Sample records for quartz particle size

  1. Measurement of Size-dependent Dynamic Shape Factors of Quartz Particles in Two Flow Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Jennifer M.; Bell, David M.; Imre, D.

    2016-08-02

    Understanding and modeling the behavior of quartz dust particles, commonly found in the atmosphere, requires knowledge of many relevant particles properties, including particle shape. This study uses a single particle mass spectrometer, a differential mobility analyzer, and an aerosol particle mass analyzer to measure quartz aerosol particles mobility, aerodynamic, and volume equivalent diameters, mass, composition, effective density, and dynamic shape factor as a function of particle size, in both the free molecular and transition flow regimes. The results clearly demonstrate that dynamic shape factors can vary significantly as a function of particle size. For the quartz samples studied here, themore » dynamic shape factors increase with size, indicating that larger particles are significantly more aspherical than smaller particles. In addition, dynamic shape factors measured in the free-molecular (χv) and transition (χt) flow regimes can be significantly different, and these differences vary with the size of the quartz particles. For quartz, χv of small (d < 200 nm) particles is 1.25, while χv of larger particles (d ~ 440 nm) is 1.6, with a continuously increasing trend with particle size. In contrast χt, of small particles starts at 1.1 increasing slowly to 1.34 for 550 nm diameter particles. The multidimensional particle characterization approach used here goes beyond determination of average properties for each size, to provide additional information about how the particle dynamic shape factor may vary even for particles with the same mass and volume equivalent diameter.« less

  2. EFFECTS OF QUARTZ PARTICLE SIZE AND SUCROSE ADDITION ON MELTING BEHAVIOR OF A MELTER FEED FOR HIGH-LEVEL GLASS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MARCIAL J; KRUGER AA; HRMA PR

    2010-07-28

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5 C/min up to 1200 C. The initial size of quartz particles in feed ranged from 5 to 195 {micro}m. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only inmore » feeds with 5-{micro}m quartz particles; particles {ge}150 {micro}m formed clusters. Particles of 5 {micro}m completely dissolved by 900 C whereas particles {ge}150 {micro}m did not fully dissolve even when the temperature reached 1200 C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles. Over 100 sites in the United States are currently tasked with the storage of nuclear waste. The largest is the Hanford Site located in southeastern Washington State with 177 subterranean tanks containing over fifty-million gallons of nuclear waste from plutonium production from 1944 through 1987. This waste will be vitrified at the Hanford Tank Waste Treatment and Immobilization Plant. In the vitrification process, feed is charged into a melter and converted into glass to be ultimately stored in a permanent repository. The duration of waste-site cleanups by the vitrification process depends on the rate of melting, i.e., on the rate of the feed-to-glass conversion. Foaming associated with the melting process and the rate of dissolution of quartz particles (silica being the major glass-forming additive) are assumed to be important factors that influence the rate of melting. Previous studies on foaming of high-alumina feed demonstrated that varying the makeup of a melter feed has a significant impact on foaming. The volume of feeds that contained 5

  3. Effects of Quartz Particle Size and Sucrose Addition on Melting Behavior of a Melter Feed for High-Level Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcial, Jose; Hrma, Pavel R; Schweiger, Michael J

    2010-08-11

    The behavior of melter feed (a mixture of nuclear waste and glass-forming additives) during waste-glass processing has a significant impact on the rate of the vitrification process. We studied the effects of silica particle size and sucrose addition on the volumetric expansion (foaming) of a high-alumina feed and the rate of dissolution of silica particles in feed samples heated at 5°C/min up to 1200°C. The initial size of quartz particles in feed ranged from 5 to 195 µm. The fraction of the sucrose added ranged from 0 to 0.20 g per g glass. Extensive foaming occurred only in feeds withmore » 5-μm quartz particles; particles >150 µm formed clusters. Particles of 5 µm completely dissolved by 900°C whereas particles >150 µm did not fully dissolve even when the temperature reached 1200°C. Sucrose addition had virtually zero impact on both foaming and the dissolution of silica particles.« less

  4. Assessing the potential of quartz crystal microbalance to estimate water vapor transfer in micrometric size cellulose particles.

    PubMed

    Thoury-Monbrun, Valentin; Gaucel, Sébastien; Rouessac, Vincent; Guillard, Valérie; Angellier-Coussy, Hélène

    2018-06-15

    This study aims at assessing the use of a quartz crystal microbalance (QCM) coupled with an adsorption system to measure water vapor transfer properties in micrometric size cellulose particles. This apparatus allows measuring successfully water vapor sorption kinetics at successive relative humidity (RH) steps on a dispersion of individual micrometric size cellulose particles (1 μg) with a total acquisition duration of the order of one hour. Apparent diffusivity and water uptake at equilibrium were estimated at each step of RH by considering two different particle geometries in mass transfer modeling, i.e. sphere or finite cylinder, based on the results obtained from image analysis. Water vapor diffusivity values varied from 2.4 × 10 -14  m 2  s -1 to 4.2 × 10 -12  m 2  s -1 over the tested RH range (0-80%) whatever the model used. A finite cylinder or spherical geometry could be used equally for diffusivity identification for a particle size aspect ratio lower than 2. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Numerical study of heating and evaporation processes of quartz particles in RF inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Grishin, Yu M.; Miao, Long

    2017-05-01

    Numerical simulations of heat and evaporation processes of quartz particles in Ar radio frequency inductively coupled plasma (ICP) are investigated. The quartz particles are supplied by the carrier gas into the ICP within gas-cooling. It is shown that with the increase of amplitude of discharge current above critical value there is a toroidal vortex in the ICP torch at the first coil. The conditions for the formation of vortex and the parameters of the vortex tube have been evaluated and determined. The influence of vortex, discharge current, coil numbers and feed rate of carrier gas on the evaporation efficiency of quartz particles have been demonstrated. It was found that the optimal discharge current is close to the critical value when the quartz particles with initial sizes up to 130 μm can be fully vaporized in the ICP torch with thermal power of 10kW. The heat and evaporation processes of quartz particles in the ICP torch have significant importance for the study of one-step plasma chemical reaction method directly producing silicon from silicide (SiO2) in the argon-hydrogen plasma.

  6. Particle size and X-ray analysis of Feldspar, Calvert, Ball, and Jordan soils

    NASA Technical Reports Server (NTRS)

    Chapman, R. S.

    1977-01-01

    Pipette analysis and X-ray diffraction techniques were employed to characterize the particle size distribution and clay mineral content of the feldspar, calvert, ball, and jordan soils. In general, the ball, calvert, and jordan soils were primarily clay size particles composed of kaolinite and illite whereas the feldspar soil was primarily silt-size particles composed of quartz and feldspar minerals.

  7. Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Peng, Shengnan; Wu, Dan; Tong, Meiping

    2016-01-01

    Colloids (non-biological and biological) with different sizes are ubiquitous in natural environment. The investigations regarding the influence of different-sized colloids on the transport and deposition behaviors of engineered-nanoparticles in porous media yet are still largely lacking. This study investigated the effects of different-sized non-biological and biological colloids on the transport of titanium dioxide nanoparticles (nTiO2) in quartz sand under both electrostatically favorable and unfavorable conditions. Fluorescent carboxylate-modified polystyrene latex microspheres (CML) with sizes of 0.2-2 μm were utilized as model non-biological colloids, while Gram-negative Escherichia coli (∼ 1 μm) and Gram-positive Bacillus subtilis (∼ 2 μm) were employed as model biological colloids. Under the examined solution conditions, both breakthrough curves and retained profiles of nTiO2 with different-sized CML particles/bacteria were similar as those without colloids under favorable conditions, indicating that the copresence of model colloids in suspensions had negligible effects on the transport and deposition of nTiO2 under favorable conditions. In contrast, higher breakthrough curves and lower retained profiles of nTiO2 with CML particles/bacteria relative to those without copresent colloids were observed under unfavorable conditions. Clearly, the copresence of model colloids increased the transport and decreased the deposition of nTiO2 in quartz sand under unfavorable conditions (solution conditions examined in present study). Both competition of deposition sites on quartz sand surfaces and the enhanced stability/dispersion of nTiO2 induced by copresent colloids were found to be responsible for the increased nTiO2 transport with colloids under unfavorable conditions. Moreover, the smallest colloids had the highest coverage on sand surface and most significant dispersion effect on nTiO2, resulting in the greatest nTiO2 transport. Copyright © 2015. Published

  8. Treated and untreated rock dust: Quartz content and physical characterization.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.

  9. Particle size distribution of typical ceramic raw materials by laser granulometry

    NASA Technical Reports Server (NTRS)

    Wojnarovitsne, I. H.; Lenkel, M.

    1984-01-01

    The principles of the method are explained and the working of the CILAS 715 laser granulometer is described. The particle size distributions of milled glazes, quartz, feldspar and china clay were determined by this instrument and by Andreasen sedimentation. The agreement was good for isometric particles, but the china clay appears finer by sedimentation, because the platelets arrange themselves horizontally during sedimentation, while in the laser granulometer preferred orientation is prevented by circulation between the sample holder and the vibrated and stirred reservoir of the slip.

  10. Consideration of Kaolinite Interference Correction for Quartz Measurements in Coal Mine Dust

    PubMed Central

    Lee, Taekhee; Chisholm, William P.; Kashon, Michael; Key-Schwartz, Rosa J.; Harper, Martin

    2015-01-01

    Kaolinite interferes with the infrared analysis of quartz. Improper correction can cause over- or underestimation of silica concentration. The standard sampling method for quartz in coal mine dust is size selective, and, since infrared spectrometry is sensitive to particle size, it is intuitively better to use the same size fractions for quantification of quartz and kaolinite. Standard infrared spectrometric methods for quartz measurement in coal mine dust correct interference from the kaolinite, but they do not specify a particle size for the material used for correction. This study compares calibration curves using as-received and respirable size fractions of nine different examples of kaolinite in the different correction methods from the National Institute for Occupational Safety and Health Manual of Analytical Methods (NMAM) 7603 and the Mine Safety and Health Administration (MSHA) P-7. Four kaolinites showed significant differences between calibration curves with as-received and respirable size fractions for NMAM 7603 and seven for MSHA P-7. The quartz mass measured in 48 samples spiked with respirable fraction silica and kaolinite ranged between 0.28 and 23% (NMAM 7603) and 0.18 and 26% (MSHA P-7) of the expected applied mass when the kaolinite interference was corrected with respirable size fraction kaolinite. This is termed “deviation,” not bias, because the applied mass is also subject to unknown variance. Generally, the deviations in the spiked samples are larger when corrected with the as-received size fraction of kaolinite than with the respirable size fraction. Results indicate that if a kaolinite correction with reference material of respirable size fraction is applied in current standard methods for quartz measurement in coal mine dust, the quartz result would be somewhat closer to the true exposure, although the actual mass difference would be small. Most kinds of kaolinite can be used for laboratory calibration, but preferably, the size

  11. Consideration of kaolinite interference correction for quartz measurements in coal mine dust.

    PubMed

    Lee, Taekhee; Chisholm, William P; Kashon, Michael; Key-Schwartz, Rosa J; Harper, Martin

    2013-01-01

    Kaolinite interferes with the infrared analysis of quartz. Improper correction can cause over- or underestimation of silica concentration. The standard sampling method for quartz in coal mine dust is size selective, and, since infrared spectrometry is sensitive to particle size, it is intuitively better to use the same size fractions for quantification of quartz and kaolinite. Standard infrared spectrometric methods for quartz measurement in coal mine dust correct interference from the kaolinite, but they do not specify a particle size for the material used for correction. This study compares calibration curves using as-received and respirable size fractions of nine different examples of kaolinite in the different correction methods from the National Institute for Occupational Safety and Health Manual of Analytical Methods (NMAM) 7603 and the Mine Safety and Health Administration (MSHA) P-7. Four kaolinites showed significant differences between calibration curves with as-received and respirable size fractions for NMAM 7603 and seven for MSHA P-7. The quartz mass measured in 48 samples spiked with respirable fraction silica and kaolinite ranged between 0.28 and 23% (NMAM 7603) and 0.18 and 26% (MSHA P-7) of the expected applied mass when the kaolinite interference was corrected with respirable size fraction kaolinite. This is termed "deviation," not bias, because the applied mass is also subject to unknown variance. Generally, the deviations in the spiked samples are larger when corrected with the as-received size fraction of kaolinite than with the respirable size fraction. Results indicate that if a kaolinite correction with reference material of respirable size fraction is applied in current standard methods for quartz measurement in coal mine dust, the quartz result would be somewhat closer to the true exposure, although the actual mass difference would be small. Most kinds of kaolinite can be used for laboratory calibration, but preferably, the size fraction

  12. Study on the Particle Size Distribution Nano-Particles of Mining Minerals on Whiteness of Triaxial Body

    NASA Astrophysics Data System (ADS)

    Mathur, Ravi; Soni, Aditi

    White wares produced worldwide represent the foundation of much of the ceramic industry; Porcelain bodies fabricated from triaxial mixtures of clay, quartz and feldspar with different size and amounts of nano particles were investigated. Although the purity of raw materials has a strong effect on the colour of the fired bodies, the particle size of raw materials also effect the whiteness The raw material mining minerals china Clay, Feldspar, quarts were prepared of various sized nano particles contains 10.60 -20.22%, 56.84- 70.80 % and 34.87-50.76 % of 100nm respectively. The fired bodies of raw mining minerals and triaxial bodies were subjected to colour measurement. The differences in whiteness were compared and discussed. The studies so far carried out is upto 400 mesh size while the present study has included up to 100nm particle size. A statistical correlation between whiteness of feldspar and triaxial body was also carried out. The correlation between china clay and triaxial body are 0.53, 0.57 and 0.66 for china clay similarly correlation for feldspar is 0.49, 0.73 and 0.83 for triaxial body it are 0.97, 0.84 and 0.75 for A1, A2 and A3 samples. Correlation between china clay and feldspar with triaxial body are 0.79 and 0.92 respectively.

  13. Particle size distribution: A key factor in estimating powder dustiness.

    PubMed

    López Lilao, Ana; Sanfélix Forner, Vicenta; Mallol Gasch, Gustavo; Monfort Gimeno, Eliseo

    2017-12-01

    A wide variety of raw materials, involving more than 20 samples of quartzes, feldspars, nephelines, carbonates, dolomites, sands, zircons, and alumina, were selected and characterised. Dustiness, i.e., a materials' tendency to generate dust on handling, was determined using the continuous drop method. These raw materials were selected to encompass a wide range of particle sizes (1.6-294 µm) and true densities (2650-4680 kg/m 3 ). The dustiness of the raw materials, i.e., their tendency to generate dust on handling, was determined using the continuous drop method. The influence of some key material parameters (particle size distribution, flowability, and specific surface area) on dustiness was assessed. In this regard, dustiness was found to be significantly affected by particle size distribution. Data analysis enabled development of a model for predicting the dustiness of the studied materials, assuming that dustiness depended on the particle fraction susceptible to emission and on the bulk material's susceptibility to release these particles. On the one hand, the developed model allows the dustiness mechanisms to be better understood. In this regard, it may be noted that relative emission increased with mean particle size. However, this did not necessarily imply that dustiness did, because dustiness also depended on the fraction of particles susceptible to be emitted. On the other hand, the developed model enables dustiness to be estimated using just the particle size distribution data. The quality of the fits was quite good and the fact that only particle size distribution data are needed facilitates industrial application, since these data are usually known by raw materials managers, thus making additional tests unnecessary. This model may therefore be deemed a key tool in drawing up efficient preventive and/or corrective measures to reduce dust emissions during bulk powder processing, both inside and outside industrial facilities. It is recommended, however

  14. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Establishment of gold-quartz standard GQS-1

    USGS Publications Warehouse

    Millard, Hugh T.; Marinenko, John; McLane, John E.

    1969-01-01

    A homogeneous gold-quartz standard, GQS-1, was prepared from a heterogeneous gold-bearing quartz by chemical treatment. The concentration of gold in GQS-1 was determined by both instrumental neutron activation analysis and radioisotope dilution analysis to be 2.61?0.10 parts per million. Analysis of 10 samples of the standard by both instrumental neutron activation analysis and radioisotope dilution analysis failed to reveal heterogeneity within the standard. The precision of the analytical methods, expressed as standard error, was approximately 0.1 part per million. The analytical data were also used to estimate the average size of gold particles. The chemical treatment apparently reduced the average diameter of the gold particles by at least an order of magnitude and increased the concentration of gold grains by a factor of at least 4,000.

  16. A combined Settling Tube-Photometer for rapid measurement of effective sediment particle size

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Zimmermann, Lukas

    2017-04-01

    Sediment and its movement in water is commonly described based on the size distribution of the mineral particles forming the sediment. While this approach works for coarse sand, pebbles and gravel, smaller particles often form aggregates, creating material of larger diameters than the mineral grain size distribution indicates, but lower densities than often assumed 2.65 g cm-3 of quartz. The measurement of the actual size and density of such aggregated sediment is difficult. For the assessment of sediment movement an effective particle size for the use in mathematical can be derived based on the settling velocity of sediment. Settling velocity of commonly measured in settling tubes which fractionate the sample in settling velocity classes by sampling material at the base in selected time intervals. This process takes up to several hours, requires a laboratory setting and carries the risk of either destruction of aggregates during transport or coagulation while sitting in rather still water. Measuring the velocity of settling particles in situ, or at least a rapidly after collection, could avoids these problems. In this study, a settling tube equipped with four photometers used to measure the darkening of a settling particle cloud is presented and the potential to improve the measurement of settling velocities are discussed.

  17. Comparison of quartz standards for X-ray diffraction analysis: HSE A9950 (Sikron F600) and NIST SRM 1878.

    PubMed

    Chisholm, Jim

    2005-06-01

    A further comparison of the Health and Safety Executive (HSE) standard quartz, A9950 (Sikron F600), and the National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1878, standard respirable alpha-quartz, has been carried out for the four principal diffraction peaks. In the earlier comparison by Jeyaratnam and Nagar (1993, Ann Occup Hyg; 37: 167-79), the standards were both treated in ways which might change the particle size distribution and therefore the proportion of crystalline quartz. The two standards have now been compared in the most direct way possible with the minimum of sample treatment. There are no significant differences in the diffraction peak positions for the two standards. Nor do the peak area intensities differ significantly. The peak height intensities are consistently and significantly higher for Sikron F600 than for NIST SRM 1878. The particle size broadening of the diffraction peaks is evidently greater for NIST 1878, whose mass median diameter is quoted as 1.6 microm against 2.6 microm for Sikron F600. Taking the certified reference value for SRM 1878 as 95.5 +/- 1.1% crystalline quartz, the HSE standard A9950 (Sikron F600) contains 96.3 +/- 1.4% crystalline quartz based on a comparison of peak area intensities. On the same basis but using peak height intensities, the nominal crystalline quartz content of A9950 (Sikron F600) is 101.2 +/- 1.8%. Results obtained by comparison of quartz standards may not be generally applicable because of the effect of sample treatment on particle size and crystalline quartz content.

  18. Effects of Particle Size on the Attenuated Total Reflection Spectrum of Minerals.

    PubMed

    Udvardi, Beatrix; Kovács, István J; Fancsik, Tamás; Kónya, Péter; Bátori, Miklósné; Stercel, Ferenc; Falus, György; Szalai, Zoltán

    2017-06-01

    This study focuses on particle size effect on monomineralic powders recorded using attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy. Six particle size fractions of quartz, feldspar, calcite, and dolomite were prepared (<2, 2-4, 4-8, 8-16, 16-32, and 32-63 µm). It is found that the width, intensity, and area of bands in the ATR FT-IR spectra of minerals have explicit dependence on the particle size. As particle size increases, the intensity and area of IR bands usually decrease while the width of bands increases. The band positions usually shifted to higher wavenumbers with decreasing particle size. Infrared spectra of minerals are the most intensive in the particle size fraction of 2-4 µm. However, if the particle size is very small (<2 µm), due to the wavelength and penetration depth of the IR light, intensity decreases. Therefore, the quantity of very fine-grained minerals may be underestimated compared to the coarser phases. A nonlinear regression analysis of the data indicated that the average coefficients and indices of the power trend line equation imply a very simplistic relationship between median particle diameter and absorbance at a given wavenumber. It is concluded that when powder samples with substantially different particle size are compared, as in regression analysis for modal predictions using ATR FT-IR, it is also important to report the grain size distribution or surface area of samples. The band area of water (3000-3620 cm -1 ) is similar in each mineral fraction, except for the particles below 2 µm. It indicates that the finest particles could have disproportionately more water adsorbed on their larger surface area. Thus, these higher wavenumbers of the ATR FT-IR spectra may be more sensitive to this spectral interference if the number of particles below 2 µm is considerable. It is also concluded that at least a proportion of the moisture could be very adhesive to the particles due to the band

  19. Screening strategy to avoid toxicological hazards of inhaled nanoparticles for drug delivery: The use of a-quartz and nano zinc oxide particles as benchmark

    NASA Astrophysics Data System (ADS)

    Beyerle, Andrea; Schulz, Holger; Kissel, Thomas; Stoeger, Tobias

    2009-02-01

    Nanotechnology is a broad, revolutionary field with promising advantages for new medicine. In this context the rapid development and improvement of so called nanocarriers is of high pharmaceutical interest and some devices are already on the market. In our project we aim to develop well characterized nanoscaled drug delivery systems for an inhalative application. To this end, we focus on the most adverse side-effects within the lung, the cytotoxic and the proinflammatory responses to these nanoparticles (NPs). Before performing any animal experiments, we start with an in vitro screening for analyzing the cytotoxic and proinflammatory effects of the investigated particles on two murine lung target cell lines, the alveolar epithelial like typ II cell line (LA4) and the alveolar macrophage cell line (MH-S). Three different endpoints were estimated, (i) cellular metabolic activity, determined by the WST-1 assay, (ii) membrane integrity, by detection of LDH release and hemolytic activity, and (iii) secretion of inflammatory mediators. To analyze the relative particle toxicity we choose two reference particles as benchmarks, (i) fine a-quartz, and (ii) ultrafine ZnO particles. The investigation of dose-response and kinetics of proinflammatory and toxic effects caused to the named cell lines provide an insight to a close evaluation of our cell based screening strategy. oc-quartz is well known for its inflammatory and toxic potential caused by inhalation, and nanosized ZnO particles - used in a broad field of nanotechnology like electronics, but also cosmetics and pharmaceuticals - is to a high degree cytotoxic and proinflammatory in vitro. Preliminary experiments indicated not only particle and cell specific inflammatory responses, but also different susceptibilities of the cell types being exposed to our benchmark particles regarding their size and surface activities. Exposure to the μm-sized a-quartz particles affected the viability of epithelia cells less than that of

  20. QUARTZ FIBER ELECTROSCOPES

    DOEpatents

    Henderson, R.P.

    1957-09-17

    An instrument carried unobtrusively about the person such as in a finger ring to indicate when that person has been exposed to an unusual radiation hazard is described. A metallized quartz fiber is electrically charged to indicate a full scale reading on an etched glass background. The quartz fiber and the scale may be viewed through a magnifying lens for ease of reading. Incident radiation will ionize gaseous particles in the sealed structure thereby allowing the charge to leak off the quartz fiber with its resulting movement across the scale proportionally indicating the radiation exposure.

  1. Sediment Particle Characterization for Acoustic Applications: Coarse Content, Size and Shape Distributions in a Shelly Sand/Mud Environment

    DTIC Science & Technology

    2009-03-31

    Distributions in a Shelly Sand/Mud Environment Anatoliy N. Ivakin M A Ivakin. Particle size and shape distributions 2 Goff et al . [3] came to a...site, 37.0=P and 65.2=sρ g /cm 3 [19], were used for calculations. The sediment volume for calculations was taken to be 1885 cm 3 for each of the...typical values used for densities of quartz (sand) particles and calcium carbonate (shell) particles were taken to be 2.65 g /cm 3 and 2.75 g /cm 3

  2. Transitional grain-size-sensitive flow of milky quartz aggregates

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2014-12-01

    Fine-grained (~15 μm) milky quartz aggregates exhibit reversible flow strengths in triaxial compression experiments conducted at T = 800-900oC, Pc = 1.5 GPa when strain rates are sequentially decreased (typically from 10-3.5 to 10-4.5 and 10-5.5 s-1), and then returned to the original rate (10-3.5 s-1), while samples that experience grain growth at 1000oC (to 35 μm) over the same sequence of strain rates exhibit an irreversible increase in strength. Polycrystalline quartz aggregates have been synthesized from natural milky quartz powders (ground to 5 μm) by HIP methods at T = 1000oC, Pc = 1.5 GPa and t = 24 hours, resulting in dense, fine-grained aggregates of uniform water content of ~4000 ppm (H/106Si), as indicated by a broad OH absorption band at 3400 cm-1. In experiments performed at 800o and 900oC, grain sizes of the samples are essentially constant over the duration of each experiment, though grain shapes change significantly, and undulatory extinction and deformation lamellae indicate that much of the sample shortening (to 50%) is accomplished, over the four strain-rate steps, by dislocation creep. Differential stresses measured at T = 800oC decrease from 160 to 30 MPa as strain rate is reduced from 10-4.6 to 10-5.5 s-1, and a stress of 140 MPa is measured when strain rate is returned to 10-4.5 s-1. Samples deformed at 1000o and 1100oC experience normal grain growth, with grain boundary energy-driven grain-coarsening textures superposed by undulatory extinction and deformation lamellae. Differential stresses measured at 1000oC and strain rates of 10-3.6, 10-4.6, and 10-5.5 s-1 are 185, 80, and 80 MPa, respectively, while an increased flow stress of 260 MPa is measured (following ~28 hours of prior high temperature deformation and grain growth) when strain rate is returned to 10-3.6 s-1. While all samples exhibit lattice preferred orientations, the stress exponent n inferred for the fine-grained 800oC sample is 1.5 and the stress exponent of the coarse

  3. Fragments of quartz monzodiorite and felsite in Apollo 14 soil particles

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.

    1991-01-01

    Samples of 'evolved' lithologies, felsite, quartz monzodiorite (QMD), and whitlockite-rich quartz monzodiorite, were identified compositionally and petrographically among 2-4-mm soil particles from Apollo 14. Fragments of QMD were found to be extremely rare in the Apollo 14 samples. Felsite is similar to previously reported samples. QMD 14161,7069 is similar to 15405 QMD and has ITE concentrations in KREEP-like concentration ratios of about twice the ITE concentrations of average high-K KREEP. QMD cumulate has the highest measured REE concentrations of any lunar sample to date with the exception of individual whitlockite grains. Felsite and whitlockite-rich lithologies appear to be petrogenetically related and have complementary compositions representing separated fractions of the QMD or KREEP-like parental melt. Felsite is a silica-rich fraction of the residual liquid or it is a derivative of the silica-rich fraction. Felsite or lunar granite of this type results from residual liquid separation following crystal-liquid separation of a QMD-like parent melt with concentration ratios of ITEs similar to those of KREEP.

  4. Direct deposition of silver nanoplates on quartz surface by sequence pre-treatment hydroxylation and silanisation.

    PubMed

    Abu Bakar, Norhayati; Mat Salleh, Muhamad; Ali Umar, Akrajas; Shapter, Joseph George

    2017-01-01

    Silver nanoparticles deposited on quartz substrates are widely used as SERS substrates. The nanoparticles can be deposited directly from colloidal solution by dipping technique. However, the adhesion of the particles on the quartz surface is very poor. Normally the substrate is pre-treated with hydroxylation or silanisation process. In this paper, we have demonstrated that the application of the sequence pre-treatment hydroxylation and silanisation have improved the density of silver nanoplates desposited on the quartz surface. •Sequence hydroxylation and silanisation pre-treatment assists the deposition of the nanoplate on the surface.•Various immersion times of the quartz surface into the colloidal nanoplates determined size distributions and density surface of the nanoplates on the surface.

  5. Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation

    PubMed Central

    2010-01-01

    Background Nanoparticle (NP) toxicity testing comes with many challenges. Characterization of the test substance is of crucial importance and in the case of NPs, agglomeration/aggregation state in physiological media needs to be considered. In this study, we have addressed the effect of agglomerated versus single particle suspensions of nano- and submicron sized gold on the inflammatory response in the lung. Rats were exposed to a single dose of 1.6 mg/kg body weight (bw) of spherical gold particles with geometric diameters of 50 nm or 250 nm diluted either by ultrapure water or by adding phosphate buffered saline (PBS). A single dose of 1.6 mg/kg bw DQ12 quartz was used as a positive control for pulmonary inflammation. Extensive characterization of the particle suspensions has been performed by determining the zetapotential, pH, gold concentration and particle size distribution. Primary particle size and particle purity has been verified using transmission electron microscopy (TEM) techniques. Pulmonary inflammation (total cell number, differential cell count and pro-inflammatory cytokines), cell damage (total protein and albumin) and cytotoxicity (alkaline phosphatase and lactate dehydrogenase) were determined in bronchoalveolar lavage fluid (BALF) and acute systemic effects in blood (total cell number, differential cell counts, fibrinogen and C-reactive protein) 3 and 24 hours post exposure. Uptake of gold particles in alveolar macrophages has been determined by TEM. Results Particles diluted in ultrapure water are well dispersed, while agglomerates are formed when diluting in PBS. The particle size of the 50 nm particles was confirmed, while the 250 nm particles appear to be 200 nm using tracking analysis and 210 nm using TEM. No major differences in pulmonary and systemic toxicity markers were observed after instillation of agglomerated versus single gold particles of different sizes. Both agglomerated as well as single nanoparticles were taken up by

  6. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    PubMed

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    PubMed

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  8. 4D Imaging of Salt Precipitation during Evaporation from Saline Porous Media Influenced by the Particle Size Distribution

    NASA Astrophysics Data System (ADS)

    Norouzi Rad, M.; Shokri, N.

    2014-12-01

    Understanding the physics of water evaporation from saline porous media is important in many processes such as evaporation from porous media, vegetation, plant growth, biodiversity in soil, and durability of building materials. To investigate the effect of particle size distribution on the dynamics of salt precipitation in saline porous media during evaporation, we applied X-ray micro-tomography technique. Six samples of quartz sand with different grain size distributions were used in the present study enabling us to constrain the effects of particle and pore sizes on salt precipitation patterns and dynamics. The pore size distributions were computed using the pore-scale X-ray images. The packed beds were saturated with NaCl solution of 3 Molal and the X-ray imaging was continued for one day with temporal resolution of 30 min resulting in pore scale information about the evaporation and precipitation dynamics. Our results show more precipitation at the early stage of the evaporation in the case of sand with the larger particle size due to the presence of fewer evaporation sites at the surface. The presence of more preferential evaporation sites at the surface of finer sands significantly modified the patterns and thickness of the salt crust deposited on the surface such that a thinner salt crust was formed in the case of sand with smaller particle size covering larger area at the surface as opposed to the thicker patchy crusts in samples with larger particle sizes. Our results provide new insights regarding the physics of salt precipitation in porous media during evaporation.

  9. ORIGIN OF QUARTZ IN COAL.

    USGS Publications Warehouse

    Ruppert, Leslie F.; Cecil, C. Blaine; Stanton, Ronald W.

    1984-01-01

    Both a scanning electron microscope and an electron microprobe (EMP) were used in this study to analyze the cathodoluminescence properties of quartz grains in samples of the Upper Freeport coal bed because quartz grains in coal are small (silt sized) and below the resolution capabilities of a standard luminoscope. Quartz grains were identified by the detection of silicon alone with energy dispersive X-ray units attached to both the SEM and the EMP.

  10. Method for producing size selected particles

    DOEpatents

    Krumdick, Gregory K.; Shin, Young Ho; Takeya, Kaname

    2016-09-20

    The invention provides a system for preparing specific sized particles, the system comprising a continuous stir tank reactor adapted to receive reactants; a centrifugal dispenser positioned downstream from the reactor and in fluid communication with the reactor; a particle separator positioned downstream of the dispenser; and a solution stream return conduit positioned between the separator and the reactor. Also provided is a method for preparing specific sized particles, the method comprising introducing reagent into a continuous stir reaction tank and allowing the reagents to react to produce product liquor containing particles; contacting the liquor particles with a centrifugal force for a time sufficient to generate particles of a predetermined size and morphology; and returning unused reagents and particles of a non-predetermined size to the tank.

  11. Particle size distribution control of Pt particles used for particle gun

    NASA Astrophysics Data System (ADS)

    Ichiji, M.; Akiba, H.; Nagao, H.; Hirasawa, I.

    2017-07-01

    The purpose of this study is particle size distribution (PSD) control of submicron sized Pt particles used for particle gun. In this report, simple reaction crystallization is conducted by mixing H2PtCl6 and ascorbic acid. Without the additive, obtained Pt particles have broad PSD and reproducibility of experiment is low. With seeding, Pt particles have narrow PSD and reproducibility improved. Additionally, mean particle diameter of 100-700 nm is controlled by changing seeding amount. Obtained particles are successfully characterized as Pt by XRD results. Moreover, XRD spectra indicate that obtained particles are polycrystals. These experimental results suggest that seeding consumed nucleation, as most nuclei attached on the seed surface. This mechanism virtually restricted nucleation to have narrow PSD can be obtained.

  12. An alternative method for determining particle-size distribution of forest road aggregate and soil with large-sized particles

    Treesearch

    Hakjun Rhee; Randy B. Foltz; James L. Fridley; Finn Krogstad; Deborah S. Page-Dumroese

    2014-01-01

    Measurement of particle-size distribution (PSD) of soil with large-sized particles (e.g., 25.4 mm diameter) requires a large sample and numerous particle-size analyses (PSAs). A new method is needed that would reduce time, effort, and cost for PSAs of the soil and aggregate material with large-sized particles. We evaluated a nested method for sampling and PSA by...

  13. Soil chemistry in lithologically diverse datasets: the quartz dilution effect

    USGS Publications Warehouse

    Bern, Carleton R.

    2009-01-01

    National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.

  14. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    distributions. The next goal of this work is to investigate if modeling methods developed in the studies of single mineral components can be generalized to predict the optical properties of more authentic aerosol samples which are complex mixtures of different minerals. Samples of Saharan sand, Iowa loess, and Arizona road dust are used here as test cases. T-matrix based simulations of the authentic samples, using measured particle size distributions, empirical mineralogies, and a priori particle shape models for each mineral component are directly compared with the measured IR extinction spectra and visible scattering profiles. This modeling approach offers a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Mineral dust samples processed with organic acids and humic material are also studied in order to explore how the optical properties of dust can change after being aged in the atmosphere. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acid. Clear differences in the light scattering properties are observed for all three processed mineral dust samples when compared to the unprocessed mineral dust or organic salt products. These interactions result in both internal and external mixtures depending on the sample. In addition, the presence of these organic materials can alter the mineral dust particle shape. Overall, however, these results demonstrate the need to account for the effects of atmospheric aging of mineral dust on aerosol optical properties. Particle shape can also affect the aerodynamic properties of mineral dust aerosol. In order to account for these effects, the dynamic shape factor is used to give a measure of particle asphericity. Dynamic shape factors of quartz are measured by mass and mobility selecting particles and measuring their vacuum aerodynamic diameter. From this, dynamic

  15. Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

    NASA Astrophysics Data System (ADS)

    A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen

    2013-08-01

    Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.

  16. Hemoglobin level and lipoprotein particle size.

    PubMed

    Hämäläinen, Päivi; Saltevo, Juha; Kautiainen, Hannu; Mäntyselkä, Pekka; Vanhala, Mauno

    2018-01-10

    Alterations in lipoprotein size are associated with increased cardiovascular disease risk. Higher hemoglobin levels may indicate a higher risk of atherosclerosis and was previously associated with obesity, metabolic syndrome, and insulin resistance. No previous studies have investigated an association between hemoglobin concentration and lipoprotein particle size. We conducted a population-based, cross-sectional study of 766 Caucasian, middle-aged subjects (341 men and 425 women) born in Pieksämäki, Finland, who were categorized into five age groups. The concentrations and sizes of lipoprotein subclass particles were analyzed by high-throughput nuclear magnetic resonance (NMR) spectroscopy. Larger very low density lipoprotein (VLDL) particle diameter was associated with higher hemoglobin concentrations in men (p = 0.003). There was a strong relationship between smaller high density lipoprotein (HDL) particle size and higher hemoglobin concentration in both men and women as well as with smaller low density lipoprotein (LDL) particle size and higher hemoglobin concentration in men and women (p < 0.001; p = 0.009, p = 0.008). VLDL particle concentration had a moderate positive correlation with hemoglobin concentration (r = 0.15; p < 0.001). LDL particle concentration showed a statistical trend suggesting increasing particle concentration with increasing hemoglobin levels (r = 0.08; p = 0.05). Higher hemoglobin levels are associated with larger VLDL, smaller LDL, and smaller HDL particle sizes and increasing amounts of larger VLDL and smaller LDL particles. This suggests that a higher hemoglobin concentration is associated with an unfavorable lipoprotein particle profile that is part of states that increase cardiovascular disease risk like diabetes and metabolic syndrome.

  17. Micrometer sized immobilization of protein molecules onto quartz, silicium and gold.

    NASA Astrophysics Data System (ADS)

    Petersen, Steffen B.; Neves-Petersen, Maria Teresa; Klitgaard, Søren; Duroux, Meg Crookshanks

    2006-02-01

    We demonstrate that ultraviolet light can be used to make sterically oriented covalent immobilization of a large variety of protein molecules onto either gold or thiolated quartz or silicium. The reaction mechanism behind the reported new technology involves light induced breakage of disulphide bridges in proteins upon UV illumination of nearby aromatic amino acids, resulting in the formation of free, reactive thiol groups that will form covalent bonds with thiol reactive surfaces. The protein molecules in general retain their function. The size of the immobilization spot is determined by the dimension of the UV beam. In principle, the spot size may be as small as 1 micrometer or less. We have developed the necessary technology for preparing large protein arrays of enzymes and fragments of monoclonal antibodies. Dedicated Image Processing Software has been developed for making quality assessment of the protein arrays. A multitude of important application areas such as drug carriers and drug delivery, bioelectronics, carbon nanotubes, nanoparticles as well as protein glue are discussed.

  18. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Oliveira, Marcos L S; Teixeira, Elba C; Kautzmann, Rubens M; Taffarel, Silvio R; de Brum, Irineu A S; Silva, Luis F O

    2016-01-01

    Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in

  19. Concurrent measurements of size-segregated particulate sulfate, nitrate and ammonium using quartz fiber filters, glass fiber filters and cellulose membranes

    NASA Astrophysics Data System (ADS)

    Tian, Shili; Pan, Yuepeng; Wang, Jian; Wang, Yuesi

    2016-11-01

    Current science and policy requirements have focused attention on the need to expand and improve particulate matter (PM) sampling methods. To explore how sampling filter type affects artifacts in PM composition measurements, size-resolved particulate SO42-, NO3- and NH4+ (SNA) were measured on quartz fiber filters (QFF), glass fiber filters (GFF) and cellulose membranes (CM) concurrently in an urban area of Beijing on both clean and hazy days. The results showed that SNA concentrations in most of the size fractions exhibited the following patterns on different filters: CM > QFF > GFF for NH4+; GFF > QFF > CM for SO42-; and GFF > CM > QFF for NO3-. The different patterns in coarse particles were mainly affected by filter acidity, and that in fine particles were mainly affected by hygroscopicity of the filters (especially in size fraction of 0.65-2.1 μm). Filter acidity and hygroscopicity also shifted the peaks of the annual mean size distributions of SNA on QFF from 0.43-0.65 μm on clean days to 0.65-1.1 μm on hazy days. However, this size shift was not as distinct for samples measured with CM and GFF. In addition, relative humidity (RH) and pollution levels are important factors that can enhance particulate size mode shifts of SNA on clean and hazy days. Consequently, the annual mean size distributions of SNA had maxima at 0.65-1.1 μm for QFF samples and 0.43-0.65 μm for GFF and CM samples. Compared with NH4+ and SO42-, NO3- is more sensitive to RH and pollution levels, accordingly, the annual mean size distribution of NO3- exhibited peak at 0.65-1.1 μm for CM samples instead of 0.43-0.65 μm. These methodological uncertainties should be considered when quantifying the concentrations and size distributions of SNA under different RH and haze conditions.

  20. MODELING REFLECTANCE AND TRANSMITTANCE OF QUARTZ-FIBER FILTER SAMPLES CONTAINING ELEMENTAL CARBON PARTICLES: IMPLICATIONS FOR THERMAL/OPTICAL ANALYSIS. (R831086)

    EPA Science Inventory

    A radiative transfer scheme that considers absorption, scattering, and distribution of light-absorbing elemental carbon (EC) particles collected on a quartz-fiber filter was developed to explain simultaneous filter reflectance and transmittance observations prior to and during...

  1. Effect of particle size distribution on 3D packings of spherical particles

    NASA Astrophysics Data System (ADS)

    Taiebat, Mahdi; Mutabaruka, Patrick; Pellenq, Roland; Radjai, Farhang

    2017-06-01

    We use molecular dynamics simulations of frictionless spherical particles to investigate a class of polydisperse granular materials in which the particle size distribution is uniform in particle volumes. The particles are assembled in a box by uniaxial compaction under the action of a constant stress. Due to the absence of friction and the nature of size distribution, the generated packings have the highest packing fraction at a given size span, defined as the ratio α of the largest size to the smallest size. We find that, up to α = 5, the packing fraction is a nearly linear function of α. While the coordination number is nearly constant due to the isostatic nature of the packings, we show that the connectivity of the particles evolves with α. In particular, the proportion of particles with 4 contacts represents the largest proportion of particles mostly of small size. We argue that this particular class of particles occurs as a result of the high stability of local configurations in which a small particle is stuck by four larger particles.

  2. Particle size and support effects in electrocatalysis.

    PubMed

    Hayden, Brian E

    2013-08-20

    Researchers increasingly recognize that, as with standard supported heterogeneous catalysts, the activity and selectivity of supported metal electrocatalysts are influenced by particle size, particle structure, and catalyst support. Studies using model supported heterogeneous catalysts have provided information about these effects. Similarly, model electrochemical studies on supported metal electrocatalysts can provide insight into the factors determining catalytic activity. High-throughput methods for catalyst synthesis and screening can determine systematic trends in activity as a function of support and particle size with excellent statistical certainty. In this Account, we describe several such studies investigating methods for dispersing precious metals on both carbon and oxide supports, with particular emphasis on the prospects for the development of low-temperature fuel-cell electrocatalysts. One key finding is a decrease in catalytic activity with decreasing particle size independent of the support for both oxygen reduction and CO oxidation on supported gold and platinum. For these reactions, there appears to be an intrinsic particle size effect that results in a loss of activity at particle sizes below 2-3 nm. A titania support, however, also increases activity of gold particles in the electrooxidation of CO and in the reduction of oxygen, with an optimum at 3 nm particle size. This optimum may represent the superposition of competing effects: a titania-induced enhanced activity versus deactivation at small particle sizes. The titania support shows catalytic activity at potentials where carbon-supported and bulk-gold surfaces are normally oxidized and CO electrooxidation is poisoned. On the other hand, platinum on amorphous titania shows a different effect: the oxidation reduction reaction is strongly poisoned in the same particle size range. We correlated the influence of the titania support with titania-induced changes in the surface redox behavior of

  3. Effect of varying total mixed ration particle size on rumen digesta and fecal particle size and digestibility in lactating dairy cows.

    PubMed

    Maulfair, D D; Fustini, M; Heinrichs, A J

    2011-07-01

    The objective of this experiment was to evaluate the effects of feeding rations of different particle sizes on rumen digesta and fecal matter particle size. Four rumen-cannulated, multiparous, Holstein cows (104±15 d in milk) were randomly assigned to treatments in a 4×4 Latin square design. The diets consisted of 29.4% corn silage, 22.9% ground corn, 17.6% alfalfa haylage, and 11.8% dry grass hay [20% of forage dry matter (DM)] on a DM basis. Dry grass hay was chopped to 4 different lengths to vary the total mixed ration (TMR) particle size. Geometric mean particle sizes of the rations were 4.46, 5.10, 5.32, and 5.84 mm for short, medium, long, and extra long diets, respectively. The ration affected rumen digesta particle size for particles ≥3.35 mm, and had no effect on distribution of particles <3.35 mm. All rumen digesta particle size fractions varied by time after feeding, with soluble particle fractions increasing immediately after feeding and 0.15, 0.6, and 1.18-mm particle size fractions decreasing slightly after feeding. Particle fractions >1.18 mm had ration by time interactions. Fecal neutral detergent fiber (NDF) and indigestible NDF concentrations decreased with increasing TMR particle size. Fecal particle size expressed as total geometric mean particle length followed this same tendency. Fecal particle size, expressed as retained geometric mean particle length, averaged 1.13 mm with more than 36% of particles being larger than 1.18 mm. All fecal nutrient concentrations measured were significantly affected by time after feeding, with NDF and indigestible NDF increasing after feeding and peaking at about 12h later and then decreasing to preprandial levels. Starch concentrations were determined to have the opposite effect. Additionally, apparent digestibility of diet nutrients was analyzed and DM digestibility tended to decrease with increasing TMR particle size, whereas other nutrient digestibilities were not different among rations. These results

  4. The biological response to nanometre-sized polymer particles.

    PubMed

    Liu, Aiqin; Richards, Laura; Bladen, Catherine L; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2015-09-01

    Recently, nanometre-sized UHMWPE particles generated from hip and knee replacements have been identified in vitro and in vivo. UHMWPE particles in the 0.1-1.0μm size range have been shown to be more biologically active than larger particles, provoking an inflammatory response implicated in late aseptic loosening of total joint replacements. The biological activity of nanometre-sized particles has not previously been studied. The biological response to clinically-relevant UHMWPE wear particles including nanometre-sized and micrometre-sized, along with polystyrene particles (FluoSpheres 20nm, 60nm, 200nm and 1.0μm), and nanometre-sized model polyethylene particles (Ceridust 3615®), was determined in terms of osteolytic cytokine release from primary human peripheral blood mononuclear cells (PBMNCs). Nanometre-sized UHMWPE wear particles, nanometre-sized Ceridust 3615® and 20nm FluoSpheres had no significant effect on TNF-α, IL-1β, IL-6 and IL-8 release from PBMNCs at a concentration of 100μm(3) particles per cell after 12 and 24h. The micrometre-size UHMWPE wear particles (0.1-1.0μm) and 60nm, 200nm and 1.0μm FluoSpheres caused significantly elevated osteolytic cytokine release from PBMNCs. These results indicated that particles below circa 50nm fail to activate PBMNCs and that particle size, composition and morphology played a crucial role in cytokine release by particle stimulated macrophages. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. The biological response to nanometre-sized polymer particles

    PubMed Central

    Liu, Aiqin; Richards, Laura; Bladen, Catherine L.; Ingham, Eileen; Fisher, John; Tipper, Joanne L.

    2015-01-01

    Recently, nanometre-sized UHMWPE particles generated from hip and knee replacements have been identified in vitro and in vivo. UHMWPE particles in the 0.1–1.0 μm size range have been shown to be more biologically active than larger particles, provoking an inflammatory response implicated in late aseptic loosening of total joint replacements. The biological activity of nanometre-sized particles has not previously been studied. The biological response to clinically-relevant UHMWPE wear particles including nanometre-sized and micrometre-sized, along with polystyrene particles (FluoSpheres 20 nm, 60 nm, 200 nm and 1.0 μm), and nanometre-sized model polyethylene particles (Ceridust 3615®), was determined in terms of osteolytic cytokine release from primary human peripheral blood mononuclear cells (PBMNCs). Nanometre-sized UHMWPE wear particles, nanometre-sized Ceridust 3615® and 20 nm FluoSpheres had no significant effect on TNF-α, IL-1β, IL-6 and IL-8 release from PBMNCs at a concentration of 100 μm3 particles per cell after 12 and 24 h. The micrometre-size UHMWPE wear particles (0.1–1.0 μm) and 60 nm, 200 nm and 1.0 μm FluoSpheres caused significantly elevated osteolytic cytokine release from PBMNCs. These results indicated that particles below circa 50 nm fail to activate PBMNCs and that particle size, composition and morphology played a crucial role in cytokine release by particle stimulated macrophages. PMID:26004221

  6. Method for determining aerosol particle size device for determining aerosol particle size

    DOEpatents

    Novick, Vincent J.

    1998-01-01

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data.

  7. Nano-sized and micro-sized polystyrene particles affect phagocyte function

    PubMed Central

    Prietl, B.; Meindl, C.; Roblegg, E.; Pieber, T. R.; Lanzer, G.; Fröhlich, E.

    2015-01-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes. PMID:24292270

  8. Nano-sized and micro-sized polystyrene particles affect phagocyte function.

    PubMed

    Prietl, B; Meindl, C; Roblegg, E; Pieber, T R; Lanzer, G; Fröhlich, E

    2014-02-01

    Adverse effect of nanoparticles may include impairment of phagocyte function. To identify the effect of nanoparticle size on uptake, cytotoxicity, chemotaxis, cytokine secretion, phagocytosis, oxidative burst, nitric oxide production and myeloperoxidase release, leukocytes isolated from human peripheral blood, monocytes and macrophages were studied. Carboxyl polystyrene (CPS) particles in sizes between 20 and 1,000 nm served as model particles. Twenty nanometers CPS particles were taken up passively, while larger CPS particles entered cells actively and passively. Twenty nanometers CPS were cytotoxic to all phagocytes, ≥500 nm CPS particles only to macrophages. Twenty nanometers CPS particles stimulated IL-8 secretion in human monocytes and induced oxidative burst in monocytes. Five hundred nanometers and 1,000 nm CPS particles stimulated IL-6 and IL-8 secretion in monocytes and macrophages, chemotaxis towards a chemotactic stimulus of monocytes and phagocytosis of bacteria by macrophages and provoked an oxidative burst of granulocytes. At very high concentrations, CPS particles of 20 and 500 nm stimulated myeloperoxidase release of granulocytes and nitric oxide generation in macrophages. Cytotoxic effect could contribute to some of the observed effects. In the absence of cytotoxicity, 500 and 1,000 nm CPS particles appear to influence phagocyte function to a greater extent than particles in other sizes.

  9. Indetermination of particle sizing by laser diffraction in the anomalous size ranges

    NASA Astrophysics Data System (ADS)

    Pan, Linchao; Ge, Baozhen; Zhang, Fugen

    2017-09-01

    The laser diffraction method is widely used to measure particle size distributions. It is generally accepted that the scattering angle becomes smaller and the angles to the location of the main peak of scattered energy distributions in laser diffraction instruments shift to smaller values with increasing particle size. This specific principle forms the foundation of the laser diffraction method. However, this principle is not entirely correct for non-absorbing particles in certain size ranges and these particle size ranges are called anomalous size ranges. Here, we derive the analytical formulae for the bounds of the anomalous size ranges and discuss the influence of the width of the size segments on the signature of the Mie scattering kernel. This anomalous signature of the Mie scattering kernel will result in an indetermination of the particle size distribution when measured by laser diffraction instruments in the anomalous size ranges. By using the singular-value decomposition method we interpret the mechanism of occurrence of this indetermination in detail and then validate its existence by using inversion simulations.

  10. Method for determining aerosol particle size, device for determining aerosol particle size

    DOEpatents

    Novick, V.J.

    1998-10-06

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data. 2 figs.

  11. A Naturally-Calibrated Flow Law for Quartz

    NASA Astrophysics Data System (ADS)

    Lusk, A. D.; Platt, J. P.

    2017-12-01

    Flow laws for power-law behavior of quartz deforming by crystal-plastic processes with grain size sensitive creep included take the general form: ė = A σn f(H2O) exp(-Q/RT) dmWhere A - prefactor; σ - differential stress; n - stress exponent; f(H2O) - water fugacity; Q - activation energy; R - gas constant; T - temperature (K); d - grain size sensitivity raised to power m. Assuming the dynamically recrystallized grain size for quartz follows the peizometric relationship, substitute dm = (K σ-p)m, where K - piezometric constant; σ - differential stress; p - piezometric exponent. Rearranging the above flow law: ė = A K σ(n-pm) f(H2O) exp(-Q/RT)We use deformation temperatures, paleo-stresses, and strain rates calculated from rocks deformed in the Caledonian Orogeny, NW Scotland, along with existing experimental data, to compare naturally-calibrated values of stress exponent (n-pm) and activation energy (Q) to those determined experimentally. Microstructures preserved in the naturally-strained rocks closely resemble those produced by experimental work, indicating that quartz was deformed by the same mechanism(s). These observations validate the use of predetermined values for A as well as the addition of experimental data to calculate Q. Values for f(H2O) are based on calculated pressure and temperature conditions. Using the abovementioned constraints, we compare results, discuss challenges, and explore implications of naturally- vs. experimentally-derived flow laws for dislocation creep in quartz. Rocks used for this study include quartzite and quartz-rich psammite of the Cambrian-Ordovician shelf sequence and tectonically overlying Moine Supergroup. In both cases, quartz is likely the primary phase that controlled rheological behavior. We use the empirically derived piezometer for the dynamically recrystallized grain size of quartz to calculate the magnitude of differential stress, along with the Ti-in-quartz thermobarometer and the c-axis opening angle

  12. Metal release from stainless steel particles in vitro-influence of particle size.

    PubMed

    Midander, K; Pan, J; Wallinder, I Odnevall; Leygraf, C

    2007-01-01

    Human inhalation of airborne metallic particles is important for health risk assessment. To study interactions between metallic particles and the human body, metal release measurements of stainless steel powder particles were performed in two synthetic biological media simulating lung-like environments. Particle size and media strongly influence the metal release process. The release rate of Fe is enhanced compared with Cr and Ni. In artificial lysosomal fluid (ALF, pH 4.5), the accumulated amounts of released metal per particle loading increase drastically with decreasing particle size. The release rate of Fe per unit surface area increases with decreasing particle size. Compared with massive sheet metal, fine powder particles (<4 microm) show similar release rates of Cr and Ni, but a higher release rate of Fe. Release rates in Gamble's solution (pH 7.4), for all powders investigated, are significantly lower compared to ALF. No clear trend is seen related to particle size in Gamble's solution.

  13. Role of Substrate on Quartz Cementation in Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Farver, J. R.; Winslow, D.; Onasch, C.

    2010-12-01

    Quartz cementation in quartz aggregates has been experimentally investigated. The starting material was disaggregated detrital quartz grains from the well-sorted, mature St. Peter Sandstone. The ‘as-is’ grains have patches of iron oxide coatings and some have euhedral overgrowths that contain iron oxide dust rims. In addition a set of experiments was run using grains that were cleaned by soaking in sodium hydrosulfite and sodium bisulfate solutions to remove exposed iron oxide coatings. Experimental charges consisted of amorphous silica powder (≈30 mg) to provide a source of silica for the quartz cement, AlCl3 powder (≈3 mg) to provide a tracer for Cathodoluminescence (CL) identification of cement formed during the experiment, 25 wt% NaCl brine solution (≈25 mg) to increase the silica solubility and to better mimic oil field brines, and the natural quartz grains (100-130 mg). The charges were weld-sealed in Au capsules and run in cold-seal pressure vessels at 250°C to 450°C at 150 MPa confining pressure for up to 8 weeks. After the experiments, the samples were vacuum impregnated with a low viscosity epoxy containing a blue dye. After curing, the sample charge was sawn in half along its long axis and one half was polished (to 1 micron diamond paste) for analysis. The nature and amount of quartz cement in the samples were determined by a combination of CL, light microscopy, and scanning electron microscopy. Photomosaics of the samples were created and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement formed during the experiment was easily recognized from the quartz grains (and previous overgrowths) by the difference in luminescence. The results indicate the amorphous silica powder provides a ready source for silica for quartz cementation due to its greater solubility than the quartz. The cementation rates are rapid (>14% cement formed in 2 weeks at 450°C and >7% in 8 weeks at 250°C). Compared to

  14. Recent trends in particle size analysis techniques

    NASA Technical Reports Server (NTRS)

    Kang, S. H.

    1984-01-01

    Recent advances and developments in the particle-sizing technologies are briefly reviewed in accordance with three operating principles including particle size and shape descriptions. Significant trends of the particle size analysing equipment recently developed show that compact electronic circuitry and rapid data processing systems were mainly adopted in the instrument design. Some newly developed techniques characterizing the particulate system were also introduced.

  15. Random deposition of particles of different sizes.

    PubMed

    Forgerini, F L; Figueiredo, W

    2009-04-01

    We study the surface growth generated by the random deposition of particles of different sizes. A model is proposed where the particles are aggregated on an initially flat surface, giving rise to a rough interface and a porous bulk. By using Monte Carlo simulations, a surface has grown by adding particles of different sizes, as well as identical particles on the substrate in (1+1) dimensions. In the case of deposition of particles of different sizes, they are selected from a Poisson distribution, where the particle sizes may vary by 1 order of magnitude. For the deposition of identical particles, only particles which are larger than one lattice parameter of the substrate are considered. We calculate the usual scaling exponents: the roughness, growth, and dynamic exponents alpha, beta, and z, respectively, as well as, the porosity in the bulk, determining the porosity as a function of the particle size. The results of our simulations show that the roughness evolves in time following three different behaviors. The roughness in the initial times behaves as in the random deposition model. At intermediate times, the surface roughness grows slowly and finally, at long times, it enters into the saturation regime. The bulk formed by depositing large particles reveals a porosity that increases very fast at the initial times and also reaches a saturation value. Excepting the case where particles have the size of one lattice spacing, we always find that the surface roughness and porosity reach limiting values at long times. Surprisingly, we find that the scaling exponents are the same as those predicted by the Villain-Lai-Das Sarma equation.

  16. Constraining ejecta particle size distributions with light scattering

    NASA Astrophysics Data System (ADS)

    Schauer, Martin; Buttler, William; Frayer, Daniel; Grover, Michael; Lalone, Brandon; Monfared, Shabnam; Sorenson, Daniel; Stevens, Gerald; Turley, William

    2017-06-01

    The angular distribution of the intensity of light scattered from a particle is strongly dependent on the particle size and can be calculated using the Mie solution to Maxwell's equations. For a collection of particles with a range of sizes, the angular intensity distribution will be the sum of the contributions from each particle size weighted by the number of particles in that size bin. The set of equations describing this pattern is not uniquely invertible, i.e. a number of different distributions can lead to the same scattering pattern, but with reasonable assumptions about the distribution it is possible to constrain the problem and extract estimates of the particle sizes from a measured scattering pattern. We report here on experiments using particles ejected by shockwaves incident on strips of triangular perturbations machined into the surface of tin targets. These measurements indicate a bimodal distribution of ejected particle sizes with relatively large particles (median radius 2-4 μm) evolved from the edges of the perturbation strip and smaller particles (median radius 200-600 nm) from the perturbations. We will briefly discuss the implications of these results and outline future plans.

  17. Frequency-scanning particle size spectrometer

    NASA Technical Reports Server (NTRS)

    Fymat, A. L. (Inventor)

    1979-01-01

    A particle size spectrometer having a fixed field of view within the forward light scattering cone at an angle theta sub s between approximately 100 and 200 minutes of arc (preferably at 150 minutes), a spectral range extending approximately from 0.2 to 4.0 inverse micrometers, and a spectral resolution between about 0.1 and 0.2 inverse micrometers (preferably toward the lower end of this range of spectral resolution), is employed to determine the distribution of particle sizes, independently of the chemical composition of the particles, from measurements of incident light, at each frequency, sigma (=1/lambda), and scattered light, I(sigma).

  18. Particle Size Effects on CL-20 Initiation and Detonation

    NASA Astrophysics Data System (ADS)

    Valancius, Cole; Bainbridge, Joe; Love, Cody; Richardson, Duane

    2017-06-01

    Particle size or specific surface area effects on explosives has been of interest to the explosives community for both application and modeling of initiation and detonation. Different particles sizes of CL-20 were used in detonator experiments to determine the effects of particle size on initiation, run-up to steady state detonation, and steady state detonation. Historical tests have demonstrated a direct relationship between particle size and initiation. However, historical tests inadvertently employed density gradients, making it difficult to discern the effects of particle size from the effects of density. Density gradients were removed from these tests using a larger diameter, shorter charge column, allowing for similar loading across different particle sizes. Without the density gradient, the effects of particle size on initiation and detonation are easier to determine. The results of which contrast with historical results, showing particle size does not directly affect initiation threshold.

  19. Characterization of impurities present on Tihimatine (Hoggar) quartz, Algeria

    NASA Astrophysics Data System (ADS)

    Anas Boussaa, S.; Kheloufi, A.; Boutarek Zaourar, N.

    2017-11-01

    Many of today's advanced materials depend on quartz as a raw material. Quartz usually contains abundant inclusions, both solid and liquid, and due to the number of these inclusions and their small size, complete separation is most difficult. Typical properties of raw quartz that must be characterized are: Size and Chemical composition of inclusions, their spatial distribution, localization of isomorphic substitutional elements (e.g. Al, Fe). The aim of this study has been to test experimental methods for investigating some inclusions (impurities) present in the Tihimatine quartz from El Hoggar region deposits (southern Algeria) using X Ray Fluorescence, scanning electron microscopy, optical Microscopy with reflected and transmitted lights, infra-red spectrometer, Raman spectrometer. Despite the high concentration of SiO2 in studied quartz reaching 98%, several harmful inclusions were found and identified as hematite, anatase, muscovite, graphite, it contains: Fe, Ti, Al, K, Ca. Some fluid inclusions were found. We detect the presence of carbon dioxide and water using raman spectroscopy. The repartition of solid impurities is aleatory and not homogeneous with maximum size of 10 μm. Concerning the fluid impurities, their diameter vary between 5 and 20 μm and their repartition is aleatory.

  20. Method of producing non-agglomerating submicron size particles

    DOEpatents

    Bourne, Roy S.; Eichman, Clarence C.; Welbon, William W.

    1989-01-01

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in "metallic inks".

  1. Grain Size Distribution in Mudstones: A Question of Nature vs. Nurture

    NASA Astrophysics Data System (ADS)

    Schieber, J.

    2011-12-01

    Grain size distribution in mudstones is affected by the composition of the source material, the processes of transport and deposition, and post-depositional diagenetic modification. With regard to source, it does make a difference whether for example a slate belt is eroded vs a stable craton. The former setting tends to provide a broad range of detrital quartz in the sub 62 micron size range in addition to clays and greenschist grade rock fragments, whereas the latter may be biased towards coarser quartz silt (30-60 microns), in addition to clays and mica flakes. In flume experiments, when fine grained materials are transported in turbulent flows at velocities that allow floccules to transfer to bedload, a systematic shift of grain size distribution towards an increasingly finer grained suspended load is observed as velocity is lowered. This implies that the bedload floccules are initially constructed of only the coarsest clay particles at high velocities, and that finer clay particles become incorporated into floccules as velocity is lowered. Implications for the rock record are that clay beds deposited from decelerating flows should show subtle internal grading of coarser clay particles; and that clay beds deposited from continuous fast flows should show a uniform distribution of coarse clays. Still water settled clays should show a well developed lower (coarser) and upper (finer) subdivision. A final complication arises when diagenetic processes, such as the dissolution of biogenic silica, give rise to diagenetic quartz grains in the silt to sand size range. This diagenetic silica precipitates in fossil cavities and pore spaces of uncompacted muds, and on casual inspection can be mistaken for detrital quartz. In distal mudstone successions close to 100 % of "apparent" quartz silt can be of that origin, and reworking by bottom currents can further enhance a detrital perception by producing rippled and laminated silt beds. Although understanding how size

  2. Influence of particles on sonochemical reactions in aqueous solutions.

    PubMed

    Keck, A; Gilbert, E; Köster, R

    2002-05-01

    Numerous publications deal with the possible application of ultrasound for elimination of organic pollutants as a tool for water pollution abatement. Most of the experiments were performed in pure water under laboratory conditions. For developing technologies that hold promise it is necessary to investigate the effect of ultrasound in natural systems or waste water where particulate matter could play an important role. In this paper the influence of quartz particles (2-25 microm) on the chemical effects of ultrasound in aqueous system using a high power ultrasound generator (68-1028 kHz, 100 W, reactor volume 500 ml) is reported. In pure water in dependence on particle size, concentration and frequency the formation rate of hydrogen peroxide under Ar/O2 (4:1) shows a maximum using 206 kHz in presence of 3-5 microm quartz particles (4-8 g/l). Under these conditions the yield of peroxide is higher than without quartz. Additionally under N2/O2 (4:1) besides hydrogen peroxide the formation of nitrite/nitrate was measured. Compared to pure water quartz particle depressed the formation of nitrite/nitrate up to 10-fold but not the formation of H2O2. According to the results of H2O2 formation the elimination of organic compounds by sonolysis (206 kHz) and the influence of quartz particles were investigated. As organic compounds salicylic acid, 2-chlorobenzoic acid and p-toluenesulfonic acid were used. The influence of quartz on the oxidation of organic compounds (206 kHz) is similar to that on the formation of H2O2.

  3. Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm

    NASA Astrophysics Data System (ADS)

    Mustard, John F.; Hays, John E.

    1997-01-01

    Fine grained particles <50 μm in size dominate particle size distributions of many planetary surfaces. Despite the predominance of fine particles in planetary regoliths, there have been few investigations of the systematic effects of the finest particles on reflectance spectra, and on the ability of quantitative models to extract compositional and/or textural information from remote observations. The effects of fine particles that are approximately the same size as the wavelength of light on reflectance spectra were investigated using narrow particle size separates of the minerals olivine and quartz across the wavelength range 0.3 to 25 μm. The minerals were ground with a mortar and pestle and sieved into five particle size separates of 5-μm intervals from <5 μm to 20-25 μm. The exact particle size distributions were determined with a particle size analyzer and are shown to be Gaussian about a mean within the range of each sieve separate. The reflectance spectra, obtained using a combination of a bidirectional reflectance spectrometer and an FTIR, exhibited a number of systematic changes as the particle size decreased to become approximately the same size and smaller than the wavelength. In the region of volume scattering, the spectra exhibited a sharp drop in reflectance with the finest particle size separates. Christiansen features became saturated when the imaginary part of the index of refraction was non-negligible, while the restrahlen bands showed continuous decrease in spectral contrast and some change in the shape of the bands with decreasing particle size, though the principal features diagnostic of composition were relatively unaffected. The transparency features showed several important changes with decreasing particle size: the spectral contrast increased then decreased, the position of the maximum reflectance of the transparency features shifted systematically to shorter wavelengths, and the symmetry of the features changed. Mie theory predicts

  4. The Iceland Deep Drilling Project (IDDP): Deep Fluid Sampling in Fractured Quartz, Reykjanes Geothermal System, Iceland

    NASA Astrophysics Data System (ADS)

    Seward, R. J.; Reed, M. H.; Grist, H. R.; Fridriksson, T.; Danielsen, P.; Thorhallsson, S.; Elders, W. A.; Fridleifsson, G. O.

    2011-12-01

    In July of 2011 a fluid inclusion tool (FIT) was deployed in well RN-17b of the Reykjanes geothermal system, Iceland, with the goal of sampling fluids in situ at the deepest feed point in the well. The tool consists of a perforated stainless steel pipe containing eight stainless steel mesh canisters, each loaded with 10mm-scale blocks of thermally fractured quartz. Except for one control canister, in each canister the fractured quartz blocks were surrounded by a different grain size of SiO¬2 glass that ranged in size from 10μm-scale glass wool to cm-scale glass shards. The FIT was left in the well on a wireline at a depth of 2768m and retrieved after three weeks. The fluid at 2768m depth is known from November 2010 well logs to have a temperature of about 330°C and pressure of 170 bars, a pressure ~40 bar too high for boiling at that temperature. After retrieval, quartz in all of the canisters contained liquid-dominated fluid inclusions, but their quantity and size differed by canister. Groups of inclusions occur in healed fractures and both healed and open fracture surfaces are visible within single quartz blocks. Measurements on a heating and cooling stage yield approximant inclusion homogenization temperatures of 332°C and freezing points of -2.0°C. These measurements and a pressure of 170 bars yield trapping temperatures of 335°C and a NaCl weight percent of 3.4, both of which match known values, thus verifying that the device trapped fluids as intended. In upcoming studies, these fluids will be analyzed using bulk methods and LA-ICP-MS on individual inclusions. The glass added to the quartz blocks in the canisters allowed the Reykjanes fluids to precipitate enough quartz to heal fractures and trap fluids despite the fluid undersaturation in quartz. Almost all of the glass that was added to the canisters, 27 to 66 grams in each (except glass wool), was consumed in the experiment. Remaining glass was in the non-mesh bottom caps of the canisters where fluid

  5. Size Effect on Specific Energy Distribution in Particle Comminution

    NASA Astrophysics Data System (ADS)

    Xu, Yongfu; Wang, Yidong

    A theoretical study is made to derive an energy distribution equation for the size reduction process from the fractal model for the particle comminution. Fractal model is employed as a valid measure of the self-similar size distribution of comminution daughter products. The tensile strength of particles varies with particle size in the manner of a power function law. The energy consumption for comminuting single particle is found to be proportional to the 5(D-3)/3rd order of the particle size, D being the fractal dimension of particle comminution daughter. The Weibull statistics is applied to describe the relationship between the breakage probability and specific energy of particle comminution. A simple equation is derived for the breakage probability of particles in view of the dependence of fracture energy on particle size. The calculated exponents and Weibull coefficients are generally in conformity with published data for fracture of particles.

  6. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    PubMed

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online

  7. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  8. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE PAGES

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; ...

    2017-04-12

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  9. Ejected Particle Size Distributions from Shocked Metal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, M. M.; Buttler, W. T.; Frayer, D. K.

    Here, we present size distributions for particles ejected from features machined onto the surface of shocked Sn targets. The functional form of the size distributions is assumed to be log-normal, and the characteristic parameters of the distribution are extracted from the measured angular distribution of light scattered from a laser beam incident on the ejected particles. We also found strong evidence for a bimodal distribution of particle sizes with smaller particles evolved from features machined into the target surface and larger particles being produced at the edges of these features.

  10. Sheathless Size-Based Acoustic Particle Separation

    PubMed Central

    Guldiken, Rasim; Jo, Myeong Chan; Gallant, Nathan D.; Demirci, Utkan; Zhe, Jiang

    2012-01-01

    Particle separation is of great interest in many biological and biomedical applications. Flow-based methods have been used to sort particles and cells. However, the main challenge with flow based particle separation systems is the need for a sheath flow for successful operation. Existence of the sheath liquid dilutes the analyte, necessitates precise flow control between sample and sheath flow, requires a complicated design to create sheath flow and separation efficiency depends on the sheath liquid composition. In this paper, we present a microfluidic platform for sheathless particle separation using standing surface acoustic waves. In this platform, particles are first lined up at the center of the channel without introducing any external sheath flow. The particles are then entered into the second stage where particles are driven towards the off-center pressure nodes for size based separation. The larger particles are exposed to more lateral displacement in the channel due to the acoustic force differences. Consequently, different-size particles are separated into multiple collection outlets. The prominent feature of the present microfluidic platform is that the device does not require the use of the sheath flow for positioning and aligning of particles. Instead, the sheathless flow focusing and separation are integrated within a single microfluidic device and accomplished simultaneously. In this paper, we demonstrated two different particle size-resolution separations; (1) 3 μm and 10 μm and (2) 3 μm and 5 μm. Also, the effects of the input power, the flow rate, and particle concentration on the separation efficiency were investigated. These technologies have potential to impact broadly various areas including the essential microfluidic components for lab-on-a-chip system and integrated biological and biomedical applications. PMID:22368502

  11. Ultraviolet (UV) disinfection of grey water: particle size effects.

    PubMed

    Winward, G P; Avery, L M; Stephenson, T; Jefferson, B

    2008-02-01

    The impact of water quality on the ultraviolet (UV) disinfection of grey water was investigated with reference to urban water reuse. Direct UV disinfection of grey water did not meet the stringent California State Title 22 criteria for unrestricted urban water reuse due to the presence of particulate material ranging from < 1 to > or = 2000 microm in size. Grey water was manipulated by settling to produce fractions of varying particle size distributions and blending was employed post-disinfection to extract particle-associated coliforms (PACs). The efficacy of UV disinfection was found to be linked to the particle size of the grey water fractions. The larger particle size fractions with a mean particle size of 262 microm and above were observed to shield more coliforms from UV light than did the smaller particles with a mean particle size below 119 microm. Up to 70% of total coliforms in the larger particle size fractions were particle-associated following a UV dose (fluence) of 260 mJ.cm(-2) and would remain undetected by standard coliform enumeration techniques. Implications for urban water reuse are discussed and recommendations made for grey water treatment to ensure removal of particle-associated indicator bacteria and pathogens prior to UV disinfection.

  12. Calibration of optical particle-size analyzer

    DOEpatents

    Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.

    1979-01-01

    This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.

  13. Reduction of glycine particle size by impinging jet crystallization.

    PubMed

    Tari, Tímea; Fekete, Zoltán; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-01-15

    The parameters of crystallization processes determine the habit and particle size distribution of the products. A narrow particle size distribution and a small average particle size are crucial for the bioavailability of poorly water-soluble pharmacons. Thus, particle size reduction is often required during crystallization processes. Impinging jet crystallization is a method that results in a product with a reduced particle size due to the homogeneous and high degree of supersaturation at the impingement point. In this work, the applicability of the impinging jet technique as a new approach in crystallization was investigated for the antisolvent crystallization of glycine. A factorial design was applied to choose the relevant crystallization factors. The results were analysed by means of a statistical program. The particle size distribution of the crystallized products was investigated with a laser diffraction particle size analyser. The roundness and morphology were determined with the use of a light microscopic image analysis system and a scanning electron microscope. Polymorphism was characterized by differential scanning calorimetry and powder X-ray diffraction. Headspace gas chromatography was utilized to determine the residual solvent content. Impinging jet crystallization proved to reduce the particle size of glycine. The particle size distribution was appropriate, and the average particle size was an order of magnitude smaller (d(0.5)=8-35 μm) than that achieved with conventional crystallization (d(0.5)=82-680 μm). The polymorphic forms of the products were influenced by the solvent ratio. The quantity of residual solvent in the crystallized products was in compliance with the requirements of the International Conference on Harmonization. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The Effect of Particle Size on the Biodistribution of Low-modulus Hydrogel PRINT Particles

    PubMed Central

    Merkel, Timothy J.; Chen, Kai; Jones, Stephen W.; Pandya, Ashish A.; Tian, Shaomin; Napier, Mary E.; Zamboni, William E.; DeSimone, Joseph M.

    2012-01-01

    There is a growing recognition that the deformability of particles used for drug delivery plays a significant role on their biodistribution and circulation profile. Understanding these effects would provide a crucial tool for the rational design of drug delivery systems. While particles resembling red blood cells (RBCs) in size, shape and deformability have extended circulation times and altered biodistribution profiles compared to rigid, but otherwise similar particles, the in vivo behavior of such highly deformable particles of varied size has not been explored. We report the fabrication of a series of discoid, monodisperse, low-modulus hydrogel particles with diameters ranging from 0.8 to 8.9 μm, spanning sizes smaller than and larger than RBCs. We injected these particles into healthy mice, and tracked their concentration in the blood and their distribution into major organs. These deformable particles all demonstrated some hold up in filtration tissues like the lungs and spleen, followed by release back into the circulation, characterized by decreases in particles in these tissues with concomitant increases in particle concentration in blood. Particles similar to red blood cells in size demonstrated longer circulation times, suggesting that this size and shape of deformable particle is uniquely suited to avoid clearance. PMID:22705460

  15. Creep of quartz by dislocation and grain boundary processes

    NASA Astrophysics Data System (ADS)

    Fukuda, J. I.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    Wet polycrystalline quartz aggregates deformed at temperatures T of 600°-900°C and strain rates of 10-4-10-6 s-1 at a confining pressure Pc of 1.5 GPa exhibit plasticity at low T, governed by dislocation glide and limited recovery, and grain size-sensitive creep at high T, governed by diffusion and sliding at grain boundaries. Quartz aggregates were HIP-synthesized, subjecting natural milky quartz powder to T=900°C and Pc=1.5 GPa, and grain sizes (2 to 25 mm) were varied by annealing at these conditions for up to 10 days. Infrared absorption spectra exhibit a broad OH band at 3400 cm-1 due to molecular water inclusions with a calculated OH content (~4000 ppm, H/106Si) that is unchanged by deformation. Rate-stepping experiments reveal different stress-strain rate functions at different temperatures and grain sizes, which correspond to differing stress-temperature sensitivities. At 600-700°C and grain sizes of 5-10 mm, flow law parameters compare favorably with those for basal plasticity and dislocation creep of wet quartzites (effective stress exponents n of 3 to 6 and activation enthalpy H* ~150 kJ/mol). Deformed samples show undulatory extinction, limited recrystallization, and c-axis maxima parallel to the shortening direction. Similarly fine-grained samples deformed at 800°-900°C exhibit flow parameters n=1.3-2.0 and H*=135-200 kJ/mol corresponding to grain size-sensitive Newtonian creep. Deformed samples show some undulatory extinction and grain sizes change by recrystallization; however, grain boundary deformation processes are indicated by the low value of n. Our experimental results for grain size-sensitive creep can be compared with models of grain boundary diffusion and grain boundary sliding using measured rates of silicon grain boundary diffusion. While many quartz mylonites show microstructural and textural evidence for dislocation creep, results for grain size-sensitive creep may apply to very fine-grained (<10 mm) quartz mylonites.

  16. The role of macrophage mediators in respirable quartz-elicited inflammation

    NASA Astrophysics Data System (ADS)

    van Berlo, D.; Albrecht, C.; Knaapen, A. M.; van Schooten, F. J.; Schins, R. P. F.

    2009-02-01

    The instigation and persistence of an inflammatory response is widely considered to be critically important in quartz-induced lung cancer and fibrosis. Macrophages have been long recognised as a crucial player in pulmonary inflammation, but evidence for the role of type II epithelial cells is accumulating. Investigations were performed in the rat lung type II cell line RLE and the rat alveolar macrophage cell line NR8383 using Western blotting, NF-κB immunohistochemistry and qRT-PCR of the pro-inflammatory genes iNOS and COX-2, as well as the cellular stress gene HO-1. The direct effect of quartz on pro-inflammatory signalling cascades and gene expression in RLE cells was compared to the effect of conditioned media derived from quartz-treated NR8383 cells. Conditioned media activated the NF-κB signalling pathway and induced a far stronger upregulation of iNOS mRNA than quartz itself. Quartz elicited a stronger, progressive induction of COX-2 and HO-1 mRNA. Our results suggest a differentially mediated inflammatory response, in which reactive particles themselves induce oxidative stress and activation of COX-2, while mediators released from particle-activated macrophages trigger NF-κB activation and iNOS expression in type II cells.

  17. Particles size distribution in diluted magnetic fluids

    NASA Astrophysics Data System (ADS)

    Yerin, Constantine V.

    2017-06-01

    Changes in particles and aggregates size distribution in diluted kerosene based magnetic fluids is studied by dynamic light scattering method. It has been found that immediately after dilution in magnetic fluids the system of aggregates with sizes ranging from 100 to 250-1000 nm is formed. In 50-100 h after dilution large aggregates are peptized and in the sample stationary particles and aggregates size distribution is fixed.

  18. Process for preparation of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Kornfeld, D. M. (Inventor)

    1981-01-01

    Monodisperse latexes having a particle size in the range of 2 to 40 microns are prepared by seeded emulsion polymerization in microgravity. A reaction mixture containing smaller monodisperse latex seed particles, predetermined amounts of monomer, emulsifier, initiator, inhibitor and water is placed in a microgravity environment, and polymerization is initiated by heating. The reaction is allowed to continue until the seed particles grow to a predetermined size, and the resulting enlarged particles are then recovered. A plurality of particle-growing steps can be used to reach larger sizes within the stated range, with enlarge particles from the previous steps being used as seed particles for the succeeding steps. Microgravity enables preparation of particles in the stated size range by avoiding gravity related problems of creaming and settling, and flocculation induced by mechanical shear that have precluded their preparation in a normal gravity environment.

  19. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hui; Berlo, Damien van; Shi Tingming

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reducesmore » hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1{beta}) and tumour necrosis factor-alpha (TNF{alpha}). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure.« less

  20. Planar particle/droplet size measurement technique using digital particle image velocimetry image data

    NASA Technical Reports Server (NTRS)

    Kadambi, Jaikrishnan R. (Inventor); Wernet, Mark P. (Inventor); Mielke, Amy F. (Inventor)

    2005-01-01

    A method for determining a mass flux of an entrained phase in a planar two-phase flow records images of particles in the two-phase flow. Respective sizes of the particles (the entrained phase) are determined as a function of a separation between spots identified on the particle images. Respective velocities of the particles are determined. The mass flux of the entrained phase is determined as a function of the size and velocity of the particles.

  1. Filler particle size and composite resin classification systems.

    PubMed

    Lang, B R; Jaarda, M; Wang, R F

    1992-11-01

    The currently used composite resin classification systems need review if they are to continue to serve as descriptives and quantitative parameters denoting the filler particle content of these materials. Examination of the particles in 12 composite resins using a technique of washing the filler particles from the matrix of the composite resin was presented as yet another method of grouping composites according to filler particle content. Light microscopic examination of the filler particles that remained provided a separation of the 12 materials into four easily distinguished groups based on filler particle sizes. The wear of the 12 composite resins determined in a previous study was examined in relation to the classification of the materials by the currently available systems. The wear values were also examined using the groupings of the materials according to their filler particle sizes as determined by separating the particles from the matrix by the washing technique. Grouping composites on the basis of the filler particle sizes found after washing was easily correlated with wear and supported the suggestion that composites with smaller filler particles wear less.

  2. Decomposition of Atmospheric Aerosol Phase Function by Particle Size and Morphology via Single Particle Scattering Measurements

    NASA Astrophysics Data System (ADS)

    Aptowicz, K. B.; Pan, Y.; Martin, S.; Fernandez, E.; Chang, R.; Pinnick, R. G.

    2013-12-01

    We report upon an experimental approach that provides insight into how particle size and shape affect the scattering phase function of atmospheric aerosol particles. Central to our approach is the design of an apparatus that measures the forward and backward scattering hemispheres (scattering patterns) of individual atmospheric aerosol particles in the coarse mode range. The size and shape of each particle is discerned from the corresponding scattering pattern. In particular, autocorrelation analysis is used to differentiate between spherical and non-spherical particles, the calculated asphericity factor is used to characterize the morphology of non-spherical particles, and the integrated irradiance is used for particle sizing. We found the fraction of spherical particles decays exponentially with particle size, decreasing from 11% for particles on the order of 1 micrometer to less than 1% for particles over 5 micrometer. The average phase functions of subpopulations of particles, grouped by size and morphology, are determined by averaging their corresponding scattering patterns. The phase functions of spherical and non-spherical atmospheric particles are shown to diverge with increasing size. In addition, the phase function of non-spherical particles is found to vary little as a function of the asphericity factor.

  3. Determination of exposure to respirable quartz in the stone crushing units at Azendarian-West of Iran.

    PubMed

    Bahrami, Abdul Rahman; Golbabai, Faridah; Mahjub, Hossien; Qorbani, Farshid; Aliabadi, Mohsan; Barqi, Mohamadali

    2008-08-01

    The purpose of this study is to describe the personal exposure to respirable dust and quartz and in stone crushing units located at west of Iran. A size of 40 personal samples and 40 stationary samples were obtained and analysis was done by X-ray diffraction (XRD). The results of personal sampling were shown the concentrations of respirable dust exposure level in workers of process, hopper and drivers were 1.90, 2.22, 1.41 times greater than Occupational Safety and Health Administration permissible exposure limit (OSHA PEL). The average value of total dust and respirable dust emission from stationary sources was 9.46 mg/m(3), 1.24 mg/m(3) respectively, showing that 13.8 % of total dust is respirable. The efficiency of local exhaust ventilation (LEV) to control of particles inside of industrial units was greater than 99%. It is concluded from this research the particulate generated from stone crushing activities contain a significant amount of respirable particle. The amount of free silica in stone quartz is 85 to 97 percent that emission of particles effect to health workers. LEV has important effect in the removal of silica particles in stone crushing units. The worker of hoppers still exposed to silica more than standard limits.

  4. The effects of salt, particle and pore size on the process of carbon dioxide hydrate formation: A critical review

    NASA Astrophysics Data System (ADS)

    Ghaedi, Hosein; Ayoub, Muhammad; Bhat, A. H.; Mahmood, Syed Mohammad; Akbari, Saeed; Murshid, Ghulam

    2016-11-01

    Hydration is an alternative method for CO2 capture. In doing so, some researchers use porous media on an experimental scale. This paper tries to gather the researches on the formation of CO2 hydrate in different types of porous media such as silica sand, quartz sand, Toyoura, pumice, and fire hardened red clay. This review has attempted to examine the effects of salt and particle sizes as two major factors on the induction time, water to hydrate conversion, gas uptake (or gas consumption), and the rate of CO2 hydrate formation. By performing a critical assessment of previous research works, it was observed that the figure for the gas uptake (or gas consumption) and water to hydrate conversion in porous media was decreased by increasing the particle size provided that the pore size was constant. Although, salt can play a role in hydrate formation as the thermodynamic inhibitor, the results show that salt can be regarded as the kinetic growth inhibitor and kinetic promoter. Because of the fact that the gas uptake in seawater is lower than pure water at the end of experiment, the salt can act as a kinetic growth inhibitor. However, since gas uptake (after the nucleation period and for a short period) and the initial rate of hydrate formation in saline water were more than that of pure water, salt can play a promoter role in the kinetic reaction, too. Besides these, in the case of pure water and within a certain particle size, the amount of the hydrate formation rate has been seen to be greater in smaller particles (provided that the pore size is constant), however this has not been observed for seawater.

  5. Suppression of coffee ring: (Particle) size matters

    NASA Astrophysics Data System (ADS)

    Bansal, Lalit; Seth, Pranjal; Murugappan, Bhubesh; Basu, Saptarshi

    2018-05-01

    Coffee ring patterns in drying sessile droplets are undesirable in various practical applications. Here, we experimentally demonstrate that on hydrophobic substrates, the coffee ring can be suppressed just by increasing the particle diameter. Particles with larger size flocculate within the evaporation timescale, leading to a significant gravimetric settling (for Pe > 1) triggering a uniform deposit. Interestingly, the transition to a uniform deposit is found to be independent of the internal flow field and substrate properties. Flocculation of particles also alters the particle packing at the nanoscale resulting in order to disorder transitions. In this letter, we exhibit a physical exposition on how particle size affects morphodynamics of the droplet drying at macro-nano length scales.

  6. Activity of slip in amphibolite facies, fine-grained recrystallized quartz aggregates: high differential stress during high-T creep of quartz?

    NASA Astrophysics Data System (ADS)

    Viegas, G.; Menegon, L. M.; Archanjo, C. J.

    2016-12-01

    Quartz axis fabrics are a valuable tool to investigate strain partitioning/distribution in both naturally- and experimentally deformed quartz. Previous works have shown that slip dominates at high temperatures (> 600º C) and water-rich, commonly sub-magmatic conditions, typically associated with large grain sizes and grain boundary migration microstructures. In the Pernambuco shear zone, sheared quartz veins from a protomylonitic granitoid formed during the main amphibolite facies event constrained at mid-crustal conditions (550-600ºC, 5 kbar). The veins contain heterogeneously-deformed primary quartz grains, which typically form both flattened and elongated ribbons as well as more equant porphyroclasts surrounded by aggregates of fine-grained (ca. 20 µm) recrystallized aggregates. Recrystallized quartz with the same fine grain size may also occur in intracrystalline bands within the porphyroclasts. Chessboard extinction is widely observed in the porphyroclasts, and subgrain boundaries are either parallel or normal to the (0001) direction, suggesting slip on both basal and prismatic planes during recrystallization. Crystallographic preferred orientations (CPOs) of porphyroclasts (≥ 100 µm) show maxima of (0001) axes subparallel to Z and X, suggesting coeval glide along both basal and prism planes during shearing. In the recrystallized aggregates, fabric strength tends to become weaker, but still records glide along and directions. These preliminary results suggest that naturally deformed quartz veins record coeval activity of and slip during dynamic recrystallization under amphibolite facies conditions. The microstructure suggests that the CPO of the fine-grained aggregates is host-controlled and results from dominant subgrain rotation recrystallization. To our knowledge, activity of slip in fine-grained recrystallized aggregates has never been reported before. Thus, these preliminary results call into question the general view that slip is expected to be

  7. Positron Interactions with Oriented Polymers and with Chiral Quartz Crystals

    NASA Astrophysics Data System (ADS)

    Wu, Fei

    Positron annihilation in various materials has been applied to characterize microstructure for decades. In this work, PALS was used to study material nanostructure, with a focus on the size and density of free volume and hole relaxation properties in polycarbonate (PC) and polymethylmethacrylate (PMMA); fundamental studies of polarized positron interaction with chiral crystals were also studied. Free volume relaxation in PC and PMMA with different levels of simple shear orientation was studied by PALS. Effects of applied pressure on the free volume recovery were evaluated. Combining the bulk- and pressure-dependent PALS analyses, the removal of applied pressure led to free-volume relaxation in all samples studied. The alignment of the polymer chains and free-volume holes imposes molecular restrictions on the molecular mobility of both PC and PMMA in their glassy states. Results indicated that the relaxation of the free volume holes at temperatures below glass transition is mostly reversible. Longitudinally polarized positron particles were used to reveal asymmetric interactions in chiral quartz crystals. Experimental results showed a significant intensity difference in free positronium annihilation for left handed (LH) and right handed (RH) chiral quartz crystals. Doppler broadening energy spectra (DBES) of z-cut LH or RH quartz disks at different angles were also measured by an "S parameter" to probe the observed difference. It was found that obtained annihilation energy difference of DBES was in agreement with the result of positron annihilation in bulk chiral crystals. PALS was used to compare different orientations and confirm asymmetric interactions in natural versus synthetic quartz LH and RH crystals in z and non-z orientations. Significant lifetime and intensity differences in free positronium annihilation for LH and RH quartz crystals were observed. The trend was found to be same in the related crystallographic orientations of the LH or RH crystals; the

  8. Sound absorption by suspensions of nonspherical particles: Measurements compared with predictions using various particle sizing techniques

    NASA Astrophysics Data System (ADS)

    Richards, Simon D.; Leighton, Timothy G.; Brown, Niven R.

    2003-10-01

    Knowledge of the particle size distribution is required in order to predict ultrasonic absorption in polydisperse particulate suspensions. This paper shows that the method used to measure the particle size distribution can lead to important differences in the predicted absorption. A reverberation technique developed for measuring ultrasonic absorption by suspended particles is used to measure the absorption in suspensions of nonspherical particles. Two types of particulates are studied: (i) kaolin (china clay) particles which are platelike in form; and (ii) calcium carbonate particles which are more granular. Results are compared to theoretical predictions of visco-inertial absorption by suspensions of spherical particles. The particle size distributions, which are required for these predictions, are measured by laser diffraction, gravitational sedimentation and centrifugal sedimentation, all of which assume spherical particles. For a given sample, each sizing technique yields a different size distribution, leading to differences in the predicted absorption. The particle size distributions obtained by gravitational and centrifugal sedimentation are reinterpreted to yield a representative size distribution of oblate spheroids, and predictions for absorption by these spheroids are compared with the measurements. Good agreement between theory and measurement for the flat kaolin particles is obtained, demonstrating that these particles can be adequately represented by oblate spheroids.

  9. Enhanced size-dependent trapping of particles using microvortices

    PubMed Central

    Zhou, Jian; Kasper, Susan; Papautsky, Ian

    2013-01-01

    Inertial microfluidics has been attracting considerable interest for size-based separation of particles and cells. The inertial forces can be manipulated by expanding the microchannel geometry, leading to formation of microvortices which selectively isolate and trap particles or cells from a mixture. In this work, we aim to enhance our understanding of particle trapping in such microvortices by developing a model of selective particle trapping. Design and operational parameters including flow conditions, size of the trapping region, and target particle concentration are explored to elucidate their influence on trapping behavior. Our results show that the size dependence of trapping is characterized by a threshold Reynolds number, which governs the selective entry of particles into microvortices from the main flow. We show that concentration enhancement on the order of 100,000× and isolation of targets at concentrations in the 1/mL is possible. Ultimately, the insights gained from our systematic investigation suggest optimization solutions that enhance device performance (efficiency, size selectivity, and yield) and are applicable to selective isolation and trapping of large rare cells as well as other applications. PMID:24187531

  10. Artificial neural network based particle size prediction of polymeric nanoparticles.

    PubMed

    Youshia, John; Ali, Mohamed Ehab; Lamprecht, Alf

    2017-10-01

    Particle size of nanoparticles and the respective polydispersity are key factors influencing their biopharmaceutical behavior in a large variety of therapeutic applications. Predicting these attributes would skip many preliminary studies usually required to optimize formulations. The aim was to build a mathematical model capable of predicting the particle size of polymeric nanoparticles produced by a pharmaceutical polymer of choice. Polymer properties controlling the particle size were identified as molecular weight, hydrophobicity and surface activity, and were quantified by measuring polymer viscosity, contact angle and interfacial tension, respectively. A model was built using artificial neural network including these properties as input with particle size and polydispersity index as output. The established model successfully predicted particle size of nanoparticles covering a range of 70-400nm prepared from other polymers. The percentage bias for particle prediction was 2%, 4% and 6%, for the training, validation and testing data, respectively. Polymer surface activity was found to have the highest impact on the particle size followed by viscosity and finally hydrophobicity. Results of this study successfully highlighted polymer properties affecting particle size and confirmed the usefulness of artificial neural networks in predicting the particle size and polydispersity of polymeric nanoparticles. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Parallel particle impactor - novel size-selective particle sampler for accurate fractioning of inhalable particles

    NASA Astrophysics Data System (ADS)

    Trakumas, S.; Salter, E.

    2009-02-01

    Adverse health effects due to exposure to airborne particles are associated with particle deposition within the human respiratory tract. Particle size, shape, chemical composition, and the individual physiological characteristics of each person determine to what depth inhaled particles may penetrate and deposit within the respiratory tract. Various particle inertial classification devices are available to fractionate airborne particles according to their aerodynamic size to approximate particle penetration through the human respiratory tract. Cyclones are most often used to sample thoracic or respirable fractions of inhaled particles. Extensive studies of different cyclonic samplers have shown, however, that the sampling characteristics of cyclones do not follow the entire selected convention accurately. In the search for a more accurate way to assess worker exposure to different fractions of inhaled dust, a novel sampler comprising several inertial impactors arranged in parallel was designed and tested. The new design includes a number of separated impactors arranged in parallel. Prototypes of respirable and thoracic samplers each comprising four impactors arranged in parallel were manufactured and tested. Results indicated that the prototype samplers followed closely the penetration characteristics for which they were designed. The new samplers were found to perform similarly for liquid and solid test particles; penetration characteristics remained unchanged even after prolonged exposure to coal mine dust at high concentration. The new parallel impactor design can be applied to approximate any monotonically decreasing penetration curve at a selected flow rate. Personal-size samplers that operate at a few L/min as well as area samplers that operate at higher flow rates can be made based on the suggested design. Performance of such samplers can be predicted with high accuracy employing well-established impaction theory.

  12. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Black Pellet

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    2018-06-01

    The kinetic modeling for the carbothermal reduction reaction rate in quartz and carbon black pellets is studied at different temperatures, under varying CO partial pressures in ambient atmosphere, varying carbon contents, different quartz particle sizes, and different crucible opening areas. Carbon black is produced by the cracking of natural gas. The activation energy of the SiC-producing step was determined to be 594 kJ/mol. The averaged pre-exponential factor A obtained from 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) is 2.62E+16 min-1. The reaction rate of the gas-solid interface factor, fix-C content ( X fix-C), temperature ( T), and CO partial pressure ( X CO) can be expressed as follows: {{d/pct}}{{{d}t}} = (1 - 0.40 × X_{{{fix} - C}}^{ - 0.86} × {pct}) × 2.62 × 10^{16} × \\exp ( { - 594000/RT} ) × (2.6 - 0.015 × X_{co} ).

  13. Size resolved ultrafine particles emission model--a continues size distribution approach.

    PubMed

    Nikolova, Irina; Janssen, Stijn; Vrancken, Karl; Vos, Peter; Mishra, Vinit; Berghmans, Patrick

    2011-08-15

    A new parameterization for size resolved ultrafine particles (UFP) traffic emissions is proposed based on the results of PARTICULATES project (Samaras et al., 2005). It includes the emission factors from the Emission Inventory Guidebook (2006) (total number of particles, #/km/veh), the shape of the corresponding particle size distribution given in PARTICULATES and data for the traffic activity. The output of the model UFPEM (UltraFine Particle Emission Model) is a sum of continuous distributions of ultrafine particles emissions per vehicle type (passenger cars and heavy duty vehicles), fuel (petrol and diesel) and average speed representative for urban, rural and highway driving. The results from the parameterization are compared with measured total number of ultrafine particles and size distributions in a tunnel in Antwerp (Belgium). The measured UFP concentration over the entire campaign shows a close relation to the traffic activity. The modelled concentration is found to be lower than the measured in the campaign. The average emission factor from the measurement is 4.29E+14 #/km/veh whereas the calculated is around 30% lower. A comparison of emission factors with literature is done as well and in overall a good agreement is found. For the size distributions it is found that the measured distributions consist of three modes--Nucleation, Aitken and accumulation and most of the ultrafine particles belong to the Nucleation and the Aitken modes. The modelled Aitken mode (peak around 0.04-0.05 μm) is found in a good agreement both as amplitude of the peak and the number of particles whereas the modelled Nucleation mode is shifted to smaller diameters and the peak is much lower that the observed. Time scale analysis shows that at 300 m in the tunnel coagulation and deposition are slow and therefore neglected. The UFPEM emission model can be used as a source term in dispersion models. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effect of biochar particle size on hydrophobic organic compound sorption kinetics: Applicability of using representative size.

    PubMed

    Kang, Seju; Jung, Jihyeun; Choe, Jong Kwon; Ok, Yong Sik; Choi, Yongju

    2018-04-01

    Particle size of biochar may strongly affect the kinetics of hydrophobic organic compound (HOC) sorption. However, challenges exist in characterizing the effect of biochar particle size on the sorption kinetics because of the wide size range of biochar. The present study suggests a novel method to determine a representative value that can be used to show the dependence of HOC sorption kinetics to biochar particle size on the basis of an intra-particle diffusion model. Biochars derived from three different feedstocks are ground and sieved to obtain three daughter products each having different size distributions. Phenanthrene sorption kinetics to the biochars are well described by the intra-particle diffusion model with significantly greater sorption rates observed for finer grained biochars. The time to reach 95% of equilibrium for phenanthrene sorption to biochar is reduced from 4.6-17.9days for the original biochars to <1-4.6days for the powdered biochars with <125μm in size. A moderate linear correlation is found between the inverse square of the representative biochar particle radius obtained using particle size distribution analysis and the apparent phenanthrene sorption rates determined by the sorption kinetics experiments and normalized to account for the variation of the sorption rate-determining factors other than the biochar particle radius. The results suggest that the representative biochar particle radius reasonably describes the dependence of HOC sorption rates on biochar particle size. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Oxygen isotopic ratios in quartz as an indicator of provenance of dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, M L

    1977-01-01

    Quartz was isolated in the long range aerosol size range (fine silt, 1-10 ..mu..m in diameter) from atmospheric aerosols, wind-erosive soils, soil silts, shales, and Pacific pelagic sediments of the Northern and Southern Hemispheres, to trace their provenance or origin, as part of a study of dust mineral sequestering of /sup 137/Cs and other products of nuclear fission. The oxygen isotopic ratio (/sup 18/O//sup 16/O) was determined by mass spectrometry. The provenance has been established for this fine silt fraction which reflects the relative proportion of two classes of quartz source: (a) weathering of igneous and metamorphic rocks (high temperaturemore » origin and low /sup 18/O//sup 16/O ratio) and (b) of quartz crystallized in cherts and overgrowths (low temperature origin and high /sup 18/O//sup 16/O ratio). This quartz mixing ratio is a basic model or paradigm. Analyses of present day atmospheric aerosols and eolian-derived soils, Pacific pelagic sediments, and now-raised Phanerozoic marine sediments show that the Northern and Southern Hemispheres have separate large-scale reservoirs of the fine grain sizes that contribute to aerosol dusts. These can be identified by distinctive values of /sup 18/O//sup 16/O ratios of the quartz therein. The difference in quartz delta/sup 18/O value in parts per thousand per ml (/sup 0///sub 00/ of about 12 +- 2 /sup 0///sub 00/ in Southern Hemisphere mixed detrital sediments and about 19 +- 2 /sup 0///sub 00/ in those of the Northern Hemisphere (for constant size, the 1-10 ..mu..m size fraction) results from the presence of a considerably larger proportion of quartz having low-temperature origin and higher delta/sup 18/O values (chert, silica overgrowths, etc.) in the Northern Hemisphere reservoirs. The early paleoclimatic and paleogeochemical differences remain the control of the North-South Hemisphere difference in delta/sup 18/O values in long-range aerosol sized quartz.« less

  16. Influence of feedstock particle size on lignocellulose conversion--a review.

    PubMed

    Vidal, Bernardo C; Dien, Bruce S; Ting, K C; Singh, Vijay

    2011-08-01

    Feedstock particle sizing can impact the economics of cellulosic ethanol commercialization through its effects on conversion yield and energy cost. Past studies demonstrated that particle size influences biomass enzyme digestibility to a limited extent. Physical size reduction was able to increase conversion rates to maximum of ≈ 50%, whereas chemical modification achieved conversions of >70% regardless of biomass particle size. This suggests that (1) mechanical pretreatment by itself is insufficient to attain economically feasible biomass conversion, and, therefore, (2) necessary particle sizing needs to be determined in the context of thermochemical pretreatment employed for lignocellulose conversion. Studies of thermochemical pretreatments that have taken into account particle size as a factor have exhibited a wide range of maximal sizes (i.e., particle sizes below which no increase in pretreatment effectiveness, measured in terms of the enzymatic conversion resulting from the pretreatment, were observed) from <0.15 to 50 mm. Maximal sizes as defined above were dependent on the pretreatment employed, with maximal size range decreasing as follows: steam explosion > liquid hot water > dilute acid and base pretreatments. Maximal sizes also appeared dependent on feedstock, with herbaceous or grassy biomass exhibiting lower maximal size range (<3 mm) than woody biomass (>3 mm). Such trends, considered alongside the intensive energy requirement of size reduction processes, warrant a more systematic study of particle size effects across different pretreatment technologies and feedstock, as a requisite for optimizing the feedstock supply system.

  17. Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.

    1975-01-01

    Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.

  18. Modeling the interface of platinum and α-quartz(001): Implications for sintering

    DOE PAGES

    Plessow, Philipp N.; Sánchez-Carrera, Roel S.; Li, Lin; ...

    2016-05-04

    We present a first-principles study which aims to understand the metal–support interaction of platinum nanoparticles on α-quartz(001) and, more generally, silica. The thermodynamic stability of the α-quartz(001) surface and its interface with Pt(111) are investigated as a function of temperature and partial pressure of H 2O and O 2. Potential defects in the α-quartz(001) surface as well as the adsorption energies of the Pt atom are also studied. This allows us to draw conclusions concerning nanoparticle shape and the resistance toward particle migration based on the interface free energies. We find that, as for the clean α-quartz(001) surface, a dry,more » reconstructed interface is expected at temperatures that are high but within experimentally relevant ranges. On an ideal, dry, reconstructed surface, particle migration is predicted to be a fast sintering mechanism. On real surfaces, defects may locally prevent reconstruction and act as anchoring points. Finally, the energetics of the adsorption of platinum atoms on α-quartz(001) do not support surface-mediated single-atom migration as a viable path for sintering on the investigated surfaces.« less

  19. Anomalous change of Airy disk with changing size of spherical particles

    NASA Astrophysics Data System (ADS)

    Pan, Linchao; Zhang, Fugen; Meng, Rui; Xu, Jie; Zuo, Chenze; Ge, Baozhen

    2016-02-01

    Use of laser diffraction is considered as a method of reliable principle and mature technique in measurements of particle size distributions. It is generally accepted that for a certain relative refractive index, the size of the scattering pattern (also called Airy disk) of spherical particles monotonically decreases with increasing particle size. This fine structure forms the foundation of the laser diffraction method. Here we show that the Airy disk size of non-absorbing spherical particles becomes larger with increasing particle size in certain size ranges. To learn more about this anomalous change of Airy disk (ACAD), we present images of Airy disk and curves of Airy disk size versus particle size for spherical particles of different relative refractive indices by using Mie theory. These figures reveal that ACAD occurs periodically for non-absorbing particles and will disappear when the absorbing efficiency is higher than certain value. Then by using geometrical optics (GO) approximation, we derive the analytical formulae for the bounds of the size ranges where ACAD occurs. From the formulae, we obtain laws of ACAD as follows: (1) for non-absorbing particles, ACAD occurs periodically, and when the particle size tends to infinity, the period tends to a certain value. As the relative refractive index increases, (2) the particle size ranges where ACAD occurs shift to smaller values, (3) the period of ACAD becomes smaller, and (4) the width of the size ranges where ACAD occurs becomes narrower. In addition, we can predict from the formulae that ACAD also exists for particles whose relative refractive index is smaller than 1.

  20. Particle sizing of pharmaceutical aerosols via direct imaging of particle settling velocities.

    PubMed

    Fishler, Rami; Verhoeven, Frank; de Kruijf, Wilbur; Sznitman, Josué

    2018-02-15

    We present a novel method for characterizing in near real-time the aerodynamic particle size distributions from pharmaceutical inhalers. The proposed method is based on direct imaging of airborne particles followed by a particle-by-particle measurement of settling velocities using image analysis and particle tracking algorithms. Due to the simplicity of the principle of operation, this method has the potential of circumventing potential biases of current real-time particle analyzers (e.g. Time of Flight analysis), while offering a cost effective solution. The simple device can also be constructed in laboratory settings from off-the-shelf materials for research purposes. To demonstrate the feasibility and robustness of the measurement technique, we have conducted benchmark experiments whereby aerodynamic particle size distributions are obtained from several commercially-available dry powder inhalers (DPIs). Our measurements yield size distributions (i.e. MMAD and GSD) that are closely in line with those obtained from Time of Flight analysis and cascade impactors suggesting that our imaging-based method may embody an attractive methodology for rapid inhaler testing and characterization. In a final step, we discuss some of the ongoing limitations of the current prototype and conceivable routes for improving the technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Particle size analysis of some water/oil/water multiple emulsions.

    PubMed

    Ursica, L; Tita, D; Palici, I; Tita, B; Vlaia, V

    2005-04-29

    Particle size analysis gives useful information about the structure and stability of multiple emulsions, which are important characteristics of these systems. It also enables the observation of the growth process of particles dispersed in multiple emulsions, accordingly, the evolution of their dimension in time. The size of multiple particles in the seven water/oil/water (W/O/W) emulsions was determined by measuring the particles size observed during the microscopic examination. In order to describe the distribution of the size of multiple particles, the value of two parameters that define the particle size was calculated: the arithmetical mean diameter and the median diameter. The results of the particle size analysis in the seven multiple emulsions W/O/W studied are presented as histograms of the distribution density immediately, 1 and 3 months after the preparation of each emulsion, as well as by establishing the mean and the median diameter of particles. The comparative study of the distribution histograms and of the mean and median diameters of W/O/W multiple particles indicates that the prepared emulsions are fine and very fine dispersions, stable, and presenting a growth of the abovementioned diameters during the study.

  2. Monodisperse Block Copolymer Particles with Controllable Size, Shape, and Nanostructure

    NASA Astrophysics Data System (ADS)

    Shin, Jae Man; Kim, Yongjoo; Kim, Bumjoon; PNEL Team

    Shape-anisotropic particles are important class of novel colloidal building block for their functionality is more strongly governed by their shape, size and nanostructure compared to conventional spherical particles. Recently, facile strategy for producing non-spherical polymeric particles by interfacial engineering received significant attention. However, achieving uniform size distribution of particles together with controlled shape and nanostructure has not been achieved. Here, we introduce versatile system for producing monodisperse BCP particles with controlled size, shape and morphology. Polystyrene-b-polybutadiene (PS-b-PB) self-assembled to either onion-like or striped ellipsoid particle, where final structure is governed by amount of adsorbed sodium dodecyl sulfate (SDS) surfactant at the particle/surrounding interface. Further control of molecular weight and particle size enabled fine-tuning of aspect ratio of ellipsoid particle. Underlying physics of free energy for morphology formation and entropic penalty associated with bending BCP chains strongly affects particle structure and specification.

  3. Particle interaction of lubricated or unlubricated binary mixtures according to their particle size and densification mechanism.

    PubMed

    Di Martino, Piera; Joiris, Etienne; Martelli, Sante

    2004-09-01

    The aim of this study is to assess an experimental approach for technological development of a direct compression formulation. A simple formula was considered composed by an active ingredient, a diluent and a lubricant. The active ingredient and diluent were selected as an example according to their typical densification mechanism: the nitrofurantoine, a fragmenting material, and the cellulose microcrystalline (Vivapur), which is a typical visco-elastic material, equally displaying good bind and disintegrant properties. For each ingredient, samples of different particle size distribution were selected. Initially, tabletability of pure materials was studied by a rotary press without magnesium stearate. Vivapur tabletability decreases with increase in particle size. The addition of magnesium stearate as lubricant decreases tabletability of Vivapur of greater particle size, while it kept unmodified that of Vivapur of lower particle size. Differences in tabletability can be related to differences in particle-particle interactions; for Vivapur of higher particle size (Vivapur 200, 102 and 101), the lower surface area develops lower surface available for bonds, while for Vivapur of lower particle size (99 and 105) the greater surface area allows high particle proximity favouring particle cohesivity. Nitrofurantoine shows great differences in compression behaviour according to its particle size distribution. Large crystals show poorer tabletability than fine crystals, further decreased by lubricant addition. The large crystals poor tabletability is due to their poor compactibility, in spite of high compressibility and plastic intrinsic deformability; in fact, in spite of the high densification tendency, the nature of the involved bonds is very weak. Nitrofurantoine samples were then mixed with Vivapurs in different proportions. Compression behaviour of binary mixes (tabletability and compressibility) was then evaluated according to diluents proportion in the mixes. The

  4. Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology.

    PubMed

    Perez, Aurora; Hernández, Rebeca; Velasco, Diego; Voicu, Dan; Mijangos, Carmen

    2015-03-01

    Microfluidic techniques are expected to provide narrower particle size distribution than conventional methods for the preparation of poly (lactic-co-glycolic acid) (PLGA) microparticles. Besides, it is hypothesized that the particle size distribution of poly (lactic-co-glycolic acid) microparticles influences the settling behavior and rheological properties of its aqueous dispersions. For the preparation of PLGA particles, two different methods, microfluidic and conventional oil-in-water emulsification methods were employed. The particle size and particle size distribution of PLGA particles prepared by microfluidics were studied as a function of the flow rate of the organic phase while particles prepared by conventional methods were studied as a function of stirring rate. In order to study the stability and structural organization of colloidal dispersions, settling experiments and oscillatory rheological measurements were carried out on aqueous dispersions of PLGA particles with different particle size distributions. Microfluidics technique allowed the control of size and size distribution of the droplets formed in the process of emulsification. This resulted in a narrower particle size distribution for samples prepared by MF with respect to samples prepared by conventional methods. Polydisperse samples showed a larger tendency to aggregate, thus confirming the advantages of microfluidics over conventional methods, especially if biomedical applications are envisaged. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Determining size-specific emission factors for environmental tobacco smoke particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepeis, Neil E.; Apte, Michael G.; Gundel, Lara A.

    Because size is a major controlling factor for indoor airborne particle behavior, human particle exposure assessments will benefit from improved knowledge of size-specific particle emissions. We report a method of inferring size-specific mass emission factors for indoor sources that makes use of an indoor aerosol dynamics model, measured particle concentration time series data, and an optimization routine. This approach provides--in addition to estimates of the emissions size distribution and integrated emission factors--estimates of deposition rate, an enhanced understanding of particle dynamics, and information about model performance. We applied the method to size-specific environmental tobacco smoke (ETS) particle concentrations measured everymore » minute with an 8-channel optical particle counter (PMS-LASAIR; 0.1-2+ micrometer diameters) and every 10 or 30 min with a 34-channel differential mobility particle sizer (TSI-DMPS; 0.01-1+ micrometer diameters) after a single cigarette or cigar was machine-smoked inside a low air-exchange-rate 20 m{sup 3} chamber. The aerosol dynamics model provided good fits to observed concentrations when using optimized values of mass emission rate and deposition rate for each particle size range as input. Small discrepancies observed in the first 1-2 hours after smoking are likely due to the effect of particle evaporation, a process neglected by the model. Size-specific ETS particle emission factors were fit with log-normal distributions, yielding an average mass median diameter of 0.2 micrometers and an average geometric standard deviation of 2.3 with no systematic differences between cigars and cigarettes. The equivalent total particle emission rate, obtained integrating each size distribution, was 0.2-0.7 mg/min for cigars and 0.7-0.9 mg/min for cigarettes.« less

  6. The use of a quartz crystal microbalance as an analytical tool to monitor particle/surface and particle/particle interactions under dry ambient and pressurized conditions: a study using common inhaler components.

    PubMed

    Turner, N W; Bloxham, M; Piletsky, S A; Whitcombe, M J; Chianella, I

    2016-12-19

    Metered dose inhalers (MDI) and multidose powder inhalers (MPDI) are commonly used for the treatment of chronic obstructive pulmonary diseases and asthma. Currently, analytical tools to monitor particle/particle and particle/surface interaction within MDI and MPDI at the macro-scale do not exist. A simple tool capable of measuring such interactions would ultimately enable quality control of MDI and MDPI, producing remarkable benefits for the pharmaceutical industry and the users of inhalers. In this paper, we have investigated whether a quartz crystal microbalance (QCM) could become such a tool. A QCM was used to measure particle/particle and particle/surface interactions on the macroscale, by additions of small amounts of MDPI components, in the powder form into a gas stream. The subsequent interactions with materials on the surface of the QCM sensor were analyzed. Following this, the sensor was used to measure fluticasone propionate, a typical MDI active ingredient, in a pressurized gas system to assess its interactions with different surfaces under conditions mimicking the manufacturing process. In both types of experiments the QCM was capable of discriminating interactions of different components and surfaces. The results have demonstrated that the QCM is a suitable platform for monitoring macro-scale interactions and could possibly become a tool for quality control of inhalers.

  7. Particle sizes in slash fire smoke.

    Treesearch

    David V. Sandberg; Robert E. Martin

    1975-01-01

    Particulate emissions are the most objectionable atmospheric contaminant from forest burning. Little is known of the particulate sizes, and this research was done under laboratory conditions to obtain particle size information. Comments are made concerning techniques for future work in this field.

  8. Relationship Between Cirrus Particle Size and Cloud Top Temperature

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    The relationship between cirrus particle size and cloud top temperature is surveyed on a near-global scale. The cirrus particle size is retrieved assuming ice crystals are hexagonal columns and the cloud top temperature and the radiances in channel 1 and 3 of AVHRR used to retrieve ice particle sizes are from ISCCP product. The results show that for thick clouds over North America, the relation between particle size and cloud top temperature is consistent with a summary of this relationship based on aircraft measurement over that region for thick clouds. However, this relationship is not universal for other regions especially for for tropical zone, which has been found by other in situ measurements.

  9. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Williams, P.; Roldin, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.; Löschau, G.; Bastian, S.

    2012-03-01

    Mobility particle size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide range of applications in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards and guidelines with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. Technical standards were developed for a minimum requirement of mobility size spectrometry to perform long-term atmospheric aerosol measurements. Technical recommendations include continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyzer. We compared commercial and custom-made inversion routines to calculate the particle number size distributions from the measured electrical mobility distribution. All inversion routines are comparable within few per cent uncertainty for a given set of raw data. Furthermore, this work summarizes the results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research) and ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) to determine present uncertainties especially of custom-built mobility particle size spectrometers. Under controlled laboratory conditions, the particle number size distributions from 20 to 200 nm determined by mobility particle size spectrometers of different design are within an uncertainty range of around ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. For particles larger than 200 nm, the uncertainty range increased to 30%, which could not be explained. The network reference mobility spectrometers with identical design agreed within ±4% in the peak particle number concentration

  10. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium.

    PubMed

    Zakhari, Monica E A; Anderson, Patrick D; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012)1359-664010.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1%. The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  11. Effect of particle-size dynamics on properties of dense spongy-particle systems: Approach towards equilibrium

    NASA Astrophysics Data System (ADS)

    Zakhari, Monica E. A.; Anderson, Patrick D.; Hütter, Markus

    2017-07-01

    Open-porous deformable particles, often envisaged as sponges, are ubiquitous in biological and industrial systems (e.g., casein micelles in dairy products and microgels in cosmetics). The rich behavior of these suspensions is owing to the elasticity of the supporting network of the particle, and the viscosity of permeating solvent. Therefore, the rate-dependent size change of these particles depends on their structure, i.e., the permeability. This work aims at investigating the effect of the particle-size dynamics and the underlying particle structure, i.e., the particle permeability, on the transient and long-time behavior of suspensions of spongy particles in the absence of applied deformation, using the dynamic two-scale model developed by Hütter et al. [Farad. Discuss. 158, 407 (2012), 10.1039/c2fd20025b]. In the high-density limit, the transient behavior is found to be accelerated by the particle-size dynamics, even at average size changes as small as 1 % . The accelerated dynamics is evidenced by (i) the higher short-time diffusion coefficient as compared to elastic-particle systems and (ii) the accelerated formation of the stable fcc crystal structure. Furthermore, after long times, the particle-size dynamics of spongy particles is shown to result in lower stationary values of the energy and normal stresses as compared to elastic-particle systems. This dependence of the long-time behavior of these systems on the permeability, that essentially is a transport coefficient and hence must not affect the equilibrium properties, confirms that full equilibration has not been reached.

  12. Diffractive optics for particle velocimetry and sizing

    NASA Technical Reports Server (NTRS)

    Wilson, D. W.; Gogna, P. K.; Chacon, R. J.; Muller, R. E.; Fourguette, D.; Modarress, D.; Taugwalder, F.; Svitek, P.; Gharib, M.

    2002-01-01

    Beam-shaping diffractive optical elements are used to create structured light patterns in fluid flows. Particle scattering results in detected signals that can be used to determine the particle size and velocity.

  13. Method of producing submicron size particles and product produced thereby

    DOEpatents

    Bourne, R.S.; Eichman, C.C.; Welbon, W.W.

    1988-05-11

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.

  14. Chromate content versus particle size for aircraft paints.

    PubMed

    LaPuma, Peter T; Rhodes, Brian S

    2002-12-01

    Many industries rely on the corrosion inhibiting properties of chromate-containing primer paints to protect metal from oxidation. However, chromate contains hexavalent chromium (Cr(6+)), a known human carcinogen. The concentration of Cr(6+) as a function of paint particle size has important implications to worker health and environmental release from paint facilities. This research examines Cr(6+) content as a function of particle size for three types of aircraft primer paints: solvent-based epoxy-polyamide, water-based epoxy-polyamide, and solvent-based polyurethane. Cascade impactors were used to collect and separate paint particles based on their aerodynamic diameter, from 0.7 to 34.1 microm. The mass of the dry paint collected at each stage was determined and an atomic absorption spectrometer was used to analyze for Cr(6+) content. For all three paints, particles less than 7.0 microm contained disproportionately less Cr(6+) per mass of dry paint than larger particles, and the Cr(6+)concentration decreased substantially as particle size decreased. The smallest particles, 0.7 to 1.0 microm, contained approximately 10% of the Cr(6+) content, per mass of dry paint, compared to particles larger than 7.0 microm. The paint gun settings of air to paint ratio was found to have no influence on the Cr(6+) bias.

  15. Effect of Cobalt Particle Size on Acetone Steam Reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Junming; Zhang, He; Yu, Ning

    2015-06-11

    Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation,more » and the oxidation state of the cobalt nanoparticles.« less

  16. Size Dependent Elemental Composition of Road-Associated Particles

    PubMed Central

    McKenzie, Erica R.; Wong, Carol M.; Green, Peter G.; Kayhanian, Masoud; Young, Thomas M.

    2009-01-01

    Stormwater particles often provide transport for metals and other contaminants, however only larger particles are effectively removed by typical best management practices. Fine particles and their associated constituents are more likely to reach receiving waters; this merits further investigation regarding the metal contribution of fine (dp<10 μm) and very fine (dp <1.5 μm) particles. Road associated particles were collected by vacuuming a road surface and by collecting highway stormwater runoff. A cell sorter was employed to sort road associated particles into four size ranges: 0.1–0.3, 0.3–0.5, 0.5–1.0, and 1.0–1.5 μm. These very fine particles, along with six particle size ranges (total range <2–63 μm) separated using a settling column, were analyzed for Al, Mn, Fe, Cr, Ni, Cu, Zn, and Pb using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Enrichment factors (EFs), calculated using Al as a basis to represent crustal contributions, were similar for the vacuumed road dust and the stormwater runoff. Fe and Mn were minimally depleted (0.1x) or near unity for all size ranges (Fe EF range 0.01–3.7; Mn EF range 0.02–10.6). Cr, Ni, Cu, Zn, and Pb were moderately (10x) to considerably (>100x) enriched for most size ranges; these metals were most enriched in the very fine fractions (max EF~4900 in Zn, 0.1–0.3 μm). Based on this preliminary study, a cell sorter is an acceptable means of fractionating aqueous particles of diameter 0.1–1.5 μm. In spite of their minimal relative mass contribution, the very fine particles are environmentally relevant due to their mobility and enrichment in potentially toxic metals.. PMID:18433840

  17. Seed particle response and size characterization in high speed flows

    NASA Technical Reports Server (NTRS)

    Rudoff, Roger C.; Bachalo, William D.

    1991-01-01

    The response of seed particles ranging between 0.7 and 8.7 micron is determined using a phase Doppler particle analyzer which simultaneously measures particle size and velocity. The stagnant seed particles are entrained into a high speed free jet at velocities ranging from 40 to 300 m/s. The size-mean axial velocity correlation and size-rms velocity correlations are used to determine the particle response to the sudden acceleration. It was determined that at the lower speeds, seed particles up to approximately 5 microns are adequate, but as velocities approach 300 m/s only particles on the order of one micron are suitable. The ability to determine size and velocity simultaneously is essential if seeding with polydispersions is used since it allows the rejection of data which will not accurately represent the flow field.

  18. PROCEDURE FOR DETERMINATION OF SEDIMENT PARTICLE SIZE (GRAIN SIZE)

    EPA Science Inventory

    Sediment quality and sediment remediation projects have become a high priority for USEPA. Sediment particle size determinations are used in environmental assessments for habitat characterization, chemical normalization, and partitioning potential of chemicals. The accepted met...

  19. Note: Evaluation of slurry particle size analyzers for chemical mechanical planarization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Sunjae; Kulkarni, Atul; Qin, Hongyi

    In the chemical mechanical planarization (CMP) process, slurry particle size is important because large particles can cause defects. Hence, selection of an appropriate particle measuring system is necessary in the CMP process. In this study, a scanning mobility particle sizer (SMPS) and dynamic light scattering (DLS) were compared for particle size distribution (PSD) measurements. In addition, the actual particle size and shape were confirmed by transmission electron microscope (TEM) results. SMPS classifies the particle size according to the electrical mobility, and measures the particle concentration (single particle measurement). On the other hand, the DLS measures the particle size distribution bymore » analyzing scattered light from multiple particles (multiple particle measurement). For the slurry particles selected for evaluation, it is observed that SMPS shows bi-modal particle sizes 30 nm and 80 nm, which closely matches with the TEM measurements, whereas DLS shows only single mode distribution in the range of 90 nm to 100 nm and showing incapability of measuring small particles. Hence, SMPS can be a better choice for the evaluation of CMP slurry particle size and concentration measurements.« less

  20. Particle Size Distribution in Aluminum Manufacturing Facilities

    PubMed Central

    Liu, Sa; Noth, Elizabeth M.; Dixon-Ernst, Christine; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine

    2015-01-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM2.5 measured by PMI was compared to PM2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM1.0) and quasi-ultrafine (PM0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM2.5 versus MiniMOUDI_PM2.5 was 1.03 mg/m3 per mg/m3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM10 which was PM1.0 or PM0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities. PMID:26478760

  1. Particle Size Distribution in Aluminum Manufacturing Facilities.

    PubMed

    Liu, Sa; Noth, Elizabeth M; Dixon-Ernst, Christine; Eisen, Ellen A; Cullen, Mark R; Hammond, S Katharine

    2014-10-01

    As part of exposure assessment for an ongoing epidemiologic study of heart disease and fine particle exposures in aluminum industry, area particle samples were collected in production facilities to assess instrument reliability and particle size distribution at different process areas. Personal modular impactors (PMI) and Minimicro-orifice uniform deposition impactors (MiniMOUDI) were used. The coefficient of variation (CV) of co-located samples was used to evaluate the reproducibility of the samplers. PM 2.5 measured by PMI was compared to PM 2.5 calculated from MiniMOUDI data. Mass median aerodynamic diameter (MMAD) and concentrations of sub-micrometer (PM 1.0 ) and quasi-ultrafine (PM 0.56) particles were evaluated to characterize particle size distribution. Most of CVs were less than 30%. The slope of the linear regression of PMI_PM 2.5 versus MiniMOUDI_PM 2.5 was 1.03 mg/m 3 per mg/m 3 (± 0.05), with correlation coefficient of 0.97 (± 0.01). Particle size distribution varied substantively in smelters, whereas it was less variable in fabrication units with significantly smaller MMADs (arithmetic mean of MMADs: 2.59 μm in smelters vs. 1.31 μm in fabrication units, p = 0.001). Although the total particle concentration was more than two times higher in the smelters than in the fabrication units, the fraction of PM 10 which was PM 1.0 or PM 0.56 was significantly lower in the smelters than in the fabrication units (p < 0.001). Consequently, the concentrations of sub-micrometer and quasi-ultrafine particles were similar in these two types of facilities. It would appear, studies evaluating ultrafine particle exposure in aluminum industry should focus on not only the smelters, but also the fabrication facilities.

  2. Mobility of nanosized cerium dioxide and polymeric capsules in quartz and loamy sands saturated with model and natural groundwaters.

    PubMed

    Petosa, Adamo Riccardo; Ohl, Carolin; Rajput, Faraz; Tufenkji, Nathalie

    2013-10-01

    The environmental and health risks posed by emerging engineered nanoparticles (ENPs) released into aquatic environments are largely dependent on their aggregation, transport, and deposition behavior. Herein, laboratory-scale columns were used to examine the mobility of polyacrylic acid (PAA)-coated cerium dioxide nanoparticles (nCeO2) and an analogous nanosized polymeric capsule (nCAP) in water saturated quartz sand or loamy sand. The influence of solution ionic strength (IS) and cation type (Na(+), Ca(2+), or Mg(2+)) on the transport potential of these ENPs was examined in both granular matrices and results were also compared to measurements obtained using a natural groundwater. ENP suspensions were characterized using dynamic light scattering and nanoparticle tracking analysis to establish aggregate size, and laser Doppler electrophoresis to determine ENP electrophoretic mobility. Regardless of IS, virtually all nCeO2 particles suspended in NaNO3 eluted from the quartz sand-packed columns. In contrast, heightened nCeO2 and nCAP particle retention and dynamic (time-dependent) transport behavior was observed with increasing concentrations of the divalent salts and in the presence of natural groundwater. Enhanced particle retention was also observed in loamy sand in comparison to the quartz sand, emphasizing the need to consider the nature of the aqueous matrix and granular medium in evaluating contamination risks associated with the release of ENPs in natural and engineered aquatic environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sonochemical synthesis of silica particles and their size control

    NASA Astrophysics Data System (ADS)

    Kim, Hwa-Min; Lee, Chang-Hyun; Kim, Bonghwan

    2016-09-01

    Using an ultrasound-assisted sol-gel method, we successfully synthesized very uniformly shaped, monodisperse, and size-controlled spherical silica particles from a mixture of ethanol, water, and tetraethyl orthosilicate in the presence of ammonia as catalyst, at room temperature. The diameters of the silica particles were distributed in the range from 40 to 400 nm; their morphology was well characterized by scanning electron microscopy. The silica particle size could be adjusted by choosing suitable concentrations of ammonium hydroxide and water, which in turn determined the nucleation and growth rates of the particles during the reaction. This sonochemical-based silica synthesis offers an alternative way to produce spherical silica particles in a relatively short reaction time. Thus, we suggest that this simple, low-cost, and efficient method of preparing uniform silica particles of various sizes will have practical and wide-ranging industrial applicability.

  4. Adequacy of laser diffraction for soil particle size analysis

    PubMed Central

    Fisher, Peter; Aumann, Colin; Chia, Kohleth; O'Halloran, Nick; Chandra, Subhash

    2017-01-01

    Sedimentation has been a standard methodology for particle size analysis since the early 1900s. In recent years laser diffraction is beginning to replace sedimentation as the prefered technique in some industries, such as marine sediment analysis. However, for the particle size analysis of soils, which have a diverse range of both particle size and shape, laser diffraction still requires evaluation of its reliability. In this study, the sedimentation based sieve plummet balance method and the laser diffraction method were used to measure the particle size distribution of 22 soil samples representing four contrasting Australian Soil Orders. Initially, a precise wet riffling methodology was developed capable of obtaining representative samples within the recommended obscuration range for laser diffraction. It was found that repeatable results were obtained even if measurements were made at the extreme ends of the manufacturer’s recommended obscuration range. Results from statistical analysis suggested that the use of sample pretreatment to remove soil organic carbon (and possible traces of calcium-carbonate content) made minor differences to the laser diffraction particle size distributions compared to no pretreatment. These differences were found to be marginally statistically significant in the Podosol topsoil and Vertosol subsoil. There are well known reasons why sedimentation methods may be considered to ‘overestimate’ plate-like clay particles, while laser diffraction will ‘underestimate’ the proportion of clay particles. In this study we used Lin’s concordance correlation coefficient to determine the equivalence of laser diffraction and sieve plummet balance results. The results suggested that the laser diffraction equivalent thresholds corresponding to the sieve plummet balance cumulative particle sizes of < 2 μm, < 20 μm, and < 200 μm, were < 9 μm, < 26 μm, < 275 μm respectively. The many advantages of laser diffraction for soil particle

  5. Light Scattering by Wavelength-Sized Particles "Dusted" with Subwavelength-Sized Grains

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.

    2011-01-01

    The numerically exact superposition T-matrix method is used to compute the scattering cross sections and the Stokes scattering matrix for polydisperse spherical particles covered with a large number of much smaller grains. We show that the optical effect of the presence of microscopic dust on the surfaces of wavelength-sized, weakly absorbing particles is much less significant than that of a major overall asphericity of the particle shape.

  6. Mineralogical variation in the size fractions of a Ranong kaolin, southern Thailand

    NASA Astrophysics Data System (ADS)

    Pisutha-Arnond, Visut; Phuvichit, Suraphol; Leepowpanth, Quanchai

    A representative crude Ranong kaolin from the Thungkla-Ranong mine was separated into > 2 mm (granule), 2-1 mm (very coarse sand), 1-0.5 mm (coarse sand), 0.5-0.25 mm (medium sand), 0.25-0.125 mm (fine sand), 0.125-0.062 mm (very fine sand) and 62-28, 28-14, 17-7, 7-4, 4-2, 2-1 and < 1 μ m size fractions. Those size fractions were analyzed by X-ray powder diffractometry (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with attached energy dispersive X-ray spectrometer (EDX). Kaolin group minerals were differentiated by using XRD in combination with various chemical and heat treatments together with TEM, SEM and DTA. The Ranong kaolin consists predominantly of tubular halloysite, poorly crystallized kaolinite and quartz with minor amounts of mica and K-feldspars. Other trace constituents include gibbsite, tourmaline, zircon and colored impurities (i.e. extractable iron hydroxide coating on clay mineral surface). The kaolin minerals are found in all size fractions by which their contents and halloysite/kaolinite ratios increase as the particle sizes become finer. Quartz and mica are also detected in almost all size fractions. They are, however, more abundant with coarsening particle size. Gibbsite, K-feldspar and tourmaline are mainly concentrated in the fine sand to silt size fractions. Crystallinity of kaolin minerals as measured by XRD varied moderately with size. Relatively pure kaolin minerals, predominantly halloysite and kaolinite, can be obtained in the particle size below 1 or 2 μm.

  7. Application of modern radiative transfer tools to model laboratory quartz emissivity

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Wolff, Michael J.; Clayton, Geoffrey C.

    2005-08-01

    Planetary remote sensing of regolith surfaces requires use of theoretical models for interpretation of constituent grain physical properties. In this work, we review and critically evaluate past efforts to strengthen numerical radiative transfer (RT) models with comparison to a trusted set of nadir incidence laboratory quartz emissivity spectra. By first establishing a baseline statistical metric to rate successful model-laboratory emissivity spectral fits, we assess the efficacy of hybrid computational solutions (Mie theory + numerically exact RT algorithm) to calculate theoretical emissivity values for micron-sized α-quartz particles in the thermal infrared (2000-200 cm-1) wave number range. We show that Mie theory, a widely used but poor approximation to irregular grain shape, fails to produce the single scattering albedo and asymmetry parameter needed to arrive at the desired laboratory emissivity values. Through simple numerical experiments, we show that corrections to single scattering albedo and asymmetry parameter values generated via Mie theory become more necessary with increasing grain size. We directly compare the performance of diffraction subtraction and static structure factor corrections to the single scattering albedo, asymmetry parameter, and emissivity for dense packing of grains. Through these sensitivity studies, we provide evidence that, assuming RT methods work well given sufficiently well-quantified inputs, assumptions about the scatterer itself constitute the most crucial aspect of modeling emissivity values.

  8. Particle size and shape distributions of hammer milled pine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Bothmore » materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.« less

  9. Effect of particle size on mixing degree in dispensation.

    PubMed

    Nakamura, Hitoshi; Yanagihara, Yoshitsugu; Sekiguchi, Hiroko; Ohtani, Michiteru; Kariya, Satoru; Uchino, Katsuyoshi; Suzuki, Hiroshi; Iga, Tatsuji

    2004-03-01

    By using lactose colored with erythrocin, we examined the effect of particle size on mixing degree during the preparation of triturations with a mortar and pestle. We used powders with different distributions of particle sizes, i.e., powder that passed through 32-mesh but was trapped on a 42-mesh sieve (32/42-mesh powder), powder that passed through a 42-mesh sieve but was trapped on a 60-mesh sieve (42/60-mesh powder), powder that passed through a 60-mesh sieve but was trapped on a 100-mesh sieve (60/100-mesh powder), and powder that passes through a 100-mesh sieve (> 100-mesh powder). The mixing degree of colored powder and non-colored powder whose distribution of particle sizes was the same as that of the colored powder was excellent. The coefficient of variation (CV) value of the mixing degree was 6.08% after 40 rotations when colored powder was mixed with non-colored powder that both passed through a 100-mesh sieve. The CV value of the mixing degree was low in the case of mixing of colored and non-colored powders with different particle size distributions. After mixing, about 50% of 42/60-mesh powder had become smaller particles, whereas the distribution of particle sizes was not influenced by the mixing of 60/100-mesh powder. It was suggested that the mixing degree is affected by distribution of particle sizes. It may be important to determine the mixing degrees for drugs with narrow therapeutic ranges.

  10. The Size of Gelatin Sponge Particles: Differences with Preparation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumori, Tetsuya, E-mail: katsumo@eurus.dti.ne.jp; Kasahara, Toshiyuki

    2006-12-15

    Purpose. To assess whether the size distribution of gelatin sponge particles differed according to the method used to make them and the type of original sheet. Methods. Gelatin sponge particles of approximately 1-1.5 x 1-1.5 x 2 mm were made from either Spongel or Gelfoam sheets by cutting with a scalpel and scissors. Particles were also made of either Spongel or Gelfoam sheets by pumping with two syringes and a three-way stopcock. The size distribution of the particles in saline was compared among the groups. Results. (1) Cutting versus pumping: When Spongel was used, cutting produced lower rates of smallermore » particles {<=}500 {mu}m and larger particles >2000 {mu}m compared with pumping back and forth 30 times (1.1% vs 37.6%, p < 0.0001; 2.2% vs 14.4%, p = 0.008). When Gelfoam was used, cutting produced lower rates of smaller and larger particles compared with pumping (8.5% vs 20.4%, p = 0.1809; 0% vs 48.1%, p < 0.0001). (2) Spongel versus Gelfoam: There was no significant difference in the size distribution of the particles between Spongel and Gelfoam (p = 0.2002) when cutting was used. Conclusion. The size distribution of gelatin sponge particles differed according to the method used to make them. More uniform particle sizes can be achieved by cutting than by pumping.« less

  11. Synthesis and deformation of a Ti doped quartz aggregate

    NASA Astrophysics Data System (ADS)

    Nachlas, William O.; Hirth, Greg; Teyssier, Christian; Whitney, Donna L.; Zimmerman, Mark

    2013-04-01

    generate the equilibrium concentration predicted by previous solubility calibrations for selected P-T conditions. Experiments were performed using a shear assembly to deform quartz samples to high shear strain in dislocation creep at constant temperature, pressure, and strain rate for 24, 48, and 72 h with and without the addition of 0.1 wt% H2O. Experiments were also run under hydrostatic conditions for equivalent lengths of time for comparison with deformed samples. Experimental specimens were prepared as a two layer sample with a doped half and an undoped half to study Ti mobility during deformation. Experimental samples are analyzed with EMPA and SIMS to determine the Ti concentration of quartz in the sample, SEM-CL to observe the distribution of Ti in quartz grains, and SEM-EBSD to evaluate crystallographic fabrics and grain size. Results suggest that the duration of dynamic recrystallization influences the final Ti concentration, implying the importance of kinetics and diffusion even at the elevated temperatures of the experiments. Water content affects Ti concentration, potentially owing to the importance of point defect concentration on the solubility of Ti in quartz. Furthermore, recrystallized grain size shows a dependence on Ti concentration, as samples doped at supersaturated levels recrystallize with finer grain sizes relative to undoped samples. This suggests that exceeding the equilibrium solubility of Ti in quartz may pin grain boundary migration. The ultimate expression of Ti supersaturation in quartz is strain-induced rutilation and the progressive rotation and boudinage of exsolved rutile needles.

  12. Size distribution spectrum of noninertial particles in turbulence

    NASA Astrophysics Data System (ADS)

    Saito, Izumi; Gotoh, Toshiyuki; Watanabe, Takeshi

    2018-05-01

    Collision-coalescence growth of noninertial particles in three-dimensional homogeneous isotropic turbulence is studied. Smoluchowski's coagulation equation describes the evolution of the size distribution of particles in this system. By applying a methodology based on turbulence theory, the equation is shown to have a steady-state solution, which corresponds to the Kolmogorov-type power-law spectrum. Direct numerical simulations of turbulence and Lagrangian particles are conducted. The result shows that the size distribution in a statistically steady state agrees accurately with the theoretical prediction.

  13. Measurement of nonvolatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2016-01-01

    An experimental methodology was developed to measure the nonvolatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a nonvolatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol (OA; 40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a nonvolatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type of OA

  14. Computer measurement of particle sizes in electron microscope images

    NASA Technical Reports Server (NTRS)

    Hall, E. L.; Thompson, W. B.; Varsi, G.; Gauldin, R.

    1976-01-01

    Computer image processing techniques have been applied to particle counting and sizing in electron microscope images. Distributions of particle sizes were computed for several images and compared to manually computed distributions. The results of these experiments indicate that automatic particle counting within a reasonable error and computer processing time is feasible. The significance of the results is that the tedious task of manually counting a large number of particles can be eliminated while still providing the scientist with accurate results.

  15. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Davies, Peter R; Torremorell, Montserrat

    2015-01-01

    When pathogens become airborne, they travel associated with particles of different size and composition. Particle size determines the distance across which pathogens can be transported, as well as the site of deposition and the survivability of the pathogen. Despite the importance of this information, the size distribution of particles bearing viruses emitted by infectious animals remains unknown. In this study we characterized the concentration and size distribution of inhalable particles that transport influenza A virus (IAV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine epidemic diarrhea virus (PEDV) generated by acutely infected pigs and assessed virus viability for each particle size range. Aerosols from experimentally infected pigs were sampled for 24 days using an Andersen cascade impactor able to separate particles by size (ranging from 0.4 to 10 micrometer (μm) in diameter). Air samples collected for the first 9, 20 and the last 3 days of the study were analyzed for IAV, PRRSV and PEDV, respectively, using quantitative reverse transcription polymerase chain reaction (RT-PCR) and quantified as geometric mean copies/m(3) within each size range. IAV was detected in all particle size ranges in quantities ranging from 5.5x10(2) (in particles ranging from 1.1 to 2.1 μm) to 4.3x10(5) RNA copies/m(3) in the largest particles (9.0-10.0 μm). PRRSV was detected in all size ranges except particles between 0.7 and 2.1 μm in quantities ranging from 6x10(2) (0.4-0.7 μm) to 5.1x10(4) RNA copies/m(3) (9.0-10.0 μm). PEDV, an enteric virus, was detected in all particle sizes and in higher quantities than IAV and PRRSV (p < 0.0001) ranging from 1.3x10(6) (0.4-0.7 μm) to 3.5x10(8) RNA copies/m(3) (9.0-10.0 μm). Infectious status was demonstrated for the 3 viruses, and in the case of IAV and PRRSV, viruses were isolated from particles larger than 2.1 μm. In summary, our results indicated that airborne PEDV, IAV and PRRSV can be found in a

  16. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  17. Sizes of particles formed during municipal wastewater treatment.

    PubMed

    Lech, Smoczynski; Marta, Kosobucka; Michal, Smoczynski; Harsha, Ratnaweera; Krystyna, Pieczulis-Smoczynska

    2017-02-01

    Volumetric diameters Dv and specific surface area SpS of sludge particles formed during chemical coagulation and electrocoagulation of sewage were determined. The obtained aggregate-flocs differed substantially in both Dv and SpS values. The differences in Dv and SpS values of the analyzed particles were interpreted based on theoretical models for expanding aggregates. The most uniform particles were formed under exposure to: (a) optimal and maximal doses of PIX, (b) optimal doses of PAX, (c) maximal doses of the Al electro-coagulant. The lowest PIX dose produced the least uniform particles. Sludge aggregates-particles produced under exposure to minimal doses of PIX and the Al electro-coagulant were characterized by the lowest SpS values. Sludge particles coagulated by PAX and the particles formed at higher doses of PIX and the Al electro-coagulant had higher SpS values. The particles formed at all doses of the applied coagulants and electro-coagulants were generally classified into two size ranges: the main range and the secondary range. Most particles belonged to the main size range. An increase in the percentage of colloidal hydroxide particles in sewage sludge increased SpS.

  18. Evolution of Particle Size Distributions in Fragmentation Over Time

    NASA Astrophysics Data System (ADS)

    Charalambous, C. A.; Pike, W. T.

    2013-12-01

    We present a new model of fragmentation based on a probabilistic calculation of the repeated fracture of a particle population. The resulting continuous solution, which is in closed form, gives the evolution of fragmentation products from an initial block, through a scale-invariant power-law relationship to a final comminuted powder. Models for the fragmentation of particles have been developed separately in mainly two different disciplines: the continuous integro-differential equations of batch mineral grinding (Reid, 1965) and the fractal analysis of geophysics (Turcotte, 1986) based on a discrete model with a single probability of fracture. The first gives a time-dependent development of the particle-size distribution, but has resisted a closed-form solution, while the latter leads to the scale-invariant power laws, but with no time dependence. Bird (2009) recently introduced a bridge between these two approaches with a step-wise iterative calculation of the fragmentation products. The development of the particle-size distribution occurs with discrete steps: during each fragmentation event, the particles will repeatedly fracture probabilistically, cascading down the length scales to a final size distribution reached after all particles have failed to further fragment. We have identified this process as the equivalent to a sequence of trials for each particle with a fixed probability of fragmentation. Although the resulting distribution is discrete, it can be reformulated as a continuous distribution in maturity over time and particle size. In our model, Turcotte's power-law distribution emerges at a unique maturation index that defines a regime boundary. Up to this index, the fragmentation is in an erosional regime with the initial particle size setting the scaling. Fragmentation beyond this index is in a regime of comminution with rebreakage of the particles down to the size limit of fracture. The maturation index can increment continuously, for example under

  19. Effects of particle size distribution in thick film conductors

    NASA Technical Reports Server (NTRS)

    Vest, R. W.

    1983-01-01

    Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.

  20. Submicrometer Particle Sizing by Multiangle Light Scattering following Fractionation

    PubMed

    Wyatt

    1998-01-01

    The acid test for any particle sizing technique is its ability to determine the differential number fraction size distribution of a simple, well-defined sample. The very best characterized polystyrene latex sphere standards have been measured extensively using transmission electron microscope (TEM) images of a large subpopulation of such samples or by means of the electrostatic classification method as refined at the National Institute of Standards and Technology. The great success, in the past decade, of on-line multiangle light scattering (MALS) detection combined with size exclusion chromatography for the measurement of polymer mass and size distributions suggested, in the early 1990s, that a similar attack for particle characterization might prove useful as well. At that time, fractionation of particles was achievable by capillary hydrodynamic chromatography (CHDF) and field flow fractionation (FFF) methods. The latter has proven most useful when combined with MALS to provide accurate differential number fraction size distributions for a broad range of particle classes. The MALS/FFF combination provides unique advantages and precision relative to FFF, photon correlation spectroscopy, and CHDF techniques used alone. For many classes of particles, resolution of the MALS/FFF combination far exceeds that of TEM measurements. Copyright 1998 Academic Press. Copyright 1998Academic Press

  1. Photographic techniques for characterizing streambed particle sizes

    USGS Publications Warehouse

    Whitman, Matthew S.; Moran, Edward H.; Ourso, Robert T.

    2003-01-01

    We developed photographic techniques to characterize coarse (>2-mm) and fine (≤2-mm) streambed particle sizes in 12 streams in Anchorage, Alaska. Results were compared with current sampling techniques to assess which provided greater sampling efficiency and accuracy. The streams sampled were wadeable and contained gravel—cobble streambeds. Gradients ranged from about 5% at the upstream sites to about 0.25% at the downstream sites. Mean particle sizes and size-frequency distributions resulting from digitized photographs differed significantly from those resulting from Wolman pebble counts for five sites in the analysis. Wolman counts were biased toward selecting larger particles. Photographic analysis also yielded a greater number of measured particles (mean = 989) than did the Wolman counts (mean = 328). Stream embeddedness ratings assigned from field and photographic observations were significantly different at 5 of the 12 sites, although both types of ratings showed a positive relationship with digitized surface fines. Visual estimates of embeddedness and digitized surface fines may both be useful indicators of benthic conditions, but digitizing surface fines produces quantitative rather than qualitative data. Benefits of the photographic techniques include reduced field time, minimal streambed disturbance, convenience of postfield processing, easy sample archiving, and improved accuracy and replication potential.

  2. Zooplankton Grazing Effects on Particle Size Spectra under Different Seasonal Conditions

    NASA Astrophysics Data System (ADS)

    Stamieszkin, K.; Poulton, N.; Pershing, A. J.

    2016-02-01

    Oceanic particle size spectra can be used to explain and predict variability in carbon export efficiency, since larger particles are more likely to sink to depth than small particles. The distribution of biogenic particle size in the surface ocean is the result of many variables and processes, including nutrient availability, primary productivity, aggregation, remineralization, and grazing. We conducted a series of grazing experiments to test the hypothesis that mesozooplankton shift particle size spectra toward larger particles, via grazing and egestion of relatively large fecal pellets. These experiments were carried out over several months, and used natural communities of mesozooplankton and their microbial prey, collected offshore of the Damariscotta River in the Gulf of Maine. We analyzed the samples using Fluid Imaging Technologies' FlowCam®, a particle imaging system. With this equipment, we processed live samples, decreasing the likelihood of losing or damaging fragile particles, and thereby lessening sources of error in commonly used preservation and enumeration protocols. Our results show how the plankton size spectrum changes as the Gulf of Maine progresses through a seasonal cycle. We explore the relationship of grazing community size structure to its effect on the overall biogenic particle size spectrum. At some times of year, mesozooplankton grazing does not alter the particle size spectrum, while at others it significantly does, affecting the potential for biogenic flux. We also examine prey selectivity, and find that chain diatoms are the only prey group preferentially consumed. Otherwise, we find that complete mesozooplankton communities are "evolved" to fit their prey such that most prey groups are grazed evenly. We discuss a metabolic numerical model which could be used to universalize the relationships between whole gazer and whole microbial communities, with respect to effects on particle size spectra.

  3. Measuring droplet size distributions from overlapping interferometric particle images.

    PubMed

    Bocanegra Evans, Humberto; Dam, Nico; van der Voort, Dennis; Bertens, Guus; van de Water, Willem

    2015-02-01

    Interferometric particle imaging provides a simple way to measure the probability density function (PDF) of droplet sizes from out-focus images. The optical setup is straightforward, but the interpretation of the data is a problem when particle images overlap. We propose a new way to analyze the images. The emphasis is not on a precise identification of droplets, but on obtaining a good estimate of the PDF of droplet sizes in the case of overlapping particle images. The algorithm is tested using synthetic and experimental data. We next use these methods to measure the PDF of droplet sizes produced by spinning disk aerosol generators. The mean primary droplet diameter agrees with predictions from the literature, but we find a broad distribution of satellite droplet sizes.

  4. Size distributions of manure particles released under simulated rainfall.

    PubMed

    Pachepsky, Yakov A; Guber, Andrey K; Shelton, Daniel R; McCarty, Gregory W

    2009-03-01

    Manure and animal waste deposited on cropland and grazing lands serve as a source of microorganisms, some of which may be pathogenic. These microorganisms are released along with particles of dissolved manure during rainfall events. Relatively little if anything is known about the amounts and sizes of manure particles released during rainfall, that subsequently may serve as carriers, abode, and nutritional source for microorganisms. The objective of this work was to obtain and present the first experimental data on sizes of bovine manure particles released to runoff during simulated rainfall and leached through soil during subsequent infiltration. Experiments were conducted using 200 cm long boxes containing turfgrass soil sod; the boxes were designed so that rates of manure dissolution and subsequent infiltration and runoff could be monitored independently. Dairy manure was applied on the upper portion of boxes. Simulated rainfall (ca. 32.4 mm h(-1)) was applied for 90 min on boxes with stands of either live or dead grass. Electrical conductivity, turbidity, and particle size distributions obtained from laser diffractometry were determined in manure runoff and soil leachate samples. Turbidity of leachates and manure runoff samples decreased exponentially. Turbidity of manure runoff samples was on average 20% less than turbidity of soil leachate samples. Turbidity of leachate samples from boxes with dead grass was on average 30% less than from boxes with live grass. Particle size distributions in manure runoff and leachate suspensions remained remarkably stable after 15 min of runoff initiation, although the turbidity continued to decrease. Particles had the median diameter of 3.8 microm, and 90% of particles were between 0.6 and 17.8 microm. The particle size distributions were not affected by the grass status. Because manure particles are known to affect transport and retention of microbial pathogens in soil, more information needs to be collected about the

  5. Clogging of an Alpine streambed by silt-sized particles - Insights from laboratory and field experiments.

    PubMed

    Fetzer, Jasmin; Holzner, Markus; Plötze, Michael; Furrer, Gerhard

    2017-12-01

    Clogging of streambeds by suspended particles (SP) can cause environmental problems, as it can negatively influence, e.g., habitats for macrozoobenthos, fish reproduction and groundwater recharge. This especially applies in the case of silt-sized SP. Until now, most research has dealt with coarse SP and was carried out in laboratory systems. The aims of this study are to examine (1) whether physical clogging by silt-sized SP exhibits the same dynamics and patterns as by sand-sized SP, and (2) the comparability of results between laboratory and field experiments. We carried out vertical column experiments with sand-sized bed material and silt-sized SP, which are rich in mica minerals. In laboratory experiments, we investigated the degree of clogging quantified by the reduction of porosity and hydraulic conductivity and the maximum clogging depth as a function of size and shape of bed material, size of SP, pore water flow velocity, and concentration of calcium cations. The SP were collected from an Alpine sedimentation basin, where our field experiments were carried out. To investigate the clogging process in the field, we buried columns filled with sand-sized quartz in the stream bed. We found that the maximal bed-to-grain ratio where clogging still occurs is larger for silt-sized SP than for sand-sized SP. The observed clogging depths and the reduction of flow rate through the column from our laboratory experiments were comparable to those from the field. However, our field results showed that the extent of clogging strongly depends on the naturally-occurring hydrological dynamics. The field location was characterized by a more polydisperse suspension, a strongly fluctuating water regime, and high SP concentrations at times, leading to more heterogeneous and more pronounced clogging when compared to laboratory results. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Particle size analysis of amalgam powder and handpiece generated specimens.

    PubMed

    Drummond, J L; Hathorn, R M; Cailas, M D; Karuhn, R

    2001-07-01

    The increasing interest in the elimination of amalgam particles from the dental waste (DW) stream, requires efficient devices to remove these particles. The major objective of this project was to perform a comparative evaluation of five basic methods of particle size analysis in terms of the instrument's ability to quantify the size distribution of the various components within the DW stream. The analytical techniques chosen were image analysis via scanning electron microscopy, standard wire mesh sieves, X-ray sedigraphy, laser diffraction, and electrozone analysis. The DW particle stream components were represented by amalgam powders and handpiece/diamond bur generated specimens of enamel; dentin, whole tooth, and condensed amalgam. Each analytical method quantified the examined DW particle stream components. However, X-ray sedigraphy, electrozone, and laser diffraction particle analyses provided similar results for determining particle distributions of DW samples. These three methods were able to more clearly quantify the properties of the examined powder and condensed amalgam samples. Furthermore, these methods indicated that a significant fraction of the DW stream contains particles less than 20 microm. The findings of this study indicated that the electrozone method is likely to be the most effective technique for quantifying the particle size distribution in the DW particle stream. This method required a relative small volume of sample, was not affected by density, shape factors or optical properties, and measured a sufficient number of particles to provide a reliable representation of the particle size distribution curve.

  7. Global Particle Size Distributions: Measurements during the Atmospheric Tomography (ATom) Project

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Williamson, C.; Kupc, A.; Froyd, K. D.; Richardson, M.; Weinzierl, B.; Dollner, M.; Schuh, H.; Erdesz, F.

    2016-12-01

    The Atmospheric Tomography (ATom) project is a three-year NASA-sponsored program to map the spatial and temporal distribution of greenhouse gases, reactive species, and aerosol particles from the Arctic to the Antarctic. In situ measurements are being made on the NASA DC-8 research aircraft, which will make four global circumnavigations of the Earth over the mid-Pacific and mid-Atlantic Oceans while continuously profiling between 0.2 and 13 km altitude. In situ microphysical measurements will provide an unique and unprecedented dataset of aerosol particle size distributions between 0.004 and 50 µm diameter. This unbiased, representative dataset allows investigation of new particle formation in the remote troposphere, placing strong observational constraints on the chemical and physical mechanisms that govern particle formation and growth to cloud-active sizes. Particles from 0.004 to 0.055 µm are measured with 10 condensation particle counters. Particles with diameters from 0.06 to 1.0 µm are measured with one-second resolution using two ultra-high sensitivity aerosol size spectrometers (UHSASes). A laser aerosol spectrometer (LAS) measures particle size distributions between 0.12 and 10 µm in diameter. Finally, a cloud, aerosol and precipitation spectrometer (CAPS) underwing optical spectrometer probe sizes ambient particles with diameters from 0.5 to 50 µm and images and sizes precipitation-sized particles. Additional particle instruments on the payload include a high-resolution time-of-flight aerosol mass spectrometer and a single particle laser-ablation aerosol mass spectrometer. The instruments are calibrated in the laboratory and on the aircraft. Calibrations are checked in flight by introducing four sizes of polystyrene latex (PSL) microspheres into the sampling inlet. The CAPS probe is calibrated using PSL and glass microspheres that are aspirated into the sample volume. Comparisons between the instruments and checks with the calibration aerosol

  8. Complex fragmentation and silicification structures in fault zones: quartz crystallization and repeated fragmentation in the Rusey fault zone (Cornwall/UK)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Tim I.; Blenkinsop, Tom; Duschl, Florian; Kruhl, Jörn H.

    2015-04-01

    Silicified fault rocks typically show structures resulting from various stages of fragmentation and quartz crystallization. Both processes interact episodically and result in complex structures on various scales, which require a wide spectrum of analysis tools. Based on field and microstructural data, the spatial-temporal connection between deformation, quartz crystallization and fluid and material flow along the Rusey fault zone was investigated. The fault can be examined in detail in three dimensions on the north Cornwall coast, UK. It occurs within Carboniferous sandstones, siltstones, mudstones and slates of the Culm basin, and is likely to have had a long history. The fault rocks described here formed during the younger events, possibly due to Tertiary strike-slip reactivation. Frequent fragmentation, flow and crystallization events and their interaction led to various generations of complex-structured quartz units, among them quartz-mantled and partly silicified wall-rock fragments, microcrystalline quartz masses of different compositions and structures, and quartz vein patterns of various ages. Lobate boundaries of quartz masses indicate viscous flow. Fragments are separated by quartz infill, which contains cm-sized open pores, in which quartz crystals have pyramidal terminations. Based on frequent occurrence of feathery textures and the infill geometry, quartz crystallization from chalcedony appears likely, and an origin from silica gel is discussed. Fragmentation structures are generally fractal. This allows differentiation between various processes, such as corrosive wear, wear abrasion and hydraulic brecciation. Material transport along the brittle shear zone, and displacement of the wall-rocks, were at least partly governed by flow of mobile fluid-quartz-particle suspensions. The complex meso- to microstructures were generated by repeated processes of fragmentation, quartz precipitation and grain growth. In general, the brittle Rusey fault zone

  9. Helium-hydrogen microplasma device (MPD) on postage-stamp-size plastic-quartz chips.

    PubMed

    Weagant, Scott; Karanassios, Vassili

    2009-10-01

    A new design of a miniaturized, atmospheric-pressure, low-power (e.g., battery-operated), self-igniting, planar-geometry microplasma device (MPD) for use with liquid microsamples is described. The inexpensive MPD was a hybrid, three-substrate quartz-plastic-plastic structure and it was formed on chips with area the size of a small postage stamp. The substrates were chosen for rapid prototyping and for speedy device-geometry testing and evaluation. The approximately 700-microm (diameter) and 7-mm (long) He-H(2) (3% H(2)) microplasma was formed by applying high-voltage ac between two needle electrodes. Operating conditions were found to be critical in sustaining stable microplasma on plastic substrates. Spectral interference from the electrode materials was not observed. A small-size, electrothermal vaporization system was used for introduction of microliter volumes of liquids into the MPD. The microplasma was operated from an inexpensive power supply. And, operation from a 14.4-V battery has been demonstrated. Microplasma background emission in the spectral range between 200 and 850 nm obtained using a portable, fiber-optic spectrometer is reported. Analyte emission from microliter volumes of dilute single-element standard solutions of Cd, Cu, K, Li, Mg, Mn, Na, Pb, and Zn is documented. Element-dependent precision was between 10-25% (the average was 15%) and detection limits ranged between 1.5 and 350 ng. The system was used for the determination of Na in diluted bottled-water samples.

  10. A Miniature System for Separating Aerosol Particles and Measuring Mass Concentrations

    PubMed Central

    Liang, Dao; Shih, Wen-Pin; Chen, Chuin-Shan; Dai, Chi-An

    2010-01-01

    We designed and fabricated a new sensing system which consists of two virtual impactors and two quartz-crystal microbalance (QCM) sensors for measuring particle mass concentration and size distribution. The virtual impactors utilized different inertial forces of particles in air flow to classify different particle sizes. They were designed to classify particle diameter, d, into three different ranges: d < 2.28 μm, 2.28 μm ≤ d ≤ 3.20 μm, d > 3.20 μm. The QCM sensors were coated with a hydrogel, which was found to be a reliable adhesive for capturing aerosol particles. The QCM sensor coated with hydrogel was used to measure the mass loading of particles by utilizing its characteristic of resonant frequency shift. An integrated system has been demonstrated. PMID:22319317

  11. Provenance and depositional environment of epi-shelf lake sediment from Schirmacher Oasis, East Antarctica, vis-à-vis scanning electron microscopy of quartz grain, size distribution and chemical parameters

    NASA Astrophysics Data System (ADS)

    Shrivastava, Prakash K.; Asthana, Rajesh; Roy, Sandip K.; Swain, Ashit K.; Dharwadkar, Amit

    2012-07-01

    The scientific study of quartz grains is a powerful tool in deciphering the depositional environment and mode of transportation of sediments, and ultimately the origin and classification of sediments. Surface microfeatures, angularity, chemical features, and grain-size analysis of quartz grains, collectively reveal the sedimentary and physicochemical processes that acted on the grains during different stages of their geological history. Here, we apply scanning electron microscopic (SEM) analysis to evaluating the sedimentary provenance, modes of transport, weathering characteristics, alteration, and sedimentary environment of selected detrital quartz grains from the peripheral part of two epi-shelf lakes (ESL-1 and ESL-2) of the Schirmacher Oasis of East Antarctica. Our study reveals that different styles of physical weathering, erosive signatures, and chemical precipitation variably affected these quartz grains before final deposition as lake sediments. Statistical analysis (central tendencies, sorting, skewness, and kurtosis) indicates that these quartz-bearing sediments are poorly sorted glaciofluvial sediments. Saltation and suspension seem to have been the two dominant modes of transportation, and chemical analysis of these sediments indicates a gneissic provenance.

  12. TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations

    NASA Astrophysics Data System (ADS)

    Thomas, Jay B.; Watson, E. Bruce; Spear, Frank S.; Wark, D. A.

    2015-03-01

    Several studies have reported the P- T dependencies of Ti-in-quartz solubility, and there is close agreement among three of the four experimental calibrations. New experiments were conducted in the present study to identify potential experimental disequilibrium, and to determine which Ti-in-quartz solubility calibration is most accurate. Crystals of quartz, rutile and zircon were grown from SiO2-, TiO2-, and ZrSiO4-saturated aqueous fluids in an initial synthesis experiment at 925 °C and 10 kbar in a piston-cylinder apparatus. A range of quartz crystal sizes was produced in this experiment; both large and small examples were analyzed by electron microprobe to determine whether Ti concentrations are correlated with crystal size. Cathodoluminescence images and EPMA measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the synthesis experiment is 392 ± 1 ppmw Ti, which is within 95 % confidence interval of data from the 10 kbar isobar of Wark and Watson (Contrib Mineral Petrol 152:743-754, 2006) and Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010). As a cross-check on the Ti-in-quartz calibration, we also measured the concentration of Zr in rutile from the synthesis experiment. The average Zr-in-rutile concentration is 4337 ± 32 ppmw Zr, which is also within the 95 % confidence interval of the Zr-in-rutile solubility calibration of Ferry and Watson (Contrib Mineral Petrol 154:429-437, 2007). The P- T dependencies of Ti solubility in quartz and Zr solubility in rutile were applied as a thermobarometer to the experimental sample. The average Ti-in-quartz isopleth calculated from the calibration of Thomas et al. (Contrib Mineral Petrol 160:743-759, 2010) and the average Zr-in-rutile isopleth calculated from the calibration of Tomkins et al. (J Metamorph Geol 25:703-713, 2007) cross at 9.5 kbar and 920 °C, which is in excellent

  13. Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites.

    PubMed

    Mangal, Rahul; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A

    2016-01-19

    Polymer-grafted nanoparticles with diameter d homogeneously dispersed in entangled polymer melts with varying random coil radius R0, but fixed entanglement mesh size a(e), are used to study particle motions in entangled polymers. We focus on materials in the transition region between the continuum regime (d > R0), where the classical Stokes-Einstein (S-E) equation is known to describe polymer drag on particles, and the noncontinuum regime (d < a(e)), in which several recent studies report faster diffusion of particles than expected from continuum S-E analysis, based on the bulk polymer viscosity. Specifically, we consider dynamics of particles with sizes d ≥ a(e) in entangled polymers with varying molecular weight M(w) in order to investigate how the transition from noncontinuum to continuum dynamics occur. We take advantage of favorable enthalpic interactions between SiO2 nanoparticles tethered with PEO molecules and entangled PMMA host polymers to create model nanoparticle-polymer composites, in which spherical nanoparticles are uniformly dispersed in entangled polymers. Investigation of the particle dynamics via X-ray photon correlation spectroscopy measurements reveals a transition from fast to slow particle motion as the PMMA molecular weight is increased beyond the entanglement threshold, with a much weaker M(w) dependence for M(w) > M(e) than expected from S-E analysis based on bulk viscosity of entangled PMMA melts. We rationalize these observations using a simple force balance analysis around particles and find that nanoparticle motion in entangled melts can be described using a variant of the S-E analysis in which motion of particles is assumed to only disturb subchain entangled host segments with sizes comparable to the particle diameter.

  14. Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangal, Rahul; Srivastava, Samanvaya; Narayanan, Suresh

    Polymer-grafted nanoparticles with diameter d homogeneously dispersed in entangled polymer melts with varying random coil radius R0, but fixed entanglement mesh size ae, are used to study particle motions in entangled polymers. We focus on materials in the transition region between the continuum regime (d > R0), where the classical Stokes-Einstein (S-E) equation is known to describe polymer drag on particles, and the non-continuum regime (d < ae), in which several recent studies report faster diffusion of particles than expected from continuum S-E analysis, based on the bulk polymer viscosity. Specifically, we consider dynamics of particles with sizes d ≥more » ae in entangled polymers with varying molecular weight Mw in order to investigate how the transition from non-continuum to continuum dynamics occur. We take advantage of favorable enthalpic interactions between SiO2 nanoparticles tethered with PEO molecules and entangled PMMA host polymers to create model nanoparticle-polymer composites, in which spherical nanoparticles are uniformly dispersed in entangled polymers. Investigation of the particle dynamics via X-ray photon correlation spectroscopy measurements reveal a transition from fast to slow particle motion as the PMMA molecular weight is increased beyond the entanglement threshold, with a much weaker Mw dependence for Mw>Me than expected from S-E analysis based on bulk viscosity of entangled PMMA melts. We rationalize these observations using a simple force balance analysis around particles and find that nanoparticle motion in entangled melts can be described using a variant of the S-E analysis in which motion of particles is assumed to only disturb sub-chain entangled host segments with sizes comparable to the particle diameter.« less

  15. Size-based sorting of micro-particles using microbubble streaming

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Jalikop, Shreyas; Hilgenfeldt, Sascha

    2009-11-01

    Oscillating microbubbles driven by ultrasound have shown great potential in microfluidic applications, such as transporting particles and promoting mixing [1-3]. The oscillations generate secondary steady streaming that can also trap particles. We use the streaming to develop a method of sorting particles of different sizes in an initially well-mixed solution. The solution is fed into a channel consisting of bubbles placed periodically along a side wall. When the bubbles are excited by an ultrasound piezo-electric transducer to produce steady streaming, the flow field is altered by the presence of the particles. This effect is dependent on particle size and results in size-based sorting of the particles. The effectiveness of the separation depends on the dimensions of the bubbles and particles as well as on the ultrasound frequency. Our experimental studies are aimed at a better understanding of the design and control of effective microfluidic separating devices. Ref: [1] P. Marmottant and S. Hilgenfeldt, Nature 423, 153 (2003). [2] P. Marmottant and S. Hilgenfeldt, Proc. Natl. Acad. Science USA, 101, 9523 (2004). [3] P. Marmottant, J.-P. Raven, H. Gardeniers, J. G. Bomer, and S. Hilgenfeldt, J. Fluid Mech., vol.568, 109 (2006).

  16. The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.

    PubMed

    Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir

    2013-12-01

    Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

  17. Characterization of Raman Scattering in Solid Samples with Different Particle Sizes and Elucidation on the Trends of Particle Size-Dependent Intensity Variations in Relation to Changes in the Sizes of Laser Illumination and Detection Area.

    PubMed

    Duy, Pham K; Chun, Seulah; Chung, Hoeil

    2017-11-21

    We have systematically characterized Raman scatterings in solid samples with different particle sizes and investigated subsequent trends of particle size-induced intensity variations. For this purpose, both lactose powders and pellets composed of five different particle sizes were prepared. Uniquely in this study, three spectral acquisition schemes with different sizes of laser illuminations and detection windows were employed for the evaluation, since it was expected that the experimental configuration would be another factor potentially influencing the intensity of the lactose peak, along with the particle size itself. In both samples, the distribution of Raman photons became broader with the increase in particle size, as the mean free path of laser photons, the average photon travel distance between consecutive scattering locations, became longer under this situation. When the particle size was the same, the Raman photon distribution was narrower in the pellets since the individual particles were more densely packed in a given volume (the shorter mean free path). When the size of the detection window was small, the number of photons reaching the detector decreased as the photon distribution was larger. Meanwhile, a large-window detector was able to collect the widely distributed Raman photons more effectively; therefore, the trends of intensity change with the variation in particle size were dissimilar depending on the employed spectral acquisition schemes. Overall, the Monte Carlo simulation was effective at probing the photon distribution inside the samples and helped to support the experimental observations.

  18. Particle Size Reduction in Geophysical Granular Flows: The Role of Rock Fragmentation

    NASA Astrophysics Data System (ADS)

    Bianchi, G.; Sklar, L. S.

    2016-12-01

    Particle size reduction in geophysical granular flows is caused by abrasion and fragmentation, and can affect transport dynamics by altering the particle size distribution. While the Sternberg equation is commonly used to predict the mean abrasion rate in the fluvial environment, and can also be applied to geophysical granular flows, predicting the evolution of the particle size distribution requires a better understanding the controls on the rate of fragmentation and the size distribution of resulting particle fragments. To address this knowledge gap we are using single-particle free-fall experiments to test for the influence of particle size, impact velocity, and rock properties on fragmentation and abrasion rates. Rock types tested include granodiorite, basalt, and serpentinite. Initial particle masses and drop heights range from 20 to 1000 grams and 0.1 to 3.0 meters respectively. Preliminary results of free-fall experiments suggest that the probability of fragmentation varies as a power function of kinetic energy on impact. The resulting size distributions of rock fragments can be collapsed by normalizing by initial particle mass, and can be fit with a generalized Pareto distribution. We apply the free-fall results to understand the evolution of granodiorite particle-size distributions in granular flow experiments using rotating drums ranging in diameter from 0.2 to 4.0 meters. In the drums, we find that the rates of silt production by abrasion and gravel production by fragmentation scale with drum size. To compare these rates with free-fall results we estimate the particle impact frequency and velocity. We then use population balance equations to model the evolution of particle size distributions due to the combined effects of abrasion and fragmentation. Finally, we use the free-fall and drum experimental results to model particle size evolution in Inyo Creek, a steep, debris-flow dominated catchment, and compare model results to field measurements.

  19. Metrological assessment of a portable analyzer for monitoring the particle size distribution of ultrafine particles.

    PubMed

    Stabile, Luca; Cauda, Emanuele; Marini, Sara; Buonanno, Giorgio

    2014-08-01

    Adverse health effects caused by worker exposure to ultrafine particles have been detected in recent years. The scientific community focuses on the assessment of ultrafine aerosols in different microenvironments in order to determine the related worker exposure/dose levels. To this end, particle size distribution measurements have to be taken along with total particle number concentrations. The latter are obtainable through hand-held monitors. A portable particle size distribution analyzer (Nanoscan SMPS 3910, TSI Inc.) was recently commercialized, but so far no metrological assessment has been performed to characterize its performance with respect to well-established laboratory-based instruments such as the scanning mobility particle sizer (SMPS) spectrometer. The present paper compares the aerosol monitoring capability of the Nanoscan SMPS to the laboratory SMPS in order to evaluate whether the Nanoscan SMPS is suitable for field experiments designed to characterize particle exposure in different microenvironments. Tests were performed both in a Marple calm air chamber, where fresh diesel particulate matter and atomized dioctyl phthalate particles were monitored, and in microenvironments, where outdoor, urban, indoor aged, and indoor fresh aerosols were measured. Results show that the Nanoscan SMPS is able to properly measure the particle size distribution for each type of aerosol investigated, but it overestimates the total particle number concentration in the case of fresh aerosols. In particular, the test performed in the Marple chamber showed total concentrations up to twice those measured by the laboratory SMPS-likely because of the inability of the Nanoscan SMPS unipolar charger to properly charge aerosols made up of aggregated particles. Based on these findings, when field test exposure studies are conducted, the Nanoscan SMPS should be used in tandem with a condensation particle counter in order to verify and correct the particle size distribution data

  20. Counting particles emitted by stratospheric aircraft and measuring size of particles emitted by stratospheric aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    The ER-2 condensation nuclei counter (CNC) has been modified to reduce the diffusive losses of particles within the instrument. These changes have been successful in improving the counting efficiency of small particles at low pressures. Two techniques for measuring the size distributions of particles with diameters less than 0.17 micrometers have been evaluated. Both of these methods, the differential mobility analyzer (DMA) and the diffusion battery, have fundamental problems that limit their usefulness for stratospheric applications. We cannot recommend either for this application. Newly developed, alternative methods for measuring small particles include inertial separation with a low-loss critical orifice and thin-plate impactor device. This technique is now used to collect particles in the multisample aerosol collector housed in the ER-2 CNC-2, and shows some promise for particle size measurements when coupled with a CNC as a counting device. The modified focused-cavity aerosol spectrometer (FCAS) can determine the size distribution of particles with ambient diameters as small as about 0.07 micrometers. Data from this instrument indicates the presence of a nuclei mode when CNC-2 indicates high concentrations of particles, but cannot resolve important parameters of the distribution.

  1. TitaniQ in reverse: backing out the equilibrium solubility of titanium in quartz

    NASA Astrophysics Data System (ADS)

    Thomas, J. B.

    2014-12-01

    There is close agreement among three of the four experimental studies that have 'calibrated' the P-T dependencies of Ti-in-quartz solubility. New experiments were conducted to identify potential experimental disequilibrium, and determine which Ti-in-quartz solubility calibration is most accurate. Quartz and rutile were synthesized from SiO2- and TiO2saturated aqueous fluids in a forward-type experiment at 925°C and 10 kbar in a piston-cylinder apparatus. A range of crystal sizes was examined to determine if growth rate affected Ti incorporation in quartz. Cathodoluminescence (CL) images and electron microprobe measurements show that intercrystalline and intracrystalline variations in Ti concentrations are remarkably small regardless of crystal size. The average Ti-in-quartz concentration from the forward-type experiment is 392±1 ppm Ti, which is within 95% confidence interval of data from the 10 kbar isobar of Wark and Watson (2006) and Thomas et al. (2010). Quartz from the forward-type experiment was used as starting material for reversal-type experiments. The high-Ti quartz starting material was recrystallized at 925°C and 20 kbar to reduce the solubility of Ti in recrystallized quartz to the equilibrium solubility concentration of the reversed P-T condition. The 'dry' and 'wet' reversal experiments produced polycrystalline quartzites. Rutile occurs as inclusions in quartz, and as individual crystals dispersed along quartz/quartz grain boundaries. Quartz that recrystallized during the reversal-type experiment has substantially lower Ti concentrations than the quartz starting material because Ti solubility at 20 kbar is significantly lower than at 10 kbar. Dark cathodoluminescent quartz with low Ti concentrations shows that extensive quartz recrystallization occurred at the reversal P-T condition. The average Ti concentration in quartz from reversal experiments is 94±2 ppm Ti, which is within the 95% confidence interval of a linear fit to the 20 kbar data of

  2. High-resolution, submicron particle size distribution analysis using gravitational-sweep sedimentation.

    PubMed Central

    Mächtle, W

    1999-01-01

    Sedimentation velocity is a powerful tool for the analysis of complex solutions of macromolecules. However, sample turbidity imposes an upper limit to the size of molecular complexes currently amenable to such analysis. Furthermore, the breadth of the particle size distribution, combined with possible variations in the density of different particles, makes it difficult to analyze extremely complex mixtures. These same problems are faced in the polymer industry, where dispersions of latices, pigments, lacquers, and emulsions must be characterized. There is a rich history of methods developed for the polymer industry finding use in the biochemical sciences. Two such methods are presented. These use analytical ultracentrifugation to determine the density and size distributions for submicron-sized particles. Both methods rely on Stokes' equations to estimate particle size and density, whereas turbidity, corrected using Mie's theory, provides the concentration measurement. The first method uses the sedimentation time in dispersion media of different densities to evaluate the particle density and size distribution. This method works provided the sample is chemically homogeneous. The second method splices together data gathered at different sample concentrations, thus permitting the high-resolution determination of the size distribution of particle diameters ranging from 10 to 3000 nm. By increasing the rotor speed exponentially from 0 to 40,000 rpm over a 1-h period, size distributions may be measured for extremely broadly distributed dispersions. Presented here is a short history of particle size distribution analysis using the ultracentrifuge, along with a description of the newest experimental methods. Several applications of the methods are provided that demonstrate the breadth of its utility, including extensions to samples containing nonspherical and chromophoric particles. PMID:9916040

  3. Size-resolved particle emission factors for individual ships

    NASA Astrophysics Data System (ADS)

    Jonsson, Åsa M.; Westerlund, Jonathan; Hallquist, Mattias

    2011-07-01

    In these experiments size-resolved emission factors for particle number (EFPN) and mass (EFPM) have been determined for 734 individual ship passages for real-world dilution. The method used is an extractive sampling method of the passing ship plumes where particle number/mass and CO2 were measured with high time resolution (1 Hz). The measurements were conducted on a small island located in the entrance to the port of Gothenburg (N57.6849, E11.838), the largest harbor in Scandinavia. This is an emission control area (ECA) and in close vicinity to populated areas. The average EFPN and EFPM were 2.55 ± 0.11 × 1016 (kg fuel)-1 and 2050 ± 110 mg (kg fuel)-1, respectively. The determined EF for ships with multiple passages showed a great reproducibility. Size-resolved EFPN were peaking at small particle sizes ˜35 nm. Smaller particle sizes and hence less mass were observed by a gas turbine equipped ship compared to diesel engine equipped ships. On average 36 to 46% of the emitted particles by number were non-volatile and 24% by mass (EFPN 1.16 ± 0.19 × 1016 [kg fuel]-1 and EFPM 488 ± 73 mg [kg fuel]-1, respectively). This study shows a great potential to gain large data-sets regarding ship emission determining parameters that can improve current dispersion modeling for health assessments on local and regional scales. The global contributions of total and non-volatile particle mass from shipping using this extensive data-set from an ECA were estimated to be at least 0.80 Tgy-1 and 0.19 Tgy-1.

  4. Size-selective separation of submicron particles in suspensions with ultrasonic atomization.

    PubMed

    Nii, Susumu; Oka, Naoyoshi

    2014-11-01

    Aqueous suspensions containing silica or polystyrene latex were ultrasonically atomized for separating particles of a specific size. With the help of a fog involving fine liquid droplets with a narrow size distribution, submicron particles in a limited size-range were successfully separated from suspensions. Performance of the separation was characterized by analyzing the size and the concentration of collected particles with a high resolution method. Irradiation of 2.4MHz ultrasound to sample suspensions allowed the separation of particles of specific size from 90 to 320nm without regarding the type of material. Addition of a small amount of nonionic surfactant, PONPE20 to SiO2 suspensions enhanced the collection of finer particles, and achieved a remarkable increase in the number of collected particles. Degassing of the sample suspension resulted in eliminating the separation performance. Dissolved air in suspensions plays an important role in this separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Particle size reduction of propellants by cryocycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whinnery, L.; Griffiths, S.; Lipkin, J.

    1995-05-01

    Repeated exposure of a propellant to liquid nitrogen causes thermal stress gradients within the material resulting in cracking and particle size reduction. This process is termed cryocycling. The authors conducted a feasibility study, combining experiments on both inert and live propellants with three modeling approaches. These models provided optimized cycle times, predicted ultimate particle size, and allowed crack behavior to be explored. Process safety evaluations conducted separately indicated that cryocycling does not increase the sensitivity of the propellants examined. The results of this study suggest that cryocycling is a promising technology for the demilitarization of tactical rocket motors.

  6. Particles influence allergic responses in mice--role of gender and particle size.

    PubMed

    Alberg, Torunn; Hansen, Jitka Stilund; Lovik, Martinus; Nygaard, Unni Cecilie

    2014-01-01

    Epidemiological evidence suggesting that exposure to traffic air pollution may enhance sensitization to common allergens in children is increasing, and animal studies support biological plausibility and causality. The effect of air pollution on respiratory symptoms was suggested to be gender dependent. Previous studies showed that allergy-promoting activity of polystyrene particles (PSP) increased with decreasing particle size after footpad injection of mice. The primary aim of this study was to confirm the influence of particle size on the immunoglobulin E (IgE)-promoting capacity of particles in an airway allergy model. A second aim was to examine whether the allergy-promoting capacity of particles was influenced by gender. Female and male mice were intranasally exposed to the allergen ovalbumin (OVA) with or without ultrafine, fine, or coarse PSP modeling the core of ambient air particles. After intranasal booster immunizations with OVA, serum levels of OVA-specific IgE antibodies, and also markers of airway inflammation and cellular responses in the lung-draining mediastinal lymph nodes (MLN), were determined. PSP of all sizes promoted allergic responses, measured as increased serum concentrations of OVA-specific IgE antibodies. Further, PSP produced eosinophilic airway inflammation and elevated MLN cell numbers as well as numerically reducing the percentage of regulatory T cells. Ultrafine PSP produced stronger allergic responses to OVA than fine and coarse PSP. Although PSP enhanced sensitization in both female and male mice, significantly higher IgE levels and numbers of eosinophils were observed in females than males. However, the allergy-promoting effect of PSP was apparently independent of gender. Thus, our data support the notion that ambient air particle pollution may affect development of allergy in both female and male individuals.

  7. Variation of airborne quartz in air of Beijing during the Asia-Pacific Economic Cooperation Economic Leaders' Meeting.

    PubMed

    Li, Gang; Li, Yingming; Zhang, Hongxing; Li, Honghua; Gao, Guanjun; Zhou, Qian; Gao, Yuan; Li, Wenjuan; Sun, Huizhong; Wang, Xiaoke; Zhang, Qinghua

    2016-01-01

    Quartz particles are a toxic component of airborne particulate matter (PM). Quartz concentrations were analyzed by X-ray diffraction in eighty-seven airborne PM samples collected from three locations in Beijing before, during, and after the Asia-Pacific Economic Cooperation (APEC) Leaders' Meeting in 2014. The results showed that the mean concentrations of quartz in PM samples from the two urban sites were considerably higher than those from the rural site. The quartz concentrations in samples collected after the APEC meeting, when the pollution restriction lever was lifted, were higher than those in the samples collected before or during the APEC meeting. The quartz concentrations ranged from 0.97 to 13.2 μg/m(3), which were among the highest values amid those reported from other countries. The highest quartz concentration exceeded the Californian Office of Environmental Health Hazard Assessment reference exposure level and was close to the occupational threshold limit values for occupational settings. Moreover, a correlation analysis showed that quartz concentrations were positively correlated with concentrations of pollution parameters PM10, PM2.5, SO2 and NOx, but were negatively correlated with O3 concentration. The results suggest that the airborne quartz particles may potentially pose health risks to the general population of Beijing. Copyright © 2015. Published by Elsevier B.V.

  8. Protection from high-velocity impact particles for quartz glass by coatings on the basis of Al-Si-N

    NASA Astrophysics Data System (ADS)

    Bozhko, I. A.; Rybalko, E. V.; Fedorischeva, M. V.; Solntsev, V. L.; Cherniavsky, A. G.; Kaleri, A. Yu.; Psakhie, S. G.; Sergeev, V. P.

    2016-11-01

    The paper presents the results of the research of the phase composition and the mechanical properties of the coatings on the basis of Al-Si-N system produced by pulsed magnetron sputtering on the KV glass substrates. By the X-ray diffraction method, it has been discovered that the coatings contain AlN phase (hcp) with different thickness. The deposition of Al-Si-N coating system allows both increasing the microhardness of the surface layer of the quartz glass up to 29 GPa, and maintaining high elastic properties (We > 0.70). The laboratory tests have been carried out involving the impact of high-speed flows of iron particles on the Al-Si-N protective coating with different thicknesses produced by pulsed magnetron sputtering. The increase of Al-Si-N coating thickness from 1µm to 10µm decreases 4-fold the surface density of the craters on the samples caused by a high-speed flow of iron particles.

  9. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    PubMed

    Zhang, Bo; Edwards, Brian J

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  10. Enhancement of fluorescence intensity by silicon particles and its size effect.

    PubMed

    Saitow, Ken-ichi; Suemori, Hidemi; Tamamitsu, Hironori

    2014-02-04

    Fluorescence-intensity enhancement of dye molecules was investigated using silicon submicron particles as a function of the particle size. Silicon particles with a size of 500 nm gave an enhancement factor up to 180. Measurement of scattering spectra revealed that the localized electric field at the particle enhances the fluorescence intensity.

  11. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    DOEpatents

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2015-11-17

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  12. Laser diffraction particle sizing in STRESS

    NASA Astrophysics Data System (ADS)

    Agrawal, Y. C.; Pottsmith, H. C.

    1994-08-01

    An autonomous instrument system for measuring particle size spectra in the sea is described. The instrument records the small-angle scattering characteristics of the particulate ensemble present in water. The small-angle scattering distribution is inverted into size spectra. The discussion of the instrument in this paper is included with a review of the information content of the data. It is noted that the inverse problem is sensitive to the forward model for light scattering employed in the construction of the matrix. The instrument system is validated using monodisperse polystyrene and NIST standard distributions of glass spheres. Data from a long-term deployment on the California shelf during the field experiment Sediment Transport Events on Shelves and Slopes (STRESS) are included. The size distribution in STRESS, measured at a fixed height-above-bed 1.2 m, showed significant variability over time. In particular, the volume distribution sometimes changed from mono-modal to bi-modal during the experiment. The data on particle-size distribution are combined with friction velocity measurements in the current boundary layer to produce a size-dependent estimate of the suspended mass at 10 cm above bottom. It is argued that these concentrations represent the reference concentration at the bed for the smaller size classes. The suspended mass at all sizes shows a strong correlation with wave variance. Using the size distribution, corrections in the optical transmissometry calibration factor are estimated for the duration of the experiment. The change in calibration at 1.2 m above bed (mab) is shown to have a standard error of 30% over the duration of the experiment with a range of 1.8-0.8.

  13. A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions.

    PubMed

    Kiliç, Mehtap Gülsün; Hoşten, Cetin; Demirci, Sahinde

    2009-11-15

    This paper attempts to compare electrocoagulation using aluminum anodes and stainless steel cathodes with conventional coagulation by aluminum sulfate dosing on aqueous suspensions of ultrafine quartz. Several key parameters affecting the efficiency of electrocoagulation and coagulation were investigated with laboratory scale experiments in search of optimal parameter values. Optimal values of the parameters were determined on the basis of the efficiency of turbidity removal from ultrafine quartz suspensions. The parameters investigated in the study were suspension pH, electrical potential, current density, electrocoagulation time, and aluminum dosage. A comparison between electrocoagulation and coagulation was made on the basis of total dissolved aluminum, revealing that electrocoagulation and coagulation were equally effective at the same aluminum dosage for the removal of quartz particles from suspensions. Coagulation, however, was more effective in a wider pH range (pH 6-9) than electrocoagulation which yielded optimum effectiveness in a relatively narrower pH range around 9, where, in both methods, these pH values corresponded to near-zero zeta potentials of quartz particles. Furthermore, experimental results confirmed that electrocoagulation could display some pH buffering capacity. The kinetics of electrocoagulation was very fast (<10 min) in approaching a residual turbidity, which could be modeled with a second-order rate equation.

  14. Size-resolved ultrafine particle composition analysis 1. Atlanta

    NASA Astrophysics Data System (ADS)

    Rhoads, K. P.; Phares, D. J.; Wexler, A. S.; Johnston, M. V.

    2003-04-01

    During August 1999 as part of the Southern Oxidants Study Supersite Experiment, our group collected size-resolved measurements of the chemical composition of single ambient aerosol particles with a unique real-time laser desorption/ionization mass spectrometry technique. The rapid single-particle mass spectrometry instrument is capable of analyzing "ultrafine" particles with aerodynamic diameters ranging from 0.01 to 1.5 μm. Under the heaviest loading observed in Atlanta, particles were analyzed at a rate of roughly one per second in sizes ranging from 0.1 to 0.2 μm. Nearly 16,000 individual spectra were recorded over the course of the month during both daytime and nighttime sampling periods. Evaluation of the data indicates that the composition of the ultrafine (less than 100 nm) particles is dominated by carbon-containing compounds. Larger particles show varied compositions but typically appeared to have organic carbon characteristics mixed with an inorganic component (e.g., crustal materials, metals, etc.). During the experiment, 70 composition classes were identified. In this paper we report the average spectra and correlations with various meteorological parameters for all major compound classes and a number of minor ones. The major composition classes are identified from the primary peaks in their spectra as organic carbon (about 74% of the particles), potassium (8%), iron (3%), calcium (2%), nitrate (2%), elemental carbon (1.5%), and sodium (1%). Many of these compound classes appeared in repeatable size ranges and quadrants of the wind rose, indicating emission from specific sources.

  15. Particle size-dependent radical generation from wildland fire smoke.

    PubMed

    Leonard, Stephen S; Castranova, Vince; Chen, Bean T; Schwegler-Berry, Diane; Hoover, Mark; Piacitelli, Chris; Gaughan, Denise M

    2007-07-01

    Firefighting, along with construction, mining and agriculture, ranks among the most dangerous occupations. In addition, the work environment of firefighters is unlike that of any other occupation, not only because of the obvious physical hazards but also due to the respiratory and systemic health hazards of smoke inhalation resulting from combustion. A significant amount of research has been devoted to studying municipal firefighters; however, these studies may not be useful in wildland firefighter exposures, because the two work environments are so different. Not only are wildland firefighters exposed to different combustion products, but their exposure profiles are different. The combustion products wildland firefighters are exposed to can vary greatly in characteristics due to the type and amount of material being burned, soil conditions, temperature and exposure time. Smoke inhalation is one of the greatest concerns for firefighter health and it has been shown that the smoke consists of a large number of particles. These smoke particles contain intermediates of hydrogen, carbon and oxygen free radicals, which may pose a potential health risk. Our investigation looked into the involvement of free radicals in smoke toxicity and the relationship between particle size and radical generation. Samples were collected in discrete aerodynamic particle sizes from a wildfire in Alaska, preserved and then shipped to our laboratory for analysis. Electron spin resonance was used to measure carbon-centered as well as hydroxyl radicals produced by a Fenton-like reaction with wildfire smoke. Further study of reactive oxygen species was conducted using analysis of cellular H(2)O(2) generation, lipid peroxidation of cellular membranes and DNA damage. Results demonstrate that coarse size-range particles contained more carbon radicals per unit mass than the ultrafine particles; however, the ultrafine particles generated more *OH radicals in the acellular Fenton-like reaction. The

  16. Particle Size Distributions in Atmospheric Clouds

    NASA Technical Reports Server (NTRS)

    Paoli, Roberto; Shariff, Karim

    2003-01-01

    In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.

  17. Counting Particles Emitted by Stratospheric Aircraft and Measuring Size of Particles Emitted by Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1994-01-01

    There were two principal objectives of the cooperative agreement between NASA and the University of Denver. The first goal was to modify the design of the ER-2 condensation nuclei counter (CNC) so that the effective lower detection limit would be improved at high altitudes. This improvement was sought because, in the instrument used prior to 1993, diffusion losses prevented the smallest detectable particles from reaching the detection volume of the instrument during operation at low pressure. Therefore, in spite of the sensor's ability to detect particles as small as 0.008 microns in diameter, many of these particles were lost in transport to the sensing region and were not counted. Most of the particles emitted by aircraft are smaller than 0.1 micron in diameter. At the start date of this work, May 1990, continuous sizing techniques available on the ER-2 were only capable of detecting particles larger than 0.17 micron. Thus, the second objective of this work was to evaluate candidate sizing techniques in an effort to gain additional information concerning the size of particles emitted by aircraft.

  18. Cytotoxicity evaluation of ceramic particles of different sizes and shapes.

    PubMed

    Yamamoto, Akiko; Honma, Rieko; Sumita, Masae; Hanawa, Takao

    2004-02-01

    When artificial hip or knee joints are implanted in the human body, they release metallic, ceramic, and polymeric debris into the surrounding tissues. The toxicity of the released particles is of two types: chemical, caused by the released soluble ions and monomers, and mechanical, a result of mechanical stimulation produced by the insoluble particles. In this study, the cytotoxicity of particles of TiO2, Al2O3, ZrO2, Si3N4, and SiC for murine fibroblasts and macrophages were examined to evaluate just their mechanical toxicity because these particles are not expected to release soluble metal ions. Different sizes and shapes of TiO2 particles were used to evaluate the effect of size and shape on particle cytotoxicity. The results suggest that the cytotoxicity of ceramic particles does not depend on their chemical species. Cytotoxicity levels were lower than those of corresponding metal ions, indicating that the mechanical toxicity of particles is lower than the chemical toxicity of released soluble ions and monomers. The differences in size did not affect the mechanical toxicity of these particles. The dendritic particles had a higher cytotoxicity level for macrophages than did spindle and spheric particles. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 68A: 244-256, 2004

  19. The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, residences.

    PubMed

    Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H

    2006-02-01

    Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas

  20. Toxicogenomic analysis of the particle dose- and size-response relationship of silica particles-induced toxicity in mice

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoyan; Jin, Tingting; Jin, Yachao; Wu, Leihong; Hu, Bin; Tian, Yu; Fan, Xiaohui

    2013-01-01

    This study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm, which is essential to the safe design and application of SP. Data obtained from histopathological examinations suggested that SP of these sizes can all induce acute inflammation in the liver. In vivo imaging showed that intravenously administrated SP are mainly present in the liver, spleen and intestinal tract. Interestingly, in gene expression analysis, the cellular response pathways activated in the liver are predominantly conserved independently of particle dose when the same size SP are administered or are conserved independently of particle size, surface area and particle number when nano- or submicro-sized SP are administered at their toxic doses. Meanwhile, integrated analysis of transcriptomics, previous metabonomics and conventional toxicological results support the view that SP can result in inflammatory and oxidative stress, generate mitochondrial dysfunction, and eventually cause hepatocyte necrosis by neutrophil-mediated liver injury.

  1. Influence of particle size on physical and sensory attributes of mango pulp powder

    NASA Astrophysics Data System (ADS)

    Sharma, M.; Kadam, D. M.; Chadha, S.; Wilson, R. A.; Gupta, R. K.

    2013-09-01

    The present investigation was aimed to observe the effect of particle size on physical, sensory and thermal properties of foam-mat dried mango pulp powder. Mango pulp of Dussehri variety was foam-mat dried using 3% egg white at 65ºC. Dried foam-mats were pulverized and passed through a sieve shaker for obtaining three grades of powder with 50, 60, and 85 mesh size sieves. The particle size of these samples measured using laser diffraction particle size analyzer ranged from 191.26 to 296.19 μm. The data was analysed statistically using ANOVA of SAS. There was a linear increase in lightness (`L' value) with a decrease in particle size, however, `a' value decreased with a decrease in particle size, indicating the decrease in redness. An increase in bulk density and decrease in water solubility index and water absorption index % were observed with a decrease in particle size. Particle size had a significant effect on sensory parameters. Particle size in the range of 258.01 to 264.60μmwas found most acceptable with respect to sensory characteristics. This finding can be exploited for various commercial applicationswhere powder quality is dependent on the particle size and has foremost priority for end users.

  2. BRL Particle Sizing Interferometer

    DTIC Science & Technology

    1982-07-01

    satisfy the counting constraints required for entry into the ■ Histogran Counter. ACQUISITION TIME -~ The tiwe which elapsed during data acquistion ...weighted population (i.e., Measured population tines the weighting factor) of a bin in the particle size histogran acquistion . Does not include data...1000.0 40.0 3000 1 ZING FROM PSI OMHZ M MHZ MHZ V. VOLTS PED HZ ODE ON PAD ZCD=3.7 ADJUST OFF; IRIG HISTOGRAM E:ET 42.0 CLOCK

  3. Developing quartz wafer mold manufacturing process for patterned media

    NASA Astrophysics Data System (ADS)

    Chiba, Tsuyoshi; Fukuda, Masaharu; Ishikawa, Mikio; Itoh, Kimio; Kurihara, Masaaki; Hoga, Morihisa

    2009-04-01

    Recently, patterned media have gained attention as a possible candidate for use in the next generation of hard disk drives (HDD). Feature sizes on media are predicted to be 20-25 nm half pitch (hp) for discrete-track media in 2010. One method of fabricating such a fine pattern is by using a nanoimprint. The imprint mold for the patterned media is created from a 150-millimeter, rounded, quartz wafer. The purpose of the process introduced here was to construct a quartz wafer mold and to fabricate line and space (LS) patterns at 24 nmhp for DTM. Additionally, we attempted to achieve a dense hole (HOLE) pattern at 12.5 nmhp for BPM for use in 2012. The manufacturing process of molds for patterned media is almost the same as that for semiconductors, with the exception of the dry-etching process. A 150-millimeter quartz wafer was etched on a special tray made from carving a 6025 substrate, by using the photo-mask tool. We also optimized the quartz etching conditions. As a result, 24 nmhp LS and HOLE patterns were manufactured on the quartz wafer. In conclusion, the quartz wafer mold manufacturing process was established. It is suggested that the etching condition should be further optimized to achieve a higher resolution of HOLE patterns.

  4. Rapid determination of environmentally persistent free radicals (EPFRs) in atmospheric particles with a quartz sheet-based approach using electron paramagnetic resonance (EPR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Qingcai; Wang, Mamin; Wang, Yuqin; Zhang, Lixin; Xue, Jian; Sun, Haoyao; Mu, Zhen

    2018-07-01

    Environmentally persistent free radicals (EPFRs) are present within atmospheric fine particles, and they are assumed to be a potential factor responsible for human pneumonia and lung cancer. This study presents a new method for the rapid quantification of EPFRs in atmospheric particles with a quartz sheet-based approach using electron paramagnetic resonance (EPR) spectroscopy. The three-dimensional distributions of the relative response factors in a cavity resonator were simulated and utilized for an accurate quantitative determination of EPFRs in samples. Comparisons between the proposed method and conventional quantitative methods were also performed to illustrate the advantages of the proposed method. The results suggest that the reproducibility and accuracy of the proposed method are superior to those of the quartz tube-based method. Although the solvent extraction method is capable of extracting specific EPFR species, the developed method can be used to determine the total EPFR content; moreover, the analysis process of the proposed approach is substantially quicker than that of the solvent extraction method. The proposed method has been applied in this study to determine the EPFRs in ambient PM2.5 samples collected over Xi'an, the results of which will be useful for extensive research on the sources, concentrations, and physical-chemical characteristics of EPFRs in the atmosphere.

  5. Preparation of gold nanoparticles and determination of their particles size via different methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Muhammad; Usanase, Gisele; Oulmi, Kafia

    Graphical abstract: Preparation of gold nanoparticles via NaBH{sub 4} reduction method, and determination of their particle size, size distribution and morphology by using different techniques. - Highlights: • Gold nanoparticles were synthesized by NaBH{sub 4} reduction method. • Excess of reducing agent leads to tendency of aggregation. • The particle size, size distribution and morphology were investigated. • Particle size was determined both experimentally as well as theoretically. - Abstract: Gold nanoparticles have been used in various applications covering both electronics, biosensors, in vivo biomedical imaging and in vitro biomedical diagnosis. As a general requirement, gold nanoparticles should be preparedmore » in large scale, easy to be functionalized by chemical compound of by specific ligands or biomolecules. In this study, gold nanoparticles were prepared by using different concentrations of reducing agent (NaBH{sub 4}) in various formulations and their effect on the particle size, size distribution and morphology was investigated. Moreover, special attention has been dedicated to comparison of particles size measured by various techniques, such as, light scattering, transmission electron microscopy, UV spectrum using standard curve and particles size calculated by using Mie theory and UV spectrum of gold nanoparticles dispersion. Particle size determined by various techniques can be correlated for monodispersed particles and excess of reducing agent leads to increase in the particle size.« less

  6. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Alsomore » disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.« less

  7. Size limits for rounding of volcanic ash particles heated by lightning.

    PubMed

    Wadsworth, Fabian B; Vasseur, Jérémie; Llewellin, Edward W; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters-capillary, Fourier, Stark, Biot, and Peclet numbers-to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  8. Size limits for rounding of volcanic ash particles heated by lightning

    PubMed Central

    Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-01-01

    Abstract Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high‐temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1‐D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension‐driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first‐order estimate of lightning conditions in volcanic plumes. PMID:28781929

  9. Size limits for rounding of volcanic ash particles heated by lightning

    NASA Astrophysics Data System (ADS)

    Wadsworth, Fabian B.; Vasseur, Jérémie; Llewellin, Edward W.; Genareau, Kimberly; Cimarelli, Corrado; Dingwell, Donald B.

    2017-03-01

    Volcanic ash particles can be remelted by the high temperatures induced in volcanic lightning discharges. The molten particles can round under surface tension then quench to produce glass spheres. Melting and rounding timescales for volcanic materials are strongly dependent on heating duration and peak temperature and are shorter for small particles than for large particles. Therefore, the size distribution of glass spheres recovered from ash deposits potentially record the short duration, high-temperature conditions of volcanic lightning discharges, which are hard to measure directly. We use a 1-D numerical solution to the heat equation to determine the timescales of heating and cooling of volcanic particles during and after rapid heating and compare these with the capillary timescale for rounding an angular particle. We define dimensionless parameters—capillary, Fourier, Stark, Biot, and Peclet numbers—to characterize the competition between heat transfer within the particle, heat transfer at the particle rim, and capillary motion, for particles of different sizes. We apply this framework to the lightning case and constrain a maximum size for ash particles susceptible to surface tension-driven rounding, as a function of lightning temperature and duration, and ash properties. The size limit agrees well with maximum sizes of glass spheres found in volcanic ash that has been subjected to lightning or experimental discharges, demonstrating that the approach that we develop can be used to obtain a first-order estimate of lightning conditions in volcanic plumes.

  10. Radial particle-size segregation during packing of particulates into cylindrical containers

    USGS Publications Warehouse

    Ripple, C.D.; James, R.V.; Rubin, J.

    1973-01-01

    In a series of experiments, soil materials were placed in long cylindrical containers, using various packing procedures. Soil columns produced by deposition and simultaneous vibratory compaction were dense and axially uniform, but showed significant radial segregation of particle sizes. Similar results were obtained with deposition and simultaneous impact-type compaction when the impacts resulted in significant container "bouncing". The latter procedure, modified to minimize "bouncing" produced dense, uniform soil columns, showing little radial particle-size segregation. Other procedures tested (deposition alone and deposition followed by compaction) did not result in radial segregation, but produced columns showing either relatively low or axially nonuniform densities. Current data suggest that radial particle-size segregation is mainly due to vibration-induced particle circulation in which particles of various sizes have different circulation rates and paths. ?? 1973.

  11. Investigations on Local Quartz Sand for Application in Glass Industry

    NASA Astrophysics Data System (ADS)

    Dararutana, Pisutti; Chetanachan, Prukswan; Wathanakul, Pornsawat; Sirikulrat, Narin

    2009-03-01

    Silica or glass sand is a special type of quartz sand that is suitable for glass-making, because of its high silica content, and its low content of iron oxide and other compounds. In Thailand, deposits of quartz sand are found as the beach and the river sands in many areas; eastern, southern, northeastern and northern. In this work, grain-size distribution and chemical analyses were carried out on 10 sand samples taken from various localities in Thailand such as Chanthaburi, Trat, Rayong, Chumphon, Nakhon Si, Pattani, Phuket, Songkhla, Nong Khai, and Tak provinces. The geological resources show that most of them are the surface-to-near-surface glass sand deposits. The sand grains in most deposits were mainly angular-to-rounded, except in some areas of either angular or rounded grains. Chemical analysis showed that the sands contained more than 95wt% silica and low content of Fe, Al, Ca, Mg, Na, and K. The concentration levels of these components in the samples confirm with internationally acceptable standard for glass production. The quartz sand dressing plants that used the spiral classifier to improve the properties of the quartz sands to meet the standard specifications are mostly located in the eastern area. It can be concluded that most of the quartz sand deposits in Thailand investigated show well-sorted grain-size with considerable purity, i.e. high-grade quality. The advanced works resulted in that these raw quartz sands can be used as raw material for fabrication of soda-lime, lead crystal, and lead-free high refractive index glasses. The colorless and various colored glass products have been satisfactorily used in the domestic art and glass manufactures.

  12. Rutilated quartz: combining Ti-in-quartz thermometry and lattice diffusion

    NASA Astrophysics Data System (ADS)

    Tailby, N.; Towbin, H.; Ackerson, M. R.

    2017-12-01

    The Ti content of quartz can be used to evaluate crystallization temperatures in silicic magmas like the S-type Jillamatong granodiorite of the Lachlan Fold Belt. Additionally, the presence of crystallographically-aligned exsolved rutile needles in quartz from this granodiorite suggests that post-crystallization modification of Ti in quartz can be used to assess magmatic cooling rates. In this study we report Ti-in-quartz temperatures that indicate crystallization between 600-700 °C at this location (i.e., 25-60 ppmw Ti, P = 5 kbar, aTiO2= 0.46-0.66). After crystallization, Ti in quartz can be reset via lattice diffusion, a process that can be quantified or evaluated from experimentally-determined values [Cherniak et al., 2007; where DTi = 7x10-8exp (-273±12kJmol-1/RT) m2sec-1)]. The slow diffusivity of Ti through the quartz lattice is one factor that contributes to the general use of quartz thermometry - this is to say that unrealistically long time periods are required in order for a cooling quartz crystal to re-equilibrate with the new thermal regime. This is particularly true of crystal cores (generally on the mm scale), where the diffusive length scale from the core to rim of the crystal could be used to suggest core retention is likely in even the slowest cooling granitic systems. In the Jillamatong pluton - as we predict is possible in a significant body of granitoids - coupling of slow diffusion and decreasing Ti solubility in quartz upon cooling can lead to a situation where a quartz crystal becomes saturated in Ti (i.e., aTiO2=1) and rutile exsolutions develop. The radius ( 0.6 microns) and distribution of these needles, coupled with the diffusive draw down well ( 11 microns) around these exsolutions, can be used to evaluate the cooling history of the pluton, thus providing a comprehensive time-integrated crystallization and cooling history of plutonic rocks. ReferencesCherniak et al., 2007. Chem. Geol. 236, 65-74 Thomas et al., 2010. Contrib. Mineral

  13. Effect of particle size of parenteral suspensions on in vitro muscle damage.

    PubMed

    Brazeau, Gayle; Sauberan, Shauna L; Gatlin, Larry; Wisniecki, Peter; Shah, Jaymin

    2011-01-01

    Suspension particle size plays a key role in the release and stability of drugs for oral and parenteral formulations. However, the role of particle size in suspension formulations on tissue damage (myotoxicity) following intramuscular (IM) injection has not been systematically investigated. Myotoxicity was assessed by the release of cumulative creatine kinase (CCK) from the isolated extensor digitorium longus (EDL) and soleus (SOL) rat muscles for selected suspensions of phenytoin, bupivicane and diazepam. Particle size effects on myotoxicity, independent of any specific drug, were also investigated using characterized non-dissolving polystyrene beads. Myotoxicity was quantitated by the cumulative release of creatine kinase (CCK) from these isolated muscles over 90 or 120 min. The relationship between particle size and myotoxicity was dependent upon the drug in these suspensions. Diazepam and phenytoin suspensions were found to be less myotoxic than bupivicaine. Using unmodified and carboxy modified polystyrene beads, an optimal particle size for reduced myotoxicity following IM injection ranges from approx. 500 nm to 1 µM. The relationship between myotoxicity of IM suspensions and particle size is dependent upon the particular drug and suspension particle size.

  14. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bo; Edwards, Brian J., E-mail: bje@utk.edu

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated withmore » the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.« less

  15. Measurement of non-volatile particle number size distribution

    NASA Astrophysics Data System (ADS)

    Gkatzelis, G. I.; Papanastasiou, D. K.; Florou, K.; Kaltsonoudis, C.; Louvaris, E.; Pandis, S. N.

    2015-06-01

    An experimental methodology was developed to measure the non-volatile particle number concentration using a thermodenuder (TD). The TD was coupled with a high-resolution time-of-flight aerosol mass spectrometer, measuring the chemical composition and mass size distribution of the submicrometer aerosol and a scanning mobility particle sizer (SMPS) that provided the number size distribution of the aerosol in the range from 10 to 500 nm. The method was evaluated with a set of smog chamber experiments and achieved almost complete evaporation (> 98 %) of secondary organic as well as freshly nucleated particles, using a TD temperature of 400 °C and a centerline residence time of 15 s. This experimental approach was applied in a winter field campaign in Athens and provided a direct measurement of number concentration and size distribution for particles emitted from major pollution sources. During periods in which the contribution of biomass burning sources was dominant, more than 80 % of particle number concentration remained after passing through the thermodenuder, suggesting that nearly all biomass burning particles had a non-volatile core. These remaining particles consisted mostly of black carbon (60 % mass contribution) and organic aerosol, OA (40 %). Organics that had not evaporated through the TD were mostly biomass burning OA (BBOA) and oxygenated OA (OOA) as determined from AMS source apportionment analysis. For periods during which traffic contribution was dominant 50-60 % of the particles had a non-volatile core while the rest evaporated at 400 °C. The remaining particle mass consisted mostly of black carbon (BC) with an 80 % contribution, while OA was responsible for another 15-20 %. Organics were mostly hydrocarbon-like OA (HOA) and OOA. These results suggest that even at 400 °C some fraction of the OA does not evaporate from particles emitted from common combustion processes, such as biomass burning and car engines, indicating that a fraction of this type

  16. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens.

    PubMed

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-03-02

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.

  17. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    NASA Astrophysics Data System (ADS)

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-03-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.

  18. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    PubMed Central

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-01-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated. PMID:28252033

  19. Particle size and particle-particle interactions on tensile properties and reinforcement of corn flour particles in natural rubber

    USDA-ARS?s Scientific Manuscript database

    Renewable corn flour has a significant reinforcement effect in natural rubber. The corn flour was hydrolyzed and microfluidized to reduce its particle size. Greater than 90% of the hydrolyzed corn flour had an average size of ~300 nm, a reduction of 33 times compared to unhydrolyzed corn flour. Comp...

  20. Dust generation in powders: Effect of particle size distribution

    NASA Astrophysics Data System (ADS)

    Chakravarty, Somik; Le Bihan, Olivier; Fischer, Marc; Morgeneyer, Martin

    2017-06-01

    This study explores the relationship between the bulk and grain-scale properties of powders and dust generation. A vortex shaker dustiness tester was used to evaluate 8 calcium carbonate test powders with median particle sizes ranging from 2μm to 136μm. Respirable aerosols released from the powder samples were characterised by their particle number and mass concentrations. All the powder samples were found to release respirable fractions of dust particles which end up decreasing with time. The variation of powder dustiness as a function of the particle size distribution was analysed for the powders, which were classified into three groups based on the fraction of particles within the respirable range. The trends we observe might be due to the interplay of several mechanisms like de-agglomeration and attrition and their relative importance.

  1. Nature of alpha and beta particles in glycogen using molecular size distributions.

    PubMed

    Sullivan, Mitchell A; Vilaplana, Francisco; Cave, Richard A; Stapleton, David; Gray-Weale, Angus A; Gilbert, Robert G

    2010-04-12

    Glycogen is a randomly hyperbranched glucose polymer. Complex branched polymers have two structural levels: individual branches and the way these branches are linked. Liver glycogen has a third level: supramolecular clusters of beta particles which form larger clusters of alpha particles. Size distributions of native glycogen were characterized using size exclusion chromatography (SEC) to find the number and weight distributions and the size dependences of the number- and weight-average masses. These were fitted to two distinct randomly joined reference structures, constructed by random attachment of individual branches and as random aggregates of beta particles. The z-average size of the alpha particles in dimethylsulfoxide does not change significantly with high concentrations of LiBr, a solvent system that would disrupt hydrogen bonding. These data reveal that the beta particles are covalently bonded to form alpha particles through a hitherto unsuspected enzyme process, operative in the liver on particles above a certain size range.

  2. Mass-specific scattering coefficient for natural minerogenic particle populations: particle size distribution effect and closure analyses.

    PubMed

    Peng, Feng; Effler, Steve W

    2012-05-01

    The relationship between the particulate scattering coefficient (b(p)) and the concentration of suspended particulate matter (SPM), as represented by the mass-specific scattering coefficient of particulates (b(p)*=b(p)/SPM), depends on particle size distribution (PSD). This dependence is quantified for minerogenic particle populations in this paper through calculations of b(p)* for common minerals as idealized populations (monodispersed spheres); contemporaneous measurements of b(p), SPM, and light-scattering attributes of mineral particles with scanning electron microscopy interfaced with automated image and x-ray analyses (SAX), for a connected stream-reservoir system where minerogenic particles dominate b(p); and estimates of b(p) and its size dependency (through SAX results-driven Mie theory calculations), particle volume concentration, and b(p)*. Modest changes in minerogenic PSDs are shown to result in substantial variations in b(p)*. Good closure of the SAX-based estimates of b(p) and particle volume concentration with bulk measurements is demonstrated. Converging relationships between b(p)* and particle size, developed from three approaches, were well described by power law expressions.

  3. Quantitative Reflectance Spectra of Solid Powders as a Function of Particle Size

    DOE PAGES

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; ...

    2015-05-19

    We have recently developed vetted methods for obtaining quantitative infrared directional-hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance vs. particle size are observed such as increased albedo for smaller particles: for mostmore » wavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate- and large-sized sample fractions; that is, > ~150 microns. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance vs. particle diameter.« less

  4. Quantitative Reflectance Spectra of Solid Powders as a Function of Particle Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong

    We have recently developed vetted methods for obtaining quantitative infrared directional-hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance vs. particle size are observed such as increased albedo for smaller particles: for mostmore » wavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate- and large-sized sample fractions; that is, > ~150 microns. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance vs. particle diameter.« less

  5. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    PubMed Central

    Salazar, Jaime; Müller, Rainer H.; Möschwitzer, Jan P.

    2014-01-01

    Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals. PMID:26556191

  6. Recovering 3D particle size distributions from 2D sections

    NASA Astrophysics Data System (ADS)

    Cuzzi, Jeffrey N.; Olson, Daniel M.

    2017-03-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible, and practical method to do this; show which of these techniques gives the most faithful conversions; and provide (online) short computer codes to calculate both 2D-3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter.

  7. Rock sampling. [method for controlling particle size distribution

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    A method for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The method involves cutting grooves in the rock surface to provide a grouping of parallel ridges and subsequently machining the ridges to provide a powder specimen. The machining step may comprise milling, drilling, lathe cutting or the like; but a planing step is advantageous. Control of the particle size distribution is effected primarily by changing the height and width of these ridges. This control exceeds that obtainable by conventional grinding.

  8. Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, R.; Rajkumar, P.

    2014-11-01

    The abstract of this paper explains the presence of minerals in air which causes great concern regarding public health issues. The spectroscopic investigation of air dust particles of several samples in various locations in the state of Tamilnadu, India is reported. Qualitative analyses were carried out to determine the major and minor constituent minerals present in the samples based on the FTIR, XRD absorption peaks. This study also identified the minerals like quartz, asbestos, kaolinite, calcite, hematite, montmorillonite, nacrite and several other trace minerals in the air dust particles. The presents of quartz is mainly found in all the samples invariably. Hence the percentage of quartz and its crystalline nature were determined with the help of extinction co-efficient and crystallinity index respectively. The shape and size of the particulates are studied with SEM analysis.

  9. Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico III: Quartz dissolution rates

    USGS Publications Warehouse

    Schulz, M.S.; White, A.F.

    1999-01-01

    The paucity of weathering rates for quartz in the natural environment stems both from the slow rate at which quartz dissolves and the difficulty in differentiating solute Si contributed by quartz from that derived from other silicate minerals. This study, a first effort in quantifying natural rates of quartz dissolution, takes advantage of extremely rapid tropical weathering, simple regolith mineralogy, and detailed information on hydrologic and chemical transport. Quartz abundances and grain sizes are relatively constant with depth in a thick saprolite. Limited quartz dissolution is indicated by solution rounding of primary angularity and by the formation of etch pits. A low correlation of surface area (0.14 and 0.42 m2 g-1) with grain size indicates that internal microfractures and pitting are the principal contributors to total surface area. Pore water silica concentration increases linearly with depth. On a molar basis, between one and three quarters of pore water silica is derived from quartz with the remainder contributed from biotite weathering. Average solute Si remains thermodynamically undersaturated with respect to recently revised estimates of quartz solubility (17-81 ??M). Etch pitting is more abundant on grains in the upper saprolite and is associated with pore waters lower in dissolved silica. Rate constants describing quartz dissolution increase with decreasing depth (from 10-14.5-10-15.1 mol m-2 s-1), which correlate with both greater thermodynamic undersaturation and increasing etch pit densities. Unlike for many aluminosilicates, the calculated natural weathering rates of quartz fall slightly below the rate constants previously reported for experimental studies (10-12.4-10-14.2 mol m-2 s-1). This agreement reflects the structural simplicity of quartz, dilute solutes, and near-hydrologic saturation.

  10. The origins of particle size effects in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Bond, Geoffrey C.

    1985-06-01

    Model calculations are presented to show how the fraction of atoms at the surface of small metal particles increases as their size diminishes in the range 10 to 2 nm. Such particles are prepared either by condensing atoms or aggregates from the vapour phase onto a support, or by chemical methods in the liquid phase, i.e. the traditional routes for preparing supported metal catalysts. The first group of methods leads to artificially pure materials in which the contact between metal and support is poor. The second group of methods leads to the introduction of impurities, to a greater variety of forms of particle, but to a generally firmer binding of metal to support: this permits electronic interactions between the components to occur. Recent literature on the chemisorptive and catalytic properties of metal particles, usually less than 10 nm in size, suggests that certain classes of reaction may be designated as "structure-insensitive" in that their rates depend only minimally on particle size, whereas others, denoted as "structure-sensitive", have rates which either increase or decrease with size. After discounting trivial effects, a hard core of results remains, demanding explanation. Although certain hydrocarbon transformations appear to need sites comprising more than a certain minimum number of atoms, it is thought that the electronic character of surface atoms plays a greater role than their geometric disposition.

  11. Experimental studies of shock-induced particle jetting

    NASA Astrophysics Data System (ADS)

    Xue, Kun; Du, Kaiyuan; Shi, Xiaoliang

    2018-05-01

    The dispersion of particle rings or shells by a radially divergent shock front trailed by the pressurized gases takes the form of hierarchical particle jetting. Through a semi-two-dimensional configuration, we characterize the evolution of the jetting pattern using the boundary tracking technique. In contrast to the refined filamentary jetting spread induced by the dispersal of soft and ductile flour particles, the hard and brittle quartz sand particles are dispersed into a finger-like branched pattern with much fewer jets. The interplay between the primary and secondary jets suffices to reverse the flour jetting pattern, which by contrast is negligible in the quartz sand jetting. The distinct jetting patterns displayed by the flour and quartz sand particles are related with the distinguishable networks of force chains invoked in two particles which dictate the nucleation of jets.

  12. Modeling photoacoustic spectral features of micron-sized particles

    NASA Astrophysics Data System (ADS)

    Strohm, Eric M.; Gorelikov, Ivan; Matsuura, Naomi; Kolios, Michael C.

    2014-10-01

    The photoacoustic signal generated from particles when irradiated by light is determined by attributes of the particle such as the size, speed of sound, morphology and the optical absorption coefficient. Unique features such as periodically varying minima and maxima are observed throughout the photoacoustic signal power spectrum, where the periodicity depends on these physical attributes. The frequency content of the photoacoustic signals can be used to obtain the physical attributes of unknown particles by comparison to analytical solutions of homogeneous symmetric geometric structures, such as spheres. However, analytical solutions do not exist for irregularly shaped particles, inhomogeneous particles or particles near structures. A finite element model (FEM) was used to simulate photoacoustic wave propagation from four different particle configurations: a homogeneous particle suspended in water, a homogeneous particle on a reflecting boundary, an inhomogeneous particle with an absorbing shell and non-absorbing core, and an irregularly shaped particle such as a red blood cell. Biocompatible perfluorocarbon droplets, 3-5 μm in diameter containing optically absorbing nanoparticles were used as the representative ideal particles, as they are spherical, homogeneous, optically translucent, and have known physical properties. The photoacoustic spectrum of micron-sized single droplets in suspension and on a reflecting boundary were measured over the frequency range of 100-500 MHz and compared directly to analytical models and the FEM. Good agreement between the analytical model, FEM and measured values were observed for a droplet in suspension, where the spectral minima agreed to within a 3.3 MHz standard deviation. For a droplet on a reflecting boundary, spectral features were correctly reproduced using the FEM but not the analytical model. The photoacoustic spectra from other common particle configurations such as particle with an absorbing shell and a

  13. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    NASA Astrophysics Data System (ADS)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  14. Production of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. L.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.

    1984-01-01

    The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization.

  15. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    PubMed

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  16. Particle size distributions from laboratory-scale biomass fires using fast response instruments

    Treesearch

    S Hosseini; L. Qi; D. Cocker; D. Weise; A. Miller; M. Shrivastava; J.W. Miller; S. Mahalingam; M. Princevac; H. Jung

    2010-01-01

    Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in...

  17. Study on Production of Silicon Nanoparticles from Quartz Sand for Hybrid Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Arunmetha, S.; Vinoth, M.; Srither, S. R.; Karthik, A.; Sridharpanday, M.; Suriyaprabha, R.; Manivasakan, P.; Rajendran, V.

    2018-01-01

    Nano silicon (nano Si) particles were directly prepared from natural mineral quartz sand and thereafter used to fabricate the hybrid silicon solar cells. Here, in this preparation technique, two process stages were involved. In the first stage, the alkaline extraction and acid precipitation processes were applied on quartz sand to fetch silica nanoparticles. In the second stage, magnesiothermic and modified magnesiothermic reduction reactions were applied on nano silica particles to prepare nano Si particles. The effect of two distinct reduction methodologies on nano Si particle preparation was compared. The magnesiothermic and modified magnesiothermic reductions in the silica to silicon conversion process were studied with the help of x-ray diffraction (XRD) with intent to study the phase changes during the reduction reaction as well as its crystalline nature in the pure silicon phase. The particles consist of a combination of fine particles with spherical morphology. In addition to this, the optical study indicated an increase in visible light absorption and also increases the performance of the solar cell. The obtained nano Si particles were used as an active layer to fabricate the hybrid solar cells (HSCs). The obtained results confirmed that the power conversion efficiency (PCE) of the magnesiothermically modified nano Si cells (1.06%) is much higher as compared to the nano Si cells that underwent magnesiothermic reduction (1.02%). Thus, this confirms the increased PCE of the investigated nano Si solar cell up to 1.06%. It also revealed that nano Si behaved as an electron acceptor and transport material. The present study provided valuable insights and direction for the preparation of nano Si particles from quartz sand, including the influence of process methods. The prepared nano Si particles can be utilized for HSCs and an array of portable electronic devices.

  18. Using portable particle sizing instrumentation to rapidly measure the penetration of fine and ultrafine particles in unoccupied residences.

    PubMed

    Zhao, H; Stephens, B

    2017-01-01

    Much of human exposure to particulate matter of outdoor origin occurs inside buildings, particularly in residences. The particle penetration factor through leaks in a building's exterior enclosure assembly is a key parameter that governs the infiltration of outdoor particles. However, experimental data for size-resolved particle penetration factors in real buildings, as well as penetration factors for fine particles less than 2.5 μm (PM 2.5 ) and ultrafine particles less than 100 nm (UFPs), remain limited, in part because of previous limitations in instrumentation and experimental methods. Here, we report on the development and application of a modified test method that utilizes portable particle sizing instrumentation to measure size-resolved infiltration factors and envelope penetration factors for 0.01-2.5 μm particles, which are then used to estimate penetration factors for integral measures of UFPs and PM 2.5 . Eleven replicate measurements were made in an unoccupied apartment unit in Chicago, IL to evaluate the accuracy and repeatability of the test procedure and solution methods. Mean estimates of size-resolved penetration factors ranged from 0.41 ± 0.14 to 0.73 ± 0.05 across the range of measured particle sizes, while mean estimates of penetration factors for integral measures of UFPs and PM 2.5 were 0.67 ± 0.05 and 0.73 ± 0.05, respectively. Average relative uncertainties for all particle sizes/classes were less than 20%. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Effect of particle size on enzymatic hydrolysis of pretreated Miscanthus

    USDA-ARS?s Scientific Manuscript database

    Particle size reduction is a crucial factor in transportation logistics as well as cellulosic conversion. The effect of particle size on enzymatic hydrolysis of pretreated Miscanthus x giganteus was determined. Miscanthus was ground using a hammer mill equipped with screens having 0.08, 2.0 or 6.0...

  20. Light absorption by coated nano-sized carbonaceous particles

    NASA Astrophysics Data System (ADS)

    Gangl, Martin; Kocifaj, Miroslav; Videen, Gorden; Horvath, Helmuth

    The optical properties of strongly absorbing soot particles coated by transparent material are investigated experimentally and described by several modeling approaches. Soot is produced by spark discharge and passed through a Sinclair-La Mer generator where non-absorbing carnauba wax is condensed onto it to obtain internal soot-wax mixtures in a controlled way. Measurements of the extinction and volume scattering coefficient show an amplification of absorption by a factor of approximately 1.8. This behavior was described by different approaches of internally mixed materials for the modal diameters of the measured size distributions: concentric-sphere model, effective medium approximations and heterogeneous ellipsoids. The concentric-sphere model describes the absorption increase quantitatively; and hence, it is chosen to be applied to the entire particle population in the size distribution. The growth of the soot particles by condensing wax is described by a simplified growth model to estimate the different contributions of several soot particle diameters to the overall absorption cross-section.

  1. Light scattering by lunar-like particle size distributions

    NASA Technical Reports Server (NTRS)

    Goguen, Jay D.

    1991-01-01

    A fundamental input to models of light scattering from planetary regoliths is the mean phase function of the regolith particles. Using the known size distribution for typical lunar soils, the mean phase function and mean linear polarization for a regolith volume element of spherical particles of any composition were calculated from Mie theory. The two contour plots given here summarize the changes in the mean phase function and linear polarization with changes in the real part of the complex index of refraction, n - ik, for k equals 0.01, the visible wavelength 0.55 micrometers, and the particle size distribution of the typical mature lunar soil 72141. A second figure is a similar index-phase surface, except with k equals 0.1. The index-phase surfaces from this survey are a first order description of scattering by lunar-like regoliths of spherical particles of arbitrary composition. They form the basis of functions that span a large range of parameter-space.

  2. Photometric imaging in particle size measurement and surface visualization.

    PubMed

    Sandler, Niklas

    2011-09-30

    The aim of this paper is to give an insight into photometric particle sizing approaches, which differ from the typical particle size measurement of dispersed particles. These approaches can often be advantageous especially for samples that are moist or cohesive, when dispersion of particles is difficult or sometimes impossible. The main focus of this paper is in the use of photometric stereo imaging. The technique allows the reconstruction of three-dimensional images of objects using multiple light sources in illumination. The use of photometric techniques is demonstrated in at-line measurement of granules and on-line measurement during granulation and dry milling. Also, surface visualization and roughness measurements are briefly discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Particle size distributions in chondritic meteorites: Evidence for pre-planetesimal histories

    NASA Astrophysics Data System (ADS)

    Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.

    2018-07-01

    Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (∼15-20%) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of chondrules. If ≥cm-sized

  4. Particle Size Distributions in Chondritic Meteorites: Evidence for Pre-Planetesimal Histories

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Cuzzi, J. N.; McCain, K. A.; Cato, M. J.; Christoffersen, P. A.; Fisher, K. R.; Srinivasan, P.; Tait, A. W.; Olson, D. M.; Scargle, J. D.

    2018-01-01

    Magnesium-rich silicate chondrules and calcium-, aluminum-rich refractory inclusions (CAIs) are fundamental components of primitive chondritic meteorites. It has been suggested that concentration of these early-formed particles by nebular sorting processes may lead to accretion of planetesimals, the planetary bodies that represent the building blocks of the terrestrial planets. In this case, the size distributions of the particles may constrain the accretion process. Here we present new particle size distribution data for Northwest Africa 5717, a primitive ordinary chondrite (ungrouped 3.05) and the well-known carbonaceous chondrite Allende (CV3). Instead of the relatively narrow size distributions obtained in previous studies (Ebel et al., 2016; Friedrich et al., 2015; Paque and Cuzzi, 1997, and references therein), we observed broad size distributions for all particle types in both meteorites. Detailed microscopic image analysis of Allende shows differences in the size distributions of chondrule subtypes, but collectively these subpopulations comprise a composite "chondrule" size distribution that is similar to the broad size distribution found for CAIs. Also, we find accretionary 'dust' rims on only a subset (approximately 15-20 percent) of the chondrules contained in Allende, which indicates that subpopulations of chondrules experienced distinct histories prior to planetary accretion. For the rimmed subset, we find positive correlation between rim thickness and chondrule size. The remarkable similarity between the size distributions of various subgroups of particles, both with and without fine grained rims, implies a common size sorting process. Chondrite classification schemes, astrophysical disk models that predict a narrow chondrule size population and/or a common localized formation event, and conventional particle analysis methods must all be critically reevaluated. We support the idea that distinct "lithologies" in NWA 5717 are nebular aggregates of

  5. Size, shape and flow characterization of ground wood chip and ground wood pellet particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaei, Hamid; Lim, C. Jim; Lau, Anthony

    Size, shape and density of biomass particles influence their transportation, fluidization, rates of drying and thermal decomposition. Pelleting wood particles increases the particle density and reduces the variability of physical properties among biomass particles. In this study, pine chips prepared for pulping and commercially produced pine pellets were ground in a hammer mill using grinder screens of 3.2, 6.3, 12.7 and 25.4mmperforations. Pellets consumed about 7 times lower specific grinding energy than chips to produce the same size of particles. Grinding pellets produced the smaller particles with narrower size distribution than grinding chips. Derived shape factors in digital image analysismore » showed that chip particles were rectangular and had the aspect ratios about one third of pellet particles. Pellet particles were more circular shape. The mechanical sieving underestimated the actual particle size and did not represent the size of particles correctly. Instead, digital imaging is preferred. Angle of repose and compressibility tests represented the flow properties of ground particles. Pellet particles made a less compacted bulk, had lower cohesion and did flow easier in a pile of particles. In conclusion, particle shape affected the flow properties more than particle size« less

  6. Size, shape and flow characterization of ground wood chip and ground wood pellet particles

    DOE PAGES

    Rezaei, Hamid; Lim, C. Jim; Lau, Anthony; ...

    2016-07-11

    Size, shape and density of biomass particles influence their transportation, fluidization, rates of drying and thermal decomposition. Pelleting wood particles increases the particle density and reduces the variability of physical properties among biomass particles. In this study, pine chips prepared for pulping and commercially produced pine pellets were ground in a hammer mill using grinder screens of 3.2, 6.3, 12.7 and 25.4mmperforations. Pellets consumed about 7 times lower specific grinding energy than chips to produce the same size of particles. Grinding pellets produced the smaller particles with narrower size distribution than grinding chips. Derived shape factors in digital image analysismore » showed that chip particles were rectangular and had the aspect ratios about one third of pellet particles. Pellet particles were more circular shape. The mechanical sieving underestimated the actual particle size and did not represent the size of particles correctly. Instead, digital imaging is preferred. Angle of repose and compressibility tests represented the flow properties of ground particles. Pellet particles made a less compacted bulk, had lower cohesion and did flow easier in a pile of particles. In conclusion, particle shape affected the flow properties more than particle size« less

  7. Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals.

    PubMed

    Martena, Valentina; Shegokar, Ranjita; Di Martino, Piera; Müller, Rainer H

    2014-09-01

    Nicergoline, a poorly soluble active pharmaceutical ingredient, possesses vaso-active properties which causes peripheral and central vasodilatation. In this study, nanocrystals of nicergoline were prepared in an aqueous solution of polysorbate 80 (nanosuspension) by using four different laboratory scale size reduction techniques: high pressure homogenization (HPH), bead milling (BM) and combination techniques (high pressure homogenization followed by bead milling HPH + BM, and bead milling followed by high pressure homogenization BM + HPH). Nanocrystals were investigated regarding to their mean particles size, zeta potential and particle dissolution. A short term physical stability study on nanocrystals stored at three different temperatures (4, 20 and 40 °C) was performed to evaluate the tendency to change in particle size, aggregation and zeta potential. The size reduction technique and the process parameters like milling time, number of homogenization cycles and pressure greatly affected the size of nanocrystals. Among the techniques used, the combination techniques showed superior and consistent particle size reduction compared to the other two methods, HPH + BM and BM + HPH giving nanocrystals of a mean particle size of 260 and 353 nm, respectively. The particle dissolution was increased for any nanocrystals samples, but it was particularly increased by HPH and combination techniques. Independently to the production method, nicergoline nanocrystals showed slight increase in particle size over the time, but remained below 500 nm at 20 °C and refrigeration conditions.

  8. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.

    PubMed

    Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger

    2016-08-01

    Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (<0.25 µm). Comparing the efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. QUARTZ FIBER ELECTROSCOPES

    DOEpatents

    Henderson, R.P.

    1956-04-17

    This patent pertains to quartz fiber electroscopes of small size for use by personnel to monitor nuclear radiation. The invention resides tn a novel way of charging the electroscope whereby the charging of the electroscope whereby the charging of the electroscope is carried out without obtaining contact with the fiber system or its support and the electroscope can therefore be constructed without a protective cap to prevent wrongful discharge. The electroscope is charged by placing a voltage between an electrode located in close proximity to the element to be charged and the electroscope me metallic case. ABSTRACTS

  10. Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy.

    PubMed

    Farcas, Daniel; Lee, Taekhee; Chisholm, William P; Soo, Jhy-Charm; Harper, Martin

    2016-01-01

    The objective of this article is to compare and characterize nylon, polypropylene (PP), and polyvinyl chloride (PVC) membrane filters that might be used to replace the vinyl/acrylic co-polymer (DM-450) filter currently used in the Mine Safety and Health Administration (MSHA) P-7 method (Quartz Analytical Method) and the National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods 7603 method (QUARTZ in coal mine dust, by IR re-deposition). This effort is necessary because the DM-450 filters are no longer commercially available. There is an impending shortage of DM-450 filters. For example, the MSHA Pittsburgh laboratory alone analyzes annually approximately 15,000 samples according to the MSHA P-7 method that requires DM-450 filters. Membrane filters suitable for on-filter analysis should have high infrared (IR) transmittance in the spectral region 600-1000 cm(-1). Nylon (47 mm, 0.45 µm pore size), PP (47 mm, 0.45 µm pore size), and PVC (47 mm, 5 µm pore size) filters meet this specification. Limits of detection and limits of quantification were determined from Fourier transform infrared spectroscopy (FTIR) measurements of blank filters. The average measured quartz mass and coefficient of variation were determined from test filters spiked with respirable α-quartz following MSHA P-7 and NIOSH 7603 methods. Quartz was also quantified in samples of respirable coal dust on each test filter type using the MSHA and NIOSH analysis methods. The results indicate that PP and PVC filters may replace the DM-450 filters for quartz measurement in coal dust by FTIR. PVC filters of 5 µm pore size seemed to be suitable replacement although their ability to retain small particulates should be checked by further experiment.

  11. Dealing with non-unique and non-monotonic response in particle sizing instruments

    NASA Astrophysics Data System (ADS)

    Rosenberg, Phil

    2017-04-01

    A number of instruments used as de-facto standards for measuring particle size distributions are actually incapable of uniquely determining the size of an individual particle. This is due to non-unique or non-monotonic response functions. Optical particle counters have non monotonic response due to oscillations in the Mie response curves, especially for large aerosol and small cloud droplets. Scanning mobility particle sizers respond identically to two particles where the ratio of particle size to particle charge is approximately the same. Images of two differently sized cloud or precipitation particles taken by an optical array probe can have similar dimensions or shadowed area depending upon where they are in the imaging plane. A number of methods exist to deal with these issues, including assuming that positive and negative errors cancel, smoothing response curves, integrating regions in measurement space before conversion to size space and matrix inversion. Matrix inversion (also called kernel inversion) has the advantage that it determines the size distribution which best matches the observations, given specific information about the instrument (a matrix which specifies the probability that a particle of a given size will be measured in a given instrument size bin). In this way it maximises use of the information in the measurements. However this technique can be confused by poor counting statistics which can cause erroneous results and negative concentrations. Also an effective method for propagating uncertainties is yet to be published or routinely implemented. Her we present a new alternative which overcomes these issues. We use Bayesian methods to determine the probability that a given size distribution is correct given a set of instrument data and then we use Markov Chain Monte Carlo methods to sample this many dimensional probability distribution function to determine the expectation and (co)variances - hence providing a best guess and an uncertainty for

  12. Digital image processing of nanometer-size metal particles on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  13. Particle mobility size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    NASA Astrophysics Data System (ADS)

    Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; Fjäraa, A. M.; Asmi, E.; Sellegri, K.; Depuy, R.; Venzac, H.; Villani, P.; Laj, P.; Aalto, P.; Ogren, J. A.; Swietlicki, E.; Roldin, P.; Williams, P.; Quincey, P.; Hüglin, C.; Fierz-Schmidhauser, R.; Gysel, M.; Weingartner, E.; Riccobono, F.; Santos, S.; Grüning, C.; Faloon, K.; Beddows, D.; Harrison, R. M.; Monahan, C.; Jennings, S. G.; O'Dowd, C. D.; Marinoni, A.; Horn, H.-G.; Keck, L.; Jiang, J.; Scheckman, J.; McMurry, P. H.; Deng, Z.; Zhao, C. S.; Moerman, M.; Henzing, B.; de Leeuw, G.

    2010-12-01

    Particle mobility size spectrometers often referred to as DMPS (Differential Mobility Particle Sizers) or SMPS (Scanning Mobility Particle Sizers) have found a wide application in atmospheric aerosol research. However, comparability of measurements conducted world-wide is hampered by lack of generally accepted technical standards with respect to the instrumental set-up, measurement mode, data evaluation as well as quality control. This article results from several instrument intercomparison workshops conducted within the European infrastructure project EUSAAR (European Supersites for Atmospheric Aerosol Research). Under controlled laboratory conditions, the number size distribution from 20 to 200 nm determined by mobility size spectrometers of different design are within an uncertainty range of ±10% after correcting internal particle losses, while below and above this size range the discrepancies increased. Instruments with identical design agreed within ±3% in the peak number concentration when all settings were done carefully. Technical standards were developed for a minimum requirement of mobility size spectrometry for atmospheric aerosol measurements. Technical recommendations are given for atmospheric measurements including continuous monitoring of flow rates, temperature, pressure, and relative humidity for the sheath and sample air in the differential mobility analyser. In cooperation with EMEP (European Monitoring and Evaluation Program), a new uniform data structure was introduced for saving and disseminating the data within EMEP. This structure contains three levels: raw data, processed data, and final particle size distributions. Importantly, we recommend reporting raw measurements including all relevant instrument parameters as well as a complete documentation on all data transformation and correction steps. These technical and data structure standards aim to enhance the quality of long-term size distribution measurements, their comparability between

  14. How do dairy cows chew?--particle size analysis of selected feeds with different particle length distributions and of respective ingested bolus particles.

    PubMed

    Schadt, I; Ferguson, J D; Azzaro, G; Petriglieri, R; Caccamo, M; Van Soest, P; Licitra, G

    2012-08-01

    Not only feed but also respective bolus particle size could alter diet efficiency and cow performance. The objective of this project was to characterize particle size of selected feeds and respective swallowed boli. Feed samples included 6 different particle length rye grass hay samples, 1 grass silage, 1 corn silage, and 1 total mixed ration (TMR). Rye grass hay samples consisted of long hay and chopped hay particles retained on the 19- (19_PSPS hay), 8- (8_PSPS hay), and 1.18-mm (1.18_PSPS hay) Penn State Particle Separator (PSPS) screens and those collected on the pan (PSPS_pan hay). A sixth hay treatment was rye grass forage cut at 50-mm lengths and dried to hay (50-mm hay). Treatments were offered to 4 nonlactating and 4 lactating cows following rumen evacuation. Swallowed boli were collected and the number of chews per gram of ingested feed dry matter was determined. Feed and bolus particles of lengths ≥5mm were collected on a 1.6-mm screen using a horizontal wet sieving technique. This cut point was chosen, as the literature suggests that most fecal particles are shorter than 5mm. Dry matter proportions on this screen (PROP_1.6) were determined and particle lengths of retained particles were measured by image analysis. Mean particle lengths (ML) were calculated considering particles ≥5mm in length. Boli of long hay, of 19_PSPS hay, of 8_PSPS hay, and of 50-mm hay had similar ML of 10 to 11mm. Bolus PROP_1.6 were also similar between these treatments, ranging from 0.54 to 0.69. Bolus particle lengths and distributions of these treatments were not related to respective hay particles. Bolus of 1.18_PSPS hay had PROP_1.6 of 0.51 and a smaller ML of 8mm. The PSPS_pan hay had PROP_1.6 of only 0.33, but was still chewed intensely. Apparently, little particle size reduction occurred when cows ate the TMR or the silages. Feed and respective bolus PROP_1.6 were as follows: 0.66 and 0.59 in grass silage, 0.52 and 0.55 in corn silage, and 0.44 and 0.38 in the TMR

  15. Determining suspended sediment particle size information from acoustical and optical backscatter measurements

    NASA Astrophysics Data System (ADS)

    Lynch, James F.; Irish, James D.; Sherwood, Christopher R.; Agrawal, Yogesh C.

    1994-08-01

    During the winter of 1990-1991 an Acoustic BackScatter System (ABSS), five Optical Backscatterance Sensors (OBSs) and a Laser In Situ Settling Tube (LISST) were deployed in 90 m of water off the California coast for 3 months as part of the Sediment Transport Events on Shelves and Slopes (STRESS) experiment. By looking at sediment transport events with both optical (OBS) and acoustic (ABSS) sensors, one obtains information about the size of the particles transported as well as their concentration. Specifically, we employ two different methods of estimating "average particle size". First, we use vertical scattering intensity profile slopes (acoustical and optical) to infer average particle size using a Rouse profile model of the boundary layer and a Stokes law fall velocity assumption. Secondly, we use a combination of optics and acoustics to form a multifrequency (two frequency) inverse for the average particle size. These results are compared to independent observations from the LISST instrument, which measures the particle size spectrum in situ using laser diffraction techniques. Rouse profile based inversions for particle size are found to be in good agreement with the LISST results except during periods of transport event initiation, when the Rouse profile is not expected to be valid. The two frequency inverse, which is boundary layer model independent, worked reasonably during all periods, with average particle sizes correlating well with the LISST estimates. In order to further corroborate the particle size inverses from the acoustical and optical instruments, we also examined size spectra obtained from in situ sediment grab samples and water column samples (suspended sediments), as well as laboratory tank experiments using STRESS sediments. Again, good agreement is noted. The laboratory tank experiment also allowed us to study the acoustical and optical scattering law characteristics of the STRESS sediments. It is seen that, for optics, using the cross

  16. Aluminum Solubility Mechanisms in Quartz: Implications for Al-in-Quartz Thermobarometry

    NASA Astrophysics Data System (ADS)

    Was, E.; Thomas, J. B.; Nachlas, W. O.

    2016-12-01

    Trace element thermobarometers in minerals are becoming increasingly important tools for studying geologic processes in many different geologic environments. The solubility of some trace-level (i.e. <1000 ppmw) components in minerals can be measured and used to estimate the pressure (P) and/or temperature (T) of mineral crystallization. To date, quartz has been useful for trace element thermobarometry (based on its Ti content) due to its common occurrence in many rock types and therefore can provide information on a wide range of petrologic processes. However, this technique relies on an independent constraint on T (or P) to calculate P (or T), which can be difficult to obtain in some rocks. To add to the utility of quartz as a thermobarometer, we have experimentally co-crystallized quartz and aluminosilicates at elevated P-T conditions to determine Al solubilities in quartz, which will allow use of the crossing isopleths method to determine a unique P and T solution from two independent techniques (using Ti and Al) in the same mineral. Preliminary experiments demonstrate that Al concentrations in quartz vary systematically with P and T, and also show that Al is soluble at greater levels than Ti. The success of an Al-in-quartz thermobarometer relies on determining both the variations in Al solubility across P-T space as well as the solubility mechanism for Al substitution into the quartz structure. To determine these parameters, we use Fourier transform infrared spectroscopy (FTIR) to quantify H+ contents as a charge-balancing ion for Al3+ to replace Si4+, electron microprobe (EPMA) to measure Al concentrations, and nuclear magnetic resonance spectroscopy (NMR) to determine the coordination environment of Al in quartz.

  17. Effect of Particle Size and Impact Velocity on Collision Behaviors Between Nano-Scale TiN Particles: MD Simulation.

    PubMed

    Yao, Hai-Long; Hu, Xiao-Zhen; Yang, Guan-Jun

    2018-06-01

    Inter-particle bonding formation which determines qualities of nano-scale ceramic coatings is influenced by particle collision behaviors during high velocity collision processes. In this study, collision behaviors between nano-scale TiN particles with different diameters were illuminated by using Molecular Dynamics simulation through controlling impact velocities. Results show that nano-scale TiN particles exhibit three states depending on particle sizes and impact velocities, i.e., bonding, bonding with localized fracturing, and rebounding. These TiN particles states are summarized into a parameter selection map providing an overview of the conditions in terms of particle sizes and velocities. Microstructure results show that localized atoms displacement and partial fracture around the impact region are main reasons for bonding formation of nano-scale ceramic particles, which shows differences from conventional particles refining and amorphization. A relationship between the adhesion energy and the rebound energy is established to understand bonding formation mechanism for nano-scale TiN particle collision. Results show that the energy relationship is depended on the particle sizes and impact velocities, and nano-scale ceramic particles can be bonded together as the adhesion energy being higher than the rebound energy.

  18. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  19. Experimental Effects on IR Reflectance Spectra: Particle Size and Morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiswenger, Toya N.; Myers, Tanya L.; Brauer, Carolyn S.

    For geologic and extraterrestrial samples it is known that both particle size and morphology can have strong effects on the species’ infrared reflectance spectra. Due to such effects, the reflectance spectra cannot be predicted from the absorption coefficients alone. This is because reflectance is both a surface as well as a bulk phenomenon, incorporating both dispersion as well as absorption effects. The same spectral features can even be observed as either a maximum or minimum. The complex effects depend on particle size and preparation, as well as the relative amplitudes of the optical constants n and k, i.e. the realmore » and imaginary components of the complex refractive index. While somewhat oversimplified, upward-going amplitude in the reflectance spectrum usually result from surface scattering, i.e. rays that have been reflected from the surface without penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. While the effects are well known, we report seminal measurements of reflectance along with quantified particle size of the samples, the sizing obtained from optical microscopy measurements. The size measurements are correlated with the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. We report results for both sodium sulfate Na2SO4 as well as ammonium sulfate (NH4)2SO4; the optical constants have been measured for (NH4)2SO4. To go a step further from the field to the laboratory we explore our understanding of particle size effects on reflectance spectra in the field using standoff detection. This has helped identify weaknesses and strengths in detection using standoff distances of up 160 meters away from the Target. The

  20. Quartz crystal microbalance as a sensing active element for rupture scanning within frequency band.

    PubMed

    Dultsev, F N; Kolosovsky, E A

    2011-02-14

    A new method based on the use of quartz crystal microbalance (QCM) as an active sensing element is developed, optimized and tested in a model system to measure the rupture force and deduce size distribution of nanoparticles. As suggested by model predictions, the QCM is shaped as a strip. The ratio of rupture signals at the second and the third harmonics versus the geometric position of a body on QCM surface is investigated theoretically. Recommendations concerning the use of the method for measuring the nanoparticle size distribution are presented. It is shown experimentally for an ensemble of test particles with a characteristic size within 20-30 nm that the proposed method allows one to determine particle size distribution. On the basis of the position and value of the measured rupture signal, a histogram of particle size distribution and percentage of each size fraction were determined. The main merits of the bond-rupture method are its rapid response, simplicity and the ability to discriminate between specific and non-specific interactions. The method is highly sensitive with respect to mass (the sensitivity is generally dependent on the chemical nature of receptor and analyte and may reach 8×10(-14) g mm(-2)) and applicable to measuring rupture forces either for weak bonds, for example hydrogen bonds, or for strong covalent bonds (10(-11)-10(-9) N). This procedure may become a good alternative for the existing methods, such as AFM or optical methods of determining biological objects, and win a broad range of applications both in laboratory research and in biosensing for various purposes. Possible applications include medicine, diagnostics, environmental or agricultural monitoring. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Online submicron particle sizing by dynamic light scattering using autodilution

    NASA Technical Reports Server (NTRS)

    Nicoli, David F.; Elings, V. B.

    1989-01-01

    Efficient production of a wide range of commercial products based on submicron colloidal dispersions would benefit from instrumentation for online particle sizing, permitting real time monitoring and control of the particle size distribution. Recent advances in the technology of dynamic light scattering (DLS), especially improvements in algorithms for inversion of the intensity autocorrelation function, have made it ideally suited to the measurement of simple particle size distributions in the difficult submicron region. Crucial to the success of an online DSL based instrument is a simple mechanism for automatically sampling and diluting the starting concentrated sample suspension, yielding a final concentration which is optimal for the light scattering measurement. A proprietary method and apparatus was developed for performing this function, designed to be used with a DLS based particle sizing instrument. A PC/AT computer is used as a smart controller for the valves in the sampler diluter, as well as an input-output communicator, video display and data storage device. Quantitative results are presented for a latex suspension and an oil-in-water emulsion.

  2. Size exclusion chromatography with superficially porous particles.

    PubMed

    Schure, Mark R; Moran, Robert E

    2017-01-13

    A comparison is made using size-exclusion chromatography (SEC) of synthetic polymers between fully porous particles (FPPs) and superficially porous particles (SPPs) with similar particle diameters, pore sizes and equal flow rates. Polystyrene molecular weight standards with a mobile phase of tetrahydrofuran are utilized for all measurements conducted with standard HPLC equipment. Although it is traditionally thought that larger pore volume is thermodynamically advantageous in SEC for better separations, SPPs have kinetic advantages and these will be shown to compensate for the loss in pore volume compared to FPPs. The comparison metrics include the elution range (smaller with SPPs), the plate count (larger for SPPs), the rate production of theoretical plates (larger for SPPs) and the specific resolution (larger with FPPs). Advantages to using SPPs for SEC are discussed such that similar separations can be conducted faster using SPPs. SEC using SPPs offers similar peak capacities to that using FPPs but with faster operation. This also suggests that SEC conducted in the second dimension of a two-dimensional liquid chromatograph may benefit with reduced run time and with equivalently reduced peak width making SPPs advantageous for sampling the first dimension by the second dimension separator. Additional advantages are discussed for biomolecules along with a discussion of optimization criteria for size-based separations. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Generating Color from Polydisperse, Near Micron-Sized TiO2 Particles.

    PubMed

    Alam, Al-Mahmnur; Baek, Kyungnae; Son, Jieun; Pei, Yi-Rong; Kim, Dong Ha; Choy, Jin-Ho; Hyun, Jerome K

    2017-07-19

    Single particle Mie calculations of near micron-sized TiO 2 particles predict strong light scattering dominating the visible range that would give rise to a white appearance. We demonstrate that a polydisperse collection of these "white" particles can result in the generation of visible colors through ensemble scattering. The weighted averaging of the scattering over the particle size distribution modifies the sharp, multiple, high order scattering modes from individual particles into broad variations in the collective extinction. These extinction variations are apparent as visible colors for particles suspended in organic solvent at low concentration, or for a monolayer of particles supported on a transparent substrate viewed in front of a white light source. We further exploit the color variations on optical sensitivity to the surrounding environment to promote micron-sized TiO 2 particles as stable and robust agents for detecting the optical index of homogeneous media with high contrast sensitivities. Such distribution-modulated scattering properties provide TiO 2 particles an intriguing opportunity to impart color and optical sensitivity to their widespread electronic and chemical platforms such as antibacterial windows, catalysis, photocatalysis, optical sensors, and photovoltaics.

  4. A technique to measure the size of particles in laser Doppler velocimetry applications

    NASA Technical Reports Server (NTRS)

    Hess, C. F.

    1985-01-01

    A method to measure the size of particles in Laser Doppler Velocimeter (LDV) applications is discussed. Since in LDV the velocity of the flow is assocated with the velocity of particles to establish how well they follow the flow, in the present method the interferometric probe volume is surrounded by a larger beam of different polarization or wavelength. The particle size is then measured from the absolute intensity scattered from the large beam by particles crossing the fringes. Experiments using polystrene particles between 1.1 and 3.3 microns and larger glass beads are reported. It is shown that the method has an excellent size resolution and its accuracy is better than 10% for the particle size studied.

  5. LDL Particle Size and Reactive Oxygen Metabolites in Dyslipidemic Patients

    PubMed Central

    Kotani, Kazuhiko; Tsuzaki, Kokoro; Taniguchi, Nobuyuki; Sakane, Naoki

    2012-01-01

    Objectives: Small dense low-density lipoprotein (sdLDL) which has a small LDL particle size with greater susceptibility to oxidation is regarded as a risk marker for cardiovascular disease. The diacron reactive oxygen metabolites (d-ROMs) test has recently been introduced as an oxidative stress-related marker in the clinic. The aim of the present study was to investigate the correlation between the mean LDL particle size and the oxidative stress status as evaluated by the d-ROMs in dyslipidemic patients. Methods: The study included 278 dyslipidemic patients (121 male and 157 female, mean age, 60 years). Clinical data including the conventional atherosclerotic risk factors in addition to the mean LDL particle size measured with the gel electrophoresis and the d-ROMs were collected. Results: Male patients had a significantly smaller mean LDL particle size than females (262.2 ± 7.5 [SD] vs. 264.3 ± 6.7 Å, P<0.05), while female patients had a significantly higher d-ROMs level than males (318 ± 68 vs. 350 ± 72 U. Carr., P<0.01). A multiple regression analysis revealed that there was an independent, significant, and inverse correlation between the mean LDL particle size and the d-ROMs (β=−0.19, P<0.05). Conclusions: These findings of the co-existence of both markers suggest that sdLDL and oxidative stress can be cooperative in atherogenesis, possibly leading to the incidence of CVD, in dyslipidemic patients. PMID:22448308

  6. LDL Particle Size and Reactive Oxygen Metabolites in Dyslipidemic Patients.

    PubMed

    Kotani, Kazuhiko; Tsuzaki, Kokoro; Taniguchi, Nobuyuki; Sakane, Naoki

    2012-03-01

    Small dense low-density lipoprotein (sdLDL) which has a small LDL particle size with greater susceptibility to oxidation is regarded as a risk marker for cardiovascular disease. The diacron reactive oxygen metabolites (d-ROMs) test has recently been introduced as an oxidative stress-related marker in the clinic. The aim of the present study was to investigate the correlation between the mean LDL particle size and the oxidative stress status as evaluated by the d-ROMs in dyslipidemic patients. The study included 278 dyslipidemic patients (121 male and 157 female, mean age, 60 years). Clinical data including the conventional atherosclerotic risk factors in addition to the mean LDL particle size measured with the gel electrophoresis and the d-ROMs were collected. Male patients had a significantly smaller mean LDL particle size than females (262.2 ± 7.5 [SD] vs. 264.3 ± 6.7 Å, P<0.05), while female patients had a significantly higher d-ROMs level than males (318 ± 68 vs. 350 ± 72 U. Carr., P<0.01). A multiple regression analysis revealed that there was an independent, significant, and inverse correlation between the mean LDL particle size and the d-ROMs (β=-0.19, P<0.05). These findings of the co-existence of both markers suggest that sdLDL and oxidative stress can be cooperative in atherogenesis, possibly leading to the incidence of CVD, in dyslipidemic patients.

  7. Size-dependent microstructures in rapidly solidified uranium-niobium powder particles

    DOE PAGES

    McKeown, Joseph T.; Hsiung, Luke L.; Park, Jong M.; ...

    2016-06-14

    The microstructures of rapidly solidified U-6wt%Nb powder particles synthesized by centrifugal atomization were characterized using scanning electron microscopy and transmission electron microscopy. Observed variations in microstructure are related to particle sizes. All of the powder particles exhibited a two-zone microstructure. The formation of this two-zone microstructure is described by a transition from solidification controlled by internal heat flow and high solidification rate during recalescence (micro-segregation-free or partitionless growth) to solidification controlled by external heat flow with slower solidification rates (dendritic growth with solute redistribution). The extent of partitionless solidification increased with decreasing particle size due to larger undercoolings in smallermore » particles prior to solidification. The metastable phases that formed are related to variations in Nb concentration across the particles. Lastly, the microstructures of the powders were heavily twinned.« less

  8. Size-controlled synthesis, surface functionalization, and biological applications of thiol-organosilica particles.

    PubMed

    Nakamura, Michihiro; Ozaki, Shuji; Abe, Masahiro; Doi, Hiroyuki; Matsumoto, Toshio; Ishimura, Kazunori

    2010-08-01

    Thiol-organosilica particles of a narrow size distribution, made from 3-mercaptopropyltrimethoxysilane (MPMS), were prepared by means of a one-pot synthesis. We examined three synthetic conditions at high temperature (100 degrees C), including the Stöber synthesis and two entirely aqueous syntheses. Under all conditions, the sizes of MPMS particles were well controlled, and the average of the coefficient of variation for the size distribution was less than 20%. The incubation times required for formation of MPMS particles were shorter at high temperature than at low temperature. MPMS particles internally functionalized with fluorescent dye were also prepared by means of the same one-pot synthesis. On flow cytometry analysis these MPMS particles showed distinct peaks of scattering due to well-controlled sizes of particles as well as due to fluorescence signals. Real-time observation of interaction between fluorescent MPMPS particles and cultured cells could be observed under fluorescent microscopy with bright light. The surface of the as-prepared MPMS particles contained exposed mercaptopropyl residues, and the ability to adsorb proteins was at least 6 times higher than that of gold nanopaticles. In addition, fluorescein-labeled proteins adsorbed to the surface of the particles were quantitatively detected at the pg/ml level by flow cytometry. MPMS particles surface functionalized with anti-CD20 antibody using adsorption could bind with lymphoma cells expressing CD20 specifically. In this paper, we demonstrated the possibility of size-controlled thiol-organosilica particles for wild range of biological applications. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  9. Simultaneous sizing and electrophoretic mobility measurement of sub-micron particles using Brownian motion

    PubMed Central

    Palanisami, Akilan; Miller, John H.

    2011-01-01

    The size and surface chemistry of micron scale particles are of fundamental importance in studies of biology and air particulate pollution. However, typical electrophoretic measurements of these and other sub-micron scale particles (300 nm – 1 μm) cannot resolve size information within heterogeneous mixtures unambiguously. Using optical microscopy, we monitor electrophoretic motion together with the Brownian velocity fluctuations—using the latter to measure size by either the Green-Kubo relation or by calibration from known size standards. Particle diameters are resolved to ±12% with 95% confidence. Strikingly, the size resolution improves as particle size decreases due to the increased Brownian motion. The sizing ability of the Brownian assessed electrophoresis method described here complements the electrophoretic mobility resolution of traditional capillary electrophoresis. PMID:20882556

  10. Particle size effects on viscosity of silver pastes: A manufacturer's view

    NASA Technical Reports Server (NTRS)

    Provance, J.; Allison, K.

    1983-01-01

    Particles from a variety of silver powders were investigated by scanning electron microscopy and particle size analyses. Particle size distribution curves and volume population graphs were prepared for these silver powders and for glass powders with optimum, extra fine and coarse particle sizes. The viscosity at a given shear rate and slope of viscosity over a range of shear rates were determined for thick film pastes made with these powders. Because of particle anomalies and variations, the need for flexibility to achieve the best printing qualities for silver pastes was evident. It was established that print quality, dried and fired film density and optimum contact of silver particles with silicon, important for cell electrical output, could be achieved by adjusting the slope of viscosity that fell outside of the range, -0.550 to -0.650. This was accomplished through organic vehicle technology that permitted a change in the slope of viscosity, up or down, while maintaining a constant silver and total solids content.

  11. The immersion freezing behavior of size-segregated soot and kaolinite particles

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Augustin, S.; Clauss, T.; Niedermeier, D.; Raddatz, M.; Wex, H.; Shaw, R. A.; Stratmann, F.

    2011-12-01

    Heterogeneous ice nucleation plays a crucial role for ice formation in mixed-phase and cirrus clouds and has an important impact on precipitation formation, global radiation balances, and therefore Earth's climate (Cantrell and Heymsfield, 2005). Mineral dust and soot particles are found to be a major component of ice crystal residues (e.g., Pratt et al., 2009) so these substances are potential sources of atmospheric ice nuclei (IN). Experimental studies investigating the immersion freezing behavior of size-segregated soot and kaolinite particles conducted at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) are presented. In our measurements only one aerosol particle is immersed in an air suspended water droplet which can trigger ice nucleation. The method facilitates very precise examinations with respect to temperature, ice nucleation time and ice nucleus size. Considering laboratory studies, the picture of the IN ability of soot particles is quite heterogeneous. Our studies show that submicron flame, spark soot particles and optionally coated with sulfuric acid to simulate chemically aging do not act as IN at temperatures higher than homogeneous freezing taking place. Therefore soot particles might not be an important source of IN for immersion freezing in the atmosphere. In contrast, kaolinite being representative for natural mineral dust with a well known composition and structure is found to be very active in forming ice for all freezing modes (e.g., Mason and Maybank, 1958). Analyzing the immersion freezing behavior of different sized kaolinite particles (300, 500 and 700 nm in diameter) the size effect was clearly observed, i.e. the ice fraction (number of frozen droplets per total number) scales with particle surface, i.e. the larger the ice nucleus surface the higher the ice fraction. The slope of the logarithm of the ice fraction as function of temperature is similar for all particle sizes investigated and fits very well with the results of L

  12. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana

    USGS Publications Warehouse

    Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Kent, A.J.R.

    2006-01-01

    Textures of hydrothermal quartz revealed by cathodoluminescence using a scanning electron microscope (SEM-CL) reflect the physical and chemical environment of quartz formation. Variations in intensity of SEM-CL can be used to distinguish among quartz from superimposed mineralization events in a single vein. In this study, we present a technique to quantify the cathodoluminescent intensity of quartz within individual and among multiple samples to relate luminescence intensity to specific mineralizing events. This technique has been applied to plutonic quartz and three generations of hydrothermal veins at the porphyry copper deposit in Butte, Montana. Analyzed veins include early quartz-molybdenite veins with potassic alteration, pyrite-quartz veins with sericitic alteration, and Main Stage veins with intense sericitic alteration. CL intensity of quartz is diagnostic of each mineralizing event and can be used to fingerprint quartz and its fluid inclusions, isotopes, trace elements, etc., from specific mineralizing episodes. Furthermore, CL intensity increases proportional to temperature of quartz formation, such that plutonic quartz from the Butte quartz monzonite (BQM) that crystallized at temperatures near 750 ??C luminesces with the highest intensity, whereas quartz that precipitated at ???250 ??C in Main Stage veins luminesces with the least intensity. Trace-element analyses via electron microprobe and laser ablation-ICP-MS indicate that plutonic quartz and each generation of hydrothermal quartz from Butte is dominated by characteristic trace amounts of Al, P, Ti, and Fe. Thus, in addition to CL intensity, each generation of quartz can be distinguished based on its unique trace-element content. Aluminum is generally the most abundant element in all generations of quartz, typically between 50 and 200 ppm, but low-temperature, Main Stage quartz containing 400 to 3600 ppm Al is enriched by an order of magnitude relative to all other quartz generations. Phosphorous

  13. Characterization of particle number size distribution and new particle formation in Southern China.

    PubMed

    Huang, Xiaofeng; Wang, Chuan; Peng, Jianfei; He, Lingyan; Cao, Liming; Zhu, Qiao; Cui, Jie; Wu, Zhijun; Hu, Min

    2017-01-01

    Knowledge of particle number size distribution (PND) and new particle formation (NPF) events in Southern China is essential for mitigation strategies related to submicron particles and their effects on regional air quality, haze, and human health. In this study, seven field measurement campaigns were conducted from December 2013 to May 2015 using a scanning mobility particle sizer (SMPS) at four sites in Southern China, including three urban sites and one background site. Particles were measured in the size range of 15-615nm, and the median particle number concentrations (PNCs) were found to vary in the range of 0.3×10 4 -2.2×10 4 cm -3 at the urban sites and were approximately 0.2×10 4 cm -3 at the background site. The peak diameters at the different sites varied largely from 22 to 102nm. The PNCs in the Aitken mode (25-100nm) at the urban sites were up to 10 times higher than they were at the background site, indicating large primary emissions from traffic at the urban sites. The diurnal variations of PNCs were significantly influenced by both rush hour traffic at the urban sites and NPF events. The frequencies of NPF events at the different sites were 0%-30%, with the highest frequency occurring at an urban site during autumn. With higher SO 2 concentrations and higher ambient temperatures being necessary, NPF at the urban site was found to be more influenced by atmospheric oxidizing capability, while NPF at the background site was limited by the condensation sink. This study provides a unique dataset of particle number and size information in various environments in Southern China, which can help understand the sources, formation, and the climate forcing of aerosols in this quickly developing region, as well as help constrain and validate NPF modeling. Copyright © 2016. Published by Elsevier B.V.

  14. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    NASA Astrophysics Data System (ADS)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  15. Evaluating the Radiation Damage to Quartz Rods in the ATLAS Zero Degree Calorimeter

    NASA Astrophysics Data System (ADS)

    Goodale, Kathryn

    2017-09-01

    At the Large Hadron Collider, the ATLAS experiment studies particle collisions to explore the fundamental particles of nature. A key instrumentation technology used by the ATLAS experiment are calorimeters for particle energy measurements. UIUC is developing a new Zero-Degree Calorimeter; a hadronic calorimeter located at zero-degrees from the collision axis. It consists of alternating layers of tungsten and oil; passive and active layers, respectively. The passive layers cause intense showers of secondary particles. These particles then produce Cherenkov radiation in the active layer. The oil in the active layer is replaced at a constant rate allowing for very high radiation doses in the detector without deteriorating the radiator material. The active layer includes wavelength shifters that absorb and re-emit isotropically the Cherenkov radiation. In this way, some of the photons arrive at two, hollow quartz rods which are filled by a second stage wavelength shifter. Here the light is absorbed and re-directed to a Silicon Photomultiplier for detection. In this paper, the impact of ionizing radiation on quartz rods will be discussed and the results from attenuation measurements will be presented.

  16. Experimental Study of Small-Scale Mineral Particles in the Atmosphere of Central Asia

    NASA Astrophysics Data System (ADS)

    Adushkin, V. V.; Chen, B. B.; Popel, S. I.; Dubinskii, A. Yu.; Weidler, P. G.; Friedrich, F.

    2018-03-01

    An experimental study of small-scale mineral particles in the atmosphere over Kyrgyzstan is carried out. It is shown that the substance of the studied particles corresponds to quartz-enriched minerals, feldspars, layered silicates, minerals containing lime carbonate, etc. Overall, there is a definite correspondence between the mineral particle compositions in the atmosphere of Kyrgyzstan and in the other regions of Central Asia. The constructed size-distribution functions of the particles agree with the results of studying the dust aerosol properties in the deserts of Central Asia obtained in the southwestern part of Tajikistan in 1989.

  17. Eolian quartz granulometry as a paleowind indicator in the Northeast Equatorial Atlantic, North Pacific and Southeast Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Dauphin, J. P.

    1983-09-01

    Northeast Atlantic - Grain size analysis of the quartz silt fraction defines the spatial and temporal variability of windblown Saharan dust. Comparison of an eolian transport model for Saharan dust (Parkin, 1974) with the quartz grain size data shows general agreement between predicted and observed values. Central North Pacific - Quartz in deep-sea sediments of the North Pacific is derived from Asia by eolian transport in the westerlies. The average mean mass diameter of the silt-size quartz decreases from about 10um at 150 degrees E to 7um at 140 degrees W. Southeast Pacific - Quartz from South America is the dominant source to the southeast Pacific. A northern source is evident near the equator (RC10-65; 0 degrees 41 minutes N, 108 degrees 37 minutes W). This source was most prominent during interglacial stage 5, suggesting enhanced dust production in Central America. During glacial periods the impact of bottom transport increased at the site of core V19-29 (3 degrees 35 minutes S, 83 degrees 56 minutes W).

  18. Tuning Aerosol Particle Size Distribution of Metered Dose Inhalers Using Cosolvents and Surfactants

    PubMed Central

    Saleem, Imran Y.; Smyth, Hugh D. C.

    2013-01-01

    Objectives. The purpose of these studies was to understand the influence of cosolvent and surfactant contributions to particle size distributions emitted from solution metered dose inhalers (pMDIs) based on the propellant HFA 227. Methods. Two sets of formulations were prepared: (a) pMDIs-HFA 227 containing cosolvent (5–15% w/w ethanol) with constant surfactant (pluronic) concentration and (b) pMDIs-HFA 227 containing surfactant (0–5.45% w/w pluronic) with constant cosolvent concentration. Particle size distributions emitted from these pMDIs were analyzed using aerodynamic characterization (inertial impaction) and laser diffraction methods. Results. Both cosolvent and surfactant concentrations were positively correlated with median particle sizes; that is, drug particle size increased with increasing ethanol and pluronic concentrations. However, evaluation of particle size distributions showed that cosolvent caused reduction in the fine particle mode magnitude while the surfactant caused a shift in the mode position. These findings highlight the different mechanisms by which these components influence droplet formation and demonstrate the ability to utilize the different effects in formulations of pMDI-HFA 227 for independently modulating particle sizes in the respirable region. Conclusion. Potentially, the formulation design window generated using these excipients in combination could be used to match the particle size output of reformulated products to preexisting pMDI products. PMID:23984381

  19. The effect of reducing alfalfa haylage particle size on cows in early lactation.

    PubMed

    Kononoff, P J; Heinrichs, A J

    2003-04-01

    The objective of this experiment was to evaluate effects of reducing forage particle size on cows in early lactation based on measurements of the Penn State Particle Separator (PSPS). Eight cannulated, multiparous cows averaging 19 +/- 4 d in milk and 642 +/- 45 kg BW were assigned to one of two 4 x 4 Latin Squares. During each of the 23-d periods, animals were offered one of four diets, which were chemically identical but included alfalfa haylage of different particle size; short (SH), mostly short (MSH), mostly long (MLG), and long (LG). Physically effective neutral detergent fiber (peNDF) was determined by measuring the amount of neutral detergent fiber retained on a 1.18 mm screen and was similar across diets (25.7, 26.2, 26.4, 26.7%) but the amount of particles >19.0 mm significantly decreased with decreasing particle size. Reducing haylage particle size increased dry matter intake linearly (23.3, 22.0, 20.9, 20.8 kg for SH, MSH, MLG, LG, respectively). Milk production and percentage fat did not differ across treatments averaging 35.5 +/- 0.68 kg milk and 3.32 +/- 0.67% fat, while a quadratic effect was observed for percent milk protein, with lowest values being observed for LG. A quadratic effect was observed for mean rumen pH (6.04, 6.15, 6.13, 6.09), while A:P ratio decreased linearly (2.75, 2.86, 2.88, 2.92) with decreasing particle size. Total time ruminating increased quadratically (467, 498, 486, 468 min/d), while time eating decreased linearly (262, 253, 298, 287 min/d) with decreasing particle size. Both eating and ruminating per unit of neutral detergent fiber intake decreased with reducing particle size (35.8, 36.7, 44.9, 45.6 min/kg; 19.9, 23.6, 23.5, 23.5 min/kg). Although chewing activity was closely related to forage particle size, effects on rumen pH were small, indicating factors other than particle size are critical in regulating pH when ration neutral detergent fiber met recommended levels. Feeding alfalfa haylage based rations of reduced

  20. Significance of Dauphiné twins in crystallographic fabrics of quartz tectonites

    NASA Astrophysics Data System (ADS)

    Eske Sørensen, Bjørn

    2014-05-01

    Dauphine twins are commonly found in quartz tectonites, however their role in deformation processes are not completely understood. This study represents a new attempt to understand the interaction between slip systems and Dauphine twins in deforming quartz-rich rocks at different temperatures. There is no doubt that Dauphine twins are mobilized under stress as this has been shown by experiments for single crystals and in polycrystalline aggregates where distinct crystallographic fabrics develop in previously randomly oriented aggregates related to minimization of elastic energy (Tullis 1972). However in quartz tectonites the Dauphine twin process is a part of interplay between plastic deformation and recovery processes which depends on PT, strain-rate and fluid composition and availability. In quartz tectonites with Y-girdle C-axis (GBM-regime) fabrics Dauphiné twins are abundant, relating different parts of r- and z rhomb "comet" distributions. This is interpreted as completion between prism slip and Dauphiné twinning. Slip rotates grains such that CRSS is low on the prism planes, but then Dauphiné twin boundaries sweeps through the grain back to the orientation giving lower stored elastic energy. The faster recovery at higher temperatures gives subgrain walls slowing down twin movement across the mm-sized grain of the GBM regime. At lower temperatures in the SGR-regime grain-size is reduced and different rotations of the grains are happening due to the domination of rhomb and basal slip. Because recrystallization is effective relative to grain-size the grains are commonly free of internal strain and subgrain walls, allowing the favorably oriented Dauphiné twin member to sweep across the whole grain overwhelming the unfavorably oriented Dauphiné twin member. As a consequence high strain reduces the number of Dauphiné twins and quartz rhomb fabrics appear trigonal, missing the "comet" shape of the GBM regime rhomb fabrics. Since Dauphiné twinning is

  1. Performance and Results for Quartz Detector for the SuperHMS Spectrometer at Hall C Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Griego, Benjamin F., Jr.

    A quartz detector has been constructed to be part of the trigger system for the Super High Momentum Spectrometer (SHMS). The SHMS will play a pivotal role in carrying out the 12 -- GeV physics program at Hal -- C Jefferson Lab. The quartz hodoscope consists of twenty one fused silica bars. Each bar is 125 cm long, 5.5 cm wide, 2.5 cm thick, and is viewed by a UV -- sensitive PMT on each end. The quartz hodoscope's task is to provide a clean detection of charged particles, a high level of background suppression, and an accurate tracking efficiency determination. Initial test results of the quartz detectors which include light yield and position resolution will be presented.

  2. Size Limit for Particle-Stabilized Emulsion Droplets under Gravity

    NASA Astrophysics Data System (ADS)

    Tavacoli, J. W.; Katgert, G.; Kim, E. G.; Cates, M. E.; Clegg, P. S.

    2012-06-01

    We demonstrate that emulsion droplets stabilized by interfacial particles become unstable beyond a size threshold set by gravity. This holds not only for colloids but also for supracolloidal glass beads, using which we directly observe the ejection of particles near the droplet base. The number of particles acting together in these ejection events decreases with time until a stable acornlike configuration is reached. Stability occurs when the weight of all remaining particles is less than the interfacial binding force of one particle. We also show the importance of the curvature of the droplet surface in promoting particle ejection.

  3. Development of an ejecta particle size measurement diagnostic based on Mie scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauer, Martin Michael; Buttler, William Tillman; Frayer, Daniel K.

    The goal of this work is to determine the feasibility of extracting the size of particles ejected from shocked metal surfaces (ejecta) from the angular distribution of light scattered by a cloud of such particles. The basis of the technique is the Mie theory of scattering, and implicit in this approach are the assumptions that the scattering particles are spherical and that single scattering conditions prevail. The meaning of this latter assumption, as far as experimental conditions are concerned, will become clear later. The solution to Maxwell’s equations for spherical particles illuminated by a plane electromagnetic wave was derived bymore » Gustav Mie more than 100 years ago, but several modern treatises discuss this solution in great detail. The solution is a complicated series expansion of the scattered electric field, as well as the field within the particle, from which the total scattering and absorption cross sections as well as the angular distribution of scattered intensity can be calculated numerically. The detailed nature of the scattering is determined by the complex index of refraction of the particle material as well as the particle size parameter, x, which is the product of the wavenumber of the incident light and the particle radius, i.e. x = 2rπ= λ. Figure 1 shows the angular distribution of scattered light for different particle size parameters and two orthogonal incident light polarizations as calculated using the Mie solution. It is obvious that the scattering pattern is strongly dependent on the particle size parameter, becoming more forward-directed and less polarizationdependent as the particle size parameter increases. This trend forms the basis for the diagnostic design.« less

  4. Aggregate Size Dependence of Amyloid Adsorption onto Charged Interfaces

    PubMed Central

    2017-01-01

    Amyloid aggregates are associated with a range of human neurodegenerative disorders, and it has been shown that neurotoxicity is dependent on aggregate size. Combining molecular simulation with analytical theory, a predictive model is proposed for the adsorption of amyloid aggregates onto oppositely charged surfaces, where the interaction is governed by an interplay between electrostatic attraction and entropic repulsion. Predictions are experimentally validated against quartz crystal microbalance–dissipation experiments of amyloid beta peptides and fragmented fibrils in the presence of a supported lipid bilayer. Assuming amyloids as rigid, elongated particles, we observe nonmonotonic trends for the extent of adsorption with respect to aggregate size and preferential adsorption of smaller aggregates over larger ones. Our findings describe a general phenomenon with implications for stiff polyions and rodlike particles that are electrostatically attracted to a surface. PMID:29284092

  5. Association of antibiotic resistance in agricultural Escherichia coli isolates with attachment to quartz.

    PubMed

    Liu, Ping; Soupir, Michelle L; Zwonitzer, Martha; Huss, Bridgette; Jarboe, Laura R

    2011-10-01

    Surface water can be contaminated by bacteria from various sources, including manure from agricultural facilities. Attachment of these bacteria to soil and organic particles contributes to their transport through the environment, though the mechanism of attachment is unknown. As bacterial attachment to human tissues is known to be correlated with antibiotic resistance, we have investigated here the relationship between bacterial attachment to environmental particles and antibiotic resistance in agricultural isolates. We evaluated 203 Escherichia coli isolates collected from swine facilities for attachment to quartz, resistance to 13 antibiotics, and the presence of genes encoding 13 attachment factors. The genes encoding type I, EcpA, P pili, and Ag43 were detected, though none was significantly related to attachment. Quartz attachment was positively and significantly (P < 0.0038) related to combined resistance to amoxicillin/streptomycin/tetracycline/sulfamethazine/tylosin/chlortetracycline and negatively and significantly (P < 0.0038) related to combined resistance to nalidixic acid/kanamycin/neomycin. These results provide clear evidence for a link between antibiotic resistance and attachment to quartz in agricultural isolates. We propose that this may be due to encoding by the responsible genes on a mobile genetic element. Further exploration of the relationship between antibiotic resistance and attachment to environmental particles will improve the understanding and modeling of environmental transport processes, with the goal of preventing human exposure to antibiotic-resistant or virulent microorganisms.

  6. Characterization and variability of particle size distributions in Hudson Bay, Canada

    NASA Astrophysics Data System (ADS)

    Xi, Hongyan; Larouche, Pierre; Tang, Shilin; Michel, Christine

    2014-06-01

    Particle size distribution (PSD) plays a significant role in many aspects of aquatic ecosystems, including phytoplankton dynamics, sediment fluxes, and optical scattering from particulates. As of yet, little is known on the variability of particle size distribution in marine ecosystems. In this study, we investigated the PSD properties and variability in Hudson Bay based on measurements from a laser diffractometer (LISST-100X Type-B) in concert with biogeochemical parameters collected during summer 2010. Results show that most power-law fitted PSD slopes ranged from 2.5 to 4.5, covering nearly the entire range observed for natural waters. Offshore waters showed a predominance of smaller particles while near the coast, the effect of riverine inputs on PSD were apparent. Particulate inorganic matter contributed more to total suspended matter in coastal waters leading to lower PSD slopes than offshore. The depth distribution of PSD slopes shows that larger particles were associated with the pycnocline. Below the pycnocline, smaller particles dominated the spectra. A comparison between a PSD slope-based method to derive phytoplankton size class (PSC) and pigment-based derived PSC showed the two methods agreed relatively well. This study provides valuable baseline information on particle size properties and phytoplankton composition estimates in a sub-arctic environment subject to rapid environmental change.

  7. Wheat bran particle size influence on phytochemical extractability and antioxidant properties

    USDA-ARS?s Scientific Manuscript database

    It is unknown if particle size plays a role in extracting health promoting compounds in wheat bran because the extraction of antioxidant and phenolic compounds with particle size reduction has not been well documented. In this study, unmilled whole bran (coarse treatment) was compared to whole bran ...

  8. STREAMBED PARTICLE SIZE FROM PEBBLE COUNTS USING VISUALLY ESTIMATED SIZE CLSASES: JUNK OR USEFUL DATA?

    EPA Science Inventory

    In large-scale studies, it is often neither feasible nor necessary to obtain the large samples of 400 particles advocated by many geomorphologists to adequately quantify streambed surface particle-size distributions. Synoptic surveys such as U.S. Environmental Protection Agency...

  9. Size and shape of uniform particles precipitated in homogeneous solutions

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.

    The assembly of nanosize crystals into larger uniform colloids is a fundamental process that plays a critical role in the formation of a very broad range of fine-particles used in numerous applications in technology, medicine, and national security. It is widely accepted that, along with size, in most of these applications the shape of the particles represents a critical factor. In the current research, we investigate the size and shape control of uniform particles prepared by precipitation in homogeneous solutions. In the first---theoretical---part a combinational mechanism of the shape control during particle growth was proposed and analyzed numerically. The main finding of our simulation is that a proper balance of two processes, preferential attachment of transported monomers at the protruding features of the growing cluster and monomer rearrangement at the cluster surface, can yield a well-defined particle shape that persist for sizes much larger than the original seed over a large interval of time. In the experimental part, three chemically simple systems were selected MgF2, NaMgF3, and PbS for defining and evaluating the key parameters of the shape and size control of the precipitates. Thus, uniform dispersions of particles of different morphologies (spherical, cubic, platelet, and prismatic) were prepared by precipitation in aqueous solutions. The mechanisms of the formation of the resulting particles of different shapes are explained by the role of the pH, temperature, solubility, and ionic strength. Stages of particles growth were evaluated on short and long time scales, winch allowed to propose multistage mechanisms of NaMgF3 growth and estimate induction time and critical nuclei size for MgF2. In addition, for prospective numerical modeling the surface tensions of spherical and platelet particles of MgF2 were evaluated from the X-ray data by a lattice parameter change method. Also, a new method for the evaluation of the variation in the density

  10. Rock sampling. [apparatus for controlling particle size

    NASA Technical Reports Server (NTRS)

    Blum, P. (Inventor)

    1971-01-01

    An apparatus for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The device includes grinding means for cutting grooves in the rock surface and to provide a grouping of thin, shallow, parallel ridges and cutter means to reduce these ridges to a powder specimen. Collection means is provided for the powder. The invention relates to rock grinding and particularly to the sampling of rock specimens with good size control.

  11. Assessment of exhaust emissions from carbon nanotube production and particle collection by sampling filters.

    PubMed

    Tsai, Candace Su-Jung; Hofmann, Mario; Hallock, Marilyn; Ellenbecker, Michael; Kong, Jing

    2015-11-01

    This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm(3) for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully

  12. Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust

    PubMed Central

    Chubb, Lauren G.; Cauda, Emanuele G.

    2017-01-01

    Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139

  13. Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Xu, Kun; Thomas, Brian G.

    2012-03-01

    The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. Computational particle-size-grouping (PSG) kinetic models based on population balances are developed to simulate precipitate particle growth resulting from collision and diffusion mechanisms. First, the generalized PSG method for collision is explained clearly and verified. Then, a new PSG method is proposed to model diffusion-controlled precipitate nucleation, growth, and coarsening with complete mass conservation and no fitting parameters. Compared with the original population-balance models, this PSG method saves significant computation and preserves enough accuracy to model a realistic range of particle sizes. Finally, the new PSG method is combined with an equilibrium phase fraction model for plain carbon steels and is applied to simulate the precipitated fraction of aluminum nitride and the size distribution of niobium carbide during isothermal aging processes. Good matches are found with experimental measurements, suggesting that the new PSG method offers a promising framework for the future development of realistic models of precipitation.

  14. Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations

    USGS Publications Warehouse

    Gartner, J.W.; Cheng, R.T.; Wang, P.-F.; Richter, K.

    2001-01-01

    Advances in technology have resulted in a new instrument that is designed for in-situ determination of particle size spectra. Such an instrument that can measure undisturbed particle size distributions is much needed for sediment transport studies. The LISST-100 (Laser In-Situ Scattering and Transmissometry) uses the principle of laser diffraction to obtain the size distribution and volume concentration of suspended material in 32 size classes logarithmically spaced between 1.25 and 250 ??m. This paper describes a laboratory evaluation of the ability of LISST-100 to determine particle sizes using suspensions of single size, artificial particles. Findings show the instrument is able to determine particle size to within about 10% with increasing error as particle size increases. The instrument determines volume (or mass) concentration using a volume conversion factor Cv. This volume conversion factor is theoretically a constant. In the laboratory evaluation Cv is found to vary by a factor of about three over the particle size range between 5 and 200 ??m. Results from field studies in South San Francisco Bay show that values of mass concentration of suspended marine sediments estimated by LISST-100 agree favorably with estimates from optical backscatterance sensors if an appropriate value of Cv, according to mean size, is used and the assumed average particle (aggregate) density is carefully chosen. Analyses of size distribution of suspended materials in South San Francisco Bay over multiple tide cycles suggest the likelihood of different sources of sediment because of different size characteristics during flood and ebb cycles. ?? 2001 Elsevier Science B.V.

  15. Quartz grainsize evolution during dynamic recrystallization across a natural shear zone boundary

    NASA Astrophysics Data System (ADS)

    Xia, Haoran; Platt, John P.

    2018-04-01

    Although it is widely accepted that grainsize reduction by dynamic recrystallization can lead to strain localization, the details of the grainsize evolution during dynamic recrystallization remain unclear. We investigated the bulge size and grainsizes of quartz at approximately the initiation and the completion stages of bulging recrystallization across the upper boundary of a 500 m thick mylonite zone above the Vincent fault in the San Gabriel Mountains, southern California. Within uncertainty, the average bulge size of quartz, 4.7 ± 1.5 μm, is the same as the recrystallized grainsize, 4.5 ± 1.5 μm, at the incipient stage of dynamic recrystallization, and also the same within uncertainties as the recrystallized grainsize when dynamic recrystallization is largely complete, 4.7 ± 1.3 μm. These observations indicate that the recrystallized grainsize is controlled by the nucleation process and does not change afterwards. It is also consistent with the experimental finding that the quartz recrystallized grainsize paleopiezometer is independent of temperature.

  16. Electromechanical characterization of individual micron-sized metal coated polymer particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazilchuk, Molly; Kristiansen, Helge; Conpart AS, Skjetten 2013

    Micron-sized polymer particles with nanoscale metal coatings are essential in conductive adhesives for electronics assembly. The particles function in a compressed state in the adhesives. The link between mechanical properties and electrical conductivity is thus of the utmost importance in the formation of good electrical contact. A custom flat punch set-up based on nanoindentation has been developed to simultaneously deform and electrically probe individual particles. The set-up has a sufficiently low internal resistance to allow the measurement of sub-Ohm contact resistances. Additionally, the set-up can capture mechanical failure of the particles. Combining this data yields a fundamental understanding of contactmore » behavior. We demonstrate that this method can clearly distinguish between particles of different sizes, with different thicknesses of metal coating, and different metallization schemes. The technique provides good repeatability and physical insight into the behavior of these particles that can guide adhesive design and the optimization of bonding processes.« less

  17. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    NASA Astrophysics Data System (ADS)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work

  18. Control of both particle and pore size in nanoporous palladium alloy powders

    DOE PAGES

    Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; ...

    2014-07-15

    Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agentsmore » for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.« less

  19. Effect of sulfate and carbonate minerals on particle-size distributions in arid soils

    USGS Publications Warehouse

    Goossens, Dirk; Buck, Brenda J.; Teng, Yuazxin; Robins, Colin; Goldstein, Harland L.

    2014-01-01

    Arid soils pose unique problems during measurement and interpretation of particle-size distributions (PSDs) because they often contain high concentrations of water-soluble salts. This study investigates the effects of sulfate and carbonate minerals on grain-size analysis by comparing analyses in water, in which the minerals dissolve, and isopropanol (IPA), in which they do not. The presence of gypsum, in particular, substantially affects particle-size analysis once the concentration of gypsum in the sample exceeds the mineral’s solubility threshold. For smaller concentrations particle-size results are unaffected. This is because at concentrations above the solubility threshold fine particles cement together or bind to coarser particles or aggregates already present in the sample, or soluble mineral coatings enlarge grains. Formation of discrete crystallites exacerbates the problem. When soluble minerals are dissolved the original, insoluble grains will become partly or entirely liberated. Thus, removing soluble minerals will result in an increase in measured fine particles. Distortion of particle-size analysis is larger for sulfate minerals than for carbonate minerals because of the much higher solubility in water of the former. When possible, arid soils should be analyzed using a liquid in which the mineral grains do not dissolve, such as IPA, because the results will more accurately reflect the PSD under most arid soil field conditions. This is especially important when interpreting soil and environmental processes affected by particle size.

  20. Particle Size, Composition, and Ocean Temperature Govern the Global Distribution of Particle Transfer Efficiency to the Mesopelagic

    NASA Astrophysics Data System (ADS)

    Cram, J. A.; Weber, T. S.; Leung, S.; Deutsch, C. A.

    2016-02-01

    New analyses of geochemical tracer data detect significant differences between ocean basins in the depth scale of particle remineralization, with deepest in high latitudes, shallowest in the subtropical gyres, and intermediate in the tropics. We evaluate the possible causes of this pattern using a mechanistic model of particle dynamics that includes microbial colonization, detachment, and degradation of sinking particles. The model represents the size structure of particles, the effects of mineral ballast (diagnosed from alkalinity and silicate distributions) and seawater temperature (which influences particle velocity and microbial metabolic rates). We find that diagnosed spatial patterns in particle flux profiles can be best reproduced through a combination of surface particle size distribution and temperature, which both favor low transfer efficiency in subtropical gyres, and high transfer efficiency in higher latitudes and intermediate tropical values. Particle mineral content is shown to significantly modulate these patterns, albeit with a high remaining uncertainty. Implications of these mechanisms for changes in biological carbon storage in a warmer ocean are examined.

  1. Behavior of Quartz and Carbon Black Pellets at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    This paper studies the quartz and carbon black pellets at elevated temperature with varying temperature and gas atmosphere. High-purity quartz and commercial ultra-pure carbon black was mixed (carbon content vet. 15%), and then pelletized into particles of l-3mm in diameter. The stoichiometric analysis of the pellet during heating is studied in thermogravimetric analysis (TGA) furnace at different temperature in CO and Ar atmosphere. The microstructure, phase changes and element content of sample before/after heating is characterized by X-ray diffraction, scanning electron microscope, X-ray fluorescence and LECO analyzer. The reaction process can be divided into two stages. Higher temperature and argon atmosphere are the positive parameters for SiC formation.

  2. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    NASA Astrophysics Data System (ADS)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  3. Stress distribution during cold compression of a quartz aggregate using synchrotron X-ray diffraction: Observed yielding, damage, and grain crushing: STRESS DISTRIBUTION OF QUARTZ AGGREGATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, C. S. N.; Weidner, D. J.; Li, L.

    We report new experimental results that quantify the stress distribution within a quartz aggregate during pore collapse and grain crushing. The samples were probed with synchrotron X-ray diffraction as they were compressed in a multianvil deformation apparatus at room temperature from low pressure (tens of megapascal) to pressures of a few gigapascal. In such a material, stress is likely to concentrate at grain-to-grain contacts and vanish where grains are bounded by open porosity. Therefore, internal stress is likely to vary significantly from point to point in such an aggregate, and hence, it is important to understand both the heterogeneity andmore » anisotropy of such variation with respect to the externally applied stress. In our quartz aggregate (grain size of ~4 μm), the measured diffraction peaks broaden asymmetrically at low pressure (tens of megapascal), suggesting that open pores are still a dominant characteristic of grain boundaries. In contrast, a reference sample of novaculite (a highly dense quartz polycrystal, grain size of ~6–9 μm) showed virtually no peak broadening with increasing pressure. In the quartz aggregate, we observed significant deviation in the pressure-volume curves in the range of P = 400–600 MPa. We suggest that this marks the onset of grain crushing (generally denoted as P* in the rock mechanic literature), which is commonly reported to occur in sandstones at pressures of this order, in general agreement with a Hertzian analysis of fracturing at grain contacts.« less

  4. Particle size, size distribution and morphological evaluation of glass fiber reinforced plastic (GRP) industrial by-product.

    PubMed

    Mazzoli, Alida; Moriconi, Giacomo

    2014-12-01

    The waste management of glass fiber reinforced polymer (GRP) materials, in particular those made with thermosetting resins, is a critical issue for the composites industry because these materials cannot be reprocessed. Therefore, most thermosetting GRP waste is presently sent to landfill, in spite of the significant environmental impact caused by their disposal in this way. The limited GRP waste recycling worldwide is mostly due to its intrinsic thermosetting properties, lack of characterization data and unavailability of viable recycling and recovery routes. One of the possibility for re-using GRP industrial by-product is in form of powder as a partial aggregate replacement or filler addition in cement based composites for applications in sustainable construction materials and technologies. However, the feasibility of this kind of reutilization strongly depends on the morphology and particle size distribution of a powder made up of polymer granules and glass fibers. In the present study, the use of image analysis method, based on scanning electron microscopy (SEM) and ImageJ processing program, is proposed in order to evaluate the morphology of the particles and measure the particle size and size distribution of fine GRP waste powder. The obtained results show a great potential of such a method in order to be considered as a standardized method of measurement and analysis in order to characterize the grain size and size distribution of GRP particles before exploiting any compatibility issue for its recycling management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Size-exclusion chromatography using core-shell particles.

    PubMed

    Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J

    2017-02-24

    Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Clay Chemistry's Influence on the Average Carbon Content and Particle Size at the Ninety-Six Historical Site, South Carolina

    NASA Astrophysics Data System (ADS)

    Lintz, L.; Werts, S. P.

    2014-12-01

    The Ninety-Six National Historic Site is located in Greenwood County, SC. Recent geologic mapping of this area has revealed differences in soil properties over short distances within the park. We studied the chemistry of the clay minerals found within the soils to see if there was a correlation between the amounts of soil organic carbon contained in the soil and particle size in individual soil horizons. Three different vegetation areas, including an old field, a deciduous forest, and a pine forest were selected to see what influence vegetation type had on the clay chemistry and carbon levels as well. Four samples containing the O, A, and B horizons were taken from each location and we studied the carbon and nitrogen content using an elemental analyzer, particle size using a Laser Diffraction Particle Size Analyzer, and clay mineralogy with powder X-ray diffraction of each soil sample. Samples from the old field and pine forest gave an overall negative correlation between carbon content and clay percentage, which is against the normal trend for Southern Piedmont Ultisols. The deciduous forest samples gave no correlation at all between its carbon content and clay percentage. Together, all three locations show the same negative relationship, while once separated into vegetation type and A and B horizons it shows even more abnormal relationships of negative while several show no correlation (R2= 0.007403- 0.56268). Using powder XRD, we ran clay samples from each A and B horizon for the clay mineralogy. All three vegetation areas had the same results of containing quartz, kaolinite, and Fe oxides, therefore, clay chemistry is not a reason behind the abnormal trend of a negative correlation between average carbon content and clay percentage. Considering that all three locations have the same climate, topography, and parent material of metagranite, it could be reasonable to assume these results are a factor of environmental and biological influences rather than clay type.

  7. Spatial distribution of quartz recrystallization microstructures across the Aar massif (Swiss Central Alps)

    NASA Astrophysics Data System (ADS)

    Peters, M.; Herwegh, M.

    2012-04-01

    In the Aar massif, main foliation and major deformation structures were developed during NW-SE compression associated with the Alpine orogeny (Steck 1968). To be precise, shearing at the brittle to ductile transition may have initiated at different stages between 22-20 Ma and 14-12 Ma, followed by purely brittle deformation at around 10 Ma (Rolland et al. 2009). In light of the onset of dynamic recrystallization in quartz, Bambauer et al. (2009) defined a quartz recrystallization isograd in the northern part of the Aar massif. To the south, the grain size of recrystallized grains increases due to an increase of metamorphic temperatures from N to S. The aim of the current project is to carry out quantitative analysis on changes of the dynamic and static recrystallization behavior of quartz. Across the Aar massif, two general types of microstructures have to be discriminated: (i) weakly to moderately deformed host rocks and (ii) intensely deformed mylonites to ultramylonites out of high strain shear zones. In (i), volume fraction and size of recrystallized quartz grains increase towards the S showing grain size changes from around 5 µm up to ca. 200 µm. Southern microstructures are characterized by complete recrystallization. In terms of recrystallization processes, a transition from bulging recrystallization in the N to subgrain rotation recrystallization in the S occurs. Such a change in dynamic recrystallization processes combined with a grain size increase points towards reduced differential stresses with increasing temperature. This temperature gradient is also corroborated by a switch in the active glide systems in quartz from basal to rhomb dominated glide. In contrast to the granitic host rocks, the mylonites and ultramylonites (ii) show smaller recrystallized grain sizes due to enhanced strain rates. However, they also reveal a general increase of recrystallized grain sizes from N to S. In the S, microstructures from (i) and (ii) show equidimensional

  8. Process R&D for Particle Size Control of Molybdenum Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Sujat; Dzwiniel, Trevor; Pupek, Krzysztof

    The primary goal of this study was to produce MoO 3 powder with a particle size range of 50 to 200 μm for use in targets for production of the medical isotope 99Mo. Molybdenum metal powder is commercially produced by thermal reduction of oxides in a hydrogen atmosphere. The most common source material is MoO 3, which is derived by the thermal decomposition of ammonium heptamolybdate (AHM). However, the particle size of the currently produced MoO 3 is too small, resulting in Mo powder that is too fine to properly sinter and press into the desired target. In this study,more » effects of heating rate, heating temperature, gas type, gas flow rate, and isothermal heating were investigated for the decomposition of AHM. The main conclusions were as follows: lower heating rate (2-10°C/min) minimizes breakdown of aggregates, recrystallized samples with millimeter-sized aggregates are resistant to various heat treatments, extended isothermal heating at >600°C leads to significant sintering, and inert gas and high gas flow rate (up to 2000 ml/min) did not significantly affect particle size distribution or composition. In addition, attempts to recover AHM from an aqueous solution by several methods (spray drying, precipitation, and low temperature crystallization) failed to achieve the desired particle size range of 50 to 200 μm. Further studies are planned.« less

  9. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated.

  10. Particle size distribution in effluent of trickling filters and in humus tanks.

    PubMed

    Schubert, W; Günthert, F W

    2001-11-01

    Particles and aggregates from trickling filters must be eliminated from wastewater. Usually this happens through sedimentation in humus tanks. Investigations to characterize these solids by way of particle size measurements, image analysis and particle charge measurements (zeta potential) are made within the scope of Research Center for Science and Technology "Fundamentals of Aerobic biological wastewater treatment" (SFB 411). The particle size measuring results given within this report were obtained at the Ingolstadt wastewater treatment plant, Germany, which served as an example. They have been confirmed by similar results from other facilities. Particles flushed out from trickling filters will be partially destroyed on their way to the humus tank. A large amount of small particles is to be found there. On average 90% of the particles are smaller than 30 microm. Particle size plays a decisive role in the sedimentation behaviour of solids. Small particles need sedimentation times that cannot be provided in settling tanks. As a result they cause turbidity in the final effluent. Therefore quality of sewage discharge suffers, and there are hardly advantages of the fixed film reactor treatment compared to the activated sludge process regarding sedimentation behaviour.

  11. PARTICLE SIZE DISTRIBUTIONS FOR AN OFFICE AEROSOL

    EPA Science Inventory

    The article discusses an evaluation of the effect of percent outdoor air supplied and occupation level on the particle size distributions and mass concentrations for a typical office building. (NOTE: As attention has become focused on indoor air pollution control, it has become i...

  12. Relationship between regolith particle size and porosity on small bodies

    NASA Astrophysics Data System (ADS)

    Kiuchi, M.; Nakamura, A.

    2014-07-01

    Small planetary bodies are covered by a particle layer called the regolith. The particle size and porosity of the regolith surface of the small bodies are important physical properties. The responses of the surface to solar irradiation depend on the particle size and porosity. The particle size and porosity have influences on the dynamic responses of the surface, such as cratering efficiency. In previous studies, these two quantities were measured or estimated by various methods. Here we propose a semi-empirical relationship between the particle size and porosity for small bodies' surfaces. An empirical relationship between the porosity of granular materials in loose packing state under 1G and the ratio of the magnitudes of the interparticle force and gravity which act on a particle was presented in a previous study [1]. In this study, we assume that the van der Waals force F_{V} is predominant in the interparticle forces and adopt a model formula [2] which is different from that adopted in the previous study [1]: F_{V} = {AS^{2}}/{48Ω ^{2}}r, where A is the Hamaker constant, r is the particle radius, Ω is the diameter of an O^{-2} ion, and S is the cleanliness ratio which shows the smallness of a number of the adsorbate molecules [2]. It was shown that the cleanliness ratio S is approximately 0.1 on the Earth, and is almost unity in the interplanetary space. In addition to the data of the several previous studies, our own measurement result for micron-sized fly-ash particles in atmospheric conditions is used in the present analysis. We calculate F_{V} using Eq. (1), and obtain a relationship between porosity and the ratio R_{F} = F_{V}/F_{g}, where F_{g} is gravity. An empirical formula used in the previous study [1], p = p_{0}+(1-p_{0})exp(-m{R_{F}}^{-n}), is applied to fit the data, where p is the porosity and p_{0}, m and n are constants. We assume that p_{0} is 0.36. By substituting Eq. (1) to Eq. 2, we obtain p = p_{0}+(1-p_{0})exp {-m({AS^{2}}/{64πΩ ^{2

  13. Experimental deformation in sandstone, carbonates and quartz aggregate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Cecilia See Nga

    2015-05-01

    The first part of my thesis is mainly focused on the effect of grain size distribution on compaction localization in porous sandstone. To identify the microstructural parameters that influence compaction band formation, I conducted a systematic study of mechanical deformation, failure mode and microstructural evolution in Bleurswiller and Boise sandstones, of similar porosity (~25%) and mineralogy but different sorting. Discrete compaction bands were observed to develop over a wide range of pressure in the Bleurswiller sandstone that has a relatively uniform grain size distribution. In contrast, compaction localization was not observed in the poorly sorted Boise sandstone. My results demonstratemore » that grain size distribution exerts important influence on compaction band development, in agreement with recently published data from Valley of Fire and Buckskin Gulch, as well as numerical studies. The second part aimed to improve current knowledge on inelastic behavior, failure mode and brittle-ductile transition in another sedimentary rock, porous carbonates. A micritic Tavel (porosity of ~13%) and an allochemical Indiana (~18%) limestones were deformed under compaction in wet and dry conditions. At lower confining pressures, shear localization occurred in brittle faulting regime. Through transitional regime, the deformation switched to cataclastic flow regime at higher confining pressure. Specifically in the cataclastic regime, the (dry and wet) Tavel and dry Indiana failed by distributed cataclastic flow, while in contrast, wet Indiana failed as compaction localization. My results demonstrate that different failure modes and mechanical behaviors under different deformation regimes and water saturation are fundamental prior to any geophysical application in porous carbonates. The third part aimed to focus on investigating compaction on quartz aggregate starting at low (MPa) using X-ray diffraction. We report the diffraction peak evolution of quartz with

  14. Comparison of ice particle size variations across Ganymede and Callisto

    NASA Astrophysics Data System (ADS)

    Stephan, Katrin; Hoffmann, Harald; Hibbitts, Karl; Wagner, Roland; Jaumann, Ralf

    2016-04-01

    Ratios of band depths of different H2O ice absorptions as measured by the Near Infrared Spectrometer NIMS onboard the Galileo spacecraft [1] have been found to be semi-quantitative indicator of changes in the particle size of ice across the surfaces of the Jovian satellite Ganymede [2]. This method is now applied to Ganymede's neighboring satellite Callisto. On Ganymede, sizes reach from 1 μm near the poles to 1 mm near the equator [2]. Smallest particles occur at latitudes higher than ±30° where the closed magnetic field lines of Ganymede's magnetic field change into open ones and Ganymede's polar caps become apparent. Thus, the formation of these polar caps has often been attributed to brightening effects due to plasma bombardment of the surface [3,4]. Callisto, which does not exhibit an intrinsic magnetic field, however, also shows the same trend as observed on Ganymede with slightly larger particle sizes on Callisto than on Ganymede at low and mid latitude but similar particle sizes in the polar regions. Similar trends in the particle size variations on Callisto and on Ganymede imply that these variations are caused by similar surface processes. Our measurements rather point to a continuous decreasing of ice particle sizes toward the poles on both satellites related to changes of the surface temperatures [5]. Maximum temperatures during the day reach 150 K and 165 K near the equator of Ganymede and Callisto [6, 7], respectively and sublimation of ice particles and crystal growth [8] is expected to be the dominant surface process in these regions. In contrast, polar temperatures do not exceed 80 ± 5 K [5]. Larger particles in the equatorial region of Callisto than on Ganymede could be explained due to the slight higher maximum temperature but also a longer Callistoan day (Callisto: ~ 17 Earth days; Ganymede: ~ 7 Earth days). References: [1] Carlson et al.. (1999) Science 274, 385-388, 1996; [2] Stephan et al., 2009, EPSC, Abstract #EPSC2009-633; [3] Johnson

  15. Effects of particle size on magnetostrictive properties of magnetostrictive composites with low particulate volume fraction

    NASA Astrophysics Data System (ADS)

    Dong, Xufeng; Guan, Xinchun; Ou, Jinping

    2009-03-01

    In the past ten years, there have been several investigations on the effects of particle size on magnetostrictive properties of polymer-bonded Terfenol-D composites, but they didn't get an agreement. To solve the conflict among them, Terfenol-D/unsaturated polyester resin composite samples were prepared from Tb0.3Dy0.7Fe2 powder with 20% volume fraction in six particle-size ranges (30-53, 53-150, 150-300, 300-450, 450-500 and 30-500μm). Then their magnetostrictive properties were tested. The results indicate the 53-150μm distribution presents the largest static and dynamic magnetostriction among the five monodispersed distribution samples. But the 30-500μm (polydispersed) distribution shows even larger response than 53-150μm distribution. It indicates the particle size level plays a doubleedged sword on magnetostrictive properties of magnetostrictive composites. The existence of the optimal particle size to prepare polymer-bonded Terfenol-D, whose composition is Tb0.3Dy0.7Fe2, is resulted from the competition between the positive effects and negative effects of increasing particle size. At small particle size level, the voids and the demagnetization effect decrease significantly with increasing particle size and leads to the increase of magnetostriction; while at lager particle size level, the percentage of single-crystal particles and packing density becomes increasingly smaller with increasing particle size and results in the decrease of magnetostriction. The reason for the other scholars got different results is analyzed.

  16. Physicochemical properties of respirable-size lunar dust

    NASA Astrophysics Data System (ADS)

    McKay, D. S.; Cooper, B. L.; Taylor, L. A.; James, J. T.; Thomas-Keprta, K.; Pieters, C. M.; Wentworth, S. J.; Wallace, W. T.; Lee, T. S.

    2015-02-01

    We separated the respirable dust and other size fractions from Apollo 14 bulk sample 14003,96 in a dry nitrogen environment. While our toxicology team performed in vivo and in vitro experiments with the respirable fraction, we studied the size distribution and shape, chemistry, mineralogy, spectroscopy, iron content and magnetic resonance of various size fractions. These represent the finest-grained lunar samples ever measured for either FMR np-Fe0 index or precise bulk chemistry, and are the first instance we know of in which SEM/TEM samples have been obtained without using liquids. The concentration of single-domain, nanophase metallic iron (np-Fe0) increases as particle size diminishes to 2 μm, confirming previous extrapolations. Size-distribution studies disclosed that the most frequent particle size was in the 0.1-0.2 μm range suggesting a relatively high surface area and therefore higher potential toxicity. Lunar dust particles are insoluble in isopropanol but slightly soluble in distilled water (~0.2 wt%/3 days). The interaction between water and lunar fines, which results in both agglomeration and partial dissolution, is observable on a macro scale over time periods of less than an hour. Most of the respirable grains were smooth amorphous glass. This suggests less toxicity than if the grains were irregular, porous, or jagged, and may account for the fact that lunar dust is less toxic than ground quartz.

  17. Factors controlling particle number concentration and size at metro stations

    NASA Astrophysics Data System (ADS)

    Reche, C.; Moreno, T.; Martins, V.; Minguillón, M. C.; Jones, T.; de Miguel, E.; Capdevila, M.; Centelles, S.; Querol, X.

    2017-05-01

    An extensive air quality campaign was performed at differently designed station platforms in the Barcelona metro system, aiming to investigate the factors governing airborne particle number (N) concentrations and their size distributions. The study of the daily trends of N concentrations by different size ranges shows that concentrations of N0.3-10 are closely related with the schedule of the metro service. Conversely, the hourly variation of N0.007-10 (mainly composed of ultrafine particles) could be partly governed by the entrance of particles from outdoor emissions through mechanical ventilation. Measurements under different ventilation settings at three metro platforms reveal that the effect on air quality linked to changes in the tunnel ventilation depends on the station design. Night-time maintenance works in tunnels are frequent activities in the metro system; and after intense prolonged works, these can result in higher N concentrations at platforms during the following metro operating hours (by up to 30%), this being especially evident for N1-10. Due to the complex mixture of factors controlling N, together with the differences in trends recorded for particles within different size ranges, developing an air quality strategy at metro systems is a great challenge. When compared to street-level urban particles concentrations, the priority in metro air quality should be dealing with particles coarser than 0.3 μm. In fact, the results suggest that at narrow platforms served by single-track tunnels the current forced tunnel ventilation during operating hours is less efficient in reducing coarse particles compared to fine.

  18. Colorado quartz: occurrence and discovery

    USGS Publications Warehouse

    Kile, D.E.; Modreski, P.J.; Kile, D.L.

    1991-01-01

    The many varieties and associations of quartz found throughout the state rank it as one of the premier worldwide localities for that species. This paper briefly outlines the historical importance of the mineral, the mining history and the geological setting before discussing the varieties of quartz present, its crystallography and the geological enviroments in which it is found. The latter include volcanic rocks and near surface igneous rocks; pegmatites; metamorphic and plutonic rocks; hydrothermal veins; skarns and sedimentary deposits. Details of the localities and mode of occurrence of smoky quartz, amethyst, milky quartz, rock crystal, rose quartz, citrine, agate and jasper are then given. -S.J.Stone

  19. Effect of drug particle size in ultrasound compacted tablets. Continuum percolation model approach.

    PubMed

    Millán, Mónica; Caraballo, Isidoro

    2006-03-09

    The main objective of this work is to study the influence of the drug particle size on the pharmaceutical availability of ultrasound compacted tablets. Inert matrix systems containing different drug particle sizes were prepared using both, an ultrasound-assisted press and a traditional eccentric machine. Potassium chloride was used as drug model and Eudragit RS-PM as matrix forming excipient. The excipient particle size was kept constant. The cross-sectional microphotographs of ultrasound tablets show the existence of a quasi-continuum medium. Keeping constant the drug load, US-tablets showed very similar release rates, whereas for traditional tablets, an increase in the particle size resulted in a clear decrease in the release rate. In these tablets, the excipient forms an almost continuum medium. In an infinite theoretical system of these characteristics, the size of the drug particles will not modify the percolation threshold. The percolation of the excipient in this system can be assimilated to a continuum percolation model. In accordance with the proposed model, a lower influence of the drug particle size on the drug release rate was obtained for the US-tablets in comparison with traditional tablets. This fact can be indicative of the similarity of the drug percolation thresholds in these systems.

  20. [Analysis of particle size characteristics of road sediments in Beijing Olympic Park].

    PubMed

    Li, Hai-yan; Shi, An-bang; Qu, Yang-sheng; Yue, Jing-lin

    2014-09-01

    Particle size analysis of road sediment collected in October and November in Beijing Olympic Park indicates that most of the sediments are 76-830 μm; the grain size of the sediments in the area of large population flow is mainly coarse but the grain size in the area of large traffic volume is fine relatively while most of the sediments are <300 p.m. Moreover, sediments of size range <300 μm can be easily accumulated on the road with moderate traffic density. The results demonstrate that the effect of pedestrian flow on the composition of the particles is unobvious and the main influences are the traffic density, extensive construction. With the length of dry period increasing, the content of sediments of size range >300 μm decreases and the content of sediments of size range < 150 μm increases, however, the change of the content of sediments of size range 150-300 μm is not obvious. The results indicate that the effectiveness of the road sediment removal depends on the length of dry period, and the accumulation of different size particles varies differently under the different dry days. Compared with the stone road, surface particles can accumulate on the asphalt road more easily as the accumulation of particles is affected by the road material significantly. Therefore, to reduce the urban surface water pollution, it is necessary to improve the design of park road such as using the stone road, which can decrease the roughness of the road.

  1. Particle Transport and Size Sorting in Bubble Microstreaming Flow

    NASA Astrophysics Data System (ADS)

    Thameem, Raqeeb; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha

    2014-11-01

    Ultrasonic driving of sessile semicylindrical bubbles results in powerful steady streaming flows that are robust over a wide range of driving frequencies. In a microchannel, this flow field pattern can be fine-tuned to achieve size-sensitive sorting and trapping of particles at scales much smaller than the bubble itself; the sorting mechanism has been successfully described based on simple geometrical considerations. We investigate the sorting process in more detail, both experimentally (using new parameter variations that allow greater control over the sorting) and theoretically (incorporating the device geometry as well as the superimposed channel flow into an asymptotic theory). This results in optimized criteria for size sorting and a theoretical description that closely matches the particle behavior close to the bubble, the crucial region for size sorting.

  2. Effect of particle size distribution on the hydrodynamics of dense CFB risers

    NASA Astrophysics Data System (ADS)

    Bakshi, Akhilesh; Khanna, Samir; Venuturumilli, Raj; Altantzis, Christos; Ghoniem, Ahmed

    2015-11-01

    Circulating Fluidized Beds (CFB) are favorable in the energy and chemical industries, due to their high efficiency. While accurate hydrodynamic modeling is essential for optimizing performance, most CFB riser simulations are performed assuming equally-sized solid particles, owing to limited computational resources. Even though this approach yields reasonable predictions, it neglects commonly observed experimental findings suggesting the strong effect of particle size distribution (psd) on the hydrodynamics and chemical conversion. Thus, this study is focused on the inclusion of discrete particle sizes to represent the psd and its effect on fluidization via 2D numerical simulations. The particle sizes and corresponding mass fluxes are obtained using experimental data in dense CFB riser while the modeling framework is described in Bakshi et al 2015. Simulations are conducted at two scales: (a) fine grid to resolve heterogeneous structures and (b) coarse grid using EMMS sub-grid modifications. Using suitable metrics which capture bed dynamics, this study provides insights into segregation and mixing of particles as well as highlights need for improved sub-grid models.

  3. Drug particle size influence on enteric beads produced by a droplet extrusion/precipitation method.

    PubMed

    Cerdeira, A M; Gouveia, L F; Goucha, P; Almeida, A J

    2000-01-01

    The influence of drug particle size on the production of enteric beads by a polymer precipitation technique was investigated. Drug particle dimensions are known to play an important role in most microencapsulation techniques. Bead morphology was greatly influenced by drug particle size, and spherical shaped beads could only be obtained after size reduction of nimesulide crystals. This is confirmed by the angle of repose measurements, which show a significant decrease in theta values when beads are formulated with smaller drug particles. Furthermore, results show that drug encapsulation efficiency and in vitro drug release rates are also greatly dependent on both drug particle size and drug/polymer ratio in the initial suspension. Preparations containing 10.2 microm drug particles show a two-fold increase in the release rates when compared to those prepared with 40 microm particles.

  4. Size-Fractionated Particle Number Concentrations and Daily Mortality in a Chinese City

    PubMed Central

    Meng, Xia; Ma, Yanjun; Chen, Renjie; Zhou, Zhijun; Chen, Bingheng

    2013-01-01

    Background: Associations between airborne particles and health outcomes have been documented worldwide; however, there is limited information regarding health effects associated with different particle sizes. Objectives: We explored the association between size-fractionated particle number concentrations (PNCs) and daily mortality in Shenyang, China. Methods: We collected daily data on cause-specific mortality and PNCs for particles measuring 0.25–10 μm in diameter between 1 December 2006 and 30 November 2008. We used quasi-Poisson regression generalized additive models to estimate associations between PNCs and mortality, and we used natural spline smoothing functions to adjust for time-varying covariates and long-term and seasonal trends. Results: Mean numbers of daily deaths were 67, 32, and 7 for all natural causes, cardiovascular diseases, and respiratory diseases, respectively. Interquartile range (IQR) increases in PNCs for particles measuring 0.25–0.50 μm were significantly associated with total and cardiovascular mortality, but not respiratory mortality. Effect estimates were larger for PNCs during the warm season than the cool season, and increased with decreasing particle size. IQR increases in PNCs of 0.25–0.28 μm, 0.35–0.40 μm, and 0.45–0.50 μm particles were associated with 2.41% (95% CI: 1.23, 3.58%), 1.31% (95% CI: 0.52, 2.09%), and 0.45% (95% CI: 0.04, 0.87%) higher total mortality, respectively. Associations were generally stable after adjustment for mass concentrations of ambient particles and gaseous pollutants. Conclusions: Our findings suggest that particles < 0.5 μm in diameter may be most responsible for adverse health effects of particulate air pollution and that adverse health effects may increase with decreasing particle size. Citation: Meng X, Ma Y, Chen R, Zhou Z, Chen B, Kan H. 2013. Size-fractionated particle number concentrations and daily mortality in a Chinese city. Environ Health Perspect 121:1174–1178;

  5. Particle Characterization for a Protein Drug Product Stored in Pre-Filled Syringes Using Micro-Flow Imaging, Archimedes, and Quartz Crystal Microbalance with Dissipation.

    PubMed

    Zheng, Songyan; Puri, Aastha; Li, Jinjiang; Jaiswal, Archana; Adams, Monica

    2017-01-01

    Micro-flow imaging (MFI) has been used for formulation development for analyzing sub-visible particles. Archimedes, a novel technique for analyzing sub-micron particles, has been considered as an orthogonal method to currently existing techniques. This study utilized these two techniques to investigate the effectiveness of polysorbate (PS-80) in mitigating the particle formation of a therapeutic protein formulation stored in silicone oil-coated pre-filled syringes. The results indicated that PS-80 prevented the formation of both protein and silicone oil particles. In the case of protein particles, PS-80 might involve in the interactions with the hydrophobic patches of protein, air bubbles, and the stressed surfaces of silicone oil-coated pre-filled syringes. Such interactions played a role in mitigating the formation of protein particles. Subsequently, quartz crystal microbalance with dissipation (QCM-D) was utilized to characterize the interactions associated with silicone oil, protein, and PS-80 in the solutions. Based on QCM-D results, we proposed that PS-80 likely formed a layer on the interior surfaces of syringes. As a result, the adsorbed PS-80 might block the leakage of silicone oil from the surfaces to solution so that the silicone oil particles were mitigated at the presence of PS-80. Overall, this study demonstrated the necessary of utilizing these three techniques cooperatively in order to better understand the interfacial role of PS-80 in mitigating the formation of protein and silicone oil particles.

  6. Alpha spectrometric characterization of process-related particle size distributions from active particle sampling at the Los Alamos National Laboratory uranium foundry

    NASA Astrophysics Data System (ADS)

    Plionis, A. A.; Peterson, D. S.; Tandon, L.; LaMont, S. P.

    2010-03-01

    Uranium particles within the respirable size range pose a significant hazard to the health and safety of workers. Significant differences in the deposition and incorporation patterns of aerosols within the respirable range can be identified and integrated into sophisticated health physics models. Data characterizing the uranium particle size distribution resulting from specific foundry-related processes are needed. Using personal air sampling cascade impactors, particles collected from several foundry processes were sorted by activity median aerodynamic diameter onto various Marple substrates. After an initial gravimetric assessment of each impactor stage, the substrates were analyzed by alpha spectrometry to determine the uranium content of each stage. Alpha spectrometry provides rapid non-distructive isotopic data that can distinguish process uranium from natural sources and the degree of uranium contribution to the total accumulated particle load. In addition, the particle size bins utilized by the impactors provide adequate resolution to determine if a process particle size distribution is: lognormal, bimodal, or trimodal. Data on process uranium particle size values and distributions facilitate the development of more sophisticated and accurate models for internal dosimetry, resulting in an improved understanding of foundry worker health and safety.

  7. Gas/particle partitioning, particle-size distribution of atmospheric polybrominated diphenyl ethers in southeast Shanghai rural area and size-resolved predicting model.

    PubMed

    Su, Peng-Hao; Tomy, Gregg T; Hou, Chun-Yan; Yin, Fang; Feng, Dao-Lun; Ding, Yong-Sheng; Li, Yi-Fan

    2018-04-01

    A size-segregated gas/particle partitioning coefficient K Pi was proposed and evaluated in the predicting models on the basis of atmospheric polybrominated diphenyl ether (PBDE) field data comparing with the bulk coefficient K P . Results revealed that the characteristics of atmospheric PBDEs in southeast Shanghai rural area were generally consistent with previous investigations, suggesting that this investigation was representative to the present pollution status of atmospheric PBDEs. K Pi was generally greater than bulk K P , indicating an overestimate of TSP (the mass concentration of total suspended particles) in the expression of bulk K P . In predicting models, K Pi led to a significant shift in regression lines as compared to K P , thus it should be more cautious to investigate sorption mechanisms using the regression lines. The differences between the performances of K Pi and K P were helpful to explain some phenomenon in predicting investigations, such as P L 0 and K OA models overestimate the particle fractions of PBDEs and the models work better at high temperature than at low temperature. Our findings are important because they enabled an insight into the influence of particle size on predicting models. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Aspects of droplet and particle size control in miniemulsions

    NASA Astrophysics Data System (ADS)

    Saygi-Arslan, Oznur

    Miniemulsion polymerization has become increasingly popular among researchers since it can provide significant advantages over conventional emulsion polymerization in certain cases, such as production of high-solids, low-viscosity latexes with better stability and polymerization of highly water-insoluble monomers. Miniemulsions are relatively stable oil (e.g., monomer) droplets, which can range in size from 50 to 500 nm, and are normally dispersed in an aqueous phase with the aid of a surfactant and a costabilizer. These droplets are the primary locus of the initiation of the polymerization reaction. Since particle formation takes place in the monomer droplets, theoretically, in miniemulsion systems the final particle size can be controlled by the initial droplet size. The miniemulsion preparation process typically generates broad droplet size distributions and there is no complete treatment in the literature regarding the control of the mean droplet size or size distribution. This research aims to control the miniemulsion droplet size and its distribution. In situ emulsification, where the surfactant is synthesized spontaneously at the oil/water interface, has been put forth as a simpler method for the preparation of miniemulsions-like systems. Using the in situ method of preparation, emulsion stability and droplet and particle sizes were monitored and compared with conventional emulsions and miniemulsions. Styrene emulsions prepared by the in situ method do not demonstrate the stability of a comparable miniemulsion. Upon polymerization, the final particle size generated from the in situ emulsion did not differ significantly from the comparable conventional emulsion polymerization; the reaction mechanism for in situ emulsions is more like conventional emulsion polymerization rather than miniemulsion polymerization. Similar results were found when the in situ method was applied to controlled free radical polymerizations (CFRP), which have been advanced as a

  9. Evaluating Unsupervised Methods to Size and Classify Suspended Particles Using Digital Holography

    NASA Astrophysics Data System (ADS)

    Davies, E. J.; Buscombe, D.; Graham, G.; Nimmo-Smith, A.

    2013-12-01

    The use of digital holography to image suspended particles in-situ using submersible systems is on the ascendancy. Such systems allow visualization of the in-focus particles without the depth-of-field issues associated with conventional imaging. The size and concentration of all particles, and each individual particle, can be rapidly and automatically assessed. The automated methods by which to extract these quantities can be readily evaluated using manual measurements. These methods are not possible using instruments based on optical and acoustic (back- or forward-) scattering, so-called 'sediment surrogate' methods, which are sensitive to the bulk quantities of all suspended particles in a sample volume, and rely on mathematically inverting a measured signal to derive the property of interest. Depending on the intended application, the number of holograms required to elucidate a process could range from tens to millions. Therefore manual particle extraction is not feasible for most data-sets. This has created a pressing need among the growing community of holography users, for accurate, automated processing which is comparable in output to more well-established in-situ sizing techniques such as laser diffraction. Here we discuss the computational considerations required to focus and segment individual particles from raw digital holograms, and then size and classify these particles by type; all using unsupervised (automated) image processing. To do so, we draw upon imagery from both controlled laboratory conditions to near-shore coastal environments, using different holographic system designs, and constituting a significant variety in particle types, sizes and shapes. We evaluate the success of these techniques, and suggest directions for future developments.

  10. Particle size effects on bioaccessible amounts of ingestible soil-borne toxic elements.

    PubMed

    Qin, Junhao; Nworie, Obinna Elijah; Lin, Chuxia

    2016-09-01

    The unified BARGE method was used to examine the effects of soil particle size on the bioaccessible amounts of potentially toxic elements in multi-contaminated soils from a closed landfill site. The results show that bioaccessible As, Al, Cd, Cr, Cu, Mn, Ni, Pb and Zn increased with decreasing soil particle size and the <0.002 mm soil fraction contained much greater amounts of the bioaccessible elements, as compared to other soil fractions (0.002-0.063 mm, 0.063-0.125 mm, and 0.125-0.250 mm). As, Al and Cr had much lower bioaccessibility, as compared to the six cationic heavy metals. In contrast with other elements, As bioaccessibility tended to be higher in the gastrointestinal phase than in the gastric phase. There was a significant soil particle size effect on bioaccessibility of As and Al in the gastrointestinal phase: As bioaccessibility decreased with decreasing particle size, and the finer soil fractions tended to have a higher Al bioaccessibility, as compared to the coarser soil fractions. The research findings prompt the need for further division of soil particle size fractions in order to more accurately assess the bioaccessible amounts of soil-borne potentially toxic elements in contaminated lands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Particle size distribution and gas-particle partitioning of polychlorinated biphenyls in the atmosphere in Beijing, China.

    PubMed

    Zhu, Qingqing; Zheng, Minghui; Liu, Guorui; Zhang, Xian; Dong, Shujun; Gao, Lirong; Liang, Yong

    2017-01-01

    Size-fractionated samples of urban particulate matter (PM; ≤1.0, 1.0-2.5, 2.5-10, and >10 μm) and gaseous samples were simultaneously obtained to study the distribution of polychlorinated biphenyls (PCBs) in the atmosphere in Beijing, China. Most recent investigations focused on the analysis of gaseous PCBs, and much less attention has been paid to the occurrence of PCBs among different PM fractions. In the present study, the gas-particle partitioning and size-specific distribution of PCBs in atmosphere were investigated. The total concentrations (gas + particle phase fractions) of Σ 12 dioxin-like PCBs, Σ 7 indicator PCBs, and ΣPCBs were 1.68, 42.1, and 345 pg/m 3 , respectively. PCBs were predominantly in the gas phase (86.8-99.0 % of the total concentrations). The gas-particle partition coefficients (K p ) of PCBs were found to be a significant linear correlated with the subcooled liquid vapor pressures (P L 0 ) (R 2  = 0.83, P < 0.01). The slope (m r ) implied that the gas-particle partitioning of PCBs was affected both by the mechanisms of adsorption and absorption. In addition, the concentrations of PCBs increased as the particle size decreased (>10, 2.5-10, 1.0-2.5, and ≤1.0 μm), with most of the PCBs contained in the fraction of ≤1.0 μm (53.4 % of the total particulate concentrations). Tetra-CBs were the main homolog in the air samples in the gas phase and PM fractions, followed by tri-CBs. This work will contribute to the knowledge of PCBs among different PM fractions and fill the gap of the size distribution of particle-bound dioxin-like PCBs in the air.

  12. Size effects in PbTiO3 nanocrystals: Effect of particle size on spontaneous polarization and strains

    NASA Astrophysics Data System (ADS)

    Akdogan, E. K.; Rawn, C. J.; Porter, W. D.; Payzant, E. A.; Safari, A.

    2005-04-01

    The spontaneous polarization (Ps) and spontaneous strains (xi) in mechanically unclamped and surface charge compensated PbTiO3 nanocrystals were determined as a function of particle size in the range <150nm by differential scanning calorimetry and x-ray powder diffraction, respectively. Significant deviations from bulk order parameters (P,xi) have been observed as the particle size decreased below ˜100nm. The critical size (rc) below which the ferroelectric tetragonal phase transforms to the paraelectric cubic phase was determined as ˜15nm. The depression in transition temperature with particle size is 14 °C at 28 nm. No change in the order of m3m →4mm ferrodistortive phase transition is observed. A simple analysis showed that ΔHtr/(kBT )˜103 at 25 °C for r =16nm, indicating that the stabilization of the cubic phase at rc cannot be linked to an instability in dipolar ordering due to thermal agitations. Comparison of the spontaneous volumetric strains with the strain induced by surface stress indicated that the effect of surface stress on ferroelectric phase stability was negligible. Anomalies in electrostrictive properties were determined for r →rc. The observed size dependence of PS is attributed to the reduced extent of long-range dipole-dipole interactions that arise due to the changes in bonding characteristics of ions with decreasing particle size in the perovskite lattice, in conformity with a recent study by Tsunekawa et al. [Phys. Rev. Lett. 85 (16), 4340 (2000)].

  13. Numerical sedimentation particle-size analysis using the Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Bravo, R.; Pérez-Aparicio, J. L.; Gómez-Hernández, J. J.

    2015-12-01

    Sedimentation tests are widely used to determine the particle size distribution of a granular sample. In this work, the Discrete Element Method interacts with the simulation of flow using the well known one-way-coupling method, a computationally affordable approach for the time-consuming numerical simulation of the hydrometer, buoyancy and pipette sedimentation tests. These tests are used in the laboratory to determine the particle-size distribution of fine-grained aggregates. Five samples with different particle-size distributions are modeled by about six million rigid spheres projected on two-dimensions, with diameters ranging from 2.5 ×10-6 m to 70 ×10-6 m, forming a water suspension in a sedimentation cylinder. DEM simulates the particle's movement considering laminar flow interactions of buoyant, drag and lubrication forces. The simulation provides the temporal/spatial distributions of densities and concentrations of the suspension. The numerical simulations cannot replace the laboratory tests since they need the final granulometry as initial data, but, as the results show, these simulations can identify the strong and weak points of each method and eventually recommend useful variations and draw conclusions on their validity, aspects very difficult to achieve in the laboratory.

  14. Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and themore » derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.« less

  15. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  16. Ion size effects on the electrokinetics of spherical particles in salt-free concentrated suspensions

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Carrique, Felix; Ruiz-Reina, Emilio

    2012-02-01

    In this work we study the influence of the counterion size on the electrophoretic mobility and on the dynamic mobility of a suspended spherical particle in a salt-free concentrated colloidal suspension. Salt-free suspensions contain charged particles and the added counterions that counterbalance their surface charge. A spherical cell model approach is used to take into account particle-particle electro-hydrodynamic interactions in concentrated suspensions. The finite size of the counterions is considered including an entropic contribution, related with the excluded volume of the ions, in the free energy of the suspension, giving rise to a modified counterion concentration profile. We are interested in studying the linear response of the system to an electric field, thus we solve the different electrokinetic equations by using a linear perturbation scheme. We find that the ionic size effect is quite important for moderate to high particles charges at a given particle volume fraction. In addition for such particle surface charges, both the electrophoretic mobility and the dynamic mobility suffer more important changes the larger the particle volume fraction for each ion size. The latter effects are more relevant the larger the ionic size.

  17. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  18. Size Segregation and Number Density Enhancement of Particles in Accretion Disk Eddies

    NASA Technical Reports Server (NTRS)

    Klahr, H. H.; Henning, Th.

    1996-01-01

    We investigate the conditions for trapping solid dust particles in eddies and discuss the behavior of particles in a non-laminar protoplanetary accretion disk. We considered particle sizes from small dust grains to larger objects, 10(exp -4) cm less than a(sub p) less than 10(exp 2) cm. Independent of the source of turbulence, one can expect eddies to exist in the gas flow of a accretion disk, in the form of randomly occurring turbulent features or as convective cells. Due to the centrifugal force, solid particles are driven out of an eddy. It will be shown that this process is inhibited by the gravitational force induced by the protostar. Because of the mass dependence of the friction time, a given eddy becomes a trap for particles of a characteristic size and causes a local change in the dust density. Thus, the size distribution of the grains is no longer spatially homogeneous on small scales. Our general estimates do not depend on special turbulence or convection models. We calculate the maximal inhomogeneity due to this process. The strongest effect was observed for mm-sized particles, which can be concentrated by a factor of 100 within only 100 years.

  19. How does dietary particle size affect carnivore gastrointestinal transit: A dog model.

    PubMed

    De Cuyper, A; Hesta, M; Tibosch, S; Wanke, C; Clauss, M; Janssens, G P J

    2018-04-01

    The effect of dietary particle size on gastrointestinal transit in carnivores has not been studied and might offer more insight into their digestive physiology. This study evaluated the effect of two dietary particle sizes (fine = 7.8 mm vs. coarse = 13 mm) of chunked day-old chicks on transit parameters in dogs. Six beagle dogs were fed both dietary treatments in a crossover design of 7 days with transit testing on the fifth day. Transit parameters were assessed using two markers, that is a wireless motility capsule (IntelliCap ® ) and titanium oxide (TiO 2 ). Dietary particle size did not affect gastric emptying time (GRT), small bowel transit time (SBTT), colonic transit time (CTT) and total transit time (aTTT) of the capsule (p > .05). There was no effect of dietary particle size on TiO 2 mean retention time (MRT) (p > .05). The time of last TiO 2 excretion (MaxRT) differed (p = .013) between diets, being later for the coarse diet. Both MRT (R = 0.617, p = .032) and MaxRT (R = 0.814; p = .001) were positively correlated to aTTT. The ratio MRT/aTTT tended towards a difference between diets (p = .059) with the coarse diet exceeding fine diet values. Results show that the difference between capsule measurements and TiO 2 is larger for the fine than the coarse diet suggesting that the capsule becomes more accurate when dietary particle size approaches marker size. Dietary particle size might have affected transit parameters but differences are too small to claim major physiological consequences. © 2017 Blackwell Verlag GmbH.

  20. Characterization of the Particle Size and Polydispersity of Dicumarol Using Solid-State NMR Spectroscopy.

    PubMed

    Dempah, Kassibla Elodie; Lubach, Joseph W; Munson, Eric J

    2017-03-06

    A variety of particle sizes of a model compound, dicumarol, were prepared and characterized in order to investigate the correlation between particle size and solid-state NMR (SSNMR) proton spin-lattice relaxation ( 1 H T 1 ) times. Conventional laser diffraction and scanning electron microscopy were used as particle size measurement techniques and showed crystalline dicumarol samples with sizes ranging from tens of micrometers to a few micrometers. Dicumarol samples were prepared using both bottom-up and top-down particle size control approaches, via antisolvent microprecipitation and cryogrinding. It was observed that smaller particles of dicumarol generally had shorter 1 H T 1 times than larger ones. Additionally, cryomilled particles had the shortest 1 H T 1 times encountered (8 s). SSNMR 1 H T 1 times of all the samples were measured and showed as-received dicumarol to have a T 1 of 1500 s, whereas the 1 H T 1 times of the precipitated samples ranged from 20 to 80 s, with no apparent change in the physical form of dicumarol. Physical mixtures of different sized particles were also analyzed to determine the effect of sample inhomogeneity on 1 H T 1 values. Mixtures of cryoground and as-received dicumarol were clearly inhomogeneous as they did not fit well to a one-component relaxation model, but could be fit much better to a two-component model with both fast-and slow-relaxing regimes. Results indicate that samples of crystalline dicumarol containing two significantly different particle size populations could be deconvoluted solely based on their differences in 1 H T 1 times. Relative populations of each particle size regime could also be approximated using two-component fitting models. Using NMR theory on spin diffusion as a reference, and taking into account the presence of crystal defects, a model for the correlation between the particle size of dicumarol and its 1 H T 1 time was proposed.

  1. Simultaneous Comparison of Two Roller Compaction Techniques and Two Particle Size Analysis Methods.

    PubMed

    Saarinen, Tuomas; Antikainen, Osmo; Yliruusi, Jouko

    2017-11-01

    A new dry granulation technique, gas-assisted roller compaction (GARC), was compared with conventional roller compaction (CRC) by manufacturing 34 granulation batches. The process variables studied were roll pressure, roll speed, and sieve size of the conical mill. The main quality attributes measured were granule size and flow characteristics. Within granulations also the real applicability of two particle size analysis techniques, sieve analysis (SA) and fast imaging technique (Flashsizer, FS), was tested. All granules obtained were acceptable. In general, the particle size of GARC granules was slightly larger than that of CRC granules. In addition, the GARC granules had better flowability. For example, the tablet weight variation of GARC granules was close to 2%, indicating good flowing and packing characteristics. The comparison of the two particle size analysis techniques showed that SA was more accurate in determining wide and bimodal size distributions while FS showed narrower and mono-modal distributions. However, both techniques gave good estimates for mean granule sizes. Overall, SA was a time-consuming but accurate technique that provided reliable information for the entire granule size distribution. By contrast, FS oversimplified the shape of the size distribution, but nevertheless yielded acceptable estimates for mean particle size. In general, FS was two to three orders of magnitude faster than SA.

  2. High-resolution extraction of particle size via Fourier Ptychography

    NASA Astrophysics Data System (ADS)

    Li, Shengfu; Zhao, Yu; Chen, Guanghua; Luo, Zhenxiong; Ye, Yan

    2017-11-01

    This paper proposes a method which can extract the particle size information with a resolution beyond λ/NA. This is achieved by applying Fourier Ptychographic (FP) ideas to the present problem. In a typical FP imaging platform, a 2D LED array is used as light sources for angle-varied illuminations, a series of low-resolution images was taken by a full sequential scan of the array of LEDs. Here, we demonstrate the particle size information is extracted by turning on each single LED on a circle. The simulated results show that the proposed method can reduce the total number of images, without loss of reliability in the results.

  3. Interference from Proteins and Surfactants on Particle Size Distributions Measured by Nanoparticle Tracking Analysis (NTA).

    PubMed

    Bai, Kelvin; Barnett, Gregory V; Kar, Sambit R; Das, Tapan K

    2017-04-01

    Characterization of submicron protein particles continues to be challenging despite active developments in the field. NTA is a submicron particle enumeration technique, which optically tracks the light scattering signal from suspended particles undergoing Brownian motion. The submicron particle size range NTA can monitor in common protein formulations is not well established. We conducted a comprehensive investigation with several protein formulations along with corresponding placebos using NTA to determine submicron particle size distributions and shed light on potential non-particle origin of size distribution in the range of approximately 50-300 nm. NTA and DLS are performed on polystyrene size standards as well as protein and placebo formulations. Protein formulations filtered through a 20 nm filter, with and without polysorbate-80, show NTA particle counts. As such, particle counts above 20 nm are not expected in these solutions. Several other systems including positive and negative controls were studied using NTA and DLS. These apparent particles measured by NTA are not observed in DLS measurements and may not correspond to real particles. The intent of this article is to raise awareness about the need to interpret particle counts and size distribution from NTA with caution.

  4. Effects of varying particle size of forage on digestion and chewing behavior of dairy heifers.

    PubMed

    Jaster, E H; Murphy, M R

    1983-04-01

    Eighteen Holstein heifers were fed long and chopped coarse and fine alfalfa hay ad libitum to evaluate effects of physical form on digestion and chemical composition of feed and fecal particles and to examine the applicability of a sinusoidal model to chewing behavior. Recordings of jaw movement were divided into 1-h segments for analysis. Least square mean size of fecal particles from coarse and finely chopped diets were 290 and 297 micrometers as compared to 227 micrometers on long hay. Intakes of dry matter were greater an digestibilities lower for chopped as compared to long hay. Crude protein content of separated feed and fecal particles increased as particle size decreased. Neural and acid detergent fiber concentrations decreased in feed and feces with decreasing particle size. Lignin content of feed particles decreased as particle size decreased, whereas for fecal particles lignin as a percent of cell wall followed a "U" shaped pattern of declining then increasing as size decreased. Patterns were sinusoidal for eating and ruminating long and chopped hays and total chewing (eating and ruminating) of long hay. Our results suggest a gradual effect on chemical degradation and physical detrition of digesta particles and chewing behavior as forage particle size decreased.

  5. A new apparatus for real-time assessment of the particle size distribution of disintegrating tablets.

    PubMed

    Quodbach, Julian; Kleinebudde, Peter

    2014-11-01

    The aim of this study is the introduction of a novel apparatus that is capable of continuously measuring the particle size reduction of disintegrating tablets and analysis of the obtained results. The apparatus is constructed such that no particles pass directly through the pumping system. Thereby, the overall energy input into the particle suspension is reduced, and continuous measurement is possible without rapid destruction of the generated particles. The detected particle sizes at the beginning and at the end of the measurement differ greatly, depending on the applied disintegrant. The median particle sizes at the end of the measurement vary between 621.5 and 178.0 μm for different disintegrants. It is demonstrated that the particle size reduction follows an exponential function and that the fit parameters can be used to describe the disintegration behavior. A strong correlation between the median particle size of crospovidone disintegrants and generated particle size of the tablets is observed. This could be due to a more homogeneous distribution of the disintegrant particles in the tablets. Similar trends are observed for sodium starch glycolate and croscarmellose sodium. The new apparatus provides an innovative method to describe disintegrant effectiveness and efficiency. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. [Study of inversion and classification of particle size distribution under dependent model algorithm].

    PubMed

    Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin

    2008-05-01

    For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.

  7. Wheat bran particle size influence on phytochemical extractability and antioxidant properties.

    PubMed

    Brewer, Lauren Renee; Kubola, Jittawan; Siriamornpun, Sirithon; Herald, Thomas J; Shi, Yong-Cheng

    2014-01-01

    It is unknown if particle size plays a role in extracting health promoting compounds in wheat bran because the extraction of antioxidant and phenolic compounds with particle size reduction has not been well documented. In this study, unmilled whole bran (coarse treatment) was compared to whole bran milled to medium and fine treatments from the same wheat bran. Antioxidant properties (capacity, ability, power), carotenoids and phenolic compounds (phenolic acids, flavonoids, anthocyanins) were measured and compared. The ability of whole bran fractions of differing particle size distributions to inhibit free radicals was assessed using four in vitro models, namely, diphenylpicrylhydrazyl radical-scavenging activity, ferric reducing/antioxidant power (FRAP) assay, oxygen radical absorbance capacity (ORAC), and total antioxidant capacity. Significant differences in phytochemical concentrations and antioxidant properties were observed between whole bran fractions of reduced particle size distribution for some assays. The coarse treatment exhibited significantly higher antioxidant properties compared to the fine treatment; except for the ORAC value, in which coarse was significantly lower. For soluble and bound extractions, the coarse treatment was comparatively higher in total antioxidant capacity (426.72 mg ascorbic acid eq./g) and FRAP value (53.04 μmol FeSO4/g) than bran milled to the finer treatment (314.55 ascorbic acid eq./g and 40.84 μmol FeSO4/g, respectively). Likewise, the fine treatment was higher in phenolic acid (7.36 mg FAE/g), flavonoid (206.74 μg catechin/g), anthocyanin (63.0 μg/g), and carotenoid contents (beta carotene, 14.25 μg/100 g; zeaxanthin, 35.21 μg/100 g; lutein 174.59 μg/100 g) as compared to the coarse treatment. An increase of surface area to mass increased the ORAC value by over 80%. With reduction in particle size, there was a significant increase in extracted anthocyanins, carotenoids and ORAC value. Particle size does effect the

  8. Interaction of micron and nano-sized particles with cells of the dura mater.

    PubMed

    Papageorgiou, Iraklis; Marsh, Rainy; Tipper, Joanne L; Hall, Richard M; Fisher, John; Ingham, Eileen

    2014-10-01

    Intervertebral total disc replacements (TDR) are used in the treatment of degenerative spinal disc disease. There are, however, concerns that they may be subject to long-term failure due to wear. The adverse effects of TDR wear have the potential to manifest in the dura mater and surrounding tissues. The aim of this study was to investigate the physiological structure of the dura mater, isolate the resident dural epithelial and stromal cells and analyse the capacity of these cells to internalise model polymer particles. The porcine dura mater was a collagen-rich structure encompassing regularly arranged fibroblastic cells within an outermost epithelial cell layer. The isolated dural epithelial cells had endothelial cell characteristics (positive for von Willebrand factor, CD31, E-cadherin and desmoplakin) and barrier functionality whereas the fibroblastic cells were positive for collagen I and III, tenascin and actin. The capacity of the dural cells to take up model particles was dependent on particle size. Nanometer sized particles readily penetrated both types of cells. However, dural fibroblasts engulfed micron-sized particles at a much higher rate than dural epithelial cells. The study suggested that dural epithelial cells may offer some barrier to the penetration of micron-sized particles but not nanometer sized particles. © 2014 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  9. Stresses and pressures at the quartz-to-coesite phase transformation in shear deformation experiments

    NASA Astrophysics Data System (ADS)

    Richter, B.; Stünitz, H.; Heilbronner, R.

    2016-11-01

    Coesite was found in quartz aggregates, experimentally deformed at confining pressures of 1.0-1.5 GPa and temperatures between 600°C and 900°C. The confining pressure (Pc) and, in most cases, the mean stress (σm) of the experiments were below those of the quartz-to-coesite phase transformation. Yet coesite formed when the maximum principal stress (σ1) was within the P-T range of the coesite stability field. In one sample, the euhedral coesite grains were corroded indicating that coesite started to transform back to quartz. It is inferred that this sample started to deform with σ1 above the quartz-to-coesite phase transformation and, with ongoing deformation, σ1 decreased to values in the quartz stability field due to strain weakening. In all cases, σ1 triggered the quartz-to-coesite reaction as well as the reverse reaction, suggesting that σ1 is the critical parameter for the quartz-to-coesite transformation—not Pc or σm. With progressive deformation, the coesite laths rotated toward the shear plane as more rigid particles with the sense of shear. In case of back reaction, new quartz grains exhibit no systematic crystallographic relationship with respect to old coesite. The experiments cover different degrees of pressure "overstepping," different temperatures, and different experimental durations at P and T, and deformation always enhances the reaction kinetics. The observation that σ1 is critical for a pressure-dependent phase transformation (also for reversals) poses questions for the thermodynamic treatment of such phase transformations.

  10. How comparable are size-resolved particle number concentrations from different instruments?

    NASA Astrophysics Data System (ADS)

    Hornsby, K. E.; Pryor, S. C.

    2012-12-01

    The need for comparability of particle size resolved measurements originates from multiple drivers including: (i) Recent suggestions that air quality standards for particulate matter should migrate from being mass-based to incorporating number concentrations. This move would necessarily be predicated on measurement comparability which is absolutely critical to compliance determination. (ii) The need to quantify and diagnose causes of variability in nucleation and growth rates in nano-particle experiments conducted in different locations. (iii) Epidemiological research designed to identify key parameters in human health responses to fine particle exposure. Here we present results from a detailed controlled laboratory instrument inter-comparison experiment designed to investigate data comparability in the size range of 2.01-523.3 nm across a range of particle composition, modal diameter and absolute concentration. Particle size distributions were generated using a TSI model 3940 Aerosol Generation System (AGS) diluted using zero air, and sampled using four TSI Scanning Mobility Particle Spectrometer (SMPS) configurations and a TSI model 3091 Fast Mobility Particle Sizer (FMPS). The SMPS configurations used two Electrostatic Classifiers (EC) (model 3080) attached to either a Long DMA (LDMA) (model 3081) or a Nano DMA (NDMA) (model 3085) plumbed to either a TSI model 3025A Butanol Condensed Particle Counting (CPC) or a TSI model 3788 Water CPC. All four systems were run using both high and low flow conditions, and were operated with both the internal diffusion loss and multiple charge corrections turned on. The particle compositions tested were sodium chloride, ammonium nitrate and olive oil diluted in ethanol. Particles of all three were generated at three peak concentration levels (spanning the range observed at our experimental site), and three modal particle diameters. Experimental conditions were maintained for a period of 20 minutes to ensure experimental

  11. Recovering 3D Particle Size Distributions from 2D Sections

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Olson, Daniel A.

    2017-01-01

    We discuss different ways to convert observed, apparent particle size distributions from 2D sections (thin sections, SEM maps on planar surfaces, etc.) into true 3D particle size distributions. We give a simple, flexible and practical method to do this, show which of these techniques gives the most faithful conversions, and provide (online) short computer codes to calculate both 2D- 3D recoveries and simulations of 2D observations by random sectioning. The most important systematic bias of 2D sectioning, from the standpoint of most chondrite studies, is an overestimate of the abundance of the larger particles. We show that fairly good recoveries can be achieved from observed size distributions containing 100-300 individual measurements of apparent particle diameter. Proper determination of particle size distributions in chondrites - for chondrules, CAIs, and metalgrains - is of basic importance for assessing the processes of formation and/or of accretion of theseparticles into their parent bodies. To date, most information of this sort is gathered from 2D samplescut from a rock such as in microscopic analysis of thin sections, or SEM maps of planar surfaces(Dodd 1976, Hughes 1978a,b; Rubin and Keil 1984, Rubin and Grossman 1987, Grossman et al1988, Rubin 1989, Metzler et al 1992, Kuebler et al 1999, Nelson and Rubin 2002, Schneider et al 2003, Hezel et al 2008; Fisher et al 2014; for an exhaustive review with numerous references seeFriedrich et al 2014). While qualitative discrimination between chondrite types can readily be doneusing data of this sort, any deeper exploration of the processes by which chondrite constituents werecreated or emplaced into their parent requires a more quantitative approach.

  12. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Solvothermal synthesis and surface chemistry to control the size and morphology of nanoquartz

    DOE PAGES

    Sochalski-Kolbus, Lindsay M.; Wang, Hsiu-Wen; Rondinone, Adam Justin; ...

    2015-09-29

    In this paper, we report a solvothermal synthesis method that allows the crystallization of quartz to occur at a relatively low temperature of 300°C in the form of isolated nanosized euhedral crystals. Transmission electron microscopy (TEM) and small area electron diffraction (SAED) were used to confirm the phases present and their particle sizes, morphologies, and crystallinity of the products. In conclusion, the results show that it is possible to control the size and morphology of the nanoquartz from rough nanospheres to nanorods using fluoride, which templates the nanocrystals and moderates growth.

  14. Defining the sizes of airborne particles that mediate influenza transmission in ferrets.

    PubMed

    Zhou, Jie; Wei, Jianjian; Choy, Ka-Tim; Sia, Sin Fun; Rowlands, Dewi K; Yu, Dan; Wu, Chung-Yi; Lindsley, William G; Cowling, Benjamin J; McDevitt, James; Peiris, Malik; Li, Yuguo; Yen, Hui-Ling

    2018-03-06

    Epidemics and pandemics of influenza are characterized by rapid global spread mediated by non-mutually exclusive transmission modes. The relative significance between contact, droplet, and airborne transmission is yet to be defined, a knowledge gap for implementing evidence-based infection control measures. We devised a transmission chamber that separates virus-laden particles by size and determined the particle sizes mediating transmission of influenza among ferrets through the air. Ferret-to-ferret transmission was mediated by airborne particles larger than 1.5 µm, consistent with the quantity and size of virus-laden particles released by the donors. Onward transmission by donors was most efficient before fever onset and may continue for 5 days after inoculation. Multiple virus gene segments enhanced the transmissibility of a swine influenza virus among ferrets by increasing the release of virus-laden particles into the air. We provide direct experimental evidence of influenza transmission via droplets and fine droplet nuclei, albeit at different efficiency. Copyright © 2018 the Author(s). Published by PNAS.

  15. Dermally adhered soil: 2. Reconstruction of dry-sieve particle-size distributions from wet-sieve data.

    PubMed

    Choate, LaDonna M; Ranville, James F; Bunge, Annette L; Macalady, Donald L

    2006-10-01

    In the evaluation of soil particle-size effects on environmental processes, particle-size distributions are measured by either wet or dry sieving. Commonly, size distributions determined by wet and dry sieving differ because some particles disaggregate in water. Whereas the dry-sieve distributions are most relevant to the study of soil adherence to skin, soil can be recovered from skin only by washing with the potential for disaggregation whether or not it is subsequently wet or dry sieved. Thus, the possibility exists that wet-sieving measurements of the particle sizes that adhered to the skin could be skewed toward the smaller fractions. This paper provides a method by which dry-sieve particle-size distributions can be reconstructed from wet-sieve particle-size distributions for the same soil. The approach combines mass balances with a series of experiments in which wet sieving was applied to dry-sieve fractions from the original soil. Unless the soil moisture content is high (i.e., greater than or equal to the water content after equilibration with water-saturated air), only the soil particles of diameters less than about 63 microm adhere to the skin. Because of this, the adhering particle-size distribution calculated using the reconstruction method was not significantly different from the wet-sieving determinations.

  16. Optimum Particle Size for Gold-Catalyzed CO Oxidation

    PubMed Central

    2018-01-01

    The structure sensitivity of gold-catalyzed CO oxidation is presented by analyzing in detail the dependence of CO oxidation rate on particle size. Clusters with less than 14 gold atoms adopt a planar structure, whereas larger ones adopt a three-dimensional structure. The CO and O2 adsorption properties depend strongly on particle structure and size. All of the reaction barriers relevant to CO oxidation display linear scaling relationships with CO and O2 binding strengths as main reactivity descriptors. Planar and three-dimensional gold clusters exhibit different linear scaling relationship due to different surface topologies and different coordination numbers of the surface atoms. On the basis of these linear scaling relationships, first-principles microkinetics simulations were conducted to determine CO oxidation rates and possible rate-determining step of Au particles. Planar Au9 and three-dimensional Au79 clusters present the highest CO oxidation rates for planar and three-dimensional clusters, respectively. The planar Au9 cluster is much more active than the optimum Au79 cluster. A common feature of optimum CO oxidation performance is the intermediate binding strengths of CO and O2, resulting in intermediate coverages of CO, O2, and O. Both these optimum particles present lower performance than maximum Sabatier performance, indicating that there is sufficient room for improvement of gold catalysts for CO oxidation. PMID:29707098

  17. Multiscaling properties of coastal waters particle size distribution from LISST in situ measurements

    NASA Astrophysics Data System (ADS)

    Pannimpullath Remanan, R.; Schmitt, F. G.; Loisel, H.; Mériaux, X.

    2013-12-01

    An eulerian high frequency sampling of particle size distribution (PSD) is performed during 5 tidal cycles (65 hours) in a coastal environment of the eastern English Channel at 1 Hz. The particle data are recorded using a LISST-100x type C (Laser In Situ Scattering and Transmissometry, Sequoia Scientific), recording volume concentrations of particles having diameters ranging from 2.5 to 500 mu in 32 size classes in logarithmic scale. This enables the estimation at each time step (every second) of the probability density function of particle sizes. At every time step, the pdf of PSD is hyperbolic. We can thus estimate PSD slope time series. Power spectral analysis shows that the mean diameter of the suspended particles is scaling at high frequencies (from 1s to 1000s). The scaling properties of particle sizes is studied by computing the moment function, from the pdf of the size distribution. Moment functions at many different time scales (from 1s to 1000 s) are computed and their scaling properties considered. The Shannon entropy at each time scale is also estimated and is related to other parameters. The multiscaling properties of the turbidity (coefficient cp computed from the LISST) are also consider on the same time scales, using Empirical Mode Decomposition.

  18. Bidirectional particle transport and size selective sorting of Brownian particles in a flashing spatially periodic energy landscape.

    PubMed

    Martinez-Pedrero, Fernando; Massana-Cid, Helena; Ziegler, Till; Johansen, Tom H; Straube, Arthur V; Tierno, Pietro

    2016-09-29

    We demonstrate a size sensitive experimental scheme which enables bidirectional transport and fractionation of paramagnetic colloids in a fluid medium. It is shown that two types of magnetic colloidal particles with different sizes can be simultaneously transported in opposite directions, when deposited above a stripe-patterned ferrite garnet film subjected to a square-wave magnetic modulation. Due to their different sizes, the particles are located at distinct elevations above the surface, and they experience two different energy landscapes, generated by the modulated magnetic substrate. By combining theoretical arguments and numerical simulations, we reveal such energy landscapes, which fully explain the bidirectional transport mechanism. The proposed technique does not require pre-imposed channel geometries such as in conventional microfluidics or lab-on-a-chip systems, and permits remote control over the particle motion, speed and trajectory, by using relatively low intense magnetic fields.

  19. Evolution of Size and Chemical Composition of Copper Concentrate Particles Oxidized Under Simulated Flash Smelting Conditions

    NASA Astrophysics Data System (ADS)

    Pérez-Tello, Manuel; Parra-Sánchez, Víctor R.; Sánchez-Corrales, Víctor M.; Gómez-Álvarez, Agustín; Brown-Bojórquez, Francisco; Parra-Figueroa, Roberto A.; Balladares-Varela, Eduardo R.; Araneda-Hernández, Eugenia A.

    2018-04-01

    An experimental study was conducted to elucidate the evolution of size and chemical composition of La Caridad copper concentrate particles during oxidation under simulated flash smelting conditions. Input variables tested included particle size and oxygen concentration in the process gas. The response variables included the size distributions, chemical composition, and morphology of the reacted particles at seven locations along a laboratory reactor. Particles with initial size < 45 µm contained mostly chalcopyrite, they increased their mean size and decreased the amount of dust in the population during oxidation. This was explained by a reaction path involving rapid melting followed by collision and coalescence of reacting droplets during flight. Particles with sizes > 45 µm contained varying amounts of chalcopyrite and pyrite, and tended to either maintain or decrease their mean size upon oxidation. When size reduction was observed, dust was produced because of fragmentation, and the particles showed no evidence of collisions during flight. The main oxidation products detected in the particles consisted of matte, cuprospinel, and magnetite. A plot of the mean size divided by the mean size in the feed against the fraction of sulfur eliminated generalized the experimental data so far reported in the literature, and helped identify the reaction path followed by the particles.

  20. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  1. A new approach to fluid-structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

    NASA Astrophysics Data System (ADS)

    Eghtesad, Adnan; Knezevic, Marko

    2018-07-01

    A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.

  2. A new approach to fluid-structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution

    NASA Astrophysics Data System (ADS)

    Eghtesad, Adnan; Knezevic, Marko

    2017-12-01

    A corrective smooth particle method (CSPM) within smooth particle hydrodynamics (SPH) is used to study the deformation of an aircraft structure under high-velocity water-ditching impact load. The CSPM-SPH method features a new approach for the prediction of two-way fluid-structure interaction coupling. Results indicate that the implementation is well suited for modeling the deformation of structures under high-velocity impact into water as evident from the predicted stress and strain localizations in the aircraft structure as well as the integrity of the impacted interfaces, which show no artificial particle penetrations. To reduce the simulation time, a heterogeneous particle size distribution over a complex three-dimensional geometry is used. The variable particle size is achieved from a finite element mesh with variable element size and, as a result, variable nodal (i.e., SPH particle) spacing. To further accelerate the simulations, the SPH code is ported to a graphics processing unit using the OpenACC standard. The implementation and simulation results are described and discussed in this paper.

  3. Particle size concentration distribution and influences on exhaled breath particles in mechanically ventilated patients.

    PubMed

    Wan, Gwo-Hwa; Wu, Chieh-Liang; Chen, Yi-Fang; Huang, Sheng-Hsiu; Wang, Yu-Ling; Chen, Chun-Wan

    2014-01-01

    Humans produce exhaled breath particles (EBPs) during various breath activities, such as normal breathing, coughing, talking, and sneezing. Airborne transmission risk exists when EBPs have attached pathogens. Until recently, few investigations had evaluated the size and concentration distributions of EBPs from mechanically ventilated patients with different ventilation mode settings. This study thus broke new ground by not only evaluating the size concentration distributions of EBPs in mechanically ventilated patients, but also investigating the relationship between EBP level and positive expiratory end airway pressure (PEEP), tidal volume, and pneumonia. This investigation recruited mechanically ventilated patients, with and without pneumonia, aged 20 years old and above, from the respiratory intensive care unit of a medical center. Concentration distributions of EBPs from mechanically ventilated patients were analyzed with an optical particle analyzer. This study finds that EBP concentrations from mechanically ventilated patients during normal breathing were in the range 0.47-2,554.04 particles/breath (0.001-4.644 particles/mL). EBP concentrations did not differ significantly between the volume control and pressure control modes of the ventilation settings in the mechanically ventilated patients. The patient EBPs were sized below 5 µm, and 80% of them ranged from 0.3 to 1.0 µm. The EBPs concentrations in patients with high PEEP (> 5 cmH₂O) clearly exceeded those in patients with low PEEP (≤ 5 cmH₂O). Additionally, a significant negative association existed between pneumonia duration and EBPs concentration. However, tidal volume was not related to EBPs concentration.

  4. Size-uniform 200 nm particles: fabrication and application to magnetofection.

    PubMed

    Mair, Lamar; Ford, Kris; Alam, M d Rowshon; Kole, Ryszard; Fisher, Michael; Superfine, Richard

    2009-04-01

    We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts, as well as the magnetic force calibration and successful magnetofection of iron particles grown via this method. This work represents the first instance in which metal evaporation onto post structures was used for the formation of released, shape-defined metal particles. Also, our work represents the first use of lithographically defined particles as agents of magnetofection. Using these techniques it is possible to create particles with complex shapes and lateral dimensions as small as 40 nm. Our demonstrated compositionally flexible particles are highly size-uniform due to their photolithographically defined growth substrates, with particle dimensions along two axes fixed at 200 nm; the third axis dimension can be varied from 20 nm to 300 nm during the deposition procedure. Atomic percent of metals incorporated into the particle volume is highly tunable and particles have been synthesized with as many as four different metals. We performed magnetic force calibrations on a single particle size for iron particles using an axially magnetized NeFeB permanent magnet and comparisons are made with commercially available magnetic beads. In order to evalutate their usefulness as magnetofection agents, an antisense oligonucleotide (ODN) designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA, was successfully transfected into a modified HeLa cell line. Magnetically enhanced gene delivery was accomplished in vitro using antisense ODN-laden iron particles followed by application of a field gradient. Magnetically enhanced transfection resulted in a 76% and 139% increase in fluorescence intensity when compared to Lipofectamine and antisense ODN-loaded particles delivered without magnetic treatment, respectively. To our knowledge, these experiments constitute the first use of lithographically defined particles as

  5. Size-Uniform 200 nm Particles: Fabrication and Application to Magnetofection

    PubMed Central

    Mair, Lamar; Ford, Kris; Alam, Rowshon; Kole, Ryszard; Fisher, Michael; Superfine, Richard

    2009-01-01

    We report on the fabrication of arrays of mono- and multimetallic particles via metal evaporation onto lithographically patterned posts, as well as the magnetic force calibration and successful magnetofection of iron particles grown via this method. This work represents the first instance in which metal evaporation onto post structures was used for the formation of released, shape-defined metal particles. Also, our work represents the first use of lithographically defined particles as agents of magnetofection. Using these techniques it is possible to create particles with complex shapes and lateral dimensions as small as 40 nm. Our demonstrated compositionally flexible particles are highly size-uniform due to their photolithographically defined growth substrates, with particle dimensions along two axes fixed at 200 nm; the third axis dimension can be varied from 20 nm to 300 nm during the deposition procedure. Atomic percent of metals incorporated into the particle volume is highly tunable and particles have been synthesized with as many as four different metals. We performed magnetic force calibrations on a single particle size for iron particles using an axially magnetized NeFeB permanent magnet and comparisons are made with commercially available magnetic beads. In order to evalutate their usefulness as magnetofection agents, an antisense oligonucleotide (ODN) designed to correct the aberrant splicing of enhanced green fluorescent protein mRNA, was successfully transfected into a modified HeLa cell line. Magnetically enhanced gene delivery was accomplished in vitro using antisense ODN-laden iron particles followed by application of a field gradient. Magnetically enhanced transfection resulted in a 76% and 139% increase in fluorescence intensity when compared to Lipofectamine and antisense ODN-loaded particles delivered without magnetic treatment, respectively. To our knowledge, these experiments constitute the first use of lithographically defined particles as

  6. The effect of particle size on the dehydration/rehydration behaviour of lactose.

    PubMed

    Crisp, J L; Dann, S E; Edgar, M; Blatchford, C G

    2010-05-31

    Ethanolic suspensions of spray dried and micronized alpha lactose monohydrate (L(alpha)xH(2)O) with average particle size between 3 and 200 microm, have been prepared and their dehydration behaviour was investigated by (13)C CP-MASNMR spectroscopy. Sub-micron lactose suspension prepared by a novel high pressure homogenisation method has been compared with the standard ethanolic suspensions of (L(alpha).H(2)O prepared by reflux or static room temperature methods. In all cases, suspensions were shown to contain the stable anhydrous form of lactose ((L(alpha)(S)). Several approaches were employed to remove ethanol from these suspensions and the resulting dry lactose powders were then analysed by FT-IR, PXRD and SEM to evaluate the effect of drying procedure on type and distribution of lactose polymorphs and particle size. For samples with mean particle size greater than 1 microm, the stable anhydrous polymorphic form of lactose was retained on removal of the ethanol, although differences in the morphology and particle size of the crystals were apparent depending on method of suspension formation. Sub-micron (L(alpha)(S), while stable in dry conditions, has been shown to be less stable to atmospheric water vapour than (L(alpha)(S) with particle size between 3 and 200 microm. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    EPA Science Inventory

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  8. Application of ultrasound and quartz sand for the removal of disinfection byproducts from drinking water.

    PubMed

    Yang, Wu; Dong, Lili; Luo, Zhen; Cui, Xiaochun; Liu, Jiancong; Liu, Zhongmou; Huo, Mingxin

    2014-04-01

    To the best of our knowledge, little information is available on the combined use of ultrasound (US) and quartz sand (QS) in the removal of disinfection byproducts (DBPs) from drinking water. This study investigates the removal efficiency for 12 DBPs from drinking water by 20 kHz sonolytic treatment, QS adsorption, and their combination. Results indicate that DBPs with logKow≤1.12 could not be sonolysized; for logKow≥1.97, more than 20% removal efficiency was observed, but the removal efficiency was unrelated to logKow. DBPs containing a nitro group are more sensitive to US than those that comprise nitrile, hydrogen, and hydroxyl groups. Among the 12 investigated DBPs, 9 could be adsorbed by QS adsorption. The adsorption efficiency ranged from 12% for 1,1-dichloro-2-propanone to 80% for trichloroacetonitrile. A synergistic effect was found between the US and QS on DBPs removal, and all the 12 DBPs could be effectively removed by the combined use of US and QS. In the presence of US, part of the QS particles were corroded into small particles which play a role in increasing the number of cavitation bubbles and reducing cavitation bubble size and then improve the removal efficiency of DBPs. On the other hand, the presence of US enhances the DBP mass transfer rate to cavitation bubbles and quartz sand. In addition, sonolytic treatment led to a slight decrease of pH, and TOC values decreased under all the three treatment processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Physical processes of quartz amorphization due to friction

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Muto, J.; Nagahama, H.; Miura, T.; Arakawa, I.; Shimizu, I.

    2011-12-01

    Solid state amorphization of minerals occurs in indentations, in shock experiments, and in high pressure metamorphic quartz rock. A production of amorphous material is also reported in experimentally created silicate gouges (Yund et al., 1990), and in San Andreas Fault core samples (Janssen et al., 2010). Rotary-shear friction experiments of quartz rocks imply dynamic weakening at seismic rates (Di Toro et al., 2004). These experiments have suggested that weakening is caused by formation and thixotropic behavior of a silica gel layer which comprises of very fine particles of hydrated amorphous silica on fault gouges (Goldsby & Tullis, 2002; Hayashi & Tsutsumi, 2010). Therefore, physical processes of amorphization are important to better understand weakening of quartz bearing rocks. In this study, we conducted a pin-on-disk friction experiment to investigate details of quartz amorphization (Muto et al, 2007). Disks were made of single crystals of synthetic and Brazilian quartz. The normal load F and sliding velocity V were ranged from 0.01 N to 1 N and from 0.01 m/s to 2.6 m/s, respectively. The friction was conducted using quartz and diamond pins (curvature radii of 0.2 ~ 3 mm) to large displacements (> 1000 m) under controlled atmosphere. We analyzed experiment samples by Raman spectroscopy and FT-IR. Raman spectroscopy (excitation wavelength 532.1 nm) provides lattice vibration modes, and was used to investigate the degree of amorphization of samples. Raman spectra of friction tracks on the disk show clear bands at wavenumbers of 126, 204, 356, 394, and 464 cm-1, characteristic of intact α-quartz. Remarkably, in experiments using diamond pins (F = 0.8 N, normal stress σr calculated by contact area = 293 ~ 440 MPa, V = 0.12 ~ 0.23 m/s), the bands at 204 and 464 cm-1 gradually broaden to reveal shoulders on the higher-wavenumber sides of these peaks. Especially, two distinguished peaks at 490 and 515 cm-1 and a weak broad peak at 606 cm-1 appear sporadically on

  10. Spatial Variability of CCN Sized Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Väänänen, R.

    2014-12-01

    The computational limitations restrict the grid size used in GCM models, and for many cloud types they are too large when compared to the scale of the cloud formation processes. Several parameterizations for e.g. convective cloud formation exist, but information on spatial subgrid variation of the cloud condensation nuclei (CCNs) sized aerosol concentration is not known. We quantify this variation as a function of the spatial scale by using datasets from airborne aerosol measurement campaigns around the world including EUCAARI LONGREX, ATAR, INCA, INDOEX, CLAIRE, PEGASOS and several regional airborne campaigns in Finland. The typical shapes of the distributions are analyzed. When possible, we use information obtained by CCN counters. In some other cases, we use particle size distribution measured by for example SMPS to get approximated CCN concentration. Other instruments used include optical particle counters or condensational particle counters. When using the GCM models, the CCN concentration used for each the grid-box is often considered to be either flat, or as an arithmetic mean of the concentration inside the grid-box. However, the aircraft data shows that the concentration values are often lognormal distributed. This, combined with the subgrid variations in the land use and atmospheric properties, might cause that the aerosol-cloud interactions calculated by using mean values to vary significantly from the true effects both temporary and spatially. This, in turn, can cause non-linear bias into the GCMs. We calculate the CCN aerosol concentration distribution as a function of different spatial scales. The measurements allow us to study the variation of these distributions within from hundreds of meters up to hundreds of kilometers. This is used to quantify the potential error when mean values are used in GCMs.

  11. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    PubMed

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  12. Fluid inclusion studies on the mineralized quartz-rich hydrothermal breccias and quartz veins of the Kay Tanda epithermal gold deposit, Lobo, Batangas, Philippines

    NASA Astrophysics Data System (ADS)

    Frias, S. M. P.; Takahashi, R.; Imai, A.; Blamey, N.

    2017-12-01

    The Kay Tanda epithermal deposit in Lobo, Batangas, Philippines is mainly hosted in quartz-rich hydrothermal breccia and quartz veins. These contain varying gold grades with some reaching bonanza gold grades as high as 200 ppm Au. They also contain varying amounts of base metal sulfides such as sphalerite, galena, chalcopyrite and pyrite whose abundances increase with depth. Petrographic analysis of the samples revealed different quartz textures such as colloform textures in quartz veins at shallow levels and feathery, flamboyant and mosaic textures in the matrix of hydrothermal breccias at deeper levels. These textures are indicative of boiling conditions. To elucidate the fluid conditions, fluid source, composition and processes during the formation of the deposit, fluid inclusion microthermometry, quantitative fluid inclusion gas analysis and laser Raman spectroscopy were conducted. Doubly polished thin wafers prepared from the quartz veins and quartz crystals in the matrix of hydrothermal breccias. Microthermometric analysis of primary fluid inclusions included measurements of the freezing temperature Tf, the temperature of ice melting Tm, and the homogenization temperature of the fluid phase by disappearance of vapor Th. Liquid-to-vapor (L-V) ratios are variable, thus, liquid-rich liquid-vapor inclusions and vapor-rich liquid-vapor inclusions coexist in some samples. The sizes of the primary fluid inclusions may reach 100 micrometers. The homogenization temperatures range 200 °C to 380 °C, with the mode around 250 °C to 280 °C. Salinities range from 2 to 7 wt% NaCl equivalent, with the mode around 4 to 5 wt% NaCl equivalent. Trends of the distribution of fluid inclusion populations based on their homogenization temperature and salinity suggest boiling which is consistent with the variable liquid to vapor ratios, i.e. coexistence of liquid-rich inclusions and vapor-rich inclusions.

  13. Particle Size Effects on Flow Properties of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF2 particle size and size distribution on PS304 feedstock powder flowability have been investigated. Angular BaF2-CaF2 eutectic powders were produced by comminution and classified by screening to obtain 38 to 45 microns 45 to 106 microns, 63 to 106 microns, 45 to 53 microns, 63 to 75 microns, and 90 to 106 microns particle size distributions. The fluorides were added incrementally from 0 to 10 wt% to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. The flow rate of the powder blends decreased linearly with increasing concentration of the fluorides. Flow was degraded with decreasing BaF2-CaF2 particle size and with increasing BaF2-CaF2 particle size distribution. A semiempirical relationship is offered to describe the PS304 powder blend flow behavior. The Hausner Ratio confirmed the funnel flow test results, but was slightly less sensitive to differences in BaF2-CaF2 particle size and size distribution. These findings may have applicability to other powders that do not flow easily, such as ceramic powders.

  14. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales

    NASA Astrophysics Data System (ADS)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2015-11-01

    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  15. FILTER PACK TECHNIQUE FOR CLASSIFYING RADIOACTIVE AEROSOLS BY PARTICLE SIZE. PART 1 PRELIMINARY EVALUATION.

    DTIC Science & Technology

    radon daughters is associated have greater ability to penetrate the variousfilter media than has the fission product debris in the atmosphere; therefore the former is associated with aerosols of smaller size. A preliminary evaluation of the techniques of employing packs of filters of different retentivity characteristics to determine the particle size and/or particle size distribution of radioactive aerosols has been made which indicates the feasibility of the method. It is recommended that a series of measurements be undertaken to determine the relative particle size

  16. Interaction of micron and nano-sized particles with cells of the dura mater

    PubMed Central

    Papageorgiou, Iraklis; Marsh, Rainy; Tipper, Joanne L; Hall, Richard M; Fisher, John; Ingham, Eileen

    2014-01-01

    Intervertebral total disc replacements (TDR) are used in the treatment of degenerative spinal disc disease. There are, however, concerns that they may be subject to long-term failure due to wear. The adverse effects of TDR wear have the potential to manifest in the dura mater and surrounding tissues. The aim of this study was to investigate the physiological structure of the dura mater, isolate the resident dural epithelial and stromal cells and analyse the capacity of these cells to internalise model polymer particles. The porcine dura mater was a collagen-rich structure encompassing regularly arranged fibroblastic cells within an outermost epithelial cell layer. The isolated dural epithelial cells had endothelial cell characteristics (positive for von Willebrand factor, CD31, E-cadherin and desmoplakin) and barrier functionality whereas the fibroblastic cells were positive for collagen I and III, tenascin and actin. The capacity of the dural cells to take up model particles was dependent on particle size. Nanometer sized particles readily penetrated both types of cells. However, dural fibroblasts engulfed micron-sized particles at a much higher rate than dural epithelial cells. The study suggested that dural epithelial cells may offer some barrier to the penetration of micron-sized particles but not nanometer sized particles. © 2014 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1496–1505, 2014. PMID:24604838

  17. Production of mineral aggregates in quartz tumbling experiments

    NASA Astrophysics Data System (ADS)

    Nørnberg, Per; Finster, Kai; Pall Gunnlaugsson, Haraldur; Knak Jensen, Svend; Merrison, Jonathan Peter

    2013-04-01

    Introduction Tumbling experiments with quartz sand with the purpose of tracing the effect of broken bonds in mineral surfaces resulted in an unexpected production of aggregates. These aggregates are a few microns in diameter, spherical and resembling tiny white "snowballs." Particle comminution by aeolian and other natural weathering processes are known in soil science and is often seen as an increase of fine particles towards the top of soil profiles (Nørnberg, P. 1987, 1988, 2002, J.S. Wright 2007). When mineral grains collide in aeolian processes they break up along weakness zones in the crystal lattice. This mechanism causes broken bonds between atoms in the crystal lattice and results in reactive groups in the mineral surface. This mechanism provides the background for experiments to investigate the oxidation processes of magnetite on the planet Mars. The primary magnetic iron oxide phase on Mars is to day known to be magnetite and the colour of the dust on Mars is most likely due to hematite. To investigate if the oxidation process could take place without going over dissolution and precipitation in water, experiments with tumbling of quartz grains in sealed glass containers along with magnetite were started. The idea was that activated bonds at the surface of quartz could oxidize magnetite and convert it to hematite over time. This proved to be the case (Merrison, J.P. et al. 2010). However, in these experiments we observed the formation of the white aggregates which has been the subject of the study that we present here. Results of tumbling experiments Commercially available quarts (Merck) was sieved to obtain the fraction between 125 and 1000 µm. This fraction was tumbled in glass containers for months and resulted in production of a significant amount of fine grained material (Merrison, J.P et al. 2010). A part of this fine fraction consists of the "snowball"-like aggregates which is a fragile element with relatively high specific surface. The physical

  18. Effect of particle size distribution on permeability in the randomly packed porous media

    NASA Astrophysics Data System (ADS)

    Markicevic, Bojan

    2017-11-01

    An answer of how porous medium heterogeneity influences the medium permeability is still inconclusive, where both increase and decrease in the permeability value are reported. A numerical procedure is used to generate a randomly packed porous material consisting of spherical particles. Six different particle size distributions are used including mono-, bi- and three-disperse particles, as well as uniform, normal and log-normal particle size distribution with the maximum to minimum particle size ratio ranging from three to eight for different distributions. In all six cases, the average particle size is kept the same. For all media generated, the stochastic homogeneity is checked from distribution of three coordinates of particle centers, where uniform distribution of x-, y- and z- positions is found. The medium surface area remains essentially constant except for bi-modal distribution in which medium area decreases, while no changes in the porosity are observed (around 0.36). The fluid flow is solved in such domain, and after checking for the pressure axial linearity, the permeability is calculated from the Darcy law. The permeability comparison reveals that the permeability of the mono-disperse medium is smallest, and the permeability of all poly-disperse samples is less than ten percent higher. For bi-modal particles, the permeability is for a quarter higher compared to the other media which can be explained by volumetric contribution of larger particles and larger passages for fluid flow to take place.

  19. Impact of particle concentration and out-of-range sizes on the measurements of the LISST

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Boufadel, Michel C.; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth

    2018-05-01

    The instrument LISST (laser in situ scattering and transmissiometry) has been widely used for measuring the size of oil droplets in relation to oil spills and sediment particles. Major concerns associated with using the instrument include the impact of high concentrations and/or out-of-range particle (droplet) sizes on the LISST reading. These were evaluated experimentally in this study using monosized microsphere particles. The key findings include: (1) When high particle concentration reduced the optical transmission (OT) to below 30%, the measured peak value tended to underestimate the true peak value, and the accuracy of the LISST decreased by ~8% to ~28%. The maximum concentration to reach the 30% OT was about 50% of the theoretical values, suggesting a lower concentration level should be considered during the instrument deployment. (2) The out-of-range sizes of particles affected the LISST measurements when the sizes were close to the LISST measurement range. Fine below-range sizes primarily affected the data in the lowest two bins of the LISST with  >75% of the volume at the smallest bin. Large out-of-range particles affected the sizes of the largest 8–10 bins only when very high concentration was present. The out-of-range particles slightly changed the size distribution of the in-range particles, but their concentration was conserved. An approach to interpret and quantify the effects of the out-of-range particles on the LISST measurement was proposed.

  20. Critical conditions for particle motion in coarse bed materials of nonuniform size distribution

    NASA Astrophysics Data System (ADS)

    Bathurst, James C.

    2013-09-01

    Initiation of particle motion in a bed material of nonuniform size distribution may be quantified by (qci/qcr) = (Di/Dr)b, where qci is the critical unit discharge at which particle size Di enters motion, qcr is the critical condition for a reference size Dr unaffected by the hiding/exposure effects associated with nonuniform size distributions, i and r refer to percentiles of the distribution and b varies from 0 (equal mobility in entrainment of all particle sizes) to 1.5-2.5 (full size selective transport). Currently there is no generally accepted method for predicting the value of b. Flume and field data are therefore combined to investigate the above relationship. Thirty-seven sets of flume data quantify the relationship between critical unit discharge and particle size for bed materials with uniform size distributions (used here to approximate full size selective transport). Field data quantify the relationship for bed materials of nonuniform size distribution at 24 sites, with b ranging from 0.15 to 1.3. Intersection of the two relationships clearly demonstrates the hiding/exposure effect; in some but not all cases, Dr is close to the median size D50. The exponent has two clusters of values: b > 1 for sites subject to episodic rain-fed floods and data collected by bedload pit trap and tracers; and b < 0.7 for sites with seasonal snowmelt/glacial melt flow regimes and data collected by bedload sampler and large aperture trap. Field technique appears unlikely to cause variations in b of more than about 0.25. However, the clustering is consistent with possible variations in bed structure distinguishing: for b > 1, sites with relatively infrequent bedload transport where particle embedding and consolidation could reduce the mobility of coarser particles; and, for b < 0.7, a looser bed structure with frequent transport events allowing hiding/exposure and size selection effects to achieve their balance. As yet there is no firm evidence for such a dependency on bed

  1. Ideal Particle Sizes for Inhaled Steroids Targeting Vocal Granulomas: Preliminary Study Using Computational Fluid Dynamics.

    PubMed

    Perkins, Elizabeth L; Basu, Saikat; Garcia, Guilherme J M; Buckmire, Robert A; Shah, Rupali N; Kimbell, Julia S

    2018-03-01

    Objectives Vocal fold granulomas are benign lesions of the larynx commonly caused by gastroesophageal reflux, intubation, and phonotrauma. Current medical therapy includes inhaled corticosteroids to target inflammation that leads to granuloma formation. Particle sizes of commonly prescribed inhalers range over 1 to 4 µm. The study objective was to use computational fluid dynamics to investigate deposition patterns over a range of particle sizes of inhaled corticosteroids targeting the larynx and vocal fold granulomas. Study Design Retrospective, case-specific computational study. Setting Tertiary academic center. Subjects/Methods A 3-dimensional anatomically realistic computational model of a normal adult airway from mouth to trachea was constructed from 3 computed tomography scans. Virtual granulomas of varying sizes and positions along the vocal fold were incorporated into the base model. Assuming steady-state, inspiratory, turbulent airflow at 30 L/min, computational fluid dynamics was used to simulate respiratory transport and deposition of inhaled corticosteroid particles ranging over 1 to 20 µm. Results Laryngeal deposition in the base model peaked for particle sizes 8 to 10 µm (2.8%-3.5%). Ideal sizes ranged over 6 to 10, 7 to 13, and 7 to 14 µm for small, medium, and large granuloma sizes, respectively. Glottic deposition was maximal at 10.8% for 9-µm-sized particles for the large posterior granuloma, 3 times the normal model (3.5%). Conclusion As the virtual granuloma size increased and the location became more posterior, glottic deposition and ideal particle size generally increased. This preliminary study suggests that inhalers with larger particle sizes, such as fluticasone propionate dry-powder inhaler, may improve laryngeal drug deposition. Most commercially available inhalers have smaller particles than suggested here.

  2. Evaluating unsupervised methods to size and classify suspended particles using digital in-line holography

    USGS Publications Warehouse

    Davies, Emlyn J.; Buscombe, Daniel D.; Graham, George W.; Nimmo-Smith, W. Alex M.

    2015-01-01

    Substantial information can be gained from digital in-line holography of marine particles, eliminating depth-of-field and focusing errors associated with standard lens-based imaging methods. However, for the technique to reach its full potential in oceanographic research, fully unsupervised (automated) methods are required for focusing, segmentation, sizing and classification of particles. These computational challenges are the subject of this paper, in which we draw upon data collected using a variety of holographic systems developed at Plymouth University, UK, from a significant range of particle types, sizes and shapes. A new method for noise reduction in reconstructed planes is found to be successful in aiding particle segmentation and sizing. The performance of an automated routine for deriving particle characteristics (and subsequent size distributions) is evaluated against equivalent size metrics obtained by a trained operative measuring grain axes on screen. The unsupervised method is found to be reliable, despite some errors resulting from over-segmentation of particles. A simple unsupervised particle classification system is developed, and is capable of successfully differentiating sand grains, bubbles and diatoms from within the surf-zone. Avoiding miscounting bubbles and biological particles as sand grains enables more accurate estimates of sand concentrations, and is especially important in deployments of particle monitoring instrumentation in aerated water. Perhaps the greatest potential for further development in the computational aspects of particle holography is in the area of unsupervised particle classification. The simple method proposed here provides a foundation upon which further development could lead to reliable identification of more complex particle populations, such as those containing phytoplankton, zooplankton, flocculated cohesive sediments and oil droplets.

  3. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans.

    PubMed

    Fang-Yen, Christopher; Avery, Leon; Samuel, Aravinthan D T

    2009-11-24

    Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria.

  4. Two size-selective mechanisms specifically trap bacteria-sized food particles in Caenorhabditis elegans

    PubMed Central

    Fang-Yen, Christopher; Avery, Leon; Samuel, Aravinthan D. T.

    2009-01-01

    Caenorhabditis elegans is a filter feeder: it draws bacteria suspended in liquid into its pharynx, traps the bacteria, and ejects the liquid. How pharyngeal pumping simultaneously transports and filters food particles has been poorly understood. Here, we use high-speed video microscopy to define the detailed workings of pharyngeal mechanics. The buccal cavity and metastomal flaps regulate the flow of dense bacterial suspensions and exclude excessively large particles from entering the pharynx. A complex sequence of contractions and relaxations transports food particles in two successive trap stages before passage into the terminal bulb and intestine. Filtering occurs at each trap as bacteria are concentrated in the central lumen while fluids are expelled radially through three apical channels. Experiments with microspheres show that the C. elegans pharynx, in combination with the buccal cavity, is tuned to specifically catch and transport particles of a size range corresponding to most soil bacteria. PMID:19903886

  5. Equations for hydraulic conductivity estimation from particle size distribution: A dimensional analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Peng; François, Bertrand; Lambert, Pierre

    2017-09-01

    Estimating hydraulic conductivity from particle size distribution (PSD) is an important issue for various engineering problems. Classical models such as Hazen model, Beyer model, and Kozeny-Carman model usually regard the grain diameter at 10% passing (d10) as an effective grain size and the effects of particle size uniformity (in Beyer model) or porosity (in Kozeny-Carman model) are sometimes embedded. This technical note applies the dimensional analysis (Buckingham's ∏ theorem) to analyze the relationship between hydraulic conductivity and particle size distribution (PSD). The porosity is regarded as a dependent variable on the grain size distribution in unconsolidated conditions. It indicates that the coefficient of grain size uniformity and a dimensionless group representing the gravity effect, which is proportional to the mean grain volume, are the main two determinative parameters for estimating hydraulic conductivity. Regression analysis is then carried out on a database comprising 431 samples collected from different depositional environments and new equations are developed for hydraulic conductivity estimation. The new equation, validated in specimens beyond the database, shows an improved prediction comparing to using the classic models.

  6. Small-sized microplastics and pigmented particles in bottled mineral water.

    PubMed

    Oßmann, Barbara E; Sarau, George; Holtmannspötter, Heinrich; Pischetsrieder, Monika; Christiansen, Silke H; Dicke, Wilhelm

    2018-09-15

    Up to now, only a few studies about microparticle contamination of bottled mineral water have been published. The smallest analysed particle size was 5 μm. However, due to toxicological reasons, especially microparticles smaller than 1.5 μm are critically discussed. Therefore, in the present study, 32 samples of bottled mineral water were investigated for contamination by microplastics, pigment and additive particles. Due to the application of aluminium coated polycarbonate membrane filters and micro-Raman spectroscopy, a lowest analysed particle size of 1 μm was achieved. Microplastics were found in water from all bottle types: in single use and reusable bottles made of poly(ethylene terephthalate) (PET) as well as in glass bottles. The amount of microplastics in mineral water varied from 2649 ± 2857 per litre in single use PET bottles up to 6292 ± 10521 per litre in glass bottles. While in plastic bottles, the predominant polymer type was PET; in glass bottles various polymers such as polyethylene or styrene-butadiene-copolymer were found. Hence, besides the packaging itself, other contamination sources have to be considered. Pigment particles were detected in high amounts in reusable, paper labelled bottles (195047 ± 330810 pigment particles per litre in glass and 23594 ± 25518 pigment particles per litre in reusable paper labelled PET bottles). Pigment types found in water samples were the same as used for label printing, indicating the bottle cleaning process as possible contamination route. Furthermore, on average 708 ± 1024 particles per litre of the additive Tris(2,4-di-tert-butylphenyl)phosphite were found in reusable PET bottles. This additive might be leached out from the bottle material itself. Over 90% of the detected microplastics and pigment particles were smaller than 5 μm and thus not covered by previous studies. In summary, this is the first study reporting about microplastics, pigment and additive particles

  7. Removal of virus to protozoan sized particles in point-of-use ceramic water filters.

    PubMed

    Bielefeldt, Angela R; Kowalski, Kate; Schilling, Cherylynn; Schreier, Simon; Kohler, Amanda; Scott Summers, R

    2010-03-01

    The particle removal performance of point-of-use ceramic water filters (CWFs) was characterized in the size range of 0.02-100 microm using carboxylate-coated polystyrene fluorescent microspheres, natural particles and clay. Particles were spiked into dechlorinated tap water, and three successive water batches treated in each of six different CWFs. Particle removal generally increased with increasing size. The removal of virus-sized 0.02 and 0.1 microm spheres were highly variable between the six filters, ranging from 63 to 99.6%. For the 0.5 microm spheres removal was less variable and in the range of 95.1-99.6%, while for the 1, 2, 4.5, and 10 microm spheres removal was >99.6%. Recoating four of the CWFs with colloidal silver solution improved removal of the 0.02 microm spheres, but had no significant effects on the other particle sizes. Log removals of 1.8-3.2 were found for natural turbidity and spiked kaolin clay particles; however, particles as large as 95 microm were detected in filtered water. Copyright 2009 Elsevier Ltd. All rights reserved.

  8. The influence of particle size and curing conditions on testing mineral trioxide aggregate cement.

    PubMed

    Ha, William Nguyen; Kahler, Bill; Walsh, Laurence James

    2016-12-01

    Objectives: To assess the effects on curing conditions (dry versus submerged curing) and particle size on the compressive strength (CS) and flexural strength (FS) of set MTA cement. Materials and methods: Two different Portland cements were created, P1 and P2, with P1 < P2 in particle size. These were then used to create two experimental MTA products, M1 and M2, with M1 < M2 in particle size. Particle size analysis was performed according to ISO 13320. The particle size at the 90th percentile (i.e. the larger particles) was P1: 15.2 μm, P2: 29.1 μm, M1: 16.5 μm, and M2: 37.1 μm. M2 was cured exposed to air, or submerged in fluids of pH 5.0, 7.2 (PBS), or 7.5 for 1 week. CS and FS of the set cement were determined using a modified ISO 9917-1 and ISO 4049 methods, respectively. P1, P2, M1 and M2 were cured in PBS at physiological pH (7.2) and likewise tested for CS and FS. Results: Curing under dry conditions gave a significantly lower CS than when cured in PBS. There was a trend for lower FS for dry versus wet curing. However, this did not reach statistical significance. Cements with smaller particle sizes showed greater CS and FS at 1 day than those with larger particle sizes. However, this advantage was lost over the following 1-3 weeks. Conclusions : Experiments that test the properties of MTA should cure the MTA under wet conditions and at physiological pH.

  9. Evaluating flow laws for dynamically recrystallized quartz based on field data

    NASA Astrophysics Data System (ADS)

    Peters, Max; Herwegh, Marco

    2013-04-01

    The extrapolation of experimentally controlled deformation conditions, and the resulting relations between physical parameters acting during ductile deformation, to nature is considered controversial (see Herwegh et al., 2005 and references therein). Whereas the relationship between flow stress and recrystallized grain size can be empirically derived from lab experiments using paleopiezometers (e.g. Stipp & Tullis, 2003), the relation between recrystallized grain size, strain rate, differential stress, temperature and activation energy for dislocation creep requires further constraints. For these relations, various power law flow laws for dynamically recrystallized quartz were proposed over the past years (Paterson & Luan, 1990; Luan & Paterson, 1992; Gleason & Tullis, 1995; Hirth et al., 2001, Rutter & Brodie, 2004). The variations in the flow laws are mainly characterized by different starting materials, experimental conditions, the activation energy for dislocation creep and the stress exponent n. In this study we compare and evaluate experimentally derived flow laws regarding their reliability for the prediction of rheology of background deformation of naturally deformed crystalline samples from mylonites of the Aar massif (Swiss Central Alps). The majority of samples comprises highly deformed rocks (e.g. Central Aare granite), which exhibit severe grain size reduction. This reduction dominantly occurred by subgrain rotation (SGR), in the case of low temperature overprint by bulging recrystallization (BLG). Towards elevated temperatures, grain boundary migration (GBM) and SGR recrystallization were active. Along the metamorphic gradient (300 - 475°C) quartz microstructures and associated recrystallized grain size distributions indicate steady state mean grain sizes. The quantification of the metamorphic gradient (temperature, pressure, water fugacity) over the sampling area allowed the application of flow laws, yielding variations of 6 orders of magnitude in

  10. Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.

    The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately andin situusing crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormal size distribution.more » The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. This work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less

  11. Particle size distribution of hydrocyanic acid in gari, a cassava-based product.

    PubMed

    Maduagwu, E N; Fafunso, M

    1980-12-01

    A reciprocal relationship was observed between the cyanide content of gari and particle size. Hydrocyanic acid (HCN) content was positively correlated (r = 0.62) with sugar content but the correlation with starch content was poor (r = 0.33). From both the nutritional and toxicological standpoints, it would appear that larger particles size in gari is beneficial.

  12. Adsorption of N-tallow 1,3-propanediamine-dioleate collector on albite and quartz minerals, and selective flotation of albite from greek stefania feldspar ore.

    PubMed

    Vidyadhar, A; Hanumantha Rao, K; Forssberg, K S E

    2002-04-01

    The adsorption behavior of tallow 1,3-propanediamine-dioleate (Duomeen TDO) collector on albite and quartz minerals is assessed through Hallimond flotation, zeta potential, and diffuse reflectance FTIR investigations, together with the species distribution of the collector. The collector performance on albite separation from a natural feldspar material is evaluated in bench scale flotation tests. The Hallimond flotation responses of the minerals as a function of pH and collector concentration indicate that albite can be selectively floated from quartz at pH 2 where the doubly positively charged collector species adsorb on albite but not on quartz. However, the zeta potential and infrared spectra reveal that the adsorption behavior of the collector is similar on both minerals. The discrepancy in the flotation and adsorption results is attributed to the coarse and fine particle size fractions, and the shorter and longer equilibration periods employed in these studies respectively. The comparable adsorption on fine particles of albite and quartz at pH 2 is explained by the interaction of ammonium ions on silanol groups by hydrogen bonding as well as electrostatic interactions. The changes in zeta potentials are in good agreement with the formation of ionic species and free molecular forms of the collector. The IR spectra show the coexistence of neutral oleic acid together with charged amine species at low pH values in accordance with the species distribution diagram. Selective flotation of albite is accomplished from a natural feldspar material with tallow diamine-dioleate collector at pH 2 using sulfuric acid, only when the feed is deslimed prior to the bench scale flotation tests. An albite recovery exceeding 85% is achieved from a feed material containing about 50% albite.

  13. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.

    PubMed

    De Jong, Wim H; Hagens, Werner I; Krystek, Petra; Burger, Marina C; Sips, Adriënne J A M; Geertsma, Robert E

    2008-04-01

    A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the presence of gold is feasible with no background levels in the body in the normal situation. Rats were intravenously injected in the tail vein with gold nanoparticles with a diameter of 10, 50, 100 and 250 nm, respectively. After 24 h, the rats were sacrificed and blood and various organs were collected for gold determination. The presence of gold was measured quantitatively with inductively coupled plasma mass spectrometry (ICP-MS). For all gold nanoparticle sizes the majority of the gold was demonstrated to be present in liver and spleen. A clear difference was observed between the distribution of the 10 nm particles and the larger particles. The 10 nm particles were present in various organ systems including blood, liver, spleen, kidney, testis, thymus, heart, lung and brain, whereas the larger particles were only detected in blood, liver and spleen. The results demonstrate that tissue distribution of gold nanoparticles is size-dependent with the smallest 10nm nanoparticles showing the most widespread organ distribution.

  14. Particle size related bacterial recovery in immunomagnetic separation

    USDA-ARS?s Scientific Manuscript database

    Magnetic nanoparticles (MNPs) have demonstrated superior capture efficiencies in small molecule targets during immunomagnetic separation (IMS), but the potentials of MNPs in bacterial isolation have not been verified. The objective of this study was to evaluate the effect of magnetic particle size o...

  15. The role of particle-size soil fractions in the adsorption of heavy metals

    NASA Astrophysics Data System (ADS)

    Mandzhieva, Saglara; Minkina, Tatiana; Pinsky, David; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Sushkova, Svetlana; Chaplygin, Viktor; Dikaev, Zaurbek; Startsev, Viktor; Bakoev, Serojdin

    2014-05-01

    Ion-exchange adsorption phenomena are important in the immobilization of heavy metals (HMs) by soils. Numerous works are devoted to the study of this problem. However, the interaction features of different particle-size soil fractions and their role in the immobilization of HMs studied insufficiently. Therefore, the assessment of the effect of the particle-size distribution on the adsorption properties of soils is a vital task. The parameters of Cu2+, Pb2+ and Zn2+ adsorption by chernozems of the south of Russia and their particle-size fractions were studied. In the particle-size fractions separated from the soils, the concentrations of Cu2+, Pb2+, and Zn2 decreased with the decreasing particle size. The parameters of the adsorption values of k (the constant of the affinity)and Cmax.(the maximum adsorption of the HMs) characterizing the adsorption of HMs by the southern chernozem and its particle-size fractions formed the following sequence: silt > clay > entire soil. The adsorption capacity of chernozems for Cu2+, Pb2+, and Zn2+ depending on the particle-size distribution decreased in the following sequence: clay loamy ordinary chernozem clay loamy southern chernozem> loamy southern chernozem> loamy sandy southern chernozem. According to the parameters of the adsorption by the different particle-size fractions, the heavy metal cations form a sequence analogous to that obtained for the entire soils: Cu2+ ≥ Pb2+ > Zn2+. The parameters of the heavy metal adsorption by similar particle-size fractions separated from different soils decreased in the following order: clay loamy chernozem> loamy chernozem> loamy sandy chernozem. The analysis of the changes in the parameters of the Cu2+, Pb2+, and Zn2+ adsorption by the studied soils and their particle-size fractions showed that the extensive adsorption characteristic - the maximum adsorption (Cmax.) - is a less sensitive parameter characterizing the adsorption capacity of the soils than the intensive characteristic of

  16. Thermal conductivity measurements of particulate materials: 3. Natural samples and mixtures of particle sizes

    NASA Astrophysics Data System (ADS)

    Presley, Marsha A.; Craddock, Robert A.

    2006-09-01

    A line-heat source apparatus was used to measure thermal conductivities of natural fluvial and eolian particulate sediments under low pressures of a carbon dioxide atmosphere. These measurements were compared to a previous compilation of the dependence of thermal conductivity on particle size to determine a thermal conductivity-derived particle size for each sample. Actual particle-size distributions were determined via physical separation through brass sieves. Comparison of the two analyses indicates that the thermal conductivity reflects the larger particles within the samples. In each sample at least 85-95% of the particles by weight are smaller than or equal to the thermal conductivity-derived particle size. At atmospheric pressures less than about 2-3 torr, samples that contain a large amount of small particles (<=125 μm or 4 Φ) exhibit lower thermal conductivities relative to those for the larger particles within the sample. Nonetheless, 90% of the sample by weight still consists of particles that are smaller than or equal to this lower thermal conductivity-derived particle size. These results allow further refinement in the interpretation of geomorphologic processes acting on the Martian surface. High-energy fluvial environments should produce poorer-sorted and coarser-grained deposits than lower energy eolian environments. Hence these results will provide additional information that may help identify coarser-grained fluvial deposits and may help differentiate whether channel dunes are original fluvial sediments that are at most reworked by wind or whether they represent a later overprint of sediment with a separate origin.

  17. Simulation of particle size distributions in Polar Mesospheric Clouds from Microphysical Models

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Merkel, A.; Bardeen, C.; Rusch, D. W.; Lumpe, J. D.

    2009-12-01

    The size distribution of ice particles is perhaps the most important observable aspect of microphysical processes in Polar Mesospheric Cloud (PMC) formation and evolution. A conventional technique to derive such information is from optical observation of scattering, either passive solar scattering from photometric or spectrometric techniques, or active backscattering by lidar. We present simulated size distributions from two state-of-the-art models using CARMA sectional microphysics: WACCM/CARMA, in which CARMA is interactively coupled with WACCM3 (Bardeen et al, 2009), and stand-alone CARMA forced by WACCM3 meteorology (Merkel et al, this meeting). Both models provide well-resolved size distributions of ice particles as a function of height, location and time for realistic high-latitude summertime conditions. In this paper we present calculations of the UV scattered brightness at multiple scattering angles as viewed by the AIM Cloud Imaging and Particle Size (CIPS) satellite experiment. These simulations are then considered discretely-sampled “data” for the scattering phase function, which are inverted using a technique (Lumpe et al, this meeting) to retrieve particle size information. We employ a T-matrix scattering code which applies to a wide range of non-sphericity of the ice particles, using the conventional idealized prolate/oblate spheroidal shape. This end-to-end test of the relatively new scattering phase function technique provides insight into both the retrieval accuracy and the information content in passive remote sensing of PMC.

  18. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectancemore » spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.« less

  19. Infrared reflectance spectra: effects of particle size, provenance and preparation

    NASA Astrophysics Data System (ADS)

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, J. E.; Johnson, Timothy J.

    2014-10-01

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 - 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  20. Comparing particle-size distributions in modern and ancient sand-bed rivers

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical

  1. Study of Pellets and Lumps as Raw Materials in Silicon Production from Quartz and Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Dal Martello, E.; Tranell, G.; Gaal, S.; Raaness, O. S.; Tang, K.; Arnberg, L.

    2011-10-01

    The use of high-purity carbon and quartz raw materials reduces the need for comprehensive refining steps after the silicon has been produced carbothermically in the electric reduction furnace. The current work aims at comparing the reaction mechanisms and kinetics occurring in the inner part of the reduction furnace when pellets or lumpy charge is used, as well as the effect of the raw material mix. Laboratory-scale carbothermic reduction experiments have been carried out in an induction furnace. High-purity silicon carbide and two different high-purity hydrothermal quartzes were charged as raw materials at different molar ratios. The charge was in the form of lumps (size, 2-5 mm) or as powder (size, 10-20 μm), mixed and agglomerated as pellets (size, 1-3 mm) and reacted at 2273 K (2000 °C). The thermal properties of the quartzes were measured also by heating a small piece of quartz in CO atmosphere. The investigated quartzes have different reactivity in reducing atmosphere. The carbothermal reduction experiments show differences in the reacted charge between pellets and lumps as charge material. Solid-gas reactions take place from the inside of the pellets porosity, whereas reactions in lumps occur topochemically. Silicon in pellets is produced mainly in the rim zone. Larger volumes of silicon have been found when using lumpy charge. More SiO is produced when using pellets than for lumpy SiO2 for the same molar ratio and heating conditions. The two SiC polytypes used in the carbothermal reduction experiments as carbon reductants presented different reactivity.

  2. Particle size dependent confinement and lattice strain effects in LiFePO4.

    PubMed

    Shahid, Raza; Murugavel, Sevi

    2013-11-21

    We report the intrinsic electronic properties of LiFePO4 (LFP) with different particle sizes measured by broad-band impedance spectroscopy and diffuse reflectance spectroscopy. The electronic properties show typical size-dependent effects with decreasing particle size (up to 150 nm). However, at the nanoscale level, we observed an enhancement in the polaronic conductivity about an order of magnitude. We found that the origin of the enhanced electronic conductivity in LFP is due to the significant lattice strain associated with the reduction of particle size. The observed lattice strain component corresponds to the compressive part which leads to a decrease in the hopping length of the polarons. We reproduce nonlinearities in the transport properties of LFP with particle size, to capture the interplay between confinement and lattice strain, and track the effects of strain on the electron-phonon interactions. These results could explain why nano-sized LFP has a better discharge capacity and higher rate capability than the bulk counterpart. We suggest that these new correlations will bring greater insight and better understanding for the optimization of LFP as a cathode material for advanced lithium ion batteries.

  3. Particle size reduction in debris flows: Laboratory experiments compared with field data from Inyo Creek, California

    NASA Astrophysics Data System (ADS)

    Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.

    2014-12-01

    Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data

  4. Particle sizing in rocket motor studies utilizing hologram image processing

    NASA Technical Reports Server (NTRS)

    Netzer, David; Powers, John

    1987-01-01

    A technique of obtaining particle size information from holograms of combustion products is described. The holograms are obtained with a pulsed ruby laser through windows in a combustion chamber. The reconstruction is done with a krypton laser with the real image being viewed through a microscope. The particle size information is measured with a Quantimet 720 image processing system which can discriminate various features and perform measurements of the portions of interest in the image. Various problems that arise in the technique are discussed, especially those that are a consequence of the speckle due to the diffuse illumination used in the recording process.

  5. Particle size and metals concentrations of dust from a paint manufacturing plant.

    PubMed

    Huang, Siew Lai; Yin, Chun-Yang; Yap, Siaw Yang

    2010-02-15

    In this study, the particle size distribution and concentration of metallic elements of solvent- and water-based paint dust from bulk dust collected from dust-collecting hoppers were determined. The mean particle size diameter over a 12-week sampling period was determined using a particle size analyzer. The metals composition and concentration of the dust were determined via acid digestion technique followed by concentration analysis using inductively coupled plasma. The volume weighted mean particle diameters were found to be 0.941+/-0.016 and 8.185+/-0.201 microm for solvent- and water-based paint dust, respectively. The mean concentrations of metals in solvent-based paint dust were found to be 100+/-20.00 microg/g (arsenic), 1550+/-550.00 microg/g (copper), 15,680+/-11,780.00 microg/g (lead) and 30,460+/-10,580.00 microg/g (zinc) while the mean concentrations of metals in water-based paint dust were found to be 20.65+/-6.11 microg/g (arsenic), 9.14+/-14.65 microg/g (copper), 57.46+/-22.42 microg/g (lead) and 1660+/-1260 microg/g (zinc). Both paint dust types could be considered as hazardous since almost all of the dust particles were smaller than 10 microm. Particular emphasis on containment of solvent-based paint dust particles should be given since it was shown that they were very fine in size (<1 microm) and had high lead and zinc concentrations.

  6. Experimental investigation of cephapirin adsorption to quartz filter sands and dune sands

    NASA Astrophysics Data System (ADS)

    Peterson, Jonathan W.; O'Meara, Theresa A.; Seymour, Michael D.

    2008-08-01

    Batch experiments were performed to investigate cephapirin (a widely used veterinary antibiotic) adsorption on various size sands of low total organic carbon content (0.08-0.36 wt%). In the aqueous concentration range investigated (11-112 μmol/L cephapirin), adsorption to nearly pure quartz filter sands (0.50-3.35 mm diameter) is low. Isotherms are S-shaped and most display a region of minimum adsorption, where decreased adsorption occurs with increasing solution concentration, followed by increased adsorption at higher concentrations. Cephapirin adsorption to quartz-rich, feldspar-bearing dune sands (0.06-0.35 mm diameter), and the smallest quartz filter sand investigated (0.43-0.50 mm), can be described by linear sorption isotherms over the range of concentrations investigated. Distribution coefficients ( K d) range from 0.94 to 3.45 L/kg. No systematic relationship exists between grain size and amount of adsorption for any of the sands investigated. Cephapirin adsorption is positively correlated to the feldspar ratio (K-feldspar/(albite + Ca-plagioclase). Feldspar-ratio normalization of distribution coefficients was more effective than organic carbon normalization at reducing variability of K d values in the dune sands investigated.

  7. Intrinsic Size Effect in Scaffolded Porous Calcium Silicate Particles and Mechanical Behavior of Their Self-Assembled Ensembles.

    PubMed

    Hwang, Sung Hoon; Shahsavari, Rouzbeh

    2018-01-10

    Scaffolded porous submicron particles with well-defined diameter, shape, and pore size have profound impacts on drug delivery, bone-tissue replacement, catalysis, sensors, photonic crystals, and self-healing materials. However, understanding the interplay between pore size, particle size, and mechanical properties of such ultrafine particles, especially at the level of individual particles and their ensemble states, is a challenge. Herein, we focus on porous calcium-silicate submicron particles with various diameters-as a model system-and perform extensive 900+ nanoindentations to completely map out their mechanical properties at three distinct structural forms from individual submicron particles to self-assembled ensembles to pressure-induced assembled arrays. Our results demonstrate a notable "intrinsic size effect" for individual porous submicron particles around ∼200-500 nm, induced by the ratio of particle characteristic diameter to pore characteristic size distribution. Increasing this ratio results in a brittle-to-ductile transition where the toughness of the submicron particles increases by 120%. This size effect becomes negligible as the porous particles form superstructures. Nevertheless, the self-assembled arrays collectively exhibit increasing elastic modulus as a function of applied forces, while pressure-induced compacted arrays exhibit no size effect. This study will impact tuning properties of individual scaffolded porous particles and can have implications on self-assembled superstructures exploiting porosity and particle size to impart new functionalities.

  8. PGEs and Quartz Grains in a Resedimented Late Archean Impact Horizon in the Hamersley Group of Western Australia

    NASA Astrophysics Data System (ADS)

    Simonson, B. M.; Davies, D.; Wallace, M.; Reeves, S.; Hassler, S.

    1996-03-01

    The early Precambrian Hamersley Group of Western Australia contains two thick packages of carbonate-rich strata, the Carawine Dolomite and the Wittenoom Formation, that occupy mutually exclusive areas within the Hamersley Basin. Within each of these formations is a single horizon which contains sand- to fine gravel-size particles believed to be distal ejecta from a large bolide impact. In the Carawine Dolomite, the ejecta are restricted to a coarse-grained dolomitic debris flow deposit up to 25 m thick. In the Wittenoom Formation, the ejecta are restricted to a turbidite which is <=1.3 m thick and consists largely of sand-size carbonate and argillite intraclasts. Together, these two horizons constitute a single, unique layer that appears to have been deposited rapidly over an area >= 50,000 km2 by a single high-energy event around 2.5 Ga. Deposition is inferred to have taken place in a series of distinct stages as follows: (1.) ballistic dispersal of mostly sand-size particles from the impact site to the seafloor in the Hamersley Basin, (2.) reworking of the newly deposited ejecta in the Hamersley Basin into large symmetrical ripples by impact-generated tsunami waves, and (3.) subsequent erosion and re-sedimentation of most of the ejecta by one to three large sedimentary gravity flows that moved south and west down the paleoslope of the Hamersley Basin. New data will be presented concerning the two main types of ejecta found in this layer: microkrystites and quartz grains. Specifically, microkrystite-rich samples are enriched in Ir and Ru by an order of magnitude or more relative to the surrounding strata, but other siderophile elements (Pd, Pt, Au, Cr, Co, and Ni) display neither anomalously high concentrations nor chondritic interelement ratios. As for the quartz grains, their petrographic characteristics clearly indicate they are not volcanic in origin, but they do not appear to have planar deformation features like those reported from numerous other impact

  9. Effect of fluorescent particle size on the modulation efficiency of ultrasound-modulated fluorescence.

    PubMed

    Liu, Yuan; Yuan, Baohong; Vignola, Joseph

    2012-01-01

    To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes.

  10. Effect of fluorescent particle size on the modulation efficiency of ultrasound-modulated fluorescence

    PubMed Central

    Liu, Yuan; Yuan, Baohong; Vignola, Joseph

    2013-01-01

    To investigate whether the size of fluorescent particles affects the modulation efficiency of ultrasound-modulated fluorescence (UMF), we measured UMF and DC (direct current) signals of the fluorescence emission from four different sized fluorescent particles: (1) three carboxylate-modified fluorescent microspheres (FM) with diameters of 20 nm, 200 nm, and 1.0 µm and (2) streptavidin-conjugated Alexa Fluor 647 with a diameter of approximately 5 nm. The UMF and DC signals were simultaneously measured using a broadband lock-in amplifier and a narrowband amplifier, respectively. The ratio of the UMF strength to the DC signal strength is defined as the modulation efficiency. This modulation efficiency was then used to evaluate the effects of fluorophore size and concentration. Results show that the modulation efficiency was improved by approximately a factor of two when the size of the fluorescent particles is increased from 5 nm to 1 µm. In addition, the linear relationship between the UMF strength and ultrasound pressure (observed in our previous study) were maintained regardless of the fluorescent particle sizes. PMID:24179476

  11. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE PAGES

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov; ...

    2017-12-08

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  12. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2018-04-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  13. Effective Particle Size From Molecular Dynamics Simulations in Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Jianwei; Welch, Paul Michael Jr.; Rasmussen, Kim Orskov

    Here, we report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. Thismore » procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks–Chandler–Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ~0.75σ, where σ defines the length scale of the force interaction (the LJ diameter). The effective “hydrodynamic” radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ, but agree with a value developed from the atomistic analysis of the viscosity of such systems.« less

  14. Effective particle size from molecular dynamics simulations in fluids

    NASA Astrophysics Data System (ADS)

    Ju, Jianwei; Welch, Paul M.; Rasmussen, Kim Ø.; Redondo, Antonio; Vorobieff, Peter; Kober, Edward M.

    2017-12-01

    We report molecular dynamics simulations designed to investigate the effective size of colloidal particles suspended in a fluid in the vicinity of a rigid wall where all interactions are defined by smooth atomic potential functions. These simulations are used to assess how the behavior of this system at the atomistic length scale compares to continuum mechanics models. In order to determine the effective size of the particles, we calculate the solvent forces on spherical particles of different radii as a function of different positions near and overlapping with the atomistically defined wall and compare them to continuum models. This procedure also then determines the effective position of the wall. Our analysis is based solely on forces that the particles sense, ensuring self-consistency of the method. The simulations were carried out using both Weeks-Chandler-Andersen and modified Lennard-Jones (LJ) potentials to identify the different contributions of simple repulsion and van der Waals attractive forces. Upon correction for behavior arising the discreteness of the atomic system, the underlying continuum physics analysis appeared to be correct down to much less than the particle radius. For both particle types, the effective radius was found to be ˜ 0.75σ , where σ defines the length scale of the force interaction (the LJ diameter). The effective "hydrodynamic" radii determined by this means are distinct from commonly assumed values of 0.5σ and 1.0σ , but agree with a value developed from the atomistic analysis of the viscosity of such systems.

  15. The influence of particle size and curing conditions on testing mineral trioxide aggregate cement

    PubMed Central

    Ha, William Nguyen; Kahler, Bill; Walsh, Laurence James

    2016-01-01

    Abstract Objectives: To assess the effects on curing conditions (dry versus submerged curing) and particle size on the compressive strength (CS) and flexural strength (FS) of set MTA cement. Materials and methods: Two different Portland cements were created, P1 and P2, with P1 < P2 in particle size. These were then used to create two experimental MTA products, M1 and M2, with M1 < M2 in particle size. Particle size analysis was performed according to ISO 13320. The particle size at the 90th percentile (i.e. the larger particles) was P1: 15.2 μm, P2: 29.1 μm, M1: 16.5 μm, and M2: 37.1 μm. M2 was cured exposed to air, or submerged in fluids of pH 5.0, 7.2 (PBS), or 7.5 for 1 week. CS and FS of the set cement were determined using a modified ISO 9917-1 and ISO 4049 methods, respectively. P1, P2, M1 and M2 were cured in PBS at physiological pH (7.2) and likewise tested for CS and FS. Results: Curing under dry conditions gave a significantly lower CS than when cured in PBS. There was a trend for lower FS for dry versus wet curing. However, this did not reach statistical significance. Cements with smaller particle sizes showed greater CS and FS at 1 day than those with larger particle sizes. However, this advantage was lost over the following 1–3 weeks. Conclusions: Experiments that test the properties of MTA should cure the MTA under wet conditions and at physiological pH. PMID:28642923

  16. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.

    PubMed

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M

    2013-10-15

    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  17. Impact of varying analytical methodologies on grain particle size determination.

    PubMed

    Kalivoda, J R; Jones, C K; Stark, C R

    2017-01-01

    The determination of particle size is an important quality control measurement for feed manufacturers, nutritionists, and producers. The current approved method for determining the geometric mean diameter by weight (d) and geometric standard deviation (S) of grains is standard ANSI/ASAE S319.4. This method controls many variables, including the suggested quantity of initial material and the type, number, and size of sieves. However, the method allows for variations in sieving time, sieve agitators, and the use of a dispersion agent. The objective of this experiment was to determine which method of particle size analysis best estimated the particle size of various cereal grain types. Eighteen samples of either corn, sorghum, or wheat were ground and analyzed using different variations of the approved method. Treatments were arranged in a 5 × 3 factorial arrangement with 5 sieving methods: 1) 10-min sieving time with sieve agitators and no dispersion agent, 2) 10-min sieving time with sieve agitators and dispersion agent, 3) 15-min sieving time with no sieve agitators or dispersion agent, 4) 15-min sieving time with sieve agitators and no dispersion agent, and 5) 15-min sieving time with sieve agitators and dispersion agent conducted in 3 grain types (ground corn, sorghum, and wheat) with 4 replicates per treatment. The analytical method that resulted in the lowest d and greatest S was considered desirable because it was presumably representative of increased movement of particles to their appropriate sieve. Analytical method affected d and S ( ≤ 0.05) measured by both standards. Inclusion of sieve agitators and dispersion agent in the sieve stack resulted in the lowest d, regardless of sieving time. Inclusion of dispersion agent reduced d ( ≤ 0.05) by 32 and 36 µm when shaken for 10 and 15 min, respectively, compared to the same sample analyzed without dispersion agent. The addition of the dispersion agent also increased S. The dispersion agent increased the

  18. Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

    DOE PAGES

    Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.; ...

    2017-04-13

    The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less

  19. Modelling and validation of particle size distributions of supported nanoparticles using the pair distribution function technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamez-Mendoza, Liliana; Terban, Maxwell W.; Billinge, Simon J. L.

    The particle size of supported catalysts is a key characteristic for determining structure–property relationships. It is a challenge to obtain this information accurately and in situ using crystallographic methods owing to the small size of such particles (<5 nm) and the fact that they are supported. In this work, the pair distribution function (PDF) technique was used to obtain the particle size distribution of supported Pt catalysts as they grow under typical synthesis conditions. The PDF of Pt nanoparticles grown on zeolite X was isolated and refined using two models: a monodisperse spherical model (single particle size) and a lognormalmore » size distribution. The results were compared and validated using scanning transmission electron microscopy (STEM) results. Both models describe the same trends in average particle size with temperature, but the results of the number-weighted lognormal size distributions can also accurately describe the mean size and the width of the size distributions obtained from STEM. Since the PDF yields crystallite sizes, these results suggest that the grown Pt nanoparticles are monocrystalline. As a result, this work shows that refinement of the PDF of small supported monocrystalline nanoparticles can yield accurate mean particle sizes and distributions.« less

  20. Effect of particle size on the glass transition.

    PubMed

    Larsen, Ryan J; Zukoski, Charles F

    2011-05-01

    The glass transition temperature of a broad class of molecules is shown to depend on molecular size. This dependency results from the size dependence of the pair potential. A generalized equation of state is used to estimate how the volume fraction at the glass transition depends on the size of the molecule, for rigid molecule glass-formers. The model shows that at a given pressure and temperature there is a size-induced glass transition: For molecules larger than a critical size, the volume fraction required to support the effective pressure due to particle attractions is above that which characterizes the glassy state. This observation establishes the boundary between nanoparticles, which exist in liquid form only as dispersions in low molecular weight solvents and large molecules which form liquids that have viscosities below those characterized by the glassy state.

  1. A query for effective mean particle size of dry and high moisture corns

    USDA-ARS?s Scientific Manuscript database

    Eighteen dry and high moisture corns submitted to the University of Wisconsin Soil and Forage Analysis Laboratory (Marshfield, WI) for routine analysis were retained for mean particle size (MPS) and chemistry determinations. Mean particle size of corns was determined by the methods of the American S...

  2. Effect of flour particle size and damaged starch on the quality of cookies.

    PubMed

    Barak, Sheweta; Mudgil, Deepak; Khatkar, B S

    2014-07-01

    Two wheat varieties 'C 306' and 'WH 542' were milled to obtain flour fractions of different particle sizes. Various physicochemical parameters such as wet and dry gluten, falling number, solvent retention capacity (SRC), alkaline water retention capacity (AWRC) and damaged starch content of the flour fractions were analyzed. The damaged starch values ranged from 5.14% to 14.79% for different flour fractions and increased significantly with decrease in particle size. AWRC and SRC of the flour fractions also increased with decrease in particle size. AWRC(r = 0.659) showed positive correlation and cookie spread ratio (r = -0.826) was strongly negatively correlated with the damaged starch levels. Hardness of the cookies in term of compression force showed increasing trend as damaged starch of the flour fractions increased. Spread ratio of the cookies ranged from 6.72 to 10.12. Wheat flour of particle size greater than 150 μm produced cookies with best quality.

  3. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  4. Using Image Attributes to Assure Accurate Particle Size and Count Using Nanoparticle Tracking Analysis.

    PubMed

    Defante, Adrian P; Vreeland, Wyatt N; Benkstein, Kurt D; Ripple, Dean C

    2018-05-01

    Nanoparticle tracking analysis (NTA) obtains particle size by analysis of particle diffusion through a time series of micrographs and particle count by a count of imaged particles. The number of observed particles imaged is controlled by the scattering cross-section of the particles and by camera settings such as sensitivity and shutter speed. Appropriate camera settings are defined as those that image, track, and analyze a sufficient number of particles for statistical repeatability. Here, we test if image attributes, features captured within the image itself, can provide measurable guidelines to assess the accuracy for particle size and count measurements using NTA. The results show that particle sizing is a robust process independent of image attributes for model systems. However, particle count is sensitive to camera settings. Using open-source software analysis, it was found that a median pixel area, 4 pixels 2 , results in a particle concentration within 20% of the expected value. The distribution of these illuminated pixel areas can also provide clues about the polydispersity of particle solutions prior to using a particle tracking analysis. Using the median pixel area serves as an operator-independent means to assess the quality of the NTA measurement for count. Published by Elsevier Inc.

  5. Size reduction of submicron magnesium particles prepared by pulsed wire discharge

    NASA Astrophysics Data System (ADS)

    Duy Hieu, Nguyen; Tokoi, Yoshinori; Tanaka, Kenta; Sasaki, Toru; Suzuki, Tsuneo; Nakayama, Tadachika; Suematsu, Hisayuki; Niihara, Koichi

    2018-02-01

    In this study, the submicron magnesium particle size was reduced by adjusting ambient gas pressure and input energy. The mean diameter of the prepared particles was determined from transmission electron microscopy images. The geometric mean particle diameter decreased with increasing relative energy, which was defined as the charging energy divided by the evaporation energy of a wire. By this method, Mg particles with a geometric mean diameter of 41.9 nm were prepared. To our knowledge, they are the smallest passivated Mg particles prepared by any method.

  6. Investigating the Impacts of Particle Size and Wind Speed on Brownout

    DTIC Science & Technology

    2015-03-26

    mixture of sand, silt, clay , and organic material, classified based on its size and texture. Sand is the largest of the particle materials, with...smallest soil component is clay , with particle sizes less than 0.002 mm. Ultra-fine in texture, clay feels sticky when wet, is extremely cohesive, and does...not allow air to move through it easily. Clay makes a soil dense and is hard as concrete when dry. Loam is a nearly even mixture of sand and silt

  7. Constraining martian atmospheric dust particle size distributions from MER Navcam observations.

    NASA Astrophysics Data System (ADS)

    Soderblom, J. M.; Smith, M. D.

    2017-12-01

    Atmospheric dust plays an important role in atmospheric dynamics by absorbing energy and influencing the thermal structure of the atmosphere [1]. The efficiency by which dust absorbs energy depends on its size and single-scattering albedo. Characterizing these properties and their variability is, thus, important in modeling atmospheric circulation. Near-sun observations of the martian sky from Viking Lander, Mars Pathfinder, and MER Pancam images have been used to characterize the atmospheric scattering phase function. The forward-scattering peak the atmospheric phase function is primarily controlled by the size of aerosol particles and is less sensitive to atmospheric opacity or particle shape and single-scattering albedo [2]. These observations, however, have been limited to scattering angles >5°. We use the MER Navcams, which experience little-to-no debilitating internal instrumental scattered light during near-Sun imaging, enabling measurements of the brightness of the martian sky down to very small scattering angles [3], making them more sensitive to aerosol particle size. Additionally, the Navcams band-pass wavelength is similar to the dust effective particle size, further increasing this sensitivity. These data sample a wide range of atmospheric conditions, including variations in the atmospheric dust loading across the entire martian year, as well as more rapid variations during the onset and dissipation of a global-scale dust storm. General circulation models (GCMs) predict a size-dependence for the transport of dust during dust storms that would result in both spatial (on regional-to-global scales) and temporal (days-to-months) variations in the dust size distribution [4]. The absolute calibration of these data, however, is limited. The instrument temperature measurement is limited to a single thermocouple on the Opportunity left Navcam CCD, and observations of the calibration target by Navcam are infrequent. We discuss ways to mitigate these

  8. Depositing nanometer-sized particles of metals onto carbon allotropes

    NASA Technical Reports Server (NTRS)

    Delozier, Donavon M. (Inventor); Fallbach, Michael J. (Inventor); Smith, Joseph G. (Inventor); Watson, Kent A. (Inventor); Ghose, Sayata (Inventor); Connell, John W. (Inventor)

    2010-01-01

    A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.

  9. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    NASA Astrophysics Data System (ADS)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  10. Fluid inclusions and microstructures in experimentally deformed quartz single crystals

    NASA Astrophysics Data System (ADS)

    Thust, A.; Tarantola, A.; Heilbronner, R.; Stünitz, H.

    2009-04-01

    The "H2O-weakening" effect that reduces the strength of quartz dramatically (e.g. Griggs & Blacic 1965) is still not understood. For example, Kronenberg & Tullis (1984) conclude that the weakening effect is pressure dependent while Paterson (1989) infers a glide and recovery control of water. Obviously, the spatial distribution and transport of H2O are important factors (Kronenberg et al. 1986, FitzGerald et al. 1991). We have carried out experiments on milky quartz in a Griggs deformation apparatus. Cylinders (6.5 mm in diameter, 12-13 mm in length) from a milky zone of a natural quartz single crystal have been cored in orientations (1) normal to one of the prism planes and (2) 45˚ to and 45˚ to (O+orientation). At 1 GPa confining pressure, 900˚ C and 10-6s-1, the flow strength is 150 MPa for samples with orientation (1). Further experiments are needed to establish the flow strength for orientation (2). FTIR measurements on double-polished thick sections (200-500 μm) in the undeformed quartz material yield an average H2O content of approximately 100 H/106Si. The water is heterogeneously distributed in the sample. Direct measurements on fluid inclusions yield a H2O content of more than 25 000 H/106Si. Thus, the H2O in the undeformed material is predominantly present in fluid inclusions of size from tens to hundred microns. Micro-thermometric measurements at low temperature indicate the presence of different salts in the fluid inclusions. The ice melting temperature, between -6.9 and -7.4˚ C, indicate an average salinity of 10.5 wt% NaCl. After deformation the distribution of H2O is more homogeneous throughout the sample. The majority of the big inclusions have disappeared and very small inclusions of several microns to sub-micron size have formed. FTIR measurements in zones of undulatory extinction and shear bands show an average H2O content of approximately 3000 H/106Si. Moreover, the larger fluid inclusions are characterized by a higher salinity (12 wt%) due

  11. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    NASA Astrophysics Data System (ADS)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2015-09-01

    This study presents a comparison of seasonal variation, gas-particle partitioning and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. The timing and frequencies of detection of CUPs related to their legal status, usage amounts and their environmental persistence, while OCPs were consistently detected throughout the year. Two different seasonal trends were noted: certain compounds had higher concentrations only during the growing season (April-September) and other compounds showed two peaks, first in the growing season and second in plowing season (October-November). In general, gas-particle partitioning of pesticides was governed by physicochemical properties, with higher vapor pressure leading to higher gas phase fractions, and associated seasonality in gas-particle partitioning was observed in nine pesticides. However, some anomalous partitioning was observed for fenpropimorph and chlorpyrifos suggesting the influence of current pesticide application on gas-particle distributions. Nine pesticides had highest particle phase concentrations on fine particles (< 0.95 μm) and four pesticides on coarser (> 1.5 μm) particles.

  12. Surface particle sizes on armoured gravel streambeds: Effects of supply and hydraulics

    Treesearch

    Peter J. Whiting; John G. King

    2003-01-01

    Most gravel-bed streams exhibit a surface armour in which the median grain size of the surface particles is coarser than that of the subsurface particles. This armour has been interpreted to result when the supply of sediment is less than the ability of the stream to move sediment. While there may be certain sizes in the bed for which the supply is less than the...

  13. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    PubMed Central

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  14. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation.

    PubMed

    Shiraiwa, Manabu; Yee, Lindsay D; Schilling, Katherine A; Loza, Christine L; Craven, Jill S; Zuend, Andreas; Ziemann, Paul J; Seinfeld, John H

    2013-07-16

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process.

  15. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite.

    PubMed

    Yin, H; Too, H P; Chow, G M

    2005-10-01

    The safety and toxicity of nanoparticles are of growing concern despite their significant scientific interests and promising potentials in many applications. The properties of nanoparticles depend not only on the size but also the structure, microstructure and surface coating. These in turn are controlled by the synthesis and processing conditions. The dependence of cytotoxicity on particle size and on the presence of oleic acid as surfactant on nickel ferrite particles were investigated in vitro using the Neuro-2A cell line as a model. For nickel ferrite particles without oleic acid prepared by ball milling, cytotoxicity was independent of particle size within the given mass concentrations and surface areas accessible to the cells. For nickel ferrite particles coated with oleic acid prepared by the polyol method, the cytotoxicity significantly increased when one or two layers of oleic acid were deposited. Large particles (150+/-50 nm diameter) showed a higher cytotoxicity than smaller particles (10+/-3 nm diameter).

  16. Airborne ultrafine particles in a naturally ventilated metro station: Dominant sources and mixing state determined by particle size distribution and volatility measurements.

    PubMed

    Mendes, Luís; Gini, Maria I; Biskos, George; Colbeck, Ian; Eleftheriadis, Konstantinos

    2018-08-01

    Ultrafine particle number concentrations and size distributions were measured on the platform of a metro station in Athens, Greece, and compared with those recorded at an urban background station. The volatility of the sampled particles was measured in parallel, providing further insights on the mixing state and composition of the sampled particles. Particle concentration exhibited a mean value of 1.2 × 10 4 # cm -3 and showed a weak correlation with train passage frequency, but exhibited a strong correlation with urban background particle concentrations. The size distribution appears to be strongly influenced by outdoor conditions, such as the morning traffic rush hour and new particle formation events observed at noon. The aerosol in the metro was externally mixed throughout the day, with particle populations being identified (1) as fully refractory particles being more dominant during the morning traffic rush hours, (2) as core-shell structure particles having a non-volatile core coated with volatile material, and (3) fully volatile particles. The evolution of particle volatility and size throughout the day provide additional support that most nanoparticles in the metro station originate from outdoor urban air. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Solid rocket motor plume particle size measurements using multiple optical techniques in a probe

    NASA Astrophysics Data System (ADS)

    Manser, John R.

    1995-03-01

    An experimental investigation to measure particle size distributions in the plume of sub-scale solid rocket motors was conducted. A phase-Doppler particle analyzer (pDPA) in conjunction with three-wavelength extinction measurements were used in a specially designed particle collection probe in an attempt to determine the entire plume particle size distribution. In addition, a laser ensemble particle sizer was used for comparative data. The PDPA and Malvem distributions agreed in the observed modes near 1 and 4.5 micron diameter (d). Scanning electron microscope (SEM) pictures of collected particles were in good agreement with the measured Malvem Sauter mean diameter (d(sub 32)) of 2.59 micron. Data analysis indicates that less than 3% of the total mass of the particles was contained in particles with diameter d dess than 0.5 micron. Therefore, the PDPA, which can typically measure particles down to a minimum diameter of 0.5 micron with a dynamic range (d(sub max):d(sub min)) of 50:1, can be used by itself to determine the particle size distribution. Multiple wavelength measurements were found to be very sensitive to inaccuracies in the measured transmittances.

  18. Particle-size-dependent cytokine responses and cell damage induced by silica particles and macrophages-derived mediators in endothelial cell.

    PubMed

    Rong, Yi; Zhou, Ting; Cheng, Wenjuan; Guo, Jiali; Cui, Xiuqing; Liu, Yuewei; Chen, Weihong

    2013-11-01

    Epidemiological evidence reports silica dust exposure has been associated with increased risk of cardiovascular diseases, but the mechanisms are largely unknown. In this study, endothelial cells were exposed to increasing concentrations of two sizes silica particles and the soluble mediators released by macrophages treated with the same particles for 24 h. Expression and release of cytokines (IL-1β, TNF-α and IL-6) were measured by using ELISA. Cytotoxicity was measured by MTT assay and LDH release. We show that both ways induced increases in cell toxicity and cytokines in a dose-dependent manner. For smaller particles, the soluble mediators are more capable of increasing cytokines compared with the effect of particles directly. For larger particles, evaluating results of these two ways are similar. Either way, smaller particles make the increasing action of cell toxicity and cytokines more remarkable. Our results indicate both silica particle and macrophage-derived mediators can induce endothelial cell injury and inflammation and demonstrate the potential importance of the particle sizes in this effect. Copyright © 2013. Published by Elsevier B.V.

  19. Environmental DNA particle size distribution from Brook Trout (Salvelinus fontinalis)

    Treesearch

    Taylor M. Wilcox; Kevin S. McKelvey; Michael K. Young; Winsor H. Lowe; Michael K. Schwartz

    2015-01-01

    Environmental DNA (eDNA) sampling has become a widespread approach for detecting aquatic animals with high potential for improving conservation biology. However, little research has been done to determine the size of particles targeted by eDNA surveys. In this study, we conduct particle distribution analysis of eDNA from a captive Brook Trout (Salvelinus fontinalis) in...

  20. Methods for obtaining true particle size distributions from cross section measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, Kristina Alyse

    2013-01-01

    Sectioning methods are frequently used to measure grain sizes in materials. These methods do not provide accurate grain sizes for two reasons. First, the sizes of features observed on random sections are always smaller than the true sizes of solid spherical shaped objects, as noted by Wicksell [1]. This is the case because the section very rarely passes through the center of solid spherical shaped objects randomly dispersed throughout a material. The sizes of features observed on random sections are inversely related to the distance of the center of the solid object from the section [1]. Second, on a planemore » section through the solid material, larger sized features are more frequently observed than smaller ones due to the larger probability for a section to come into contact with the larger sized portion of the spheres than the smaller sized portion. As a result, it is necessary to find a method that takes into account these reasons for inaccurate particle size measurements, while providing a correction factor for accurately determining true particle size measurements. I present a method for deducing true grain size distributions from those determined from specimen cross sections, either by measurement of equivalent grain diameters or linear intercepts.« less

  1. Compression Properties and Electrical Conductivity of In-Situ 20 vol.% Nano-Sized TiCx/Cu Composites with Different Particle Size and Morphology

    PubMed Central

    Zhang, Dongdong; Bai, Fang; Sun, Liping; Wang, Yong; Wang, Jinguo

    2017-01-01

    The compression properties and electrical conductivity of in-situ 20 vol.% nano-sized TiCx/Cu composites fabricated via combustion synthesis and hot press in Cu-Ti-CNTs system at various particles size and morphology were investigated. Cubic-TiCx/Cu composite had higher ultimate compression strength (σUCS), yield strength (σ0.2), and electric conductivity, compared with those of spherical-TiCx/Cu composite. The σUCS, σ0.2, and electrical conductivity of cubic-TiCx/Cu composite increased by 4.37%, 20.7%, and 17.8% compared with those of spherical-TiCx/Cu composite (526 MPa, 183 MPa, and 55.6% International Annealed Copper Standard, IACS). Spherical-TiCx/Cu composite with average particle size of ~94 nm exhibited higher ultimate compression strength, yield strength, and electrical conductivity compared with those of spherical-TiCx/Cu composite with 46 nm in size. The σUCS, σ0.2, and electrical conductivity of spherical-TiCx/Cu composite with average size of ~94 nm in size increased by 17.8%, 33.9%, and 62.5% compared with those of spherical-TiCx/Cu composite (417 MPa, 121 MPa, and 40.3% IACS) with particle size of 49 nm, respectively. Cubic-shaped TiCx particles with sharp corners and edges led to stress/strain localization, which enhanced the compression strength of the composites. The agglomeration of spherical-TiCx particles with small size led to the compression strength reduction of the composites. PMID:28772859

  2. Concentration and particle size distribution of polycyclic aromatic hydrocarbons formed by thermal cooking.

    PubMed

    Saito, E; Tanaka, N; Miyazaki, A; Tsuzaki, M

    2014-06-15

    The concentration and particle size distribution of 19 major polycyclic aromatic hydrocarbons (PAHs) emitted by thermal cooking were investigated. Corn, trout, beef, prawns, and pork were selected for grilling. The PAHs in the oil mist emitted when the food was grilled were collected according to particle size range and analysed by GC/MS. Much higher concentrations of PAHs were detected in the oil mist emitted by grilled pork, trout, and beef samples, which were rich in fat. The main components of the cooking exhaust were 3- and 4-ring PAHs, regardless of food type. The particle size distribution showed that almost all the PAHs were concentrated in particles with diameters of <0.43 μm. For pork, the toxic equivalent of benzo[a]pyrene accounted for 50% of the PAHs in particles with diameters of <0.43 μm. From these results, we estimated that >90% of the PAHs would reach the alveolar region of the lungs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    NASA Astrophysics Data System (ADS)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  4. Quartz cement in sandstones: a review

    NASA Astrophysics Data System (ADS)

    McBride, Earle F.

    Quartz cement as syntaxial overgrowths is one of the two most abundant cements in sandstones. The main factors that control the amount of quartz cement in sandstones are: framework composition; residence time in the "silica mobility window"; and fluid composition, flow volume and pathways. Thus, the type of sedimentary basin in which a sand was deposited strongly controls the cementation process. Sandstones of rift basins (arkoses) and collision-margin basins (litharenites) generally have only a few percent quartz cement; quartzarenites and other quartzose sandstones of intracratonic, foreland and passive-margin basins have the most quartz cement. Clay and other mineral coatings on detrital quartz grains and entrapment of hydrocarbons in pores retard or prevent cementation by quartz, whereas extremely permeable sands that serve as major fluid conduits tend to sequester the greatest amounts of quartz cement. In rapidly subsiding basins, like the Gulf Coast and North Sea basins, most quartz cement is precipitated by cooling, ascending formation water at burial depths of several kilometers where temperatures range from 60° to 100° C. Cementation proceeds over millions of years, often under changing fluid compositions and temperatures. Sandstones with more than 10% imported quartz cement pose special problems of fluid flux and silica transport. If silica is transported entirely as H 4SiO 4, convective recycling of formation water seems to be essential to explain the volume of cement present in most sandstones. Precipitation from single-cycle, upward-migrating formation water is adequate to provide the volume of cement only if significant volumes of silica are transported in unidentified complexes. Modeling suggests that quartz cementation of sandstones in intracratonic basins is effected by advecting meteoric water, although independent petrographic, isotopic or fluid inclusion data are lacking. Silica for quartz cement comes from both shale and sandstone beds within

  5. Size of metallic and polyethylene debris particles in failed cemented total hip replacements

    NASA Technical Reports Server (NTRS)

    Lee, J. M.; Salvati, E. A.; Betts, F.; DiCarlo, E. F.; Doty, S. B.; Bullough, P. G.

    1992-01-01

    Reports of differing failure rates of total hip prostheses made of various metals prompted us to measure the size of metallic and polyethylene particulate debris around failed cemented arthroplasties. We used an isolation method, in which metallic debris was extracted from the tissues, and a non-isolation method of routine preparation for light and electron microscopy. Specimens were taken from 30 cases in which the femoral component was of titanium alloy (10), cobalt-chrome alloy (10), or stainless steel (10). The mean size of metallic particles with the isolation method was 0.8 to 1.0 microns by 1.5 to 1.8 microns. The non-isolation method gave a significantly smaller mean size of 0.3 to 0.4 microns by 0.6 to 0.7 microns. For each technique the particle sizes of the three metals were similar. The mean size of polyethylene particles was 2 to 4 microns by 8 to 13 microns. They were larger in tissue retrieved from failed titanium-alloy implants than from cobalt-chrome and stainless-steel implants. Our results suggest that factors other than the size of the metal particles, such as the constituents of the alloy, and the amount and speed of generation of debris, may be more important in the failure of hip replacements.

  6. Size segregation in bedload sediment transport at the particle scale

    NASA Astrophysics Data System (ADS)

    Frey, P.; Martin, T.

    2011-12-01

    Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles

  7. Preparation and characterization of SiO2-coated submicron-sized L10 Fe-Pt particles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshiaki; Ogawa, Tomoyuki; Ishiyama, Kazushi

    2018-05-01

    The development of magnets with higher performance is attracting increasing interest. The optimization of their microstructure is essential to enhance their properties, and a microstructure comprising magnetically isolated hard magnetic grains of a single-domain size has been proposed as an ideal structure for enhancing the coercivity of magnets. To obtain magnets with an ideal structure, we consider the fabrication of magnets by an approach based on core/shell nanoparticles with a hard magnetic core and a non-magnetic shell. In this study, to obtain particles for our proposed approach, we attempted to fabricate L10 Fe-Pt/SiO2-core/shell particles with submicron-sized cores less than the critical single-domain size. The fabrication of such core/shell particles was confirmed from morphology observations and XRD analysis of the particles. Although the formation of more desirable core/shell particles with submicron-sized single-crystal cores in the single-domain size range was not achieved, the fabricated core/shell particles showed a high coercivity of 25 kOe.

  8. Toxicity of Mineral Dusts and a Proposed Mechanism for the Pathogenesis of Particle-Induced Lung Diseases

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; Zeidler-Erdely, P.; Scully, R.R.; Meyers, V.; Wallace, W.; Hunter, R.; Renne, R.; McCluskey, R.; Castranova, V.; Barger, M.; hide

    2015-01-01

    Humans will set foot on the moon again. The lunar surface has been bombarded for 4 billion years by micrometeoroids and cosmic radiation, creating a layer of fine dust having a potentially reactive particle surface. To investigate the impact of surface reactivity (SR) on the toxicity of particles, and in particular, lunar dust (LD), we ground 2 Apollo 14 LD samples to increase their SR and compare their toxicity with those of unground LD, TiO2 and quartz. Intratracheally instilled at 0, 1, 2.5, or 7.5 mg/rat, all dusts caused dose-dependent increases in pulmonary lesions, and enhancement of biomarkers of toxicity assessed in bronchoalveolar lavage fluids (BALF). The toxicity of LD was greater than that of TiO2 but less than that of quartz. Three LDs differed 14-fold in SR but were equally toxic; quartz had the lowest SR but was most toxic. These results show no correlation between particle SR and toxicity. Often pulmonary toxicity of a dust can be attributed to oxidative stress (OS). We further observed dose-dependent and dustcytotoxicity- dependent increases in neutrophils. The oxidative content per BALF cell was also directly proportional to both the dose and cytotoxicity of the dusts. Because neutrophils are short-lived and release of oxidative contents after they die could initiate and promote a spectrum of lesions, we postulate a general mechanism for the pathogenesis of particle-induced diseases in the lung that involves chiefly neutrophils, the source of persistent endogenous OS. This mechanism explains why one dust (e.g., quartz or nanoparticles) is more toxic than another (e.g., micrometer-sized TiO2), why dust-induced lesions progress with time, and why lung cancer occurs in rats but not in mice and hamsters exposed to the same duration and concentration of dust.

  9. Ratios of total suspended solids to suspended sediment concentrations by particle size

    USGS Publications Warehouse

    Selbig, W.R.; Bannerman, R.T.

    2011-01-01

    Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.

  10. Inversion method based on stochastic optimization for particle sizing.

    PubMed

    Sánchez-Escobar, Juan Jaime; Barbosa-Santillán, Liliana Ibeth; Vargas-Ubera, Javier; Aguilar-Valdés, Félix

    2016-08-01

    A stochastic inverse method is presented based on a hybrid evolutionary optimization algorithm (HEOA) to retrieve a monomodal particle-size distribution (PSD) from the angular distribution of scattered light. By solving an optimization problem, the HEOA (with the Fraunhofer approximation) retrieves the PSD from an intensity pattern generated by Mie theory. The analyzed light-scattering pattern can be attributed to unimodal normal, gamma, or lognormal distribution of spherical particles covering the interval of modal size parameters 46≤α≤150. The HEOA ensures convergence to the near-optimal solution during the optimization of a real-valued objective function by combining the advantages of a multimember evolution strategy and locally weighted linear regression. The numerical results show that our HEOA can be satisfactorily applied to solve the inverse light-scattering problem.

  11. A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.

    PubMed

    Islam, Mohammad Aminul; Barua, Sutapa; Barua, Dipak

    2017-11-25

    Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.

  12. Stable Carbon Fractionation In Size Segregated Aerosol Particles Produced By Controlled Biomass Burning

    NASA Astrophysics Data System (ADS)

    Masalaite, Agne; Garbaras, Andrius; Garbariene, Inga; Ceburnis, Darius; Martuzevicius, Dainius; Puida, Egidijus; Kvietkus, Kestutis; Remeikis, Vidmantas

    2014-05-01

    Biomass burning is the largest source of primary fine fraction carbonaceous particles and the second largest source of trace gases in the global atmosphere with a strong effect not only on the regional scale but also in areas distant from the source . Many studies have often assumed no significant carbon isotope fractionation occurring between black carbon and the original vegetation during combustion. However, other studies suggested that stable carbon isotope ratios of char or BC may not reliably reflect carbon isotopic signatures of the source vegetation. Overall, the apparently conflicting results throughout the literature regarding the observed fractionation suggest that combustion conditions may be responsible for the observed effects. The purpose of the present study was to gather more quantitative information on carbonaceous aerosols produced in controlled biomass burning, thereby having a potential impact on interpreting ambient atmospheric observations. Seven different biomass fuel types were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size segregated particles. Size segregated aerosol particles were collected using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The largest negative fractionation was obtained for the wood pellet fuel type while the largest positive isotopic fractionation was observed during the buckwheat shells combustion. The carbon isotope composition of MOUDI samples compared very well with isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in

  13. The effect of formaldehyde and nitrogen-containing compounds on the size and volume of aerosol particles

    NASA Astrophysics Data System (ADS)

    Millage, K.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    Atmospheric aerosol can interact with clouds in many ways, often resulting in the redistribution or absorption of solar energy or changes in precipitation efficiency. Secondary organic aerosol (SOA) in particular has been linked to climate change and a reduction in the number and size of cloud particles. The reactions of nitrogen containing compounds (primary amines, amino acids and ammonium sulfate) with carbonyl compounds (such as formaldehyde and glycolaldehyde) are potential sources of SOA. Aerosol containing formaldehyde and nitrogen-containing compounds (glycine, methylamine, arginine, or ammonium sulfate) was generated from buffered solutions (pH 5.4) using a nebulizer. The aerosol was then equilibrated into a chamber containing humid air (82-84% RH), and particle sizes were measured using a SMPS system over a period of 1 hour in order to examine how the size and volume of the aerosol particles changed. Formaldehyde concentrations were varied over multiple experiments. Arginine displayed a trend of increasing relative particle size with increasing formaldehyde concentration. Ammonium sulfate and formaldehyde displayed a decrease in relative particle sizes from 0:1 to 2:1 ratios of formaldehyde to ammonium sulfate, but then an increase in relative particle sizes with increasing amounts of formaldehyde. Similarly, glycine and methylamine initially displayed decreasing relative particle sizes, until reaching a 1:1 ratio of each to formaldehyde at which point the relative particle sizes steadily increased. These effects were likely caused by the evaporation of first-generation imine products.

  14. Particle size variations between bed load and bed material in natural gravel bed channels

    Treesearch

    Thomas E. Lisle

    1995-01-01

    Abstract - Particle sizes of bed load and bed material that represent materials transported and stored over a period of years are used to investigate selective transport in 13 previously sampled, natural gravel bed channels. The ratio (D*) of median particle size of bed material to the transport- and frequency-weighted mean of median bed load size decreases to unity...

  15. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles

    NASA Astrophysics Data System (ADS)

    Zhai, Jinghao; Lu, Xiaohui; Li, Ling; Zhang, Qi; Zhang, Ci; Chen, Hong; Yang, Xin; Chen, Jianmin

    2017-06-01

    Biomass burning aerosol has an important impact on the global radiative budget. A better understanding of the correlations between the mixing states of biomass burning particles and their optical properties is the goal of a number of current studies. In this work, the effective density, chemical composition, and optical properties of rice straw burning particles in the size range of 50-400 nm were measured using a suite of online methods. We found that the major components of particles produced by burning rice straw included black carbon (BC), organic carbon (OC), and potassium salts, but the mixing states of particles were strongly size dependent. Particles of 50 nm had the smallest effective density (1.16 g cm-3) due to a relatively large proportion of aggregate BC. The average effective densities of 100-400 nm particles ranged from 1.35 to 1.51 g cm-3 with OC and inorganic salts as dominant components. Both density distribution and single-particle mass spectrometry showed more complex mixing states in larger particles. Upon heating, the separation of the effective density distribution modes confirmed the external mixing state of less-volatile BC or soot and potassium salts. The size-resolved optical properties of biomass burning particles were investigated at two wavelengths (λ = 450 and 530 nm). The single-scattering albedo (SSA) showed the lowest value for 50 nm particles (0.741 ± 0.007 and 0.889 ± 0.006) because of the larger proportion of BC content. Brown carbon played an important role for the SSA of 100-400 nm particles. The Ångström absorption exponent (AAE) values for all particles were above 1.6, indicating the significant presence of brown carbon in all sizes. Concurrent measurements in our work provide a basis for discussing the physicochemical properties of biomass burning aerosol and its effects on the global climate and atmospheric environment.

  16. Selective counting and sizing of single virus particles using fluorescent aptamer-based nanoparticle tracking analysis.

    PubMed

    Szakács, Zoltán; Mészáros, Tamás; de Jonge, Marien I; Gyurcsányi, Róbert E

    2018-05-30

    Detection and counting of single virus particles in liquid samples are largely limited to narrow size distribution of viruses and purified formulations. To address these limitations, here we propose a calibration-free method that enables concurrently the selective recognition, counting and sizing of virus particles as demonstrated through the detection of human respiratory syncytial virus (RSV), an enveloped virus with a broad size distribution, in throat swab samples. RSV viruses were selectively labeled through their attachment glycoproteins (G) with fluorescent aptamers, which further enabled their identification, sizing and counting at the single particle level by fluorescent nanoparticle tracking analysis. The proposed approach seems to be generally applicable to virus detection and quantification. Moreover, it could be successfully applied to detect single RSV particles in swab samples of diagnostic relevance. Since the selective recognition is associated with the sizing of each detected particle, this method enables to discriminate viral elements linked to the virus as well as various virus forms and associations.

  17. Emission factors for PM2.5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE.

    PubMed

    Cereceda-Balic, Francisco; Toledo, Mario; Vidal, Victor; Guerrero, Fabian; Diaz-Robles, Luis A; Petit-Breuilh, Ximena; Lapuerta, Magin

    2017-04-15

    The objective of this research was to determine emission factors (EF) for particulate matter (PM 2.5 ), combustion gases and particle size distribution generated by the combustion of Eucalyptus globulus (EG), Nothofagus obliqua (NO), both hardwoods, and Pinus radiata (PR), softwood, using a controlled combustion chamber (3CE). Additionally, the contribution of the different emissions stages associated with the combustion of these wood samples was also determined. Combustion experiments were performed using shaving size dried wood (0% humidity). The emission samples were collected with a tedlar bag and sampling cartridges containing quartz fiber filters. High reproducibility was achieved between experiment repetitions (CV<10%, n=3). The EF for PM 2.5 was 1.06gkg -1 for EG, 1.33gkg -1 for NO, and 0.84gkg -1 for PR. Using a laser aerosol spectrometer (0.25-34μm), the contribution of particle emissions (PM 2.5 ) in each stage of emission process (SEP) was sampled in real time. Particle size of 0.265μm were predominant during all stages, and the percentages emitted were PR (33%), EG (29%), and NO (21%). The distributions of EF for PM 2.5 in pre-ignition, flame and smoldering stage varied from predominance of the flame stage for PR (77%) to predominance of the smoldering stage for NO (60%). These results prove that flame phase is not the only stage contributing to emissions and on the contrary, pre-ignition and in especial post-combustion smoldering have also very significant contributions. This demonstrates that particle concentrations measured only in stationary state during flame stage may cause underestimation of emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of Particle Size on Thermal Conductivity of Nanofluid

    NASA Astrophysics Data System (ADS)

    Chopkar, M.; Sudarshan, S.; Das, P. K.; Manna, I.

    2008-07-01

    Nanofluids, containing nanometric metallic or oxide particles, exhibit extraordinarily high thermal conductivity. It is reported that the identity (composition), amount (volume percent), size, and shape of nanoparticles largely determine the extent of this enhancement. In the present study, we have experimentally investigated the impact of Al2Cu and Ag2Al nanoparticle size and volume fraction on the effective thermal conductivity of water and ethylene glycol based nanofluid prepared by a two-stage process comprising mechanical alloying of appropriate Al-Cu and Al-Ag elemental powder blend followed by dispersing these nanoparticles (1 to 2 vol pct) in water and ethylene glycol with different particle sizes. The thermal conductivity ratio of nanofluid, measured using an indigenously developed thermal comparator device, shows a significant increase of up to 100 pct with only 1.5 vol pct nanoparticles of 30- to 40-nm average diameter. Furthermore, an analytical model shows that the interfacial layer significantly influences the effective thermal conductivity ratio of nanofluid for the comparable amount of nanoparticles.

  19. Digital Image Analysis Algorithm For Determination of Particle Size Distributions In Diesel Engines

    NASA Astrophysics Data System (ADS)

    Armas, O.; Ballesteros, R.; Gomez, A.

    One of the most serious problems associated to Diesel engines is pollutant emissions, standing out nitrogen oxides and particulate matter. However, although current emis- sions standards in Europe and America with regard to light vehicles and heavy duty engines refer the particulate limit in mass units, concern for knowing size and number of particles emitted by engines is being increased recently. This interest is promoted by last studies about particle harmful effects on health and is enhanced by recent changes in internal combustion engines technology. This study is focused on the implementation of a method to determine the particle size distribution made up in current methodology for vehicles certification in Europe. It will use an automated Digital Image Analysis Algorithm (DIAA) to determine particle size trends from Scanning Electron Microscope (SEM) images of filters charged in a dilution system used for measuring specific particulate emissions. The experimental work was performed on a steady state direct injection Diesel en- gine with 0.5 MW rated power, being considered as a typical engine in middle power industries. Particulate size distributions obtained using DIAA and a Scanning Mobil- ity Particle Sizer (SMPS), nowadays considered as the most reliable technique, were compared. Although number concentration detected by this method does not repre- sent real flowing particle concentration, this algorithm fairly reproduces the trends observed with SMPS when the engine load is varied.

  20. Laboratory evaluation of the particle size effect on the performance of an elastomeric half-mask respirator against ultrafine combustion particles.

    PubMed

    He, Xinjian; Grinshpun, Sergey A; Reponen, Tiina; Yermakov, Michael; McKay, Roy; Haruta, Hiroki; Kimura, Kazushi

    2013-08-01

    This study quantified the particle size effect on the performance of elastomeric half-mask respirators, which are widely used by firefighters and first responders exposed to combustion aerosols. One type of elastomeric half-mask respirator equipped with two P-100 filters was donned on a breathing manikin while challenged with three combustion aerosols (originated by burning wood, paper, and plastic). Testing was conducted with respirators that were fully sealed, partially sealed (nose area only), or unsealed to the face of a breathing manikin to simulate different faceseal leakages. Three cyclic flows with mean inspiratory flow (MIF) rates of 30, 85, and 135 L/min were tested for each combination of sealing condition and combustion material. Additional testing was performed with plastic combustion particles at other cyclic and constant flows. Particle penetration was determined by measuring particle number concentrations inside and outside the respirator with size ranges from 20 to 200 nm. Breathing flow rate, particle size, and combustion material all had significant effects on the performance of the respirator. For the partially sealed and unsealed respirators, the penetration through the faceseal leakage reached maximum at particle sizes >100 nm when challenged with plastic aerosol, whereas no clear peaks were observed for wood and paper aerosols. The particles aerosolized by burning plastic penetrated more readily into the unsealed half-mask than those aerosolized by the combustion of wood and paper. The difference may be attributed to the fact that plastic combustion particles differ from wood and paper particles by physical characteristics such as charge, shape, and density. For the partially sealed respirator, the highest penetration values were obtained at MIF = 85 L/min. The unsealed respirator had approximately 10-fold greater penetration than the one partially sealed around the bridge of the nose, which indicates that the nose area was the primary leak

  1. Ionic current rectification in organic solutions with quartz nanopipettes.

    PubMed

    Yin, Xiaohong; Zhang, Shudong; Dong, Yitong; Liu, Shujuan; Gu, Jing; Chen, Ye; Zhang, Xin; Zhang, Xianhao; Shao, Yuanhua

    2015-09-01

    The study of behaviors of ionic current rectification (ICR) in organic solutions with quartz nanopipettes is reported. ICR can be observed even in organic solutions using quartz pipettes with diameters varied from several to dozens of nanometers, and the direction of ICR is quite different from the ICR observed in aqueous phase. The influences of pore size, electrolyte concentration, and surface charge on the ICR have been investigated carefully. Water in organic solutions affects the direction and extent of ICR significantly. Mechanisms about the formation of an electrical double layer (EDL) on silica in organic solutions with different amount of water have been proposed. An improved method, which can be employed to detect trace water in organic solutions, has been implemented based on Au ultramicroelectrodes with cathodic differential pulse stripping voltammetry.

  2. Appendix B: Summary of TEM Particle Size Distribution Datasets

    EPA Pesticide Factsheets

    As discussed in the main text (see Section 5.3.2), calculation of the concentration of asbestos fibers in each of the bins of potential interest requires particle size distribution data derived using transmission electron microscopy (TEM).

  3. Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions

    NASA Astrophysics Data System (ADS)

    Costa, Pedro; Picano, Francesco; Brandt, Luca; Breugem, Wim-Paul

    2018-05-01

    We use interface-resolved simulations to study finite-size effects in turbulent channel flow of neutrally-buoyant spheres. Two cases with particle sizes differing by a factor of 2, at the same solid volume fraction of 20% and bulk Reynolds number are considered. These are complemented with two reference single-phase flows: the unladen case, and the flow of a Newtonian fluid with the effective suspension viscosity of the same mixture in the laminar regime. As recently highlighted in Costa et al. (PRL 117, 134501), a particle-wall layer is responsible for deviations of the statistics from what is observed in the continuum limit where the suspension is modeled as a Newtonian fluid with an effective viscosity. Here we investigate the fluid and particle dynamics in this layer and in the bulk. In the particle-wall layer, the near wall inhomogeneity has an influence on the suspension micro-structure over a distance proportional to the particle size. In this layer, particles have a significant (apparent) slip velocity that is reflected in the distribution of wall shear stresses. This is characterized by extreme events (both much higher and much lower than the mean). Based on these observations we provide a scaling for the particle-to-fluid apparent slip velocity as a function of the flow parameters. We also extend the flow scaling laws in to second-order Eulerian statistics in the homogeneous suspension region away from the wall. Finite-size effects in the bulk of the channel become important for larger particles, while negligible for lower-order statistics and smaller particles. Finally, we study the particle dynamics along the wall-normal direction. Our results suggest that 1-point dispersion is dominated by particle-turbulence (and not particle-particle) interactions, while differences in 2-point dispersion and collisional dynamics are consistent with a picture of shear-driven interactions.

  4. Characterization of ambient particles size in workplace of manufacturing physical fitness equipments

    PubMed Central

    LIN, Chih-Chung; CHEN, Mei-Ru; CHANG, Sheng-Lang; LIAO, Wei-Heng; CHEN, Hsiu-Ling

    2014-01-01

    The manufacturing of fitness equipment involves several processes, including the cutting and punching of iron tubes followed by welding. Welding operations produce hazardous gases and particulate matter, which can enter the alveolar, resulting in adverse health effects. This study sought to verify the particle size distribution and exposure concentrations of atmospheric air samples in various work areas of a fitness equipment manufacturing industry. Observed particle concentrations are presented by area and in terms of relative magnitude: painting (15.58 mg/m3) > automatic welding (0.66 mg/m3) > manual welding (0.53 mg/m3) > punching (0.18 mg/m3) > cutting (0.16 mg/m3). The concentrations in each of the five work areas were Cinh>Cthor>Cresp. In all areas except the painting area, extra-fine particles produced by welding at high temperatures, and further those coagulated to form larger particles. This study observed bimodal distribution in the size of welding fume in the ranges of 0.7–1 µm and 15–21 µm. Meanwhile, the mass concentrations of particles with different sizes were not consistent across work areas. In the painting area, the mass concentration was higher in Chead>Cth>Calv, but in welding areas, it was found that Calv>Chead>Cth. Particles smaller than 1µm were primarily produced by welding. PMID:25327301

  5. Sensitivity of Clay Suspension Rheological Properties to pH, Temperature, Salinity, and Smectite-Quartz Ratio

    NASA Astrophysics Data System (ADS)

    Kameda, Jun; Morisaki, Tomonori

    2017-10-01

    Understanding the rheological properties of clay suspensions is critical to assessing the behavior of sediment gravity flows such as debris flow or turbidity current. We conducted rheological measurements of composite smectite-quartz suspensions at a temperature of 7°C and a salt concentration of 0.6 M. This is representative of smectite-bearing sediments under conditions on the seafloor. The flow curves obtained were fitted by the Bingham fluid model, from which we determined the Bingham yield stress and dynamic viscosity of each suspension. At a constant smectite-quartz mixing ratio, the yield stress and the dynamic viscosity tend to increase as the solid/water ratio of the suspension is increased. In the case of a constant solid/water ratio, these values increase with increasing smectite content in the smectite-quartz mixture. Additional experiments exploring differing physicochemical conditions (pH 1.0-9.0; temperature 2-30°C; and electrolyte (NaCl) concentration 0.2-0.6 M) revealed that the influence of temperature is negligible, while pH moderately affects the rheology of the suspension. More significantly, the electrolyte concentration greatly affects the flow behavior. These variations can be explained by direct and/or indirect (double-layer) interactions between smectite-smectite particles as well as between smectite-quartz particles in the suspension. Although smectite is known as a frictionally weak material, our experimental results suggest that its occurrence can reduce the likelihood that slope failure initiates. Furthermore, smectite can effectively suppress the spreading distance once the slope has failed.

  6. Terahertz Spectroscopy for Proximal Soil Sensing: An Approach to Particle Size Analysis

    PubMed Central

    Dworak, Volker; Mahns, Benjamin; Selbeck, Jörn; Weltzien, Cornelia

    2017-01-01

    Spatially resolved soil parameters are some of the most important pieces of information for precision agriculture. These parameters, especially the particle size distribution (texture), are costly to measure by conventional laboratory methods, and thus, in situ assessment has become the focus of a new discipline called proximal soil sensing. Terahertz (THz) radiation is a promising method for nondestructive in situ measurements. The THz frequency range from 258 gigahertz (GHz) to 350 GHz provides a good compromise between soil penetration and the interaction of the electromagnetic waves with soil compounds. In particular, soil physical parameters influence THz measurements. This paper presents investigations of the spectral transmission signals from samples of different particle size fractions relevant for soil characterization. The sample thickness ranged from 5 to 17 mm. The transmission of THz waves was affected by the main mineral particle fractions, sand, silt and clay. The resulting signal changes systematically according to particle sizes larger than half the wavelength. It can be concluded that THz spectroscopic measurements provide information about soil texture and penetrate samples with thicknesses in the cm range. PMID:29048392

  7. Particle-size segregation and diffusive remixing in shallow granular avalanches

    NASA Astrophysics Data System (ADS)

    Gray, J. M. N. T.; Chugunov, V. A.

    2006-12-01

    Segregation and mixing of dissimilar grains is a problem in many industrial and pharmaceutical processes, as well as in hazardous geophysical flows, where the size-distribution can have a major impact on the local rheology and the overall run-out. In this paper, a simple binary mixture theory is used to formulate a model for particle-size segregation and diffusive remixing of large and small particles in shallow gravity-driven free-surface flows. This builds on a recent theory for the process of kinetic sieving, which is the dominant mechanism for segregation in granular avalanches provided the density-ratio and the size-ratio of the particles are not too large. The resulting nonlinear parabolic segregation remixing equation reduces to a quasi-linear hyperbolic equation in the no-remixing limit. It assumes that the bulk velocity is incompressible and that the bulk pressure is lithostatic, making it compatible with most theories used to compute the motion of shallow granular free-surface flows. In steady-state, the segregation remixing equation reduces to a logistic type equation and the ‘S’-shaped solutions are in very good agreement with existing particle dynamics simulations for both size and density segregation. Laterally uniform time-dependent solutions are constructed by mapping the segregation remixing equation to Burgers equation and using the Cole Hopf transformation to linearize the problem. It is then shown how solutions for arbitrary initial conditions can be constructed using standard methods. Three examples are investigated in which the initial concentration is (i) homogeneous, (ii) reverse graded with the coarse grains above the fines, and, (iii) normally graded with the fines above the coarse grains. Time-dependent two-dimensional solutions are also constructed for plug-flow in a semi-infinite chute.

  8. [Particle size determination by radioisotope x-ray absorptiometry with sedimentation method].

    PubMed

    Matsui, Y; Furuta, T; Miyagawa, S

    1976-09-01

    The possibility of radioisotope X-ray absorptiometry to determine the particle size of powder in conjunction with sedimentation was investigated. The experimental accuracy was primarily determined by Cow and X-ray intensity. where Co'=weight concentration of the particle in the suspension w'=(micron/rho)l/(mu/rho)s-rhol/rhos rho; density micron/rho; mass absorption coefficient, suffix l and s indicate dispersion and particle, respectively. The radiosiotopes, Fe-55, Pu-238 and Cd-109 have high w-values over the wide range of the atomic number. However, a source of high micron value such as Fe-55 is not suitable because the optimal X-ray transmission length, Lopt is decided by the expression, micronlLopt approximately 2/(1+C'ow') by using Cd-109 AgKX-ray source, the weight size distribution of particles from the heavy elements such as PbO2 to light elements such as Al2O3 or flyash was determined.

  9. Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area

    PubMed Central

    Jeong, Hoon Y.; Lee, Jun H.; Hayes, Kim F.

    2010-01-01

    Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/nmm) with unit cell parameters a = b = 3.67 Å and c = 5.20 Å. Iron K-edge XAS analysis also indicated the dominance of mackinawite. Lattice expansion of synthetic mackinawite was observed along the c-axis relative to well-crystalline mackinawite. Compared with relatively short-aged phase, the mackinawite prepared here was composed of larger crystallites with less elongated lattice spacings. The direct observation of lattice fringes by HR-TEM verified the applicability of Bragg diffraction in determining the lattice parameters of nanocrystalline mackinawite from XRPD patterns. Estimated particle size and external specific surface area (SSAext) of nanocrystalline mackinawite varied significantly with the methods used. The use of Scherrer equation for measuring crystallite size based on XRPD patterns is limited by uncertainty of the Scherrer constant (K) due to the presence of polydisperse particles. The presence of polycrystalline particles may also lead to inaccurate particle size estimation by Scherrer equation, given that crystallite and particle sizes are not equivalent. The TEM observation yielded the smallest SSAext of 103 m2/g. This measurement was not representative of dispersed particles due to particle aggregation from drying during sample preparation. In contrast, EGME method and PCS measurement yielded higher SSAext (276–345 m2/g by EGME and 424 ± 130 m2/g by PCS). These were in reasonable agreement with those previously measured by the methods insensitive to particle aggregation. PMID:21085620

  10. The influence of initial atomized droplet size on residual particle size from pressurized metered dose inhalers.

    PubMed

    Sheth, Poonam; Stein, Stephen W; Myrdal, Paul B

    2013-10-15

    Pressurized metered dose inhalers (pMDIs) are widely used for the treatment of diseases of the lung, including asthma and chronic obstructive pulmonary disease. The mass median aerodynamic diameter of the residual particles (MMADR) delivered from a pMDI plays a key role in determining the amount and location of drug deposition in the lung and thereby the efficacy of the inhaler. The mass median diameter of the initial droplets (MMDI), upon atomization of a formulation, is a significant factor influencing the final particle size. The purpose of this study was to evaluate the extent that MMDI and initial droplet geometric standard deviation (GSD) influence the residual aerodynamic particle size distribution (APSDR) of solution and suspension formulations. From 48 solution pMDI configurations with varying ethanol concentrations, valve sizes and actuator orifice diameters, it was experimentally found that the effective MMDI ranged from 7.8 to 13.3 μm. Subsequently, computational methods were utilized to determine the influence of MMDI on MMADR, by modulating the MMDI for solution and suspension pMDIs. For solution HFA-134a formulations of 0.5% drug in 10% ethanol, varying the MMDI from 7.5 to 13.5 μm increased the MMADR from 1.4 to 2.5 μm. For a suspension formulation with a representative particle size distribution of micronized drug (MMAD=2.5 μm, GSD=1.8), the same increase in MMDI resulted in an increase in the MMADR from 2.7 to only 3.3 μm. Hence, the same increase in MMDI resulted in a 79% increase in MMADR for the solution formulation compared to only a 22% increase for the suspension formulation. Similar trends were obtained for a range of drug concentrations and input micronized drug sizes. Thus, APSDR is more sensitive to changes in MMDI for solution formulations than suspension formulations; however, there are situations in which hypothetically small micronized drug in suspension (e.g. 500 nm MMAD) could resemble trends observed for solution formulations

  11. Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris

    NASA Astrophysics Data System (ADS)

    Healy, R. M.; Sciare, J.; Poulain, L.; Kamili, K.; Merkel, M.; Müller, T.; Wiedensohler, A.; Eckhardt, S.; Stohl, A.; Sarda-Estève, R.; McGillicuddy, E.; O'Connor, I. P.; Sodeau, J. R.; Wenger, J. C.

    2012-02-01

    An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150-1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65-0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data

  12. Particle size distribution as a useful tool for microbial detection.

    PubMed

    Chavez, A; Jimenez, B; Maya, C

    2004-01-01

    Worldwide, raw or treated wastewater is used for irrigation. However, this practice implies that the microbial content must be controlled. Unfortunately, detection techniques for microorganisms are costly, time consuming, and require highly trained personnel. For these reasons, this study used particle size distribution to measure the microbial quality of wastewater through correlations between the number or volume of particles and the concentration of fecal coliforms, Salmonella spp. and helminth ova. Such correlations were obtained for both raw and chemically treated wastewater. The best fit was the one for helminth ova, which applies for both the influent and effluent and also for all the coagulants involved. This technique allows the on-line quantification of helminth ova at a cost of US$3 and it takes only 5 minutes, instead of the US$70 and 5 days for the standard technique. With respect to the coagulants applied, their behavior is different only for particles smaller than 8 microm, and thus this value is considered as the critical size for this particular treatment. The best coagulant was the aluminium polychloride. In addition, this work establishes the distribution of COD, TSS, nitrogen, and phosphorous for particles smaller and larger than 20 microm.

  13. Crystallization of micrometer-sized particles with molecular contours.

    PubMed

    Song, Pengcheng; Olmsted, Brian K; Chaikin, Paul; Ward, Michael D

    2013-11-12

    The crystallization of micrometer-sized particles with shapes mimicking those of tetrabenzoheptacene (TBH) and 1,2:5,6-dibenzanthracene (DBT), both flat polyacenes, in an electric field results in the formation of ordered 2D packings that mimic the plane group symmetries in their respective molecular crystal equivalents. Whereas the particles packed in low-density disordered arrangements under a gravitational gradient, dielectrophoresis (under an ac electric field) produced ordered high-density packings with readily identifiable plane group symmetry. The ordered colloidal assemblies were stable for hours, with the packing density decreasing slowly but with recognizable symmetry for up to 12 h for the TBH-shaped particles and up to 4 h for the DBT-shaped particles. This unexpected stability is attributed to jamming behavior associated with interlocking of the dogbone-shaped (TBH) and Z-block (DBT) particles, contrasting with the more rapid reduction of packing density and loss of hexagonal symmetry for disk-shaped particles upon removal of the electric field. The TBH-shaped and DBT-shaped particles assemble into the p2 plane group, which corresponds to the densest particle packing among the possible close-packed plane groups for these particle symmetries. The p2 symmetry observed for the TBH-shaped and DBT-shaped colloid crystal emulates the p2 symmetry of the (010) layers in their respective molecular crystals, which crystallize in monoclinic lattices. Notably, DBT-shaped particles also form ordered domains with pgg symmetry, replicating the plane group symmetry of the (100) layer in the orthorhombic polymorph of DBT. These observations illustrate that the 2D ordering of colloid particles can mimic the packing of molecules with similar shapes, demonstrating that packing can transcend length scales from the molecular to the colloidal.

  14. Description of Particle Size, Distribution, and Behavior of Talc Preparations Commercially Available Within the United States.

    PubMed

    Gilbert, Christopher R; Furman, Benjamin R; Feller-Kopman, David J; Haouzi, Philippe

    2018-01-01

    Widespread use of talc pleurodesis remains controversial for many providers concerned by adverse events such as respiratory failure, which are sometimes fatal. Particle talc size has been implicated in these adverse effects, mainly on the basis of animal studies utilizing large amounts of talc or in observational studies performed on different continents with different talc preparations and doses. Our aim was to determine the particle size and distribution of only the commercially available US-talc preparations and whether the fluid content can affect this distribution. Commercially available US talc was evaluated under scanning electron microscopy and dynamic light scattering (DLS). Distribution of talc particle size was obtained in saline and various protein-based solutions. Talc particle size by DLS was performed with commercially available Sterile Talc Powder and Sclerosol Intrapleural Aerosol. Sterile Talc Powder demonstrated a median diameter of 26.57 μm with a range of particle sizes from 0.399 μm to 100.237 μm. Sclerosol demonstrated a median diameter of 24.49 μm with a range of particle sizes from 0.224 μm to 100.237 μm. The exposure of talc to a protein rich environment (bovine serum albumin and human pleural fluid) led to the development of measureable, new, larger aggregated particle (>100 μm). Currently available US talc seems to have size characteristics similar to previous described "graded" talc preparations. The exposure of talc to a protein rich environment seems to modify the overall distribution of talc particle size when examined by DLS.

  15. Seasonal variations of number size distributions and mass concentrations of atmospheric particles in Beijing

    NASA Astrophysics Data System (ADS)

    Yu, Jianhua; Guinot, Benjamin; Yu, Tong; Wang, Xin; Liu, Wenqing

    2005-06-01

    Particle number and mass concentrations were measured in Beijing during the winter and summer periods in 2003, together with some other parameters including black carbon (BC) and meteorological conditions. Particle mass concentrations exhibited low seasonality, and the ratio of PM2.5/PM10 in winter was higher than that in summer. Particle number size distribution (PSD) was characterized by four modes and exhibited low seasonality. BC was well correlated with the number and mass concentrations of accumulation and coarse particles, indicating these size particles are related to anthropogenic activities. Particle mass and number concentrations (except ultra-fine and nucleation particles) followed well the trends of BC concentration for the majority of the day, indicating that most particles were associated with primary emissions. The diurnal number distributions of accumulation and coarse mode particles were characterized by two peaks.

  16. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    EPA Science Inventory

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  17. Sensitivity of Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations

    DTIC Science & Technology

    2016-06-12

    Particle Size in Discrete Element Method to Particle Gas Method (DEM_PGM) Coupling in Underbody Blast Simulations Venkatesh Babu, Kumar Kulkarni, Sanjay...buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) and (2) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The...DEM_PGM and identify the limitations/strengths compared to the ALE method. Discrete Element Method (DEM) can model individual particle directly, and

  18. Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange.

    PubMed

    Zhu, Yue-Shan; Yang, Wan-Dong; Li, Xiu-Wen; Ni, Hong-Gang; Zeng, Hui

    2018-02-01

    The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comprehensive Characterization Of Ultrafine Particulate Emission From 2007 Diesel Engines: PM Size Distribution, Loading And Indidividual Particle Size And Composition.

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Cuadra-Rodriguez, L. A.; Imre, D.; Shimpi, S.; Warey, A.

    2006-12-01

    The strong absorption of solar radiation by black carbon (BC) impacts the atmospheric radiative balance in a complex and significant manner. One of the most important sources of BC is vehicular emissions, of which diesel represents a significant fraction. To address this issue the EPA has issues new stringent regulations that will be in effect in 2007, limiting the amount of particulate mass that can be emitted by diesel engines. The new engines are equipped with aftertreatments that reduce PM emissions to the point, where filter measurements are subject to significant artifacts and characterization by other techniques presents new challenges. We will present the results of the multidisciplinary study conducted at the Cummins Technical Center in which a suite of instruments was deployed to yield comprehensive, temporally resolved information on the diesel exhaust particle loadings and properties in real-time: Particle size distributions were measured by Engine Exhaust Particle Sizer (EEPS) and Scanning Mobility Particle Sizer (SMPS). Total particle diameter concentration was obtained using Electrical Aerosol Detector (EAD). Laser Induced Incandescence and photoacoustic techniques were used to monitor the PM soot content. Single Particle Laser Ablation Time-of- flight Mass Spectrometer (SPLAT) provided the aerodynamic diameter and chemical composition of individual diesel exhaust particles. Measurements were conducted on a number of heavy duty diesel engines operated under variety of operating conditions, including FTP transient cycles, ramped-modal cycles and steady states runs. We have also characterized PM emissions during diesel particulate filter regeneration cycles. We will present a comparison of PM characteristics observed during identical cycles, but with and without the use of aftertreatment. A total of approximately 100,000 individual particles were sized and their composition characterized by SPLAT. The aerodynamic size distributions of the characterized

  20. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study

    PubMed Central

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2015-01-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a

  1. [Influence of wall polymer and preparation process on the particle size and encapsulation of hemoglobin microcapsules].

    PubMed

    Qiu, Wei; Ma, Guang-Hui; Meng, Fan-Tao; Su, Zhi-Guo

    2004-03-01

    Methoxypoly (ethylene glycol)- block-poly (DL-lactide) (PELA) microcapsules containing bovine hemoglobin (BHb) were prepared by a W/O/W double emulsion-solvent diffusion process. The P50 and Hill coeffcient were 3466 Pa and 2.4 respectively, which were near to the natural bioactivity of bovine hemoglobin. The results suggested that polymer composition had significant influence on encapsulation efficiency and particle size of microcapsules. The encapsulation efficiency could reach 90% and the particle size 3 - 5 microm when the PELA copolymer containing MPEG 2000 block was used. The encapsulation efficiency and particle size increased with the concentration of PELA. Increasing the concentrations of NaCl in outer aqueous solution resulted in the increase of encapsulation efficiency and the decrease of particle size. As the concentration of stabilizer in outer aqueous solution increased in the range of 10 g/L to 20 g/L, the particle size reduced while encapsulation efficiency was increased, further increase of the stabilizer concentration would decrease encapsulation efficiency. Increasing of primary emulsion stirring rate was advantageous to the improvement of encapsulation efficiency though it had little influence on the particle size. The influence of re-emulsion stirring rate was complicated, which was not apparent in the case of large volume of re-emulsion solution. When the wall polymer and primary emulsion stirring rate were fixed, the encapsulation efficiency decreased as the particle size reduced.

  2. COMPARISON OF TWO PARTICLE-SIZE SPECTROMETERS FOR AMBIENT AEROSOL MEASUREMENTS. (R827354C002)

    EPA Science Inventory

    There is an ongoing debate on the question which size fraction of particles in ambient air may be responsible for human health effects observed in epidemiological studies. Since there is no single instrument available for the measurement of the particle-size distribution over ...

  3. Particle size alterations of feedstuffs during in situ neutral detergent fiber incubation.

    PubMed

    Krämer, M; Nørgaard, P; Lund, P; Weisbjerg, M R

    2013-07-01

    Particle size alterations during neutral detergent fiber (NDF) determination and in situ rumen incubation were analyzed by dry sieving and image analysis to evaluate the in situ procedure for estimation of NDF degradation parameters and indigestible NDF concentration in terms of particle size. Early-cut and late-cut grass silages, corn silage, alfalfa silage, rapeseed meal, and dried distillers grains were examined. Treatments were (1) drying and grinding of forage samples and grinding of concentrates; (2) neutral detergent-soluble (NDS) extraction; (3) machine washing and NDS extraction; (4) 24-h rumen incubation, machine washing, and NDS extraction; and (5) 288-h rumen incubation, machine washing, and NDS extraction. Degradation profiles for potentially degradable NDF were determined and image analysis was used to estimate particle size profiles and thereby the risk for particle loss. Particle dimensions changed during NDF determination and in situ rumen incubation and variations depended on feedstuff and treatment. Corn silage and late-cut grass silage varied most in particle area among feedstuffs, with an increase of 139% between 0 and 24h and a decrease of 77% between 24 and 288 h for corn silage and a decrease of 74% for late-cut grass silage between 24- and 288-h in situ rumen incubation. Especially for late-cut grass silage residues after 288 h in situ rumen incubation, a high mass proportion in the critical zone for escape was found. Particle area decreased linearly with increasing incubation time. Particle loss during in situ rumen incubation cannot be excluded and is likely to vary among feedstuffs. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...

  5. Particle-Size-Exclusion Clogging Regimes in Porous Media

    NASA Astrophysics Data System (ADS)

    Gerber, G.; Rodts, S.; Aimedieu, P.; Faure, P.; Coussot, P.

    2018-04-01

    From observations of the progressive deposition of noncolloidal particles by geometrical exclusion effects inside a 3D model porous medium, we get a complete dynamic view of particle deposits over a full range of regimes from transport over a long distance to clogging and caking. We show that clogging essentially occurs in the form of an accumulation of elements in pore size clusters, which ultimately constitute regions avoided by the flow. The clusters are dispersed in the medium, and their concentration (number per volume) decreases with the distance from the entrance; caking is associated with the final stage of this effect (for a critical cluster concentration at the entrance). A simple probabilistic model, taking into account the impact of clogging on particle transport, allows us to quantitatively predict all these trends up to a large cluster concentration, based on a single parameter: the clogging probability, which is a function of the confinement ratio. This opens the route towards a unification of the different fields of particle transport, clogging, caking, and filtration.

  6. Constraints on Particle Sizes in Saturn's G Ring from Ring Plane Crossing Observations

    NASA Astrophysics Data System (ADS)

    Throop, H. B.; Esposito, L. W.

    1996-09-01

    The ring plane crossings in 1995--96 allowed earth-based observations of Saturn's diffuse rings (Nicholson et al., Nature 272, 1996; De Pater et al. Icarus 121, 1996) at a phase angle of alpha ~ 5 deg . We calculate the G ring reflectance for steady state distributions of dust to km-sized bodies from a range of physical models which track the evolution of the G ring from its initial formation following the disruption of a progenitor satellite (Canup & Esposito 1996, \\ Icarus,\\ in press). We model scattering from the ring's small particles using an exact T-matrix method for nonspherical, absorptive particles (Mishchenko et al. 1996, \\ JGR Atmo., in press), large particles using the phase function and spectrum of Europa, and intermediate particles using a linear combination of the small and large limits. Two distinct particle size distributions from the CE96 model fit the observed spectrum. The first is that of a dusty ring, with the majority of ring reflectance in dust particles of relatedly shallow power law size distribution exponent q ~ 2.5. The second has equal reflectances from a) dust in the range q ~ 3.5 -- 6.5 and b) macroscopic bodies > 1 mm. In this second case, the respective slightly blue and red components combine to form the observed relatively flat spectrum. Although light scattering in backscatter is not sufficient to completely constrain the G ring size distribution, the distributions predicted by the CE96 model can explain the earth-based observations.

  7. Study of effect of variables on particle size of telmisartan nanosuspensions using box-Behnken design.

    PubMed

    Rao, M R P; Bajaj, A

    2014-12-01

    Telmisartan, an orally active nonpeptide angiotensin II receptor antagonist is a BCS Class II drug having aqueous solubility of 9.9 µg/ml and hence oral bioavailability of 40%. The present study involved preparation of nanosuspensions by evaporative antisolvent precipitation technique to improve the saturation solubility and dissolution rate of telmisartan. Various stabilizers such as TPGS, PVPK 30, PEG 6000 were investigated of which TPGS was found to provide maximum decrease in particle size and accord greater stability to the nanosuspensions. Box-Behnken design was used to investigate the effect of independent variables like stabilizer concentration, time and speed of stirring on particle size of nanosuspensions. Pharmacodynamic studies using Goldblatt technique were undertaken to evaluate the effect of nano-sizing on the hypotensive effect of the drug. Concentration of TPGS and speed of rotation were found to play an important role in particle size of the nanosuspensions whereas time of stirring displayed an exponential relationship with particle size. Freeze dried nanocrystals obtained from nanosuspension of least particle size were found to have increased saturation solubility of telmisartan in different dissolution media. The reconstituted nanosuspension was found to reduce both systolic and diastolic blood pressure without affecting pulse pressure and heart rate. Statistical tools can be used to identify key process and formulation parameters which play a significant role in controlling the particle size in nanosuspensions. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Effect of particle size on the photochromic response of PWA/SiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Huang, Feng-Hsi; Chen, Ching-Chung; Lin, Dar-Jong; Don, Trong-Ming; Cheng, Liao-Ping

    2010-10-01

    A series of photochromic phosphotungstic acid (PWA)/SiO2 composites were synthesized using the sol-gel method. Depending on the feeding schedule of PWA during synthesis, the size of the formed PWA/SiO2 particles varied considerably from as small as 1.2 nm to ca. 10 nm. With decreasing silica particle size, the total contact area/interaction between SiO2 and PWA increases, as revealed by FT-IR and solid-state 29Si-NMR analyses. Particularly, when the size of PWA/SiO2 is 1 nm, crystallization of PWA is inhibited, and PWA presents as amorphous molecular entities distributing uniformly in the SiO2 host, which is in evidence in the XRD spectroscopy and HR-TEM imaging. In contrast, substantial crystallization of PWA takes place when PWA/SiO2 particles are as large as 10 nm, in which case less amount of surface free Si-OH is available for PWA to make bonds with. Photochromism occurs activated by ultraviolet light irradiation. The rate of coloration/bleaching is found to depend strongly on the particle size of PWA/SiO2; specifically, the rate increases twice when the particle size is reduced from 10 nm to 1.2 nm.

  9. Metals and bacteria partitioning to various size particles in Ballona Creek storm water runoff.

    PubMed

    Brown, Jeffrey S; Stein, Eric D; Ackerman, Drew; Dorsey, John H; Lyon, Jessica; Carter, Patrick M

    2013-02-01

    Many storm water best management practice (BMP) devices function primarily by capturing particulate matter to take advantage of the well-documented association between storm water particles and pollutants. The hydrodynamic separation or settling methods used by most BMP devices are most effective at capturing medium to large particles; however, these may not be the most predominant particles associated with urban runoff. The present study examined particle size distribution in storm water runoff from an urban watershed in southern California and investigated the pollutant-particle associations of metals (Cu, Pb, Ni, and Zn) and bacteria (enterococci and Escherichia coli). During small storm events (≤0.7 cm rain), the highest concentration of pollutants were associated with a <6-µm filter fraction, which accounted for 70% of the per storm contaminant mass but made up more than 20% of the total particle mass. The pollutant-particle association changed with storm size. Most pollutant mass was associated with >35 µm size particles during a 5-cm rain event. These results suggest that much of the contaminant load in storm water runoff will not be captured by the most commonly used BMP devices, because most of these devices (e.g., hydrodynamic separators) are unable to capture particles smaller than 75 µm. Copyright © 2012 SETAC.

  10. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary

  11. Mineralogy and characterization of deposited particles of the aero sediments collected in the vicinity of power plants and the open pit coal mine: Kolubara (Serbia).

    PubMed

    Cvetković, Željko; Logar, Mihovil; Rosić, Aleksandra

    2013-05-01

    In this paper, particular attention was paid to the presence of aerosol solid particles, which occurred mainly as a result of exploitation and coal combustion in the thermal power plants of the Kolubara basin. Not all of the particles created by this type of anthropogenic pollution have an equal impact on human health, but it largely depends on their size and shape. The mineralogical composition and particle size distribution in the samples of aero sediments were defined. The samples were collected close to the power plant and open pit coal mine, in the winter and summer period during the year 2007. The sampling was performed by using precipitators placed in eight locations within the territory of the Lazarevac municipality. In order to characterize the sedimentary particles, several methods were applied: microscopy, SEM-EDX and X-ray powder diffraction. The concentration of aero sediments was also determined during the test period. Variety in the mineralogical composition and particle size depends on the position of the measuring sites, geology of the locations, the annual period of collecting as well as possible interactions. By applying the mentioned methods, the presence of inhalational and respiratory particles variously distributed in the winter and in the summer period was established. The most common minerals are quartz and feldspar. The presence of gypsum, clay minerals, calcite and dolomite as secondary minerals was determined, as well as the participation of organic and inorganic amorphic matter. The presence of quartz as a toxic mineral has a particular impact on human health.

  12. Particle size effect of redox reactions for Co species supported on silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chotiwan, Siwaruk; Tomiga, Hiroki; Katagiri, Masaki

    Conversions of chemical states during redox reactions of two silica-supported Co catalysts, which were prepared by the impregnation method, were evaluated by using an in situ XAFS technique. The addition of citric acid into the precursor solution led to the formation on silica of more homogeneous and smaller Co particles, with an average diameter of 4 nm. The supported Co{sub 3}O{sub 4} species were reduced to metallic Co via the divalent CoO species during a temperature-programmed reduction process. The reduced Co species were quantitatively oxidized with a temperature-programmed oxidation process. The higher observed reduction temperature of the smaller CoO particlesmore » and the lower observed oxidation temperature of the smaller metallic Co particles were induced by the higher dispersion of the Co oxide species, which apparently led to a stronger interaction with supporting silica. The redox temperature between CoO and Co{sub 3}O{sub 4} was found to be independent of the particle size. - Graphical abstract: Chemical state conversions of SiO{sub 2}-supported Co species and the particle size effect have been analyzed by means of in situ XAFS technique. The small CoO particles have endurance against the reduction and exist in a wide temperature range. Display Omitted - Highlights: • The conversions of the chemical state of supported Co species during redox reaction are evaluated. • In operando XAFS technique were applied to measure redox properties of small Co particles. • A small particle size affects to the redox temperatures of cobalt catalysts.« less

  13. In-situ detection of micron-sized dust particles in near-Earth space

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Zook, H. A.

    1985-01-01

    In situ detectors for micron sized dust particles based on the measurement of impact ionization have been flown on several space missions (Pioneer 8/9, HEOS-2 and Helios 1/2). Previous measurements of small dust particles in near-Earth space are reviewed. An instrument is proposed for the measurement of micron sized meteoroids and space debris such as solid rocket exhaust particles from on board an Earth orbiting satellite. The instrument will measure the mass, speed, flight direction and electrical charge of individually impacting debris and meteoritic particles. It is a multicoincidence detector of 1000 sq cm sensitive area and measures particle masses in the range from 10 to the -14th power g to 10 to the -8th power g at an impact speed of 10 km/s. The instrument is lightweight (5 kg), consumes little power (4 watts), and requires a data sampling rate of about 100 bits per second.

  14. Using sediment particle size distribution to evaluate sediment sources in the Tobacco Creek Watershed

    NASA Astrophysics Data System (ADS)

    Liu, Cenwei; Lobb, David; Li, Sheng; Owens, Philip; Kuzyk, ZouZou

    2014-05-01

    Lake Winnipeg has recently brought attention to the deteriorated water quality due to in part to nutrient and sediment input from agricultural land. Improving water quality in Lake Winnipeg requires the knowledge of the sediment sources within this ecosystem. There are a variety of environmental fingerprinting techniques have been successfully used in the assessment of sediment sources. In this study, we used particle size distribution to evaluate spatial and temporal variations of suspended sediment and potential sediment sources collected in the Tobacco Creek Watershed in Manitoba, Canada. The particle size distribution of suspended sediment can reflect the origin of sediment and processes during sediment transport, deposition and remobilization within the watershed. The objectives of this study were to quantify visually observed spatial and temporal changes in sediment particles, and to assess the sediment source using a rapid and cost-effective fingerprinting technique based on particle size distribution. The suspended sediment was collected by sediment traps twice a year during rainfall and snowmelt periods from 2009 to 2012. The potential sediment sources included the top soil of cultivated field, riparian area and entire profile from stream banks. Suspended sediment and soil samples were pre-wet with RO water and sieved through 600 μm sieve before analyzing. Particle size distribution of all samples was determined using a Malvern Mastersizer 2000S laser diffraction with the measurement range up to 600μm. Comparison of the results for different fractions of sediment showed significant difference in particle size distribution of suspended sediment between snowmelt and rainfall events. An important difference of particle size distribution also found between the cultivated soil and forest soil. This difference can be explained by different land uses which provided a distinct fingerprint of sediment. An overall improvement in water quality can be achieved by

  15. Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation

    PubMed Central

    Liu, Dandan; Pan, Hao; He, Fengwei; Wang, Xiaoyu; Li, Jinyu; Yang, Xinggang; Pan, Weisan

    2015-01-01

    The purpose of this work was to explore the particle size reduction effect of carvedilol on dissolution and absorption. Three suspensions containing different sized particles were prepared by antisolvent precipitation method or in combination with an ultrasonication process. The suspensions were characterized for particle size, surface morphology, and crystalline state. The crystalline form of carvedilol was changed into amorphous form after antisolvent precipitation. The dissolution rate of carvedilol was significantly accelerated by a reduction in particle size. The intestinal absorption of carvedilol nanosuspensions was greatly improved in comparison with microsuspensions and solution in the in situ single-pass perfusion experiment. The in vivo evaluation demonstrated that carvedilol nanosuspensions and microsuspensions exhibited markedly increased Cmax (2.09- and 1.48-fold) and AUC0−t (2.11- and 1.51-fold), and decreased Tmax (0.34- and 0.48-fold) in contrast with carvedilol coarse suspensions. Moreover, carvedilol nanosuspensions showed good biocompatibility with the rat gastric mucosa in in vivo gastrointestinal irritation test. The entire results implicated that the dissolution rate and the oral absorption of carvedilol were significantly affected by the particle size. Particle size reduction to form nanosized particles was found to be an efficient method for improving the oral bioavailability of carvedilol. PMID:26508852

  16. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    NASA Astrophysics Data System (ADS)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  17. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles.

    PubMed

    Ahfir, Nasre-Dine; Hammadi, Ahmed; Alem, Abdellah; Wang, HuaQing; Le Bras, Gilbert; Ouahbi, Tariq

    2017-03-01

    The effects of porous media grain size distribution on the transport and deposition of polydisperse suspended particles under different flow velocities were investigated. Selected Kaolinite particles (2-30μm) and Fluorescein (dissolved tracer) were injected in the porous media by step input injection technique. Three sands filled columns were used: Fine sand, Coarse sand, and a third sand (Mixture) obtained by mixing the two last sands in equal weight proportion. The porous media performance on the particle removal was evaluated by analysing particles breakthrough curves, hydro-dispersive parameters determined using the analytical solution of convection-dispersion equation with a first order deposition kinetics, particles deposition profiles, and particle-size distribution of the recovered and the deposited particles. The deposition kinetics and the longitudinal hydrodynamic dispersion coefficients are controlled by the porous media grain size distribution. Mixture sand is more dispersive than Fine and Coarse sands. More the uniformity coefficient of the porous medium is large, higher is the filtration efficiency. At low velocities, porous media capture all sizes of suspended particles injected with larger ones mainly captured at the entrance. A high flow velocity carries the particles deeper into the porous media, producing more gradual changes in the deposition profile. The median diameter of the deposited particles at different depth increases with flow velocity. The large grain size distribution leads to build narrow pores enhancing the deposition of the particles by straining. Copyright © 2016. Published by Elsevier B.V.

  18. Control of electroosmosis in coated quartz capillaries

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Van Alstine, James; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1987-01-01

    The effectiveness of various coatings for controlling the electroosmotic fluid flow that hinders electrophoretic processes is studied using analytical particle microelectrophoresis. The mobilities of 2-micron diameter glass and polystyrene latex spheres (exhibiting both negative and zero effective surface charge) were measured in 2-mm diameter quartz capillaries filled with NaCl solutions within the 3.5-7.8 pH range. It is found that capillary inner surface coatings using 5000 molecular weight (or higher) poly(ethylene glycol): significantly reduced electroosmosis within the selected pH range, were stable for long time periods, and appeared to be more effective than dextran, methylcellulose, or silane coatings.

  19. Effect of particle size of rice flour on physical and sensory properties of Sel-roti.

    PubMed

    Subba, Dilip; Katawal, Surendra Bahadur

    2013-02-01

    Sel-roti is a delicious, deep-fat fried, puffed, ring shaped spongy doughnut like Nepalese indigenous food prepared from the batter of rice flour, ghee and sugar. A study was conducted to determine the effect of particle size of rice flour on bulk density, oil uptake and texture of Sel-roti. Rice was soaked in water and ground with the help of iron mortar and pestle and the flour was analyzed for particle size distribution by using standard sieves and separated into three particle size categories as coarse (> 890 u), medium (120-890 u) and fine (< 120 u). The rice flour of different particle sizes were mixed in different proportions and Sel-roti was prepared from these flours. Bulk density and oil uptake were determined and sensory test was carried out. The results showed significant good positive correlation between mean particle size and bulk density (r = 0.97, p ≤ 0.05) and a good negative correlation between mean particle size and oil-uptake (r = 0.90, p ≤ 0.05). Good positive correlation of mean particle size with texture attributes like hardness (r = 0.99, p ≤ 0.05) and fracturability (r = 0.96, p ≤ 0.05) and good negative correlation with smoothness (r  = -0.97, p ≤ 0.05), cohesiveness (r = -0.92, p ≤ 0.05), stickiness (r = -0.76, p ≤ 0.05) and oily mouth feel (r = -0.85, p ≤ 0.05) and fair positive correlation with chewiness (r = 0.65, p > 0.05) were found.

  20. Luminescence isochron dating: a new approach using different grain sizes.

    PubMed

    Zhao, H; Li, S H

    2002-01-01

    A new approach to isochron dating is described using different sizes of quartz and K-feldspar grains. The technique can be applied to sites with time-dependent external dose rates. It is assumed that any underestimation of the equivalent dose (De) using K-feldspar is by a factor F, which is independent of grain size (90-350 microm) for a given sample. Calibration of the beta source for different grain sizes is discussed, and then the sample ages are calculated using the differences between quartz and K-feldspar De from grains of similar size. Two aeolian sediment samples from north-eastern China are used to illustrate the application of the new method. It is confirmed that the observed values of De derived using K-feldspar underestimate the expected doses (based on the quartz De) but, nevertheless, these K-feldspar De values correlate linearly with the calculated internal dose rate contribution, supporting the assumption that the underestimation factor F is independent of grain size. The isochron ages are also compared with the results obtained using quartz De and the measured external dose rates.

  1. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics.

    PubMed

    Lizana, L; Ambjörnsson, T

    2009-11-01

    We solve a nonequilibrium statistical-mechanics problem exactly, namely, the single-file dynamics of N hard-core interacting particles (the particles cannot pass each other) of size Delta diffusing in a one-dimensional system of finite length L with reflecting boundaries at the ends. We obtain an exact expression for the conditional probability density function rhoT(yT,t|yT,0) that a tagged particle T (T=1,...,N) is at position yT at time t given that it at time t=0 was at position yT,0. Using a Bethe ansatz we obtain the N -particle probability density function and, by integrating out the coordinates (and averaging over initial positions) of all particles but particle T , we arrive at an exact expression for rhoT(yT,t|yT,0) in terms of Jacobi polynomials or hypergeometric functions. Going beyond previous studies, we consider the asymptotic limit of large N , maintaining L finite, using a nonstandard asymptotic technique. We derive an exact expression for rhoT(yT,t|yT,0) for a tagged particle located roughly in the middle of the system, from which we find that there are three time regimes of interest for finite-sized systems: (A) for times much smaller than the collision time tparticle concentration and D is the diffusion constant for each particle, the tagged particle undergoes a normal diffusion; (B) for times much larger than the collision time t >taucoll but times smaller than the equilibrium time ttaue , rhoT(yT,t|yT,0) approaches a polynomial-type equilibrium probability density function. Notably, only regimes (A) and (B) are found in the previously considered infinite systems.

  2. Nanoparticles and metrology: a comparison of methods for the determination of particle size distributions

    NASA Astrophysics Data System (ADS)

    Coleman, Victoria A.; Jämting, Åsa K.; Catchpoole, Heather J.; Roy, Maitreyee; Herrmann, Jan

    2011-10-01

    Nanoparticles and products incorporating nanoparticles are a growing branch of nanotechnology industry. They have found a broad market, including the cosmetic, health care and energy sectors. Accurate and representative determination of particle size distributions in such products is critical at all stages of the product lifecycle, extending from quality control at point of manufacture to environmental fate at the point of disposal. Determination of particle size distributions is non-trivial, and is complicated by the fact that different techniques measure different quantities, leading to differences in the measured size distributions. In this study we use both mono- and multi-modal dispersions of nanoparticle reference materials to compare and contrast traditional and novel methods for particle size distribution determination. The methods investigated include ensemble techniques such as dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS), as well as single particle techniques such as transmission electron microscopy (TEM) and microchannel resonator (ultra high-resolution mass sensor).

  3. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident.

    PubMed

    Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko

    2014-03-31

    This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium ((137)Cs) in four irrigation ponds, ~4-5 months after the Fukushima Dai-ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of (137)Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total (137)Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more (137)Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of (137)Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of (137)Cs in pond sediment, as well as the amount lost through hydraulic flushing.

  4. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident

    PubMed Central

    Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko

    2014-01-01

    This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium (137Cs) in four irrigation ponds, ~4–5 months after the Fukushima Dai–ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of 137Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total 137Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more 137Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of 137Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of 137Cs in pond sediment, as well as the amount lost through hydraulic flushing. PMID:24682011

  5. Development and comparison of intramuscularly long-acting paliperidone palmitate nanosuspensions with different particle size.

    PubMed

    Leng, Donglei; Chen, Hongming; Li, Guangjing; Guo, Mengran; Zhu, Zhaolu; Xu, Lu; Wang, Yongjun

    2014-09-10

    The main purpose of this study was to develop and compare the pharmacokinetic behavior of two paliperidone palmitate (PP) nanosuspensions with different particle size after intramuscular (i.m.) administration. PP nanosuspensions were prepared by wet media milling method and the mean particle size of nanosuspension was controlled as 1,041 ± 6 nm (A) and 505 ± 9 nm (B), respectively. The morphology of nanosuspensions was observed by scanning electron microscope (SEM). Differential scanning calorimeter (DSC) and powder X-ray diffraction (PXRD) confirmed the crystallinity of PP in nanosuspensions. The physical and chemical stabilities of nanosuspensions A and B were investigated by particle analyzer and HPLC after storage for 2 months at 25°C, 4°C and mechanical shaking condition. No obvious change in particle size and chemical degradation of drug were observed. Following single-dose i.m. administration to beagle dogs, the release of paliperidone lasted for nearly 1 month. The Tmax of nanosuspensions A and B was 6 (d) and 10 (d). The AUC0-t and Cmax of nanosuspensions A was 2.0-fold and 1.8-fold higher than nanosuspensions B (p<0.05). The results demonstrated that PP nanosuspensions formulation had long-acting effect. Nanosuspension A with a larger particle size performed better than nanosuspension B. As a result, it is important to design appropriate particle size of nanosuspensions for i.m. administration in order to produce larger therapeutic effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Particle size of roasted soybeans and the effect on milk production of dairy cows.

    PubMed

    Dhiman, T R; Korevaar, A C; Satter, L D

    1997-08-01

    Fifteen cows were used in an experiment with a 5 x 5 replicated Latin square design to quantify the effect of particle size of roasted soybeans on milk production and fecal excretion of soybeans. The five experimental periods were each 2 wk long. Diets contained (percentage of dry matter) 33% alfalfa silage, 17% corn silage, 30.6% high moisture ear corn, 18% soybeans, and 1.4% mineral supplement. The five dietary treatments included raw whole soybeans or roasted soybeans in four particle sizes (whole and half, half and quarter, quarter and smaller, and coarsely ground). Mean particle sizes of the raw soybeans and of the roasted soybeans in whole and half sizes were > 4.75 mm. Mean particle sizes of the roasted soybeans in half and quarter, quarter and smaller, and coarsely ground roasted soybeans were 2.92, 2.01, and 1.59, respectively. During the normal handling of roasted soybeans, a large number of seeds was broken into halves in the treatment with whole and half sizes (36%, wt/wt basis). Production of 3.5% fat-corrected milk was 35.4, 37.7, 37.2, 35.1, and 35.4 kg/d for cows fed raw soybeans; roasted soybeans in whole and half, half and quarter, and quarter and smaller sizes; and ground roasted soybeans, respectively. Cows that were fed raw soybeans excreted the largest amount of visible soybean particles in feces, and cows that were fed ground roasted soybeans had the least amount of soybeans in the feces (61.3 vs. 10.6 g of soybeans/kg of fecal dry matter). Roasted soybeans in half and quarter sizes are optimal for milk production.

  7. Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China.

    PubMed

    Xie, R K; Seip, H M; Leinum, J R; Winje, T; Xiao, J S

    2005-05-01

    PM10 samples were collected during 5 days in Guiyang, China in July 2003. A total of about 2300 particles was analyzed by an automated Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS). Hierarchical cluster analysis (HCA) was used to identify different particle types that occurred in the aerosol. Seventeen particle types were identified and presented in the order of decreasing number abundance as: silicomanganese slag, soil and fly ash, coal burning, silicomanganese, quartz, syngenite, S-bearing iron, calcium rich, gypsum, sphalerite, dolomite, iron, alloy, lead sulfate, zinc rich, sulfur-rich particles and aluminum manufacturing dust. The majority of the particles in the studied size range are of anthropogenic origin, especially from metallurgical industry. The study illustrates the complexity of particle pollution in air of an industrial Chinese city and the results should be useful in planning mitigation measures.

  8. Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels.

    PubMed

    Liu, Chao; Xue, Chundong; Chen, Xiaodong; Shan, Lei; Tian, Yu; Hu, Guoqing

    2015-06-16

    Viscoelasticity-induced particle migration has recently received increasing attention due to its ability to obtain high-quality focusing over a wide range of flow rates. However, its application is limited to low throughput regime since the particles can defocus as flow rate increases. Using an engineered carrier medium with constant and low viscosity and strong elasticity, the sample flow rates are improved to be 1 order of magnitude higher than those in existing studies. Utilizing differential focusing of particles of different sizes, here, we present sheathless particle/cell separation in simple straight microchannels that possess excellent parallelizability for further throughput enhancement. The present method can be implemented over a wide range of particle/cell sizes and flow rates. We successfully separate small particles from larger particles, MCF-7 cells from red blood cells (RBCs), and Escherichia coli (E. coli) bacteria from RBCs in different straight microchannels. The proposed method could broaden the applications of viscoelastic microfluidic devices to particle/cell separation due to the enhanced sample throughput and simple channel design.

  9. Mass size distribution of particle-bound water

    NASA Astrophysics Data System (ADS)

    Canepari, S.; Simonetti, G.; Perrino, C.

    2017-09-01

    The thermal-ramp Karl-Fisher method (tr-KF) for the determination of PM-bound water has been applied to size-segregated PM samples collected in areas subjected to different environmental conditions (protracted atmospheric stability, desert dust intrusion, urban atmosphere). This method, based on the use of a thermal ramp for the desorption of water from PM samples and the subsequent analysis by the coulometric KF technique, had been previously shown to differentiate water contributes retained with different strength and associated to different chemical components in the atmospheric aerosol. The application of the method to size-segregated samples has revealed that water showed a typical mass size distribution in each one of the three environmental situations that were taken into consideration. A very similar size distribution was shown by the chemical PM components that prevailed during each event: ammonium nitrate in the case of atmospheric stability, crustal species in the case of desert dust, road-dust components in the case of urban sites. The shape of the tr-KF curve varied according to the size of the collected particles. Considering the size ranges that better characterize the event (fine fraction for atmospheric stability, coarse fraction for dust intrusion, bi-modal distribution for urban dust), this shape is coherent with the typical tr-KF shape shown by water bound to the chemical species that predominate in the same PM size range (ammonium nitrate, crustal species, secondary/combustion species - road dust components).

  10. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation

    NASA Astrophysics Data System (ADS)

    Durner, Wolfgang; Iden, Sascha C.; von Unold, Georg

    2017-01-01

    The particle-size distribution (PSD) of a soil expresses the mass fractions of various sizes of mineral particles which constitute the soil material. It is a fundamental soil property, closely related to most physical and chemical soil properties and it affects almost any soil function. The experimental determination of soil texture, i.e., the relative amounts of sand, silt, and clay-sized particles, is done in the laboratory by a combination of sieving (sand) and gravitational sedimentation (silt and clay). In the latter, Stokes' law is applied to derive the particle size from the settling velocity in an aqueous suspension. Traditionally, there are two methodologies for particle-size analysis from sedimentation experiments: the pipette method and the hydrometer method. Both techniques rely on measuring the temporal change of the particle concentration or density of the suspension at a certain depth within the suspension. In this paper, we propose a new method which is based on the pressure in the suspension at a selected depth, which is an integral measure of all particles in suspension above the measuring depth. We derive a mathematical model which predicts the pressure decrease due to settling of particles as function of the PSD. The PSD of the analyzed sample is identified by fitting the simulated time series of pressure to the observed one by inverse modeling using global optimization. The new method yields the PSD in very high resolution and its experimental realization completely avoids any disturbance by the measuring process. A sensitivity analysis of different soil textures demonstrates that the method yields unbiased estimates of the PSD with very small estimation variance and an absolute error in the clay and silt fraction of less than 0.5%.

  11. The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation

    NASA Astrophysics Data System (ADS)

    Durner, Wolfgang; Iden, Sascha C.; von Unold, Georg

    2017-04-01

    The particle-size distribution (PSD) of a soil expresses the mass fractions of various sizes of mineral particles which constitute the soil material. It is a fundamental soil property, closely related to most physical and chemical soil properties and it affects almost any soil function. The experimental determination of soil texture, i.e., the relative amounts of sand, silt, and clay-sized particles, is done in the laboratory by a combination of sieving (sand) and gravitational sedimentation (silt and clay). In the latter, Stokes' law is applied to derive the particle size from the settling velocity in an aqueous suspension. Traditionally, there are two methodologies for particle-size analysis from sedimentation experiments: the pipette method and the hydrometer method. Both techniques rely on measuring the temporal change of the particle concentration or density of the suspension at a certain depth within the suspension. In this paper, we propose a new method which is based on the pressure in the suspension at a selected depth, which is an integral measure of all particles in suspension above the measuring depth. We derive a mathematical model which predicts the pressure decrease due to settling of particles as function of the PSD. The PSD of the analyzed sample is identified by fitting the simulated time series of pressure to the observed one by inverse modeling using global optimization. The new method yields the PSD in very high resolution and its experimental realization completely avoids any disturbance by the measuring process. A sensitivity analysis of different soil textures demonstrates that the method yields unbiased estimates of the PSD with very small estimation variance and an absolute error in the clay and silt fraction of less than 0.5%

  12. Colloid particle sizes in the Mississippi River and some of its tributaries, from Minneapolis to below New Orleans

    USGS Publications Warehouse

    Rostad, C.E.; Rees, T.F.; Daniel, S.R.

    1998-01-01

    An on-board technique was developed that combined discharge-weighted pumping to a high-speed continuous-flow centrifuge for isolation of the particulate-sized material with ultrafiltration for isolation of colloid-sized material. In order to address whether these processes changed the particle sizes during isolation, samples of particles in suspension were collected at various steps in the isolation process to evaluate changes in particle size. Particle sizes were determined using laser light-scattering photon correlation spectroscopy and indicated no change in size during the colloid isolation process. Mississippi River colloid particle sizes from twelve sites from Minneapolis to below New Orleans were compared with sizes from four tributaries and three seasons, and from predominantly autochthonous sources upstream to more allochthonous sources downstream. ?? 1998 John Wiley Sons, Ltd.

  13. Winter precipitation particle size distribution measurement by Multi-Angle Snowflake Camera

    NASA Astrophysics Data System (ADS)

    Huang, Gwo-Jong; Kleinkort, Cameron; Bringi, V. N.; Notaroš, Branislav M.

    2017-12-01

    From the radar meteorology viewpoint, the most important properties for quantitative precipitation estimation of winter events are 3D shape, size, and mass of precipitation particles, as well as the particle size distribution (PSD). In order to measure these properties precisely, optical instruments may be the best choice. The Multi-Angle Snowflake Camera (MASC) is a relatively new instrument equipped with three high-resolution cameras to capture the winter precipitation particle images from three non-parallel angles, in addition to measuring the particle fall speed using two pairs of infrared motion sensors. However, the results from the MASC so far are usually presented as monthly or seasonally, and particle sizes are given as histograms, no previous studies have used the MASC for a single storm study, and no researchers use MASC to measure the PSD. We propose the methodology for obtaining the winter precipitation PSD measured by the MASC, and present and discuss the development, implementation, and application of the new technique for PSD computation based on MASC images. Overall, this is the first study of the MASC-based PSD. We present PSD MASC experiments and results for segments of two snow events to demonstrate the performance of our PSD algorithm. The results show that the self-consistency of the MASC measured single-camera PSDs is good. To cross-validate PSD measurements, we compare MASC mean PSD (averaged over three cameras) with the collocated 2D Video Disdrometer, and observe good agreements of the two sets of results.

  14. Impact of formulation and particle size on stability and immunogenicity of oil-in-water emulsion adjuvants

    PubMed Central

    Iyer, Vidyashankara; Cayatte, Corinne; Guzman, Bernardo; Schneider-Ohrum, Kirsten; Matuszak, Ryan; Snell, Angie; Rajani, Gaurav Manohar; McCarthy, Michael P; Muralidhara, Bilikallahalli

    2015-01-01

    Oil-in-water emulsions have gained consideration as vaccine adjuvants in recent years due to their ability to elicit a differentiated immunogenic response compared to traditional aluminum salt adjuvants. Squalene, a cholesterol precursor, is a natural product with immunostimulatory properties, making it an ideal candidate for such oil-in-water emulsions. Particle size is a key parameter of these emulsions and its relationship to stability and adjuvanticity has not been extensively studied. This study evaluates the effect of particle size on the stability and immunogenicity of squalene emulsions. We investigated the effect of formulation parameters such as surfactant concentration on particle size, resulting in particles with average diameter of 80 nm, 100 nm, 150 nm, 200 nm, or 250 nm. Emulsions were exposed to shear and temperature stresses, and stability parameters such as pH, osmolarity, size, and in-depth visual appearance were monitored over time. In addition, adjuvanticity of different particle size was assessed in a mouse model using Respiratory Syncytial Virus Fusion protein (RSV-F) as a model antigen. Temperature dependent phase separation appeared to be the most common route of degradation occurring in the higher particle sizes emulsions. The emulsions below 150 nm size maintained stability at either 5°C or 25°C, and the 80 nm diameter ones showed no measurable changes in size even after one month at 40°C. In vivo studies using the emulsions as an adjuvant with RSV F antigen revealed that superior immunogenicity could be achieved with the 80 nm particle size emulsion. PMID:26090563

  15. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size

    PubMed Central

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-01-01

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of −0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process. PMID:27104527

  16. The Isolation of DNA by Polycharged Magnetic Particles: An Analysis of the Interaction by Zeta Potential and Particle Size.

    PubMed

    Haddad, Yazan; Xhaxhiu, Kledi; Kopel, Pavel; Hynek, David; Zitka, Ondrej; Adam, Vojtech

    2016-04-20

    Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 μm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.

  17. Particle Size Influence on the Effective Permeability of Composite Materials

    NASA Astrophysics Data System (ADS)

    Xiang, Tai; Zhong, Ru-Neng; Yao, Bin; Qin, Shao-Jing; Zheng, Qin-Hong

    2018-05-01

    The energy method, which estimates the effective permeability of composite material is proposed. We approximate the effective static magnetic permeability by energy method and Maxwell-Garnett method for spherical particles dispersing system. Considering the effect of the interface layer between the medium and the particle, we study the nanoparticles embedded in a medium exactly. The interface layer property plays a significant factor for the effective permeability of the composite material in which nano-sized particles embedded. Supported by National Natural Science Foundation of Yunnan province under Grant No. 2014FB141 and National Natural Science Foundation under Grant No. 1121403 of China

  18. Comparison of Ice Cloud Particle Sizes Retrieved From Satellite Data Derived From In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al. 1994), there is no comparable study for cirrus ice crystals. In this paper a near-global survey of cirrus ice crystal sizes is conducted using ISCCP satellite data analysis. The retrieval scheme uses phase functions based upon hexagonal crystals calculated by a ray tracing technique. The results show that global mean values of D(e) are about 60 micro-m. This study also investigates the possible reasons for the significant difference between satellite retrieved effective radii (approx. 60 micro-m) and aircraft measured particle sizes (approx. 200 micro-m) during the FIRE I IFO experiment. They are (1) vertical inhomogeneity of cirrus particle sizes; (2) lower limit of the instrument used in aircraft measurements; (3) different definitions of effective particle sizes; and (4) possible inappropriate phase functions used in satellite retrieval.

  19. Analysis of particle size to erosion wear of sliding sleeve ball seat based on fluent software

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Yin, Hongcheng; Wan, Bingqian; Cheng, Hao; Xiang, Lu; Li, Jianmin

    2017-04-01

    The fracturing has become the most offensive stimulation treatment in the low permeability reservoir. But, as the construction displacement and sand dosage of overlong horizontal well were increased continuously, the erosion wear of ball seat of pitching sliding sleeve was increasingly serious, which might lead to the failure of opening the sliding sleeve. In the existing literature, there were many researches on the erosion wear of liquid-solid two-phase flow in the diameter of sudden expansion pipe, but the influence of solid particle with mixed particle size to the erosion wear was not considered. This paper studied the erosion wear of ball seat according to the mixed proppant with different particle sizes, and carried out the numerical simulation with Fluent software with the Euler two-fluid theory. The results showed that: the erosion wear rate of ball seat is in inversely proportional to the particle size of proppant; the erosion wear rate of ball seat is different when the volume fraction of proppant with different particle sizes is changed; and for the mixed proppant of which the particle size is 0.3mm and 0.8mm, the erosion wear rate of ball seat is minimum when the volume fraction of proppant, of which the particle size is 0.3mm, is about 20%. The simulated result contributed to the deep study on erosion wear law of solid particle, and meanwhile, provided a certain reference basis for the selection of staged fracturing material of horizontal well.

  20. Computer programs for computing particle-size statistics of fluvial sediments

    USGS Publications Warehouse

    Stevens, H.H.; Hubbell, D.W.

    1986-01-01

    Two versions of computer programs for inputing data and computing particle-size statistics of fluvial sediments are presented. The FORTRAN 77 language versions are for use on the Prime computer, and the BASIC language versions are for use on microcomputers. The size-statistics program compute Inman, Trask , and Folk statistical parameters from phi values and sizes determined for 10 specified percent-finer values from inputed size and percent-finer data. The program also determines the percentage gravel, sand, silt, and clay, and the Meyer-Peter effective diameter. Documentation and listings for both versions of the programs are included. (Author 's abstract)