental and the overtone modes. Exact solutions for the free vibration resonant frequencies and modes were obtained from the equations. For a structurally symmetric filter, the modes can be separated into symmetric and antisymmetric ones. Trapped modes with vibrations mainly under the electrodes were found. The effect of the distance between the two pairs of electrodes was examined. Copyright © 2015 Elsevier B.V. All rights reserved.
A Quartz Crystal Microbalance dew point sensor without frequency measurement.
Wang, Guohua; Zhang, Weishuo; Wang, Shuo; Sun, Jinglin
2014-11-01
This work deals with the design of a dew point sensor based on Quartz Crystal Microbalance (QCM) without measuring the frequency. This idea is inspired by the fact that the Colpitts oscillation circuit will stop oscillating when the QCM works in the liquid media. The quartz crystal and the electrode are designed through the finite element simulation and the stop oscillating experiment is conducted to verify the sensibility. Moreover, the measurement result is calibrated to approach the true value. At last a series of dew points at the same temperature is measured with the designed sensor. Results show that the designed dew point sensor is able to detect the dew point with the proper accuracy.
Direct micromachining of quartz glass plates using pulsed laser plasma soft x-rays
NASA Astrophysics Data System (ADS)
Makimura, Tetsuya; Miyamoto, Hisao; Kenmotsu, Youichi; Murakami, Kouichi; Niino, Hiroyuki
2005-03-01
We have investigated direct micromachining of quartz glass, using pulsed laser plasma soft x-rays (LPSXs) having a potential capability of nanomachining because the diffraction limit is ˜10nm. The LPSX's were generated by irradiation of a Ta target with 532nm laser light from a conventional Q switched Nd :YAG laser at 700mJ/pulse. In order to achieve a sufficient power density of LPSX's beyond the ablation threshold, we developed an ellipsoidal mirror to obtain efficient focusing of LPSXs at around 10nm. It was found that quartz glass plates are smoothly ablated at 45nm/shot using the focused and pulsed LPSX's.
Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K
2017-03-04
The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm -1 ) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure.
A quartz crystal microbalance dew point sensor without frequency measurement
NASA Astrophysics Data System (ADS)
Wang, Guohua; Zhang, Weishuo; Wang, Shuo; Sun, Jinglin
2014-11-01
This work deals with the design of a dew point sensor based on Quartz Crystal Microbalance (QCM) without measuring the frequency. This idea is inspired by the fact that the Colpitts oscillation circuit will stop oscillating when the QCM works in the liquid media. The quartz crystal and the electrode are designed through the finite element simulation and the stop oscillating experiment is conducted to verify the sensibility. Moreover, the measurement result is calibrated to approach the true value. At last a series of dew points at the same temperature is measured with the designed sensor. Results show that the designed dew point sensor is able to detect the dew point with the proper accuracy.
NASA Astrophysics Data System (ADS)
Lider, M. C.; Yurtseven, H.
2018-05-01
The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.
Yamasaki, Alzira; Oliveira, João A B P; Duarte, Armando C; Gomes, M Teresa S R
2012-08-30
Copper and lead in wine were quantified by anodic stripping voltammetry (ASV), performed onto the gold electrode of a piezoelectric quartz crystal. Both current or mass changes could be used as analytical signals, without a statistical difference in the results (α=0.05). However, the plot of mass vs. potential provided an in depth understanding of the electrochemical processes and allowed studying adsorption phenomena. Copper interaction with fructose is an example of a process which was not possible to ignore by observing the mass change on the gold electrode of the piezoelectric quartz crystal. Copyright © 2012 Elsevier B.V. All rights reserved.
Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation
NASA Astrophysics Data System (ADS)
Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel
2016-05-01
In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.
NASA Astrophysics Data System (ADS)
Blinova, Yu. V.; Snigirev, O. V.; Porokhov, N. V.; Evlashin, S. A.
2017-10-01
Results of investigations using X-ray diffraction and scanning electron microscopy of composite materials made from YBa2Cu3O y films sputtered (using various regimes) onto a substrate of amorphous quartz with a platinum buffer layer, have been given.
30 CFR 70.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Respirable dust standard when quartz is present. When the respirable dust in the mine atmosphere of the... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... average concentration of respirable dust in the mine atmosphere associated with that mechanized mining...
30 CFR 70.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Respirable dust standard when quartz is present. When the respirable dust in the mine atmosphere of the... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... average concentration of respirable dust in the mine atmosphere associated with that mechanized mining...
30 CFR 70.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Respirable dust standard when quartz is present. When the respirable dust in the mine atmosphere of the... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... average concentration of respirable dust in the mine atmosphere associated with that mechanized mining...
30 CFR 70.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Respirable dust standard when quartz is present. When the respirable dust in the mine atmosphere of the... concentration of respirable dust in the mine atmosphere during each shift to which each miner in the active... average concentration of respirable dust in the mine atmosphere associated with that mechanized mining...
Flight vehicle thermal testing with infrared lamps
NASA Technical Reports Server (NTRS)
Fields, Roger A.
1992-01-01
The verification and certification of new structural material concepts for advanced high speed flight vehicles relies greatly on thermal testing with infrared quartz lamps. The basic quartz heater system characteristics and design considerations are presented. Specific applications are illustrated with tests that were conducted for the X-15, the Space Shuttle, and YF-12 flight programs.
Monoclinic tridymite in clast-rich impact melt rock from the Chesapeake Bay impact structure
Jackson, John C.; Horton, J. Wright; Chou, I-Ming; Belkin, Harvey E.
2011-01-01
X-ray diffraction and Raman spectroscopy confirm a rare terrestrial occurrence of monoclinic tridymite in clast-rich impact melt rock from the Eyreville B drill core in the Chesapeake Bay impact structure. The monoclinic tridymite occurs with quartz paramorphs after tridymite and K-feldspar in a microcrystalline groundmass of devitrified glass and Fe-rich smectite. Electron-microprobe analyses revealed that the tridymite and quartz paramorphs after tridymite contain different amounts of chemical impurities. Inspection by SEM showed that the tridymite crystal surfaces are smooth, whereas the quartz paramorphs contain irregular tabular voids. These voids may represent microporosity formed by volume decrease in the presence of fluid during transformation from tridymite to quartz, or skeletal growth in the original tridymite. Cristobalite locally rims spherulites within the same drill core interval. The occurrences of tridymite and cristobalite appear to be restricted to the thickest clast-rich impact melt body in the core at 1402.02–1407.49 m depth. Their formation and preservation in an alkali-rich, high-silica melt rock suggest initially high temperatures followed by rapid cooling.
NASA Astrophysics Data System (ADS)
Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Sasinková, V.; Boháček, P.; Arbet, J.
2018-03-01
N-doped carbon thin films were deposited on a silicon substrate and quartz glass by RF reactive magnetron sputtering using a carbon target and an Ar+N2 gas mixture. During the magnetron sputtering, the substrate holder temperatures was kept at 800 °C. The carbon film thickness on the silicon substrate was about 70 nm, while on the quartz glass it was in the range 15 nm – 60 nm. The elemental concentration in the films was determined by RBS and ERD. Raman spectroscopy was used to evaluate the intensity ratios I D/I G of the D and G peaks of the carbon films. The transmission photocathodes prepared were placed in the hollow-cathode assembly of a Pierce-structure DC gun to produce photoelectrons. The quantum efficiency (QE) was calculated from the laser energy and cathode charge measured. The properties of the transmission photocathodes based on semitransparent N-doped carbon thin films on quartz glass and their potential for application in DC gun technology are discussed.
A novel design for storage of inner stress by colloidal processing on rock-like materials
NASA Astrophysics Data System (ADS)
Chen, Weichang; Wang, Sijing; Lekan Olatayo, Afolagboye; Fu, Huanran
2018-06-01
Inner stress exists in rocks, affecting rock engineering, yet has received very little attention and quantitative investigation because of uncertainty about its characteristics. Previous studies have suggested that the inner stresses of rock materials are closely related to their physical state variation. In this work, a novel mold was designed to simulate the storage process of inner stress in specimens composed of quartz sands and epoxy. Then, thermal tests were carried out to change the physical state of the specimens, and expansion of the specimens was monitored. The results indicated that inner stress could be partly locked by the mold and it could also be released by heating. It can be inferred from the analysis that one necessary condition of storage and release of inner stress is physical state variation. Additionally, by using an XRD method, the variations in the interplanar spacing of the quartz sands were detected, and the results reflect that inner stress could be locked-in aggregates (quartz sands) by a cement constraint (solid epoxy). The inner stress stored in quartz sands was calculated using height and interplanar spacing variations.
Pb2+ and Zn2+ adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand
Coston, J.A.; Fuller, C.C.; Davis, J.A.
1995-01-01
Pb2+ and Zn2+ adsorption was studied in batch experiments with material collected from a shallow, unconfined aquifer of glacial outwash sand and gravel in Falmouth, Massachusetts, USA. The aquifer solids contain primarily quartz with minor amounts of alkali feldspars and ferromagnetic minerals. Pb2+ and Zn2+ adsorption experiments with various grain size and mineral fractions of the aquifer solids showed that: 1) Zn2+ adsorption was independent of grain size, but Pb2+ was preferentially adsorbed by the <64 ??m size fraction and 2) Pb2+ adsorption decreased after removal of the paramagnetic, Fe-bearing mineral fraction, but Zn2+ adsorption was unaffected. Pb2+ and Zn2+ adsorption on mineral separates from the aquifer material compared with metal adsorption on a purified quartz powder indicated that adsorption of both metal ions was dominated by coatings on the quartz fraction of the sediment. Characterization of the coatings by AES, SEM-EDS, and TOF-SIMS demonstrated that the natural quartz grains were extensively coated with Al- and Fe-bearing minerals of variable composition. -from Authors
Luminescence isochron dating: a new approach using different grain sizes.
Zhao, H; Li, S H
2002-01-01
A new approach to isochron dating is described using different sizes of quartz and K-feldspar grains. The technique can be applied to sites with time-dependent external dose rates. It is assumed that any underestimation of the equivalent dose (De) using K-feldspar is by a factor F, which is independent of grain size (90-350 microm) for a given sample. Calibration of the beta source for different grain sizes is discussed, and then the sample ages are calculated using the differences between quartz and K-feldspar De from grains of similar size. Two aeolian sediment samples from north-eastern China are used to illustrate the application of the new method. It is confirmed that the observed values of De derived using K-feldspar underestimate the expected doses (based on the quartz De) but, nevertheless, these K-feldspar De values correlate linearly with the calculated internal dose rate contribution, supporting the assumption that the underestimation factor F is independent of grain size. The isochron ages are also compared with the results obtained using quartz De and the measured external dose rates.
NASA Astrophysics Data System (ADS)
MacRae, C. M.; Wilson, N. C.; Torpy, A.; Delle Piane, C.
2018-01-01
Advances in field emission gun electron microprobes have led to significant gains in the beam power density and when analysis at high resolution is required then low voltages are often selected. The resulting beam power can lead to damage and this can be minimised by cooling the sample down to cryogenic temperatures allowing sub-micrometre imaging using a variety of spectrometers. Recent advances in soft X-ray emission spectrometers (SXES) offer a spectral tool to measure both chemistry and bonding and when combined with spectral cathodoluminescence the complementary techniques enable new knowledge to be gained from both mineral and materials. Magnesium and aluminium metals have been examined at both room and liquid nitrogen temperatures by SXES and the L-emission Fermi-edge has been observed to sharpen at the lower temperatures directly confirming thermal broadening of the X-ray spectra. Gains in emission intensity and resolution have been observed in cathodoluminescence for liquid nitrogen cooled quartz grains compared to ambient temperature quartz. This has enabled subtle growth features at quartz to quartz-cement boundaries to be imaged for the first time.
SAXS investigations of the morphology of swift heavy ion tracks in α-quartz.
Afra, B; Rodriguez, M D; Trautmann, C; Pakarinen, O H; Djurabekova, F; Nordlund, K; Bierschenk, T; Giulian, R; Ridgway, M C; Rizza, G; Kirby, N; Toulemonde, M; Kluth, P
2013-01-30
The morphology of swift heavy ion tracks in crystalline α-quartz was investigated using small angle x-ray scattering (SAXS), molecular dynamics (MD) simulations and transmission electron microscopy. Tracks were generated by irradiation with heavy ions with energies between 27 MeV and 2.2 GeV. The analysis of the SAXS data indicates a density change of the tracks of ~2 ± 1% compared to the surrounding quartz matrix for all irradiation conditions. The track radii only show a weak dependence on the electronic energy loss at values above 17 keV nm(-1), in contrast to values previously reported from Rutherford backscattering spectrometry measurements and expectations from the inelastic thermal spike model. The MD simulations are in good agreement at low energy losses, yet predict larger radii than SAXS at high ion energies. The observed discrepancies are discussed with respect to the formation of a defective halo around an amorphous track core, the existence of high stresses and/or the possible presence of a boiling phase in quartz predicted by the inelastic thermal spike model.
A Quartz Crystal Microbalance Immunosensor for Stem Cell Selection and Extraction
Costanzo, Salvatore; Zambrano, Gerardo; Mauro, Marco; Battaglia, Raffaele; Ferrini, Gianluca; Nastri, Flavia; Pavone, Vincenzo
2017-01-01
A cost-effective immunosensor for the detection and isolation of dental pulp stem cells (DPSCs) based on a quartz crystal microbalance (QCM) has been developed. The recognition mechanism relies on anti-CD34 antibodies, DPSC-specific monoclonal antibodies that are anchored on the surface of the quartz crystals. Due to its high specificity, real time detection, and low cost, the proposed technology has a promising potential in the field of cell biology, for the simultaneous detection and sorting of stem cells from heterogeneous cell samples. The QCM surface was properly tailored through a biotinylated self-assembled monolayer (SAM). The biotin–avidin interaction was used to immobilize the biotinylated anti-CD34 antibody on the gold-coated quartz crystal. After antibody immobilization, a cellular pellet, with a mixed cell population, was analyzed; the results indicated that the developed QCM immunosensor is highly specific, being able to detect and sort only CD34+ cells. Our study suggests that the proposed technology can detect and efficiently sort any kind of cell from samples with high complexity, being simple, selective, and providing for more convenient and time-saving operations. PMID:29182568
Ogi, Hirotsugu; Nagai, Hironao; Naga, Hironao; Fukunishi, Yuji; Hirao, Masahiko; Nishiyama, Masayoshi
2009-10-01
We develop a highly sensitive quartz crystal microbalance (QCM) biosensor with a fundamental resonance frequency of 170 MHz. A naked AT-cut quartz plate of 9.7 microm thick is set in a sensor cell. Its shear vibration is excited by the line wire, and the vibration signals are detected by the other line wire, achieving the noncontacting measurement of the resonance frequency. The mass sensitivity of the 170 MHz QCM biosensor is 15 pg/(cm2 Hz), which is better than that of a conventional 5 MHz QCM by 3 orders of magnitude. Its high sensitivity is confirmed by detecting human immunoglobulin G (hIgG) via Staphylococcus protein A immobilized nonspecifically on both surfaces of the quartz plate. The detection limit is 0.5 pM. Limitation of the high-frequency QCM measurement is then theoretically discussed with a continuum mechanics model for a plate with point masses connected by elastic springs. The result indicates that a QCM measurement will break down at frequencies one-order-of-magnitude higher than the local resonance frequency at specific binding cites.
NASA Astrophysics Data System (ADS)
Larson, Kyle P.
2018-02-01
New quartz texture and c-axis fabric data from across the Paleoproterozoic Ulleri-Phaplu-Melung orthogneiss in the Khimti Khola region of east central Nepal provide new constraints on the internal structural framework of the Himalaya that help shed light on the convergence accommodation processes active in the upper portion of the crust during orogenesis. These data outline a strain history that varies across the unit. Deformation near the base of the unit occurred at ∼605 (±50) °C with evidence of significant static recrystallization and recovery preserved in quartz, whereas deformation near the top of the unit occurred at ∼540 (±50) ˚C with quartz characterized by dynamic recrystallization mechanisms. The strength of the quartz c-axis fabrics follows a similar spatial pattern, with those from near the top of the unit recording stronger fabrics than those measured from lower in the unit. Together, these data are interpreted to indicate strain localization, possibly at progressively lower temperature, near the top of the Ulleri-Phaplu-Melung orthogneiss. This interpretation is consistent with cooling ages that indicate the upper boundary of the unit coincides with an out-of-sequence shear zone. This study not only provides a structural characterization of the shear zone, helping to refine the kinematic framework of this portion of the Himalaya, but also confirms the utility of fabric strength analysis in deciphering strain localization within pervasively deformed rocks.
Frictional strengths of talc-serpentine and talc-quartz mixtures
Moore, Diane E.; Lockner, D.A.
2011-01-01
Talc is a constituent of faults in a variety of settings, and it may be an effective weakening agent depending on its abundance and distribution within a fault. We conducted frictional strength experiments under hydrothermal conditions to determine the effect of talc on the strengths of synthetic gouges of lizardite and antigorite serpentinites and of quartz. Small amounts of talc weaken serpentinite gouges substantially more than predicted by simple weight averaging. In comparison, mixtures of quartz and talc show a linear trend of strength reduction at talc concentrations 15 wt % and enhanced weakening at higher concentrations. All of the strength data are fit by a modified version of the Reuss mixing law that allows for the dominance of one mineral over the other. The difference in the behavior of serpentinite-talc and quartz-talc mixtures at low talc concentrations is a reflection of their different textures. Lizardite, antigorite, and talc all have platy habits, and displacement within gouges composed of these minerals is localized to narrow shears along which the platy grains have rotated into alignment with the shear surfaces. The shears in the mixed phyllosilicate gouges maximize the proportion of the weaker mineral within them. When mixed with a strong, rounded mineral such as quartz, some minimum concentration of talc is needed to form connected pathways that enhance strength reductions. The typical development of talc by the reaction of Si-rich fluids with serpentinite or dolomite would tend to localize its occurrence in a natural fault and result in enhanced weakening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guohui; Um, Wooyong
2012-11-23
Highly alkaline nuclear waste solutions have been released from underground nuclear waste storage tanks and pipelines into the vadose zone at the U.S. Department of Energy’s Hanford Site in Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. High pH caustic NaNO3 solutions with and without dissolved Al were reacted with quartz sand through flow-through columns stepwise at 45, 51, and 89°C to simulate possible reactions between leaked nuclear waste solution and primary subsurface mineral. Upon reaction, Si was released from the dissolution of quartz sand, and nitrate-cancrinite [Na8Si6Al6O24(NO3)2] precipitated on the quartz surface as a secondary mineralmore » phase. Both steady-state dissolution and precipitation kinetics were quantified, and quartz dissolution apparent activation energy was determined. Mineral alteration through dissolution and precipitation processes results in pore volume and structure changes in the subsurface porous media. In this study, the column porosity increased up to 40.3% in the pure dissolution column when no dissolved Al was present in the leachate, whereas up to a 26.5% porosity decrease was found in columns where both dissolution and precipitation were observed because of the presence of Al in the input solution. The porosity change was also confirmed by calculation using the dissolution and precipitation rates and mineral volume changes.« less
Ramasamy, V; Paramasivam, K; Suresh, G; Jose, M T
2014-01-03
Using Gamma ray and Fourier Transform Infrared (FTIR) spectroscopic techniques, level of natural radioactivity ((238)U, (232)Th and (40)K) and mineralogical characterization of Vaigai River sediments have been analyzed with the view of evaluating the radiation risk and its relation to available minerals. Different radiological parameters are calculated to know the entire radiological characterization. The average of activity concentrations and all radiological parameters are lower than the recommended safety limit. However, some sites are having higher radioactivity values than the safety limit. From the FTIR spectroscopic technique, the minerals such as quartz, microcline feldspar, orthoclase feldspar, kaolinite, gibbsite, calcite, montmorillonite and organic carbon are identified and they are characterized. The extinction co-efficient values are calculated to know the relative distribution of major minerals such as quartz, microcline feldspar, orthoclase feldspar and kaolinite. The calculated values indicate that the amount of quartz is higher than orthoclase feldspar, microcline feldspar and much higher than kaolinite. Crystallinity index is calculated to know the crystalline nature of quartz and the result indicates that the presence of ordered crystalline quartz in the present sediment. The role of minerals in the level of radioactivity is assessed by multivariate statistical analysis (Pearson's correlation and Cluster analysis). The statistical analysis confirms that the clay mineral kaolinite is the major factor than other major minerals to induce the important radioactivity variables such as absorbed dose rate and concentrations of (232)Th and (238)U. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalińska-Nartiša, Edyta; Stivrins, Normunds; Grudzinska, Ieva
2018-01-01
Sediment record collected from the coastal lake serves as a powerful tool for reconstructing changes in palaeoenvironment and understanding the potential signals of past storminess. In this study, we use several proxies from sediment of the Holocene Thermal Maximum at coastal Lake Lilaste, Latvia. We focus on surface texture of quartz grains from the mineral inorganic fraction as indicators of depositional environments. We then use this as a proxy for potential storm transport and combine with information on granulometry, diatom stratigraphy and chronology to answer the question whether flux of quartz grains in the lake originated from the sea or from the land. Analyses in a binocular and scanning electron microscope reveal that most of the investigated quartz grains originate from dwelling in the seawater and wave action in the nearshore zone. Grains representing very energetic subaqueous environment similar to storm events are also present. Terrestrial record is of minor significance and visible through occurrence of aeolian quartz grains. During drier and colder conditions, an influx of sand with aeolian imprint was delivered to the lake between 8500 and 7800 cal yr BP. Marine and terrestrial conditions alternated between 7800 and 6000 cal yr BP. Storm-induced grains were likely deposited three times: at 7300 cal yr BP, 6600-6400 cal yr BP, and 6200-6000 cal yr BP. Overall stable marine environmental conditions prevailed between 6000 and 4000 cal yr BP except of the last portion of terrestrial-induced sediment at 4100 cal yr BP.
Exploration for gold mineralization in the Arabo Nubian Shield: Using remote sensing Approach
NASA Astrophysics Data System (ADS)
Ramadan, Talaat
2013-04-01
In the southern part of the Eastern Desert of Egypt, Landsat Thematic Mapper (ETM+) data and fieldwork was combined with mineralogical and geochemical investigations in order to detect and characterize alteration zones within Pan-African rocks. The processing of Landsat ETM+ data using ratioing (bands 5/7,5/1,4/3 in Red, Green, Blue) showed two different types of alteration zones (type l and 2). Type 1 is close to the ophiolitic ultramafic rocks and type 2 is located within island-arc related metavolcanic rocks at the study areas. Both of these alteration zones are concordant with the main NW-SE structural trend. Mineralogical studies indicate that the alteration zones of type 1 consist mainly of calcite, ankerite, magnesite, dolomite and quartz. Chromian spinel, pyrite, and Ni-bearing sulphides (gersdorffite, pentlandite and polydymite) are the main ore minerals within this zone. Alteration zones of type 2 are strongly potassium-enriched and pyrophyllite, kaolinite, illite, gypsum and quartz occur. The brecciated quartz-veins associated with theses alteration zones consist of quartz, Fe-hydroxides, hematite and native gold. The gold content reaches up to 5 g/t in the alteration zone, while it extends up to 50 g/t in the quartz veins. This study presents a mineralogical characterization of such zones and demonstrates the utility of orbital remote sensing for finding unknown alteration zones in the Eastern Desert and other arid areas with similar host rock lithologies.
Microanalyses of lesions and lymph nodes from coalminers' lungs.
Chapman, J S; Ruckley, V A
1985-08-01
The dust content and composition of lesions and hilar lymph nodes from the lungs of British coalworkers have been examined. Samples of macules, fibrotic nodules, and massive fibrosis (both peripheral and central sites) were dissected from 49 lungs. The highest mean dust concentrations (about 20%) were found in nodules and massive fibrosis. Overall there were no significant differences between the selected lesion types and their respective whole lung dust composition, although the central sites of massive fibrosis were found to contain on average a higher proportion of coal and a lower proportion of ash and its measured constituents, quartz and kaolin plus mica, than the edge of the lesion (p less than 0.001 for each component). There were striking differences between recovered lung and lymph node dusts. An examination of 180 specimens showed a mean quartz in lymph node dust of 20.3% compared with 6.1% in lung dust. As expected the proportion of quartz was greater in lymph nodes and lungs from men who had worked "low" rank (high ash) coal. By contrast with the corresponding figures for lung dusts, however, the mean proportion of quartz in nodes did not increase over the pathological range of pneumoconiotic lung disease. On average the proportions of kaolin and mica in lymph nodes reflect those found in lungs. The lymphotrophic nature of quartz was clearly shown although it was not possible to show an association between this clearance pathway and any particular type of lesion.
Andrews, John T.; Darby, D.; Eberle, D.; Jennings, A.E.; Moros, M.; Ogilvie, A.
2009-01-01
An important indicator of Holocene climate change is provided by evidence for variations in the extent of drift ice. A proxy for drift ice in Iceland waters is provided by the presence of quartz. Quantitative x-ray diffraction analysis of the < 2 mm sediment fraction was undertaken on 16 cores from around Iceland. The quartz weight (wt.)% estimates from each core were integrated into 250-yr intervals between ????'0.05 and 11.7 cal. ka BP. Median quartz wt.% varied between 0.2 and 3.4 and maximum values ranged between 2.8 and 11.8 wt.%. High values were attained in the early Holocene and minimum values were reached 6 - 7 cal. ka BP. Quartz wt.% then rose steadily during the late Holocene. Our data exhibit no correlation with counts on haematite-stained quartz (HSQ) grains from VM129-191 west of Ireland casting doubt on the ice-transport origin. A pilot study on the provenance of Fe oxide grains in two cores that cover the last 1.3 and 6.1 cal. ka BP indicated a large fraction of the grains between 1 and 6 cal. ka BP were from either Icelandic or presently unsampled sources. However, there was a dramatic increase in Canadian and Russian sources from the Arctic Ocean ???1 cal. ka BP. These data may indicate the beginning of an Arctic Oscillation-like climate mode. ?? 2009 SAGE Publications.
NASA Astrophysics Data System (ADS)
Zhang, Xiaofei; Su, Xiaowen; Gao, Wenqiang; Wang, Fulei; Liu, Zhihe; Zhan, Jie; Liu, Baishan; Wang, Ruosong; Liu, Hong; Sang, Yuanhua
2018-06-01
Immobility of photocatalysts on substrates is a vital factor for the practical application of photocatalysis in polluted water/air treatment. In this study, TiO2 homogenously loaded quartz fiber felt was prepared by assembling of carboxyl-contained organic molecules functionalized TiO2 nanoparticles on the surface of amino group-modified quartz fiber by electrostatic adsorption between them and followed by an anneal process. The immobilization of TiO2 nanoparticles overcomes one main obstacle of the photocatalysts recycling in photocatalysis application. In addition, a plasma treatment endowed the hybrid photocatalyst a high hydrophilic property. Due to the homogeneous distribution of TiO2, charge carriers' separation by carbon, and full contact between water and the photocatalyst derived from the high hydrophilia, the TiO2/quartz fiber felt shows excellent photocatalytic performance. Based on the stable loading and the capillarity effect of the contacted fibers photocatalyst, a demo capillarity-driven continuous-flow water treatment photocatalysis reactor was designed and built up. The TiO2 nanoparticle/quartz fiber hybrid photocatalyst can disposal organic contaminants in actual industrial waste water from a dyeing factory in the continuous-flow reactor. The chemical oxygen demand (COD) of the industrial waste water was decreased from 104 to 45 mg/L, overcoming the problem of deep water treatment which is difficult to solve by other methods. This study provides a new photocatalyst and reaction mode for the continuous-flow photocatalysis application.
The Rock Elm meteorite impact structure, Wisconsin: Geology and shock-metamorphic effects in quartz
French, B.M.; Cordua, W.S.; Plescia, J.B.
2004-01-01
The Rock Elm structure in southwest Wisconsin is an anomalous circular area of highly deformed rocks, ???6.5 km in diameter, located in a region of virtually horizontal undeformed sedimentary rocks. Shock-produced planar microstructures (PMs) have been identified in quartz grains in several lithologies associated with the structure: sandstones, quartzite pebbles, and breccia. Two distinct types of PMs are present: P1 features, which appear identical to planar fractures (PFs or cleavage), and P2 features, which are interpreted as possible incipient planar deformation features (PDFs). The latter are uniquely produced by the shock waves associated with meteorite impact events. Both types of PMs are oriented parallel to specific crystallographic planes in the quartz, most commonly to c(0001), ??112??2, and r/z101??1. The association of unusual, structurally deformed strata with distinct shock-produced microdeformation features in their quartz-bearing rocks establishes Rock Elm as a meteorite impact structure and supports the view that the presence of multiple parallel cleavages in quartz may be used independently as a criterion for meteorite impact. Preliminary paleontological studies indicate a minimum age of Middle Ordovician for the Rock Elm structure. A similar age estimate (450-400 Ma) is obtained independently by combining the results of studies of the general morphology of complex impact structures with estimated rates of sedimentation for the region. Such methods may be applicable to dating other old and deeply eroded impact structures formed in sedimentary target rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter
Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less
Carl, Eva-Regine; Mansfeld, Ulrich; Liermann, Hanns-Peter; ...
2017-03-27
Hypervelocity collisions of solid bodies occur frequently in the solar system and affect rocks by shock waves and dynamic loading. A range of shock metamorphic effects and high-pressure polymorphs in rock-forming minerals are known from meteorites and terrestrial impact craters. In this paper, we investigate the formation of high-pressure polymorphs of α-quartz under dynamic and nonhydrostatic conditions and compare these disequilibrium states with those predicted by phase diagrams derived from static experiments under equilibrium conditions. We create highly dynamic conditions utilizing a mDAC and study the phase transformations in α-quartz in situ by synchrotron powder X-ray diffraction. Phase transitions ofmore » α-quartz are studied at pressures up to 66.1 and different loading rates. At compression rates between 0.14 and 1.96 GPa s -1, experiments reveal that α-quartz is amorphized and partially converted to stishovite between 20.7 GPa and 28.0 GPa. Therefore, coesite is not formed as would be expected from equilibrium conditions. With the increasing compression rate, a slight increase in the transition pressure occurs. The experiments show that dynamic compression causes an instantaneous formation of structures consisting only of SiO 6 octahedra rather than the rearrangement of the SiO 4 tetrahedra to form a coesite. Although shock compression rates are orders of magnitude faster, a similar mechanism could operate in impact events.« less
Homogeneous and Heterogeneous (Fex, Cr1-x)(OH)3 Precipitation: Implications for Cr Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Chong; Zuo, Xiaobing; Cao, B
2016-02-16
The formation of (Fe, Cr)(OH)3 nanoparticles determines the fate of aqueous Cr in many aquatic environments. Using small angle X-ray scattering, precipitation rates of (Fe, Cr)(OH)3 nanoparticles in solution and on quartz were quantified from 0.1 mM Fe(III) solutions containing 0 – 0.25 mM Cr(III) at pH = 3.7 ± 0.2. Concentration ratio of aqueous Cr(III)/Fe(III) controlled the chemical composition (x) of (Fex, Cr1-x)(OH)3 precipitates, solutions’ supersaturation with respect to precipitates, and the surface charge of quartz. Therefore, aqueous Cr(III)/Fe(III) ratio affected homogeneous (in solution) and heterogeneous (on quartz) precipitation rates of (Fex, Cr1-x)(OH)3 through different mechanisms. The sequestration mechanismsmore » of Cr(III) in precipitates were also investigated. In solutions with high aqueous Cr(III)/Fe(III) ratios, surface enrichment of Cr(III) on the precipitates occurred, resulting in slower particle growth in solution. From solutions with 0 – 0.1 mM Cr(III), the particles on quartz grew from 2 to 4 nm within 1 h. Interestingly, from solution with 0.25 mM Cr(III), particles of two distinct sizes (2 and 6 nm) formed on quartz, and their sizes remained unchanged throughout the reaction. Our study provided new insights on homogeneous and heterogeneous precipitation of (Fex, Cr1-x)(OH)3 nanoparticles, which can help determine the fate of Cr in aquatic environments.« less
NASA Astrophysics Data System (ADS)
Bower, D. M.; Steele, A.; Ackerson, M. R.; Bullock, E. S.; Green, O. R.; Fries, M.; Conrad, P. G.
2017-12-01
Many terrestrial cherts contain compelling microtextures and mineral phases that are indicative of ancient life in hydrothermal systems on early Earth. In volcanically-derived hydrothermal deposits, cherts have undergone multiple alteration events often resulting in separate generations of quartz veins that are much younger than the host rocks. In some cases, multiple episodes of hydrothermal alteration obscure otherwise syngenetic biosignatures and likewise create false signatures in the form of secondary carbon emplacement or diagenetic phase changes. To better identify possible biosignatures in hydrothermal deposits and understand their origins, we used confocal micro Raman spectroscopy, electron probe microanalysis, and cathodoluminescence (CL) imaging to characterize the quartz fabrics, mineral phases, trace elements, and macromolecular carbon (MMC) in quartz veins from the 3.46 Ga Apex Basalt chert samples. MMC, anatase (TiO2), pyrite (Fe2S), jarosite-alunite (KFe3(SO4)2(OH)6 - Kal3(SO4)2(OH)6), chamosite-phyllosilicates, and Fe-oxides all occur in close association in multiple generations of quartz veins throughout the sample suite. Mineral phases xenotime (YPO4), scorodite (FeAsO4 . H2O), apatite (CaPO4), pentlandite ((Fe,Ni)9S8), barite (BaSO4), sphalerite ((Zn,Fe)S), dolomite ((CaMg(CO3)2) and halides occur in specific generations of quartz. Trace elements (Cr, Mn, Mo, Cu, Sc, Va, Sb, and Co) are heterogeneously distributed within individual samples and likely occur due to fluid scavenging of the host basalts. CL imaging of quartz demonstrates that the majority of silicate material in the Apex cherts underwent recrystallization. This could result in the alteration of MMC and associated mineral assemblages. The biogencity and true origins of morphological features and chemical signatures in the Apex cherts are hotly debated, yet discovering the causes and nature of these puzzling attributes will be key for determining the usefulness of interrogating hydrothermal silica-rich deposits on other planetary environments.
Creep of quartz by dislocation and grain boundary processes
NASA Astrophysics Data System (ADS)
Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.
2015-12-01
Wet polycrystalline quartz aggregates deformed at temperatures T of 600°-900°C and strain rates of 10-4-10-6 s-1 at a confining pressure Pc of 1.5 GPa exhibit plasticity at low T, governed by dislocation glide and limited recovery, and grain size-sensitive creep at high T, governed by diffusion and sliding at grain boundaries. Quartz aggregates were HIP-synthesized, subjecting natural milky quartz powder to T=900°C and Pc=1.5 GPa, and grain sizes (2 to 25 mm) were varied by annealing at these conditions for up to 10 days. Infrared absorption spectra exhibit a broad OH band at 3400 cm-1 due to molecular water inclusions with a calculated OH content (~4000 ppm, H/106Si) that is unchanged by deformation. Rate-stepping experiments reveal different stress-strain rate functions at different temperatures and grain sizes, which correspond to differing stress-temperature sensitivities. At 600-700°C and grain sizes of 5-10 mm, flow law parameters compare favorably with those for basal plasticity and dislocation creep of wet quartzites (effective stress exponents n of 3 to 6 and activation enthalpy H* ~150 kJ/mol). Deformed samples show undulatory extinction, limited recrystallization, and c-axis maxima parallel to the shortening direction. Similarly fine-grained samples deformed at 800°-900°C exhibit flow parameters n=1.3-2.0 and H*=135-200 kJ/mol corresponding to grain size-sensitive Newtonian creep. Deformed samples show some undulatory extinction and grain sizes change by recrystallization; however, grain boundary deformation processes are indicated by the low value of n. Our experimental results for grain size-sensitive creep can be compared with models of grain boundary diffusion and grain boundary sliding using measured rates of silicon grain boundary diffusion. While many quartz mylonites show microstructural and textural evidence for dislocation creep, results for grain size-sensitive creep may apply to very fine-grained (<10 mm) quartz mylonites.
NASA Astrophysics Data System (ADS)
Harbi, Hesham M.; Ali, Kamal A.; McNaughton, Neal J.; Andresen, Arild
2018-04-01
The Sukhaybarat East and Red Hill deposits, in the northeastern part of the Arabian Shield, are mesothermal vein-type gold deposits hosted by late Cryogenian-Ediacaran intrusive rocks of the Idah suites (diorite, tonalite, granodiorite) and, at Sukhaybarat East, also by Ediacaran metasedimentary rocks. Gold mineralization comprises quartz-arsenopyrite veins (Sukhaybarat East), quartz-carbonate-pyrite veins (Red Hill), and subordinate gold-base metal sulfide veins. In the Red Hill deposit, alteration is complicated due to multiple overprinting hydrothermal events and is characteristically affected by pervasive, pink quartz-K-feldspar-hematite alteration which is overprinted by potassic alteration characterized by a quartz-biotite-carbonate-muscovite/sericite-rutile-apatite assemblage. This assemblage is associated with molybdenite veins which appear to form late in the paragenetic sequence and may represent either evolution of the ore fluid composition, or a later, unrelated mineralized fluids. Hydrothermal alteration at the Sukhaybarat East deposit is dominated by quartz-carbonate-sericite-arsenopyrite assemblages. Zircon from ore-hosting tonalite at Sukhaybarat East yields a U-Pb age of 629 ± 6 Ma, and biotite from the same rock gives an 40Ar/39Ar age of 622 ± 23 Ma. The 40Ar/39Ar age is within the uncertainty range for the U-Pb age of the host intrusion and is interpreted as a minimally disturbed cooling age for the tonalite. In the Red Hill area, granodiorite was emplaced at 615 ± 5 Ma, whereas muscovite/sericite separated from a mineralized sample of a quartz-carbonate-pyrite vein, that was overprinted by molybdenite-bearing veinlets, yields an 40Ar/39Ar age of 597 ± 8 Ma. We interpreted this age to represent the maximum age of the molybdenite mineralization and the probable minimum age of gold mineralization in the Red Hill deposit.
Characteristics of the Late Devonian Tsagaan Suvarga Cu-Mo deposit, Southern Mongolia
NASA Astrophysics Data System (ADS)
Tungalag, Naidansuren; Jargalan, Sereenen; Khashgerel, Bat-Erdene; Mijiddorj, Chuluunbaatar; Kavalieris, Imants
2018-05-01
The Late Devonian Tsagaan Suvarga deposit (255 Mt at 0.55% Cu, 0.02% Mo) is located on the NW margin of the Tsagaan Suvarga Complex (TSC), which extends ENE over 15 × 10 km and comprises mainly medium-grained equigranular hornblende-biotite quartz monzonite and monzodiorite. Distinct mineralized intrusions are inferred from distribution of Cu-Mo mineralization but are not clearly discernible. The Tsagaan Suvarga Complex is a window within Carboniferous volcanic and sedimentary rocks, and wall rocks to the TSC are not known or exposed in the nearby district. Whole-rock analyses and Sr-Nd isotopes, 87Sr/86Sr0 = 0.7027 to 0.7038 (n = 12) and ɛNd0 = + 4.26 to + 2.77 (n = 12), show that the granitoids are subduction-related I-type, high K-calc-alkaline to shoshonitic series and derived from a mantle source. They exhibit fractionated light rare earth elements, without depleted Eu and depleted middle heavy rare earth elements and Y, typical of oxidized, fertile porphyry magmatic suites. Early porphyry-style quartz veins include A- and B-type. Molybdenite occurs in monomineralic veins (1-5 mm) or A veins. Copper mineralization occurs mainly as chalcopyrite and subordinate bornite, disseminated and associated with quartz-muscovite veins. Pyrite (vol%) content is less than chalcopyrite and bornite combined. Deep oxidation to about 50 m depth has formed zones of malachite and covellite in late fractures. The most important alteration is actinolite-biotite-chlorite-magnetite replacing hornblende and primary biotite. Quartz-K-feldspar alteration is minor. Late albite replaces primary K-feldspar and enhances sodic rims on plagioclase crystals. Quartz-muscovite (or sericitic alteration) overprints actinolite-biotite and porphyry-type quartz veins. Field observations and petrographic studies suggest that the bulk of the chalcopyrite-bornite mineralization at the Tsagaan Suvarga formed together with coarse muscovite alteration.
Reduction Behavior of Assmang and Comilog ore in the SiMn Process
NASA Astrophysics Data System (ADS)
Kim, Pyunghwa Peace; Holtan, Joakim; Tangstad, Merete
The reduction behavior of raw materials from Assmang and Comilog based charges were experimentally investigated with CO gas up to 1600 °C. Quartz, HC FeMn slag or limestone were added to Assmang or Comilog according to the SiMn production charge, and mass loss results were obtained by using a TGA furnace. The results showed that particle size, type of manganese ore and mixture have close relationship to the reduction behavior of raw materials during MnO and SiO2 reduction. The influence of particle size to mass loss was apparent when Assmang or Comilog was mixed with only coke (FeMn) while it became insignificant when quartz and HC FeMn slag (SiMn) were added. This implied that quartz and HC FeMn slag had favored the incipient slag formation regardless of particle size. This explained the similar mass loss tendencies of SiMn charge samples between 1200-1500 °C, contrary to FeMn charge samples where different particle sizes showed significant difference in mass loss. Also, while FeMn charge samples showed progressive mass loss, SiMn charge samples showed diminutive mass loss until 1500 °C. However, rapid mass losses were observed with SiMn charge samples in this study above 1500 °C, and they have occurred at different temperatures. This implied rapid reduction of MnO and SiO2 and the type of ore and addition of HC FeMn slag have significant influence determining these temperatures. The temperatures observed for the rapid mass loss were approximately 1503 °C (Quartz and HC FeMn slag addition in Assmang), 1543 °C (Quartz addition in Assmang) and 1580-1587 °C (Quartz and limestone addition in Comilog), respectively. These temperatures also showed indications of possible SiMn production at process temperatures lower than 1550 °C.
Mineral exploration, Mahd adh Dhahab District, Kingdom of Saudi Arabia
Worl, Ronald G.
1978-01-01
Mahd adh Dhahab is the largest of numerous ancient gold mines scattered through the Precambrian shield of Saudi Arabia and the only one with recent production. During the period 1939-54, 765,768 fine ounces of gold and 1,002,029 ounces of silver were produced from the mines by the Saudi Arabian Mining Syndicate. Ore minerals at Mahd adh Dhahab include free gold and silver, tellurides, sphalerite, and chalcopyrite in and associated with a system of north-trending quartz veins and quartz veinlet stockworks. Pyrite is a common sulfide gangue mineral. Country rocks are a north dipping sequence of pyroclastic and transported pyroclastic rocks of the Hulayfah Group that are locally highly silicified and potassium-feldspathized. The prime target for this exploration program was a north-trending zone of quartz veins and breccias, faults, alteration, and metalization approximately 400 m wide and 1000 m long. The ancient and recent mine workings are located in the northern part of this zone. Although the quartz veins and alteration cut all lithologies, the major metalization is confined to the intersection of veins and agglomerate. Ten holes were diamond drilled to explore geochemical, geological, and geophysical targets in the area. A significant new zone of metalization was discovered 700 m south of the ancient and recent mine workings and within the same major zone of quartz veins, alteration, and faults. Metalization in this southern mineralized zone is at the intersection of the quartz veins and a distinctive and highly altered agglomerate. The total zone of vein and agglomerate intercept is potentially metalized and comprises a block of ground 40 m thick and 400 m wide along the strike of the agglomerate and projected downdip 250 m. Tonnage of this block is 17.2 million tons. The explored zone, approximately 25 percent of the potentially metalized rock, has a potential resource of 1.1 million tons containing 27 g/t gold and 73 g/t silver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Maanen, J.M.; Borm, P.J.; Knaapen, A
1999-12-15
The authors measured iron release, acellular generation of hydroxyl radicals, and oxidative DNA damage and cytotoxicity in rat lung epithelial (RLE) cells by different coal fly ashes (CFA) that contain both quartz and iron. Seven samples of CFA with different particle size and quartz content (up to 14.1%) were tested along with silica (alpha-quartz), ground coal, and coal mine dust (respirable) as positive control particles, and fine TiO{sub 2} (anatase) as a negative control. Five test samples were pulverized fuel ashes (PFA), two samples were coal gasification (SCG) ashes (quartz content {lt} 0.1%), and one sample was a ground coal.more » No marked differences between SCG and PFA fly ashes were observed, and toxicity did not correlate with physicochemical characteristics or effect parameters. Stable surface radicals were only detected in the reference particles silica and coal mine dust, but not in CFA. On the other hand, hydroxyl radical generation by all fly ashes was observed in the presence of hydrogen peroxide. Also a relationship between acellular hydroxyl radical generation and oxidative DNA damage in RLE cells by CFA was observed. The respirable ashes (MAT023, 38, and 41) showed an extensive level of hydroxyl radical generation in comparison to nonrespirable fly ashes and respirable references. This was related to the iron mobilization from these particles. Themechanisms by which CFA and the positive references (silica, coal mine dust) affect rat lung epithelial cells seem to be different, and the data suggest that quartz in CFA does not act the same as quartz in silica or coal mine dust. However, the results indicate an important role for size and iron release in generation and subsequent effects of reactive oxygen species caused by CFA.« less
Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina
2009-01-01
The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.
NASA Astrophysics Data System (ADS)
Denny, Adam C.; Kozdon, Reinhard; Kitajima, Kouki; Valley, John W.
2017-11-01
SEM/SIMS imaging and analysis of δ18O and δ13C in sandstones from a transect through the Illinois Basin (USA) show systematic μm-scale isotopic zonation of up to 10‰ in both carbonate and quartz cements of the middle-Ordovician St. Peter and Cambrian Mt. Simon formations. Quartz δ18O values are broadly consistent with the model of Hyodo et al. (2014), wherein burial and heating in the Illinois Basin is recorded in systematically zoned quartz overgrowths. Observations of zoned dolomite/ankerite cements indicate that they preserve a more extended record of temperature and fluid compositions than quartz, including early diagenesis before or during shallow burial, and late carbonates formed after quartz overgrowths. Many carbonate cements show innermost dolomite with δ18O values (21-25‰ VSMOW) that are too low to have formed by deposition at low temperatures from ancient seawater (δ18O > - 3‰) and most likely reflect mixing with meteoric water. A sharp increase in Fe content is commonly observed in zoned carbonate cements to be associated with a drop in δ18O and an abrupt shift in δ13C to higher or lower values. These changes are interpreted to record the passage of hot metal-rich brines through sandstone aquifers, that was associated with Mississippi-Valley Type (MVT) Pb-Zn deposits (ca. 270 Ma) of the Upper Mississippi Valley. Local variability and individual trends in δ13C are likely controlled by the sources of carbon and the degree to which carbon is sourced from adjacent carbonate units or thermal maturation of organic matter. Quartz overgrowths in sandstones provide an excellent record of conditions during burial, heating, and pressure-solution, whereas carbonate cements in sandstones preserve a more-extended record including initial pre-burial conditions and punctuated fluid flow events.
NASA Astrophysics Data System (ADS)
Fall, András; Ukar, Estibalitz; Laubach, Stephen E.
2016-09-01
Electron backscattered diffraction techniques (EBSD) show that Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Our study documents that under diagenetic temperatures (< 200 °C) and burial depths < 5 km Dauphiné twins are common in isolated fracture quartz deposits spanning between fracture walls (i.e., quartz bridges) in low-porosity quartz-cemented sandstones. Using examples from East Texas and Colorado cores, we show that twins are associated with crack-seal microstructure and fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions record true trapping temperatures. Inclusions in alignments normal to fracture walls are large and irregularly shaped compared to those aligned parallel to walls, but both show similar liquid-to-vapor ratios. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and EBSD images demonstrates that Dauphiné twin boundaries are localized along wall-normal inclusion trails. Trapping temperatures for wall-normal inclusion trails are usually higher than those aligned parallel to the fracture wall. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Localization in isolated, potentially high-stress quartz deposits in fractures is compatible with a mechanical origin for these Dauphiné twins. Punctuated temperature values and discrepant sizes and shapes of inclusions in wall-normal trails implies that twinning is a by-product of the formation of the wall-normal inclusion assemblages. The association of Dauphiné twins and fluid inclusion assemblages from which temperature and possibly timing can be inferred provides a way to research timing as well as magnitude of paleostress in some diagenetic settings.
Sato, Katsuhiko; Kodama, Daisuke; Naka, Yukihisa; Anzai, Jun-ichi
2006-12-01
A layer-by-layer assembly composed of avidin and 2-iminobiotin-labeled poly(ethyleneimine) (ib-PEI) was prepared on the surface of a platinum (Pt) film-coated quartz resonator, and an electrochemically induced disintegration of the avidin-ib-PEI assembly was studied using a quartz crystal microbalance. The resonance frequency of a five-bilayer (avidin-ib-PEI)5 film-coated quartz resonator was increased upon application of an electric potential to the Pt layer of the quartz resonator, suggesting that the mass on the quartz resonator was decreased as a result of disintegration of the (avidin-ib-PEI)5 film, due to a pH change in the vicinity of the surface of the Pt-coated quartz resonator. It may be that the (avidin-ib-PEI)5 film assembly was decomposed by acidification of the local pH on the surface of the Pt layer, which in turn was induced through electrolysis of water on Pt, because ib-PEI forms complexes with avidin only in basic media. In pH 9 solution, the (avidin-ib-PEI)5 film was decomposed under the influence of an applied potential of 0.6-1.0 V versus Ag/AgCl. The (avidin-ib-PEI)5 film was decomposed almost completely within a minute in a low concentration buffer (1 mM, pH 9), while the decomposition was slower in 10 and 100 mM buffer solutions at the same pH. The decomposition of the assembly was rapid when the electrode potential was applied in pH 9 solutions, while the response was relatively slow in pH 10 and 11 solutions. All the results are rationalized on the basis of an electrochemically induced acidification of the local environment around the (avidin-ib-PEI)5 film on the Pt layer.
Dufresne, A; Loosereewanich, P; Bégin, R; Dion, C; Ecobichon, D; Muir, D C; Ritchie, A C; Perrault, G
1998-01-01
The first objective of the study was to investigate the relationships between quantitative lung mineral dust burdens, dust exposure history, and pathological fibrosis grading in silicotic workers. The second objective was to evaluate the association between particle size parameters, concentration of retained silica particles and the severity of the silicosis. Sixty-seven paraffin-embedded lung tissue samples of silicotic patients were analyzed. The cases of silicosis included 39 non-lung cancer patients and 28 patients with lung cancer. All of the cases were gold miners in the Province of Ontario, Canada. Particles, both angular and fibrous, were extracted from lung parenchyma by a bleach digestion method, mounted on copper microscopic grids by a carbon replica technique, and analyzed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). Quartz concentration was also determined by X-ray diffraction (XRD) on a silver membrane filter after the extraction from the lung parenchyma. Total particles, silica, clay, and quartz also increase in concentration with increased age at death, although the trends are not statistically significant. Quartz concentration has a statistically significant correlation with the silicosis severity score (r = +0.45, p < 0.001), with the geometric mean concentration increasing from 2.24 micrograms/mg in the group having silicosis severity score less than 1 to 4.80 micrograms/mg in group with highest score. Quartz concentration is the only significant explanatory variable of the silicosis severity with a regression coefficient of +0.41 (p < 0.001). Among several dust exposure variables extracted from the work history of the miners, the calendar year of first exposure was the primary significant determinant of lung retained total particles, silica, and clay minerals, except for quartz. A statistically significant linear relationship between lung quartz concentration and silicosis severity in the gold miners was observed (p < 0.001). Among the several types of lung particles detected, quartz was the only significant determinant of the silicosis severity in the gold miners in this study and vice versa, although it explained only 20% of the variation in the severity. This study suggested no significant linear relationship between the duration of dust exposure and the lung burden of any particle types in the gold miners.
NASA Astrophysics Data System (ADS)
Borojević Šoštarić, S.; Cvetković, V.; Neubauer, F.; Palinkaš, L. A.; Bernroider, M.; Genser, J.
2012-09-01
This study focuses on age and evolution of the Oligocene quartz latite of the Rogozna Mts. (Central Balkan Peninsula), in order to better understand the link between magmatism and formation of Pb-Zn ± Ag mineralization. New 40Ar/39Ar biotite and amphibole plateau ages suggest that the Rogozna Mts. quartz latite originated through a continuous volcanic episode from 27.3 ± 0.1 to 29.5 ± 0.1 Ma which was immediately followed by a hydrothermal phase. The quartz latites are hypocrystalline porphyritic with phenocrysts and microphenocrysts (~ 60 vol.%) of plagioclase (An37-49), biotite Mg# [100 × Mg / (Mg + Fetot)] < 50, calcic amphibole, quartz, sanidine clinopyroxene and phlogopite (Mg# = 79 to 84). The rocks display numerous disequilibrium textures, such as: sieved plagioclase phenocrysts, dissolution effects on quartz, phlogopitized biotite and amphibole crystals, and phlogopite microphenocrysts showing effects of incomplete growth (or dissolution?) and biotitization. The Rogozna Mts. quartz latites are shoshonitic in character with Na2O/K2O < 1, high LILE/HFSE ratios, strong depletions at Nb and Ti and K, Pb and U peaks on primitive mantle-normalized diagrams. They are similar to other potassic/ultrapotassic rocks in this region, in particular to those of Veliki Majdan and Rudnik (West Serbia), which are also related to Pb-Zn deposits. The evolution of the Rogozna Mts. quartz latite is modeled using a trace element binary mixing model adopting a lamproite magma and a dacite-like calc-alkaline melt as end-members. The model implies that a fractionating magma chamber (~ 4.5-9.5 km) undergoes cooling in the range of > 850 °C-~720 °C and injection of lamproite-like melts. The injection causes an increase of temperature and a decrease of viscosity of the resulting hybrid magma, facilitating its upwelling and triggering pyroclastic eruptions. The addition of new volatiles by lamproitic melts most probably established the conditions for a hydrothermal phase above the magma chamber that was previously degassed explosively. This implies that magma mixing processes can be of great importance for the formation of Pb-Zn deposits. Similar processes are likely to have occurred in other areas with economically significant Pb-Zn-Ag ± other metal mineralization in the region of the Central Balkan Peninsula (Veliki Majdan, Rudnik, Golija, Kopaonik, Avala, etc.).
Genesis of the Abu Marawat gold deposit, central Eastern Desert of Egypt
NASA Astrophysics Data System (ADS)
Zoheir, Basem A.; Akawy, Ahmed
2010-06-01
Gold mineralisation at the Abu Marawat mine, central Eastern Desert of Egypt, is related to a system of massive and sheared, milky quartz veins cutting a sequence of Neoproterozoic island arc metavolcanic/volcaniclastic rocks and related banded iron formation (BIF). Sulphide-bearing quartz veins and related hydrothermal breccia bodies display a range of textures including sheared, boudinaged and recrystallised quartz, open space filling and microbreccia. These variable textures imply a complex history of crack-seal mechanism characterising the relation between mineral deposition and a major N-S-trending shear zone, during a late brittle-ductile deformation event which affected the area at about 550 Ma. Gold-base metal mineralisation is associated with brecciation and fracturing of the iron ore bands, close to silicified shears and related quartz veins. The auriferous quartz lodes are characterised by the occurrence of visible pyrite-chalcopyrite ± pyrrhotite ± sphalerite ± galena mineralisation. Gold is refractory in pyrite and chalcopyrite, but rare visible gold/electrum and telluride specks were observed in a few samples. Hydrothermal alteration includes pervasive silicification, pyritisation, sericitisation, carbonatisation confined to a delicate set of veins and altered shears, and a more widespread propylitic alteration assemblage (quartz + chlorite + pyrite + calcite ± epidote). Fluid inclusion petrography and microthermometric studies suggest heterogeneous trapping of a low-salinity (1.4-6.7 wt.% eq. NaCl) aqueous solution and a carbonic fluid. Evidence for fluid immiscibility during ore formation includes variable liquid/vapour ratios in inclusions along individual trails and bulk inclusion homogenisation into liquid and occasionally to vapour at comparable temperatures. The trapping conditions of intragranular aqueous-carbonic inclusions approximate 264-378 °C at 700-1300 bar. Similar temperature estimates have been obtained from Al-in-chlorite geothermometry of chlorite associated with sulphides in the mineralised quartz veins. Fracturing enhanced fluid circulation through the wallrock and related BIF, allowing reaction of the S-bearing ore fluid with iron oxides. This caused pyrite formation and concomitant Au precipitation, enhanced by fluid immiscibility as H 2S partitioned preferentially into the carbonic phase. The ore fluids may have originated from granitoid intrusions (likely the post-Hammamat felsites, whereas gold and base metals might have been leached from the Abu Marawat basic metavolcanics.
NASA Astrophysics Data System (ADS)
Lang, H. M.; Gilotti, J. A.
2005-12-01
Although paragneiss is not common in the North-East Greenland Eclogite Province (NEGEP), of the few paragneiss samples collected in the UHP zone, some contain inclusion-rich garnet megacrysts (to 2 cm) in an anatectic matrix. In the matrix, quartz ribbons are segregated from anatectic melt layers and lenses that contain plagioclase, antiperthitic alkali-feldspar, white mica, biotite, small garnets, rutile and minor kyanite. In addition to one-phase and two-phase inclusions of quartz, polycrystalline quartz (no definitive coesite-replacement textures), and phengitic white mica, the garnet megacrysts contain some relatively large polyphase inclusions with all or most of the following phases: kyanite, rutile, phengitic white mica, biotite, quartz, Na-rich plagioclase, K-feldspar and zircon. Textures in these complex, polyphase inclusions suggest that their constituent minerals crystallized from a melt. Crystals are randomly oriented with early crystallizing minerals (kyanite, rutile, micas) forming euhedral grains and later crystallizing minerals (quartz and feldspars) filling the interstitial spaces. The textures and mineral assemblages are consistent with dehydration melting of phengitic white mica + quartz (enclosed in garnet) during decompression of the rocks from UHP metamorphic conditions. Although anatectic minerals in the matrix may have experienced extensive retrograde re-equilibration subsequent to crystallizing from a melt, the minerals trapped in the crystallized melt inclusions in garnet are likely to preserve their original textures and compositions. Microtextures in the melt inclusions and surrounding garnet suggest that partial melting was accompanied by volume expansion and that some melt penetrated garnets. Some radial fractures extend from inclusion margins into surrounding garnet. Individual fractures may have formed by volume expansion on melting or expansion accompanying the coesite-quartz transformation. Small and large polycrystalline quartz inclusions are commonly rimmed by a moat of plagioclase + K-feldspar, which extends into apophyses in garnet. These feldspar rims indicate that the most mobile and volatile-rich portion of the melt was able to penetrate garnets and travel along garnet-inclusion boundaries. Possible melt inclusions have been described in natural garnets from other UHP terranes (Stockert, et al., 2001, Geology; Hwang, et al., 2001, Earth and Planetary Science Letters) and have been produced experimentally (Perchuk, et al., 2005, Terra Nova). In the experiments and at least one of the natural occurrences, patchy microstructures (attributed to high Ca) were observed in BSE images of garnet surrounding the melt inclusions. Although we observe no garnet zoning in BSE images, patchy high-Ca zoning is apparent on X-ray maps of garnet surrounding the melt inclusions in our samples. Small, euhedral, high-Ca garnets are abundant in melt lenses in the matrix, so crystallization or recrystallization of high-Ca garnet surrounding the melt inclusions is not surprising.
[Effect of humic acids on migration and transformation of NH4(+) -N in saturated aquifer].
Meng, Qing-Jun; Zhang, Yan; Feng, Qi-Yan; Zhang, Shuang-Sheng
2011-11-01
Isothermal adsorption experiment was used to study the adsorbing process of NH4(+) -N in quartz sands under the conditions with and without humic acid; the Langmuir and Freundlich equations were used to fit the absorption result and the maximum adsorption capacity of NH4(+) -N by quarts sands was calculated. Through the soil column experiments, the concentration of NH4(+) -N, NO3(-) -N and NO2(-) -N in effluent water in the tested soil column was investigated, and the effect of humic acid on migration and transformation of NH4(+) -N in saturated aquifer was analyzed, and Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equation were applied to fit the kinetic processes. The results showed that both Langmuir and Freundlich models can well describe the isothermal adsorption process of NH4(+) -N on the surface of quartz sands, which means that NH4(+) -N adsorbed by the quartz sand was mainly in the form of monolayer adsorption. The humic acid could increase the adsorption capacity of NH4(+) -N on quartz sand, and the saturated adsorption capacity was 0.354 mg x g(-1) under the condition with humic acid and 0.205 mg x g(-1) with the absence of humic acid. The experiment indicated that humic acid increased the adsorption capacity of NH4(+) -N on the surface of quartz sand by increasing adsorption space in the initial stage. After saturation, humic acid influenced the migration and transformation of NH4(+) -N to NO3(-) -N and NO2(-) -N probably through providing carbon source and energy for microorganisms such as nitrifying bacteria and then resulting in lower NH4(+) -N concentration in effluent water. Both Pseudo-second-order Kinetics Equation and Two-step Adsorption Kinetics Rate Equations can well describe the process of NH4(+) -N adsorption kinetics on quartz sand (R2 = 0.997 7 and R2 = 0.998 1 with humic acid; R2 = 0.992 3 and R2 = 0.994 4 without humic acid), indicating that this process was chemical adsorption. By comparing the adsorption rate coefficient of Two-step Adsorption Kinetics Rate Equation k3 (0.247 and 0.143, respectively) and k4 (0.006 27 and 0.001 7) between the treatments with and without humic acid, it can be referred that NH4(+) -N was non-orientated adsorption on active points of the quartz sand at the initial stage, and the humic acid could increase the equilibrium adsorption quantity(q(e)) of NH4(+) -N on quartz sands.
Harlan, S.S.; Geisman, J.W.; Premo, W.R.
2003-01-01
We present geochronologic and paleomagnetic data from a north-trending quartz diorite intrusion that cuts Archean metasedimentary and metaigneous rocks of the South Pass Greenstone Belt of the Wyoming craton. The quartz diorite was previously thought to be either Archean or Early Proterozoic (?) in age and is cut by north and northeast-trending Proterozoic diabase dikes of uncertain age, for which we also report paleomagnetic data. New U-Pb analyses of baddeleyite and zircon from the quartz diorite yield a concordia upper intercept age of 2170 ?? 8 Ma (95% confidence). An 40Ar/39Ar amphibole date from the same sample yields a similar apparent age of about 2124 ?? 30 Ma (2??), thus confirming that the intrusion is Early Proterozoic in age and that it has probably not been thermally disturbed since emplacement. A magmatic event at ca. 2.17 Ga has not previously been documented in the Wyoming craton. The quartz diorite and one of the crosscutting diabase dikes yield essentially identical, well-defined characteristic remanent magnetizations. Results from eight sites in the quartz diorite yield an in situ mean direction of north declination and moderate to steep positive inclination (Dec.=355??, Inc.=65??, k=145, ??95=5??) with a paleomagnetic pole at 84??N, 215??E (??m=6??, ??p=7??). Data from other diabase dike sites are inconsistent with the quartz diorite results, but the importance of these results is uncertain because the age of the dikes is not well known. Interpretation of the quartz diorite remanent magnetization is problematic. The in situ direction is similar to expected directions for magnetizations of Late Cretaceous/early Tertiary age. However, there is no compelling evidence to suggest that these rocks were remagnetized during the late Mesozoic or Cenozoic. Assuming this magnetization to be primary, then the in situ paleomagnetic pole is strongly discordant with poles of 2167, 2214, and 2217 Ma from the Canadian Shield, and is consistent with proposed separation of the Wyoming Craton and Laurentia prior to about 1.8 Ga. Correcting the quartz diorite pole for the possible effects of Laramide-age tilting of the Wind River Range, based on the attitude of nearby overlying Cambrian Flathead Sandstone (dip=20??, N20??E), gives a tilt corrected pole of 75??N, 58??E (??m=4??, ??p=6??), which is also discordant with respect to time-equivalent poles from the Superior Province. Reconstruction of the Superior and Wyoming Province using a rotation similar to that proposed by Roscoe and Card [Can. J. Earth Sci. 46(1993)2475] is problematic, but reconstruction of the Superior and Wyoming Provinces based on restoring them to their correct paleolatitude and orientation using a closest approach fit indicates that the two cratons could have been adjacent at about 2.17 Ga prior to rifting at about 2.15 Ga. The paleomagnetic data presented are consistent with the hypothesis that the Huronian and Snowy Pass Supergroups could have evolved as part of a single epicratonic sedimentary basin during the Early Proterozoic. ?? 2002 Elsevier Science B.V. All rights reserved.
30 CFR 90.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2011 CFR
2011-07-01
... quartz is present. When the respirable dust in the mine atmosphere of the active workings to which a Part... average concentration of respirable dust in the mine atmosphere during each shift to which a Part 90 miner...%. Therefore, the average concentration of respirable dust in the mine atmosphere associated with that Part 90...
30 CFR 90.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2012 CFR
2012-07-01
... quartz is present. When the respirable dust in the mine atmosphere of the active workings to which a Part... average concentration of respirable dust in the mine atmosphere during each shift to which a Part 90 miner...%. Therefore, the average concentration of respirable dust in the mine atmosphere associated with that Part 90...
30 CFR 90.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2013 CFR
2013-07-01
... quartz is present. When the respirable dust in the mine atmosphere of the active workings to which a Part... average concentration of respirable dust in the mine atmosphere during each shift to which a Part 90 miner...%. Therefore, the average concentration of respirable dust in the mine atmosphere associated with that Part 90...
30 CFR 90.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2010 CFR
2010-07-01
... quartz is present. When the respirable dust in the mine atmosphere of the active workings to which a Part... average concentration of respirable dust in the mine atmosphere during each shift to which a Part 90 miner...%. Therefore, the average concentration of respirable dust in the mine atmosphere associated with that Part 90...
30 CFR 90.101 - Respirable dust standard when quartz is present.
Code of Federal Regulations, 2014 CFR
2014-07-01
... quartz is present. When the respirable dust in the mine atmosphere of the active workings to which a Part... average concentration of respirable dust in the mine atmosphere during each shift to which a Part 90 miner...%. Therefore, the average concentration of respirable dust in the mine atmosphere associated with that Part 90...
Note: a transimpedance amplifier for remotely located quartz tuning forks.
Kleinbaum, Ethan; Csáthy, Gábor A
2012-12-01
The cable capacitance in cryogenic and high vacuum applications of quartz tuning forks imposes severe constraints on the bandwidth and noise performance of the measurement. We present a single stage low noise transimpedance amplifier with a bandwidth exceeding 1 MHz and provide an in-depth analysis of the dependence of the amplifier parameters on the cable capacitance.
Mitigation of Adverse Effects of Long Branch Lake Project upon the Archaeological Resources. Part 1
1986-01-01
ly quartz but with some plagio - clase. Particles are highly rounded. Particles are generally small (.1 to .7 millimeters) but with a few (up to 5...Includes highly rounded, sand- sized particles as well as angular particles, of quartz and plagio - clase. Origin of materials ap- pears to be from sand
Cyberspace at the Operational Level: Warfighting in All Five Domains
2016-05-13
science behind SpaceX’s ambitious plan to land a spacecraft on Mars,” Quartz, (May 1, 2016, http://qz.com/656025/how- spacex -is-really-bringing-us-closer...science behind SpaceX’s ambitious plan to land a spacecraft on Mars,” Quartz, May 1, 2016, http://qz.com/656025/how- spacex -is-really-bringing-us
Cyberspace at the Operational Level: Warfighting In All Five Domains
2016-05-13
science behind SpaceX’s ambitious plan to land a spacecraft on Mars,” Quartz, (May 1, 2016, http://qz.com/656025/how- spacex -is-really-bringing-us-closer...science behind SpaceX’s ambitious plan to land a spacecraft on Mars,” Quartz, May 1, 2016, http://qz.com/656025/how- spacex -is-really-bringing-us
Study on vacuum packaging reliability of micromachined quartz tuning fork gyroscopes
NASA Astrophysics Data System (ADS)
Fan, Maoyan; Zhang, Lifang
2017-09-01
Packaging technology of the micromachined quartz tuning fork gyroscopes by vacuum welding has been experimentally studied. The performance of quartz tuning fork is influenced by the encapsulation shell, encapsulation method and fixation of forks. Alloy solder thick film is widely used in the package to avoid the damage of the chip structure by the heat resistance and hot temperature, and this can improve the device performance and welding reliability. The results show that the bases and the lids plated with gold and nickel can significantly improve the airtightness and reliability of the vacuum package. Vacuum packaging is an effective method to reduce the vibration damping, improve the quality factor and further enhance the performance. The threshold can be improved nearly by 10 times.
Bargar, Keith E.; ,
1993-01-01
The SUNEDCO 58-28 geothermal exploration drill hole was completed in 1981 to a depth of 2, 457 m near Breitenbush Hot Springs in the Western Cascade Mountains of northern Oregon. One hundred thirteen liquid-rich fluid inclusions (mostly secondary) were analyzed from drill cuttings samples of hydrothermal quartz, calcite, and anhydrite, as well as primary quartz phenocrysts. Except for one hydrothermal quartz specimen, minimum homogenization temperature (Th) measurements of fluid inclusions plot very close to the present measured temperatures for the drill hole. Fluid-inclusion data from near the bottom of the drill hole suggest that these rocks were altered by water of significantly greater salinity than Breitenbush Hot Springs water.
Method of bonding single crystal quartz by field-assisted bonding
Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.
1991-04-23
The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.
Method of bonding single crystal quartz by field-assisted bonding
Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.
1991-01-01
The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.
Study of the photovoltaic effect in thin film barium titanate
NASA Technical Reports Server (NTRS)
Grannemann, W. W.; Dharmadhikari, V. S.
1982-01-01
Ferroelectric films of barium titanate were synthesized on silicon and quartz substrates, and the photoelectric effect in the structure consisting of metal deposited ferroelectric barium titanate film silicon was studied. A photovoltage with polarity that depends on the direction of the remanent polarization was observed. The deposition of BaTiO3 on silicon and fused quartz substrates was accomplished by an rf sputtering technique. A series of experiments to study the growth of ferroelectric BaTiO3 films on single crystal silicon and fused quartz substrates were conducted. The ferroelectric character in these films was found on the basis of evidence from the polarization electric field hysteresis loops, capacitance voltage and capacitance temperature techniques and from X-ray diffraction studies.
Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K.
2017-01-01
The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm−1) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure. PMID:28273836
Historical review of quartz crystal growth
NASA Astrophysics Data System (ADS)
Iwasaki, Fumiko; Iwasaki, Hideo
2002-04-01
The history of quartz crystal growth is reviewed from the origin to the industrialization. The developing process of growth techniques is divided into the following three stages: (1) The fundamental work based on the mineralogical genetic view point, which was performed in Italy during the end of the 19th to the beginning of the 20th centuries. (2) The works to attempt the industrial application made in Germany and in England during World War II. (3) The industrialization of quartz growth after World War II. These were initiated in England, in USA and independently in Russia. The highest mass production process was developed in Japan. The historical flow is traced by the interview of several persons based on the original references.
Chkhalo, N I; Churin, S A; Pestov, A E; Salashchenko, N N; Vainer, Yu A; Zorina, M V
2014-08-25
The main problems and the approach used by the authors for roughness metrology of super-smooth surfaces designed for diffraction-quality X-ray mirrors are discussed. The limitations of white light interferometry and the adequacy of the method of atomic force microscopy for surface roughness measurements in a wide range of spatial frequencies are shown and the results of the studies of the effect of etching by argon and xenon ions on the surface roughness of fused quartz and optical ceramics, Zerodur, ULE and Sitall, are given. Substrates of fused quartz and ULE with the roughness, satisfying the requirements of diffraction-quality optics intended for working in the spectral range below 10 nm, are made.
NASA Astrophysics Data System (ADS)
Kameda, Jun; Morisaki, Tomonori
2017-10-01
Understanding the rheological properties of clay suspensions is critical to assessing the behavior of sediment gravity flows such as debris flow or turbidity current. We conducted rheological measurements of composite smectite-quartz suspensions at a temperature of 7°C and a salt concentration of 0.6 M. This is representative of smectite-bearing sediments under conditions on the seafloor. The flow curves obtained were fitted by the Bingham fluid model, from which we determined the Bingham yield stress and dynamic viscosity of each suspension. At a constant smectite-quartz mixing ratio, the yield stress and the dynamic viscosity tend to increase as the solid/water ratio of the suspension is increased. In the case of a constant solid/water ratio, these values increase with increasing smectite content in the smectite-quartz mixture. Additional experiments exploring differing physicochemical conditions (pH 1.0-9.0; temperature 2-30°C; and electrolyte (NaCl) concentration 0.2-0.6 M) revealed that the influence of temperature is negligible, while pH moderately affects the rheology of the suspension. More significantly, the electrolyte concentration greatly affects the flow behavior. These variations can be explained by direct and/or indirect (double-layer) interactions between smectite-smectite particles as well as between smectite-quartz particles in the suspension. Although smectite is known as a frictionally weak material, our experimental results suggest that its occurrence can reduce the likelihood that slope failure initiates. Furthermore, smectite can effectively suppress the spreading distance once the slope has failed.
Micromachined quartz crystal resonator arrays for bioanalytical applications
NASA Astrophysics Data System (ADS)
Kao, Ping
This work presents the design, fabrication and investigation of high frequency quartz crystal resonator arrays and their application for analyzing interfacial layers and sensing purposes. An 8-pixel micromachined quartz crystal resonator array with a fundamental resonance frequency of ˜66 MHz has been fabricated, tested and used in this work. One dimensional model for the characterization of resonator behavior for single or multiple viscoelastic layers under liquid ambient are developed by continuum mechanics approach as well as using an equivalent electrical admittance analysis approach. The investigation of thin interfacial layer between solid (electrode) and liquid phases are reported in terms of the improved resolution of viscoelasitc characteristics of adsorbed layer arising from the use of high frequency resonators. Analyzed layers include globular proteins layer under phosphate buffer solution (PBS) with molecular weights spanning three orders of magnitude, multilayers of avidin and biotin labeled bovine albumin under PBS and diffuse double layer induced by DC bias under 0.5 M sulfuric acid solution. The second half of the dissertation focuses on biosensing applications of quartz resonator arrays. The selective functionalization of 3,3'-Dithiobis (sulfosuccinimidylpropionate) (DTSSP) by physical masking method was first used for specifically detecting avidin molecules. The selective immobilization of thiol modified single stranded DNA probes via electrochemical methods was used for the specific detection of Respiratory Syncytial Virus (RSV) G-gene. The work demonstrates that micromachined quartz crystal resonator arrays could be a powerful analytical tool of investigating interfacial region and can be readily configured as biosenors that can be used for label-free, quantitative assays using extremely small volumes of analytes.
Lidar characterization of crystalline silica generation and transport from a sand and gravel plant.
Trzepla-Nabaglo, Krystyna; Shiraki, Ryoji; Holmén, Britt A
2006-04-30
Light detection and ranging (Lidar) remote sensing two-dimensional vertical and horizontal scans collected downwind of a sand and gravel plant were used to evaluate the generation and transport of geologic fugitive dust emitted by quarry operations. The lidar data give unsurpassed spatial resolution of the emitted dust, but lack quantitative particulate matter (PM) mass concentration data. Estimates of the airborne PM10 and crystalline silica concentrations were determined using linear relationships between point monitor PM10 and quartz content data with the lidar backscatter signal collected from the point monitor location. Lidar vertical profiles at different distances downwind from the plant were used to quantify the PM10 and quartz horizontal fluxes at 2-m vertical resolution as well as off-site emission factors. Emission factors on the order of 65-110 kg of PM10 (10-30 kg quartz) per daily truck activity or 2-4 kg/t product shipped (0.5-1 kg quartz/t) were quantified for this facility. The lidar results identify numerous elevated plumes at heights >30 m and maximum plume heights of 100 m that cannot be practically sampled by conventional point sampler arrays. The PM10 and quartz mass flux was greatest at 10-25 m height and decreased with distance from the main operation. Measures of facility activity were useful for explaining differences in mass flux and emission rates between days. The study results highlight the capabilities of lidar remote sensing for determining the spatial distribution of fugitive dust emitted by area sources with intermittent and spatially diverse dust generation rates.
Tong, Meiping; Camesano, Terri A; Johnson, William P
2005-05-15
The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes < 0.8 nN. Steric repulsion due to surface polymers was apparently responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.
Jung, Haesung; Lee, Byeongdu; Jun, Young -Shin
2016-09-14
The early nucleation stage of Mn (hydr)oxide on mineral surfaces is crucial to understand its occurrence and the cycling of nutrients in environmental systems. However, there are only limited studies on the heterogeneous nucleation of Mn(OH) 2(s) as the initial stage of Mn (hydr)oxide precipitation. Here, we investigated the effect of pH on the initial nucleation of Mn(OH) 2(s) on quartz. Under various pH conditions of 9.8, 9.9, and 10.1, we analyzed the structural matches between quartz and heterogeneously nucleated Mn(OH) 2(s). The structural matches were calculated by measuring lateral and vertical dimensions using grazing incidence small angle X-ray scatteringmore » (GISAXS) and atomic force microscopy (AFM), respectively. We found that a poorer structural match occurred at a higher pH than at a lower pH. The faster nucleation at a higher pH condition accounted for the observed poorer structural match. By fitting the structural match using classical nucleation theory, we also calculated the interfacial energy between Mn(OH) 2(s) and water (γ nf = 71 ± 7 mJ/m 2). The calculated m values and γ nf provided the variance of interfacial energy between quartz and Mn(OH) 2(s): γ sn = 262–272 mJ/m 2. As a result, this study provides new qualitative and quantitative information about heterogeneous nucleation on environmentally an abundant mineral surface, quartz, and it offers important underpinnings for understanding the fate and transport of trace ions in environmental systems.« less
Cotransport of bacteria with hematite in porous media: Effects of ion valence and humic acid.
Yang, Haiyan; Ge, Zhi; Wu, Dan; Tong, Meiping; Ni, Jinren
2016-01-01
This study investigated the influence of multiple colloids (hematite and humic acid) on the transport and deposition of bacteria (Escherichia coli) in packed porous media in both NaCl (5 mM) and CaCl2 (1 mM) solutions at pH 6. Due to the alteration of cell physicochemical properties, the presence of hematite and humic acid in cell suspensions significantly affected bacterial transport and deposition in quartz sand. Specifically, the presence of hematite (5 mg/L) decreased cell transport (increased cell deposition) in quartz sand in both NaCl and CaCl2 solutions, which could be attributed to the less negative overall zeta potentials of bacteria induced by the adsorption of positively charged hematite onto cell surfaces. The presence of a low concentration (0.1 mg/L) of humic acid in bacteria and hematite mixed suspensions reduced the adsorption of hematite onto cell surfaces, leading to increased cell transport in quartz sand in NaCl solutions, whereas, in CaCl2 solutions, the presence of 0.1 mg/L humic acid increased the formation of hematite-cell aggregates and thus decreased cell transport in quartz sand. When the concentration of humic acid was increased to 1 mg/L, enhanced cell transport was observed in both NaCl and CaCl2 solutions. The decreased adsorption of hematite onto cell surfaces as well as the competition of deposition sites on quartz sand with bacteria by the suspended humic acid contributed to the increased cell transport. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tjoe Nij, Evelyn; Höhr, Doris; Borm, Paul; Burstyn, Igor; Spierings, Judith; Steffens, Friso; Lumens, Mieke; Spee, Ton; Heederik, Dick
2004-03-01
The aims of this study were to determine implications of inter- and intraindividual variation in exposure to respirable (quartz) dust and of heterogeneity in dust characteristics for epidemiologic research in construction workers. Full-shift personal measurements (n = 67) from 34 construction workers were collected. The between-worker and day-to-day variances of quartz and respirable dust exposure were estimated using mixed models. Heterogeneity in dust characteristics was evaluated by electron microscopic analysis and electron spin resonance. A grouping strategy based on job title resulted in a 2- and 3.5-fold reduction in expected attenuation of a hypothetical exposure-response relation for respirable dust and quartz exposure, respectively, compared to an individual based approach. Material worked on explained most of the between-worker variance in respirable dust and quartz exposure. However, for risk assessment in epidemiology, grouping workers based on the materials they work on is not practical. Microscopic characterization of dust samples showed large quantities of aluminum silicates and large quantities of smaller particles, resulting in a D(50) between 1 and 2 microm. For risk analysis, job title can be used to create exposure groups, although error is introduced by the heterogeneity of dust produced by different construction workers activities and by the nonuniformity of exposure groups. A grouping scheme based on materials worked on would be superior, for both exposure and risk assessment, but is not practical when assessing past exposure. In dust from construction sites, factors are present that are capable of influencing the toxicological potency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Haesung; Lee, Byeongdu; Jun, Young -Shin
The early nucleation stage of Mn (hydr)oxide on mineral surfaces is crucial to understand its occurrence and the cycling of nutrients in environmental systems. However, there are only limited studies on the heterogeneous nucleation of Mn(OH) 2(s) as the initial stage of Mn (hydr)oxide precipitation. Here, we investigated the effect of pH on the initial nucleation of Mn(OH) 2(s) on quartz. Under various pH conditions of 9.8, 9.9, and 10.1, we analyzed the structural matches between quartz and heterogeneously nucleated Mn(OH) 2(s). The structural matches were calculated by measuring lateral and vertical dimensions using grazing incidence small angle X-ray scatteringmore » (GISAXS) and atomic force microscopy (AFM), respectively. We found that a poorer structural match occurred at a higher pH than at a lower pH. The faster nucleation at a higher pH condition accounted for the observed poorer structural match. By fitting the structural match using classical nucleation theory, we also calculated the interfacial energy between Mn(OH) 2(s) and water (γ nf = 71 ± 7 mJ/m 2). The calculated m values and γ nf provided the variance of interfacial energy between quartz and Mn(OH) 2(s): γ sn = 262–272 mJ/m 2. As a result, this study provides new qualitative and quantitative information about heterogeneous nucleation on environmentally an abundant mineral surface, quartz, and it offers important underpinnings for understanding the fate and transport of trace ions in environmental systems.« less
Force-frequency effect of Y-cut langanite and Y-cut langatate.
Kim, Yoonkee; Ballato, Arthur
2003-12-01
Most recently, langasite and its isomorphs (LGX) have been advanced as potential substitutes for quartz, owing to their extremely high-quality (Q) factors. At least twice higher Q value of LGX than that of quartz has been reported. High Q translates into potentially greater stability. In order to make such materials practical, the environmental sensitivities must be addressed. One of such sensitivities is the force-frequency effect, which relates the sensitiveness of a resonator to shock and vibration via the third-order (non-Hookean) elastic constants. In this paper, we report measured force-frequency coefficients of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator as a function of the azimuthal angle, which is the angle between the crystalline x-axis of a resonator plate and the direction of in-plane diametric force applied to the periphery of the resonator. It was found that the LGN and the LGT behave like AT-cut quartz in the polarity of the frequency changes and the existence of zero-coefficient angle. The maximum magnitudes of the coefficients of the LGN and the LGT are five and seven times smaller than that of stress-compensated cut (SC-cut) quartz, respectively (or, 7 and 10 times smaller comparing to AT-cut quartz). The coefficients of planar-stress, which represent the superposition of a continuous distribution of periphery stresses, also were obtained as 0.52 X 10(-15) m x s/N and 0.38 X 10(-15) m x s/N for the LGN and the LGT, respectively.
The Zapot pegmatite mineral county
Foord, E.E.; Soregaroli, A.E.; Gordon, H.M.
1999-01-01
The Zapot pegmatite is currently being mined for mineral specimens (chiefly amazonite, topaz and smoky quartz in miarolitic cavities), for gemstones (topaz and smoky quartz) and for decorative rock (amazonite). The deposit is owned and operated by Harvey Gordon Minerals of Reno, Nevada, and is the only amazonite-topaz mining operation in the state. Thousands of specimens from this operation have reached the collector market.
Meteorological factors in the Quartz Creek forest fire
H. T. Gisborne
1927-01-01
It is not often that a large forest fire occurs conveniently near a weather station specially equipped for measuring forest-fire weather. The 13,000-acre Quartz Creek fire on the Kaniksu National Forest during the summer of 1936 was close enough to the Priest River Experimental Forest of the Northern Rocky Mountain Forest Experiment Station for the roar of the flumes...
W. Henry McNab; Carl E. Merschat
1990-01-01
Quartz grain size and mylonitization, geologic variables determined fromrocks on sites, were associated with total height of yellow-poplar (Liriodendron tulipifera L.) standsand may be of value as independent variables in modeling tree growth from site characteristics. A predictive model containing quartz grain site and stand age accounted for about 54% of the...
NASA Astrophysics Data System (ADS)
Dormidonov, A. E.; Kandidov, V. P.; Kompanets, V. O.; Chekalin, Sergei V.
2009-07-01
Supercontinuum emission observed upon filamentation of transform-limited collimated femtosecond laser pulses in a transparent condensed medium (fused KU-1 quartz) is studied experimentally and numerically. The splitting of diverging conical supercontinuum emission into discrete rings was observed with increasing the pulse energy.
Granstaff, Victoria E.; Martin, Stephen J.
1993-01-01
A method, using a quartz crystal microbalance, to obtain simultaneous measurement of solid mass accumulation and changes in liquid density-viscosity product. The simultaneous real-time measurements of electrical parameters yields that changes in surface mass can be differentiated from changes in solution properties. Two methods to obtain the admittance/frequency data are employed.
Low Temperature Quartz Crystal Oscillator Fast Warm-Up Saw Oscillator.
1981-07-01
TASK_Q Centre National de la Recherche ScientifiqueARA&WKLI k Laboratoire de Physique et Metrologie des!2 Oscillateurs - 50 Bsnon-F 2 3 32 av. o l...propri6t6s non lin6aires des ondes Alastiques de sur- face : applications aux oscillateurs et aux capteurs A quartz", Thse Besanqon, 1979. (6) D. Hauden, G
USDA-ARS?s Scientific Manuscript database
A fluorometer was designed to measure evanescent-field luminescence. A quartz-rod waveguide (d = 2 mm) was installed coaxally inside a cylindrical flow-through cell (id = 2.3 mm, od = 6.3 mm, l = 116 mm). An excitation beam from a UV LED or a miniature xenon flashlamp was focused by a ball lens and ...
Alnili, Firas; Al-Yaseri, Ahmed; Roshan, Hamid; Rahman, Taufiq; Verall, Michael; Lebedev, Maxim; Sarmadivaleh, Mohammad; Iglauer, Stefan; Barifcani, Ahmed
2018-08-15
Wettability plays an important role in underground geological storage of carbon dioxide because the fluid flow and distribution mechanism within porous media is controlled by this phenomenon. CO 2 pressure, temperature, brine composition, and mineral type have significant effects on wettability. Despite past research on this subject, the factors that control the wettability variation for CO 2 /water/minerals, particularly the effects of pores in the porous substrate on the contact angle at different pressures, temperatures, and salinities, as well as the physical processes involved are not fully understood. We measured the contact angle of deionised water and brine/CO 2 /porous sandstone samples at different pressures, temperatures, and salinities. Then, we compared the results with those of pure quartz. Finally, we developed a physical model to explain the observed phenomena. The measured contact angle of sandstone was systematically greater than that of pure quartz because of the pores present in sandstone. Moreover, the effect of pressure and temperature on the contact angle of sandstone was similar to that of pure quartz. The results showed that the contact angle increases with increase in temperature and pressure and decreases with increase in salinity. Copyright © 2018 Elsevier Inc. All rights reserved.
MS2 inactivation by TiO2 nanoparticles in the presence of quartz sand
NASA Astrophysics Data System (ADS)
Syngouna, Vasiliki I.; Chrysikopoulos, Constantinos V.
2017-04-01
Virus inactivation by nanoparticles (NPs) is hypothesized to affect virus fate and transport in the subsurface. This study examines the interactions of viruses with titanium dioxide (TiO2) anatase NPs, which is a good disinfectant with unique physiochemical properties, using three different virus concentrations. The bacteriophage MS2 was used as a model virus. A series of batch experiments of MS2 inactivation by TiO2 NPs were conducted at room temperature (25 °C), in the presence of quartz sand, with and without ambient light. The virus inactivation experimental data were satisfactorily fitted with a pseudo-first order expression with a time dependent rate coefficient. Quartz sand was shown to affect MS2 inactivation by TiO2 NPs both in the presence and absence of ambient light, because, under the experimental conditions of this study, the quartz sand offers a protection to the attached MS2 against inactivation. Moreover, in most cases similar inactivation rates were observed in reactor and control tubes (absence of TiO2 NPs) suggesting that low TiO2 concentration (10 mg/L) affects only slightly MS2 inactivation with and without ambient light.
Machining of glass and quartz using nanosecond and picosecond laser pulses
NASA Astrophysics Data System (ADS)
Ashkenasi, David; Kaszemeikat, Tristan; Mueller, Norbert; Lemke, Andreas; Eichler, Hans Joachim
2012-03-01
New laser processing strategies in micro processing of glass, quartz and other optically transparent materials are being developed with increasing effort. Utilizing diode-pumped solid-state laser generating nanosecond pulsed green (532 nm) laser light in conjunction with either scanners or special trepanning systems can provide for reliable glass machining at excellent efficiency. Micro ablation can be induced either from the front or rear side of the glass sample. Ablation rates of over 100 μm per pulse can be achieved in rear side processing. In comparison, picosecond laser processing of glass and quartz (at a wavelength of 1064 or 532 nm) yield smaller feed rates at however much better surface and bore wall quality. This is of great importance for small sized features, e.g. through-hole diameters smaller 50 μm in thin glass. Critical for applications with minimum micro cracks and maximum performance is an appropriate distribution of laser pulses over the work piece along with optimum laser parameters. Laser machining tasks are long aspect micro drilling, slanted through holes, internal contour cuts, micro pockets and more complex geometries in e.g. soda-lime glass, B33, B270, D236T, AF45 and BK7 glass, quartz, and Zerodur.
NASA Astrophysics Data System (ADS)
Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J. F.; Giannoni, M.; Nava, S.
2018-02-01
Within the framework of research projects focusing on the sampling and analysis of airborne particulate matter, Particle Induced X-ray Emission (PIXE) and Energy Dispersive X-ray Fluorescence (ED-XRF) techniques are routinely used in many laboratories throughout the world to determine the elemental concentration of the particulate matter samples. In this work an inter-laboratory comparison of the results obtained from analysing several samples (collected on both Teflon and quartz fibre filters) using both techniques is presented. The samples were analysed by PIXE (in Florence, at the 3 MV Tandetron accelerator of INFN-LABEC laboratory) and by XRF (in Elche, using the ARL Quant'X EDXRF spectrometer with specific conditions optimized for specific groups of elements). The results from the two sets of measurements are in good agreement for all the analysed samples, thus validating the use of the ARL Quant'X EDXRF spectrometer and the selected measurement protocol for the analysis of aerosol samples. Moreover, thanks to the comparison of PIXE and XRF results on Teflon and quartz fibre filters, possible self-absorption effects due to the penetration of the aerosol particles inside the quartz fibre-filters were quantified.
Experimental investigation of cephapirin adsorption to quartz filter sands and dune sands
NASA Astrophysics Data System (ADS)
Peterson, Jonathan W.; O'Meara, Theresa A.; Seymour, Michael D.
2008-08-01
Batch experiments were performed to investigate cephapirin (a widely used veterinary antibiotic) adsorption on various size sands of low total organic carbon content (0.08-0.36 wt%). In the aqueous concentration range investigated (11-112 μmol/L cephapirin), adsorption to nearly pure quartz filter sands (0.50-3.35 mm diameter) is low. Isotherms are S-shaped and most display a region of minimum adsorption, where decreased adsorption occurs with increasing solution concentration, followed by increased adsorption at higher concentrations. Cephapirin adsorption to quartz-rich, feldspar-bearing dune sands (0.06-0.35 mm diameter), and the smallest quartz filter sand investigated (0.43-0.50 mm), can be described by linear sorption isotherms over the range of concentrations investigated. Distribution coefficients ( K d) range from 0.94 to 3.45 L/kg. No systematic relationship exists between grain size and amount of adsorption for any of the sands investigated. Cephapirin adsorption is positively correlated to the feldspar ratio (K-feldspar/(albite + Ca-plagioclase). Feldspar-ratio normalization of distribution coefficients was more effective than organic carbon normalization at reducing variability of K d values in the dune sands investigated.
The effect of chrome adhesion layer on quartz resonator aging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessendorf, Kurt O.; Ohlhausen, James Anthony
2011-03-01
This SAND report documents a late start LDRD designed to determine the possible aging effects of a quartz resonator gold adhesion layer. Sandia uses quartz resonators for applications. These applications require a very stable frequency source with excellent aging (low drift) characteristics. These parts are manufactured by one of our qualified vendors outside Sandia Laboratories, Statek Corp. Over the years we, Sandia and the vendor, have seen aging variations that have not been completely explained by the typical mechanisms known in the industry. One theory was that the resonator metallization may be contributing to the resonator aging. This LDRD wouldmore » allow us to test and analyze a group of resonators with known differentiating metallization and via accelerated aging determine if a chrome adhesion layer used to accept the final gold plating may contribute to poor aging. We worked with our main vendor to design and manufacture a set of quartz resonators with a wide range of metallization thickness ratios between the chrome and gold that will allow us determine the cause of this aging and which plating thickness ratios provide the best aging performance while not degrading other key characteristics.« less
Microelements in anthropogenically contaminated soils in the central part of Petrozavodsk
NASA Astrophysics Data System (ADS)
Rybakov, D. S.; Kevlich, V. I.
2017-06-01
Urban soils (Urbic Technosols) formed within or near the industrial sites removed of service show a considerable excess over the regional background in the content of Pb, Zn, Cu, Mn, Cr, Ni, as well as over the average content of W, Mo, Pb, Sb, Cr, Cu, Sn, Ni, Zn, and Mn in urban soils. Microelements are concentrated for the most part in the soil fine earth, and above all, in the fraction with particle size <0.1 mm. Surface films (on quartz and feldspar grains) of quartz-feldspar-muscovite (partially with tremolite and chlorite) composition and undifferentiated dispersed mixture of quartz, albite, microcline, muscovite and organomineral soil substance are the strongest concentrators of heavy metals and metalloids. Pb and Sn are partially present in soils as oxides, and a part of Zn and Pb, in the form of substantial admixtures to technogenic chemical compounds. As a whole, distribution of elements in the studied soils is controlled by the specifics and type of contamination, resistance of coarser grains to weathering under the given physicochemical conditions, and by predominantly mineral (quartz-feldspar) composition of the solids in soil layers and the features of elements proper.
Gong, Beini; Wu, Pingxiao; Ruan, Bo; Zhang, Yating; Lai, Xiaolin; Yu, Langfeng; Li, Yongtao; Dang, Zhi
2018-05-05
Natural and cost-effective materials such as minerals can serve as supportive matrices to enhance biodegradation of polycyclic aromatic hydrocarbons (PAHs). In this study we evaluated and compared the regulatory role of two common soil minerals, i.e. kaolinite and quartz in phenanthrene (a model PAH) degradation by a PAH degrader Sphingomonas sp. GY2B and investigated the underlying mechanism. Overall kaolinite was more effective than quartz in promoting phenanthrene degradation and bacterial growth. And it was revealed that a more intimate association was established between GY2B and kaolinite. Si and O atoms on mineral surface were demonstrated to be involved in GY2B-mineral interaction. There was an higher polysaccharide/lipid content in the EPS (extracellular polymeric substances) secreted by GY2B on kaolinite than on quartz. Altogether, these results showed that differential bacterial growth, enzymatic activity, EPS composition as well as the interface interaction may explain the effects minerals have on PAH biodegradation. It was implicated that different interface interaction between different minerals and bacteria can affect microbial behavior, which ultimately results in different biodegradation efficiency. Copyright © 2018 Elsevier B.V. All rights reserved.
Yokoyama, Hidekatsu
2012-01-01
Direct irradiation of a sample using a quartz oscillator operating at 250 MHz was performed for EPR measurements. Because a quartz oscillator is a frequency fixed oscillator, the operating frequency of an EPR resonator (loop-gap type) was tuned to that of the quartz oscillator by using a single-turn coil with a varactor diode attached (frequency shift coil). Because the frequency shift coil was mobile, the distance between the EPR resonator and the coil could be changed. Coarse control of the resonant frequency was achieved by changing this distance mechanically, while fine frequency control was implemented by changing the capacitance of the varactor electrically. In this condition, EPR measurements of a phantom (comprised of agar with a nitroxide radical and physiological saline solution) were made. To compare the presented method with a conventional method, the EPR measurements were also done by using a synthesizer at the same EPR frequency. In the conventional method, the noise level increased at high irradiation power. Because such an increase in the noise was not observed in the presented method, high sensitivity was obtained at high irradiation power. Copyright © 2011 Elsevier Inc. All rights reserved.
Silica precipitation potentially controls earthquake recurrence in seismogenic zones.
Saishu, Hanae; Okamoto, Atsushi; Otsubo, Makoto
2017-10-17
Silica precipitation is assumed to play a significant role in post-earthquake recovery of the mechanical and hydrological properties of seismogenic zones. However, the relationship between the widespread quartz veins around seismogenic zones and earthquake recurrence is poorly understood. Here we propose a novel model of quartz vein formation associated with fluid advection from host rocks and silica precipitation in a crack, in order to quantify the timescale of crack sealing. When applied to sets of extensional quartz veins around the Nobeoka Thrust of SW Japan, an ancient seismogenic splay fault, our model indicates that a fluid pressure drop of 10-25 MPa facilitates the formation of typical extensional quartz veins over a period of 6.6 × 10 0 -5.6 × 10 1 years, and that 89%-100% of porosity is recovered within ~3 × 10 2 years. The former and latter sealing timescales correspond to the extensional stress period (~3 × 10 1 years) and the recurrence interval of megaearthquakes in the Nankai Trough (~3 × 10 2 years), respectively. We therefore suggest that silica precipitation in the accretionary wedge controls the recurrence interval of large earthquakes in subduction zones.
Poisson's Ratio and Auxetic Properties of Natural Rocks
NASA Astrophysics Data System (ADS)
Ji, Shaocheng; Li, Le; Motra, Hem Bahadur; Wuttke, Frank; Sun, Shengsi; Michibayashi, Katsuyoshi; Salisbury, Matthew H.
2018-02-01
Here we provide an appraisal of the Poisson's ratios (υ) for natural elements, common oxides, silicate minerals, and rocks with the purpose of searching for naturally auxetic materials. The Poisson's ratios of equivalently isotropic polycrystalline aggregates were calculated from dynamically measured elastic properties. Alpha-cristobalite is currently the only known naturally occurring mineral that has exclusively negative υ values at 20-1,500°C. Quartz and potentially berlinite (AlPO4) display auxetic behavior in the vicinity of their α-β structure transition. None of the crystalline igneous and metamorphic rocks (e.g., amphibolite, gabbro, granite, peridotite, and schist) display auxetic behavior at pressures of >5 MPa and room temperature. Our experimental measurements showed that quartz-rich sedimentary rocks (i.e., sandstone and siltstone) are most likely to be the only rocks with negative Poisson's ratios at low confining pressures (≤200 MPa) because their main constituent mineral, α-quartz, already has extremely low Poisson's ratio (υ = 0.08) and they contain microcracks, micropores, and secondary minerals. This finding may provide a new explanation for formation of dome-and-basin structures in quartz-rich sedimentary rocks in response to a horizontal compressional stress in the upper crust.
Microdeformation in Vredefort rocks; evidence for shock metamorphism
NASA Technical Reports Server (NTRS)
Reimold, W. U.; Andreoli, M. A. G.; Hart, R. J.
1988-01-01
Planar microdeformations in quartz from basement or collar rocks of the Vredefort Dome have been cited for years as the main microtextural evidence for shock metamorphism in this structure. In addition, Schreyer describes feldspar recrystallization in rocks from the center of the Dome as the result of transformation of diaplectic glass, and Lilly reported the sighting of mosaicism in quartz. These textural observations are widely believed to indicate either an impact or an internally produced shock origin for the Vredefort Dome. Two types of (mostly sub) planar microdeformations are displayed in quartz grains from Vredefort rocks: (1) fluid inclusion trails, and (2) straight optical discontinuities that sometimes resemble lamellae. Both types occur as single features or as single or multiple sets in quartz grains. Besides qualitative descriptions of cleavage and recrystallization in feldspar and kinkbands in mica, no further microtextural evidence for shock metamorphism at Vredefort has been reported to date. Some 150 thin sections of Vredefort basement rocks were re-examined for potential shock and other deformation effects in all rock-forming minerals. This included petrographic study of two drill cores from the immediate vicinity of the center of the Dome. Observations recorded throughout the granitic core are given along with conclusions.
Fluid inclusions and microstructures in experimentally deformed quartz single crystals
NASA Astrophysics Data System (ADS)
Thust, A.; Tarantola, A.; Heilbronner, R.; Stünitz, H.
2009-04-01
The "H2O-weakening" effect that reduces the strength of quartz dramatically (e.g. Griggs & Blacic 1965) is still not understood. For example, Kronenberg & Tullis (1984) conclude that the weakening effect is pressure dependent while Paterson (1989) infers a glide and recovery control of water. Obviously, the spatial distribution and transport of H2O are important factors (Kronenberg et al. 1986, FitzGerald et al. 1991). We have carried out experiments on milky quartz in a Griggs deformation apparatus. Cylinders (6.5 mm in diameter, 12-13 mm in length) from a milky zone of a natural quartz single crystal have been cored in orientations (1) normal to one of the prism planes and (2) 45˚ to and 45˚ to (O+orientation). At 1 GPa confining pressure, 900˚ C and 10-6s-1, the flow strength is 150 MPa for samples with orientation (1). Further experiments are needed to establish the flow strength for orientation (2). FTIR measurements on double-polished thick sections (200-500 μm) in the undeformed quartz material yield an average H2O content of approximately 100 H/106Si. The water is heterogeneously distributed in the sample. Direct measurements on fluid inclusions yield a H2O content of more than 25 000 H/106Si. Thus, the H2O in the undeformed material is predominantly present in fluid inclusions of size from tens to hundred microns. Micro-thermometric measurements at low temperature indicate the presence of different salts in the fluid inclusions. The ice melting temperature, between -6.9 and -7.4˚ C, indicate an average salinity of 10.5 wt% NaCl. After deformation the distribution of H2O is more homogeneous throughout the sample. The majority of the big inclusions have disappeared and very small inclusions of several microns to sub-micron size have formed. FTIR measurements in zones of undulatory extinction and shear bands show an average H2O content of approximately 3000 H/106Si. Moreover, the larger fluid inclusions are characterized by a higher salinity (12 wt%) due to H2O loss into the healed cracks. First observations of deformed samples show abundant deformation lamellae. With higher deformation the lamellae form conjugated zones of high dislocation density and undulatory extinction. Micro cracks are frequently connected to fluid inclusions. Recrystallized grains are rare in deformed samples because of the low strain acquired. In semi-brittle experiments at lower temperature and faster strain rates considerable recrystallization features are visible and clearly connected to initial brittle deformation features. We conclude that fluid inclusion rupture and fast crack healing at high temperatures are necessary for the redistribution of H2O and a prerequisite of ductile deformation. References: Griggs, D.T. & Balcic, J.D. 1965: Quartz: anomalous weakness of synthetic crystals. Science 147, 293-295. FitzGerald, J.D., Boland, J.N., McLaren, A.C., Ord, A., Hobbs, B.E. 1991: Microstructures in water-weakened single crystals of quartz. Journal of Geophysical Research Vol. 96 No. B2, 2139-2155 Kronenberg, A.K. & Tullis, J. 1984: Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research Vol.89, No. B6, 4281-4297. Kronenberg, A.K., Kirby, S.H., Aines, R.D., Rossman G.R. 1986: Solubility and diffusional uptake of hydrogen in quartz at high water pressures: implication for hydrolytic weakening. Journal of Geophysical Research Vol.91, NO. B12, 12,723-12,744. Paterson, M.S.1989: The interaction of water with quartz and the influence in dislocation flow - an overview. In: S. Karato and M. Toriumi (Editors), Rheology of Solids and of the Earth. Oxford University Press, London, pp. 107-142.
NASA Astrophysics Data System (ADS)
Richard, Antonin; Boulvais, Philippe; Mercadier, Julien; Boiron, Marie-Christine; Cathelineau, Michel; Cuney, Michel; France-Lanord, Christian
2013-07-01
Stable isotope (O, H, C), radiogenic isotope (Sr, Nd) and trace element analyses have been applied to quartz-dolomite veins and their uranium(U)-bearing fluid inclusions associated with Proterozoic unconformity-related UO2 (uraninite) ores in the Athabasca Basin (Canada) in order to trace the evolution of pristine evaporated seawater towards U-mineralizing brines during their migration through sediments and basement rocks. Fluid inclusion data show that quartz and dolomite have precipitated from brines of comparable chemistry (excepted for relatively small amounts of CO2 found in dolomite-hosted fluid inclusions). However, δ18O values of quartz veins (δ18O = 11‰ to 18‰) and dolomite veins (δ18O = 13‰ to 24‰) clearly indicate isotopic disequilibrium between quartz and dolomite. Hence, it is inferred that this isotopic disequilibrium primarily reflects a decrease in temperature between the quartz stage (˜180 °C) and the dolomite stage (˜120 °C). The δ13C values of CO2 dissolved in dolomite-hosted fluid inclusions (δ13C = -30‰ to -4‰) and the δ13C values of dolomite (δ13C = -23.5‰ to -3.5‰) indicate that the CO2 dissolved in the mineralizing brines originated from brine-graphite interactions in the basement. The resulting slight increase in the fluid partial pressure of CO2 (pCO2) may have triggered dolomite precipitation instead of quartz. δ18O values of quartz veins and previously published δ18O values of the main alteration minerals around the U-ores (illite, chlorite and tourmaline) show that quartz and alteration minerals were isotopically equilibrated with the same fluid at ˜180 °C. The REE concentrations in dolomite produce PAAS-normalized patterns that show some similarities with that of UO2 and are clearly distinct from that of the other main REE-bearing minerals in these environments (monazite, zircon and aluminum phosphate-sulfate (APS) minerals). The radiogenic isotope compositions of dolomite (87Sr/86Sri = 0.7053 to 0.7161 and ɛNd(t) = -8.8 to -20.3) differ from one deposit to another, reflecting both heterogeneity in the basement geology and variable preservation of the original composition of brines. The previously published 87Sr/86Sri and ɛNd(t) values of UO2 compare with the most evolved dolomites, i.e. dolomites precipitated from brines that exchanged the most with the basement. This reinforces a close genetic link between dolomites and UO2 deposition and implies that UO2 deposition occurred in a cooling system during the transition from quartz to dolomite formation. The δ18O and δD values of the mineralizing brines (δ18O = -1‰ to 8‰ and δD = -150‰ to -50‰) are considerably shifted from that of their theoretical original values acquired during evaporation of seawater (δ18O = ˜-3‰ and δD = ˜-40‰). The positive δ18O shift is explained by protracted fluid-rock interaction within the basin and basement rocks. The negative δD shift is attributed to incomplete mixing between the U-mineralizing brines and low δD water. This low δD water was likely produced during the abiogenic synthesis of bitumen by Fisher-Tropsch-like reactions involving CO2 derived from brine-graphite interaction in the basement, and radiolytic H2. The resulting low δD brines have been equilibrated with alteration minerals. This may explain why some alteration minerals yield anomalously low δD values whose significance has long been debated.
NASA Astrophysics Data System (ADS)
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (˜100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
An, Sangmin; Hong, Mun-heon; Kim, Jongwoo; Kwon, Soyoung; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho
2012-11-01
We present a platform for the quartz tuning fork (QTF)-based, frequency modulation atomic force microscopy (FM-AFM) system for quantitative study of the mechanical or topographical properties of nanoscale materials, such as the nano-sized water bridge formed between the quartz tip (~100 nm curvature) and the mica substrate. A thermally stable, all digital phase-locked loop is used to detect the small frequency shift of the QTF signal resulting from the nanomaterial-mediated interactions. The proposed and demonstrated novel FM-AFM technique provides high experimental sensitivity in the measurement of the viscoelastic forces associated with the confined nano-water meniscus, short response time, and insensitivity to amplitude noise, which are essential for precision dynamic force spectroscopy and microscopy.
Ionic current rectification in organic solutions with quartz nanopipettes.
Yin, Xiaohong; Zhang, Shudong; Dong, Yitong; Liu, Shujuan; Gu, Jing; Chen, Ye; Zhang, Xin; Zhang, Xianhao; Shao, Yuanhua
2015-09-01
The study of behaviors of ionic current rectification (ICR) in organic solutions with quartz nanopipettes is reported. ICR can be observed even in organic solutions using quartz pipettes with diameters varied from several to dozens of nanometers, and the direction of ICR is quite different from the ICR observed in aqueous phase. The influences of pore size, electrolyte concentration, and surface charge on the ICR have been investigated carefully. Water in organic solutions affects the direction and extent of ICR significantly. Mechanisms about the formation of an electrical double layer (EDL) on silica in organic solutions with different amount of water have been proposed. An improved method, which can be employed to detect trace water in organic solutions, has been implemented based on Au ultramicroelectrodes with cathodic differential pulse stripping voltammetry.
NASA Astrophysics Data System (ADS)
Nürnberg, F.; Kühn, B.; Rollmann, K.
2016-12-01
In over 100 years of quartz glass fabrication, the applications and the optical requirements for this type of optical material have significantly changed. Applications like spectroscopy, UV flash lamps, the Apollo missions as well as the growth in UV and IR applications have directed quartz glass development towards new products, technologies or methods of measurement. The boundaries of the original measurement methods have been achieved and more sensitive measurements with precise resolution for transmission, purity, radiation resistance, absorption, thermal and mechanical stability as well as optical properties like homogeneity, stress birefringence, striae and bubbles/inclusions had to be found. This article will provide an overview of the development of measuring methods of quartz glass, discuss their limits and accuracy and point out the parameters which are of high relevance for today's laser applications.
Laser-assisted photothermal imprinting of nanocomposite
NASA Astrophysics Data System (ADS)
Lu, Y.; Shao, D. B.; Chen, S. C.
2004-08-01
We report on a laser-assisted photothermal imprinting method for directly patterning carbon nanofiber-reinforced polyethylene nanocomposite. A single laser pulse from a solid state Nd :YAG laser (10ns pluse, 532 and 355nm wavelengths) is used to melt/soften a thin skin layer of the polymer nanocomposite. Meanwhile, a fused quartz mold with micro sized surface relief structures is pressed against the surface of the composite. Successful pattern transfer is realized upon releasing the quartz mold. Although polyethylene is transparent to the laser beam, the carbon nanofibers in the high density polyethylene (HDPE) matrix absorb the laser energy and convert it into heat. Numerical heat conduction simulation shows the HDPE matrix is partially melted or softened, allowing for easier imprinting of the relief pattern of the quartz mold.
NASA Astrophysics Data System (ADS)
Nony, Laurent; Bocquet, Franck; Para, Franck; Loppacher, Christian
2016-09-01
A combined experimental and theoretical approach to the coupling between frequency-shift (Δ f ) , damping, and tunneling current (It) in combined noncontact atomic force microscopy/scanning tunneling microscopy using quartz tuning forks (QTF)-based probes is reported. When brought into oscillating tunneling conditions, the tip located at the QTF prong's end radiates an electromagnetic field which couples to the QTF prong motion via its piezoelectric tensor and loads its electrodes by induction. Our approach explains how those It-related effects ultimately modify the Δ f and the damping measurements. This paradigm to the origin of the coupling between It and the nc-AFM regular signals relies on both the intrinsic piezoelectric nature of the quartz constituting the QTF and its electrodes design.
Geology of the Huron River pitchblende occurrence, Baraga County, Michigan
Vickers, R.C.
1955-01-01
Pitchblende and secondary uranium minerals occur as very small, discontinuous stringers and pods in calcite and quartz cementing the breccia within a low-angle shear zone that dips about 10 degrees to the southwest. The shear zone has a thickness of 10 to 30 feet and cuts black, locally carbonaceous slates of the upper Huronian Precambrian Michigamme slate. Mineral deposition during two hypogene stages and one supergene stage was identified in polished sections. The first phase consisted of the introduction of quartz and minor hematite into the sheared slate. After fracturing of the quartz the second stage was initiated by deposition of calcite, pyrite, rutile, pitchblende, bornite, sphalerite, chalcopyrite, galena, and greenockite. The supergene stage consisted of the development of metatyuyamunite, chalcopyrite, chalcocite, covellite, cuprite, volborthite, malachite, and goethite.